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Liquid-phase sintering of lead borosilicate glass-alumina composite 
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In the past few years there has been a search for 
suitable low-temperature-sinterable alumina-based 
compositions which could be cofired with other dielec- 
tric materials and pastes for use in multilayer hybrid 
microcircuit substrate applications [1]. Glass-ceramic 
materials having low dielectric constants and which 
could be sintered at 900°C in air or in a neutral 
atmosphere have been suggested [2]. The advantages 
of sintering in the presence of a liquid phase have long 
been recognized in both powder metallurgy and 
ceramics [3-7]. 

Glass powder of the following composition was 
used for the present study: (wt %) 65.18 PbO, 20.13 
B203, 13.02 SiO2 and 1.67 AI203. Details of glass 
powder preparation are reported elsewhere [8]. The 
composite was prepared as follows. A mixture of 
55wt % alumina and 45wt% glass was first ball 
milled for 10 h in water medium using zirconia balls in 
a polyethylene container. The dried composition was 
mixed with 3% PVA as binder and granulated. Pellets 
were made from - 60 to + 200 mesh fraction of these 
granules. Discs of 15 mm of 15 mm diameter and 4 mm 
thickness were pressed with a pressure of 100 MPa. 
The discs were sintered in air for a duration of 210 min 
at temperatures ranging from 900 to l l00°C. A 
typical sintering schedule is given in Fig. 1. Diametrical 
shrinkages of more than 250 samples were measured. 
XRD and SEM studies were carried out in a Philips 
Diffractometer Model No. PW 1710 and Camscan 
Cambridge System, respectively. 

The XRD patterns of the glass-alumina composites 
sintered at different temperatures are shown in Fig. 2. 
Peaks marked E do not appear in pure alumina. They 
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Figure 1 A typical sintering schedule for the glass-alumina 
composites. 

even appear in compositions heated to 900 ° C and are 
due to the reaction between the glass and alumina. 
Intensity of these new peaks, E, gradually increases up 
to 1000 ° C indicating the extent of the reaction. Above 
950 ° C, considerable peak shift can be noticed. At 
1050° C the intensities of all the peaks have drastically 
decreased showing reduction in the crystalline phase. 

The variation of diametrical shrinkage as a function 
of sintering temperature is shown in Fig. 3. It can be 
observed that, initially, shrinkage increases with sin- 
tering temperature and reaches a maximum around 
1000 ° C, and then decreases. The process is essentially 
liquid-phase sintering. The viscosity of the liquid glass 
formed decreases with increasing temperature, which 
in turn enhances densification due to the surface 
tensional rearrangement [3]. 

Figs 4a and c show a schematic representation of 
the green compact and the composite sintered at 
1000 ° C, respectively. The densification in this case is 
mainly due to particle rearrangement. The average 
particle size of the alumina powder (RC 172, Renold's 
Co., USA) was 0.65/tm. Each particle therefore con- 
sisted of only one crystallite and hence the secondary 
rearrangement through grain boundary penetration 
by the liquid and particle disintegration is nonexistent 
in this case [9]. The following are the factors contribut- 
ing to the decrease in shrinkage after 1000 ° C: 

(a) The increase in temperature which increases 
alumina dissolution in glass [10]; this can be seen from 
the XRD pattern (Fig. 2). As a result of this, the 
viscosity of the liquid glass increases, which slows 
down the initial rearrangement due to capillary pull. 
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Figure 2 XRD patterns of pure alumina and glass alumina com- 
posites heated at different temperatures. 
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Figure 3 Diametrical shrinkage plotted against sintering 
temperature for glass-alumina composites. 
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Figure 4 Schematic representation of the sintering process: (a) green glass-alumina composite, (b) skeleton structure of alumina without glass 
particles, (c) less densified structure, partially due to early onset of solid solid neck formation, and (d) well-densified structure. 

(b) The early onset of the solid-solid contact, which 
forms the alumina network (Fig. 4b), at higher 
temperatures, slows down the densification due 
to rearrangement (Fig. 4d) [11]. Moreover, solid 
skeleton fragmentation is difficult due to the very high 
viscosity of the alumina-rich, liquid-glass phase. 

There is a greater amount of glassy phase above 
1000°C (Fig. 2) and the glassy phase is usually less 
dense than the crystalline phase. But in this case the 
contribution of the above factor to the lowering of 
densification above 1000 ° C is not appreciable because 
of the higher density of the glass (4.2gcm 3) com- 
pared to that of alumina (2.9gcm 3). 

Detailed microstructural investigations are in 
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Figure 5 SEM micrograph of polished surface of the glass-alumina 
composite sintered at 1000°C. 



progress with aluminas of different particle size 
in order to find out the mechanism of secondary 
rearrangement due to grain boundary penetration and 
particle disintegration. A typical polished-surface 
SEM micrograph of a sample sintered at 1000°C is 
given in Fig. 5. 
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