
2006-01-1557

Using UML 2.0 to Create Executable Code from
Requirements Capture and Consistent Requirement

Specifications for Real-Time Automotive Software
Development

Brendan Jackman
Waterford Institute of Technology, Ireland.

Shepherd Sanyanga
Ford (Europe), United Kingdom.

Copyright © 2006 SAE International

ABSTRACT

The development of vehicle control systems has
evolved to become an exercise in the design and
integration of complex, distributed hardware and
software components. The various components are
typically developed by geographically dispersed, multi-
cultural teams from both OEMs and suppliers.

This paper gives a brief overview of using the Unified
Modelling Language (UML) as a means of capturing
the requirements of real-time distributed systems in a
graphical notation shared by all team members. UML
is commonly used to model system concepts, albeit
typically as system “sketches” without any formal
definition of the model’s semantics. This paper
specifically addresses the additions to the latest
version of UML that supports higher levels of
abstraction, model-based development, executable
models and the specification of non-functional
requirements. These improvements to UML make it
more semantically complete, which means that a UML
model can unambiguously describe a system, resulting
in simpler automatic model verification and automatic
code generation. The modelling of automotive network
management requirements in a typical vehicle
application is used to illustrate the benefits of the UML
model development approach.

INTRODUCTION

UML has its origins in the early object-oriented
analysis and design methodologies of Grady Booch
(the Booch Methodology), James Rumbaugh and
associates (Object Modeling Technique) and Ivar
Jacobson (Objectory). After many years of working in
parallel, these three approaches converged to become
the first version of UML, resulting in UML V1.1 being
standardized by the Object Management Group (OMG)

in 1997. Since then UML has become the de facto
standard for software and system modeling. The
widespread use of object-oriented development
languages (Java, C++, C#) and platforms (J2EE,
COM+, .NET) in mainstream computing has increased
the requirement for a semantically-rich modeling
notation that supports component- and model-based
development. The latest version of UML, UML 2.0,
addresses the shortcomings of previous versions by
providing additional support for expressing system
structure, constraints and behavior. These latest
enhancements also address the limitations of previous
versions of UML in describing real-time distributed
systems.

VEHICLE SYSTEMS SPECIFICATION

The requirements specifications for today’s vehicle
systems are usually expressed in natural language,
perhaps supplemented with some informal diagrams
such as state transition diagrams and flowcharts. The
problem with these documentation methods is that
they can be ambiguous, inconsistent and incomplete.
When modules of a system are being developed by
different organizations, much development and testing
time is wasted trying to resolve differences in
understanding of what the system requirements are.

A common approach to the management of complexity
has traditionally been standardization, the use of
interchangeable parts that provide compatible
interfaces and services. The use of standard modules
and protocols also helps the requirements specification
effort because standard implementations also imply a
commonly understood reusable specification.

There has been a move to model-based development
in recent times which has brought with it a range of
diagramming and modeling notations that developers

can use instead of natural language specifications. To
be effective however, the modeling notations used
must have well-defined semantics and be more than
just an informal diagramming notation. UML is a well-
defined modeling notation that can be used to
document system requirements.

UML SYSTEM VIEWS

UML currently has over a dozen different diagrams to
model various aspects of a system. Fortunately not all
of them need to be used in a development project.
Developers are free to select the models that best
express the important aspects of their system. While
each diagram expresses either a behavioral or
structural aspect of the system, it is useful to organize
the models into a 4+1 view of the system, that is, there
are four distinct views of a system, plus one view that
describes how the overall system fits together. These
views are shown in Figure 1.

Figure 1. System Views

USE CASE VIEW

In UML the overall system functionality required by the
users is described by a Use Case diagram. Use
Cases are pieces of functionality that are invoked by
Actors, which can be end-users, or in the case of real-
time systems, external sensors or other system
components. Use Cases can have dependencies on
other Use Cases, allowing functions to be reused. Use
Cases can also be special cases of other Use Cases
using generalization or inheritance. This allows

standard functions to be tailored to suit special
requirements. Figure 2 shows a Use Case diagram for
a power window system.

Figure 2. Use Case Diagram

Use Case requirements can be expressed in any
suitable format. Traditionally this has been natural
language, although such requirements can be
incomplete, inconsistent and ambiguous. The
availability of standard templates and requirements
management tools has eased some of these problems.
UML 2.0 also allows Use Cases to be expressed in
terms of other UML models, most commonly Activity
diagrams and Sequence diagrams. This hierarchical
view of system requirements supports requirements
traceability and automated consistency checking.

DESIGN VIEW

The design view describes the software elements and
their interactions necessary to realize the functionality
of the system. The design view provides the logical
structure and behavior of the software without
addressing how the software elements are distributed
across the hardware platform. The UML diagrams that
support the design view are

 Class diagrams

 Object Diagrams

 Activity Diagrams

 Composite Structure Diagrams

 Sequence Diagrams

DEPLOYMENT VIEW

The deployment view captures the details of how a
system is configured and installed on physical
hardware architectures. It can illustrate aspects of the
system architecture such as network configuration and
redundancy. The deployment view can be illustrated
with the following UML diagrams

 Component diagrams

 Deployment diagrams

 Interaction Diagrams

IMPLEMENTATION VIEW

The implementation view is concerned with the
configuration management of the system. It shows
which source files implement which classes and the
dependencies between system components.
Implementation views can be expressed using the
following diagrams

 Component diagrams

 Interaction diagrams

 Composite Structure diagrams

 Statechart diagrams

 Package diagrams

PROCESS VIEW

The process view illustrates the concurrency among
the software elements and can be used to express
performance and scalability requirements. The
process view is expressed with the following UML
diagrams

 Interaction diagrams

 Activity diagrams

 Timing diagrams

USING UML

As can be seen, individual UML diagrams can serve
many purposes, supporting different views of a
system. Many developers tend to use just a few UML
diagrams to provide rough sketches of the system
functionality. The Class diagram, Interaction diagram
and Package diagrams tend to be the most commonly
used models in this regard. To get the maximum
benefit from UML, it needs to be regarded as more
than just a diagramming notation. The semantics of
UML 2.0 have been strengthened so that UML can
now be considered a development language. New
extensions to UML and tool support means that it is
possible to create executable models of a system
using UML. This allows for earlier verification of
system functionality and support for model-based
development at higher levels of abstraction.

In the latest version of UML, Each system requires a
Use Case View that expresses the required system
functionality. Once the requirements have been
determined, the Design View is used to describe the
fundamental components of the system and how they
work together to realize the functionality of the system.

The developer can decide to use one or more of the
other system views to highlight important requirements
and design decisions. Non-functional requirements,
for example performance constraints and software
deployment, are sometimes expressed in natural
language, but could be more clearly described using
the Implementation, Deployment and Process view
diagrams. With tool support it is possible to
automatically verify these non-functional requirements
when expressed as UML models.

UML FUNDAMENTALS

This section gives a brief overview of the main UML
diagrams. The intention is to give the reader an idea
of what is possible with UML. The reader is referred to
the UML standard [ref] and some of the many UML
books [ref] for a thorough treatment of the subject.

CLASS DIAGRAM

The Class diagram is the most fundamental of all the
UML diagrams. A Class diagram describes the basic
software elements that make up a system and the
static relationships between them. A Class represents
a set of things that have a common set of data (called
attributes) and behavior (called methods). For
example, in Figure 3 the class "Car" represents the
general set of all cars. Its attributes might include
details such as Make, Model, Model Year, Owner and
Color. Its methods might include getColor(), getVIN()
and changeColor(). Even though UML is
fundamentally object-oriented, it can be used to model
non-object-oriented (procedural) systems. The main
thing to remember is that a Class can represent any

important system concept, not just an object-oriented
class in Java or C++. Classes can represent software
components which encapsulate their own data
(attributes) and behavior (methods). The Class
diagram specifies the interface to the class and not its
implementation. The class could be implemented in a
procedural language such as C or even as a Simulink
block. This flexibility in the interpretation of classes
allows class diagrams to be used to describe both the
system requirements in terms of domain concepts, as
well as the subsequent realization of the requirements
in terms of software elements. Developers distinguish
between Analysis Class Diagrams, which contain only
domain-level concepts, and Design Class Diagrams,
which additionally contain software-specific classes to
describe concepts such as data structures and data
access protocols.

Figure 3. Class Diagram

Figure 3 illustrates the relationships between the class
Car and some of the other system concepts. UML
provides a shorthand notation for commonly used
aggregate (assembly-subassembly) and inheritance
(generalization-specialization) relationships.

During the requirements analysis phase the emphasis
is on identifying the main system concepts/classes and
the relationships between them. At the software
design stage methods are assigned to each class to
represent the responsibilities of the class in terms of
the functionality that it provides. It is best to leave the
assignment of methods to the design phase, since
discovering a good, stable structure of system
elements is the most important factor in architectural
design. The assignment of responsibilities to the
system elements tends to fall naturally out of a good
system structure.

Class diagrams illustrate the general structure of the
system in terms of similar software elements. They
are static diagrams and so they do not show the run-
time behavior of the software elements. At run time
the classes are instantiated as individual objects which
interact by calling each other's methods to execute
system functionality.

SEQUENCE DIAGRAM

Sequence diagrams are used to show the order of
method calls made by objects of each class. A
particular class may be responsible for providing
certain functionality, but sometimes it must delegate
parts of that functionality to other classes in the
system, in the same way that managers in an
organization delegate certain tasks to subordinates.
Objects of a class call the methods of other objects to
invoke their behavior. Sequence diagrams chart
chronologically, from top to bottom, the method calls
required to implement a piece of functionality.
Messages in a sequence diagram can be either
synchronous (with solid arrow) or asynchronous (with
open-ended arrow). The basic format of a Sequence
diagram is shown in Figure 4.

Figure 4. Sequence Diagram

STATECHART DIAGRAM

Statechart or State Transition diagrams capture the
internal state transitions of UML elements such as a
Class, subsystem or the whole system. They are very
useful in describing the operation of event-driven real-
time embedded systems. The Statechart notation has
been enhanced in UML 2.0 to allow for easier
expression of hierarchical state machines, reusable
states, composite states for parallel processing and
high-level transitions. In addition there is some new
notation for emphasizing transitions and associated
input/output signals that would be very useful in ECU
modeling. Figure 5 provides an example of a
Statechart showing some of the new features.

Figure 5. Statechart Diagram

COMPOSITE STRUCTURE DIAGRAM

Modern vehicle control systems are usually
implemented by a combination of cooperating
hardware and software components. Each component
provides a well-defined interface and functionality to
client components. Components are a fundamental
method of reuse, whether they are hardware
components, software modules or Java/C++ classes.
UML now has a Composite Structure diagram that
provides both black-box and white-box views of a
component and its interfaces. The white-box view
allows the implementation of a component to be
specified in terms of other basic components,
providing a hierarchical resolution of a system or
component.

Components can have both provided interfaces and
required interfaces. Provided interfaces represent the
functionality implemented by the component in
question. Required interfaces represent functionality
that the component expects other components in turn
to supply to it so that it can carry out its activities. UML
provides the concepts of ports and connectors to
enable components to be interconnected at interfaces.
Figure 6 is an example of a black-box component
showing both provided and required interfaces.

Figure 6. Black-Box Component View

The white-box view of a component can be used to
show the classes that work together to provide the
functionality at the component interfaces. Ports can be
connected to internal classes to show which classes
provide the functionality at component interfaces. In
this way the end-to-end flows through system
components can be documented. An example of a
white-box component realization is shown in Figure 7.

Figure 7. White-Box Component View

Classes can also be broken down in the same way to
show how internal functionality is achieved using other
delegate classes. These Composite Classes are new
to UML 2.0 and provide both a hierarchical structuring
of classes and an illustration of the end-to-end flows
within a class.

ACTIVITY DIAGRAM

Sometimes the best way of describing a piece of
system functionality is by using a procedural approach;
a sequence of steps, much like traditional flowcharts.
UML now has an Activity diagram that uses a mixture
of control and data flow notation to describe system
behavior. There is support for decision-making,
concurrency and synchronization modeling using
Activity diagrams. Figure 8 is an example of an
Activity diagram.

Figure 8. Activity Diagram

REAL-TIME SYSTEM MODELING

Real-time system development has to address the
following concerns as part of the analysis and design
phases.

 System deployment to distributed hardware
and software components

 Concurrency

 Constraints on system resources

 Performance requirements

The enhancements found in UML 2.0 provide good
support for the above concerns, making UML more
suitable than ever for real-time system modeling. The
gap between systems engineering and software
engineering has been bridged with UML 2.0, providing
a single modeling technique that can be used to model
system architecture and subsequently refine this to
software implementation models of each system
component.

FUNCTION DEPLOYMENT

Composite Structure diagrams can be used to break
down the system into a set of cooperating hardware
and software components with clearly defined
interfaces. Deployment diagrams can be used to show
the allocation of software components to networked
Electronic Control Units (ECUs) together with the
network topology details. An example of a Deployment
diagram is shown in Figure 9.

Figure 9. Deployment Diagram

CONCURRENCY

In addition to the concurrency implied in the
Deployment diagrams, UML can represent parallel
activities using composite states on Statecharts as
shown in Figure 5.

An enhancement to Sequence diagrams allows for
sets of method calls to be executed in parallel as
shown in Figure 10.

Figure 10. Enhanced Sequence Diagram

UML 2.0 allows portions of a timeline to be broken
down, providing a hierarchical organization of
sequence diagrams. This solves the problem with
previous UML sequence diagrams which did not scale
very well for use in large complex systems. UML now
supports Interaction Occurrences on Sequence
diagrams which allow common sequences of
messages to be reused in many different Sequence
diagrams.

CONSTRAINT MODELING

The Object Constraint Language is a declarative
language that can be used to express constraints or
invariants on any aspect of a UML model. OCL has its
own set of keywords and operators, just like any other
language. A developer can use OCL to express
constraints on such things as the allowed range of
values for a class attribute, a pre-condition for
executing an action on a Statechart or allowed network
bit rates on a deployment diagram. There are
considerable benefits from using OCL to specify non-
functional requirements as part of a Use Case. For a
start, OCL expressions are unambiguous and can also
be automatically checked for consistency with the help
of some tools.

PERFORMANCE MODELING

There are a number of ways in which the performance
aspects of a system can be specified in UML models.
The Statechart notation includes the transition keyword
after, which specifies the maximum allowed time
before a transition will occur. This is useful for
describing timeout conditions in state machines. An
example of this is shown in Figure 5. The Sequence
diagram can also be annotated to show the maximum
allowable execution times for a method, as well as the
time allowed for the method call itself. Examples of
these notations are given in Figure 11.

UML has a Timing diagram that is used to show the
effects of method calls on objects as time progresses.
The Timing diagram can be used to show timing
constraints on method calls and the sequencing of
method calls. Figure 11 is an example of a Timing
diagram, showing that the window should begin
moving up within 10 milliseconds of receiving a raise
command.

Figure 11. Timing Diagram

SYSTEM INTEGRATION SUPPORT

The effects of poor system requirements definition
become apparent at the system test and integration
phase. In the global automotive industry, where many
cooperating system components are developed by
geographically dispersed teams, the effects of poor
interface definition are exacerbated. With UML 2.0
there is now a widely-used modeling notation that is
comprehensive enough to span both the system
modeling and software modeling domains. The use of
a common notation by both system developers and
software designers allows models from both domains
to be synchronized earlier in the development process
to avoid any major integration problems later on. The
well-defined semantics of UML 2.0 together with the
use of OCL provide better tool support for activities
such as architecture validation and test case
generation.

EXECUTABLE CODE SUPPORT

UML 2.0 is an extensible modeling environment. UML
profiles can be used to extend the notation to support
domain-specific concepts and implementation
platforms. For example, an OSEK profile can be
defined which is essentially a Class diagram
describing OSEK concepts and the relationships
between them. The profile defines a set of stereotypes
which are the names of the OSEK concepts or classes
and tagged values, which are used at design time to
influence the configuration of stereotypes. When a
developer is describing an automotive application to be
implemented on OSEK the application classes can be
further labeled with stereotypes (roles) such as
<<Task>>, <<Alarm>> or <<Message>> instead of the
generic label class. The purpose of the stereotypes is
to give additional information to readers about the
intended use of a class. However, tools such as code
generators can also use the stereotypes to guide the
generation of code and configuration details for the
software element. A class with a <<OSEKtask>>
stereotype is shown in Figure 12.

Figure 12 OSEK Task Stereotype

By adorning the UML models with appropriate
stereotypes to indicate the intended implementation
and defining suitable implementation profiles it is
possible to automatically generate executable code
from the UML models.

EXAMPLE – NETWORK MANAGEMENT
SPECIFICATION

The Gateway module which is normally the electronic
cluster has the basic task of transferring normal
messages and generating pseudo gateway messages.
The normal messages are transferred from one
network to the other. The pseudo messages are
generated based on internal information within the
electronic cluster.

There are a number of network dependencies
associated with gateways such as:

 management of the network when one bus is
asleep and another is awake, therefore
deciding what messages are transferred;

 Management of the network rings when both
buses are asleep and how the rings wake up
and are established once again. In all the
above situations the gateway has to ensure
there is no negative impact on both buses in
terms of invalid faults such as missing
messages and entering false limp home
modes.

Figure 12. Example Logical Ring Architecture for Two
Buses

Figure 13. A Gateway module trying to match two
networks into sleep mode

The problem of matching both network into a particular
network state can best described using UML especially
since the OSEK documentation is too detailed and
cumbersome for the ordinary system engineer to
understand properly.

The OSEK/VDX network management concept and
application programming interface documentation does
not show how to link two buses properly so
that when one goes to sleep the other will do the same
via sleep indication bits within network management
messages. Using UML Statecharts and Sequence
Diagrams to describe these scenarios would allow
network management component developers and
integrators to better understand and correctly
implement this functionality.

CONCLUSION

This paper presented an overview of UML notation
with an emphasis on new UML 2.0 features to support
the modeling of real-time embedded systems such as
those found in automotive applications. UML has
developed into a comprehensive system and software
modeling language that is semantically rigorous

Node
A

Node
B

HEC/Gateway

Node
C

Node
D

Network Ring A Network Layer Ring A

Network Layer Ring A Network layer Ring B

Physical Layer Physical Layer

Sleep Status
Gateway Application Layer

enough to provide tool support for development
activities such as architecture validation, model-driven
development and automatic code generation. A
significant development has been the expansion of
UML notation to support better integration of system
modeling and software modeling.

REFERENCES

1. www.omg.org
2. UML 2.0 in a Nutshell. Dan Pilone. O’Reilly Media,

2005.
3. Applying UML and Patterns. Craig Larman.

Prentice Hall PTR, 1998.

CONTACT

Brendan Jackman B.Sc. M.Tech.

Brendan is the founder and Leader of the Automotive
Control Group at Waterford Institute of Technology,
where he supervises postgraduate students working
on automotive software development, diagnostics and
vehicle networking research.. Brendan also lectures in
Automotive Software Development to undergraduates
on the B.Sc. in Applied Computing Degree at
Waterford Institute of Technology. Brendan has
extensive experience in the implementation of real-
time control systems, having worked previously with
Digital Equipment Corporation, Ireland and Logica BV
in The Netherlands.

Email: bjackman@wit.ie

Website: http://www.wit.ie/automotive

Shepherd Sanyanga (BEng BSc MSc PhD CEng
EurIng MIEE)

Shepherd has worked for United Nations in Africa in
infrastructure development programs, worked for some
years in the Aerospace Industry developing military
electronic systems and then worked for a number of
Tier One Automotive Suppliers (Lucas Electronics
(UK), Sagem (France) TRW (UK). He is currently
involved in a joint project between Ford Motor
Company (Europe), Johnson Controls (France) and
Takosan (Turkey). In his spare time he is also an
external examiner on a masters degree automotive
programme in a university in Ireland.

Email: ssanyan2@ford.com

