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Abstract—Measurement of the globality of On-Line Transac-
tion Processing (OLTP) workloads in Enterprise Data Centers
is considered. Providing OLTP workload isolation (application,
services and databases) for performance-sensitive enterprise
workloads, so that activity in one workload cannot interfere with
another, remains a challenge. We demonstrate that traditional
aggregate OLTP Workload globality measurement frameworks
can generate mis-leading globality measures. We propose a
higher-order globality measurement framework which addresses
this problem. We derive two high dimensional structured mea-
surement matrices, namely a template and measurand matrix,
with special spectral properties, which account for globality mea-
surement 1) boundedness; 2) programmability; 3) multiplicity; 4)
relativity; 5) spatial correlation and 6) the appropriate sensitivity
of the measure to changes in the distribution of the workload.
We demonstrate that these properties are exhibited by the new
measure by ordering OLTP workloads by their globality measure.
We evaluate the measure using a stochastic layered block model
for data center topology and OLTP workload generation and
demonstrate that it is consistent.

I. INTRODUCTION

Cloud networking promises cost-efficient and reliable ser-
vice delivery across data communications networks [1]. The
location of services and the potential of virtualization of
hardware [2] and software is stressing communication network
and protocols [3]. The computing aspects of cloud technologies
are steadily advancing; however, until recently lower attention
has been paid to the networking aspects of this problem,
e.g. monitoring [4] and service level prediction [5]. A crucial
design goal is to localize or isolate workloads in modern data-
centers. We address the problem of measuring the globality,
the extent of localization, of On-Line Transaction Processing
(OLTP) workloads in Enterprise Data-Centers (EDC).

Real-world scenario: The increasing emphasis on elasticity
and flexibility, driven in part by affordability constraints, is
causing EDCs to evolve. However, due to legacy design issues,
messaging between different layers of an EDC is unavoidable
in many current EDC deployments [6]. The advent of Software
Defined Networking (SDN), exemplified by Meridian [7],
promises gains in the programmability of EDC Networking,
which may give rise to successful strategies for service and
database-entry migration. But a major stumbling block is
to quantify “how much” the workload globality has been
improved. Consider the case of Amadeus SAS who are the
leading service provider to the travel industry. Amadeus op-
erates all software out of its fully-instrumented (which makes
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off-line reconstruction of OLTP traces and this study possible,
cf. Section II) EDC as a community solution, sharing hardware
and software for all clients using a given product. Examples
of OLTP workloads include the ordered sequence/tree of
potentially hundreds of messages invoking data-base queries
and other subsystems, residing on hundreds of machines in
different domains in a large EDC, involved in flight bookings,
payment and management etc. One of the many challenges in
this scenario is to provide very high numbers of transactional
flows, without scheduled downtime, for critical applications
(such as airport operations). Globally the Amadeus EDC is hit
by > 105 transactions-per-second (tps), running many complex
stateful transactions. Resource management and careful design
of system topologies is of the highest importance in order
to build commercially viable, highly available systems. SDN
technologies offer one solution. However, frameworks for
measuring the level of improvement that may be garnered by
SDN do not exist. The case for SDN would be considerably en-
hanced if a demonstrable reduction in the globality of workload
in an operational EDC could be measured, and comparison
of many measurements be performed in a consistent way.
The globality measure of reconstructed OLTP traces is a key
indicator of EDC performance and may be computed using the
traces, sequence of machines, services and switches visited.

At the heart of globality measurement lies the notion that
EDCs and the OLTP workload they support should submit
to an ordering (from low globality to high globality), and
that future SDN enabled solutions should aim to achieve
a low globality. This ordering should induce a globality
measure which provides a consistent mapping from the high
dimensional space of EDC and OLTP statistics (arising from
> 105 tps) to the real number line, between 0 and 1, where
0 indicates locality and 1 indicates globality. We propose a
set of properties a consistent globality metric should have
for the types of OLTP workload Amadeus support. Then we
provide a measurement algorithm which satisfies many of
these properties. In short, we provide a consistent method for
measuring the globality of OLTP workloads on EDCs.

Globality vs Centrality: We exploit the spectral properties of
trees [8]. EDC OLTP globality measurement provides a fresh
application domain for many of these techniques. Centrality
identifies the most important vertices in a graph. Popular
approaches include: Degree Centrality [9] (the number of
links incident on a node); Closeness centrality (the more
central a node is, the lower its total distance to all other
nodes); Freedman’s Betweenness Centrality [10] (quantifies
the number of times a node acts as a bridge along the shortest
path between two nodes); Eigenvector Centrality [11] (exploits
the idea that connections to high-scoring nodes contribute
more to the score of the node than connections to low-scoring



nodes); and so on. In general, a centrality measure that is
optimal for one application is sub-optimal for another, which
gives rise to a myriad of definitions [9]. To measure globality
of EDC OLTP workloads we need a centrality-like measure
that allows us to specify that the use of certain vertices and
edges in a graph is more costly than other vertices and
edges. Specifically, (1) we need to be able to define where the
core (and other layers) of the EDC lie(s) in the graph, and (2)
that the usage of core (and other selected) links is undesirable.
To this end, we extend the notion of centrality, and call this new
measure globality. Globality is measured using a template and
a measurand matrix, which capture the cost of using different
network resources. The centrality measures listed above do
not provide this flexibility. Globality measurement gives a
good indicator, from the operational analytics perspective
[12], of the extent of a work-flow’s coverage of the EDC.
For hypothesis testing and failure scenario simulation [13],
it provides a performance metric for the resilience of the
EDC. The ability to measure the globality of OLTP work-
load provides a crucial step towards predicting failure scenarios
using Machine Learning [14], [15].

Contributions: We introduce a 1) matrix-structure for encap-
sulating OLTP/EDC statistics which are suitable for globality
measurement; 2) framework of properties for comparing glob-
ality measures. These properties are of independent interest
because as the needs of EDCs change, so will globality
measures. These properties may form the basis for globality
measurement of future applications. 3) We introduce an algo-
rithm for computing relative globality measures. This paper
does not report on an evaluation of the new globality measure
using real traces from Amadeus’ EDC because: 1) this EDC
generates 105 tps and thus the results from the 100 significant
OLTP traces, in terms of impact on the globality of the EDC’s
OLTP, occurring in a 5 minute sampling period would be lost
in the noise of presenting the results for all of the transactions
occurring in a 5 minute interval; 2) the aim of this paper
is to introduce a new globality measure and to demonstrate
that other measures are in-appropriate and when this is the
case. We present a number of these cases here, in a simplified
form. In Section II we describe previous work on OLTP-
EDC cross-layer modeling. In Section III we describe the test
topology used for our model. In Section IV we review an
aggregate globality measurement framework. We define global
and local workloads and give examples of OLTP workload
types. Section V describes the matrices used for higher-order
globality measurement and Section VI evaluates them.

II. RELATED WORK

Globality measurement has been examined before in [16]
although the authors of [17] note that the lack of publicly
available traces has hampered progress for EDC OLTP work-
loads. EDC OLTP workloads of Amadeus’ form are unique
and are not publically available due to the correlation between
high globality and commercially sensitive OLTP delay. Traces
arising from Map-Reduce-like [18] workloads are not suitable
substitutes for performance evaluation here as EDC OLTP
workloads generally consist of many small tree-like data
transfers as opposed to a few large data transfers. Traditional
methods measure globality in an aggregated way –we show
that important correlation behaviour may be lost and also that
existing methods may not be sensitive enough with respect to

the OLTP and EDC being measured. In other words, if two
workloads are to be compared, does one aspect of one work-
load unfairly impact the globality measure over measurement
of the second workload?

This work is underpinned by a Cross-layer Performance
Analysis (CPA) system, [16], that fuses and analyzes trace data
collected from multiple levels of the software stack in an op-
erational EDC. Data was collected from Amadeus’ production
EDC in [16]. CPA was used to assess how a topology-aware
load balancing procedure, coupled with carefully assigned
VLANs [19], could eliminate most of the unnecessary OLTP
network traffic in the EDC. We go significantly beyond this
as we address the question of how to measure the globality of
OLTP traffic, given the CPA system in [16] and an exemplar
EDC architecture (which is based on an architecture which
is prevalent in most of today’s EDCs [20]). EDC network,
Enterprise Service Bus (ESB) and application state discovery,
e.g. connectivity information, node configuration such as IP
and MAC addresses and VLAN membership, is not described
here. We refer the reader to [16] for information about the
time taken to construct OLTPs. In summary, the CPA system
consists of an EDC topology model which is enriched with
information about the application and ESB placement. A
hierarchical structure consisting of transaction trees, transac-
tions, messages and host-to-host hops is used to capture the
OLTP workload. This data-set is queried using a MapReduce
framework. We assume that the network paths between two
hosts has be inferred using [16], along with other topology
and configuration queries and we focus on measurement.

OLTP globality measurement is not directly applicable to
Cloud Data Centers (CDC). Software Oriented Architecture
(SOA) EDCs carry three types of traffic: OLTP, which is
typically the main source of traffic; Batch, which arises from
applications such as MapReduce; and File Distribution, which
arises due to running updates for all machines of a certain
type. CDCs are typically designed for batch-like workloads
[6]. Typical OLTP workloads stress the EDC with many small
transactions as opposed to the fewer larger tasks found on
CDC. This claim is supported by examining some Google
traces [21]. Recent work on optimizing Virtual Machine (VM)
fairness by modeling data-center bandwidth allocation as a
cooperative game does not explicitly consider the problem of
reducing the number of packets that traverse the core [22].

What causes global OLTPs? In many cases global transac-
tion trees can be attributed to the multi-layer network architec-
ture of traditional EDCs [6]. This conclusion is supported in
[23]. Many previous studies of data center traffic have focused
on CDCs [24], [25], [26], [27], [28], batch-like MapReduce
workloads, and not OLTP workloads. Globality of OLTP
workloads is important as many companies maintain OLTP
oriented EDCs and are unwilling to move their workload to
the cloud due to cost, privacy and security reasons. The lack
of publically available EDC OLTP traces is another factor that
contributes to the under-representation of OLTP workloads
in these studies [17]. The results presented in this paper
were generated by constructing OLTP workloads using TPC-
C’s OLTP-like workload generating models [29]. The TPC-
C benchmark is a popular yardstick for comparing OLTP
performance on various hardware and software configurations
[30], [31]. We generalize the TPC-C benchmark and Stochastic



Fig. 1. A simple symmetric EDC topology is illustrated. Numbers indicate
graph vertices, which represent switches, web-servers, application-servers in
the EDC. This figure also illustrates that the aggregate usage of the EDC is
sub-optimal. Dark colors and thick links illustrate that the traffic is heavy on
certain links ({1, 3},{1, 2},{3, 13} etc.), and that this traffic causes OLTP
workload to traverse the core of the EDC.[Color figure is available.]

Block-model in [32] and introduce a Simple Stochastic Layered
Block Model for Data Center topology and OLTP workload
Creation (SSLBMDC) which allows us to generate ensembles
of workloads that traverse the core with a tunable probability,
and thus we can thoroughly evaluate our globality measure.
Globality measurement is important: HDFS was designed with
rack-awareness in mind [33] to reduce traffic on higher level
switches; topology aware load balancing procedures have been
designed for peer-to-peer networks [34]. Machine placement
has been identified [6] as a crucial factor in ensuring that the
sum of traffic does not saturate any links.

III. SYSTEM MODEL

Our EDC topology data-set is represented as an unoriented
graph G = (V,E) where V is the set of vertices in the graph,
for example a switch, (web-) server, application server, En-
terprise Service Bus (ESB), middle-ware machine, mainframe
machine and data-base machine. There are N vertices (ma-
chines/servers) in the graph (EDC). Communication between
this set of vertices is captured by the set of edges, E, for
example, the path between two hosts. The bandwidth usage of
each edge is typically determined by the set of ESBs, which is
the primary source of network traffic. In Fig. 1 N = 85, and
the set of nodes {1, 2, 3, 4, 5} corresponds to the Core, DMZ,
MainFrame, WAN and Production switches. The remaining
nodes are applications, access switches etc.

Problem: Given the plurality of machines involved in a
single root request, it is likely that some of the machines
required to process the transaction are located in different
layer-2 network domains. This is further exacerbated by the
fact that most current EDCs employ VLANs [19] to fragment
physical layer 2 domains into several mutually isolated layer-2
domains. Further fragmentation is achieved by Private VLANs
[35]. This scenario is undesirable. EDC managers would prefer
that workloads are isolated within separate partitions of the
graph G. The goal of this paper is to measure the globality of
OLTP workload; the extent to which workload spans different
partitions. We develop the ability to quantify the dependencies
between OLTP workload and the physical EDC it is running

on. From the perspective of workload isolation, the underlying
problem is the hierarchical nature of the EDC.

Architecture: The first layer of the hierarchy of our exemplar
EDC consists of a central core switch and four distribution
switches, production (PRD), DMZ, Mainframe and WAN.
They form a layer-3 network and are connected by a set of
edges. The next layer of the hierarchy consists of layer-2
links. For example, the PRD switch is connected with access
switches, each with some number of ports. Finally, the layer-2
network is sub-divided into a two-levels. On the first level are
the devices directly connected to the access switches, i.e. blade
switches, VMWare virtual switches and some machines [36],
[37]. On the second level are the machines that are connected
through the blade or virtual switches to the access layer.

EDC Tree: A Tree T in the EDC is an undirected graph in
which any two vertices are connected by exactly one simple
path. Any connected graph without simple cycles is a tree.
Many distribution switches have the ability to compute trees
to aid routing etc. The EDC can therefore be modelled as
a family of overlaid trees Tk = (Vk, Ek) where the index k
denotes the unique identifier of the tree. This family is denoted

T = {Tk|Vk ⊆ V and Ek ⊆ E, k = 1, 2, . . .K} (1)

Fig. 1 has one unique tree that traverses all nodes K = 1.

OLTP Overlay: A transaction tree Wl, indexed by l, repre-
sents an ordered set of messages which are spawned by a client
request. Similar to the EDC, it consists of a set of machines
M ⊆ V which are traversed by the transaction tree, and a
set of edges P ⊆ E which are traversed, Wl = (Ml, Pl).
The cardinality of the set of machines traversed is denoted L.
The number of messages in a tree is Tl. From a measurement
perspective the EDC is effectively a set of trees T ; and OLTP
traffic can be viewed as a tree which is overlaid onto the EDC
underlay. This dependence is made explicit: each transaction
tree is supported by a member of the set T .

∃Tk such that Wl ⊆ Tk =⇒ M ⊆ Vk, P ⊆ Ek (2)

This is sensible as Wl would not have existed had the under-
lying substrate Tk not existed to support this workload. This
implies that given some globality function g(·) which takes
as its input an OLTP workload and EDC we can compute the
set of conditional globality scores g(Wl|Tk). In other words,
the globality of the workload tree Wl given Tk where Tk has
the property that Wl ⊆ Tk. Moreover, we are interested in the
worst-case globality score, and thus, we compute

g(Wl|G) = max
k

g(Wl|Tk). (3)

IV. GLOBALITY MEASUREMENT

We discuss aggregated globality measurement and intro-
duce a higher dimensional measure. We define global and local
workloads using examples.

A. Aggregate Measurement Framework

The EDC in Fig. 1 consists of access-to-access (aa),
distribution-to-access (da) and distribution-to-core (dc) links.
Each transaction tree Wl may be characterized by the contri-
bution its messages make to these three types of links. The
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Fig. 2. If one dc or da is used in a transaction tree, how many aa do
we need to achieve a low globality, g(Wl) = 0.1? For a globality measure
g(Wl) = 0.1 the number of aa links required in a transaction tree is ≈ 200.
For a globality measure g(Wl) = 0.2 the number of aa required is 100.
Although the globality measure takes values in the range 0 < g(Wl) < 1, da
and dc links unfairly dominate the measure.

Weighted Good-put contributed by the transaction tree Wl is
computed as follows for each type of link λ = {aa, da, dc}.

wλ =
∑
t

stα̂λδ(t, λ) (4)

The parameter α̂λ is the Over Subscription Ratio (OSR) [38]
for link type λ ∈ {aa, da, dc}, st is the message size in bytes,
and δ(t, λ) is an indicator function which equals 1 if the t-
th message was sent over link type λ. We compute this sum
over the ordered messages t in the transaction tree Wl for all
λ. The role of α̂λ is to build the notion that different layers
have different costs associated with them into the globality
measure, for example, OSR. Cisco recommend in [38] that da
links are typically oversubscribed by 20:1 and that the dc links
are oversubscribed by 4:1. In [16] relative (to the access layer)
OSRs are computed: the da layers are typically oversubscribed
by 20:1 and the dc layers are oversubscribed by 80:1. An
aggregate globality measure, g : <3 7→ <1, of OLTP Wl is

g(Wl) =
wda + wdc

waa + wda + wdc
. (5)

Remark: This measure is reasonable because a transaction tree
that predominantly traverses dc and da links has a globality
g(Wl) ≈ 1. We make the following observations: 1) The
measure is EDC independent. The aggregates of three terms
{waa, wda, wdc} are used to evaluate globality. This triple may
assume many values and give the same globality score. 2) The
sensitivity of the score is heavily reliant on the dominant term
in the triple. If OSRs are used α̂dc � α̂da � α̂aa and thus
in g(Wl) the relation waa � wda and waa � wdc holds. If
transaction tree Wl has one dc or da link, most transaction trees
evaluated using this measure will give a high globality score
g(Wl) ≈ 1. This is because the numerator is normalized by the
sum waa+wda+wdc to ensure that the measure is not adversely
affected by comparing transaction trees of different lengths.
Aggregate globality scores are likely to be un-informative.

B. Properties of Global OLTP

Sensitivity: Fig. 2 demonstrates that for any practical EDC,
any transaction tree with a da or dc link will be global
according to (Eqn. 5). This is because hundreds of aa links
are required to balance-out the measure to get g(Wl) ≈ .1.
It is unreasonable to assume that transactions trees will have
enough aa links in order counteract the effects of the da and
dc links. Indeed, many existing EDCs will have a number of
da links. We formalize the description of these problems by
introducing a set of properties. They include correlation and
balance, behavior which is lost by the triplet used above. What
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Fig. 3. Workload-type illustrations: The presence of traffic is illustrated by
an edge on the graphs, and a positive entry in the adjacency matrices on
the RHS. Thick dark (grey-black) links indicate that the load is heavy. Large
vertex sizes indicate that the weighted degree (by the number of incoming
messages) of the vertex is large.

is required is a structure that accounts for the higher order
dependencies: correlation between the usage of links (used or
not used); relative usage of links (to the worst OLTP workload
scenario); locality of EDC usage; and finally, cognizance of
the symmetries in EDC usage (correctly determines if two
scenarios are symmetric or mirrored versions of each other).

Structure: Many of the symmetry and correlation issues are
addressed by considering the adjacency matrices of the EDC
tree set T . We denote the adjacency matrix of the EDC’s k-th
tree, A(Tk). Pairs of the vertices of Tk are assigned a weight
ai,j with the properties ai,j = aj,i; ai,j 6= 0, if and only if i, j
are adjacent in Tk; ai,j ≥ 0 if i, j ∈ Vk the vertex set of V . The
degree of a vertex in the EDC’s k-th tree is d(vi) =

∑
i ai,j .

A diagonal matrix composed by placing these degrees along
the diagonal is denoted D(Tk). We introduce the properties,
p1-5, a globality measure g(W|T ) should have, where W is
the family of transaction trees in the workload under test and
T is the EDC. The Laplacian of the k-th tree is defined as

Lk = L(Tk) = D(Tk)−A(Tk). (6)

p1 Bounded: g(W|T ) should lie in a bounded interval

0 ≤ g(W|T ) ≤ 1. (7)

It is important that a globality measure is just one number
as opposed to a list of performance indicators because in
large-scale deployments this measure may well be commu-
nicated between different parts of an organization. A globality



g(W|T ) = 1 implies that the traffic is global. A measure
g(W|T ) = 0 implies that the workload is completely local.

p2 programmable: g(W|T ) should be amenable to different
parametrization. An example of a parametrization is the en-
coding of Cisco’s OSR into the measure, or the variation of
packet sizes, st, into the measure.

p3 0-multiplicity: globality measurement should be able to
indicate that there are up to N connected but isolated OLTP
work-flows in the EDC topology.

p4 relative: the EDC, G must be fixed if two different
measurements are to be compared. This claim is justified as
it is unlikely that two large organizations will have exactly
the same infrastructure. What is important is how globality
compares with previous measures on their EDC.

p5 spatial correlation: The globality measure must take into
account the spatial correlation of link usage in the EDC. In a
2-link EDC, if one transaction tree uses one link 99% of the
time, and the other link 1% of the time, the globality measure
should be able to distinguish between this workload and when
the usage is evenly balanced. Similarly, if there is a discrepancy
between message sizes, the measure should account for this.

C. Exemplar Workloads

Property 1 motivates the question, what is a completely
global transaction tree on an EDC? We define the properties of
a global OLTP workload. We then consider a set of workloads
where the number of messages (times message size st) sent
is the same for all, but the usage of links is non-uniform,
where uniformity is parametrized by σ, α ≥ 0. In each example
the number of messages is scaled to equal T . The adjacency
matrix of the l-th workload, A(Wl), is constructed by placing
a count of the usage of each link in the corresponding entries
of A(Wl), e.g. aij = aji = 4 if link ij is traversed 4 times by
a Wl, and aij = aji = 0 if ij is not traversed.

Global OLTP Workload: A global workloadW on the EDC
corresponds to an ensemble of transaction trees which are 1)
order-1 simple trees (one row or column of its adjacency matrix
has L − 1 non-zero entries), including the core switch; and
2) where all links are equally weighted –they have the same
weight (traffic) on each link from the core to the children
nodes, where the weight can be the portion of traffic T/(L−
1) on a link, the OSR, the bandwidth usage on a link, or
the multiplicity of messages on a link. 3) When A(Wl) ∈
{0, 1}, Wl is an order-1 simple tree with L − 1 links. The
corresponding eigenvalues of its Laplacian are λ1 = L, λ2 =
. . . = λL−1 = 1 and λN = 0. 4) Kirchhoff’s matrix tree
theorem gives the number of trees in this workload as: K =
1
Lλ1λ2 . . . λL−1 = L/L = 1. 5) The fact that λL−1 = 1
implies that the workload is connected. Fig. 3, row 1, illustrates
the link usage (LHS) and workload adjacency matrix (RHS).
When the traffic is fixed for all order-1 Wl, but the number
of vertices used by the workload (L) changes, the maximum
globality is when L = 2. Globality decreases as L increases.

Local OLTP Workload: A local L-vertex workload W has
no entries in the adjacency matrix between the core and the
distribution switches. The number of trees in this graph is K =
L (cf. Fig. 3, row 2.). The number of messages in this case is
0 and not T (for illustration purposes).

TABLE I. ALGORITHM FOR COMPUTING WORKLOAD GLOBALITY

1. Normalize workload: C = 2(c− 1) C∑
ij Cij

2. Add workload to template: Ĉ = T (Tk) + C

3. Normalize to sum-to-one: C̄ = Ĉ
4(c−1)

4. Compute largest eigenvalue of the Laplacian of C̄: g = maxk g(Wl|Tk)

Bag-of-Links
-&-Vertices

Unstructured Structured Measurand Matrix

OSR Structured Template Matrix

+
+

= =
Ordered OLTP traces from 0-1: High discriminative sensitivityLimited discriminative power

bounded

programmable

0-multiplicity

relative

spatial correlation

Fig. 4. The (LHS) aggregate globality approach is improved by considering
a structure Measurand and Template matrix (RHS box). The idea of an OSR
is generalized and encoded in a structured matrix form.

Nonuniform Workload: If the portion of messages on all links
from the distribution switches ({2, 3, 4, 5}) to the core ({1})
is not uniformly equal, G(W|T ) should be less than one. In
Fig. 3, row 3, a portion α

3 of the workload is subtracted from
links {1, 3}, {1, 4}, {1, 5} and added to link {1, 2} causing
imbalance in the workload when α > 0.

Workload Appendages: If the distribution switches
({2, 3, 4, 5}) receive messages from access switches, the
globality of the workload W should be less than one. In
Fig. 3, row 4, (1 − σ) workload is added to link {2, 6}
by subtracting some portion of workload from {1, 2}. The
globality should be less than zero for any value of α ≥ 0.

Centrality Measures do not Suffice: Consider the EDCs in
rows 3 and 4 of Fig. 3. The parameters α, σ are chosen such
that links {1, 2} and {1, 3} are heavily loaded compared to
the rest. Both graphs are trees; any node could be the root, the
center/core of the EDC. We know that the roles of vertices
1, 2 . . . 5 are to be the core and distribution switches, and the
usage of these links is costly. If node 6 was to be considered
the core switch by an (inappropriate) centrality measure –
the link {6, 2} is lightly loaded and less-costly to use than
{2, 1}– this would give a low globality score. In fact the score
should be high as the traffic from distribution switch, 2, to
the true core switch, 1, is costly. We desire a globality score
for the workload, which incorporates knowledge of the roles of
vertices 1, 2, . . . 5. Traditional centrality scores do not allow us
to assign varying importance to different nodes in the EDC. In
the next section we describe a globality score that allows us to
encode the locations of costly links. This measure is cognizant
of the fact that node 6 is not the core switch.

V. HIGHER ORDER GLOBALITY MEASUREMENT

We introduce our measurement algorithm and demonstrate
that it meets each of the properties above (p1-p5). To this end
we consider the properties of the weighted Laplacian of a tree.
We introduce two special matrix measurement structures, an
EDC template matrix and a workload measurand matrix, and
an associated theorem. The theorem leverages the properties
of the weighted Laplacian to bound the globality measure.
To give this measure context Fig. 4 illustrates how our work
extends previous measures. Instead of using the aggregate
measure (Eqn. 5), the indiscriminate bag-of-links-and-vertices
approach, we consider a structured measurand matrix which



gives us the five properties listed in Fig. 4. Fig. 4 also illustrates
that instead of considering the OSR on each link in isolation (in
a 1-dimensional way), we encode a similar concept in the form
of a structured (2-dimensional) Template matrix. This leads to
improved discriminate sensitivity –our new measure can detect
fine-scale differences. Our new measure is a higher order
globality measure as the structured template and measurand
matrices allow us to consider higher-dimensional relationships,
e.g. correlations, between vertices and edges of the workload.

Template: The template matrix is a special type of adjacency
matrix. Its role is to act like an irritation function: a large entry
in this matrix is used to encode the fact that the use of the
corresponding link in the EDC to support OLTP workload has
a high globality cost; a small entry encodes the fact that the use
of this link has a small cost. The template is programmable, in
the sense that we can pick-and-choose which links to penalize
the workload for using. It is more flexible than an OSR as
it allows us to encode spatial correlation behaviour (the OSR
does not). We use the topology in Fig. 1 as the EDC reference,
Tk, in a running example which demonstrates the construction
of the template. There is 1 core and 4 distribution vertices,
c = 1 + 4 = 5 and a total of N = 85 vertices in the topology.

Definition 1: The core and distribution sub-graph form a
star tree Sc = (Vc, Ec), a c-vertex sub-tree of the topology, e.g.
V5 = {1, 2, 3, 4, 5} and E5 = {{1, 2}, {1, 3}, {1, 4}, {1, 5}}.
In this sub-tree the c− 1 distribution vertices have 1 link. The
parameter c is crucial as it plays a role in normalizing the
workload; it depends on the selected template, in this case Sc.

Definition 2: The most global workload on this EDC is the
star tree S2, e.g. V2 includes node 1 and one other element of
V5, and the associated link E2 = {1, j} where j ∈ V5. The
entire transaction occurs on this link. Each of the c − 1 dis-
tribution vertices roots an access network sub-tree consisting
of γ = (N − c)/(c− 1) vertices. These sub-trees are denoted
Dd = (Vd ⊂ Vk, Ed ⊂ Ek and Ed 6⊆ Ek), for d = {2, 3, 4, 5}.

Definition 3: The template matrix for the k-th (K = 1, the
EDC topology here is a simple tree) EDC tree is constructed
by weighting the sub-tree links of the distribution vertices

T̄ (Tk) = A(Tk)−A(Sc) (8)

by β, where β > 0 but small, e.g. T̄ (Tk)β. We call this
process connecting the template. Connecting the template is
important as we want the first L − 1 eigenvalues of the
template plus measurand to be greater than zero. The core
to distribution links compensate for these small weights by
subtracting the sum of the weights in each sub-tree from the
associated distribution to core link

T (Tk) = T̄ (Tk)β − γβA(Sc) +A(Sc) (9)

We have formed a template adjacency matrix by using a global
sub-tree A(Sc) (cf. Fig. 3, row 1) and adding weighted (by
β ≈ 0) appendages for each of the sub-trees rooted by the
distribution vertices (similar to Fig. 3, row 4). The expression
for the template is easily generalized for unbalanced topologies
(where γd is the size of the sub-tree of each distribution
vertex). The choice of template is arbitrary, and therefore,
allows the user to program (cf. p2) the metric by selecting an
appropriate template/irritation function. We recommend that
for Tk, β is approximately machine precision.

TABLE II. NUMBER OF DIFFERENT DC LINKS SHARING THE OLTP
WORKLOAD (β = 10−6)

dc links used {1, 2} {1, 2}, {1, 3} {1, 2}, {1, 3}, {1, 4} {1, 2}, {1, 3}, {1, 4}, {1, 5}
g(Wl|T1) 1.00 0.89 0.86 0.84
g(Wl) 1 1 1 1

Connected: The template T (Tk) is a connected EDC. It is the
most global workload (for a given β > 0) with a nonzero
weight on each core-distribution link. All eigenvalues of
(Eqn. 9) are greater than zero save λN = 0. The purpose
of adding β weights is to ensure that N − 1 eigenvalues are
nonnegative so that when workloads are considered, lack of
connectivity does not adversely affect results, because the first
N − 1 eigenvalues are always positive when β > 0. The
template has large weights on all dc links and smaller weights
on all other links, which is analogous to the OSR weights.

Normalized: The sum of the template adjacency matrix is
1TT (Tk)1 = 2(c − 1), where 1 is a vector of ones. If we
scale the measurand weights so that the sum of its adjacency
matrix is 2(c−1) we compare normalized workloads and avoid
unfairly penalizing workloads due to the number of messages.

Measurand: Tab. I lists how to compute the workload global-
ity measure. The measurand is constructed from the adjacency
matrix of the OLTP workload Wl, and is denoted C = A(Wl).
The adjacency matrix records the counts of the numbers of
messages (they could be weighted by the message size st and
relative OSR α̂λ) that traversed link {ij} in the Cij = Cji en-
tries, e.g. Cij = equals the number messages on link {ij} ∈
Wl. This adjacency matrix is scaled to sum to 2(c − 1). The
crucial step is that we add the measurand to the template,
normalize the sum, and then compute its largest eigenvalue
λ1(·). This construction has a number of appealing properties.

Normalized and Positive semi-definite: The linear combi-
nation T (Tk) + C is normalized: 1T (Ĉ)1 = 4(c − 1). Both
L(T (Tk)) and L(C) are positive semi-definite (psd), their sum
is psd, which implies that λn ≥ 0,∀n. This is proved by
appealing to the positive semi-definiteness of Gram matrices.

Theorem 1. Globality Measurement of the OLTP workload
Wl, is performed by computing

g = max
k

g(Wl|Tk) = max
k

λ1(L(C̄))− λ1(L(C̄min))

λ1(L(C̄max))− λ1(L(C̄min))
.

(10)
This measure satisfies p1-5. C̄max and C̄min are derived by
setting C to equal the most global and most local workload,
e.g. a workload with all the traffic on one dc link, C = A(S2),
and all of the traffic equally shared between all links other than
the distribution-core links, C = T̄ (Tk), respectively.

VI. NUMERICAL EVALUATION

We compute the globality of a series of simple,
parametrized synthetic workloads, in (1a) and (1b), using the
examples in the previous sections. These first experiments
demonstrate that the measure works as expected on easily
verifiable small-scale traces. (1a) investigates how the balance
of traffic in the core affects the globality measure. (1b) inves-
tigates how distributing some of the dc traffic onto a da link
reduces the globality score of the workload. Our higher-order
measure outperforms (Eqn. 5). In (2a) we explore the dynamic



TABLE III. ORDERING INDEX, GLOBALITY OF A SUBSET OF THE
OLTP WORKLOAD PATHS (GIVEN A(S5)), CORRESPONDING PATH AND

THE GLOBALITY USING THE TEMPLATE B.

Sorted Transitions 1− 8 Sorted Transitions 9− 16
Ind. λ1|A(S5) Path λ1|B Ind. λ1|A(S5) Path λ1|B

1 1.00 1,5 0.825 884 0.41 32,8,2,1,3 0.356
8 1.00 3,1 0.825 1012 0.35 23,6,2,1 0.487

20 0.81 5,1,3 0.444 2548 0.33 36,9,2,1,3,13 0.335
52 0.58 15,4,1 0.444 2596 0.29 19,5,18 0.444

148 0.56 10,3,12 0.487 5668 0.27 63,16,4,1,2,6,23 0.279
180 0.53 19,5 0.394 5796 0.19 66,17,4 0.444
308 0.43 35,9 0.305 5988 0.14 28,7,27 0.444
500 0.42 13,3,1,2,6 0.356 6372 0.10 53,13,3,12 0.243

range of the globality measure. Our higher-order measure has
sufficient discriminative sensitivity to be able to sort all paths
between any two nodes in terms of their globality score (from
0 to 1). Some of the paths generated traverse the core of the
network; other paths are completely isolated in the access part
of the EDC; and finally, some paths are combinations of many
aa, da and dc messages. Can our globality score distinguish
between them? This test is important as the aggregate measure
(Eqn. 5) does not have sufficient discriminative power to do
this. Up to this point, we have used one template matrix, our
proxy for Cisco’s OSR, in our experiments. In (2b) we test how
changing the cost of using a link, its OSR, by considering a
new template matrix, changes the globality score of the same
traffic traces as in (2a). In a real deployment changing the
OSR in this fashion could correspond to the network manager
upgrading the value of certain links, in order to reduce the
vulnerability of the EDC to failure, for example. (3) We move
onto carefully generated large scale traces that reflect the usage
of Amadeus’ EDC and perform a statistical analysis of the
measure.

(1a) Core Star Cardinality (p1,p5): We measure the
globality of a set of parametrized global OLTP workloads,
where the parameters control the portion of the workload
messages that traverse a link. We encode OSRs, in these
experiments, in the template matrix. In the first case, these
OLTP workloads only traverse the dc links of the topology in
Fig. 1. This class of OLTPs is unfeasible in practice but useful
for evaluation purposes. The number of different dc links
traversed is changed in this experiment from 1 < c − 1 < 4.
For each c, the traffic is uniformly divided across the available
links and the adjacency matrix is appropriately scaled. Tab. II
illustrates that as the number of different dc links used to
support the work load increases the globality score g(Wl|T1)
is decreased. The measure in Eqn. 5 does not differentiate
between the number of different links used. The higher-order
matrix structure of g(Wl|T1) allows the globality measure to
distinguish between the correlation and relative usage of the
dc links (cf. Table II). The measure g(Wl|Tk) determines that
the usage of 1 dc link to support all of the workload, e.g.
C = A(S2) is more global than sharing the workload over
all 4 dc links, C = A(S5). Tab. II supports the claim made
by p1, g(Wl|Tk) is upper bounded by one. In addition p5
is supported by the fact that g(Wl|Tk) distinguishes between
different spatial correlations of the workload in Tab. II. In
conclusion, Tab. II demonstrates that the higher-order
structure of our globality measure gives the measure a
higher discriminative sensitivity than (Eqn. 5).

Fig. 5. OLTPS (blue lines), access, distribution and core network regions
(illustrated with circles of radius 1,2,3 etc), machines/servers (dots). The
globality measure (λ|B) for a subset of the OLTP workload paths using the
template B is indicated for each path.
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Fig. 6. σ = {.2, .4, .6, .8, 1} = square, otimes, triangle, diamond, star.

(1b) Appendages (p1,p5): In a second parametrization
(α, σ) of the workload, we examine the effects of allocat-
ing different portions of workload on the four dc links for
0 ≤ α ≤ 3 and one da link for 0 ≤ σ ≤ 1 using the
parametrized workload model in Fig. 3 row 4. We plot the
globality scores for these parametrized workloads in Fig. 6.
The workload quantity is fixed for all parametrizations, and
thus the only change is the spatial distribution of workload
(which is controlled by the pair α, σ). As σ increases from .2
to .8 the globality of the workload generally increases as α
increases. This means that the globality score gives a higher
score, for a given value of α, when there is less traffic on the
da link and more traffic on the dc links; this is exactly the
required behaviour (cf. p5). When the traffic is predominantly
on the dc links, the globality score should be high. The
measure g(Wl|Tk) respects the symmetries in the workloads
because different values of α can yield a higher globality
for two different σ parametrizations. For completeness we
also illustrate the score yielded by the measure (Eqn. 5) in
Fig. 7. Here, when σ = 1 (Eqn. 5) is insensitive to changes
in the distribution of the workload. On examination of the
case σ = .2, (Eqn. 5) is over sensitive to changes in α which
make (Eqn. 5) an unattractive optimization objective. (Eqn. 5)
achieves a minimum value of .75 in these experiments. There
is just one appendage in this OLTP and yet the the globality
score has fallen by 25%.

(2a) Path Evaluation (p1,p2,p5): We generate workloads
using TPC-C’s OLTP-like workload models [29]. We evaluate
the globality score by computing the globality of the paths
between every pair of nodes in Fig. 1 in order to evaluate the
dynamic range of g(Wl|Tk) (cf. p1). There are ≈ 7000 feasible
transaction-tree workloads in this data-set. We also evaluated
the globality on a set of random OLTPs which are composed
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Fig. 7. σ = {.2, .4, .6, .8, 1} = square, otimes, triangle, diamond, star.

of an arbitrary subset of the paths described above.

(2b) Programmability: We evaluate the programmability
of the g(Wl|Tk) by considering an arbitrary template matrix
using the following irritation function instead of A(S5) above.
The symmetric adjacency matrix B has ones on the links
{2, 6}, {2, 7}, {2, 8}, {1, 2}, {1, 3}, {1, 4} and {1, 5}. This
irritation function is interesting because the cost of traversing a
subset of the distribution to access links {{2, 6}, {2, 7}, {2, 8}}
is high. The irritation function penalizes links asymmetrically.
It penalizes workload on a subset of the distribution to access
links more than others, and also the workload on the access
to access links which are descendants of {6, 7, 8}. Tab. III
illustrates the globality measure of a subset of the OLTP
workload paths, the path index and the corresponding path
using the template matrix based on A(S5). In the rightmost
column we plot the globality score using B as the template
to illustrate the effect of using a different template function.
The symmetry of the topology in Fig. 1 means that many paths
have the same globality score. Tab. III tabulates the scores and
paths associated with transitions in the sorted globality scores
for all paths. The crucial result is that transactions that traverse
dc links exclusively, have a larger globality measure than
transaction trees that traverse the dc and da links. Moreover
transaction trees that traverse the dc, da and aa links have a
lower globality measure than transactions that traverse da and
aa links. In short Tab. III gives evidence that g(Wl|Tk)
provides a consistent ordering of the EDC and OLTP
statistics to the real number line interval (0, 1). Comparing
the rightmost column of Tab. III, λ1|B with λ1|A(S5)
demonstrates the role the template has in the ordering
of the workloads. Some notable re-orderings due to the
change in the template are the decrease in the globality
score of the path 1 7→ 5 when B is used. This re-ordering
has occurred because the template matrix was programmed
to penalize the usage of the EDC differently. Fig. 5 illustrates
the paths associated with transitions in the sorted globality
scores (overlayed onto the topology in Fig. 1) for all paths
using the template B. Firstly, there are more transitions due
to the asymmetry of B. Secondly, path 1 7→ 2 has the highest
globality due to the higher cost associated with links from 2
to {6, 7, 8}. The center of mass of this measure is different
due to the asymmetry of B. Finally, node 2 is more prevalent
in Tab. III compared to Fig. 5 when the globality scores are
high. The measure g(Wl|Tk) may be programmed and the
resulting measure reflects the level of irritation specified by the
encoder. In future work we will consider the application of the
globality measure to other EDC architectures, as many EDCs
are deploying more Ethernet based VPNs (MPLS or BGP
based), which offer a much more flexible network environment.

(3) Simple Stochastic Layered Block Model for Data
Center topology and OLTP workload Creation: We have

Fig. 8. A randomly generated EDC is created using the simple stochastic
layered block model. For illustration purposes N = 99 and K = 4. The
assignment of vertices to each layer-2 network follows the portions pk ∈
{.1, .1, .4, .4} which results in two layer-2 networks which are significantly
larger. The probability of a link between two vertices is ak = .3, ∀k.

verified that the measure works when it should on small
examples. We now demonstrate that for large scale traces (up
to 100 messages in a transaction tree) that reflect the scenario
on Amadeus’ EDC, the measure behaves well. To generate
a sufficient number of EDC topologies and workloads we
introduce a simple stochastic layered block model for data
center topology and OLTP workload creation.

Simple Stochastic Layered Block Model for EDC topolo-
gies: We fix the number of vertices in the EDC to be N . We
define the number of distribution switches to be K (N = 1000
and K = 4. The distribution and core vertices have edges with
probability 1. We generate the layer-2 network by assigning
each of the remaining N −K−1 vertices at random to one of
the distribution switches k = 2, 3, 4, 5 with the proportion pk,
such that

∑
k pk = 1. We connect any two edges with in the

kth layer-2 network according to the assignment probability
ak. An example EDC is illustrated in Fig. 8 with N = 99
and K = 4. This model produces K layer-2 networks with
different counts of vertices. Each layer-2 network can have
different probabilities of any two nodes being connected. This
model gives us the freedom to generate a large family of EDC
topologies at random. Care must be take to choose {ak, pk}∀k
so that each vertex is connected.

Generating random OLTP Workloads: Random OLTP
traffic is required to test the globality score. For each EDC
topology above, we generate an ensemble of OLTP workloads
by: (1) generating Minimum Spanning Trees, which are rooted
at different vertices (in the generated EDC). We then prune
these trees so that they have different numbers of edges in
them; (2) we generate OLTP workloads which are the shortest
path between every pair of nodes in the network. Finally
we combine all of these OLTP workloads into two sets. In
the first set the OLTP workloads have the characteristic that
they traverse the core of the EDC. In the second set, the
OLTP workloads do not traverse the core of the EDC. Fig. 8
illustrates how a sample ensemble of OLTP workload traces
use the EDC resources. It is this usage that we want to quantify.



Fig. 9. Aggregate Globality Measurement over a range of EDC topologies
and types of OLTP workloads (for a given q).

Dark thick links indicate large numbers of messages. Dark
large vertices indicate that the vertex has a large number of
incoming/outgoing messages. Thin red links indicate that the
link delivers few messages. Red small vertices indicate that
the vertex receives/sends few messages. Note that vertices
1, 2, 3, 4, 5 are small and red and that the links between them
are thin and red. This indicates that the load on the links
between them is small. The two larger clusters of nodes have
thicker darker links and vertices. The OLTP workload is well
isolated within these layers of the EDC.

To generate a test OLTP workload, we draw with replace-
ment 100 OLTP workloads such that proportion q of the OLTP
workloads is drawn from the set that does not traverse the
core, and the remaining 1 − q OLTP workloads do traverse
the core. Each test OLTP workload is parametrized by q. We
generate a test OLTP world for each instance of a range of
the parametrizations of the EDC above {pk, ak}∀k and we
compute the average globality score of each of these workloads
given its associated EDC. Fig. 9 illustrates box-plots of these
globality scores. These box-plots demonstrate that we cannot
just use q the percentage of OLTP workloads that traverse the
core as a globality measure, as the corresponding globality
scores have a wide range, e.g. up-to 10% of the median
globality score. This 10% may be the difference between
detecting whether or not the EDC is in a vulnerable state or
not. It may also be occlude whether or not the current OLTP
workload has step-changed into a new performance regime,
e.g. a globality score of ≈ .5 ± 0.05 (which corresponds
to q = .7) could be confused with a globality score of
≈ .55± 0.055 (which corresponds to q = .8). As we average
our globality measurements over many EDC topologies, it is
reasonable to assume that the more extreme globality scores
are averaged out, and that –especially for smaller values of q–
the range of globality scores for a particular EDC may be more
extreme. What is clear is that the range of the average globality
scores is reduced to 0.3 ≤ g(.) ≤ .6. We posit that this
is an artifact of averaging the globality scores over different
EDC parametrizations. In future work we will give a more
detailed treatment of the range of potential globality scores
achievable for a given EDC (as opposed to considering the
average globality scores over a range of EDCs) by considering
the effects of {pk, ak}.

VII. CONCLUSION

The starting point for designing an EDC OLTP workload
optimization procedure is to have the ability to measure
how sub-optimal the current (or any other candidate) EDC
OLTP workload is in way which is informative. In this paper

we argued that the notion of workload isolation, locality or
globality has not been rigorously defined in the literature.
Questions such as, what is the worst (or best) case OLTP
workload in terms of its isolation, locality or globality, have not
been answered. We presented a measurement algorithm that
maps a high dimensional set of EDC and OLTP statistics to
the real number line, in way that allows the user to encode prior
knowledge of what a bad workload is, into the measurement
function. We demonstrated that this mapping is consistent. It
respects the set of properties globality measures should have.
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