
WATERFORD INSTITUTE OF
 TECHNOLOGY

Keara Barrett

Technical Report CMP-001-2006
June 2006

Supervisors:
Dr. William Donnelly

Dr. Sven van der Meer
John Strassner

ONTOLOGY-BASED POLICY RULE SPECIFICATION AND INTEGRATION

Keara Barrett

Telecommunications Software and Systems Group (TSSG),
 WIT, Cork Road, Waterford, Ireland

Abstract: A formal transformation between knowledge contained in Operations Support Systems (OSS) views is
required to automate the deployment of OSS. This paper details progress towards the integration of policy languages
at the business view of the TeleManagement Forum (TMF) Next Generation Operations Support System (NGOSS),
with the specification of a formal language for the TMF’s Shared Information and Data Policy Aggregated Business
Entities.

Keywords: Autonomic Communications Management, Policy Specification, Policy
Integration and Ontology

1. INTRODUCTION

The emergence and ongoing development of
converged communication networks with
heterogeneous access and core network types and
diverse device technologies has led to an increase in
network management cost and complexity. This,
among other factors, has prompted changes in
Operational Support Systems (OSS) towards more
holistic lifecycles with integrated processes,
information models and languages between different
views; be it, for example, the Business, System,
Implementation and Deployment views of the TMF
New Generation Operations System and Software
(NGOSSTM) [1]. However, while integration of
knowledge between lifecycle views ensures a closer
bi-directional correlation among business
requirements and the altering state of the
communications network being managed, substantial
work remains to achieve the goal of enabling the
integration of loosely coupled and distributed
components that compose the OSS.

Network management complexity has also prompted
the emergence of autonomic communication
management, with its proverbial self-configuring,
self-healing, self-optimising and self-protecting
concepts. Incorporating autonomic principles into
OSS further complicates integration with the
prerequisite for dynamic transformation and
mappings between the views’ information models
and the languages applied at each view for specifying

policy rules. Additional challenges also arise when
interfacing between and merging businesses with
distinct methodologies; integration and
interoperability of distinct information models,
processes and languages at the same view but
between different businesses or even between
different communities within one business must be
considered.

Inter-view and intra-view transformation between the
knowledge contained in OSS views must be
accomplished to provide an autonomic holistic OSS.
In this paper we detail progress towards the dynamic
integration of policy languages at the business view
of the OSS, with the specification of a formal
language for the TMF’s Shared Information/Data
Model (SID) Policy Aggregate Business Entities
(ABE) [2].

2. FORMAL LANGUAGE FOR SID POLICY
MODEL

Policy plays an imperative role in an OSS as it
formalises the concept of decision making, indicating
that policy is specified at all of the OSS views. While
the policies at each view may at first appear disparate
they must be resourcefully linked, particularly for
autonomic holistic management. Hence the notion of
a “single” policy is limited. John Strassner has
identified this limitation and has defined the Policy

Continuum to highlight the concern of associating
policies at different views [3]. Each view of the
Policy Continuum respects different constituencies
within an organisation and has a link to one or more
views of the TMF NGOSS; the views of the
Continuum and NGOSS are slightly different as they
address different concerns. However, the Policy
Continuum together with the TMF SID policy model
do not currently define a process for linking,
statically or dynamically, the semantics of policy
defined at each level.

The TMF SID policy model provides a
representation of policy independent of the content. It
defines policy as a “set of rules that are used to
manage and control the changing and/or maintaining
of the state of one or more managed objects.” These
rules, depicted as a UML class diagram in Fig 2-1,
are containers for (1) Metadata, (2) Events that
trigger the evaluation of a condition, (3) Conditions
that must hold true for actions to be executed and (4)
Actions that are executed on managed objects when
events specified in the policy rule trigger and some or
all conditions hold true. To allow policy defined
based on the SID policy model to integrate with each
other and also with policy defined with other policy
models (i.e. policy refinement) a formal specification
of the SID model is necessary. An ontology is an
obvious option to represent this knowledge as it
provides a means to formally specify the semantics of
concepts and the relationship between these concepts
and can, thus, be used to augment information in the
policy models with additional meaning and
relationships.

The ontological representation of the SID policy
model (or formal SID policy language) briefly
outline in this paper was specified with the Protégé-
OWL plugin, the leading editor for Web Ontology
Language (OWL). OWL is a standard developed by
the W3C provides three sublanguages, OWL-Lite,
OWL-DL and OWL-Full; OWL-DL is
computationally complete whereas OWL-Full is fully
expressive and therefore tractability can not be
guaranteed. The mapping between the UML
specification and the OWL representation was
achieved manually; this was a time-consuming
process but allowed for an accurate representation to
be built and an in-depth knowledge of the SID policy
model to be gained. An alternative approach would
involve exporting from the UML files to XMI,
importing the Ontology-based Policy Rule
Specification and Integration XMI to a purpose made
tool that would provide output in OWL format. The
canonical UMLtoOWL tool designed by Dragan
Gašević was was not applicable as it converts from
Ontology UML Profile (OUP) models in XML
Metadata Interchange (XMI) format to OWL and not
from UML itself [4]. Falkovych et al have delineated
transformation approaches and discuss ways to
handle the conceptual differences between the
languages in [5].

cd Fig 1P-09- PolicyRule

Policy Framework Spec Entities::
PolicyRuleSpec

{leaf}

+ executionStrategy: Integer = 2
+ pol icyActionSelectCriteria: String
+ pol icyConditionSelectCri teria: String
+ pol icyEventSelectCri teria: String
+ sequencedActions: Integer = 1

Policy Framework::PolicyRule
{leaf}

+ hasSubRules: Boolean = FALSE
+ isCNF: Boolean = TRUE

Policy Action
Entities::

PolicyAction

Policy Condition
Entities::

PolicyCondition

Policy Event Entities::
PolicyEvent

1..*
1..*

1

Fig. 2-1. Basic view of the SID Policy Rule
Specification

When defining the OWL representation, the UML
packages were defined as sub-ontologies and
imported into the SIDPolicyABE.owl. UML classes
mapped directly to an owl:Class as they both
describe objects and basic types. In UML an attribute
is a description of a specified type in a class, in OWL
attributes are first class entities. The most appropriate
mapping was to define UML attributes as
owl:DatatypeProperty. However, DIG reasoners,
RacerPro, Pellet and FaCT++, were not able to
reason over the xsd datatypes, consequently the
attributes were defined as owl:ObjectProperty with
the UML class in which they were specified as an
rdfs:domain axiom and the appropriate datatype as
an rdfs:range axiom. The issue with this approach is
that rdfs:domain and rdfs:range constructs are not
meant to be viewed as constraints to be checked but
rather axioms in reasoning. UML Associations were
mapped to owl:ObjectProperty with the source class
as the rdfs:domain and the target class as the
rdfs:range. Bi-directional associations were
represented as two owl:ObjectProperty declared as
inverse with the owl:inverseOf construct.
Association multiplicity was handled with
Restrictions (owl:Restriction), predominately
cardinality restrictions. A snapshot of the Protégé
OWL representation of the SID Policy Action and
Policy Condition are shown in Fig 2-2 and Fig 2-3
respectively.

Fig. 2-2. Protégé OWL representation of the SID
Policy Action

Fig 2-3 Protégé OWL representation of the SID
Policy Condition

The following is a snippet of the Resource
Descripion Framework (RDF) code for the SID
Policy Condition:

<owl:Class
rdf:ID="ContainedPolicyConditionDetails">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="#containedPolicyConditionDetails.Poli
cyCondition"/>
 <owl:cardinality
rdf:datatype="&xsd;int">1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf
rdf:resource="#PolicyConditionEntities"/>
 </owl:Class>
 <owl:ObjectProperty
rdf:ID="containedPolicyConditionDetails.PolicyCon
dition">
 <rdfs:domain
rdf:resource="#ContainedPolicyConditionDetails"/>

 <rdfs:range rdf:resource="#PolicyCondition"/>
 </owl:ObjectProperty>
<owl:ObjectProperty
rdf:ID="containedPolicyConditionDetailsAttributeCo
ntainedConditionGroupNumber">
 <rdfs:domain
rdf:resource="#ContainedPolicyConditionDetails"/>
 <rdfs:range
rdf:resource="&Datatypes;Integer"/>
 <rdfs:subPropertyOf
rdf:resource="#containedPolicyConditionDetailsAttri
butes"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty
rdf:ID="containedPolicyConditionDetailsAttributeCo
ntainedConditionIsNegated">
 <rdfs:domain
rdf:resource="#ContainedPolicyConditionDetails"/>
 <rdfs:range
rdf:resource="&Datatypes;Boolean"/>
 <rdfs:subPropertyOf
rdf:resource="#containedPolicyConditionDetailsAttri
butes"/>
 </owl:ObjectProperty>

3. CONCLUSION AND FUTURE WORK

OWL facilitates interoperability with logical
equivalences and other formal relationships between
classes and properties in different ontologies.
Exploiting OWL to represent policy models, such as
the SID policy model, provides a framework to
achieve semantic interoperability between policies
specified with different languages and separate
models at disparate levels of the OSS lifecycle, where
the owl:subclassOf construct will most likely feature
heavily in the integration between views. This
interoperability will never be fully automated but
transitive mappings will eliminate much work. The
aim now is to define integrations between existing
OWL policy representations to achieve policy
refinement.

REFERENCES

[1] TeleManagement Forum: “GB927: The
NGOSSTM Lifecycle and Methodology”, November
2004.

[2] TeleManagement Forum: “GB922 Addendum - 1-
POL SID Common Business Entity Definitions -
Policy v2.0”, April 2006

[3] Strassner J.: “Policy-based Network Management:
Solutions for the Next Generation”.
Morgan-Kaufman Publishers. ISBN 1-55-859-1,
September 2003

[4] Gašević, D.: “UMLtoOWL: Converter from UML
to OWL”. can be found at http:
//afrodita.rcub.bg.ac.yu/_gasevic/projects/UMLtoOW
L/#

[5] Falkovych K., Sabou M., Stuckenschmidt H.:

“UML for the Semantic Web: Transformation-Based
Approaches”. In Proceeding of Knowledge
Transformation for the Semantic Web, pages 92–
106. IOS Press, 2003.

