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Abstract—We study the design of energy-efficient stochastic
leader-selection algorithms in environments which are sensed by
mobile handsets. This work optimizes the energy usage of the
interaction between mobile handsets and an application server.
The energy-efficiency of mobile handset communications is of
increasing importance given the convergence of mobile computing
and cloud computing. In some scenarios the lack of WiFi
forces mobile devices to expend additional energy transmitting
application specific sensed data over cellular networks. This
paper focuses on (1) fairly allocating the overhead of transmitting
sensed data to a cellular base station amongst the mobile devices
by selecting a cluster-head (Fairness is measured in terms of
the relative energy expended); (2) successively improving the
location of the selected leader such that the efficiency of the
entire system is improved; and finally, (3) allowing the mobile
devices to gradually forget what they have learned so that the
life-time of the mobile devices is increased (without significantly
affecting energy savings). We present two algorithms in this paper
and demonstrate that the battery life-time associated with sensor
data transmissions of the mobile handsets may be increased by
20-40% without incurring a sensing accuracy penalty.

I. INTRODUCTION

The proliferation of smart phones (mobiles in what follows)
with increasingly sophisticated sensors provides an attrac-
tive platform for mobile sensing. Applications in the areas
of health-care, social networks and environmental monitor-
ing [13] harness this diverse sensor data for user personal-
ization. These applications leverage mobile cloud computing
technologies and allow dynamic offloading of the sensed data
to address the resource and processing limitations of the
mobile [26], [12].

Energy-efficiency is a major concern. In situations where
WiFi is unavailable, mobiles expend additional energy when
transmitting application specific sensed data over cellular
networks. The alternative is that the mobiles do not report their
sensor readings, and the accuracy of the system is affected.
Existing energy-efficient techniques [4], [3], [11] aim to reduce
the amount of offloaded data of an application to achieve
a trade-off with the amount of energy expended. However,
lossless data compression techniques are limited by the en-
tropy of the sensor readings [24], and thus, other approaches
are required to increase energy efficiency. Optimizing the
selection of mobiles to offload this reduced data, is a promising
approach, but also a challenging open problem. We propose a
cluster-head selection algorithm that adapts the collaboration
between mobiles –in close proximity– by optimizing the

transmission costs: cost is measured in this paper in terms
of the communication distance between the mobiles and the
cellular Base Station (BS) and the inter-mobile communication
distances. We envisage a system that exploits the fact that
shorter transmit distances for communications are cheap, and
that the few longer distance transmissions that are necessary
–to offload aggregated sensed data to the Application Cloud
Server (ACS) via the BS– can be optimized by using only
suitably positioned Cluster-Heads (CH) to perform these trans-
missions. The distribution of mobiles and the BS placement
cannot be controlled; we can however optimize the selection
of the CH for energy savings. In addition, the CHs must also
be changed as time passes to ensure that all transmission costs
are not incurred by one (a few) mobile(s) –the protocol should
be fair. Sharing the transmission energy between the mobiles
has the benefit of potentially extending the average lifetime of
all mobiles; therefore, the proposed approach is timely and of
interest to the mobile sensing community, in that it meets one
of the technical challenges most likely arrest the wide-spread
deployment of mobile sensing technology –battery-life.

This paper focuses on the deployment of a CH selection
technique in open areas like a park, a shopping mall or a
railway station. Mobiles collaborate to send sensing infor-
mation about the temperature, humidity, gas etc. of the area
to an ACS over the available cellular network. We treat the
selection of the CH mobile as a separate problem from the
data compression problem [25]. We contribute two algorithms
that select CHs in an ad-hoc, low latency, bandwidth and
energy manner. Knowledge of the communication distance
between the mobiles and the cellular BS is used to modulate
the probability of each mobile becoming a CH during the next
sensing period: we exploit the notion of each CH’s trajectory,
e.g. the identity of the CH is improved from sensing period
to sensing period by favourably biasing the probability that
neighbouring mobiles become a CH, if the current CH is
well positioned. We compare our solutions with LEACH [9],
a widely used cluster-based technique for wireless sensor
networks. The contribution in this paper goes beyond that of
LEACH in that we allow knowledge of good CH locations to
feed-forward into future CH selection decisions. In terms of
our simulation set-up, the COST-231 propagation model [5]
is used to simulate a micro-cell deployment. Rhee et al. [20]
have presented a truncated Levy walk model which provides a
simple and realistic model for human mobility. This improved
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Fig. 1. Applications request sensed data from mobiles with embedded sensors
in a L × L area. Data is collected by one CH (using WiFiDirect) that
compresses the data before offloading it to the closest BS (using 3G), and
onto the ACS.

mobility model is incorporated into our evaluation.
Section II compares and contrasts our contribution with the

related work. Section III motivates the algorithms. Section
IV discusses the algorithm design. Section V details the
experimental setup and our results.

II. RELATED WORK

The flexible provisioning of mobile applications due to
cloud computing has motivated significant work on the devel-
opment of platforms for “Mobile Cloud Computing (MCC).”
These applications rely on sensed data from embedded sensors
on the mobiles. The reliance on the cloud for computation can
be costly due to data transmission overheads. Performance
degradation may also occur due to limited bandwidth avail-
ability. Platforms such as MAUI [4], CloneCloud [3] and
ThinkAir [11], seek to balance the trade-off between local
processing costs on mobiles and the cost of transferring data
to/from data centres. They select parts of the application to
offload to the cloud server but do not consider collaboration
between mobiles for further energy savings.

iCoMe [29] is an incentive-based cooperative resource
management technique that focuses on increasing the rev-
enue of the service provider; mobiles actively download data
from available cellular and WiFi connections. In contrast, we
consider the case when mobiles offload data to the cloud
server for mobile sensing applications. We do not consider the
redundancy in the collaboratively offloaded data, and assume
that frequent pattern mining [14], Statistical Learning Theory
[23] or Rank Reduction [22] do not achieve sufficient reduc-
tion. Penner et al. [16] have presented ‘Transient Clouds’, a
cloud-on-the-fly approach for collaboration between mobiles.
Serendipity [30] and Mobile Device Cloud [15] utilize con-
nected wireless networks to use the computational resources of
other mobiles in close proximity. Similarly, our approach uses
collaboration between mobiles to offload data to a cloud server.
The crucial difference is that our approach uses the distances
between the mobiles and the BS to select the best CH(s) to
offload the data on behalf of the network. This reduces the
number of high cost cellular network transmissions required.

The selection of one/many mobile(s) to report-back sensor
data has been widely studied in wireless sensor networks.
The routing protocol LEACH [9] stochastically selects CHs.
Many CH selection protocols have adapted the underlying
threshold framework of LEACH to improve network lifetime

and energy-efficiency with mixed results according to [19].
Factors like residual energy, in [7] and [31], distance to the BS,
in [10], and centralized algorithms with location information at
the BS, in [8], have been used to study CH selection. Semantic
Clustering Models with fuzzy inference systems have also
been introduced [21]. We take a similar approach to LEACH.
We consider the challenges presented by using mobiles as
a sensing platform. These challenges include the non-static
nature of the mobiles, which implies that we must reconfigure
the CH as time evolves. We show that the fact that location
information is available in the mobile sensing scenario may
be advantageous. We use the non-static nature of the mobiles
and location information to optimize the trajectories of the
CHs, e.g. chained assignments of CH-ship, for energy-saving,
which is novel. Neighbouring mobiles collaborate by modu-
lating their selection probability relative to a well-positioned
CH to ensure that the CH-ship passes from a well placed
position to a better one successively. Our contribution goes
significantly beyond previous approaches in that we provide a
solution for: allocating CH responsibility fairly; successively
improving CH selection through time by biasing the thresholds
of neighbouring mobiles and then forgetting this bias after
a suitable time has elapsed, to save battery life; and finally,
allowing the number of CHs to increase and decrease as the
sensing scenario demands.

III. PROBLEM SET-UP

We consider the problem of selecting CHs periodically from
a given clustering solution in such a way that the energy
consumed during data transmission to an ACS is minimized.
The set of mobiles from which the CHs are selected are mobile
handsets and the cellular network is used as the communi-
cation medium between the CH and ACS. Deployments in
open areas such a park, a shopping mall, a railway station
etc. which lack WiFi are considered in Fig. 1. The ACS
requests sensing data from the application client installed on
the mobiles. Instead of each mobile sending data, mobiles
collaborate, and a reduced number of them send sensing
information about the temperature, humidity, percentage of
gas etc. in the area of interest to the application. A mobile
transfers sensed information using WiFi-Direct [17], [18] to a
CH who is responsible for compressing the data. WiFi-Direct
supports one-2-one and one-2-many operations over WiFi-
enabled mobiles but does not require a WiFi access point.
This allows peer-2-peer transmissions between the mobiles.
We assume that each CH connects to one cellular BS in its
micro-cell and offloads the sensed data.

We consider a duration of Z seconds, which is subdivided
into time intervals of I seconds. Sensor readings are taken
during each interval, I . The k-th time interval is (k − 1)I <
t ≤ kI . Each mobile has a unique identifier, n ∈ N , where
N is the set of mobiles sensing the environment. The mobiles
have equal transmission, reception and processing capabilities.
The total number of mobiles located within the area of interest
(Fig. 1) is denoted |N |. The area to be sensed is assumed to be
a square grid with length L meters. The top right coordinates



of the square is the vector [L,L]T . We consider CH selection
in 2-D as opposed to 3-D for notational simplicity. The n-th
mobile’s coordinates during the k-th time interval is xn(k).
The distance between two mobiles is

d(xi(k),xj(k)) = ||xi(k)− xj(k)||2. (1)

The decision variable ykn ∈ {0, 1} indicates whether the mobile
becomes the CH of a cluster during time interval k. If ykn = 1,
mobile n is a CH for time interval k.
Assumption 1: We assume the mobiles can be partitioned into
X clusters. Once the CHs have been selected, the mobiles
select the nearest CH as their CH, and form the set Ci –the
set of members of the i-th cluster– using a spanning tree,
and assumption 1 holds. The sets Ci,∀i have the following
properties: (1) there are no empty clusters, Ci 6= ∅, i ∈ [1, X];
(2) the cluster membership does not overlap, Ci∩Cj = ∅, i, j ∈
[1, X], i 6= j; and finally (3) all mobiles are assigned to one
cluster,

⋃
i∈[1,X] Ci = N . The CH of cluster, Ci, is responsible

for aggregating the sensed data received from the cluster
members. Every I seconds, the data aggregated from cluster
Ci is transferred to the BS. The BS lies at coordinates xB .
Assumption 2: It is assumed that the distance between all
mobiles and the BS is greater that the distance between the
mobiles that can directly communicate with each other:

d(xB ,xn(k)) > d(xn(k),xj(k)), ∀j, n ∈ N , ∀k (2)

This assumption is fundamental; the success of our approach
depends on the fact that mobile-2-mobile (m2m) communica-
tions are cheaper, in terms of energy usage than mobile-2-BS
(m2B) communications. In other words our approach is suited
to deployments where the sum of the energy expended by
many m2m transmissions, costs less than the energy expended
by one m2B communication. The energy consumed by mobile
n in time interval k is due to its support of three functionalities:
(1) sensing, which costs Skn; (2) transmission of data, which
costs T kn ; and finally, (3) reception of data, either m2B or
m2m, which costs Rkn, in terms of energy usage respectively.
The total energy expended by mobile n during interval k is

Ekn = Skn + T kn +Rkn (3)

The dominant term in this sum is T kn , the total energy ex-
pended is approximately equal to the transmission cost Ekn ≈
T kn . The path loss exponent for cellular transmissions, e.g.
m2B transmissions, is denoted λ. The energy lost during m2B
transmissions is proportional to the distance d(xB ,xn(k))
raised to the power of λ, e.g.

T kn ∝ d(xB ,xn(k))λ if ykn = 1. (4)

The property that we exploit to decrease energy usage is
described as follows. We drop proportionality factors and
offsets in favour of a making a simplified argument, e.g.
instead of using T kn = a + bd(xB ,xn(k))

λ we let a = 0
and b = 1 to simplify the notation in this motivation section,
using T kn = d(xB ,xn(k))

λ. Referring to (Eqn. 2), the crucial
point is that the marginal cost of the two types of transmission,
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Fig. 2. CH Trajectories: CHs (red dots) and transmissions between the mobiles
and the CH (solid black arrows) are illustrated at times k = 1, 2, 3 and 4.
The transmission between the CH at each time to the BS is illustrated with
a dashed black arrow, and d(xB ,xq(k)) meters. The inter-mobile distance
is small relative to the CH-2-BS distance. For k = 1, 2, 3 the CH follows a
trajectory (dashed red line), which moves the CH successively closer to the
BS, reducing the cost of the CH-2-BS transmission. At k = 4 the CH jumps
to a new location. For k = 1, 2, 3 energy is saved. At time k = 4 less energy
is saved, mn is smaller, but fairness is preserved.

m2m and m2B, grows rapidly as a function of the transmission
distances, raised to the exponent λ,

mn = |d(xB ,xn(k))λ − d(xn(k),xj(k))λ| (5)

We save mn when mobile n performs a local transmis-
sion to mobile j instead of a transmission to the BS. The
greater the average distance of the mobiles from the BS,
1
|N |
∑
n∈N d(xB ,xn(k)) the greater the gain in energy saving

we expect. In the worst case scenario, all mobiles commu-
nicate directly with the BS at a cost

∑
n∈N d(xB ,xn(k))

λ.
Considering the simple case X = 1, in the best case scenario,
all mobiles communicate with one CH, j, who transmits
all of the sensed data to the BS, at a cost d(xB ,xj(k))λ.
The total saving for each mobile that does not communicate
with the BS is

∑
n∈N\jmn. Let s(j) = d(xB ,xj(k))

λ +∑
n∈N\j d(xn(k),xj(k))

λ. The upper bound, u, on the poten-
tial energy saving, when X = 1, for a given n is the difference
between the worst and best case scenarios above:

u =
∑
n∈N

d(xB ,xn(k))
λ −min

j
s(j) (6)

which gives a good back-of-the-envelope estimate of how
much energy this technique could save. The upper bound
u, for X = 1, is constructed from the energy cost of the
worst case, where all mobiles transmit to the BS, and the
alternative, which is where the best mobile is chosen to be
the CH. The lower bound is 0. To ensure that assumption
2 holds we assert that the set of mobiles that lie within the
distance d, a user defined constant, of CH, n, is denoted Wn.
We bound the maximum distance of m2m transmissions so
that energy savings are achieved with high probability. A less
exact, simplified upper bound follows∑
n∈N

d(xB ,xn(k))
λ −min

j

(
|N \ j|dλ + d(xB ,xj(k))

λ
)

(7)

CH Trajectory Minimization: Taking this analysis one step
further, and considering the simple case of X = 1 CHs, a
greedy mechanism for reducing energy consumption, if the
location of the mobiles is known, is to consider the formation
of chains of CH heads through time, where each successively
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chosen CH reduces the energy cost of transmission to the BS,
e.g. by selecting mobiles i, j, and m and so on, such that

d(xB ,xi(k)) > d(xB ,xj(k+1)) > d(xB ,xm(k+2)) . . . (8)

This procedure is illustrated in Fig. 2. The CH is moved
closer to the BS as k increases, which is far away from the
mobiles; this movement is called the trajectory of the CHs
and it is illustrated in red. It does not involve the physical
movement of any of the mobiles, but a change in the role
that they perform. The problem with such an approach is
that when the CH has moved as close as possible to the
BS, it cannot move closer, and the mobile’s battery becomes
depleted as this mobile is unfairly sending the costly offload
transmissions to the BS. In the next section we describe an
algorithm that stochastically selects the CH in such a way
that the CH-ship may jump out of its current trajectory and
start a new trajectory at a new position. This is illustrated in
Fig. 2 at time k = 4. A new mobile is selected as the CH,
which has no relation with previous CHs. This jump spreads-
out the costly transmissions to the BS between the mobiles,
introducing fairer CH selection.

The sensed data available in mobile n is Vn bits. The data
available for transmission after aggregation in the CH is

Vi = c
∑
∀n∈Ci

Vn bits. (9)

We make the assumption that the aggregation factor is on
average c and that the accuracy of the technique is not
significantly affected by different CH selections. Finally, if
the battery level of mobile n at the start of time interval
k, denoted bkn, is below γ of the full battery level Bn,
the mobile may have to be powered off so that the battery
of one mobile dying does not affect the sensing solution,
bkn >= γBn, ∀n ∈ N ,∀k ∈ [0, Z/I]. This restriction is
imposed on all mobiles for every time interval to ensure battery
availability for sensing, transmission and receiving. At the end
of each interval, the battery level is checked

bk+1
n = bkn − Skn − T kn −Rkn. (10)

IV. STOCHASTIC, FAIR CLUSTER-HEAD SELECTION

We stochastically select the CH for the next time interval,
k + 1, using a fair, greedy algorithm, which aims to (1)

optimize the energy usage of each current CH in a collabora-
tive way and (2) distribute the transmission costs among the
mobiles, in a manner which is aligned with the CH trajectory
minimization illustrated in Fig. 2.
Fairness: A threshold value, Dk

n for mobile n, for the k-th
time interval, is used to determine the probability that mobile
n becomes the CH. Each mobile randomly draws a number,
r, between 0 and 1 and compares the outcome of the trial, r,
with the threshold, Dk

n. The decision rule for determining the
CH-ship of a mobile n at time k is

ykn =

{
0, if r ≥ Dk

n,

1, if r < Dk
n.

(11)

Information about the distance of the n-th mobile from the CH
is not incorporated in this decision rule –all mobiles use the
same threshold to determine whether or not they become the
CH during the next time interval. This process is fair in that
all mobiles are equally likely of becoming the CH during the
next time interval. The threshold Dk

n determines the expected
number of CHs during the k-th time interval. The parameter,
p, sets the probability that a given mobile will be a CH; the
threshold trace is a periodic function.

Dk
n = B =

p

1− p mod (k, p−1)
, ∀n ∈ N ,∀k (12)

Fig. 4, row 1, describes the evolution of 5 cycles of this
base threshold, B as a function of time. The parameter p
sets the minimum value this cyclic function achieves. The
larger the p, the greater the number of mobiles that will be
selected as CH. The crucial point is that each mobile traces out
exactly the same threshold evolution because p is the same for
all mobiles. LEACH operates in this manner. The difference
between our algorithm and LEACH is that (1) we allow a
mobile to become a CH multiple times; (2) we modulate the
threshold, the effective p, based on location information; (3)
we adapt and forget the threshold modulation depending on the
mobility of the mobiles; (4) we allow the number of CHs to
fluctuate so that the number of CHs X can change with time.
Mechanisms for achieving these functionalities are described.
Threshold Modulation: We propose two algorithms that
modulate the threshold of certain mobiles depending on the
distance between the CH of the previous interval and the BS.
alg1 alters the threshold for the nearest neighbours,Wi, of the
CH, i, as a function of their distance to the BS. We modulate
the threshold in (Eqn. 12) in the decision rule (Eqn. 11) of
a mobile n ∈ Wi by including a distance function factor
f(xB ,xn(k)) = 1

2

(
D−d(xB ,xn(k))

DB + 1
)

in the threshold
trace. The constant D is the maximum permissible m2m com-
munication distance, a user defined variable. A good choice in
Fig. 1 is D =

√
2L2. The term, S = max f(xB ,xn(k))B, is

the maximum value the distance function, f can achieve for
a given position xn(k). Every time the mobile moves, f and
S are updated.

Dk
n =

{
B
2S

(
D−d(xB ,xn(k))

DB + 1
)
∀n ∈ Wi

B ∀n ∈ N \Wi

(13)



The advantage of including f
S is that greater energy is saved

with high probability as CH trajectories, like the trajectory
in (Eqn. 8), are followed. The short-coming of this approach
is that the algorithm is not as fair as the LEACH approach
(Eqn. 12). Mobiles with modulated thresholds may become the
CH too frequently, which exhausts their battery-life unfairly.
alg2: We incorporate an additional forgetting factor g into the
threshold trace generation function in (Eqn. 13). The role of
g is to ensure that after a few intervals of not being chosen to
be a CH, mobile n stops modulating its threshold using f/S.

g(k) =

(
1

(k − v + 1)l

)
when n ∈ Wi (14)

The time when mobile n starts modulating its threshold by
f/S is denoted v. The power in the denominator l sets the rate
at which the mobile forgets. In Fig. 4 we use l = .8 and v =
100, which implies that a neighbouring mobile was elected
CH at time k = 99. The choice l = .8 means the effect of f
is forgotten after 30 samples. Multiplying g, a decay function
by the modulation factor f causes the effect of the modulation
factor to be forgotten. We set S = max f(xB ,xn(k))g(k).

Dk
n =

{
Bf(xB ,xn(k))g(k), ∀n ∈ Wi,

if B ≤ Bf(xB ,xn(k))g(k). otherwise
B ∀n ∈ N \Wi

(15)

Once this new threshold value becomes less than the base
threshold, the mobile no longer modulates the threshold by
f/S, unless the mobile is in the neighbourhood of a CH at
some future time. Fig. 4 depicts the effects of the different
threshold algorithms. After a mobile becomes the CH, it
establishes a one-2-many connections with its peers and sends
its self-election information along with its position coordinates
using WiFi-Direct. The second algorithm, alg2, introduces
an additional forgetting mechanism for each mobile that was
in the neighbourhood of the CH, i, e.g. the set Wi in an
previous interval, but that was not selected to be a CH.
The forgetting mechanism allows mobiles to forget about: (1)
location information if it may be outdated; (2) previous CH
assignments so that after a suitable time has elapsed the mobile
uses the fair threshold generating rule (in Eqn. 12).
Control of flow: alg1 and alg2 are divided into three phases in
Fig. 3: Initial, Cluster-Setup and Transmit. They cycle through
these phases to select each new CH every I seconds.
Initial Phase: In this phase, the CHs for the interval are
selected in a distributed way. Each mobile selects a uniformly
distributed random variable r in the range [0,1]. If this number
is less than the threshold defined for the interval, Dk

n, the
mobile becomes a CH for that time interval (Eqn. 11). The
base-threshold is used to initiate the thresholds during the first
interval, k = 1. If mobile n is a CH during interval k > 1, the
thresholds of the members of the setWn are modulated by the
distance function f/S if alg1 is used, or the distance function
and the forgetting factor f/S and g if alg2 is used. Therefore,
the outcome of future stochastic trials is biased by the identity
of the CH during the previous interval n and the distance of
the nodes in the set Wn from the BS. Mobiles that are not
members of the Wn, or the neighbour sets of other CHs use
the base-threshold B to perform CH selection trials.

Fig. 4. The threshold trace (solid line, row 1), B, for intervals 1 ≤ k ≤ 50
(Eqn. 12). At time 51 ≤ k ≤ 100 the distance function is incorporated
into the trace (Eqn. 13), dashed-dot line, row 2. The minimum value of the
threshold hold is modulated by the distance of the mobile from the BS. In
row 3 (o-solid line), 101 ≤ k ≤ 150 the forgetting factor (Eqn. 15) removes
the effect of the distance function from the threshold by time k = 130.

Fig. 5. Truncated Levy Walk Mobility Patterns for ten instances of mobiles
starting at [25, 25]T (columns 1,2) and [75, 75]T (columns 3,4) for two hours.

Cluster Setup Phase: Each non-CH mobile must choose to
belong to one CH. Due to the mobility of the mobiles, the
CH chosen is the closest (using Eqn. 1) CH during that time-
interval. Each mobile predicts its mobility path in the time-
interval k and the CH with the closest CH is selected for that
time-interval. An acknowledgement is then sent to the selected
CH to inform it about its new member.
Transmit Phase: The CH receives all mobile messages and
creates a transmission schedule for all of its member mobiles.
The members transmit the sensed data during their allocated
time. When the data is received, the CH compresses the data
into a single data stream and transmits it to the BS.

V. EVALUATION

We assess (1) the gain in energy saved over LEACH and
(2) the distribution of energy saving gains over all mobiles
participating in sensing. To achieve this, we vary the number
of mobiles, the probability p of the each mobile becoming a
CH, and the slope of the forgetting factor l.



Fig. 6. Energy gain of alg1 and alg2 over LEACH

Simulation Model: The following simulation set-up is used to
compare the performance of alg1 and alg2 with LEACH. The
sensing area has dimensions L×L where L = 100m. The BS
is at location xB = [500, 500]T . The time interval between
CH selections is of duration I = 120s. Each experiment is
run for a duration of Z = 14400s. Each mobile device’s
movement is modelled using the truncated Levy walk mobility
model presented in [20] which can be represented by flight
length ϕ, flight direction θ, flight time tf and pause time tp.
Our model picks the flight length and pause times randomly
from Levy distributions with stability exponents α = 1.5
and β = 0.5 respectively. The flight direction θ follows
a uniform distribution and flight time is calculated using a
constant speed of 1m/s during the flight. The position of the
mobile is updated every 40s, 3 times per time-interval I . We
select 0.01m and 1000s respectively for the scale parameters
of the flight length and pause times Levy distributions. These
values are motivated by the fact that the mobile devices are
within a mean value of one meter from their original position
every time a time interval of 120 seconds has elapsed. For the
purpose of illustration, samples from the levy walk model for
ten instances of mobiles, starting at two sets of coordinates
xi(0) = [25, 25]T and xj(0) = [75, 75]T , and running for a
period of two hours is depicted in Fig. 5. The start locations
are denoted by circles and the end locations are given by
squares. The mobiles have a maximum battery of 5Wh which
decreases over time due to (1) the general usage of the mobile,
for the operation of the sensors, and (2) transmitting sensed
data. Sensirion offers humidity and temperature sensors for
mobiles with an energy consumption of 0.01152 J/h [28].
This is taken to be the energy loss associated with sensing.
For energy transmission calculations, we adopt the COST-231
propagation model based on the Walfish-Ikegami model for
micro-cell deployments [5], [27]. We use the non-line-of-sight
path loss model for 2GHz which is 35.7 + 38log10(d). The
mobile also uses energy to maintain connections, 0.02J/sec for
the cellular network(3G) and 0.05J/sec for WiFi [2]. We use
this maintenance energy cost for WiFi Direct communications.

The number of mobiles sensing the environment is varied in
steps of 100 from 100 to 1000. Each experiment is randomly
initialized and run 30 times. The probability of a CH being
selected, p, is examined to study how different probabilities
p ∈ {.1, .15, .2, .25} affect energy savings. We compare
LEACH with alg1 and alg2 in Fig. 6, and compute box-plots
for the results for each p and number of mobiles pair. We
vary the probability of CH selection p for different numbers of
mobiles. We conclude that: (1) both alg1 and alg2 improve the
gains in energy savings over LEACH (by ≈ 40% and ≈ 20%)
irrespective of the number of mobiles and the probability p.
(2) As expected, the variation in the energy gains decreases
as the number of mobiles increases. (3) Alg1 achieves better
gains than alg2; however, the number of mobiles used as CHs
is greater for alg1 than alg2. This is explained by considering
the role of the slope of the forgetting factor l. (4) Alg1 and
alg2 are fair, in that remarkably, the inter-quartile range of
the energy saving (over LEACH) is ≈ 1%. This implies that
most devices achieve an energy saving which is within 1 or 2
% or the mean energy saving. (5) In terms of the role of the
probability p in determining the percentage energy saving, the
gain in energy saving over LEACH decreases as the probability
of each mobile being a CH increases.

We consider now the effect of the slope of the forgetting
factor in Table I, e.g. for alg2. As the parameter of the
forgetting factor slope l increases, we expect that alg2 will
forget slower. We re-run the experiments above for l = .6
and .9 to determine the role of the forgetting factor l. Table I
tabulates the mean energy gain for alg2 over LEACH. The
standard deviation of the gain is also illustrated. Once again,
the deviation is small relative to the mean energy gain –the
deviation is approximately 1% again. Table I confirms that
as l is increased from .6 → .8 → .9 the average gain is
decreased. The mobiles forget slower, and energy saving gains
are reduced. The overall trend is that increasing p increases the
energy saving gains for p = .15, but energy saving gains then
decrease as p increases further. The fact that the best gains are
achieved for a probability p = .15 and l = .6 motivates the
need for a more in-depth study that determines the best p, l
pairs for different deployments. One interesting observation is
how the number of CHs changes over time for alg1 and agl2.
A secondary study on the effect of p, l on the number of CHs
would help refine the deployment of alg1 and alg2 in different
scenarios where different numbers of CHs were preferable.
The ability of these algorithms to select different numbers of
mobiles to be CHs is advantageous, because irrespective of
the number of CHs, X , we achieve significant energy savings.

Future Implementation Outlook: Our approach assumes that
the participating mobiles have location information (using
GPS) and knowledge of the location of the BS. This assump-
tion is reasonable for android operating systems. Details like
cell id, location area code, Mobile Country Code, Mobile
Network Code are available to applications [1]. In addition,
several public databases like OpenCell [6] contain a database
of all BSs and are used by applications today.



TABLE I
MEAN % GAIN (STANDARD DEVIATION IN BRACES)

Mobiles p = .1 p = .15 p = .2 p = .25

l = .6

100 16.2(2.15) 23.3(2.17) 22.1(1.68) 21.9(1.61)
200 22.3(1.48) 25.5(1.24) 23.4(1.44) 22.4(1.04)
300 23.0(1.42) 26.4(1.26) 23.6(1.15) 22.3(0.74)
400 23.9(1.33) 25.9(0.76) 23.8(0.73) 22.3(0.61)
500 23.2(1.28) 25.9(0.9) 23.4(0.57) 22.2(0.55)
600 23.1(1.06) 26.3(0.76) 23.5(0.76) 22.3(0.54)
700 23.4(0.82) 26.4(0.6) 23.7(0.63) 22.3(0.62)
800 23.5(0.74) 26.3(0.66) 23.5(0.68) 22.4(0.49)
900 23.6(0.59) 26.3(0.68) 23.5(0.53) 22.4(0.44)

1000 23.3(0.68) 26.2(0.55) 23.6(0.48) 22.4(0.52)

l = .9

100 11.1(2.13) 18.3(2.17) 16.3(1.51) 16.2(1.42)
200 15.6(1.28) 19.7(1.33) 17.4(0.94) 16.2(1)
300 16.7(1.26) 20.4(1.32) 17.6(1.03) 16.5(0.71)
400 17.1(1.37) 20.3(0.69) 17.8(0.65) 16.5(0.64)
500 17.3(0.9) 20.3(0.81) 17.2(0.75) 16.2(0.52)
600 16.8(0.98) 20.5(0.83) 17.6(0.67) 16.4(0.48)
700 17.2(0.68) 20.9(0.74) 17.9(0.67) 16.6(0.52)
800 17.3(0.7) 20.6(0.54) 17.8(0.62) 16.6(0.41)
900 17.1(0.51) 20.6(0.54) 17.5(0.54) 16.4(0.53)

1000 16.9(0.54) 20.5(0.5) 17.5(0.5) 16.3(0.42)

VI. CONCLUSIONS

This paper focuses on reducing the energy-consumption
when sensed information is offloaded to an ACS. When there
are no WiFi access points in close proximity, mobiles rely
on the cellular network to transfer the sensed data, which is
costly in terms of energy usage. We introduce a collaborative
approach for mobiles, that efficiently selects well-placed CHs
to make the high energy transmission to the BS. Collaboration
is based on WiFi-Direct, which allows peer-2-peer transmis-
sions between the mobiles. Our approach is novel in that it uses
the current distance (and potential future distances) between a
mobile (and it neighbours) and the BS to select a CH to offload
data to, and to bias future selection decisions. These results
have real-benefits for practitioners: we show energy savings in
the range of 20 to 40% over the state-of-the-art are possible.
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