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Abstract

We use the Lagrange inversion theorem to characterize the central coefficients of

matrices in the Bell subgroup of the Riordan group of matrices. We give examples

of how by using different means of calculating these coefficients we can deduce the

generating functions of interesting sequences.

1 Introduction

Example 1. The most well-known example of a Bell matrix (see later) is the Binomial
matrix B with general element Tn,k =

(

n

k

)

. As a member of the Riordan group of matrices,
this is

B =

(

1

1 − x
,

x

1 − x

)

.

By the central coefficients of this matrix we understand the terms T2n,n. In this case, we
have

T2n,n =

(

2n

n

)

= [xn]
1√

1 − 4x
.

A natural question to ask is how does the defining element

1

1 − x

of B relate to 1√
1−4x

? The answer is in fact quite simple. In this case, we form the associated
Bell matrix

(1 − x, x(1 − x))

and take its inverse. This is
(c(x), xc(x)),
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where c(x) = 1−
√

1−4x

2x
is the generating function of the Catalan numbers. Then we have

(

2n

n

)

= (n + 1)[xn]c(x),

or equivalently,

[xn]c(x) =
1

n + 1

(

2n

n

)

=
1

n + 1
T2n,n.

We now note that

xc(x) = x(1 − x)(x) =

(

x
1

1−x

)

(x),

where ¯ denotes the reversion or compositional inverse. Finally, we have

T2n,n =

(

2n

n

)

= (n + 1)[xn]
1

x

(

x
1

1−x

)

(x).

The above result can be generalized to all elements of the Bell subgroup of the Riordan
group of matrices. We have the following theorem, which we shall prove in section 3.

Theorem 3. Let (g(x), xg(x)) be an element of the Bell subgroup of the Riordan group of
matrices R. If Tn,k denotes the n, k-th element of this matrix, then we have

T2n,n = (n + 1)[xn]
1

x

(

x

g(x)

)

(x).

Many interesting examples of sequences and Riordan arrays can be found in Neil Sloane’s
On-Line Encyclopedia of Integer Sequences (OEIS), [8, 9]. Sequences are frequently referred
to by their Annnnnn OEIS number. In the next section, we will review known results
concerning integer sequences, Riordan arrays and the Bell subgroup of the group of Riordan
arrays.

2 Preliminaries on integer sequences, Riordan arrays

and the Bell subgroup

For an integer sequence an, that is, an element of Z
N, the power series f(x) =

∑∞
k=0 akx

k is
called the ordinary generating function or g.f. of the sequence. an is thus the coefficient of
xn in this series. We denote this by an = [xn]f(x). For instance, Fn = [xn] x

1−x−x2 is the n-th

Fibonacci number A000045, while Cn = [xn]1−
√

1−4x

2x
is the n-th Catalan number A000108.

The properties and examples of use of the notation [xn] can be found in [6].
For a power series f(x) =

∑∞
n=0 anx

n with f(0) = 0 and f ′(0) 6= 0 we define the reversion

or compositional inverse of f to be the power series f̄(x) (also written as f [−1](x)) such that
f(f̄(x)) = x. We sometimes write f̄ = Revf .

The Riordan group [2, 7, 10], is a set of infinite lower-triangular integer matrices, where
each matrix is defined by a pair of generating functions g(x) = 1 + g1x + g2x

2 + . . . and
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f(x) = f1x + f2x
2 + . . . where f1 6= 0 [10]. The corresponding matrix is the matrix whose

i-th column is generated by g(x)f(x)i (the first column being indexed by 0). The matrix
corresponding to the pair g, f is denoted by (g, f). The group law, which corresponds to
matrix multiplication, is then given by

(g, f) · (h, l) = (g, f)(h, l) = (g(h ◦ f), l ◦ f).

The identity for this law is I = (1, x) and the inverse of (g, f) is (g, f)−1 = (1/(g ◦ f̄), f̄)
where f̄ is the compositional inverse of f . We denote by R the group of Riordan matrices. If
M is the matrix (g, f), and a = (a0, a1, . . .)

′ is an integer sequence with ordinary generating
function A(x), then the sequence Ma has ordinary generating function g(x)A(f(x)). The
(infinite) matrix (g, f) can thus be considered to act on the ring of integer sequences Z

N by
multiplication, where a sequence is regarded as a (infinite) column vector. We can extend
this action to the ring of power series Z[[x]] by

(g, f) : A(x) 7→ (g, f) · A(x) = g(x)A(f(x)).

Example 2. The so-called binomial matrix B A007318 is the element ( 1
1−x

, x
1−x

) of the

Riordan group. It has general element
(

n

k

)

, and hence as an array coincides with Pascal’s
triangle. More generally, Bm is the element ( 1

1−mx
, x

1−mx
) of the Riordan group, with general

term
(

n

k

)

mn−k. It is easy to show that the inverse B−m of Bm is given by ( 1
1+mx

, x
1+mx

).

The Bell subgroup of R is the set of matrices of the form

(g(x), xg(x)).

Note that

(g(x), xg(x))−1 =

(

xg

x
, xg

)

.

We shall call a member of the Bell subgroup of R a Bell matrix. An interesting sequence
characterization of Bell matrices may be found in [3].

3 Proof of the theorem

We restate the theorem and prove it in this section.

Theorem 3. Let (g(x), xg(x)) be an element of the Bell subgroup of the Riordan group of

matrices R. If Tn,k denotes the n, k-th element of this matrix, then we have

T2n,n = (n + 1)[xn]
1

x

(

x

g(x)

)

(x).

Proof. We let Tn,k denote the general element of the Bell matrix (g(x), xg(x)). Then we have

T2n,n = [x2n]g(x)(xg(x))n

= [x2n]xng(x)n+1

= [xn]g(x)n+1

= (n + 1)
1

n + 1
[xn]g(x)n+1.
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We now recall the Lagrange inversion theorem [5]. This says that if we have

h(w) =
w

g(w)
, g(0) 6= 0,

then

[xn]h̄(x) =
1

n
[wn−1]g(w)n.

Letting n → n + 1 gives

[xn+1]

(

x

g(x)

)

(x) =
1

n + 1
[wn]g(w)n+1,

or

[xn]
1

x

(

x

g(x)

)

(x) =
1

n + 1
[wn]g(w)n+1.

Thus we deduce that

T2n,n = (n + 1)
1

n + 1
[xn]g(x)n+1 = (n + 1)[xn]

1

x

(

x

g(x)

)

(x).

Corollary 4. The central coefficients T2n,n of the Bell matrix (g(x), xg(x)) are given by

(n + 1) times the elements of the first column of the Bell matrix

(

1

g(x)
,

x

g(x)

)−1

.

Proof. By the theory of the Bell subgroup, we have

(

1

g(x)
,

x

g(x)

)−1

=

(

1

x

(

x

g(x)

)

,

(

x

g(x)

)

)

.

Since T2n,n = (n + 1)[xn] 1
x

(

x
g(x)

)

by the Theorem, the result follows.

4 Examples

In this section, we show how, by calculating T2n,n in different ways, we can show that certain
sequences of interest have a generating function of a given form. Normally these sequences
will have the form 1

n+1
T2n,n. We start with the best-known example, the Catalan numbers.

Example 5. The Catalan numbers Cn = 1
n+1

(

2n

n

)

.
For this example, we consider, as in the introduction, the Riordan array

(

1

1 − x
,

x

1 − x

)

.
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We can calculate T2n,n directly as follows.

T2n,n = [x2n]
1

1 − x

xn

(1 − x)n

= [xn](1 − x)−n−1

= [xn]
∞
∑

k=0

(

−n − 1

k

)

(−1)kxk

= [xn]
∑

k=0

(

n + k

k

)

xk

=

(

2n

n

)

,

as expected. Now by the theorem, we look at the first column of the matrix (1−x, x(1−x))−1.
We obtain

T2n,n = (n + 1)[xn]
1

x

(

x
1

1−x

)

= (n + 1)[xn]
1

x
x(1 − x)(x).

To carry out the reversion we solve u(1 − u) = x to obtain the result (with u(0) = 0) given
by

u =
1 −

√
1 − 4x

2
.

Thus

T2n,n = (n + 1)[xn]
1 −

√
1 − 4x

2x
.

Since T2n,n =
(

2n

n

)

, we obtain

Cn =
1

n + 1

(

2n

n

)

= [xn]
1 −

√
1 − 4x

2x
.

Example 6. The generalized Catalan numbers 1
2n+1

(

3n

n

)

. We wish to prove the following

result about the generating function of 1
2n+1

(

3n

n

)

:

1

2n + 1

(

3n

n

)

= [xn]
2√
3x

sin







arcsin
(√

27x
4

)

3






.

In order to do this, we calculate the central coefficients T2n,n of the Catalan triangle (c(x), xc(x))
A033184 in two ways. First of all, by the theorem, they are given by (n + 1) times the first
column of

(1/c(x), x/c(x))−1.

Thus

T2n,n = (n + 1)[xn]
1

x

(

x

c(x)

)

(x)

= (n + 1)[xn]
1

x

(

x(1 +
√

1 − 4x)

2

)

(x).
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Taking the solution

u =
2
√

x√
3

sin







arcsin
(√

27x
4

)

3







of the equation
u(1 +

√
1 − 4u)

2
= x,

we obtain

T2n,n = (n + 1)[xn]
2√
3x

sin







arcsin
(√

27x
4

)

3






.

Secondly, we now note that directly, we have

T2n,n = [x2n]c(x)(xc(x))n = [xn]c(x)n+1.

Then by Formula (2.4) of [5], used backwards, we obtain

T2n,n =
n + 1

n + 1 + 2n

(

n + 1 + 2n

n

)

=
n + 1

3n + 1

(3n + 1)(3n)!

(2n + 1)(2n)!n!
=

n + 1

2n + 1

(

3n

n

)

.

The result follows immediately by comparing the two expressions for T2n,n.

Example 7. We wish to show that the sequence A001002 with general term

1

n + 1

n
∑

k=0

(

n + k

k

)(

k

n − k

)

has g.f. given by

1

3x

(

4 sin

(

arcsin
(

27x+11
6

)

3

)

− 1

)

.

To this end, we consider the central coefficients of the Riordan array
(

1

1 − x − x2
,

x

1 − x − x2

)

.

By the theorem, T2n,n for this array is given by (n + 1) times the first column of

((1 − x − x2), x(1 − x − x2))−1.

Thus

T2n,n = (n + 1)[xn]
1

x
(x(1 − x − x2))(x)

= (n + 1)[xn]
1

x

1

3

(

4 sin

(

arcsin
(

27x+11
6

)

3

)

− 1

)

.
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On the other hand, we have

T2n,n = [x2n]
1

1 − x − x2

xn

(1 − x − x2)n

= [xn]
1

(1 − x − x2)n+1

= [xn]
∑

k=0

(

−n − 1

k

)

(−x)k(1 + x)k

= [xn]
∑

k=0

(

n + k

k

)

xk

k
∑

j=0

(

k

j

)

xj

=
∑

k=0

(

n + k

k

)(

k

n − k

)

.

This is A038112. A comparison of both expressions for T2n,n now yields the result.

Example 8. For our next example, we will use the following result.

Lemma 9. Let f(x) = x
1+ax2+bx2 . Then

1.

f̄(x) =
1 − ax −

√

1 − 2ax + (a2 − 4b)x2

2bx
,

2.

[xn]f̄(x) =
∑

k=0

(

n − 1

2k

)

Cka
n−2k−1bk.

Proof. The first result follows by solving the equation

u

1 + au + bu2
= x

and taking the determination for which u(0) = 0. The second result is a direct application
of Lagrange inversion. We have

[xn]f̄ =
1

n
[xn−1](1 + ax + bx2)n.

Expansion of the binomial now gives the result [1].

We note that this implies that

[xn]
1

x
f̄(x) =

∑

k=0

(

n

2k

)

Cka
n−2kbk.

We now wish to study the sequence A007440 with general term

1

n + 1

∑

k=0

(

n + 1

k

)(

k

n − k

)

(−1)k =
∑

k=0

(

n

k

)(

k

n − k

)

(−1)k

n − k + 1
.
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For this, we consider the matrix

(1 − x − x2, x(1 − x − x2)).

For this matrix, T2n,n is given by (n + 1) times the first column of

(

1

1 − x − x2
,

x

1 − x − x2

)−1

.

Equivalently

T2n,n = (n + 1)[xn]
1

x

(

x

1 − x − x2

)

(x).

We obtain

T2n,n = (n + 1)[xn]

√
1 + 2x + 5x2 − x − 1

2x2
= [xn]

√
1 + 2x + 5x2 − x − 1

2x2
√

1 + 2x + 5x2
.

By the lemma, we also have

T2n,n = (n + 1)

⌊n

2
⌋

∑

k=0

(

n

2k

)

Ck(−1)n−k.

This is essentially A104506. We now calculate T2n,n directly.

T2n,n = [x2n](1 − x − x2)xn(1 − x − x2)n

= [xn](1 − x(1 + x))n+1

= [xn]
n+1
∑

k=0

(

n + 1

k

)

(−1)kxk

k
∑

j=0

(

k

j

)

xj

=
∑

k=0

(

n + 1

k

)(

k

n − k

)

(−1)k.

Thus

1

n + 1

∑

k=0

(

n + 1

k

)(

k

n − k

)

(−1)k =
∑

k=0

(

n

k

)(

k

n − k

)

(−1)k

n − k + 1

=

⌊n

2
⌋

∑

k=0

(

n

2k

)

Ck(−1)n−k

= [xn]

√
1 + 2x + 5x2 − x − 1

2x2
.

This is the shifted reversion of the Fibonacci numbers. We remark in passing that the Hankel

transform [4] of the Fibonacci reversion is −(−1)(
n+1

2 ) F (n). It is also noteworthy that the
exponential generating function of T2n,n =

∑

k=0

(

n+1
k

)(

k

n−k

)

(−1)k is given by

d

dx
e−xI1(2ix)/i, i =

√
−1.
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The Hankel transform of T2n,n begins

1,−4,−4, 11, 11,−29,−29, 76, 76,−199,−199, ...

where the sequence A002878 that begins 1, 4, 11, 29, 76, .... has general term L2n+1.

Example 10. In our last example we wish to show that the sequence A078531 with general
term

4n

n + 1

(

3n−1
2

n

)

has g.f. given by
1

x

(

1

12
+

1

6
sin

(

arcsin(216x2 − 1)

3

))

.

To this end we consider the central coefficients of the Riordan array
(

1√
1 − 4x

,
x√

1 − 4x

)

.

The central coefficients T2n,n of this matrix will then be given by the first column of the
Riordan array

(√
1 − 4x, x

√
1 − 4x

)−1
.

We find that

T2n,n = (n + 1)[xn]
1

x

(

1

12
+

1

6
sin

(

arcsin(216x2 − 1)

3

))

.

Now we can also calculate T2n,n directly as:

T2n,n = [x2n]
1√

1 − 4x

xn

√
1 − 4x

n

= [xn](1 − 4x)−
n+1

2

= [xn]
∑

k=0

(

−n+1
2

k

)

(−1)k4kxk

= [xn]
∑

k=0

(

n+1
2

+ k − 1

k

)

4kxk

=

(

3n−1
2

n

)

4n.

Comparison of the expressions for T2n,n now gives the result.
Note that T2n,n = (n + 1)A078531(n) =A091527(n).
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