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Abstract Formal Concept Analysis (FCA) looks to decompose a matrix of objects-
attributes into a set of sparse matrices capturing the underlying structure of a formal
context. We propose a Rank Reduction (RR) method to prime approximate FCAs,
namely RRFCA. While many existing FCA algorithms are complete, lectic order-
ing of the lattice may not minimize search/decomposition time. Initially, RRFCA
decompositions are not unique or complete; however, a set of good closures with
high support is learned quickly, and then, made complete. RRFCA has its novelty
in that we propose a new multiplicative two-stage method. First, we describe the
theoretical foundations underpinning our RR approach. Second, we provide a repre-
sentative exemplar, showing how RRFCA can be implemented. Further experiments
demonstrate that RRFCA methods are efficient, scalable and yield time-savings. We
demonstrate the resulting methods lend themselves to parallelization.

Key words: Formal Concept Analysis, Rank Reduction, Factorization.

1 Introduction

Formal Concept Analysis (FCA) leverages the notion of a concept, an object-
attribute building block of a binary relational dataset, and its ranking in a concept
hierarchy to mine data-sets [25]. One short-coming is that concepts are mined ac-
cording to lectic ordering and not concept importance or support in the formal con-
text. Lectic ordering recommends itself on account of its thoroughness [10]. Mining
times are typically long: this is demonstrated in [26], where the Twister Map-Reduce
framework [8] is used to parallelize computational effort. However, in many cases
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some notion of Formal Concept (FC) importance might yield a better ordering, for
example in knowledge discovery [17], information retrieval [21], and social net-
working analysis [22] applications. In this paper we leverage FC disjointness (as an
embodiment of importance) along with lectic ordering to propose a new multiple-
starting point approach, RRFCA, that improves mining and searching speed.

1.1 Related Work

Popular approaches for FCA include Ganter’s algorithm [9], Lindig’s algorithm [19],
CloseByOne [15, 1] and their variants [24, 13]. The theoretical and empirical com-
plexity of various approaches is compared by Kuznetsov in [16]. Computational
complexity is the main measure for comparing algorithms: Kuznetsov and Obied-
kov focus on the properties of the data ensemble, namely sparsity, the primary com-
plexity inducing characteristic of the decomposition. Aside from sparsity, the main
bottlenecks are memory and processing constraints. Ganter’s algorithm computes
concepts iteratively based on the previous concept, without incurring exponential
memory requirements, by exploiting lectic ordering. CloseByOne produces many
concepts in each iteration. Bordat’s algorithm, described in [3], introduces a data
structure to store previously found concepts, which results in considerable time-
savings. This approach is made more efficient in [2] by removing the need for a
structure of exponential size.

A significant short-coming of batch approaches is that the entire lattice must be
reconstructed if the database changes. Incremental approaches have been made pop-
ular by Norris in [20], Dowling in [7], Godin et al. in [11], Carpineto and Romano
in [4], Valtchev et al. in [23] and Yu et al. in [27] as they update the lattice structure
when a new object is added to the database. To address the aforementioned memory
and computational bottleneck, some parallel and distributed algorithms have been
proposed. Krajca et al. proposed a parallel version based on CloseByOne in [13].
The first distributed algorithm [14] was developed by Krajca and Vychodil in 2009
using the Map-Reduce framework [6]. The authors of [26] proposed an efficient,
distributed FCA implementation1 using the Twister Map-Reduce framework [8].
Here, we look to the memory and computation challenge by using rank reduction
method and disjointness to select good starting-intents for FCA.

The justification goes as follows: all concepts are not equal in a binary relational
dataset. FC support (the extent to which it overlaps with the formal context) and
its expressiveness (FC disjointness given a set of FCs), may be different for FCs.
NextClosure’s lectic ordering does not consider these concerns. To address this, we
prime NextClosure with multiple starting-intents by taking reduced rank approxi-
mations of the binary relation using Nonnegative Matrix Factorization (NMF) [18].
Lectic ordering is then used from multiple starting points to generate the entire
family of concepts, namely the Galois lattice, in a principled way. The underlying

1 available at https://github.com/TSSG/MRGanterPlus
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property of FCA –that concept intents are closed under intersection [10], namely
closure– is leveraged to mine all closures as before.

1.2 Contributions

We propose an algorithm that learns a low rank factorization first and then extends
it to an overcomplete representation.

This is a two-step algorithm that selects a subset (cardinality R) of entries from the
formal context, from the entire set of entries (cardinality M), that minimizes repre-
sentation error. Solving this problem by enumerating all possible choices in gener-
ally untractable. We relax the binary element-wise constraints on NMF’s factors to
make headway, solving a related convex optimization for each factor.

We make the link between basis selection problems, rank-1 approximations and
closures.

NMF is not suited to learning overcomplete representations. Nonnegative sparse
coding deploys regularization to address this [12]. Using FCA in tandem with NMF
yields the complete family of FCs: RRFCA yields an overcomplete binary NMF
(we borrow the idea of overcompleteness from frame theory). The cardinality of
the NMF/RRFCA concept-set is easily augmented. Arranging binary-relational data
as a concept lattice yields a powerful and intuitive representation of the dataset
[25, 5]. Preservation of hierarchy is important as it facilitates a complete search.
Even though we propose an approach where NextClosure starts from R different
starting intents, a complete search is performed: the main characteristics of the FCA
solution, completeness and hierarchy, are maintained. This paper is organized as
follows. § 2 introduces the idea of an atom and relates it to the closure. § 3 defines
the problem solved by NMF and shows how NextClosures makes NMF’s represen-
tation overcomplete. The RRFCA algorithm and evaluation are presented in § 4 and
§ 5 respectively.

2 FCA: Taking an Atomic Point-of-View

We introduce the notational conventions used in the sequel to describe the formal
context. Let O and P denote a finite set of objects and attributes respectively. In
this paper, the data ensemble, S, is arranged in Boolean matrix form2. The related
binary matrix is S ∈ RM×N

01 . There are M objects and N attributes. The objects and

2 Boolean variables and matrices are used interchangeably with their corresponding binary values
and matrices for simplicity.
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Table 1 An example of a
Formal Context (S). The
value 1 in each row (t ∈ O)
indicates that an object (t) has
the corresponding attribute
(p ∈ P). More generally, for
a set of attributes Y ⊆ P, it
is possible to identify the
corresponding set of objects
(X ⊆O). All FCs are tabulated
in Table 2.

a b c d e f g

1 1 1 0 1 0 1 0
2 1 0 1 0 1 0 1
3 0 1 1 1 0 1 1
4 0 1 0 1 1 0 0
5 1 0 0 1 1 1 0
...

...
...

...
...

...
...

...
10 0 1 1 0 0 1 1
...

...
...

...
...

...
...

...

attributes are listed along the rows and columns of the matrix respectively; the value
one is entered in a row-column position to denote that the object under consideration
has that attribute; a zero entry denotes that this object does not have that attribute.
Formally, this matrix describes the binary relation between the sets O and P; FCA
looks to learn structures within this binary relation. The object X has attribute Y
if (X ,Y ) ∈ S, X ∈ O and Y ∈ P. The triple (O,P,S) is called a formal context. For
example, in Table 1, O = {1,2,3,4,5, . . . ,10, . . .} and P = {a,b,c,d,e, f ,g}, thus
object {2} has attributes {a,c,e,g}.

2.1 Underlying Association Structure: Closure

We define a derivation operator on X and Y where X ⊆O and Y ⊆P as a step towards
generating FCA’s association mechanism, namely the closure.

X ′ = {p ∈ P | ∀t ∈ O : (t, p) ∈ S}, (1)
Y ′ = {t ∈ O | ∀p ∈ P : (t, p) ∈ S}. (2)

The operation X ′ generates the set of attributes which are shared by all objects in
X . Similarly, Y ′ generates the set of all objects which are common to all attributes
in Y . A pair 〈X ,Y 〉 is called a FC of (O,P,S) if and only if X ⊆ O, Y ⊆ P, X ′ = Y ,
and Y ′ = X . Given a FC, 〈X ,Y 〉, X and Y are called its extent and intent. The crucial
property of a FC is that the mappings X 7→ X ′′ and Y 7→ Y ′′, hereupon known as
closure operators, hold. The closure operator can be used to calculate the extent and
intent that form a FC; building blocks of the formal context are revealed by applying
the closure mechanism methodically.

Establishing a sub/super-concept hierarchy allows for thorough, systematic FCA.
Given X1, X2 ⊆ O and Y1, Y2 ⊆ P the concepts of a context are ordered as follows:

〈X1,Y1〉6 〈X2,Y2〉 :⇐⇒ X1 ⊆ X2⇐⇒ Y2 ⊆ Y1 (3)

an ordering which is interesting because it facilitates the iterative formation of a
complete lattice which is called the concept lattice of the context [10].
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We motivate, using Table 1, the disadvantage of choosing the starting-intent sys-
tematically (and blindly, e.g. without consideration of the support or disjointness
of different structures in the formal context). NextClosure’s concept lattice is an-
chored by the empty intent set {}. Consider the problem of selecting the best match
for an arbitrary object with the objects in the relation matrix in Table 1. A cursory
glance suggests that priming the search by comparing the object with rows 10,4 and
1 first, might give a good initial estimate for the best fit. However, determining that
these rows are suitable is difficult. Starting a search methodically from an empty
intent set {} may incur more comparisons. Secondly, given the task of mining this
binary-relation for all closures, a sensible approach would be to start out by consid-
ering these three starting-intents as they are representative of the dataset, and then to
generate the closures related to them, using some scheme that minimizes redundant
computation. We introduce some terminology to generalize the idea of a FC and
arbitrary sub-structures in the formal context.

2.2 An Atomic Viewpoint

Definition 1 An atom of a formal context is any matrix, F, formed from a
non-empty subset Ŝ ∈P(S)\{}, of the non-zero entries of the binary matrix
S.

F t,p =

{
1, (t, p) ∈ Ŝ : Ŝ ∈P(S)\{}

0, otherwise.
(4)

An atom is described by the set of pairwise indices, or a binary matrix. Set and
matrix notation are used interchangeably. The powerset of S is P(S).

Ex. 1 To fix ideas and notation, atoms in Table 1 include:

• the entire matrix S or the index set {{1,1},{1,2}, . . .};
• row entries of the matrix S1,: = [1,1,0,1,0,1,0] or {{1,1},{1,2},{1,4},{1,6}};
• proper subsets of row entries, [1,0,0,1,0,1,0], or {{1,1},{1,4},{1,6}};
• any proper subset of the matrix S, for example, S1,1 = [1] or {1,1}.

To relate these ideas to FCA, the closure, 〈{4,5},{d,e}〉 of S may also be expressed
as an atom of S, {{4,4},{4,5},{5,4},{5,5}}: this notation is cumbersome how-
ever. Definition 1 is needed as the closure is too restrictive to describe all structure
types in the dataset; most individual attribute and object sets have an associated clo-
sure, 〈{1,3,5,10},{ f}〉, 〈{1,3,4,5},{d}〉 and 〈{5},{a,d,e, f}〉; the attribute g ap-
pears in the closures 〈{2,3,10},{c,g}〉, 〈{3,10},{b,c, f ,g}〉, 〈{3},{b,c,d, f ,g}〉,
〈{2},{a,c,e,g}〉, 〈{},{a,b,c,d,e, f ,g}〉.
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Property 1 Formally, it is a property of closures that closures are atoms;
however, atoms are not necessarily closures.

Ex. 2 The atom {{1,1},{1,2},{1,4},{1,6},{2,3}} is not a closure: yet, the atom
{{4,4},{4,5},{5,4},{5,5}} is a closure. An atomic view of the formal context is
useful (and cheaper) as it lends itself to an analysis of atom support, which can
prime closure selection based on atomic importance via rank reduction.

Property 2 The closure associated with a row-atom is generated by applying
the derivation operator twice.

Ex. 3 Given the atom [0,0,0,1,1,0,0] which denotes a proper subset of the prop-
erties, Y = {d,e} in Table 1, application of the derivation operator once yields
Y ′ = {4,5}, and a second time yields, Y ′′ = {d,e}, which is a closure by definition.

[0,0,0,1,1,0,0]′′ or {d,e}′′, generates 〈{4,5},{d,e}〉. (5)

We overload the derivation (Eqn. 1) and closure operators to reduce notation.

Application of the closure operation on selected atoms –selected by hereto unspec-
ified means– can be used to derive expressive closures whereas all closures must be
computed to compare relative closure disjointness. Examining atoms is cheaper than
examining closures as it does not involve complete closure computation up-front.

Property 3 Closures are rank-1 approximations of the formal context. If X ⊆
O, Y ⊆ P, X ′ = Y , and Y ′ = X, let us construct the vectors, where each entry
takes

xt =

{
1, if t ∈ X

0, if t /∈ X ,
, yp =

{
1, if p ∈ Y

0, if p /∈ Y,
, then, rankxyT = 1. (6)

Ex. 4 We demonstrate Property 3: the closure F6 = 〈{4,5},{d,e}〉 is written as the
outer product of two vectors, F6 = xyT , the vectors associated with the objects and
attributes of the closure, a rank-1 approximation of S. This product is a special case
of the Kronecker product of matrices.
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F6 =
[[

0,0,0,1,1, . . . ,0, . . .
]T

[0,0,0,1,1,0,0]
]T

=



0 0 0 0 0 . . . 0 . . .

0 0 0 0 0 . . . 0 . . .

0 0 0 0 0 . . . 0 . . .

0 0 0 1 1 . . . 0 . . .

0 0 0 1 1 . . . 0 . . .

0 0 0 0 0 . . . 0 . . .

0 0 0 0 0 . . . 0 . . .



T

(7)

On examination of (Eqn. 7), the support of F6 and accuracy of its approximation
of S, may be measured by computing the overlap between the association matrix S
and F6: a count of the number of ones in F6, measured using the degree of overlap
of each FC Fi in matrix form F i, with the formal context matrix S, di = 1T

MF i1N ,
for each FC, Fi ∈F , where F is the set of all FCs and 1T

M is a vector of ones of
size 1×M. From Property 3, for formal contexts with rank greater than one, if we
increase the number of closures in our approximation of the formal context in a
judicious way, the quality of our approximation improves. The rate of improvement
depends on the choice of each successive atom.

Proposition 1 We posit that lectic ordering is a sub-optimal way to improve
the choice of the next FC.

Ex. 5 A good choice of rank-3 FCs for S (with only one overlapping element) is the
lead FC (LFC) set Fl = {F5,F13,F16} (cf. Table 2 for the complete FC set).

Ŝ = ∑
Fi∈Fl

F i =



0 1 0 0 1 . . . 0 . . .

0 0 1 0 0 . . . 1 . . .

0 0 1 0 0 . . . 1 . . .

1 0 1 0 1 . . . 0 . . .

0 1 0 0 1 . . . 0 . . .

1 0 1 0 1 . . . 1 . . .

0 0 1 0 0 . . . 1 . . .



T

≈



1 1 0 0 1 . . . 0 . . .

1 0 1 1 0 . . . 1 . . .

0 1 1 0 0 . . . 1 . . .

1 0 1 1 1 . . . 0 . . .

0 1 0 1 1 . . . 0 . . .

1 0 1 0 1 . . . 1 . . .

0 1 1 0 0 . . . 1 . . .



T

(8)

The fraction of ones in the rows of the approximation overlapping with S is
{ 2

3 ,
1
2 ,

2
3 ,

3
4 ,

2
3 ,

4
4 ,

2
3}. Adding the rank-1 matrix F12 to the set Fl improves the approx-

imation without overlapping with any of the existing closures, adding three ones in
the correct places. Adding the closure F6 does not: this closure overlaps with exist-
ing closures in Fl . Fig. 1 illustrates the order closures are mined by NextClosure.
Using lectic ordering, closures F1-F4 have no overlap. However, F5 overlaps with
6 of the previously accounted for elements (by F1-F4). Eleven of the formal context
elements are accounted for by the LFC set Fl = {F1,F2,F3,F4,F5}, with six over-
lapping elements. In comparison, sixteen elements are accounted for by the LFC set
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Fl = {F5,F13,F16} which is smaller, with one overlapping element. In conclusion,
the LFC set Fl = {F5,F13,F16} gives a better representation with fewer FCs. In
terms of searching through the formal context for association rules, given the intent
{a,e}, navigating the arrangement of associations in Fig. 1 takes 16 comparisons,
whereas the arrangement in Fig. 2 takes 3 comparisons with the members of the FC
set.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21

Fig. 1 The long way around: Given the initial intent {} it takes 16 comparisons (indicated by full
line-arrows) to find (or generate) the intent {a,e} (underlined-bold).

F13 F14 F15

F5 F6 F7 F8 F9 F10 F11 F12

F16 F17 F18 F19 F20 F21

F1 F2 F3 F4

Fig. 2 Reduced rank speed-up: Given the initial set of lead intents it takes 3 comparisons (indicated
by full line-arrows) to find (or generate) the intent {a,e} (underlined-bold).

Problem Statement 1 We desire the set, Fl , of minimum cardinality R ∈ Z of clo-
sures, required to capture the structure of the matrix S with no overlap between
closures, where � denotes element-wise multiplication:

minR subject to ||S− ∑
Fi∈Fl

F i||2 = 0, and F i�F j = 0,∀Fi,Fj ∈Fl . (9)

Of secondary importance is the order in which closures should be generated in order
to improve the coverage of the FC set of the formal context iteratively.

To answer the first question we start by examining an FCA of the formal context in
Table 1, and define a measure of closure overlap. In order to make some progress,
we then relax some of the constraints and examine atoms first. We reason that practi-
cioners will want the ability to select R to optimize implementation. This simplifies
the problem considerably.
Remark: Assessment of the expressiveness of each possible FC set requires compu-
tations of similarity and representativeness of all, and between all members of the
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Table 2 FCs mined from a subset of relations in Table 1. Note that the empty concepts are included
for completeness.

F1: 〈{1,2,3,4,5,10},{}〉 F8: 〈{1,3,4,10},{b}〉 F15: 〈{1,2,5},{a}〉
F2: 〈{1,3,5,10},{ f}〉 F9: 〈{1,3,10},{b, f}〉 F16: 〈{2,5},{a,e}〉
F3: 〈{2,4,5},{e}〉 F10: 〈{1,3,4},{b,d}〉 F17: 〈{1,5},{a,d, f}〉
F4: 〈{1,3,4,5},{d}〉 F11: 〈{1,3},{b,d, f}〉 F18: 〈{5},{a,d,e, f}〉
F5: 〈{1,3,5},{d, f}〉 F12: 〈{4},{b,d,e}〉 F19: 〈{2},{a,c,e,g}〉
F6: 〈{4,5},{d,e}〉 F13: 〈{3,10},{b,c, f ,g}〉 F20: 〈{1},{a,b,d, f}〉
F7: 〈{2,3,10},{c,g}〉 F14: 〈{3},{b,c,d, f ,g}〉 F21: 〈{},{a,b,c,d,e, f ,g}〉

set, as we must not consider atoms in isolation –the list of all possible sets is long.
Indeed this is a combinatorial optimization problem.

Definition 2 Closure Disjointness: How well a closure represents a formal
context is measured by 1) Target closure to Data Ratio (TDR) and 2) Target
closure to Interfering closure Ratio (TIR). TDR gives the fraction of the formal
context elements overlapping with the FC Fi. If we define an interferer atom
to be Y i = ∑ j∈F\Fi F i, the sum of all closures other than F i, Y i is a non-
binary matrix. Instead we use the element-wise union of these concepts: Y i =⋃

j∈F\Fi
F i which is binary.

TDRi =
1T

MF i1N

1T
MS1N

, TIRi =
1T

MF i1N

1T
MF i�Y i1N

, (10)

where� denotes element-wise multiplication. Closure disjointness is then de-
fined as:

CDi = TDRi−
TDRi

TIRi
=

1T
MF i1N−1T

MF iY i1N

1T
MS1N

(11)

When F i = S, the formal context has rank-1 and TDRi = 1. Typically, 0 ≤
TDRi ≤ 1. The interfering term TIRi = ∞ when the FC overlap is zero, F i�
Y i = 0. This measure of closure disjointness may be extended to testing for
the disjointness of a set of closures from the rest, here we set F i = ∪ j∈Fl F j,
where Fl are members of the target set.

3 Atomic Decompositions for Formal Concept Analysis

We propose an algorithm that generates the starting-intents, like those in Table 2, by
solving two convex optimization problems. Decomposing complicated multi-variate
observations of some phenomenon into parts-based representations, representative
atoms, yields an insight into the latent inner-workings of the process or model which
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generated the data. The word parts-based is crucial here: we use parts-based de-
compositions as proxies for disjoint decompositions. Parts-based decompositions
are typically well-placed, with respect to lectic ordering, to speed-up mining and
searching routines. We use a heuristic to prime FCA: consider the following prob-
lem which is an intermediate step between Problem 1 and the NMF problem we
solve.

Problem Statement 2 Given a binary association matrix S ∈RM×N
01 , for a given R,

minimize ||S−OP||22
subject to O ∈ RM×R

01 , P ∈ RR×N
01 ,

O:, j�O:,k = 0,∀ j,k, Pq,:�Pw,: = 0,∀q,w (12)

As a first step, we obtain a solution to Problem 2 for a given R. We also relax the
element-wise binary constraints on O and P.

3.1 Preparing the Atomic Cookbook: Priming using NMF

Problem Statement 3 Given the matrix S, NMF decomposes S into the product of
two matrices, O ∈ RM×R

+ and P ∈ RR×N
+ where all matrices have exclusively non-

negative elements.

Definition 3 NMF-Frobenius: DF(S||OP) = 1
2 ∑m,n |Sm,n− [OP]m,n|2.

A suitable step-size parameter was proposed by Lee and Seung [18] which re-
sults in two alternating, multiplicative, gradient descent updating algorithms:

O← O�SPT �OPPT , P← P�OT S�OT OP (13)

where � represents element-wise multiplication, and � is element-wise divi-
sion.

NMF learns nonnegative factors and not binary factors. We use NMF to select suit-
able starting points for FCA by taking a nonlinear approximation of the resulting
factorization. To the best of our knowledge this is the first time NMF has been ap-
plied to prime FCA. Appealing to Property 3, when the factors are element-wise
binary entries, e.g. O∈RM×R

01 and P∈RR×N
01 each outer product, O:,rPr,: is a closure

if it supports formal context. When these closures are disjoint, we approximate S by
a sum of the outer products O:,rPr,:.

Multiplicative updates are advantageous as the factors never become negative;
therefore, projection into the positive orthant is not required. Alternating between
the O and P updates implies that the optimization problem is not convex: the opti-
mization is convex in either O or P, while the other factor is held fixed. Although the
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solution is not unique, NMF’s parts-based property means that it serves as a good
starting point for FCA as the NMF decomposition gives intents and extents that are
parts-based, e.g. approximately disjoint with good support.

An NMF can be learned using multiplicative or additive gradient descent, pro-
jected, exponentiated gradient methods or 2nd order Newton methods. A variety of
costs such as the Kullback Leibler Divergence and members of various divergence
families have been used. Exploiting the sparse nature of the matrix S may yield more
suitable solutions, for example when it is known that S has high sparsity; we focus
on the traditional NMF approach (Eqn. 3),

Dα,β
F (S||OP) = DF(S||OP)+αJα(O)+βJβ (P), (14)

where α ≥ 0 and β ≥ 0 are regularization parameters and the functions Jα and Jβ en-
force constraints on the factors (for example, sparsity or disjointness/orthogonality
of columns or rows of the factors). FCA priming via NMF is best illustrated by
example.

Ex. 6 Reduced-Rank Formal Concept Analysis (RRFCA): Application of NMF to
the subset of rows of S given in Table 1, with R = 4, and taking the nonlinear ap-
proximation of the resulting factors yields

Om,r←

{
1 if Om,r > .5

0 otherwise
Pr,n←

{
1 if Pr,n > .5

0 otherwise
(15)

and thus the factorization (for an abridged version of the entries in Table 1):

S≈ OP =


1 0 0 0 1 0
0 0 1 0 0 1
0 0 1 1 0 0
0 1 0 0 0 0


T 

0 0 0 1 0 1 0
0 1 1 0 0 1 1
0 0 0 0 0 0 0
1 0 0 0 1 0 0

 (16)

Looking to the matrix P, because M > N > R in this case, we use the intents {d, f},
{b,c, f ,g} and {a,e} to generate the closures F5,F13 and F16, using the closure op-
erator on each intent in turn3. For completeness, it is possible to check the rank-1
estimate, O:,rP:,r is a closure by verifying S−O:,rP:,r > 0. Table 3 illustrates the lo-
cation of the FCs yielded by NMF relative to those mined by lectic ordering. Notice
the intents generated are approximately evenly distributed through the table. We do
not include the empty intent set generated by the factorization as this is an artefact
of the non-linear approximation’s parametrization.

3 The choice of operating on intents or extents is based on the dimensions M and N.
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Table 3 Distribution of the intents in the concept lattice: Underlined intents denote the intents
learned by NMF which are used as starting-intents for FCA. Three intents are mined from F1
(F2–F4), seven intents are mined from F5 (F6–F12), two intents are mined from F13 (F14–F15), and
finally, five are mined from F16 (F17–F21).

F1: 〈{1,2,3,4,5,10},{}〉 F8: 〈{1,3,4,10},{b}〉 F15: 〈{1,2,5},{a}〉
F2: 〈{1,3,5,10},{ f}〉 F9: 〈{1,3,10},{b, f}〉 F16: 〈{2,5},{a,e}〉
F3: 〈{2,4,5},{e}〉 F10: 〈{1,3,4},{b,d}〉 F17: 〈{1,5},{a,d, f}〉
F4: 〈{1,3,4,5},{d}〉 F11: 〈{1,3},{b,d, f}〉 F18: 〈{5},{a,d,e, f}〉
F5: 〈{1,3,5},{d, f}〉 F12: 〈{4},{b,d,e}〉 F19: 〈{2},{a,c,e,g}〉
F6: 〈{4,5},{d,e}〉 F13: 〈{3,10},{b,c, f ,g}〉 F20: 〈{1},{a,b,d, f}〉
F7: 〈{2,3,10},{c,g}〉 F14: 〈{3},{b,c,d, f ,g}〉 F21: 〈{},{a,b,c,d,e, f ,g}〉

3.2 RRFCA: Mining for overcompleteness using NextClosure

Given the starting-intents in Ex. 6, closures are generated iteratively using lectic
ordering which is defined ab initio by RRFCA, by arranging P in an arbitrary linear
order p1 < p2 < · · · < pi < .. . < pN . Appealingly, once lectic ordering is in place,
closures are only generated once. We demonstrate the ordering, given two subsets
Y1, Y2 ⊆ P. Y1 is lectically smaller than Y2 if the smallest element in which Y1 and Y2
differ belongs to Y2.

Property 4 A rank-1 formal context approximation is valid if it is a closure
and it is lectically smaller than any FC already mined. Formally, the smallest
element in which Y1,Y2 differ is pi

Y1 ≤pi Y2 :⇐⇒∃pi(pi ∈ Y2, pi /∈ Y1,∀p j<pi(p j ∈ Y1⇐⇒ p j ∈ Y2)). (17)

Given the current intent, RRFCA uses (Eqn. 17) as a feasibility condition for
accepting a new candidate FC like NextClosure.

Property 5 Given a lectically ordered set P and three FCs, Fi = 〈Xi,Yi〉, Fj =
〈X j,Yj〉, and Fk = 〈Xk,Yk〉 from the family of concepts F , where Yi < Yj < Yk,
we can mine all concepts that lie, lectically, between Fi and Fj, by starting at
Fi and stopping when the FC is Fj, and all concepts between Fj and Fk. As the
FCs Fi,Fj,Fk are valid closures (rank-1 approximations of S), the feasiblity
condition ensures that only lectically smaller intents will be generated in each
range. We may mine in parallel using many lectically ordered start-stop pairs.

Property 5 arises from the combination of Properties 4 and 3. All that remains
is to formulate an algorithm that selects good starting intents: intents that are well-
spaced lectically. We use parts-based intents –NMF is a good generation procedure.
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Ex. 7 Looking to Table 3, the order of the attributes P, is defined as a< b< c< d <
e < f < g. Given a set of starting intents, the ordering {}< {d, f}< {b,c, f ,g}<
{a,e} of the intents holds. Three intents are mined from F1 (F2–F4), seven intents
are mined from F5 (F6–F12), two intents are mined from F13 (F14–F15), and finally,
five are mined from F16 (F17–F21).

To generate all closures systematically using lectic ordering, we use NextClosure’s
⊕-operation starting from each intent in the LFC set generated by NMF:

Y ⊕ pi := ((Y ∩{p1, . . . , pi−1})∪{pi})′′, where Y ⊆ P and pi ⊂ P. (18)

A new candidate FC is compared with the previous concept and the next lectically
smaller LFC’s attribute. If the condition in (Eqn. 17) is satisfied and the candidate
is lectically larger than the next LFC, the candidate concept produced by (Eqn. 18)
is kept and added to the lattice.

Algorithm 1 Rank Reduction Formal Concept Analysis (RRFCA)
Input: S,R,T : Binary relation matrix, rank of NMF, and nonlinear threshold T .
Output: Fl ,F : LFCs set, and complete family of FCs.
1: Initialization: S = S+eps, Set O∼U (0,1) and P∼U (0,1). Ensure nonnegativity by adding

a small constant, eps, to S,O and P. Select the lectic order P.
2: [O,P] = NMF(S,O,P,R): Run NMF. Take the nonlinear approximation in (Eqn. 15) using T .

Generate the set of lectically ordered LFCs Fl . Add the empty intent set Fl = 〈O,{}〉∪Fl ,
and Fl = 〈{},P〉∪Fl .

3: if M > N and |Fl |= R+1 then
4: Determine R starting and stopping-intent pairs using R+1 valid distinct intents.
5: Call R+ 1 AllClosure processes passing successively lectically ordered starting/stopping-

intents to each, {Fi,Fj},∀i, j valid pairs.
[Fr] = AllClosure(Fi,Fj,S,O,P).

6: end if
7: Form the union of all process results F =

⋃
r Fr . return F

Algorithm 2 AllClosure - NextClosure Process r
Input: {Fi,Fj},S,O,P: starting/stopping FCs.
Output: Fr: FCs derived by process r.
1: Initiate process: Y ← Yi.
2: while Y is not the last closure Yj do
3: [Y ] = NextClosure(O,P,S,Y );
4: Fr ←Fr ∪Y ;
5: end while
6: return Fr
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Algorithm 3 NextClosure – Process r
Input: O,P,S,Y : formal context & current intent.
Output: Y .
1: for pi from pN down to p1 do
2: if pi /∈ Y then
3: candidate← Y ⊕ pi;
4: if candidate ≤pi Y then
5: Y ← candidate;
6: break;
7: end if
8: end if
9: end for

10: return Y

4 A Rank Reduced FCA Algorithm: RRFCA

Algorithm 1 takes as input the entire binary relation matrix S, or the matrix S formed
from a uniform sampling or the row atoms of the entire association matrix to re-
duce complexity, where the size of the sampled matrix is M′×N, and M′ < M. We
denote the whole matrix and some subset of the row-entries by S for simplicity.
Alternatively, the input S may denote some partition of the entire dataset by extend-
ing the distributed FCA method proposed in [26]. Algorithm 1 initializes ≈ R+ 1
NextClosure-like processes, described in Algorithms 2, 3, to mine all of the FCs in
a given range Fi-Fj which allows for time-savings in FCA due to distribution. Each
process returns a FC set Fr which is based on the set of FCs mined from the intents
or extents learned by NMF, Fl . In Fig. 2 the LFC set is Fl = {F1,F5,F13,F16,F21}.
The pairs of starting-stopping intents generated by the nonlinearity of NMF are
{Y1,Y5},{Y5,Y13},{Y13,Y16},{Y16,Y21}. When the one-entries in the binary associa-
tion matrix are uniformly distributed, as a rule-of-thumb, we note that intents with
fewer elements generate more FCs than intents with more entries.

Fig. 3 Computation is di-
vided by ≈ 5: The expected
number of FCs mined per pro-
cess is plotted against the rank
of NMF in Fig. 4. Plotting the
total number o f FCs mined
illustrates the extent to which
workload is distributed. 101 102
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Fig. 4 Most rank-1 approx.
yield FCs: Fig. 4 illustrates
that priming via NMF is suc-
cessful: the expected number
of starting-stopping pairs is
plotted against the rank of
NMF. Almost all NMF factors
yield a corresponding closure.
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5 Empirical Evaluation

In this empirical evaluation we establish the properties of the RRFCA algorithm.

Proposition 2 NMF parts-based representations generate LFCs which are disjoint
and evenly distributed throughout the concept lattice.

To illustrate this property, we compute the average number of FCs computed for
each starting-stopping-intent pair, for a large ensemble of large random binary ma-
trices. This value, namely the lectic length, of each LFC should be approximately
equal for all FCs, so that workload is shared fairly. In traditional FCA, the lec-
tic length equals the total number of FCs to be mined. We generate binary matri-
ces of size (10i× 5i) for the powers i = 1,1.1,1.2, . . . We construct 20 random bi-
nary matrices of each dimension (10i× 5i) by drawning element-wise values from
a Bernoulli distribution, where the probability of one is 0.2. Fig. 4 shows the ex-
pected lectic length against the NMF rank parameter R, for RRFCA and FCA. The
expected lectic length is an indication of the number of FCs mined by each process,
once the LFC set has been determined. The rank of NMF is set to grow according
to R = 3i, where i increases monotonically. For completeness, the expected number
of starting-stopping pairs is also plotted against the rank of NMF, R in Fig. 4.
1) Fig. 4 demonstrates that the average number of FCs learned per process is
significantly smaller than the total number of FCs. This is because the average
workload is distributed across the number of processes plotted in Fig. 4, approxi-
mately R+1. All FCs are computed, yet each process mines only≈ 20% of the FCs.
The duration of RRFCA runtime is reduced accordingly. It may be reduced further
by increasing R.
2) Fig. 4 demonstrates that a parts-based initialization procedure efficiently
selects FCs. The rank, R, is approximately equal to the expected number of starting-
stopping FCs: the relationship is linearity. Here, all rank-1 approximations generate
valid closures. Note that the number of LFC is augmented by two as the empty intent
and full intent sets are concatenated to Fl .
3) Searching for a target intent is performed by leveraging the fact that FCs are or-
dered lectically. A target intent is compared with the intent of each of the ordered
LFCs Fl , in order to find the appropriate intent range for the target intent, i.e. an
upper and lower bound on the search range, namely the starting-stopping intent.
Once the starting-stopping intent pair has been found, the target intent is found by
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searching the FCs mined in that intent range. Fig. 2 illustrates this process. The in-
tent of F19 is found by first determining that it lies in the range F16 and F21, and
then by searching within this range. The average lectic length plotted in Fig. 4 gives
the average maximum search length on the number of comparisons required to lo-
cate a FC. Organizing the search using LFCs reduces the expected maximum
possible search length considerably (by a factor of 5 here) in comparison with
NextClosure.

Proposition 3 RRFCA is scalable because the expected number of FCs learned
per process is a linear function of the reciprocal of the expected number of starting-
stopping pairs, which is bounded by the rank of the formal context.

In conclusion, increasing R increases the number of starting-stopping intent pairs,
which increases the amount of parallelization possible for the NextClosure mining
step. It follows that the searching time and mining time is reduced. This incurs a
higher computational cost on the NMF priming step. The complexity of the O and P
NMF updates is given in flops as 2R

[
[MN +N]+2R2 [N +M]

]
flops per iteration.

Recall that the purpose of the NMF step is not to find a good binary fit, but to find a
rough initialization for FCA, when the element-wise values exceed T > 0.5. Thus,
NMF may be run for far fewer iterations in this case, reducing the cost. In addition,
we have experimented with uniformly sampling the set of objects to hot-start NMF-
priming to good effect. To underline the utility of parts-based starting-stopping

Fig. 5 The mean closure
disjointness of the LFC set
Fl is significantly higher than
the mean closure disjointness
of the total FC set F . The
LFC set generated using
NMF priming gives a better
representation of the formal
context.
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pairs, we plot the mean concept disjointness (Eqn. 11) of the starting-stopping pairs
in Fig. 5. The idea is to demonstrate that the set Fl gives a good representation of
the formal context, indeed, better than the full set of FCs. The mean disjointness of
all members of the LFC set, computed using (Eqn. 11), is compared with the mean
disjointness of the entire set of FCs. Recall: a good parts-based representation is
one that has good support of the formal context and minimal overlap with the other
members of the representation. Fig. 5 shows that the set Fl gives a good repre-
sentation of the formal context without significant overlap. Disjointness of the LFC
set is why the lead intents tend to be well distributed throughout the set of ordered
FCs, and thus why mining can be distributed and search speeds be improved. As the
number of LFCs is increased, the average disjointness is decreased; The disjointness
characteristic yeilds a good ordering on how FCs are selected.

Primer Parametrization RRFCA relies on appropriate selection of the parame-
ters R and the threshold T = 0.5; The accuracy of the factorization is only a sec-
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ondary concern compared to learning good starting intents/extents. In this setting,
the parameter R is the desired number of starting points for RRFCA. The only re-
quirement4 is that R < M < N. A larger choice of R incurs higher computational
cost, and typically intents/extents of smaller cardinality. A smaller value of R yields
intents/extents of larger cardinality. The values in the intent matrix P may be inter-
preted as the probability that a member of the intent set should be grouped with other
intents in that set. Given this interpretation of a probability, the choice of T = .5 is
justified: values of the factors are typically in the range (0,1), and therefore the
threshold T = .5 corresponds to .5 probability. Due to the non-uniqueness (and non-
convexity) of the NMF decomposition, the set of starting point intents depends on
the initialization of the factors O and P. They were initialized randomly from a uni-
form distribution U (0,1) over the range of values (0,1) here. A small constant is
added to the binary relation matrix and the factors to ensure nonnegativity. The suc-
cess of the decompositions supports the notion that a range of parametrizations of
the algorithm is permissible.

Overcompleteness Leveraging NMF as a primer for FCA poses the question of
why we need FCA in the first instance. The answer is as follows: NMF is unsuited
to binary data. The factors returned by NMF are real-valued, and applying a non-
linearity to the factors reduces the accuracy of the decomposition. However NMF is
suited to giving a good starting point to another binary factorization technique, FCA.
The strength of FCA lies in the ability to mine all FCs from the formal context. NMF
is suited to learning low-rank approximations. Once an overcomplete representation
of the type mined by FCA is required, NMF struggles. Attempts to regularize NMF
factorizations using sparsity constraints on one factor (not reported here) have led to
mixed results. Typically one factor is made sparse, yet the other is made more dense
to compensate and improve the accuracy of the decomposition. FCA on the other
hand is guaranteed to find all factors without side-constraints (Eqn. 14): FCA mines
overcomplete representations. If the rank parameter R is set to be greater than M or
N, NMF’s accuracy will improve, but the intents and extents learned will not be as
distinct as those of FCA.

Future Work

The equitable distribution of FCs analysis using RRFCA may be further improved.
Earlier (lectically smaller) starting-stopping pairs learn fewer FCs than later (lecti-
cally larger) starting-stopping pairs due to the disjointness of the starting intents. In
future work, the performance of RRFCA may be optimized by clustering ordered
intent sets with fewer entries together so that the computational demands made of
each process are evenly distributed. We have used the number of FCs computed
by each process, e.g. the number of FCs computed between each starting-stopping-
intent pair, to demonstrate the scalability of the approach, and not the total sim-
ulation run-time. The computation time of each closure computation depends on

4 If we desire starting-extents.
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the sparsity of the dataset, the speed of the various computational components of
the implementation and platform, and the sparsity of the starting-stopping intents.
We discuss our results in terms of the number of closures computed by each of
our processes for a given level of dataset sparsity. In future work we will focus on
platform/implementation specific optimizations.

6 Conclusions

The complexity associated with NextClosure’s ordered approach incurs high com-
putational expense, and bounds the size of the largest dataset NextClosure can prac-
tically process. This complexity is the main bottleneck of FCA. In this paper we
introduced RRFCA, which exploits the fact that rank-1 approximations are clo-
sures, and tha lectic ordering of a set of representative closures can be used to
sub-divide mining tasks. LFC are determined by solving two alternating convex op-
timization problems, which are a relaxed version of the original problem. RRFCA
starts NextClosure from ≈ R+1 different starting intents, allowing for paralleliza-
tion of the mining process. Empirical evaluation demonstrates that mining speed-up
of R−1 ∗100% is achievable. This result is qualified by conditions on the rank of the
formal context.
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22. Snásel, V., Horak, Z., Kocibova, J., Abraham, A.: Analyzing Social Networks Using FCA:
Complexity Aspects. In: Web Intelligence/IAT Workshops’09, pp. 38–41 (2009)

23. Valtchev, P., Missaoui, R., Lebrun, P.: A Partition-based Approach Towards Constructing Ga-
lois (concept) Lattices. Discrete Mathematics pp. 801–29 (2002)

24. Vychodil, V.: A New Algorithm for Computing Formal Concepts. Cybernetics and Systems
pp. 15–21 (2008)

25. Wille, R.: Restructuring Lattice Theory: an Approach Based on Hierarchies of Concepts. In:
I. Rival (ed.) Ordered sets, pp. 445–70. Reidel (1982)

26. Xu, B., de Fréin, R., Robson, E., Ó Foghlú, M.: Distributed Formal Concept Analysis Algo-
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