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LEARNING AND STORING THE PARTS OF OBJECTS: IMF

Ruairı́ de Fréin

Telecommunications Software and Systems Group
Ireland

ABSTRACT

A central concern for many learning algorithms is how to efficiently
store what the algorithm has learned. An algorithm for the com-
pression of Nonnegative Matrix Factorizations is presented. Com-
pression is achieved by embedding the factorization in an encoding
routine. Its performance is investigated using two standard test im-
ages, Peppers and Barbara. The compression ratio (18:1) achieved
by the proposed Matrix Factorization improves the storage-ability of
Nonnegative Matrix Factorizations without significantly degrading
accuracy (≈ 1-3dB degradation is introduced). We learn as before,
but storage is cheaper.

Index Terms— matrix factorization; compression

1. INTRODUCTION

Nonnegative Matrix Factorization (NMF) uncovers feature vectors
and vectors of activations of these features in a signal ensemble with
structural regularity via non-negativity constraints [1]. The applica-
tion of NMF is found in many different types of communications
and data processing data-sets. To date the compression of NMF,
which would allow for efficient storage of the derived factorization
in resource constrained applications, has not been considered. Given
the regularity of the structures produced by NMF and the size of
many modern data-sets, we consider the storage gains achievable by
proposing a compressible NMF.

NMF learns element-wise real-valued nonnegative factors. The
problem of data compression is not encoded as an optimization con-
straint in NMF. This is problematic if many factorizations are re-
quired for subsequent processing. However if NMF was to learn
a factorization which was amenable conversion into an integer se-
quence, the factorization could then be compressed by 1) identifying
the limitations of the factorization and 2) devising a coding scheme
which compressed the factorization, using a scheme based on [2],
resulting in an integrated factorization-compression system. We pro-
pose an Integer Matrix Factorization (IMF) as the missing step for
the system described above.

NMF learns a lossy factorization. In general the derived factor-
ization is non-unique [3, 4] but satisfactory for most applications.
Satisfaction is generally based on some distortion measure, e.g. the
Frobenius-norm, Kullback Leibler Divergence [1]. Usage of the α-
divergence [5] and β-divergence [6] has been motivated for speech.
If NMF were unique and exact, the optimal factorization would give
rise to identical distortion scores. Given that the solution is non-
unique and non-exact, but typically satisfactory, we posit that we
have the freedom to choose an arbitrary satisfactory lossy factoriza-
tion with respect to the distortion constraint of choice (for example,
a candidate solution might be acceptable if it is within 1-3dB of the
expected NMF Signal-to-Noise-Ratio) if it is amenable to efficient

coding. Once a suitable factorization has been produced, it is crucial
that any post-factorization-coding process is loss-less. Minimum re-
dundancy coding has received extensive treatment in the literature
[7, 8, 9, 10, 11, 12, 13]. The statistics of the data ensemble may
be used to compress the data ensemble; however, prior knowledge
of the statistics of the factorization may not be assumed as NMF is
non-unique (without performing multiple passes through the factor-
ization, which is not practical in a alternating minimization routine).
Universal coding schemes address this problem by coupling learning
with the coding process for varying source characteristics [14, 15].
We take the 1977 approach of Lempel and Ziv [2] (LZ77) for post-
factorization-coding, even though encoding ratios may be slightly
improved using more recent extensions. This decision is justified
because utilities such as gzip [16] are widely available which also
increases the portability of our approach.

IMF algorithm has three features that distinguish it from previ-
ous algorithms and are worthy of comment: 1) we provide the ability
to learn element-wise integer-valued NMFs. Element-wise integer
constraints are preserved by interlacing two new update rules with
the existing NMF updates. 2) Integer-NMF combined with a uni-
versal loss-less coding scheme advances the state-of-the-art as many
existing factorizations may be adapted in a similar manner, yielding
significant compression ratio improvements, whilst incurring little
additional distortion. Once an integer factorization can be learned,
the use of a standard compression technique ensures that the factor-
ization is portable and efficiently stored. 3) The updates proposed
by integer NMF are multiplicative and come with the same mono-
tonic convergence guarantees as traditional NMF updates. This is
because the error introduced by integerizing the factors is folded into
the traditional NMF updates. In summary NMF can be learned with
approximately the same levels of accuracy as before (within 1-3dB)
but we demonstrate that≈ 18 NMFs can be stored in the same space
as 1 traditional NMF.

By way of preparation we introduce some frequently used nota-
tion. The vector 1M is a column vector of M ones. We distinguish
between element-wise nonnegative X and element-wise nonnega-
tive integer matrices, X̂ , by a hat. We denote the r-th column entry
of a matrix by X(:, r). It is frequently convenient to consider the
sequence X which is generated from the column vector X(:, r), by
arranging the entries according to column ordering in the derived
sequence.

In terms of paper organization, in Section 2 we illustrate how
our approach is new, we highlight related results, and we evaluate
their strengths and weaknesses. In Section 3 we introduce the new
factorization-compression algorithm. In Section 4 we empirically
evaluate the success of the factorization-compression routine. Fi-
nally, in Section 5 we discuss the impact our results will have on the
Machine Learning and Signal Processing community.



2. RELATED WORK

The use of dictionaries for compression is analogous to the type of
representation or encoding of an observation ensemble achieved by
NMF and sparse coding [17, 18]. Sliding-window compression is
appealing given the sparsity of NMF basis functions and their struc-
tural regularity. In many cases non-negativity constraints are enough
to recover the original signals if the signals are sparse enough [19].
Moreover, results on the conditions for establishing the uniqueness
of NMF rely on zero-groundedness of the signals [4], or determin-
ing binary closure patterns in the signal ensemble [20], which typi-
cally explains the success of sparse coding techniques [18]. Learn-
ing sparse factors is generally a good indicator for achieving good
compression, much in the same way as integer sequences with many
zeros are typically well compressed.

The family of Lempel-Ziv source coding algorithms [2, 21] is:
popular (due to [22]); universally optimal (their asymptotic compres-
sion rate approaches the entropy rate of the source for any stationary
ergodic source [23]); and simple to implement. We adopt a “string-
matching on a sliding window” procedure [2] (LZ77) to encode IMF.
The alternative, an adaptive dictionary compression algorithm [21]
(LZ78), has been in use for longer (cf. UNIX compress) but does
not compress as well as LZ77 (which forms the basis for pkzip,
gzip, Stacker, Microsoft Windows). However, LZ77 is more com-
putationally intensive than LZ78. Modern implementations of gzip
are arguably as fast as many LZ78 variants.

In this paper we use variable-to-variable-length codes to rep-
resent IMF. Similar in spirit to LZ77, both the number of source
symbols encoded and the number of encoded bits per code-word are
variable; the symbol set is also learned via a lossy integer matrix fac-
torization. Unlike Shannon and Huffman codes, our approach does
not require prior knowledge of the sources statistics. Using a LZ77
mechanism, adaptation ensures that the average code-word length
per source letter is minimized.

3. FACTORIZATION-COMPRESSION ALGORITHM

The proposed factorization-compression algorithm consists of 1)
learning an integer nonnegative matrix factorization algorithm
whose elements are drawn from a finite set of integers I ⊂ Z ;
2) a rule for arranging the factorization parameters as a sequence
composed of integers (and a small set of non-integers); 3) a rule
for parsing strings of integers from the finite alphabet, I, into sub-
strings whose lengths do not exceed a prescribed integer Ls (the
encoder’s look-ahead buffer, cf. [2]); and 4) a coding scheme which
maps these sub-strings sequentially into uniquely decipherable code
words of fixed length Lc over the alphabet I. We describe the mech-
anism of the factorization-parsing-coding procedure in the following
subsections.

3.1. Factorization - Integer Matrix Factorization

Definition 1 NMF factorizes a matrix V ∈ RM×N into the prod-
uct of two matrices W ∈ RM×R and H ∈ RR×N , yielding the
estimate Ṽ = WH . All matrices have nonnegative elements and
R < M,N . The Kullback Leiber Divergence (KLD) is a frequently
used objective function.

D(V ||Ṽ ) =
∑
m,n

V (m,n) log
V (m,n)

Ṽ (m,n)
− V (m,n) + Ṽ (m,n)

(1)

Lee and Seung introduced a step-size function for gradient descent
and two alternating multiplicative updates (element-wise multiplica-
tion and division are denoted, � and �).

H ←H �W T V

WH
� (1T

MW )T1T
N , (2)

W ←W � V

WH
HT � 1M (H1N )T . (3)

NMF is non-unique and inexact, which implies that the mixing
model may represent any member of the family

{W ,H|V ≈ (WA)(A−1H)}, (4)

where A is a permutation times a diagonal matrix. Satisfaction can
be decided upon using the inequality, D(V ||Ṽ ) < ε, where ε is a
user specified distortion (or convergence) criteria which is meaning-
ful in the application domain. Many factors W and H may satisfy a
given inequality constraint. A central concern in many learning ap-
plications is how to efficiently store what has been learned for later
use. The first sub-problem we solve is how to select a pair of fac-
tors which are amenable to efficient storage without significant loss
of accuracy from the family referred to in Eqn. 4. We call this In-
teger Matrix Factorization (IMF). The crucial property these factors
should have is that they are drawn element-wise from a finite integer
symbol set.

IMF can be achieved by taking a nonlinear approximation of
each element of the factor estimates produced by the Lee and Seung
updates at convergence using the quantizers

Ĥ ←
⌊

1

∆?
H +

1

2

⌋
Ŵ ←

⌊
W

1

∆?
+

1

2

⌋
; (5)

The problem with this approach is that 1) one quantization step-size,
∆? is not appropriate for all rows and columns of H and W ; and
more importantly 2) fixed non-alternating quantization does not al-
low the factors to absorb the distortion introduced by quantization,
and the quantization functions to absorb the distortion introduced
by a poor approximation and quantization. A sensible approach is
to learn the quantization functions as well as the factors so that the
quantized approximation tends to improve as the W and H con-
verge; we interleave the optimization processes. This process is il-
lustrated Fig. 1, where a floor function b·c is used for quantization.
The quantization functions are adapted for each R as the factors and
quantizers converge. The elements of the factor H assume one of
the dashed line quantization levels. The cardinality of the symbol set
of Ĥ is smaller than H .

Ĥ(1, n)
H(1, n)

∆h(1)

Ĥ(2, n)

H(2, n)

∆h(2)

∀r
Ĥ(R, n)

H(R, n)

∆h(R)

Fig. 1. Quantization functions are adapted for each H(r, :).

Definition 2 IMF factorizes a matrix V ∈ RM×N into the product
of two element-wise integer matrices Ŵ ∈ IM×R and Ĥ ∈ IR×N

and two diagonal matrices diag(∆w) and diag(∆h). The operation
diag(·) places the elements of the vectors ∆w ∈ RR×1 and ∆h ∈
RR×1 on the diagonal of an R × R matrix. The factorization is
expressed as

Ṽ = (Ŵ diag(∆w))(diag(∆h)Ĥ) = WH. (6)



By grouping the multiplications we have W = (Ŵ diag(∆w))

and H = (diag(∆h)Ĥ), which are related to the factorizations
in (Eqn. 4). The quality of the factorization is computed using the
KLD

D(V ||Ṽ ) =
∑
m,n

V (m,n) log
V (m,n)

Ṽ (m,n)
− V (m,n) + Ṽ (m,n)

(7)
The KLD objective function is minimized –such that Ŵ ∈ IM×R

and Ĥ ∈ IR×N– by interlacing two new update rules for the pa-
rameters ∆w and ∆h, with the updates (Eqns 2 and 3). In terms
of algorithm structure, first, we minimize the KLD with respect to
the products W (Ŵ and diag(∆w)) and H (diag(∆h) and Ĥ),
and then with respect to the arguments of these products, diag(∆w)
and diag(∆h). This is achieved by introducing a step-size function
for gradient descent minimization of the vectors ∆w and ∆h. This
function results in two alternating multiplicative updates

∆h(r)←∆h(r)
1T
M

[
V

V̂
�W(:, r)Ĥ(r, :)

]
1N

1T
M

[
W(:, r)Ĥ(r, :)

]
1N

(8)

∆w(r)←∆w(r)
1T
M

[
V

V̂
� Ŵ(:, r)H(r, :)

]
1N

1T
M

[
Ŵ(:, r)H(r, :)

]
1N

(9)

At the end of each iteration, we scale ∆w and ∆h so that they sum
to one.

The mappings W ← (Ŵ diag(∆w)) and H ← (diag(∆h)Ĥ)
warrant further attention. Fig. 1 illustrates the nonnegative element
H(1, n) and its quantized counter-part Ĥ(1, n). The multiplicative
update rules (Eqn. 8 and 9) adjust the size of the quantization step-
sizes ∆h for all rows of H(r, n). The smaller the step-size ∆h(r)
the finer the resolution of H(r, :). IMF trades-off the resolution in
the rank-1 approximations of V , e.g. Ŵ (:, r)∆w(r)∆h(r)Ĥ(r, :)
with the other R − 1 rank-1 approximations. The intuition is that
certain rank-1 approximations of an NMF solution tend to a small
symbol set cardinality, whereas other rank-1 approximations tend to
a slightly larger symbol set cardinality. As motivation, the seminal
NMF paper describes an algorithm for “learning the parts of objects”
[24]; in practice these parts consists of a few non-zero entries in the
factors, and many close-to-zero values. IMF attempts to reduce the
total symbol set cardinality |I| by adjusting the quantization step-
size parameters so that the quantization functions match the under-
lying tendencies of each rank-1 approximation.

The Lee and Seung updates guarantee that the objective is mono-
tonically decreased each time they are applied. We make a similar
claim about the quantization step-size updates. No such claim can be
made about the application of a nonlinear quantizer which introduces
uniformly distributed noise. Moreover, signal independence, and a
uniformly distributed noise model is not strictly valid [25] for quan-
tization error. The assumption fails when the quantization step-size
is comparable with the signal magnitudes. To address this problem
after each iteration we scale ∆w and ∆h so that they sum to one.
Moreover, this normalization ensures ∆w and ∆h do not converge
to a small number (for all r), causing IMF to revert to tradition NMF.

All that remains is to justify our quantizer design decisions in
light of the monotonic convergence goal. We use a uniform quan-
tizer: the authors of [26] demonstrate that it has an output entropy
which is asymptotically smaller than that of any other quantizer, in-
dependent of the density function or the error criterion. In addition,
we choose a uniform mid-tread quantizer to keep the factors in the

nonnegative orthant. Finally, to improve convergence behaviour, we
introduce a randomized component into the quantization functions.
The scheme is described in Table 1 for the H factor. We perform
No ptrials Bernoulli trials for each probability of success p ∈ Bp.
The sequence of trial probabilities is Bp –an ordered list from large
to small of probabilities of success. In each trial we select a binary
matrix, URN , by drawing RN uniformly distributed values in the
range (0, 1) and comparing them with the current probability of suc-
cess, p. We generate a matrix of quantization functions by replacing
the ceil function d·e in our quantizer with a floor function b·c accord-
ing to URN . We evaluate if the matrix of quantizers has decreased or
increased the objective by comparing the new factorization with its
previous value Dt−1. The process is stopped once the first suitable
quantization function is found, the quantization steps are updated
(using Eqn. 8) and normalized so that they sum to one. In sum-
mary, each IMF iteration applies (Eqn. 2); it then quantizes H using
Tab. 1; it applies (Eqn. 3); and finally, it quantizes W using Tab. 1.
Four variants of this approach are evaluated: 1) we call the floor/ceil

Table 1. Randomized Quantization Functions
for p = Bp

for k=1:No ptrials
i = URN > p;
Ĥ = ddiag(1�∆h)H + .5e, A = bdiag(1�∆h)H − .5c
Ĥ(i) = A(i)

H′ = diag(∆h)Ĥ + eps

if D(V ||Ŵ diag(∆w)H′) < Dt−1

break
end, end, end

H = diag(∆h)Ĥ + eps; update ∆h, normalize ∆h = ∆h/1
T
R∆h

based quantization variants “floorfix” and “flooradapt”. The postfix
“adapt” indicates that the quantization step-sizes are adapted. For
the purpose of comparison we also evaluate the cases where ∆h is
initialized randomly and not updated by IMF to evaluate the effect of
the ∆h and ∆w updates. This gives rise to the postfix “fix”; 2) in an-
other pair of variants of the algorithm “roundfix” and “roundadapt”
we use the round function instead of floor, and randomly round-up
or down depending on the effect on the objective function using the
scheme in Tab. 1. In general the number of Bernoulli trials required
for the adaptive quantization IMFs is less than the number of trials
required for the fixed quantization variants. This is because the quan-
tizers converge as the factors converge. Bernoulli trials are typically
only required during the first 1-5 iterations of IMF. In effect these
trials select the initialization for the factors of IMF; once a good set
of initial factors is found, the number of trials drops-off dramatically.

3.2. Parsing - Sequence of Integers Generator

Once IMF has converged, we generate a sequence of integers by
re-arranging the factors. Decoding is exact and is achieved by re-
versing these steps. Depending on the dimensions of the factors, e.g.
M,N,R it may be more computationally efficient to 1) generate a
column or row vector sequence (depending on row or column major
ordering) and 2) to transpose the H matrix instead of the W matrix.
We assume that N �M . Parsing is performed as follows.
1) Concatenate the columns of the factor Ŵ and take the transpose
of the concatenated vector to generate a sequence

W = [Ŵ (:, 1)T |Ŵ (:, 2)T | . . . |Ŵ (:, R)T ] (10)



2) Concatenate the rows of the factor Ĥ to generate H ,

H = [Ĥ(1, :)|Ĥ(2, :)| . . . |Ĥ(R, :)] (11)

3) Generate the sequence of integers, S, by concatenating the se-
quences, W and H , the dimensionality parameters and quantization
step-sizes ∆w and ∆h (which are real-valued)

S = M |R|N |W |H|∆w|∆h. (12)

We drop vector notation from here on for convenience.

3.3. Encoder - Sequential Data Compression

For completeness we describe a derivative of the well-known LZ77
scheme [2]. IMF generates the factors Ŵ ∈ IM×R and Ĥ ∈
IR×N , where I ⊆ {1, 2, . . .max{[Ŵ T |Ĥ]}}. These factor ma-
trices are then parsed into S in (Eqn. 12). A sub-string of S, which
starts at position i and ends at position j, is denoted S(i, j). The
length of a string is `(S). The sub-sequence S(1, j) is called a
proper prefix of S if 1 ≤ j < `(S). Given a proper prefix S(1, j) of
S and a positive integer i such that i ≤ j , L(i) denotes the longest
match, the largest nonnegative integer ` ≤ `(S)− j such that

S(i, i+ `− 1) = S(j + 1, j + `). (13)

The position for which L(s) = max1≤i≤j L(i) is denoted by s. In
Fig. 2 we define a look-ahead buffer of length Ls = 4 and a dictio-
nary of length 6. Fig. 2 illustrates the sequence encoding in terms
of the relative position, the length of the match, and the next integer,
in a triple which is listed on the RHS. These triples are radix-|I| en-
coded. The grey integers (raised to the power of star) are the next
integers after the encoded sequence. The LZ77 algorithm performs
the following iteration: 1) find the position of the longest match in
the dictionary (blue) with the the look-ahead buffer (red, including
the grey integer) relative to the cursor j; find the length of the longest
match L(s); record the triple (the relative position, L(s), and the
next integer) encoding them in radix-|I|. These triples are given
along-side the rows in Fig. 2. Advance the cursor by L(s) + 1 sym-
bols and repeat. The dictionary is initially empty which is why the
topmost triple starts with a (·, 0, 1) entry.

Gzip, the compression algorithm we employ, has additional op-
timizations over the scheme above. Firstly, it Huffman codes the
position, length and next integers triples. Secondly, it is non-greedy.
It uses shorter matches so that next match is better. And thirdly, it
uses a hash table to store the dictionary. The IMF-parsing-encoding
scheme works well because gzip adapts well to changes in the integer
sequence which arise because the different columns and rows of Ŵ
and Ĥ have different statistics. Modern gzip codes use probability
coding as a second pass and compress much better.

4. NUMERICAL EVALUATION

We numerically evaluate the compression ratios achieved and the
distortion introduced by IMF using two standard test images, Bar-
bara and Peppers. We vectorize 8 × 8 blocks of the images. We
arrange them in the columns of V and perform IMF over the range
of ranks 10 ≤ R ≤ 60 in steps of 5. We perform 50 Monte Carlo
runs for each parametrization and tabulate the average SNRs and
file-sizes for each IMF variant and parametrization in Tab. 2 and 3.
The precision of the results is reduced here to save space. Each IMF
runs for 500 iterations. We use gzip’s default compression level -6
(that is, biased towards high compression at the expense of speed)

1∗ 1 3 1 1 3 1 2 3 1 2 1 1 1 3 7→ (·, 0, 1)
Look ahead

1 1 3∗ 1 1 3 1 2 3 1 2 1 1 1 3 7→ (1, 1, 3)

Look ahead

1 1 3 1 1 3 1 2∗ 3 1 2 1 1 1 3 7→ (3, 4, 2)

Look aheadDictionary

1 1 3 1 1 3 1 2 3 1 2 1∗ 1 1 3 7→ (3, 3, 1)

Look aheadDictionary

1 1 3 1 1 3 1 2 3 1 2 1 1 1 3∗ 7→ (1, 2, 3)

Look aheadDictionary

Fig. 2. Illustration of the sequence encoding scheme for S.

for all algorithms. As an aside, the maximum possible compression
level is -9. Each run converges to a good solution, e.g. each factor-
ization’s SNR is within (1-3dB) of Lee-Seung’s NMF. We attribute
this (1-3dB) to the error introduced by quantization. We do not per-
form analysis of the convergence of IMF here, save to mention that
> 90% of the trials for each parametrization are within< 1dB of the
mean SNR. This empirically supports the claim that IMF converges
to a good solution and that the inaccuracy is due to quantization er-
ror. “flooradapt” IMF (rows 7-8) gives the best SNR (row 8) and
compression file-size in kB (row 7) trade-off for both images of the
IMF variants. Row 9 gives the file-size for uncompressed NMF and
the rounded factor by which it is greater than “flooradapt” IMF in
brackets. Row 10 gives the file-size for traditional NMF when it
has been gzipped (and the rounded factor by which it is greater than
“flooradapt” IMF in brackets). The SNR for NMF is listed in row 11
so that we have a benchmark accuracy score to compare IMF with.
“flooradapt” IMF storage is 17-19 times more efficient than tradi-
tional uncompressed NMF. It is 7-9 times more efficient than NMF
which has been gzipped. This storage gain is achieved by only de-
grading the SNR by 5-10%. Both images yield similar results when
the results of 50 trials are averaged. This underlines the claim that
the algorithms converge and compress accurately.

5. DISCUSSION

In terms of the relevance of this work to the MLSP community, steps
1 and 2 above describe a new approach for NMF. IMF’s components
are drawn from a finite integer alphabet. Steps 3 and 4 consist of the
application of Lempel-Ziv-type data compression algorithm to NMF.
We do not claim to have significantly advanced the state-of-the-art
of universal algorithms for sequential data compression; however,
we have demonstrated how to reformulate an increasingly prevalent
factorization, such that it readily admits to one of the most pervasive
sequential data compression techniques, e.g. gzip, which is based
on [2]. Alternative compression routines include 7-zip, bzip2, zip,
zlib, gif and compress on unix (based on [21]). The storage sav-
ings demonstrated above are undoubtedly of crucial importance to
the MLSP community. Taken as a whole, steps 1-4 are new and
facilitate more efficient storage of NMF without introducing signif-
icant distortion. IMF makes the efficient storage of NMFs possible.
In terms of the likely adoption of these ideas, there is a strong argu-
ment to be made for the need for improving the storage of NMF in
the areas of 1) Text mining: Topic Modeling; Document Clustering;
Topic detection and trend tracking, email analysis. 2) Image analy-
sis and computer vision: Feature representation and sparse coding;
Video tracking. 3) Social Network Analysis: Community structure
and trend detection; Recommendation systems. 4) Acoustic Signal



Table 2. Barbara: Mean Filesize and SNR (dB) vs R. Rounded compression ratios are in brackets.
R 10 15 20 25 30 35 40 45 50 55 60
roundrand (kB) 42.21 64.89 88.31 112.48 137.74 160.01 186.17 211.03 236.31 262.56 287.29
SNR (dB) 16.69 17.54 18.38 19.23 19.98 20.65 21.39 22.08 22.67 23.27 23.86
roundadapt (kB) 40.87 63.36 86.66 110.59 134.69 157.70 183.37 207.85 232.64 258.58 283.40
SNR (dB) 17.10 17.93 18.85 19.82 20.54 21.15 21.96 22.67 23.22 23.82 24.36
floorrand (kB) 43.24 67.61 92.86 119.10 145.90 171.23 199.69 227.00 254.99 283.66 311.58
SNR (dB) 18.34 19.58 20.78 21.91 22.92 23.93 24.80 25.49 26.09 26.66 27.21
flooradapt (kB) 42.79 66.71 91.52 117.82 143.92 169.80 198.19 225.67 253.41 282.04 309.97
SNR (dB) 18.61 19.85 21.10 22.28 23.31 24.32 25.23 25.92 26.53 27.07 27.58
NMF(kB) 759(18) 1150(17) 1548(17) 1951(17) 2360(16) 2770(16) 3179(16) 3587(16) 3996(16) 4406(16) 4814(16)
NMF-gzip(kB) 357.6(8) 539.4(8) 724.4(8) 910.3(8) 1099.4(8) 1287.4(8) 1474.9(7) 1661.5(7) 1848.6(7) 2035.1(7) 2219.9(7)
SNR (dB) NMF 19.6 21.1 22.5 24.1 25.1 26.1 27.0 28.0 28.6 29.2 30.0

Table 3. Peppers: Mean Filesize and SNR (dB) vs R. Rounded compression ratios are in brackets.
R 10 15 20 25 30 35 40 45 50 55 60
roundrand (kB) 41.42 62.23 84.01 106.80 131.31 155.45 176.95 200.93 220.54 251.04 272.32
SNR (dB) 18.98 19.77 20.81 21.39 22.30 22.96 22.95 23.21 23.53 24.13 24.35
roundadapt (kB) 39.90 60.59 82.67 105.81 129.09 153.93 175.47 198.59 219.85 249.28 270.99
SNR (dB) 19.62 20.05 21.12 21.62 22.54 23.32 23.25 23.40 23.66 24.36 24.58
floorrand (kB) 41.70 63.37 87.25 110.98 137.81 164.20 187.59 214.47 239.68 271.07 297.69
SNR (dB) 21.14 22.15 22.94 23.45 24.23 24.73 24.80 25.07 25.32 25.78 25.90
flooradapt (kB) 41.19 62.62 86.42 110.19 136.73 165.63 187.45 213.67 240.23 272.17 297.49
SNR (dB) 21.37 22.13 22.82 23.34 24.11 24.69 24.71 24.90 25.14 25.67 25.76
NMF(kB) 766(19) 1161(19) 1560(18) 1962(18) 2370(17) 2780(17) 3192(17) 3603(17) 4015(17) 4427(16) 4838(16)
NMF-gzip(kB) 361(9) 545(9) 731(8) 918(8) 1106(8) 1295(8) 1484(8) 1673(8) 1862(8) 2050(8) 2239(8)
SNR (dB) NMF 23.8 25.1 25.9 26.3 26.9 27.2 27.6 27.9 28.1 28.4 28.7

Processing and Blind source Separation. 5) Financial Data Analysis.
In each of these areas logging of the learned factors provides the ba-
sis for each of these tasks. If hard-disk space is the limitation, larger
dictionaries of factors can be saved in a (social network) task if the
underlying dictionaries are compressed as part of the learning algo-
rithm. In addition, when memory is the limiting constraint, steps 3-4
can be interspersed with the factor updates during run time. Given
this explosion of NMF application areas, we believe that our contri-
bution is timely and important as it may provide a crucial stepping-
stone towards the application of NMF as a Big-data factorization.

Towards improving the encoding: We have investigated tak-
ing a pairwise-difference of the integer sequence S to improve com-
pression; however, the resulting compression ratios were inferior. In
terms of the limitations of the approach, the compression routine
processes the vectors ∆w and ∆h which are generally non-integer.
Placing ∆w and ∆h at the end of S does not introduce non-integers
into the compression dictionary. One potential improvement of IMF
would be the ability to specify the symbols set cardinality a priori.
The current embodiment of IMF is unconstrained but tends to find a
small cardinality. We will consider these questions in future work,
along with establishing the necessary and sufficient conditions for
unique IMF. We will also consider optimizing the LZ routine used to
compress IMF. We have not fully explored the range of off-the-shelf
gzip’s parameters. Moreover, better compression has been reported
using more modern LZ routines, for example 7zip.

6. CONCLUSIONS

We conclude that a 18:1 compression ratio of the results of a NMF is
possible if the factors are restricted to a finite integer symbol set. Re-
stricting the factors to an integer symbol set only incurs a distortion
of 5-10% of the original NMF’s average SNR, typically 1-3dB. In
many applications NMF basis functions are a crucial building-block
for subsequent processing. We have demonstrated how to learn these
functions so that they can be stored more efficiently. IMF is a mem-
ber of the NMF family of solutions; we present multiplicative up-
dates similar to those of NMF. In future work we will consider the
extension of IMF to different problem domains and the effect of IMF

on domain specific perceptual measures.
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