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Quantized Nonnegative Matrix Factorization
Ruairı́ de Fréin

Telecommunications Software and Systems Group
Ireland

Email: rdefrein@gmail.com

Abstract—Even though Nonnegative Matrix Factorization
(NMF) in its original form performs rank reduction and signal
compaction implicitly, it does not explicitly consider storage or
transmission constraints. We propose a Frobenius-norm Quan-
tized Nonnegative Matrix Factorization algorithm that is 1)
almost as precise as traditional NMF for decomposition ranks
of interest (with in 1-4dB), 2) admits to practical encoding
techniques by learning a factorization which is simpler than
NMF’s (by a factor of 20-70) and 3) exhibits a complexity
which is comparable with state-of-the-art NMF methods. These
properties are achieved by considering the quantization residual
via an outer quantization optimization step, in an extended NMF
iteration, namely QNMF. This approach comes in two forms:
QNMF with 1) quasi-fixed and 2) adaptive quantization levels.
Quantized NMF considers element-wise quantization constraints
in the learning algorithm to eliminate defects due to post
factorization quantization. We demonstrate significant reduction
in the cardinality of the factor signal values set for comparable
Signal-to-Noise-Ratios in a matrix decomposition task.

Index Terms—low rank; nmf; quantization;

I. INTRODUCTION

Nonnegative Matrix Factorization (NMF) is a fundamental
tool in Signal Processing and Machine Learning, which is used
for portfolio optimization [1] and Blind Source Separation [2],
[3], [4]. The appeal of NMF is that it learns an adaptive basis
(set of vectors) and sparse coefficients: NMF represents an
input stimulus ensemble as a linear combination of elements
from a representative set of learned NMF basis functions.

Given the matrix V , NMF decomposes V into the product
of two matrices, W ∈ <M×R

+ and H ∈ <R×N
+ . All matrices

have exclusively nonnegative elements, M > R,N > R.
NMF-Frobenius’ objective is the squared-`2 norm:

f(V ||WH) =
1

2

∑
m,n

|V m,n − (WH)m,n|2. (1)

A suitable step-size parameter, proposed by Lee and Seung in
[5], results in two alternating, multiplicative, gradient descent
updating algorithms:

W ←W � V HT �WHHT , (2)

H ←H �W TV �W TWH (3)

where � represents element-wise multiplication, and � is
element-wise division. The NMF solution is generally not
unique [6], [7], or exact. For every invertible A we have a
potential factorization [8], [9],

V ≈ (WA)(A−1H). (4)

NMF Q

∆h

∆w

Reconstr.
V ∈ <M×N W ∈ <M×R

H ∈ <R×N

Ŵ

Ĥ

V̂

Fig. 1. QNMF reconstruction: The input matrix V is real valued and factor-
ized into two real-valued factors W ,H in the NMF block. The NMF factors
are then quantized using either fixed step-size quantization or adaptive stepsize
quantization producing integer valued factors Ŵ ∈ ZM×R, Ĥ ∈ ZR×N .
Adaptive quantization optimization is denoted by the double ended arrows
from the step-size to the NMF optimization routine. The resulting factorization
has the same dimensions as V but it is integer valued, V̂ ∈ ZM×N

In recent work, [7] the authors solved the uniqueness problem,
and addressed the inexactness of NMF, by introducing the
idea that rank-1 NMF approximations are closures. Using
this restriction, the solution space was constrained to the
extent that the approximation could be replaced by equality
in (Eqn. 4). The Nonnegative Matrix Approximation (NMA)
in (Eqn. 4), described by Lee and Seung in [5] is used in many
applications. Typically any member of the set of NMA’s that
meets an arbitrary accuracy constraint suffices: this apparent
freedom motivates the present contribution, namely QNMF,
which produces factors which have a small set of possible
entry values, and are thus amenable to efficient storage (via a
supplementary compression process).

Definition 1: A valid NMF solution is a pair of matrices
{W ,H} which are element-wise nonnegative Wm,r ≥ 0,
Hr,n ≥ 0, that satisfy the accuracy condition ||V −WH||2 ≤
η, where η ∈ < is an arbitrary small positive number. The set
of valid NMFs is denoted

S = {{W ,H}| ||V −WH||2 ≤ η}. (5)

We consider the problem of transmission and storage of the
approximation in (Eqn. 4). We use additional criteria to select
members of S with appropriate properties –here the crucial
property is that the factors are element-wise integer and that
this set of integers has low cardinality.

We consider the factorization-quantization-reconstruction
scenario described in Fig.1. Our hypothesis is that traditional
NMF may yield an inefficient representation for transmission.
The inputs matrix V ∈ <M×N is factorized-quantized into the
product of two integer matrices Ŵ ∈ ZM×R and Ĥ ∈ ZR×N

and two quantization step-size (scalars or) vectors, ∆W and



∆h. To capture this idea, we contribute a new NMA mixing
model which is expressed as:

V̂ = Ŵ diag∆wdiag∆hĤ, V ≈ V̂ . (6)

The operation, diagx, constructs a square matrix with the
vector x’s elements on the diagonal. The factors produced
by an inner NMF W ∈ <M×R,H ∈ <R×N (for example à
la Lee and Seung in [5]) are scalar, or element-wise quantized
–quantized by a quantizer which acts separately on each
component of W and H– as part of the learning routine.

Definition 2: A Quantized NMF solution is a member of
the set Sq

Sq = {{Ŵ , Ĥ}|||V − Ŵ diag∆wdiag∆hĤ||2 ≤ η. (7)

The crucial observation in this paper, is that if quantization
error minimization is alternated with factorization updates, we
can learn members of the set Sq which are as accurate as
element-wise-continuous-valued NMF.

We have introduced the QNMF mixing model. In § II we
motivate NMF in light of related quantized expansions. We
examine the effects of quantization on NMF in § III. We
contribute a family of QNMF algorithms in § IV. We perform
a numerical evaluation of QNMF in § V and discuss future
research directions in § VI.

II. RELATED WORK

The requirement for QNMF arises when many measure-
ments can be taken at a sensing location but only a low-rank
approximation is required at a receiver/decision making entity
or storage entity. For example, the authors of [10] consider
the Matrix Completion problem: they recover and classify
Wireless Sensor Network data while minimizing the number
of samples that is acquired, processed, and transmitted. In
essence a low rank matrix is recovered from a small number
of randomly sampled entries. However, quantization is not
considered in the learning algorithm. More generally, scaling
the algorithms [1], [2], [3], [4] to large scale data may be
problematic; what is required is a good quality low-rank
compressible approximation. How can we best estimate V
from Ŵ and Ĥ in these situations? How does the quality of
the V̂ depend on the properties of Ŵ , Ĥ,∆W and ∆h? These
fundamental questions are addressed here for the first time
by introducing QNMF. The effects of QNMF with respect to
the appropriate perceptual quality measure in these domains
is deferred to future work. Other potential applications for
QNMF include matrix decomposition/missing data estimation
in wireless sensor networks [11].

Entropy-based distortion measures and bit allocations for
compression are often based on the mean-squared error [12],
[13], [14]. This motivates our selection of the Frobenius-
norm for QNMF. Our goal is to learn the parameters
{Ŵ , Ĥ,∆W ,∆h} so that the reconstruction error f = ||V −
V̂ ||22 is minimized. The properties of an NMF in the presence
of coefficient quantization have not been explored. We con-
tribute algorithms to learn NMF of this form by considering
quantization as part of the alternating minimizing low-rank

TABLE I
QNMF ALGORITHM AND ITS ACRONYM

QNMF Acronym Quantizer Adaptive
Round random ‘roundrand’ round or ∼ round x
Floor random ‘floorrand’ b·c or d·e x

Round random Adaptive ‘roundadapt’ b·c or d·e 4
Floor random Adaptive ‘flooradapt’ round or ∼ round 4

factorization. The effects of coefficient quantization on repre-
sentations in <N using overcomplete sets of vectors are inves-
tigated in [14]. We empirically investigate the distortion as a
function of the rank parameter R and the cardinality of the set
of values the factorization takes (which we call “simplicity”).
This is the first paper that examines the effects of quantization
on a nonnegative matrix factorization. If NMF is to scale to big
data analysis, efficient storage of the factors is one problem
that must be addressed. Uniform quantization is selected in
this paper because the authors of [15] demonstrate that it has
an output entropy which is asymptotically smaller than that
of any other quantizer, independent of the density function or
the error criterion. An excellent quantization survey is found
in [16]. Finally, given that NMF learns basis functions with
different scales, we introduce a step-size parameter for each
column (row) of W (H) to improve its simplicity.

We introduce some notation. U(0, 1) is used to represent a
uniform distribution from the domain (0, 1). UNM represents
a matrix of size M×N –each element is independently drawn
from U(0, 1). The subscript is frequently omitted. A vector of
R ones is denoted by 1R.

III. QUANTIZED NMF FRAMEWORK

We propose a Quantized Nonnegative Matrix Factorization
algorithm that is 1) almost as precise as traditional NMF,
2) admits to practical encoding techniques 3) and exhibits
a complexity which is comparable with state-of-the-art NMF
methods in § IV. These properties are achieved by considering
the quantization residual, via an outer quantization optimiza-
tion step, in an extended NMF iteration. The use of the
quantized activations, for example, in the optimization of the
W-update reduces the propagation of the quantization error
to subsequent NMF iterations. We consider the effects of
quantization on NMF here.
QNMF Framework: Table ?? describes the quantized NMF
framework underpinning the results in this paper. It is com-
posed of an inner NMF optimization routine (consisting of an
unshaded row for the h-update and the w-update) in lines 5 and
8, which is wrapped by an outer quantization updating routine
(the shaded rows in Table ??) in lines 6,7,9,10 and 12. The
algorithm presented in Table ?? is simple: 1) the quantization
steps are randomly initialized (less than one), and 2) the
quantization steps are fixed for the entire NMF iteration. These
short-comings conspire to produce a factorization algorithm
which may not converge monotonically –we provide two
enhancements which improve convergence in § IV. First we
motivate these algorithms by examining quantization error.



Classical Statistical Analysis: To understand why mono-
tonicity is an issue, we consider the affects of the outer routine
on the inner routine. A first step is to consider the affect of
reconstructing a vector v = V :,n when the corresponding
activation vector estimate h = H :,n has been degraded
in some unspecified way. Lines 5-7 in Table ?? provide
an example of the introduction of quantization error. Our
analysis provides an understanding of the affects of the outer
quantization routine where degradation due to quantization is
modelled as additive white noise. After each inner NMF h-
update (line 5) we have

v = Wh+E, (8)

where the functions W are assumed fixed and E captures
element-wise Gaussian noise in the estimate. Suppose we want
to approximate v given (h + βh) instead of h (cf. line 7),
this approximation is denoted v̂. We assume each βr,h, where
βh = [β1,h, . . . , βr,h, . . . βR,h], is an independent random
variable with zero mean and variance, σ2

h. We subtract the
estimates to calculate the Mean-Squared-Error

(Wh+E)− (Wh+Wβh +E) = −Wβh. (9)

MSEh = E||v − v̂||2 = E||Wβh||2 = EβT
hW

TWβh. (10)

Re-ordering the summation and the expectation we get

MSEh = σ2
hTrW TW . (11)

Proposition 1: Noise reduction of each NMF update: Let
W and H be the features and activation matrices generated
by the NMF step, and let βw = [β1,w, . . . , βr,w, . . . βR,w]
βh = [β1,h, . . . , βr,h, . . . βR,h] be zero mean independent
random variables with variance σ2

w and σ2
h respectively. The

MSE of the NMF updates is

MSEh = σ2
hTrW TW , MSEw = σ2

wTrHHT .

In this paper, degradation is due to scalar quantization:

Ŵm,: = Q(Wm,:)← [q1(Wm,1), . . . , qr(Wm,r),

. . . , qR(Wm,R)]T Q : <1×R 7→ Z1×R,

where qr : < 7→ <, 1 ≤ r ≤ R.
Ĥ :,n = Q(H :,n)← [q1(H1,n), . . . , qr(Hr,n),

. . . , qR(HR,n)]T Q : <R×1 7→ ZR×1,

where qr : < 7→ <, 1 ≤ r ≤ R.

1. ∆w = UR; ∆w = ∆w

1T ∆w
, 2. ∆h = UR; ∆h = ∆h

1T ∆h

3. I = 2000; –Iteration count
4. for 1 ≤ i ≤ I
5. H = H � W TV

W TWH
6. Ĥ = bdiag 1

∆h
H + 1

2
c

7. H = diag(∆h)Ĥ + ε

8. W = W � V HT

WHHT

9. Ŵ = bW diag 1
∆w

) + 1
2
c

10. W = Ŵ diag(∆w) + ε
11. f(iter) = ||V −WH||2
12. Outer Quantization Optimization, endfor

We have outlined an analysis of the case where the quanti-
zation noise ĥ − h and ŵ − w is random, independent in
each dimension and uncorrelated with h and w respectively.
The assumption that quantization error is signal independent,
uniformly distributed white noise is not strictly valid [13].
This assumption fails when the amplitude of the signal is
comparable to the quantization step-size. QNMF normalizes
the step-sizes ∆w and ∆h for this reason. QNMF uses a family
of quantization functions. It either rounds (or does not round),
floors b·c or ceils d·e the factors (cf. Table I), e.g.

Ĥ = bdiag
1

∆h
H +

1

2
c Ŵ = bW diag

1

∆w
+

1

2
c;

However, the appeal of NMF is that the objective function

f(h) = arg min
h

||v −Wht||2 (12)

is monotonically decreased by application of the W or H
update. Perturbation βh caused by quantization may cause the
objective to be increased. In short, if ht+1 minimizes f(·),
then f(ht+1) ≤ f(ht), but then if application of quantization
reverses this ordering,

f(Q(ht+1)) ≤ f(ht) or f(Q(ht+1)) > f(ht), (13)

NMF looses its appealing monotonic convergence property.
We consider a number of strategies for addressing the problem
of quantizing H and W such that f(h) and f(w) are min-
imized. The quantization functions in this paper are uniform
mid-tread [16].

IV. MONOTONICALLY DECREASING QNMF
We introduce 1) random-quasi fixed ‘floorrand’ and

‘roundrand’ QNMFs and 2) adaptive QNMFs, namely
‘flooradapt’ and ‘roundadapt’ QNMF (cf. Table. I), for the
framework in Table. ??. This constitutes replacing lines 1,2,6,
9 and 12 in Table. ?? with a new outer optimization routine.
Random Quasi-Fixed Quantizer: A probabilistic method for
finding the quantization functions that minimize the objective,
f , after each NMF update has been applied (in Table. ??)
is presented in Table II. This approach is more efficient than
exhaustive enumeration of the quantization functions provided
that the goal is merely to find an acceptable solution in a
fixed amount of time, rather than the best possible solution.
This is compatible with the goal of monotonic convergence of
NMF. Consider, there are 2RN and 2MR possible quantization
functions for H and W .

Table. II summarizes the approach for random quasi-fixed
‘floorrand’ quantization of the H matrix –a similar technique
is applied to the W matrix, but omitted for brevity. We first
investigate if a floored quantizer, applied to each element of
H , minimizes f after the NMF H-update has been applied. If
minimization is achieved quantization is applied and QNMF
proceeds. If the objective is not minimized by the floored
quantization functions we perform Bernoulli trials to generate
a new array of random scalar quantizers where the floor and
ceil functions are chosen randomly for each element of the
quantization function. The probability of choosing a ’floor’ is



TABLE II
QUASI-FIXED ‘FLOORRAND’ QUANTIZATION

0. for 0 ≤ s ≤ ∞, s increasing in steps of 1
1. Decrease the step-size: ∆h ← ∆h/(2

s).
2. for 1 ≥ p ≥ 0 in steps of .1: Bernoulli trials
3. for 1 ≤ k ≤ 100 in steps of 1
4. Draw RN i.i.d. Bernoulli random variables,
5. the matrix X with success probability p,
6. if Xr,n = 1 then Ĥ

t+1
r,n = bdiag 1

∆h
Hr,n + 1

2
c

7. else Ĥ
t+1
r,n = ddiag 1

∆h
Hr,n + 1

2
e

8. endif
9. if f(Ht+1) ≤ f(Ht), set H ←Ht+1, break
10. endif
11. endfor endfor endfor

p; decreasing this probability increases the probability of intro-
ducing a ceil element in the quantization function. Our goal is
to slowly migrate away from the original floored quantization
function until a suitable quantizer is found. Multiple Bernoulli
trials (≈ 100) are used to generate quantization functions with
the probability of a floor for each equal to p. If after many
random candidate quantization functions have been applied,
the objective is not minimized for a fixed quantization step
size, ∆h, the step-size is divided by two and the process
is repeated with the smaller step-size. ‘floorrand’ QNMF is
described as follows: Lines 6,7,9 and 10 in Table ?? are
augmented to include the generation of the new ‘floorrand’
quantizer in Table. II –random quantization is invoked inde-
pendently for the matrices H and W . Once the new step-sizes
are generated, they are maintained for the remainder of the
optimization unless they are further decreased.

Empirical evidence suggests that fixing p = 0.5 and s = 0
for the duration of this simulation provides acceptable con-
vergence (cf. the discussion in § V). ‘roundrand’ quasi-fixed
QNMF operates in a similar manner: the floor function in Line
6 in Table. II is replaced by the round function. If line 6 uses
a round down quantizer in the previous Bernoulli trial, line 7
uses a round-up quantizer with probability p.
Adaptive Quantizer: The quantization step-sizes in the
randomized algorithms ‘floorrand’ and ‘roundrand’ QNMF are
quasi-fixed –they are only changed if the Bernoulli random-
ization routine fails to find a valid solution after exhausting
all p. We derive new update rules for the step-size parameters
for adaptive QNMF using the Frobenius-norm.

||V − Ŵ diag∆wdiag∆hĤ||2 (14)

is non-increasing under the updates rules for the step-size

∆H,r ← ∆H,r
(W TV � Ĥ)1N

(W TW diag∆HĤ � Ĥ)1N

(15)

∆W,r ← ∆W,r
1M (VW T � Ŵ )

1M (Ŵdiag∆WHH
T � Ŵ )

(16)

Table III lists the ordering of the adaptive QNMF algorithm.
Although these updates are guaranteed to monotonically de-
crease the objective, the quantization step after the initial NMF

TABLE III
ADAPTIVE QUANTIZATION

1. H update: H ←H �W TV �W TWH
2a. Quantize: H = diag(∆h)Hq + ε
2b. or apply Quasi-fixed Randomized Quantization

3. Apply:∆H,r ← ∆H,r
(W TV �Ĥ)1N

(W TW diag∆HĤ�Ĥ)1N

4. Normalize: ∆h = ∆h � (1T
R∆h)

5. W update: W ←W � V HT �WHHT

6a. Quantize: W = W qdiag(∆w) + ε
6b. or apply Quasi-fixed Randomized Quantization

7. Apply: ∆W,r ← ∆W,r
1M (V W T�Ŵ )

1M (Ŵdiag∆WHHT�Ŵ )

8. Normalize: ∆w = ∆w � (1T
R∆w)

H and W updates may introduce an error which is larger
than the minimization improvement achieved by applying the
updates above, and also by NMF. The aggregate effect of quan-
tization and step-size optimization may cause the objective to
increase after the application of these operations. We have
observed that in practice adaptive QNMF typically converges
(for s = 0 and fixed). Put simply, if a sufficient number of
quantization levels have been assigned to the algorithm QNMF
reduces to the original Lee and Seung NMF. In future work
we will analyze the relationship between the quantization error
and expected error reduction due to the application of an NMF.

The control of algorithm flow of ‘flooradapt’ and
‘roundadapt’ QNMF is summarized in Table III. In lines 2a or
b and lines 6a or b either floor or round randomized quantizers
are applied to the factors –the quantizer gives its name to the
adaptive algorithm: ‘flooradapt’ and ‘roundadapt’ QNMF.

V. EMPIRICAL EVALUATION

Our empirical evaluation explores the efficacy of using
QNMF as an algorithm for lossy compression-factorization.
We use Donoho and Stodden’s NMF Swimmers database to
evaluate QNMF’s convergence. The Swimmers are an element-
wise integer-valued data-set V m,n ∈ {1, 39}; NMF does not
produce an element-wise integer factorization of this data-
set. Taking our inspiration from Occam’s Razor, we seek
a simpler factorization –element-wise finite-resolution data-
sets call for an NMF algorithm that generates a factorization
with a finite number of different values in the entries. Our
choice of the Swimmers is motivated by the fact that the
correct factorization, and thus rank parameter R = 16, is
known. Knowledge of R is important in our analysis of
QNMF as choosing an R that is too large (small) generates
a low(high) factorization distortion. Our goal is to isolate the
effect of quantized updates from the rank selection problem,
the Swimmers are suitable.
QNMF Convergence and Complexity: We plot the ob-
jective function of the variants of QNMF for the first 100
iterations of QNMF in Fig. V when they are applied to the
Swimmers data-set with R = 16. Lee-Seung’s Frobenius
NMF is plotted as a benchmark method. Each factorization is
initialized with the same initial matrices. Firstly, the accuracy
of all of factorizations, measured using the squared `2-norm,
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is approximately the same. We conclude that the distortion
penalty associated with learning a finite-precision factorization
over the traditional NMF is small. Secondly, although we have
not given a proof of convergence for QNMF, the success
of these methods in numerous trials (cf. Table IV) suggests
that whilst monotonic convergence is not guaranteed the
techniques converge to a good-simple solution. To highlight
the convergence property and also the complexity of QNMF,
we plot time-series for the factors, W and H respectively,
which record the counts of the numbers of Bernoulli trials
required to decrease the objective function at each iteration.
We make the following observations: 1) initially a relatively
large number of Bernoulli trials is required for all algorithms;
2) the number of Bernoulli trials reduces to a small number
as the quality of the QNMF improves; 3) on first inspection
this number of Bernoulli trials may seem onerous, however
modern computers have multiple cores and these Bernoulli
trials are easily run in parallel; 4) when the Bernoulli count
reaches the maximum number of Bernoulli trials (1000 trials
for the rounded QNMF and 100 trials for floored QNMF),
the quantization function has failed to minimize the objective.
The rounded QNMF algorithms only increase the objective
1 − 3 times. These objective increases occur at the start of
the iteration. In some respects this behaviour is analogous to
finding a good set of initial matrices, or starting NMF from
multiple initial conditions.

The primary factor that causes the objective function to
increase is the error introduced by the quantization step. A
useful performance measure to evaluate the convergence of
QNMF is the Quantization Efficiency, which is defined as:
ωQ = SNRQNMF/SNRNMF for a given rank. Fig. 3 illustrates
the quantization efficiency of the quantization functions com-
puted at each iteration. The quantization efficiency is the ratio
of the SNR of the NMF generated updates post and pre
quantization. The floored algorithms outperform the rounded
algorithms. The convergence in Fig. 3 mirrors that in Fig. V;
the variance in the quantization error appears to converge as
the distortion measure converges.
QNMF is as precise as NMF for the same rank, but
simpler: We demonstrate that QNMF gives a similar quality
of decomposition, in terms of the mean SNR, as a NMF
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Fig. 2. Bernoulli Counts: number of Bernoulli trials required to minimize the
objective (blue H , black W ).
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Fig. 3. Quantization Efficiency, ωQ, of the QNMF quantization functions
after each W and H update.

of the same rank in Fig. 4 for the Swimmers and for the
standard “Cameraman” test image in Table IV. In addition,
we illustrate that QNMF learns a simpler decompositions in
Fig. 5 for the swimmers and in Table IV for the Cameraman.
The input matrix is generated for the Cameraman by blocking
(8x8 pixel blocks) the image and placing the vectorized block
in the columns of V . We perform 50 Monte Carlo runs and
plot the average SNR and cardinality C({W })+C({H}) for
a range of ranks 10 ≤ R ≤ 20 for the Swimmers and for
10 ≤ 40 for the Cameraman. We compute the cardinality
because estimating the differential entropy of NMF or QNMF
decompositions, the ideal performance metric, is fraught with
difficulty [17]. This discussion underlines the problem with
quantizing traditional NMF. Producing a histogram of the
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Fig. 4. SNR (dB) of the QNMF algorithms after 100 iterations.
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Fig. 5. Count of the number of quantization levels after 100 iterations.

columns (rows) of W (H), and then finding the discrete
entropy, may produce misleading results because 1) QNMF
produces integer factors and NMF produces nonnegative fac-
tors, using the same histogram bin selection for these two
completely different types of data can generate drastically
different discrete entropies; 2) the rows and columns of
QNMF and NMF may be permuted and scaled; 3) adaptive
QNMFs optimize the quantization step-size across the rows
and columns, using a uniform step-size to quantize a NMF to
compute its discrete entropy means that we are not comparing
like-for-like. In addition, computing the performance of NMF
and QNMF with respect to some post-processing compression
routine, introduces the possibility that the compression routine
favours QNMF. We plot the mean cardinality of the QNMF.
The cardinality of the set of entries of NMF is MR+RN .

Fig. 4 illustrates that for ranks 10 ≤ R ≤ 16 QNMF
and NMF give approximately the same accuracy. Table IV
showw that QNMF is with in 4 dB of NMF. The ‘floorrand’
and ‘flooradapt’ QNMF are the best QNMF algorithms with
respect to SNR. For all NMFs the accuracy increases as
a function of the rank, over-fitting occurs when R > 17
for the Swimmers. The quality of QNMF increases linearly,
however NMF experiences a step improvement due to over-
fitting. Fig. 5 demonstrates that the adaptive QNMF algorithms
exhibit a lower cardinality for approximately the same SNR,
in the region 10 ≤ R ≤ 16. The factors of these factorizations
have approximately 100 fewer quantization levels than the
non-adaptive factorizations: ‘roundrand’ and ‘floorrand’. This
reduction is significant and implies that they admit to practical
encoding techniques. Table IV demonstrates QNMF has a
factor of 20-70 fewer levels than NMF for the W matrix and
a factor of 500-1000 fewer levels for H . Experiments on the
Peppers and Barbara images in the supplementary material
further support these results.

VI. DISCUSSION

The rationale for the Bernoulli quantization is clear; if
the current quantization functions increase the objective, a
matrix of quantization functions which have a high probability
(p < 1) of being a ‘floor’ or ‘round’ but minimize the objective
is a satisfactory substitute. Moreover, the number of candidate
random quantizers generated for each p is bounded –This
bound is much smaller than the total number of possible floor-
ceiling matrix permutations, typically � 2RN , 2RM . In terms
of the step-size division process for the round quantizer, when
the ∆h is small (relative to the variation in the signal being

TABLE IV
CAMERAMAN: SNR OF QNMF OF RANKS 10 ≤ R ≤ 40. AVERAGE
NUMBER OF DIFFERENT VALUES REQUIRED TO BY THE W AND H

FACTORS. THE NUMBER OF DIFFERENT VALUES USED BY NMF
UNDERLINES THE REDUCTION IN CARDINALITY BY QNMF.

Rank R 10 15 20 25 30 35 40

NMF SNR (dB) 24.4 26.6 28.0 29.3 30.0 30.6 31.1
roundrand SNR 18.7 19.9 21.4 22.0 23.2 23.9 24.6
roundadapt SNR 19.4 20.2 21.8 22.6 23.7 24.2 24.8
floorrand SNR 21.3 22.9 24.3 25.2 26.1 26.5 27.2
flooradapt SNR 21.6 22.9 24.2 25.0 25.9 26.2 26.7
NMF C({W }) 640 960 1280 1600 1920 2240 2560
roundrand C({W }) 37.6 44.7 47.1 49.9 52.1 52.9 53.7
roundadapt C({W }) 38.4 43.9 47.3 49.8 51.8 52.5 53.3
floorrand C({W }) 31.9 33.0 34.1 35.2 35.6 37.9 39.1
flooradapt C({W }) 33.3 33.9 35.4 36.7 37.6 38.9 40.5
NMF C({H}) 40960 61440 81920 102400 122880 143360 163840
roundrand C({H}) 129.5 135.5 158.8 166.0 197.3 172.6 188.0
roundadapt C({H}) 98.6 110.2 129.6 140.5 160.7 156.3 165.4
floorrand C({H}) 172.9 187.4 224.4 227.2 257.0 239.2 258.0
flooradapt C({H}) 138.1 155.0 183.5 191.1 214.2 212.5 222.9

measured [15]), the MSE produced by the rounding operation
is approximately σ2

h = 1
12∆2

h. This relationship underpins the
initialization of the quantization step-sizes. Recall that in this
paper the step-sizes are initialized to be less than one, the
largest signal value is 39. Successive halving of the interval
∆h causes the variance to reduce according to: σ2

h = 1
12∆2

h
1
2s .

In effect as ∆h 7→ 0 the quantization error is reduced and
QNMF begins to approximate the original NMF –a related
analysis holds for the floor and not-round functions. It is
reasonable to assume that in the limit QNMF reduces to
original NMF. In short, monotonic convergence is feasible
(for a large enough s). Successive halving (of ∆h) in this
manner exhibits favourable complexity. In practice, we have
observed that the number of Bernoulli trials required to achieve
minimization using the random quantizers is small. Moreover
step-size division is rarely required, in fact s is fixed for all
our experiments.

VII. CONCLUSIONS

Our first conclusion is that QNMF is more amenable to
storage than NMF due to its reduced factor-cardinality. It
trades-off only 1-4dB to achieve a reduction of 20-70 (500-
1000) times the cardinality of the W (H) matrix element set
to achieve this reduction. We make the recommendation that
based on the cardinality gains achieved by QNMF, efficient
and accurate compression-factorization can achievable using
QNMF. A second conclusion is that our empirical convergence
evaluation of QNMR substantiates the claim that quantization
does not significantly affect convergence. In future work we
will give a more formal analysis of QNMF convergence
and consider the impact of quantization on domain specific
perceptual measures.
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