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Abstract

The DUET and DESPRIT blind source separation algorithms attempt
to recover J sources from I mixtures of these sources, in the interesting
case where J > I, with minimal information about the mixing environ-
ment or underlying source statistics. We present a semi-blind generaliza-
tion of the DUET-DESPRIT approach which allows arbitrary placement
of the sensors and demixes the sources given the room impulse response.
We learn a sparse representation of the mixtures on an over-complete spa-
tial signatures dictionary. We localise and separate the constituent sources
via binary masking of a power weighted histogram in location space or in
attenuation-delay space. We demonstrate the robustness of this technique
using synthetic room experiments.
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ABSTRACT

The DUET and DESPRIT blind source separation algorithms at-
tempt to recover J sources from I mixtures of these sources, in the
interesting case where J > I, with minimal information about the
mixing environment or underlying source statistics. We present a
semi-blind generalisation of the DUET-DESPRIT approach which
allows arbitrary placement of the sensors and demixes the sources
given the room impulse response. We learn a sparse representation
of the mixtures on an over-complete spatial signatures dictionary.
We localise and separate the constituent sources via binary masking
of a power weighted histogram in location space or in attenuation-
delay space. We demonstrate the robustness of this technique using
synthetic room experiments.

1. INTRODUCTION

The DUET algorithm performs source separation with notable suc-
cess using a pair of closely spaced microphones [6]. Extending
the DUET approach to leverage observations from I > 2 sensors
has been addressed in [7] with the proviso that the sensors are con-
strained to lie in a linear array with a regular-spacing. DUET and
DESPRIT assume that the wave propagating to the sensor array
obeys the narrow-band assumption. In this work we loosen this
constraint so that observations from arbitrarily placed microphones
can be leveraged along with the DUET-pair of microphones to
perform source localisation and separation. Our technique treats
channel characteristics as cues as opposed to obstacles for source
localization similar in spirit to the approach in [8]. We consider the
FOCUSS [5] re-weighted minimum norm methodology for sparse
signal representations. Our technique is general, in that you can
find a “good” “decomposition”, where “good” is a task-dependent
measure of your choice, e.g. not just in the L; norm sense, but
localisation or separation quality, and where “decomposition” is ar-
bitrary, e.g. L1 + AL2 optimization or some more complicated conic
optimization, for example, by considering a weighted L; + AL2
initialized Lo.s + ALZ objective for super-sparse resolution. We
introduce our notation. A continuous time signal s(t) is denoted by
s(nT) = s[n] wheren = 0,1,2,... in the discrete time domain
where T is the sampling period. A continuous time signal delayed
by & € R seconds is denoted by s(t — §). In discrete time we define

$°[n] = s(nT - 9), 1)

whichis s[n — 6/T] if §/T € Z. A non-integer sample delay can be
performed using sinc-interpolation given that the signal is bandlim-
ited and sampled at a sufficiently high sampling rate.

oo

[n]= Y s[nJsinc(nT — é). @

n=-—oo
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In practice a finite length approximation of the sinc function leads
to error in the estimate of s°[n]. A non-integer delay of a bandlim-
ited signal sampled above Nyquist rate can also be determined us-
ing a Discrete Fourier Transform (DFT). Multiplying DFT{s[n]} =

S[k] = S NZ1s[n]W*" where W = ™%, by a linear phase
term W*< in the discrete frequency domain, corresponds to a cir-
cular shift of the signal by d = §/T € R samples. Zero-padding
in the time domain and consequently increasing the resolution in
the frequency domain, taking the DFT and multiplying by the linear
phase term gives the signal shifted in time. We define the function
ZP (a, s[n], b) which appends a zeros to the beginning and b zeros
to the end of s[n]. The function IP (a, s[n],b) removes a samples
from the beginning and b samples from the end of s[n]. -

$°ln] = IP (a, IDFT{DFT{ZP (a, s[n], b)}W**}, b) R

where IDFT{S[k]} = & Sn o' S[k]W~*" is the inverse DFT.
s%[n] is calculated exactly using the discrete frequency domain
method (Eq. 3).

We perform localisation in the short-time-frequency domain
where speech has improved Windowed Disjoint Orthogonality
(WDO) [6] and sparsity [9]. Consequently we need to construct
a time-frequency dictionary which represents the environmental
attenuation and delay effects to simulate the propagation effects
on the source signals in time-frequency. The Short-Time-Fourier-
Transform (STFT) of s[n] is,

N-1-mR
STFT{s[n]} = Slk,m] = )

n=mR

s[n]wln — mR|W*r—m8),

@
S[k, m] is the STFT of a windowed signal positioned at sample mR
where w(n] is a window function and R is the number of hop-size
samples. [k,m] are the discrete frequency and time indices respec-
tively. The focus of this paper is to generalize the DUET and DE-
SPRIT frame-work so that information from singleton microphones
arbitrarily spaced in the environment can be leveraged to localize and
separation sources. Recently submitted work [1] discusses the bias
inherent in the DUET-type approach and addresses the issue of bias
free spatial signature construction in time-frequency. We refer the
interested reader to the companion paper [1] which discusses time-
frequency spatial signature dictionary construction without window-
ing and wrap-around effects.

2. MIXING MODEL

In an anechoic environment, a continuous time source signal s; (t)
is attenuated and delayed as it propagates the direct path to sensor
x;. The attenuation and delay effect on the %" source received at the
it" sensor is (aj;, d;:) and s0 3;:(t) = azis;(t — 8;:), yielding the
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Fig. 1. Fig. 1 illustrates 2m x 2m X 2m room with grid positions every 0.5m. Sensors pairs are positioned arbitrarily (denoted by a star) so

that we can perform a DUET de-mixing using each of these pairs.

mixtures,
J
zi(t) = D &u(t) = hii(t) x5i(2) ®)
=1

I mixture signals are observed, z;(t), at physical locations x;, where
h;i(t) is the continuous time transfer function from source s; to sen-
sor x;. The source is constrained to lie at one of P grid points,
indicated by the numeric labels in the scene illustrated in Fig. 1.
Sensors pairs are placed arbitrarily in this 2m X 2m X 2m room. The
grid points p = 1... P are arranged with variable spatial resolution.
Consider a dedicated teleconferencing room, with an arbitrary num-
ber of inexpensive microphones, where the source location, detected
using a sensor array, is used to automatically identify the speaker or
indicate the position of the speaker.

2.1. Time-Frequency Mixing Model
We form the vector,

z(k,m] = [Xi[k,m],..., Xs[k,m], ..., X1[k,m]]" € "
(O]
for each time-frequency point [k, m]. We construct a spatial signa-
tures matrix for each [k, m], D[k, m] € C'*%,

«——Location p——

1 Hyi [k, m] le[k,mI Hpilk,m]
Dlk,m] = % Hu[;k,m] Hpi[.kvm] HPi['kvm]
w1 o . .
! : : !
Hik, m] Hpy[kym] Hp [k, m]
@)

Dk, m] gives the spatial signature, Hp; [k, m], for every location, p,
in the grid relative to each sensor, x;, for [k, m]. For example, (Eq. 7)
gives the dictionary constructed for a room with P potential grid lo-
cations and I sensors (Fig. 1). The J sources [s1,...S; ..., ] are
constrained to lie at a subset of the P grid points. Given the obser-
vation matrix, [k, n}, and the spatial signature matrix, D[k, m],
we locate the source by learning the vector c[k,m] € CF*' which
explains the sensor observations in the most parsimonious manner
given the spatial signatures dictionary,

z[k, m| = D[k, m]clk, m]. ®8)

We solve each subsystem [k, m] independently. This approach lends
itself to real-time implementation perhaps in parallel on a dedicated
set of processors. Assuming WDO in time-frequency, a single source
is active in [k, m]. The element of ¢ with the most energy, for exam-
ple p = 25, indexed by ¢, [k, m], indicates the position of the source
and appropriate transfer function.

3. SPARSE SOLUTIONS AND WINDOWED DISJOINT
ORTHOGONALITY

We desire a solution to the system of equations (Eq.8) which re-
veals the locations p of the latent source signals s;[n|. Each atom
of the matrix D[k, m| describes the direct-path propagation effects
between the sensors and the room grid points, a vector ¢, [k, m] that
satisfies (Eq.8) and that captures a large percentage of the mixture
energy in a small number of elements of c[k, m| indicates the loca-
tion of the source signals. We drop the time-frequency notation for
convenience henceforth.

The system (Eq.8) has infinitely many solutions. One such solu-
tion is the pseudo inverse D'tz = ¢, which sheds little light on the
source locations as it generally yields a dense vector c. The authors
show that the Ly norm solution spreads the energy across many of the
dictionary elements yielding an un-interpretable and unseparated so-
lution in [8]. Many possible combinations of the dictionary elements
can be combined to form the signal. We constrain the solution-space
to reflect the assumption that as few of the atoms of D[k, m] as pos-
sible should be used to explain the mixture x|k, m]. Regularization
is used to enforce this prior information about the form of the solu-
tion.

The Lo norm, denoted by |c|o, is the ideal sparsity measure as
it counts the number of non-zero elements in ¢. Formally the Lo
optimization problem maybe stated as

=
9 o 0 " £,
min lelo = Z le]” subjectto De = x. )

p=1

This solution is shown to be unique when c is sufficiently sparse and
coincides with the solution of,

P
. 1 X rl
min lelr = Z le|” subjectto De = x. (10)

p=1
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Fig. 2. Fig. 2(a) compares the power of the solutions, for an objective heavily weighted in favor of the L3 norm in row 1 and an objective
heavily weighted in favor of a sparse objective in row 2. The source is located at position 25 on the x-axis. The sparse solution reveals
the source location. Fig. 2(b) illustrates the accuracy of the estimate at position 25 as the objective becomes weighted in favor of a sparse
objective. The L, norm distance between the true solution and estimate (in Fig. 2(b) row 1) decreases as the sparsity (which is measured

using the L,) increases (in Fig. 2(b) row 2)

in [2, 4, 3]. This is a significant result as the L; relaxation (10) is
a convex optimization problem and a global minimum can be found
for real-valued data by linear programming. The Lo optimization
problem (9) is a combinatorial optimisation problem. The gradient
gives no information about the direction coefficients should move to
improve the solution using a gradient descent updating procedure.
Using the L; norm is equivalent to assuming there is a Laplacian
prior on the coefficients. Noise can be included in the objective func-
tion as the L; norm gives an exact solution — which includes back-
ground noise — and can generate large artefacts. The weighted mixed
AL; + L2 objective achieves a trade-off between the level of sparsity
enforced on the solution and the fidelity of the solution. Careful tun-
ing of the weighting parameter accounts for the background noise
reducing the number of artefacts due to the L, term.
min Alc|: +||De - yll2 an
Fig. 2 illustrates the trade-off between sparsity in location and accu-
rately representing the mixtures by projection onto the spatial signa-
tures dictionary. There are 125 potential locations in the room and 1
active source. The accuracy in source estimate at the correct source
location increases as the objective becomes heavily weighted in fa-
vor of a sparsity objective. Sparsity in location reveals the source
location which gives an accurate estimate of the source.

3.1. A Sparse Prior

Speech is generally sparser in time-frequency than in the time or
frequency domain [9]. Sparsity is defined according to the data being
used in a specific application. In this work a vector is considered
to be sparse if only a few of its elements are non-zero or greater
than a small threshold value. The elements greater than the small
threshold contain most of the power of the signal. In this work we
assume sparsity in location space (Eq. 8). We posit that only one
source can be active at any location in our set of source locations.
Given that P >> J the sparse solution to (Eq. 8) reveals the source
location. The Windowed Disjoint Orthogonality assumption posits
that speech rarely 6verlaps in the time-frequency domain, - °

So[k,m]Si[k,m] =0 Vk,m,b#1. (12)
This property, whilst only approximate is used by the DUET algo-
rithm to partition the time-frequency scene of a mixture of speakers.
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We use a combination of sparsity in location and WDO in time-
frequency to localise and then separate speech via time-frequency
masking.

3.2. An objective function for sparse localisation

We consider a mixed L;-L; objective regularized least squares iter-
ative solver.

P
Sl
E(c) = argmin > Y " |ci| +A || De — y||3, (13)
c 2 < N
N — Es
B

where ¢ = Re{c} + Im{c}j, and D = Re{D} + Im{D}j, (where
the symbols, Re{-} and Im{-}, denote the real and imaginary parts of
the variable) and it is clear from the context that j = 4/—1. Equiva-
lently, we represent the system (Eq. 8) as,

Re{9} \ _ [ Re{D} Re{c} \ _ & Re{c}
(=8 ) -(aid) ) () -2 (i)

—Im{D}
Re{D}

3.3. Update
We consider the objective function,
arg mcin Efc) = E1 + AE,, where 15)
Z
5 — k| k2 Px1
E, = EZai |ei|” where o € R . (16)

i=1

We then solve aE‘(kc) = 0 for ¢ (where k denotes the iteration
index) yielding the linear system
) ) a7

(a+xD7D) < ﬁﬁg ) w3 (

and so in terms of y, D, ¢,

Re{y}
Im{y}

(A + XD D)c = AD"y, 18)
where (-)¥ denotes the conjugate transpose operation. We set
aktl = I?lﬁ and iterate this procedure until we reach a fixed point.
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Fig. 3. Results for localisation and separation experiments. PSR, WDO and the percentage of the mixture power in teh correct source positions

are used to verify the performance of the technique.
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Fig. 4. Localisation of 3 sources from a mixture of 10 pair-wise sensors using spatial signatures (Fig. 4(a)) and the performance of DUET

using just one pair of sensors (Fig. 4(b))

4. EXPERIMENTS

We perform source localisation and then separation using 10 sen-
sors and generate synthetic mixtures of length 10 seconds using
the spatial signatures from the room Fig. 1. Each mixture contains
2,3,4,5 or 6 sources from the TIMIT database. We tune the param-
eterized objective (Eq.13) and perform source localisation initially.
We use an FFT of size N = 2048 which allows for accurate spa-
tial signatures for sources propagating up to 11m, constructed using
the approach in [1]. We arrange the microphones pair-wise in arbi-
trary locations in the room. We learn a sparse solution to (Eq. 8)
for each time-frequency bin [k, m]. We generate a power-weighted
histogram in location space. We use the percentage power in each
location to measure the efficacy of the localisation step. Table 3 lists
the percentage power of the mixture located at the correct position of
each source s;. The percentage power for each source is dependent
on the original source signal power and propagation effects. This ex-
plains the low percentage source signal powers obtained by sources
s3 and s4 in the 6 source mixture case. Fig.4(a) illustrates the signal
power in each location, 25,97, 105 for a mixture of 3 sources. Tak-
ing the ratio of the mixtures from a pair of sensors can be used to
generate the DUET power-weight histogram in Fig. 4(b). Three pins
are used to indicate the correct source position in attenuation-delay
space. A clearer estimate is found using 10 channels in Fig. 4(a)
compared to the DUET estimate in Fig. 4(b). Leveraging the in-
formation from 10 channels gives a clearer indication of the source
locations. We perform separation by creating a binary mask using
the solution from each time-frequency point as an indicator func-
tion. We measure separation performance by comparing the binary
mask for each channel with the ideal 0 dB mask. Table 3 lists the
results for mixtures of 2 to 6 sources. The Perservered Signal Power
Ratio (PSR) and W-Disjoint Orthogonality measure are defined in

Table 3 verifies the separation and localisation performance the
technique. The PSR and WDO scores obtained are comparable with
the ideal (WDO 0dB) score. Although the technique is no longer
blind, there are many real-world scenarios where source separation
using calibrated spatial signatures is a feasible solution due to fre-
quent use of the room for localisation and separation, for example a
dedicated teleconferencing room.
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