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Abstract—An algorithm for predicting the quality of video
received by a client from a shared server is presented. A statistical
model for this client-server system, in the presence of other
clients, is proposed. Our contribution is that we explicitly account
for the interfering clients, namely the load. Once the load on
the system is understood, accurate client-server predictions are
possible with an accuracy of 12.4% load adjusted normalized
mean absolute error. We continue by showing that performance
measurement is a challenging sub-problem in this scenario.
Using the correct measure of prediction performance is crucial.
Performance measurement is miss-leading, leading to potential
over-confidence in the results, if the effect of the load is ignored.
We show that previous predictors have over (and under) estimated
the quality of their prediction performance by up to 50% in
some cases, due to the use of an inappropriate measure. These
predictors are not performing as well as stated for about 60% of
the service levels predicted. In summary we achieve predictions
which are ≈50% more accurate than previous work using just
≈2% of the data to achieve this performance gain –a significant
reduction in computational complexity results.

I. INTRODUCTION

Understanding and predicting performance metrics for tele-
com clouds services is a challenging, open problem [1], [2].
The authors of [1] take a Statistical Learning (SL) approach
–they apply variants of the Lasso [3], Random Forests [4]
and Ridge Regression [5]– to predict the client-side metrics
for a video streaming service. Their approach is significant
as they collect statistics from the Linux kernel of a server
machine to achieve this; their initial prediction performance
results are promising; and finally, they have made their traces
publicly available. To evaluate the performance of their video
quality metric prediction algorithms they designed three sub-
components: a test-bed, a video quality metric prediction
model and learning algorithm, and finally, a measurement
approach for evaluating the quality of the predictions in a fair
way. The focus of this paper is on improving the performance
of the second and third component above given that the test-
bed, described in [1], and resulting traces, have been used in
several papers and have gained acceptance.

Related work: The position of Yanggratoke et al., in [1] is
that 1) by collecting thousands of kernel variables their pre-
diction approach is service independent (they can omit service
specific instrumentation etc.). We illustrate that this service-
independent-prediction assumption does not always hold, that
comparison of the predictor’s performance across services is

Dr de Fréin is affiliated with TSSG, Waterford Institute of Technology,
Ireland. This work was supported by an ELEVATE Irish Research Council In-
ternational Career Development Fellowship co-funded by Marie Cure Actions
award “EOLAS”: ELEVATEPD/2014/62.

not justified, and that unless the service is modelled correctly,
artifacts are introduced into the predictor and the measurement
system. 2) The prediction of client-side metrics such as RTP
packet rates (with 10%–15% error) across different scenarios
and loads are possible. We demonstrate that if the approach in
[1] is adopted the results are in fact dominated by the choice
of scenario and load when prediction is performed. In short,
this approach may inadvertently game the performance of the
predictor positively based on the selection of a favourable
scenario; or, on the other hand lead to the unfair dismissal
of an approach due to an unfavourable scenario.

Domain knowledge is often inferred and then used in
Signal Processing [6] and Computational Finance [7]; these
techniques are referred to as Blind inference, learning and
prediction [8]. Blind inference has not yet been widely em-
braced by the Network Management community. This is due
to the number of different active network services, and also,
whether or not it is feasible to model highly dynamic network
services automatically. We desire learning algorithms that are
powerful enough to learn from data without any domain
knowledge or human intervention, namely Blind [9], [10] or
autonomic approaches. With out loss of generality, to evaluate
our approach we place an adaptive sinusoidal user request load
on a video server; in practice the load is an arbitrary trace.
To improve prediction performance it is reasonable to assume
that we need accurate knowledge of this trace. Somewhat
suprisingly we show that a Blind inference procedure is not
necessary in our scenario to estimate the trace. We obtain a
good estimate of it from the TCP socket count of the server.
Our non-blind approach uses exactly the same information
as the previous work [1], prediction accuracy improvement is
obtained for-free, and the approach is applicable irrespective
of the load on the system. We agree with the authors in [1]
that collecting statistics from the Linux kernel and client-side,
and learning the mapping between them, is a promising first
approach. Intrusion detection systems have a long history of
using such parameters –sequences of system call executed
by running processes– to discriminate between normal and
abnormal operating characteristics of UNIX programs [11].
However, a general model, which accounts for network, service
and client delay is needed. The authors focused on the simple
instantaneous case in [1] as the lab configuration considered
has sufficient resources for these delays to have little affect.

The current trend of running software systems on general
purpose platforms without real-time guarantees with the ex-
pectation that one can safeguard revenues, is dichotomous.
The choice of video service level prediction by [1], as an
exemplar instance of this problem, is timely given that Cisco



[12] predicts that network traffic volumes in the order of tens
of exabytes are not that far off, and 90% will be video related
[13]. A SL approach –similar to [1]– is preferable to devel-
oping and fitting complex analytical models for the different
layers of soft/hardware in these complex systems. The authors
of [14] make the case that modern multi-core (parallel online)
learning algorithms are limited by the bandwidth bottleneck. It
is hard to justify expending bandwidth resources on predicting
why a service is not meeting service level agreements if this
bandwidth could be used to meet the service delivery short-
fall. If a SL approach with low complexity, which increases
linearly in the feature set size, is unable to perform predictions
with low enough latency (using one of the computational
architectures in [15]), it is unlikely that a significantly more
complex, hierarchical analytical model will exhibit sufficiently
good performance; our philosophy is to explore the simplest
approach in depth first before we discard it. As a first result
we demonstrate that we can outperform the results in [1] by
using just 2% of the data, which contradicts the assertion
that we need large amounts of data for successful SL. This
performance gain is achieved by incorporating a small amount
of –already present– knowledge into the SL algorithms.

The application of SL for prediction in cloud and network
environments is in its infancy. A method for identifying and
ranking servers with problematic behavior is proposed in
[16]. The authors use Random Forest classifiers to select
candidate servers for modernization. A predictive model is
then used to determine the impact of modernization actions.
A Support Vector Regression predictor is used in [17] to
perform lightweight TCP throughput prediction. Prediction is
based on prior file transfer history and measurements of path
properties. A method for modeling application servers in order
to detect performance degradation due to aging is presented
by [18]. The authors use classification algorithms to perform
proactive detection of performance degradation. Finally, the
authors attempt to reduce the size of the data-stream that
is forwarded to an operators’ operations support system by
removing uncorrelated noise events in [19]. A heuristic cross-
correlation function determines the degree of inter-relationship
between the events in the data-stream. To the best of our
knowledge there is no work which explicitly deals with the
effects of adaptive loads on these systems.

Contribution 1: We claim that a different prediction model
should be used when there is a different load on the system
under observation. We propose a simple hierarchical model,
namely Load-Adjusted RR (LA-RR), and demonstrate perfor-
mance gains of up to 30% are achievable using our model
over traditional Ridge Regression (T-RR). Contribution 2: We
propose a performance measure for analyzing the performance
of the new model, namely Load-Adjusted Normalized Mean
Absolute Error (LA-NMAE). Empirical results support the
claim that the Traditional Normalized Mean Absolute Error (T-
NMAE) is an inappropriate performance measure. We quantify
how big of an issue this is. Contribution 3: We complete our
study by proposing a new hierarchical prediction algorithm,
LA-RR. We compare the performance of the measure LA-
NMAE when evaluating the RR algorithm [20] used in [1],
namely T-RR, with our new load-adjusted hierarchical solver,
LA-RR. We also compare the performance of LA-RR to the
previously proposed RR technique in [1], T-RR, using the
performance measure in [1], T-NMAE. We do not exhaustively

TABLE I. ACRONYMS: LOAD-ADJUSTED & TRADITIONAL
STATISTICAL MODEL/ALGORITHM & PERFORMANCE MEASURE.

Statistical Model/Algorithm Performance Measure
Ridge Regression NMAE

Load-adjusted (new) LA-RR LA-NMAE
Traditional (old) T-RR T-NMAE

evaluate each of the methods in [1] because: 1) the solver
cannot correct the formulation of the problem; 2) T-RR gives
the best performance on the periodic load traces used in [1];
3) a thorough empirical comparison of the Lasso [3], for
example, with RR, involves the selection of different regression
parameters for each algorithm. We have focused on comparing
RR for both the model in [1], T-RR, and our hierarchical
model, LA-RR, using the same regularization parameter for
both, as the purpose of this paper is to motivate the candidacy
of our hierarchical load-adjusted statistical model.

Organization: This paper makes both a theoretical and
practical contribution. It starts by introducing the theoreti-
cal tools we need to perform improved predictions in Sec-
tion II, III and IV. We introduce a statistical model for the
client-server system in Section II. In Section III we support
this model empirically using a statistical test which compares
the probability of our model being valid given the data (in [1]),
with the probability of the state-of-the-art model being valid
given the same data. This test finds that the state-of-the-art
model is implausible, given the data, and that our new model
is more plausible. The second part of our theoretical contribu-
tion, in Section IV, demonstates that prediction performance
measurement is challenging. In Section IV we illustrate that
prediction performance measurement is highly dependent on
the load on the system. We introduce a new measure to account
for this type of error. We continue by showing, using the data
in [1], that using the inappropriate performance measure may
unjustifiably inflate or deflate the quality of our predictions.
In the final two sections we introduce some practical tools
for making service level predictions. We introduce a practical
hierarchical RR prediction technique in Section V which
follows from the analysis in Section II, III and IV. We perform
a thorough simulation study that empirically evaluates and
compares this technique with T-RR in Section VI. In this
empirical study we use exactly the same information as [1]
and our improved model yields significant performance gains.

II. SYSTEM MODEL: LA-RR

A client is connected to a server via a network and s/he
requests Video on Demand, which runs on the server in
[1]. Assume for the purpose of exposition that the system
is operating under a light to medium load (we relax this
assumption later); we, like the authors of [1], do not model
the network state. What happens when a client requests video?
The response of the server, with respect to kernel metric n, the
n-th feature, to one request for video at time i is expressed as:

xi[n] = ûi[n] + εi[n], where i ∈ Z,xi[n], ûi[n] ∈ R. (1)

A feature refers to a metric on the operating system level, for
example, the number of active TCP connections. The feature
set xi[n] is constructed using the System Activity Report1a

1ahttp://linux.die.net/man/1/sar; 1bhttp://www.videolan.org/vlc;
1chttp://www.ntp.org/



Fig. 1. Service level metric and system load trace for a periodic-type load.

(SAR) which computes system metrics over a given time
interval. The term xi[n] denotes the n-th feature at time index
i. On the client-side we observe an application level metric,
the RTP packet rate, yi at time i. VLC1b media player provides
Video-on-Demand on the test-bed in [1].

Problem Statement: The objective of this paper is to predict
unseen values of yi using the features xi[n],∀n. We assume
that a global clock can be read on both the client and server
to match up the {xi[n], yi} pairs.

The signal ûi[n] in (Eqn. 1), a square-wave (off-on-off)
signal, corresponds to an increase in the CPU workload, for
example, an extra X units per additional user for the duration
of the video requested by the user. We assume that ûi[n] is
scaled in order to account for the sensitivity of a given feature
to the effect of adding a new user to the system. This scaling is
specific to each service, feature and machine. The signal, εi[n],
captures deviations from the ideal performance of the server
with respect to the n-th feature. We assume that this deviations
signal is normally distributed with 0 mean and variance σ2. If
there is more than one deviation signal, they are uncorrelated.
For example, for two simultaneous video requests (of the same
duration) the response of the n-th feature is

xi[n] = 2ûi[n] + εi[n, 1] + εi[n, 2]. (2)

The deviation from the ideal performance due to the second
user is εi[n, 2]. A video server is only really useful if (up to
K) clients can start and stop watching video at arbitrary times,
simultaneously. That is, the server must be able to deal with
time-varying loads. Let K(i) be the number of user requests
being serviced at time i. It follows that the response of the
n-th feature to this load is

xi[n] = K(i)X +

K(i)∑
k=1

εi[n, k]. (3)

We drop the square-wave and use the more flexible and general
notation K(i)X , the number of active users at time i times the
resources one user uses, X . We call this signal li[n] = K(i)X ,
the load signal. Traces are available from an independent study
in which the traces have a strong sinusoidal-like component
[1]. The service level, RTP Packet Count, and load, TCP socket
count, are plotted in Fig. 1. To fix ideas, we propose that a
simple model for the load in these traces has the form

li[n] = K(i)X ≈ a[n] cos(ωni+ φn) + c. (4)

The observed n-th feature is the linear combination:

xi[n] = a[n] cos(ωni+ φn) + c+ x̂i[n]. (5)

The real-valued scalars, a[n] ∈ R, ωn ∈ R and φn ∈ R, are
the amplitude, radial frequency, and phase of the load –they

describe the user video request pattern. The constant c ensures
that li[n] is a positive signal; the demand for resources should
not be negative. We make the simplifying assumption that these
parameters are constant. In a real-world system this is unlikely
to be true, but it serves as a good first approximation. We
also simplify our notation by introducing the notation x̂i[n] =∑K(i)
k=1 εi[n, k], for the aggregate deviation.

This model is general: The amplitude scales the load to
give it a response in the correct range for the n-th feature;
if the n-th feature is not a function of the load, a[n] = 0,
and the n-th feature is xi[n] = x̂i[n] in system (Eqn. 5). The
phase φn may capture the network and machine delay between
when the request is made and the response given (cf. Fig. 1).
This model is further generalized by considering loads which
are parametric signals and/or stochastic processes. The service
level metric is a linear function of the set of features (where
the effects of the network are ignored as it is assumed to be
sufficiently well resourced). The service level metric is:

yi =
∑
n

w[n]


li[n]

(a[n] cos(ωni+ φn + ϕn) + c)+

K(i)∑
k=1

εi[n, k]

 (6)

The additional phase terms ϕn,∀n capture the delay in the
effect of the load due to client requests on the server machine,
and network and server delays. In this paper we assume
φn = ϕ = 0 as the bandwidth is assumed to be large enough
(due to the light load assumption). The clocks of the server
and client are synchronized in [1] using NTP1c and samples
are collected every second. Note that we can substitute in an
arbitrary expression for the load in (Eqn. 6) and the analysis
in the rest of the paper holds.

System Characterization: We have introduced a deviations
signal for each feature, x̂i[n], to explain the deviation of
each feature from its ideal performance for a given load. A
deviations signal is also required for the service level metric,
ŷi. We want to explain the signal that captures the deviation
of the service level metric from its ideal performance, as a
function of the effect of the user requests on each of the video
server’s features (the deviation of each of the features from
their ideal performance). The following model states that the
observed deviation in the service metric is a weighted sum of
the external causes, e.g. deviations in the features, plus internal
causes, ηi, which captures non-idealities on the client’s side.

ŷi = wT x̂i + ηi. (7)

However this model is significantly different from the model
in (Eqn. 6). We make this explicit by indicating what we want
(don’t want) to model on both sides of the system:

yi
observed

=

don’t want

wT li +

want

ŷi =

don’t want

wT li +

want

wT x̂i
observed features

+ηi. (8)

The problem is that the signals that we observe, the pairs
{xi, yi}, are mixtures of what we want, x̂, and a high energy
load component, l, which we do not want. The reason why
we distinguish between these two problems is that the load
may potentially drown-out the deviation signals, ŷi, x̂i[n],∀n.
In general a good approximation of the load is known, and
therefore, there is little point in approximating it if it is
already known, or worse, letting it bias the learning algorithm.
The ability to estimate and predict deviations from ideal
performance is the problem that is crucial to solve. The



approximation of the load comes from the TCPSCK field of
the UNIX SAR command. The TCP socket count gives a good
indication of the load on the kernel.

A Regression Tree, Random Forest [4], Lasso [3], RR or
any other valid solver for problems of the form yi = wxi or
ŷi = wx̂i will learn weights that solve the problem put to it. If
the load is present in a model, when it should not be, e.g. if we
pass {yi,xi} instead of {ŷi, x̂i} to the solver, we cannot expect
the solver to correct the problem that is being asked. Asking
the wrong question will generally yield the right answer for
the wrong question. How can we learn a mapping between the
kernel and service metrics which is independent of the load
such that we can ask the right questions? Even more crucially,
how can we measure the success of an approach that asks
the correct questions? Are off-the-shelf measurement functions
adversely affected by artifacts in the learning algorithm that
arise due to the inappropriate presence of the load? In the
next two sections we show that they are.

III. USING THE DATA TO SUPPORT THE MODEL

We investigate the extent to which the mean of the samples
of the service level metric y depend on the underlying load on
the system when these samples were drawn. Fig. 2 summarizes
the statistics that characterize the values of y for different
values of the load on the system, e.g. l = 19, . . . k . . .. The set
of points used to construct each box-plot is the set of values
of y corresponding to a given value of the load signal, l = k,
and each set, and the set of the associated indices, are denoted

H(y)|l=k, and I(y)|l=k respectively. (9)

Firstly, the mean of each of the sets, H(y)|l=k, which we
denote µ(H(y)|l=k), is different for each value of the load.
For 19 ≤ k ≤ 30 it is reasonable to assume that the model
described above (in Eqn. 8) holds. However above k = 30, the
values obtained by y generally decrease. In summary,

µ(H(y)|l=k) ∝ k, for 22 ≤ k ≤ 30

µ(H(y)|l=k) ∝ −k, for 31 ≤ k ≤ 87 (10)

In words, the mean of the set of points of y for a given value
of the load, µ(H(y)|l=k), is proportional to the value of the
load for loads less than 30 active requests, and proportional
to the negative of the load when the load is greater than 30
active requests. Alternatively fitting a quadratic of the form

µ(H(y)|l=k) ∝ −a(k − 30)2 + b (11)

using the scalars {a, b} gives a more concise description of
the behaviour of the mean of y. Increasing the order of the
polynomial (in Eqn. 10) increases the quality of the fit. Fig. 2 is
significant because (Eqn. 7) assumes that both ŷi and x̂i[n] are
zero-mean signals. What is clear from Fig. 2 is that the mean
of the yi depends on the value of the load that was present
on the system when it was observed. We do not attempt to fit
parameters to the model (Eqn. 8) or assume that the mean of
yi and the features xi[n] are the same irrespective of what the
load was on the system.

Hypothesis testing: We use a hypothesis test as a first
demonstration that the model (Eqn. 7) is of interest. The null
hypothesis, namely ‘the load has no effect’, as used in [1], is
that the service level metric has a mean which is approximately

equal to the µ(y) = 119.44 irrespective of which samples
are used to approximate it. We assume that the population
standard deviation σ(y) is unknown; we approximate it with
the sample standard deviation. The value 119.44 is the mean of
the ≈ 50k observed values of y. In words if we select any Ns
samples of the signal y it should give a good estimate of µ(y).
The alternative hypothesis, ‘the load has an effect’, is that we
believe that the load has an effect on the values of y. The mean
of the signal conditional on the load l = k is µ(H(y)|l=k). We
also need the sample standard deviation of the service metric
y conditional on the load, which is σ(H(y)|l=k). In summary,
our hypotheses are

Ho : µ(y) ≡ µ(H(y)|l=k) = 119.44∀k
Ha : µ(y) 6≡ µ(H(y)|l=k), ∀k, k 6= k? (12)

Does the load have an effect on the mean? Let us consider
whether or not to accept or reject the null hypothesis. If the
null hypothesis is true, what is the probability that we would
have measured µ(H(y)|l=k) as our estimate of the mean, µ(y).
If the probability of the null hypothesis is really small we can
reject it. We compute the z-statistic for each k

Z =
√
Ns

(
|µ(y)− µ(H(y)|l=k|)

σ(H(y)|l=k)

)
(13)

and tabulate the associated probabilities in Table II. We
compute the probability that the null hypothesis is true for
values of the load that arise more than 100 times in the traces
(and our choice of the z-statistic is justified). The values of the
load for when this is true are indicated. The probability that the
null hypothesis is true is zero in every case except for when the
load is k ∈ {41, 42, 43, 44}, that is when µ(H(y)|l=k) ≈ µ(y).
Fig. 3 illustrates the difference between the means. When
k = k? = 42, then µ(y) ≈ µ(H(y)|l=k? with ≈ 14% chance.
In every other case applying RR to the data assuming that
µ(y) ≈ µ(H(y)|l=k? , and thus identically distributed, is valid
with less than 2% chance in one case, and ≈ 0% in all other
cases 2. This analysis motivates the following conclusions: 1)
Different conditional means and variances for each load value
imply that we need to learn a different regression model for
each value of the load. 2) The linear model described in the
previous section is insufficient because the RTP Packet Rate
can increase with the number of active users until k = 30.
Above this, the system begins to become saturated and the RTP
Packet Rate begins to decrease as the number of active users
increases. A piece-wise linear model, or some higher order
polynomial model is required. Fig. 3 illustrates how good an
estimate of the mean of the entire set of samples, H(y)|l=k is.

IV. PREDICTION QUALITY MEASUREMENT: LA-NMAE

Using the correct measure of prediction performance is
crucial if we are to distinguish between the performance of

2Remark: Our application of the z-statistic has a number of drawbacks.
There is correlation between the samples which affects the conditional standard
deviation of each sample. The setsH(y|l=k) are in some sense anti-correlated
and so the samples that we choose are not independent. The sample size used
to generate each p-value is in general different, which affects the resolution
of our estimates (under/over estimation of the sample standard deviation).
Despite these shortcomings, the p-value gives a very strong recommendation
that we reject the null hypothesis; for all loads but one. The assumption that
the trace values are identically distributed holds with probability 0.



TABLE II. WHAT IS THE PROBABILITY THAT THE MEAN VALUE OF A SET OF SAMPLES DRAWN UNDER LOAD l HAVE THE MEAN µ(y)? ONLY WHEN
l ∈ {41, 42, 43, 44} IS THE LIKELIHOOD NON-ZERO. IF THE NULL HYPOTHESIS IS INDICATIVE OF THE ASSUMPTIONS MADE BY THE LEARNING

ALGORITHM, THEY DO NOT HOLD.

load values l
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Fig. 2. The distribution of the service level metric y is illustrated for a range of loads on the system 19 ≤ l ≤ 88. The largest load observed was 110, but
above l > 88 there were too few samples to generate box-plots. X-tick labels are removed (for plotting purposes) as certain load values are never observed.
The load values are indicated above each box-plot. We plot the mean (full line) and 1 standard-deviation (dashed lines).

Fig. 3. Difference between the mean of the entire set of service level samples,
µ(y), and the service level samples conditional on the mean, µ(H(y)|l=k).
For each load value a stem is drawn from zero to the amplitude of the
difference. In most cases, the stem length is greater than ±20 units.

competing prediction algorithms with confidence. Previous
works have considered the T-NMAE between the signal to
be predicted, yi and the prediction estimate, ŷi

S =
100

µ(y)Ns

(∑
i

|yi − ŷi|

)
=
∑
i

100

µ(y)Ns
|yi − ŷi| (14)

They scale the score by 100 to obtain a percentage. Re-
ordering the summation and the constant is useful as it makes
the argument below more intuitive.

In this section we show that 1) the load dependence of the
mean described above renders the T-NMAE measure suspect
to overestimation of the prediction accuracy in many cases;
2) the dependence of the T-NMAE on the population mean
µ(y) potentially dominates the sensitivity of the T-NMAE
measurement to just one (unimportant) statistic of the signal
being predicted. Given that the first step of many estimation
procedures is to center the signal, it is troubling for the mean
to have such a dominant effect on prediction performance.

1) Load dependence: The T-NMAE produces an aggregate
score for the prediction error between yi and ŷi for a set of
signal values yi, i = 1, . . . Ns. The underpinning assumption is
that the signal values to be estimated are picked from the same
distribution. Each prediction produces an error εi = yi − ŷi.
The T-NMAE assumes that each prediction error is equally
important, because the signal values yi are taken from the same
distribution. Therefore each error is scaled by 100

Ns
. Finally,

in order to give this number context, the T-NMAE scales
the weighted error by the typical value that the signal, yi,
achieves, e.g. µ(y), and sums up the values. Herein lies the

problem however. When the load affects the mean in the
manner we described above, µ(H(y)|l=k), the value of the
“typical value” of yi changes too, as a function of the load.
For a given error in our prediction, the global mean, µ(y)
and the load dependent mean scale the error differently. So
how does the load, in particular the mean dependent load,
µ(H(y)|l=k), affect the contribution of the error in one sample
to the T-NMAE? To answer this question, we consider the
maximum possible prediction error in the trace above. For
a given value of the load, e.g. l = k, the maximum value
is maxH(y)|l=k (assuming y is non-negative). The NMAE
should depend on the load, because failing this, some errors
are scaled unfairly by a mean value which is not representative
of the distribution from which they were drawn. Therefore the
load-adjusted NMAE (LA-NMAE) is

Sk =
∑

i∈I(y)|l=k}

100

Nsµ(H(y)|l=k)
|εi|. (15)

In this new measure, the LA-NMAE, the errors εi due to
the predictions ŷi correspond to the samples yi which were
generated under the load condition l = k. To evaluate how
important it is to select the correct mean in the LA-NMAE,
we vary the error εi, as a function of each value of the
load, from 0 to maxH(y)|l=k. We compute the NMAE
using the two definitions above, for each value of the error
0 ≤ εi ≤ maxH(y)|l=k. We plot the pairs of resulting NMAEs
for each value of the load l. Fig. 4 illustrates how both NMAEs
penalize errors in the case where the load is 49 ≤ l ≤ 56.
These results should be read as follows. If the absolute error
in the prediction, irrespective of which prediction algorithm
was used to generate the prediction, for a given value of the
load l, was e, the associated contribution of this value to the
total T-NMAE is p% if the global mean was used, e.g. µ(y).
The percentage p can be found by finding the y-value of e
on the black dashed line. Whereas if the load-adjusted mean
was used µ(H(y)|l=k), the percentage, p, may be obtained by
finding the y value corresponding to e using the blue line.

Some crucial observations are listed as follows: 1) The full



Fig. 4. For a given prediction error and system load condition, what is the con-
tribution of the error to the prediction accuracy score? The traditional NMAE
(T-NMAE), dashed line, under-estimates the contribution of a prediction error
to the score for many load conditions compared to the Load-Adjusted-NMAE
(LA-NMAE). We illustrate this for loads 49 ≤ l ≤ 56.

TABLE III. PATHOLOGICAL PREDICTION PROBLEM SOLVER

1. Initialization: Set the constant a = 0, store the serv. metrics: yorig = y.
2. Pick Ns values from any distribution (e.g. a normal dist.), assign ŷi ← N (0, 1),
3. Assign a = a+ 1;
4. Assign yi ← yi + a and ŷi ← ŷi + a
5. Compute the T-NMAE S =

∑
i |yi − ŷi|

100
Nsµ(y)

6. If S < 1 break (the prediction is ŷi); else return to step 2.

line is higher for all prediction errors, εi, for approximately
74.7% of the values the load can take and 61.295% of all of the
signal values; 2) The scaled-error values computed using the
global mean µ(y) are significantly smaller for approximately
61% of the values used to compute the T-NMAE than they
should be; 3) The prediction performance given using the
global mean scaled T-NMAE is quoted to be better (using
the measure S) than it actually is (using the measure Sk). It is
straightforward to compute by how much S over-inflates the
accuracy of the prediction algorithm compared to Sk. For a
given load value l = k let the weight of proportionality be α

αSk = S, which implies α =
µ(H(y)|l=k)

µ(y)
. (16)

In words, if we divide a given T-NMAE, S, by the inflation
weight α we get the correct LA-NMAE. For example in Fig. 4,
µ(H(y)|l=k) < µ(y) when the load is above k? = 42. Taking
the case when k = 70, µ(y) ≈ 119 and µ(H(y)|l=k) ≈ 80.
These values imply that α = 80

119 ≈ 0.66, which means that
an T-NMAE of S = 11% equals a LA-NMAE of Sk = 17%,
an T-NMAE of S = 20% equals a LA-NMAE of Sk = 30%
and so on. In short, the correct LA-NMAE is 50% worse in
many cases above, when the load-adjusted mean is used.

This is a very practical result. If the absolute prediction
error ε is 1 unit for a particular sample the difference between
the NMAEs, S and Sk, is .5%; for ε = 5, the difference is
2.5%; for ε = 20, the difference is 10% and so on. A break
down of these differences for given values of the load can
be obtained in Table IV. The numbers of samples that fall
into each category are listed along with the load values. For
example, 822 samples in the traces are drawn under a load
k = 70. The error in the reported error using S, when the
errors range from 1 to 40 units, ranges from .48% to 19.11%.
Note that the error can easily be greater than 40, and in this
case the error in the reported percentage is larger.

2) Dominance of µ(y): It is not reasonable to claim that the
T-NMAE allows for the comparison of prediction accuracy
of different service level metrics across different scenarios

yi|l=1 = wT
1 xi|l=1

yi|l=2 = wT
2 xi|l=2

yi|l=K = wT
Kxi|l=K

...

ŷi+1

yi, xi[n], xi[n
?]

xi+1[n], xi+1[n?]

ips learning modelsselect k prediction

Fig. 5. During the learning phase, kernel and service metrics enter on the
upper LHS arrow into a switch that determines –based on the load value
xi[n

?]– which learning model to learn. During the prediction phase, the same
2-level approach is taken. The load, xi+1[n

?], and features, xi+1[n], enter
on the lower LHS arrow, and the appropriate prediction model is chosen based
on xi+1[n

?], to produce the prediction ŷi+1 on the RHS.

and loads. We demonstrate this by considering the following
pathological problem-solver pair, which illustrates the counter-
intuitive behaviour of the T-NMAE S.

Problem 1: Predict Ns values of yi, using any prediction
algorithm, such that the T-NMAE, S, of the errors yi − ŷi
are less than 1%. Consider the valid approach in Table III.
At first glance, Problem 1 looks like a reasonable statement
of the video service level prediction we are interested in
solving. Note however that the value of the mean µ(y) is
crucial. As a increases, the T-NMAE goes to zero S 7→ 0,
in general, irrespective of what ŷi is, or how it was generated.
This is because µ(y) = µ(yorig) + a. In the more general
setting of comparing the performance of predictions of service
level metrics it is clear that the mean of the service level
metric observed is crucial as it sets the sensitivity of the
performance to deviations in performance. In summary, the
comparison of prediction performance across services is not
meaningful unless the services have the same mean. If they
do not have the same mean, what value is the appropriate
value for the mean so that the comparison is fair? We cannot
use 0 as this gives a T-NMAE of ∞. We risk inflating the
performance of our predictor by picking an arbitrary value.
Therefore it is not reasonable to claim that the T-NMAE
allows for the comparison of prediction accuracy of different
service level metrics. We draw the following conclusions: 1)
prediction performance across the samples using the T-NMAE
is unreliable; performance should be measured relative to the
load on the system. 2) The prediction performance across
services is unreliable using the T-NMAE due to the difference
in the mean values of the traces. The LA-NMAE does fix the
first problem with prediction performance measurement, the
load; and we have raised awareness of the problems associated
with comparing prediction performance across services, loads
and scenarios. As an aside, we note that Signal-to-Noise-Ratio-
like (SNR) measures and the Root Mean Square Error (RMSE)
suffer from a similar dependance on the load. We do not give
a full treatment for these measures in this paper as measures
derived from the NMAE are sufficient to provide a like-for-like
comparison with the state-of-the-art.

V. LOAD-ADJUSTED LEARNING AND PREDICTION

We have contributed practical results for modeling video
metrics under different load conditions. We have also demon-
strated how to measure the performance of the predictor under
different load conditions. We now illustrate the flow of control
of a learning and prediction algorithm pair that use knowledge



TABLE IV. INFLATION/DEFLATION OF RESULTS BY CHOOSING THE T-NMAE, S , OVER LA-NMAE, Sk . THE T-NMAE INFLATES THE RESULTS.

load values l
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of the presence of the load to accurately: 1) model the video
metrics and 2) measure the error in the resulting predictions (in
Fig. 5). We perform RR with a least-squares objective function.
The crucial property of our approach is that instead of learning
one set of prediction weights, w, and using them to predict
video service level metrics (irrespective of the distribution from
which they were drawn), we learn K sets of weights wk, e.g. a
set for each of the possible number of coincidental active users
of the system. We then use the TCPSCK feature, which has
index n? in the feature set, to determine which prediction and
learning model to use in the learning and prediction phases.

Learning models: To fit a learning model for each value the
load assumes we determine the set of samples corresponding
to the load l = k in the training data, using the TCPSCK
feature of the kernel. This results in the set of dependent and
independent variables for each load value:

{H(y)|l=k,H(xi[n])|l=k}. (17)

This set is the training data under load condition l = k. In our
experiments, we randomly take 90% of the service-kernel level
metric pairs for each value of the load and fit a RR model,
yielding the weights wk. The remaining data is test data. We
save the set of mean values, µ(H(y)|l=k), and use these means
in the load-adjusted measurement function (Eqn. 15). To fit
each model, first we center the service level metrics and the
features using the corresponding load dependent means, e.g.
µ(H(yi)|l=k) and µ(H(xi[n])|l=k),∀n and thus the effect of
the load is removed. We fit the model

(yi|l=k) = wT
k (xi[n]|l=k) (18)

using a Least Squares solver. The learning process is sum-
marized in Fig. 5. The service and kernel metrics enter the
system using the top arrow on the LHS. The feature n?, e.g.
the TCPSCK count, is used in a K-level switch to determine
under which load conditions the data was generated. A model
is learned for each value the load assumes, resulting in the
weights wk,∀k (stacked in the center column of Fig. 5).

Prediction: Given a set of models wk, k = 1, 2, . . .K, and
a previously unseen set of features xi+1[n],∀n at time index
i+ 1, we desire a prediction of the value of yi+1. We denote
the prediction ŷi+1. In Fig. 5 the TCPSCK value xi+1[n

?],
associated with the service level metric to be predicted, yi+1

enters the prediction system on the LHS using the bottom
arrow at time i+1. The K-level switch selects the appropriate
prediction model, wk. An estimate of yi+1|l=k is generated
using wk and xi+1[n], and presented on the RHS ŷi+1.

Discussion: One consequence of using a K-level switch to
learn K models is that we have less data to train each model.
It is important to clarify that having less data is not necessarily

a bad thing if the data that we have is the correct data. If the
load assumes 1 of 80 different levels with equal probability
and we use all of the data to fit a RR model for a given load
value, only 1.25% of the training data that we use is drawn
from the distribution we want to be able to predict from.

VI. NUMERICAL EVALUATION

We present two results: 1) We compare the performance
of our LA-RR routine with T-RR. T-RR, used in [1], makes
no assumptions about the effects of the load on the system. 2)
We demonstrate the performance of the LA-NMAE prediction
measurement function and the T-NMAE prediction measure-
ment function using our LA-RR routine and T-RR.

LA-RR vs T-RR: For the LA-RR routine, we adopt the load-
adjusted learning and prediction algorithms described in the
previous section. We pre-process the trace by removing all
non-numeric and constant valued features from the set of
features. There are 231 remaining features. We learn a model
for each load value, e.g. a set of weights wk, if the set of
training data associated with a particular load value, e.g. the
pairs {H(y)|l=k,H(xi[n])|l=k}, has greater than 231 entries
(the total set of data for a given load value should therefore
be > 257 entries). We partition the data using a 9:1 split
of training to test data. We perform Monte Carlo trials by
re-training the learning models (and performing prediction)
on 100 randomly generated training-test data splits. For each
Monte Carlo experiment, we predict all of the values in the test
set and use the accuracy of the predictions as the basis for our
evaluation. We use the statistics of the prediction performance
for both the LA-RR and the T-RR, which we describe below,
to compare the two learning and prediction procedures. Given
that we center the service and kernel metrics, we fit the LA-
RR routine without the bias parameter [3]. The hypothesis that
we test is that if the presence of the load is acknowledged by
the learning algorithm, and predictions are made conditional
on the load, l = k, the predictions are better than if we deploy
an algorithm that ignores the load. To test the validity of this
hypothesis, we apply T-RR to the same data. In order for the
comparison to be fair, we use a training and test set which is the
same size as the training and test set for the LA-RR. However,
similar to the approach in [1], we generate the training and test
sets using any sample from the trace, irrespective of what the
load value was for that sample. If the load plays no role in the
way that the samples were generated and all samples in the
trace are drawn independently from an identical distribution,
this T-RR approach is valid. We set the regularization for both
RR algorithms to be 5000. This is the smallest value that
ensures that RR is well-conditioned (for T-RR).

Comparison of LA-RR and T-RR: We tabulate some statis-



TABLE V. LA-RR: COMPARISON OF LA-NMAE, T-NMAE, DIFFERENCE IN NMAE MEASUREMENT.

←−load values l−→
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TABLE VII. LA-RR PERFORMANCE GAIN

Measure µgain σgain min gain max gain
LA-NMAE Gain 3.76% 5.57 0.03% 32.20%
T-NMAE Gain 2.77% 3.52 0.048% 20.30%

tics which describe the performance of the LA-RR and T-RR
algorithms in Table VII. We use both the T-NMAE and LA-
NMAE to evaluate the performance. The mean performance
gain achieved by the LA-RR is 3.76% if the LA-NMAE is used
and 2.77% if the T-NMAE is used to compare performance.
These mean values are computed by taking the mean of the
mean LA-NMAE for each load value, and the mean of the
mean T-NMAE for each load value. For completeness, we list
the minimum and maximum performance gain achieved by
the LA-RR routine over all load values. These performance
gains are positive and range from 0.03% to 32.30% for
the LA-NMAE measure and 0.048% to 20.30% for the T-
NMAE measure. We remove the outliers when we compute
the maximum performance gain, e.g. if the performance gain
is greater than 100% this has generally occurred because the
T-RR routine has failed to find good prediction weights. Even
with a regularization parameter which is as large as 5000, the
T-RR algorithm is ill-conditioned. The LA-RR is generally
successful with a much lower regularization parameter –the
problem is better behaved because the load has been removed.
The minimum performance gain corresponds to the case where
the load is l = k?, in this case, the load conditional mean is
approximately equal to the mean value of the trace. We also
list the standard deviations of the performance gains for both
NMAE measures. In summary, for all values of the load, k,
both the T-NMAE and LA-NMAE scores support the claim
that LA-RR outperforms T-RR. In some cases, the performance
gain is 30%, which is significant.

Comparison of prediction performance metrics: We have
established that on average the LA-RR outperforms the T-RR
routine for all values of the load irrespective of whether the
LA-NMAE measurement function is used, or the T-NMAE
measurement function is used. We examine the performance of
the LA-NMAE and T-NMAE measurement functions in more
detail. Tables VI and V list the LA-NMAE, Sk, the T-NMAE,
S, and the difference between the T-NMAE and LA-NMAE,
S − Sk. We draw the following conclusions:

1: In both Table VI and V, Sk the LA-NMAE, is lower than S,
the T-NMAE, when the load is less than l = 39. When the load
is low, the LA-NMAE states that the prediction performance is
better than the T-NMAE. Using the measure, S, penalizes the

Fig. 6. T-NMAE is correlated with the µ(H(y)l), LA-NMAE is not.

prediction algorithm unfairly for when the load on the system
is small. Unfortunately there are more load values greater that
l = 39 than less than l = 39.

2: In both Table VI and V, Sk the LA-NMAE is higher than
S, when the load is l > 39. When the load is high, the T-
NMAE states that the prediction performance is better than it
actually is, giving rise to inflated but unjustified confidence
in the performance of the predictor. In row three of both
tables, S−Sk lists the difference in the prediction performance
measurements for the T-NMAE and LA-NMAE. A negative
percentage for a given load value, means that on average
the error in the measurement of the prediction performance
by the T-NMAE acts to reduce the error in the prediction
performance. For example, when l = 71 active users, the
T-NMAE gives the performance as being 13.41% accurate,
whereas the LA-NMAE gives the accuracy as 21.7%. This
discrepancy, −8.33% leads to over-confidence, it is founded
on a measure which has reduced the sensitivity of the measure-
ment function to errors by standardizing the score with a mean
value which has no relation to the distribution from which
the predictions are made. Similarly, when the discrepancy
is positive, it follows that the T-NMAE gives a pessimistic
measure of the prediction performance.

3: In general more result inflation than result deflation occurs.
For 64% of the load values, which have greater than 231
samples associated with them, the percentage of the T-NMAE,
S, measurement is made smaller which inflates our confidence
of the success of the prediction algorithm. Generally, the
inflation is in the range 4–7%.

4: A number of high level trends warrant reporting. We
plot box-plots of the spread of LA-NMAE and T-NMAE



measurements in our Monte Carlo trials in Fig. 6. As the load
on the system increases its behaviour becomes more volatile;
prediction becomes harder because the behaviour of the system
is more unpredictable. What is significant is that the LA-
NMAE does not seem to penalize as a function of the parabolic
nature of the relationship between the RTP Packet Count
metric and the underlying load on the system (cf. Fig. 2). We
posit that this indicates that the LA-NMAE measures the error
in the predictions, independently of the artifacts introduced
by considering the load. Note that the T-NMAE measure, S,
increases initially until k = 30 and then decreases in Fig. 6.
The T-NMAE’s measurements are clearly correlated with the
parabolic relationship between the RTP Packet Count and the
underlying load on the system. It is unusual that the T-NMAE’s
measurement of prediction error should decrease with the load,
that is, that we can predict the behaviour of the system better
if the load is increased. If we accept this measure as being a
reasonable measure of performance, a misguided conclusion
we could draw from this plot is that we should be able to
make better predictions of how resource behave if we have
fewer resources per user. In comparison the LA-NMAE, Sk,
is an approximately linearly increasing function of the load; it
does not exhibit change-points like the T-NMAE measure S.
When there are more active users using a fixed set of resources
the performance of the resource becomes less predicable.

Implementation Considerations: In terms of prediction per-
formance, the LA-RR gives empirically more accurate pre-
dictions irrespective of which NMAE measure is used than
T-RR. It is a well-principled approach; it acknowledges the
effect changing the load has on the observations drawn from
the system –it is a better model. In terms of complexity and
the ability to perform real-time prediction, we achieve better
results for all load values using only 2% of the data; what
at first looks like a big data problem, is in fact manageable
even with limited bandwidth and compute resources. Instead
of using ≈ 50k samples training data, we use ≈ .2 to 1k and
achieve better results. Given that the asymptotic complexity
of RR is O(N2Ns), when Ns > N , where Ns is the number
of training samples and N = 231 is the number of features,
a comparison of the complexity of LA-RR, O(2302 × 1000),
with T-RR, O(2302 × 50000), motives the selection of LA-
RR. This reduction supports the claim that real-time prediction
of video service level metrics are potentially computationally
achievable. Finally, we observed that T-RR quickly runs into
numerical difficulty due to the condition of its matrix inverse.
This is due to the presence of the load. When the load
signal is dominant the matrix inverse involved in computing
T-RR becomes more singular and thus a large regularization
parameter was necessary to ensure non-singularity. “NaN”
is included in Table. VI when the solver is ill-conditioned.
However, a large regression parameter increases the chances
of having a large bias [3] in the prediction weights. The LA-
RR matrix inverse is generally better conditioned.

VII. CONCLUSIONS

Many SL tools exist to organize data, measure prediction
performance, make predictions about future video service level
metrics –essentially to guess at the state of the system (server-
client metrics) that gave rise to the data. The object of any such
study should be the system, and not artifacts of the way we
use SL tools to probe its secrets. We have demonstrated that

applying SL techniques and measurement functions, without
first examining the underlying structure of the system, may
introduce artifacts. Any subsequent effort to predict what
the system will do next is quixotic and may lead to over-
confidence. In response to this we introduced the idea of
load-adjusted learning, prediction and measurement to remove
these artifacts. Our empirical and analytical findings support
the claim that adopting a load-adjusted processing philosophy
gives more accurate prediction. They also support the assertion
that if this approach is not adopted the load on the system
can inadvertently affect the result. Given the recent interest in
leveraging SL in Networking this results warrants reporting.
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[9] Ruairı́ de Fréin, “Ghostbusters: A parts-based NMF algorithm,” in IET
Irish Sig. Sys. Conf. (ISSC), 2013, pp. 1–8.
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