
Access Control System
Specification and its Implications

for Performance

Bernard Butler, MSc.

School of Science and Computing

Waterford Institute of Technology

This dissertation is submitted for the degree of

Doctor of Philosophy

Supervisors: Dr. Brendan Jennings and Dr. Dmitri Botvich

May 2016

I would like to dedicate this thesis to my wife Mary and
children Mairéad and Liam, and to my late parents Liam

and Siobhán.

Declaration

I hereby certify that this material, which I now submit for assessment on the
programme of study leading to the award of Doctor of Philosophy, is entirely my own
work and has not been taken from the work of others save to the extent that such
work has been cited and acknowledged within the text of my work.

Student ID 20021204

Signed .

Bernard Butler, MSc.
May 2016

Acknowledgements

I acknowledge and thank my supervisory team of Dr Brendan Jennings and Dr Dmitri
Botvich, who provided excellent support in my research. You asked the right
questions, hauled me back on track when my research went down blind alleys, and
generally encouraged me when I encountered any setbacks. Brendan, in particular,
worked with me close to paper submission deadlines, to help get the papers over the
line. . . He was always ready to share the benefit of his experience and, notably, to help
me understand when the work was ready for submission!

I am also grateful to Miguel Ponce de Leon for his support and encouragement early
in the journey, making it easier for me to juggle my responsibilities on projects in his
team with the need to devote concerted time and effort to my PhD research. After I
moved to my present unit, Dr Alan Davy supported me in every way possible,
particularly by giving me space in the last few months to complete writing the
dissertation.

I am grateful to colleagues in TSSG for many stimulating discussions about technical
topics related to my research and to computing and life more generally. There are too
many to mention here, so I have thanked you individually instead. I also wish to
thank Dr Willie Donnelly and Eamonn de Leastar, who founded TSSG as a research
group in which I found a home and a collegiate environment in which to follow my
research interests. I am grateful to the PostGrad Support Unit in WIT, especially
Angela who helped resolve any issues as they arose.

I am grateful to my thesis examiners Prof Rolf Stadler (KTH Stockholm) and Prof
Stefan Decker (RWTH Aachen) for their careful consideration of my dissertation,
stimulating discussion at the Viva and for the helpful suggestions which greatly
enhanced the final product.

I quickly learned that pursuing a PhD is an all-encompassing ambition. Therefore I
am deeply grateful to my family for their love, patience and support, especially when
it seemed that I was obsessed with PhD research work. For a long time, they could
not see my progress, or know when I would be ready to finish. Even though it was
difficult at the time, they continued to believe in me, to look for “the light at the end
of the tunnel”. My in-laws also lent a hand, especially Ger, who regularly took the
children on excursions when my wife was working on weekends. My siblings and wider
family were also supportive. Mary, Mairéad and Liam: you gave me space to pursue
the dream: I could not have done it without you, I love you all deeply, and am looking
forward to spending more time with you now that the long PhD journey has ended!

Access Control System Specification and its
Implications for Performance

Bernard Butler, MSc.
Supervisors: Dr. Brendan Jennings and Dr. Dmitri Botvich

Abstract
Access control evaluation performance is a challenge in modern enterprises.
Such enterprises are characterized by workflows involving extensive
communication events, as information is shared within and between groups
in that enterprise. Security administrators are tasked with enabling
communication events that help the business achieve its objectives, and of
preventing the rest. They develop policies and deploy them in ever more
complex access control infrastructures, and it is not always clear how to
ensure the deployments have adequate performance.

In response, we propose a performance testbed (STACS), a means of
generating policies and requests in bulk (DomainManager) for that testbed
and a system for analyzing the performance measurements obtained from
the testbed (PARPACS). STACS provides a means of performing reproducible,
controlled experiments, so researchers can compare different performance
improvement proposals on standard test infrastructure. DomainManager is
built upon a flexible domain model that can be used as a foundation for a)
generating large numbers of consistent, scenario-specific policies and
requests and b) generating variants of those artifacts for performance
comparison in STACS. PARPACS enables robust statistical models of
performance to be built, so that researchers can predict performance and
not just perform limited comparisons. Indeed, the three components are
part of a larger ATLAS framework for diagnosing performance problems in
an existing deployment and/or dimensioning a new deployment.

Using these research contributions, we conducted extensive experiments to
evaluate ATLAS and generated more research contributions in the form of
findings. These findings relate to the effects on performance of domain size,
policy authoring patterns, policy optimisations, request complexity, system
resource (e.g., memory) availability etc. While many of the main effects
might be expected, there are significant (and often surprising) interaction
effects that need to be considered in any access control deployment.

Although the motivating application concerned access control, ATLAS was
designed so that it could be extended to other client-server performance
studies, such as those concerning database query performance.

Contents

Abstract vi

List of Figures xii

List of Tables xv

List of Algorithms xvii

List of Source Examples xviii

Publications xix

1 Introduction 1
1.1 Problem Statement . 1
1.2 Overview of the Dissertation . 4

1.2.1 Introduction to access control evaluation performance 4
1.2.2 Main Contributions . 7

1.2.2.1 Contributions specific to understanding access control
performance . 7

1.2.2.2 Contributions to understanding request-response sys-
tem performance . 10

1.2.3 Dissertation Organisation . 14

2 Background and Literature Review 19
2.1 Background . 19

2.1.1 Enterprise communications . 19
2.1.1.1 Policy evaluation architecture 23
2.1.1.2 Fine-grained policies 23
2.1.1.3 Dynamic policies . 25

2.1.2 Introduction to access control 26
2.1.2.1 Extending access control: delegation and usage control 28

2.1.3 Importance of XACML . 29
2.1.4 Access Control Performance . 31

2.1.4.1 Access Control Scalability 32
2.1.4.2 Caching . 33

2.1.5 Use of a testbed . 34
2.1.6 Links with policy testing . 34
2.1.7 Links with policy authoring . 35
2.1.8 Learning from recent web service performance advice 36
2.1.9 Performance analysis of database operations 37

2.2 Literature Review . 37

Contents vii

2.2.1 Policy metamodels . 38
2.2.1.1 RBAC . 38
2.2.1.2 ABAC . 39

2.2.2 Formal policy languages . 40
2.2.3 Proposals to improve access control performance 42
2.2.4 Policy authoring . 45
2.2.5 Policy refinement . 46
2.2.6 Policy integration and decomposition 47
2.2.7 Use of testbeds . 49
2.2.8 Policy testing . 50
2.2.9 Generating policies . 51
2.2.10 Generating requests . 52
2.2.11 Performance models . 54

2.3 Research questions . 55

3 STACS: a testbed to explore access control performance 59
3.1 Methodology . 60
3.2 Scope of the performance model . 62

3.2.1 Overview of the model used in this dissertation 62
3.2.2 Access control arrival analysis 64

3.2.2.1 Intermittent request arrivals 64
3.2.2.2 Frequent request arrivals 64

3.3 Introduction to STACS . 65
3.3.1 Scalability Testbed for Access Control Systems (STACS) Overview 67
3.3.2 Access Control Service Time distribution 67
3.3.3 Uses of STACS . 71

3.4 Measurement based simulation . 72
3.4.1 Mean Value Analysis of an Analytical Queueing Model 73

3.4.1.1 Control objectives . 76
3.4.2 Service times and arrival rates 77
3.4.3 Extending the model: steady state plus overload 78
3.4.4 Policies and requests used . 79
3.4.5 Scenario 1: Load Control . 79

3.4.5.1 Load Control Algorithm Specification 80
3.4.5.2 Simulation Model and Experimental Analysis 82

3.4.6 Scenario 2: Exploring the effects of different mixes of requests . 84
3.4.6.1 Scenario 2 setup . 85
3.4.6.2 Measured service times and clustering 86
3.4.6.3 Case study 1: Comparison 87
3.4.6.4 Case study 2: Prediction 90

3.5 Measuring performance and resource usage 91
3.5.1 The Case for a PDP using newer technology 93
3.5.2 Comparison of PDPs . 96
3.5.3 Comparison experiment 1: njsrpdp vs. its peers 98

Contents viii

3.5.4 Comparison experiment 2: What are the benefits of terse policies
and/or requests? . 103

3.6 Extending STACS . 108
3.7 Summary . 109

4 DomainManager: A domain model and tools to configure STACS 111
4.1 Introduction . 112

4.1.1 Policy authoring . 113
4.1.2 Policy Generation approaches 114
4.1.3 Request Generation approaches 116

4.2 Components of the domain model . 117
4.2.1 The static model . 120
4.2.2 The policy model . 122
4.2.3 The context model . 122

4.3 A graph representation of the domain model 126
4.3.1 The static model with semantic enhancements 130

4.3.1.1 Semantic enhancements 131
4.3.2 The policy and context models 136

4.3.2.1 Rules and (target) hierarchies 136
4.3.2.2 Canonical representation 139
4.3.2.3 Policy and request clauses 142
4.3.2.4 Clause restrictiveness 142
4.3.2.5 Policy matching . 143

4.4 Generating policies—PolicyGen . 143
4.4.1 Step 1—populate the template policy facade 148
4.4.2 Step 2—instantiate the template policy entities in the property

graph . 148
4.4.2.1 Enforcing the static semantic constraints 150

4.4.3 Step 3—derive instance policies and instantiate in the property
graph . 155

4.4.4 Step 4—export policies . 158
4.5 Generating requests—RequestGen . 159

4.5.1 Step 1—derive the request TargetSubComponents 161
4.5.2 Step 2—derive the request TargetComponents 161
4.5.3 Step 3—derive the request CollectedTargetComponents 164
4.5.4 Step 4—create COARSE (attribute-based) requests 167
4.5.5 Step 5—create FINE (instance-based) requests 170
4.5.6 Varying the request complexity 173

4.6 DomainManager Evaluation . 177
4.6.1 Graph measures . 177
4.6.2 Service time analysis . 178

4.7 Summary . 181

5 Analysing enterprise access control performance with PARPACS 182

Contents ix

5.1 Adding more factors . 183
5.2 PARPACS Overview . 185
5.3 Investigating PDP and resource choices 187

5.3.1 Scenario Motivation and Overview 187
5.3.1.1 Influence of domain size on policies and requests . . . 188
5.3.1.2 Choice of PDP . 189
5.3.1.3 Availability of computing resources: memory and num-

ber of cores . 189
5.3.2 Review of Policy and Request Generation 190
5.3.3 Obtaining measured service times 191
5.3.4 Deriving the performance model 192

5.3.4.1 Step 1: Restriction of reps 193
5.3.4.2 Step 2: Adding interaction terms 196
5.3.4.3 Step 3: Transforming the data 196

5.4 Scenario predictions . 201
5.5 PARPACS Summary . 205

6 Influence of policy settings on access control performance 207
6.1 Introduction to the extended evaluation 208
6.2 Access control decision analysis . 209
6.3 Outline of the extended scenarios . 211
6.4 Access control performance analysis . 213

6.4.1 Refining each model . 216
6.5 The Extended Scenario Questions . 219

6.5.1 SQ1: Influence of Rule Combination and Placement (PR) 221
6.5.2 SQ2: Influence of Policy Specification Level (PS) 223
6.5.3 SQ3: Influence of Request Cardinality (RC) 225
6.5.4 SQ4: Influence of domain size (DS, pLC) 228

6.6 Summary of the extended scenarios . 229

7 Conclusions and Recommendations 231
7.1 Review of the Research Questions . 231

7.1.1 RQ1: How can access control evaluation performance be mea-
sured for use in performance experiments? 231
7.1.1.1 RQ1.1: What form does the service time distribution

take? . 232
7.1.1.2 RQ1.2: What simulations can be performed to explore

the effect of different request arrival patterns? 232
7.1.1.3 RQ1.3: What analysis can be performed when the

systems under test use different languages, frameworks
and encodings? . 233

7.1.2 RQ2: How can domain models be specified and used to express
enterprise access control scenarios? 233

Contents x

7.1.2.1 RQ2.1: How can different variants of domain models
be specified in a flexible and easy to use way? 234

7.1.2.2 RQ2.2 How can access control evaluation performance
be compared at different domain sizes? 235

7.1.3 RQ3: How can the data from performance experiments be used
to understand and predict access control evaluation performance?235
7.1.3.1 RQ3.1: What types of exploratory data analysis are

suitable for the performance experiments? 235
7.1.3.2 RQ3.2: What are the steps needed to build statistical

models predicting access control performance? 236
7.1.4 RQ4: What are the main factors affecting access control evalua-

tion performance? . 236
7.1.4.1 RQ4.1: What are the effects of PDP choice, domain

size and resources? . 237
7.1.4.2 RQ4.2: What are the effects of domain size, policy and

request characteristics? 237
7.1.5 Extension to general client-server performance 237

7.2 Summary of main contributions . 238
7.3 Recommendations for Future Work . 241

7.3.1 Work in Progress; Short Term 241
7.3.1.1 Comparison of XACML 2.0 vs XACML 3.0 242
7.3.1.2 Comparison of Javascript/JSON versus Java/XML PDPs242
7.3.1.3 Making DomainManager easier to use 243

7.3.2 Medium Term . 243
7.3.2.1 Attribute-level versus instance-level evaluation 243
7.3.2.2 Access control in the Internet of Things 244

7.3.3 Longer Term . 245
7.3.3.1 Analyse distributed PDP performance 245
7.3.3.2 Performance-aware policy authoring 245
7.3.3.3 Extension to database performance analysis 246

7.3.4 Future work summary . 247
7.4 Access Control Evaluation Performance: General Principles 247

Bibliography 250

Appendix A Policy Refinement for Bulk Policy Generation 259
A.1 Refining a coarse policy . 259

Appendix B Bulk Request Generation Algorithm 263
B.1 Algorithms for generating requests from a policy set 263
B.2 Removing duplicate instance-based requests 269

List of Acronyms 271

Contents xi

List of Symbols 278

Glossary 279

Index 292

List of Figures

1.1 Overview of the performance testbed, data generator and analysis mod-
ules developed in this dissertation . 11

2.1 Data flows in policy-based access control 24
2.2 The contrast between coarse-grained and fine-grained access control . . 25

3.1 XACML Load Testing System Architecture (STACS) 67
3.2 Clustered service times for continue-a policies and requests on SunXACML

PDP. 70
3.3 Comparison of the performance profiles of two XACML Policy Decision

Points (PDPs) on the same policy and request sets. 70
3.4 Decomposing the simulation request token producers and consumers

into cluster-specific components. 74
3.5 The main measurement system and simulator components. 80
3.6 Effect of PT (Percentage Thinning) Control on Carried Load when

Offered Load exceeds PDP processor capacity. 84
3.7 Effect of PT (Percentage Thinning) Control on Queueing Delay when

Offered Load exceeds PDP processor capacity. 85
3.8 Distribution of measured request service times on bear using SunXACML

PDP. 87
3.9 Clustering SunXACML PDP and EnterpriseXACML PDP service times 88
3.10 Comparing server utilisation for 2 different overload request profiles . . 92
3.11 Comparative service time histograms for hosts bear and inisherk and

PDP implementations SunXACML PDP and njsrpdp, for Scenario 1A. . . . 99
3.12 njsrpdp request service times on hosts bear and inisherk. 99
3.13 CPU usage for selected host × pdp combinations 101
3.14 Memory usage for different host × pdp combinations 102
3.15 njsrpdp policy×request scenarios . 104
3.16 Service times for Scenarios 1A, 1B, 2A, 2B 106
3.17 Service time comparison, ranked in decreasing order of performance . . 107

4.1 Domain model overview: concepts and interactions 118
4.2 Representation of the static relational schema 119
4.3 Representation of the policy relational schema 123
4.4 Representation of the context relational schema 125
4.5 Generation of policy and request sets 128
4.6 The small static model, represented as a property graph 132
4.7 The medium static model, represented as a property graph 133
4.8 Example Target Hierarchy . 138
4.9 Cutdown template policy model derived from Listing 4.5, represented

as a property graph . 151

List of Figures xiii

4.10 Cutdown COARSE policy model, represented as a property graph . . . 154
4.11 Cutdown template policy model, represented as a policy graph 157
4.12 JAXB: Binding Java classes to XML schema documents 159
4.13 IS_DERIVED_FROM relationship between policy TSCs and request TSCs . . 161
4.14 Comparison of COARSE Request TCs 163
4.15 Comparison of COARSE Request CTCs 166
4.16 Derivation of the augmented request resource CTC caugmented 169
4.17 Comparison of COARSE Requests . 171
4.18 Comparison of the structure of XACML 2.0 vs XACML 3.0 requests . . 172
4.19 Comparison of FINE (instance-based) Requests 176
4.20 Design plot: Median service times for each level of each factor, as well

as the overall median . 179
4.21 Selected service time density plots . 180

5.1 Overview of the ATLAS framework . 185
5.2 Design plot of median service times for each level of each factor, for all

and mid replicates only . 193
5.3 Logarithm of the service time distributions, for all and mid replicates only194
5.4 Main-Only and Full Factorial models for the untransformed mid repli-

cates: residuals and Quantile-Quantile plots 195
5.5 Maximum-likelihood estimation of the Box-Cox parameter λ for the full

factorial model . 197
5.6 Analysis of the residuals of all factors and their interactions of the

transformed model . 198
5.7 Spread-level plot of full factorial model residuals 199
5.8 Outlier, leverage and influence analysis for the full factorial model

applied to both transformed and untransformed data 200
5.9 Selected effects estimated from transformed data 204

6.1 Design plots: main factors for model version 2, for all mid-only replicates215
6.2 Quantile-quantile residual diagnostic plots for model versions 2 and 4 . 217
6.3 Residual plot for modelVer=2 and modelScope=‘sig’ 218
6.4 Quantile-quantile residual diagnostic plots of transformed data for

modelVer=2 and 4 . 219
6.5 Residual plot for modelVer=2 and modelScope=‘sig’ 220
6.6 Transformed service times for each level of each factor when modelVer=2

and 4 . 221
6.7 Selected PolicyRef main and 2-way interaction effects from modelVer=2

and 4 . 222
6.8 Selected PolicySpecification level main and 2-way interaction effects

from modelVer=2 . 224
6.9 Selected request complexity settings for main and 2-way interaction

effects from modelVer=2, compared to the poly(rLC,2) main effects
from modelVer=4. 226

List of Figures xiv

6.10 Selected main and 2-way interaction effects plots from modelVer=2 and 4229

A.1 Example of how instance-level target subcomponent clauses can be
derived from attribute-level target subcomponent clauses 260

List of Tables

1.1 High-level Research Questions addressed in this dissertation 4
1.2 Research contributions applicable to actual deployments 8
1.3 Research contributions enabling new research investigations 10

2.1 Summary of techniques for improving XACML evaluation performance 44
2.2 Summary of Requirements and Methods 56
2.3 Research questions addressed in this dissertation 58

3.1 Research questions addressed in Chapter 3 59
3.2 Contingency table relating observed decisions to inferred request clusters 68
3.3 Main experimental conditions for the trials 85
3.4 Analysis of variance relating (measured) Service Times to experimental

factors host, pdp, reqGrp, decision, ind 89
3.5 Comparison of service times for Hosts bear and inisherk. 89
3.6 Comparison of service times for PDPs SunXacmlPDP and EnterpriseXacmlPDP. . . 89
3.7 Comparison of service times for Request Groups single and multi22. . . . 89
3.8 Comparison of service times for Decisions Deny, NotApplicable and Permit. . . 89
3.9 Comparison of service times for pdp:host interactions. 90
3.10 Comparison of service times for request Group:host interactions. 90
3.11 Comparison of service times for request Group:pdp interactions. 90
3.12 Traditional versus more lightweight modern approaches for building

request handling systems (such as web services) 93
3.13 Service time measurements and their context. 97
3.14 Analysis of Variance: host, pdp, host:pdp effects are very significant . . 98
3.15 Analysis of Means: host inisherk has better performance than bear. . 98
3.16 Analysis of Means: PDP njsrpdp has better performance than the other

PDPs. 98
3.17 Scenario conditions . 103
3.18 Analysis of Variance for Scenario service times 108
3.19 Mean service times for each of the Scenarios 108

4.1 Research questions addressed in Chapter 4 111
4.2 Static model: Entities and Attributes. 120
4.3 Static model: Attributes and example values 121
4.4 Category mapping from static model entities to policy model entities . 134

5.1 Research questions addressed in Chapter 5 182
5.2 Size and scale of the experimental runs. 192
5.3 Levene test for homogeneity of variance: mid reps only, full factorial

model, transformed data . 198

List of Tables xvi

5.4 Global Validation of Linear Model Assumptions: mid reps only, full
factorial model, transformed data . 199

6.1 Research questions addressed in Chapter 6 207
6.2 Consistent Decisions . 211
6.3 Scenario parameters . 212
6.4 Specification of the two model versions and the two model scopes . . . 214

7.1 High-level Research Questions addressed in this dissertation 232

List of Algorithms
3.1 Dissertation methodology . 61
3.2 Algorithm to derive the Request-cluster contingency table 69
4.1 The augmentAsset operation that is used when extraTcType ̸= none . . 153
5.1 Outline of the nested loop used in STACS for measurement runs 191
B.1 Selected procedures used in the algorithm to derive context Target

Component (TC)s {c context
i } from existing policy TCs {c policy

i } 264
B.2 Selected procedures used in the algorithm to derive context collected

target components {Ccontext} from existing policy collected target com-
ponents {Cpolicy} . 266

B.3 Selected procedures used to assemble requests from (collected) target
components {ccontext

i } and {Ccontext} . 268

List of Source Examples
2.1 Example policy: IIA001 from XACML 2.0 conformance test suite (Kuke-

tayev, 2005). 30
3.1 JSONPL Policy Excerpt . 95
3.2 JSON Request example, converted manually from 1-req.xml from the

single requests associated with the continue-a policy set. 96
4.1 Example specification of how to generate 10 Document Assets and 3

variants of Chat Assets for the small domain. 130
4.2 Example specification of how to assign existing Members to two existing

Organisations . 134
4.3 Example specification of how to align AssetGroups with ActionTypes . 135
4.4 Listing of the base template access control policy used in this dissertation147
4.5 Listing of the cutdown base template access control policy used to

illustrate policy generation . 150

Publications
Butler, B. and Jennings, B. (2013). How soon can you decide whether Alice is

permitted to communicate or share resources with Bob? TinyToCS, 2.

Butler, B. and Jennings, B. (2015). Measurement and Prediction of Access Control
Policy Evaluation Performance. Network and Service Management, IEEE
Transactions on, 12(4):526–539.

Butler, B., Jennings, B., and Botvich, D. (2010). XACML Policy Performance
Evaluation Using a Flexible Load Testing Framework. In Proc. 17th ACM
Conference on Computer and Communications Security (CCS 2010), pages 648–650.
ACM. Short paper.

Butler, B., Jennings, B., and Botvich, D. (2011). An experimental testbed to predict
the performance of XACML Policy Decision Points. In Proc. IM 2011 -
TechSessions.

Davy, S., Barron, J., Shi, L., Butler, B., Jennings, B., Griffin, K., and Collins, K.
(2013). A Language Driven Approach to Multi-System Access Control. In Proc. IM
2013 - AppSessions, Ghent, Belgium.

Griffin, L., Butler, B., de Leastar, E., Jennings, B., and Botvich, D. (2012). On the
performance of access control policy evaluation. In IEEE International Symposium
on Policies for Distributed Systems and Networks (POLICY 2012), pages 25–32.
IEEE.

Chapter 1

Introduction

The motivation for the research presented in this dissertation was a discussion at a
meeting attended by Cisco Inc. staff, notably Dr Keith Griffin and Kevin Collins. They
raised several research challenges. One of those challenges related to access control
evaluation performance and scalability in enterprise communications deployments.

This chapter introduces the research work done in response to this challenge. § 1.1
describes the problem in more detail, particularly in the context of enterprise
communication management. Management of enterprise communications is not
limited to facilitating desired interactions. It also includes preventing unwanted
communication events, by applying access controls. The focus of this dissertation is on
the performance of these access controls. Predominantly, it draws upon research in
two domains: client-server performance analysis and access control system
specification. Its two main contributions reflect this twin approach: 1) a framework for
analysing the performance of client-server systems, of which access control policy
evaluation is the example used in this dissertation, and 2) findings relating to how to
specify such an access control system with the objective of increasing its performance.

§ 1.2 provides an overview of the dissertation. It indicates how access control and
policy-based management are linked. § 1.2.2 outlines the Main Contributions of the
research conducted in response to the problem statement described in § 1.1. Finally
§ 1.2.3 describes the structure of the rest of the dissertation and highlights some of the
more significant sections and their contributions.

1.1 Problem Statement

Communications are the lifeblood of modern enterprises. They include voice
communications, either face-to-face or mediated by communication services such as
telephony and video conferencing. They also include written communications, from
traditional pen and paper to electronic media such as email, IM, social network

1.1 Problem Statement 2

updates and group chats. Indeed, many of the electronic media support multiple
media types: plain text, audio, video and documents with rich text formats like
spreadsheets and web pages, so many combinations of sender(s), receiver(s),
communication channel and media type are possible.

Communication services support enterprise workflows all along the enterprise value
chain. Typically each function manages its own set of workflows, comprising its own
communication entities, but the underlying “data” often crosses functional boundaries.
For example, the Finance function collects data on past and proposed transactions so
as to manage the cashflow and ensure that the enterprise is using its assets efficiently
and can meet its obligations. Meanwhile other functions in the enterprise produce and
consume some of the same data, sharing it with other functions (such as Sales) as
required.

Some of this data is expensive to produce or perhaps impossible to reproduce after the
fact. Therefore it makes sense to reuse such multi-purpose data as much as possible
and to reduce any “friction” caused by the need to transform it to meet new uses.
Consequently many enterprise communication services also need to store the metadata
(e.g., who called whom at what time) at the very least. In some cases such metadata is
needed by auditors, or may be required by legislation. Other examples of “second use”
of such data include business intelligence applications, particularly in support of
operations management objectives.

Unified communications (UC) is a set of technologies designed to make the whole
ecosystem of enterprise communications easier to manage. Regardless of
communication mode (voice, text, video. . .), data can be shared and re-purposed.
Furthermore, individuals, groups and responsible authorities can manage these
communications. For example, individuals can manage their presence information and
manage their own data-sharing obligations, such as “Send report X to person Y by
Friday”. The group manager can report on the group’s activities, many of which are
represented as data sharing events, such as “Sent purchase orders X,Y,Z to Person A
last week”.

As we have seen above, unified communications facilitate both data sharing and
reporting on that sharing. They also have another role, that of limiting sharing events
to those that serve the objectives of the enterprise and/or preventing sharing events
that do not. This third role is given many names: depending on the context/vendor, it

1.1 Problem Statement 3

may be called entitlement management, privilege management or access control. In
this dissertation, we use the term access control as it is the most general, since it has
meaning outside the world of enterprise communications, and many of the concepts
presented in this dissertation have wider applicability to access control systems in
general.

Enterprise access controls are often required by external agencies to ensure good
corporate governance, to protect subscriber privacy, to prevent fraud and generally to
act in the best interests of customers and other stakeholders. Other access rules are
required by the enterprise itself to ensure the nondisclosure of sensitive material such
as corporate strategy documents. Generally, the number and complexity of rules
governing access to data (and to communication services generating that data)
increases over time.

The source of the problem addressed in this dissertation is that the third (controlling
and limiting) role is in conflict with the first (enabling) role. If it is not configured
correctly, the controlling role can hinder the enabling role to the extent that it
damages the ability of the enterprise to conduct its operations. One type of
misconfiguration occurs when the access control rules have errors, so the access
decisions could be too strict or too lenient in certain situations. This dissertation is
not concerned with misconfiguration of this sort. Another type of misconfiguration
can reduce the performance of the access control system to the point where it delays
legitimate data sharing unnecessarily. In extreme cases, the unified communications
system as a whole becomes unusable.

Systems administrators might argue against the loaded term “misconfiguration”,
saying that the reason for performance deficiencies is that, over time, the business
users mandate ever more complicated access rules, thereby increasing the difficulty of
making access decisions in a timely fashion. Furthermore, it is also not always obvious
to the system vendor whether the access control system has been dimensioned correctly
prior to deployment, and has sufficient capacity for the inevitable growth in demand.

Therefore, given the market need indicated by Cisco Inc, together with the challenge
of ensuring adequate performance of an access control system where the causes of
performance problems are often less than obvious, we sought to prove the following
research hypothesis:

1.2 Overview of the Dissertation 4

By building a domain model, measurement testbed and predictive model,
it is possible to conduct experiments to answer questions relating to access
control policy evaluation performance, and thereby to gain insight into the
best way to setup and maintain a performant access control system for
enterprise communications.

This research hypothesis is consistent with the twin approach described in §1 in that it
has constructive elements (building models and infrastructures to support them),
abstructive elements (explaining and predicting behaviour in the testbed with
statistical predictive models) and inductive reasoning (extending the statistical
predictions obtained in the controlled environment of the testbed to actual access
control deployments).

Table 1.1 High-level Research Questions addressed in this dissertation

ID Question
RQ1 How can access control evaluation performance be measured for use in

performance experiments?
RQ2 How can domain models be specified and used to express enterprise

access control scenarios?
RQ3 How can the data from performance experiments be used to understand

and predict access control evaluation performance?
RQ4 What are the main factors affecting access control evaluation perfor-

mance?

The Research Questions are consistent with this hypothesis, and are outlined in
Table 1.1. They use the Research Hypothesis as a foundation and are intended to
address some of the research gaps identified in Chapter 2.

1.2 Overview of the Dissertation

1.2.1 Introduction to access control evaluation performance

As mentioned in § 1.1, a typical enterprise uses access control procedures to control
what users (both inside and outside the enterprise) can do with the digital assets
managed by that enterprise. In practice, access control procedures are implemented

1.2 Overview of the Dissertation 5

using policy based management. An access control policy P = {c, Ri, {Fj}} is a finite
set of rules Ri whose consequences are combined according to combining algorithm c

and which evaluates to either Permit or Deny, optionally supplemented with follow-up
actions Fj. One such follow-up action might be an obligation to log the decision that
was made in a given context. Policy authoring is the process of capturing the access
control objectives of the enterprise, refining them and encoding them in a format
suitable for evaluation. Policy-based management is fundamentally a request-response
protocol, in which an entity submits an access request to the policy evaluation system,
the characteristics of the request are considered when searching for the relevant rules
in the policy, which rules are then evaluated to provide a decision that is returned to
the access requester. There is also an enforcement mechanism that ensures that access
decisions are honoured: permitted access requests proceed without further hindrance;
denied access requests do not proceed.

An example policy might take the form: “R1: If the requester has the role of
Implementer, he/she can set up the specified Group Chat. R2: if the requester is in
Marketing or Finance, he/she can participate in the specified Group Chat. R3: the
requester is not allowed to have anything to do with the specified Group Chat. c:
Permit decisions override Deny decisions.”. Given this policy, and the following request
contexts

1. C1: { Alice (role = Implementer), setup, weekly Group Chat };

2. C2: { Bob (department = Marketing, role = Assistant), join, weekly Group
Chat };

3. C3: { Carol ((department = Operations, role = Manager), join, weekly Group
Chat }.

the access control decisions would be D1 = Permit, D2 = Permit and D3 = Deny,
respectively. This is equivalent to saying that

1. A1: Alice (who has the role of Implementer) can set up this weekly Group Chat;

2. A2: Bob (a Marketing Assistant) is allowed to join this weekly Group Chat;

3. A3: Carol (an Operations Manager) is not allowed to join this weekly Group
Chat.

1.2 Overview of the Dissertation 6

Each decision arises from matching the context of the given request against the
conditions of the Rules in the Policy. In this instance,

1. C1 matches the antecedent of R1 which evaluates to Permit; it does not match
R2 but it does match R3. However, because of c (Permit overrides Deny), the
policy evaluates to D1 = Permit;

2. C2 does not match the antecedent of R1 but it does match the antecedent of R2

which evaluates to Permit. It also matches R3 which evaluates to Deny, but as
with C1, the rule combing algorithm c ensures that policy evaluates to D2 =
Permit.

3. D2 = Deny because C3 fails to match the antecedent of either R1 or R2 although
it does match R3 which evaluates to Deny. Since there are no Permit decisions,
the overall (policy) decision is D3 = Deny, as stated.

These rules form part of the larger policy used as an example throughout this
dissertation, and introduced in more detail in § 4.4 on page 143.

A common pattern for writing such policies is to have lists of rules that evaluate to
Permit, followed by a rule that evaluates to Deny for all access requests, in much the
same way as (depending on programming language) a switch or case statement “falls
through” to a default value.

Note that each rule can have an arbitrarily complex matching condition, and the
number of such rules can be very large; the rules themselves are often deeply nested.
Indeed, as policies become larger and more complex (i.e., as their specifications grow
more fine-grained) and policies need to evaluated more frequently (because their rules
increasingly depend on dynamic context), policy evaluation can add significantly to
the latency experienced by users of the system subject to such access controls.
Furthermore, usage control, where data is shared and subject to ongoing checks to
ensure that the conditions under which it was shared still apply, also results in more
access control policy evaluations, see § 2.1.2.1 on page 28. Therefore understanding,
modelling and predicting access control policy evaluation performance, which is the
subject of this dissertation, is a topic of considerable importance in enterprise
communications and data sharing.

1.2 Overview of the Dissertation 7

1.2.2 Main Contributions

1.2.2.1 Contributions specific to understanding access control
performance

The primary objective is to model access control performance with a view to
comparing the performance of different access control settings and predicting
performance of new access control system configurations.

The control settings include:

• choice of Policy Decision Point;

• memory and other computing resources assigned to the PDP server;

• domain size (e.g., small, medium and large);

• request complexity;

• how the rules are expressed: structure, language, encoding, etc.

We assume that these settings are associated with different performance
characteristics. The effects of such a settings change need to be estimated using a
valid statistical model so that a case can be made for changing the settings to new
values. Let the latency added by the access control system be x1 > tol seconds, where
“tol” is the maximum additional latency that is acceptable to the users. The
justification is that, following a change to the access control system, the latency added
by the access control system decreases to x2 < tol seconds. Of course any change in
settings is usually associated with a cost, and different interventions might be
associated with different costs, so it is necessary to weigh up the expected benefits of
making the change against the cost of implementing that change.

Table 1.2 highlights the research contributions and findings that we believe will apply
to actual deployments. Generally, the measurement-based statistical evidence in
support of each finding in the table is very strong, and the interpretation of the cause
of the effect is based on features of the testbed that we believe are consistent with
actual deployments.

The PDP is that part of the access control infrastructure that has the task of
consulting the policy set for each incoming request, and returning a response
containing an access control decision (typically Permit or Deny). It is supported by

1.2 Overview of the Dissertation 8

ID Research Contribution
1 The choice of Policy Decision Point can have a very large bearing on access

control performance.
2 Modifying a PDP to improve its software engineering, e.g., to use standard

libraries rather than developing its own, can reduce its performance
3 Adding extra computing resources (e.g., memory) does not always improve

performance
4 The Java Virtual Machine “caches” results for free (no user action is required)

provided there is a) good similarity between requests, b) the request arrival
rate is high and c) adequate memory is available

5 Removing duplicate rule clauses can increase service times
6 Increasing the size of a policy does not always reduce performance; it also

depends on the size of the request
7 Small changes to a policy, e.g., adding or removing guard clauses (which might

be suggested by simple tools) have very little effect on performance
Table 1.2 Research contributions (inductive/abductive) applicable from testbed mea-
surements to actual deployments

other functions but is potentially the bottleneck in the access control system,
particularly if it is not replicated and needs to handle all the incoming requests. We
show that different PDPs can have very different service time response distributions,
which makes their performance more or less sensitive to admission control strategies
(§ 3.4.5 on page 79) and/or changes in the mix of incoming requests (§ 3.4.6 on
page 84). Furthermore, PDPs using very different technologies can have very different
mean levels of performance, usage of resources, etc. (§ 3.5 on page 91).

We compared version 1.4 and 2.0 of a PDP, where each version is functionally identical
to the other (i.e., they give the same response for the same input), but which we found
have dramatically different performance. Version 2.0 was developed from version 1.4
to remove specific parsing and other code—this was replaced with calls to standard
libraries from the Spring Framework1 and similar respected sources. While this effort
removed lots of bespoke code and thus should make the PDP code easier to maintain,
it comes at the expense of worse performance, particularly as policy and request sizes
grow (§ 5.4 on page 201).

When looking for better performance, it is often tempting to scale up a server instance,
by adding extra memory, processing cores, etc. However, we found that additional

1https://spring.io/

1.2 Overview of the Dissertation 9

memory has limited benefit in its own right (§ 5.4 on page 201). However, for some
PDPs, there is an interaction between additional memory and larger problem sizes, so
additional memory can partially offset the adverse effects of larger/more complex
requests in particular. Therefore scaling out (replicating the PDP function) might be
more beneficial in general.

Since PDPs are essentially state machines, it is worth considering whether some form
of caching is beneficial. That is, if a request arrives that is “similar” to a previous
request arrival, it might be quicker to lookup the response cache than to evaluate it
from scratch. While caching is attractive, it can also be complicated. However, we
found that, if the request arrival rate is high enough, it seems that the Java Virtual
Machine itself acts as an object cache (§ 5.4 on page 201). We believe this is because
its garbage collection frequency can be low enough that the required objects are still
in memory when the next request (of that type) arrives. Note that this occurs without
the need for external caching mechanisms or effort by the PDP developer.

There is a widespread belief that redundant rules in a policy set necessarily result in
worse performance. We discovered this was not always the case (§ 6.5.2 on page 223).
We believe this is because matching processes can terminate without needing to check
all possibilities. The procedure can end if, at an early stage, a match is found, or it
becomes clear that a match cannot be found. Therefore, judiciously placed
“redundant” rules can enable such early completion criteria to hold, even though,
viewed in totality, rules elsewhere in the policy have the same effect. This suggests
that, when removing redundant rules, care should be taken to leave any rule in place
that short-cuts policy evaluation.

Another belief is that service times increase when policy sets increase in size. To some
extent, this is true; however, it is only part of the story. The size and complexity of
the request set being matched to the policy also plays a major role in access control
evaluation performance. For small requests, service times can actually decrease as
policy set size increases (§ 6.5.3 on page 225). We believe this is due to the same
feature of early match procedure completion.

Lastly, small-scale changes to the structure of a policy set appear to bring little benefit
(§ 6.5.1 on page 221). It appears that any policy set refactoring needs to take into
account the benefits of matching the requests that are met in practice. Again, this
emphasises the fact that requests play an important and largely overlooked role in

1.2 Overview of the Dissertation 10

ID Research Contribution
1 An extensible domain model for access control evaluation
2 Tooling to manage that domain model, e.g., generating suites of policies and

requests; visualising policy sets
3 An extensible testbed for measuring service times, labelling them with full

contextual information, and managing the process
4 An extensible statistical performance model, with analyses to validate the

model and predict service times based on fitted models to the service time
distribution

5 Model-based simulation, to compare the effects of interventions such as ad-
minssion control and effects of changing request

Table 1.3 Research contributions (constructive) that generalise the scenarios and
facilitate future research

access control evaluation performance. It also shows that static analysis of the policies
alone is insufficient for access control performance prediction.

1.2.2.2 Contributions to understanding request-response system
performance

The secondary objective was to build a testbed to perform controlled experiments on a
request-response system (the policy management infrastructure, in the case of the
scenario addressed in this dissertation), with the intention of modelling and predicting
the performance of that system. The main contributions are listed in Table 1.3.

Table 1.3 highlights the research contributions that are transferable to other access
control performance evaluation scenarios. The research contributions in Table 1.2 on
page 8 arose from answering research questions using artifacts (notably policies and
requests) motivated by enterprise communications management. To answer those
questions, significant infrastructure elements were built: Domain model Manager

(DomainManager), STACS and Performance Analysis, Reporting and Prediction of

Access Control Systems (PARPACS); see Figure 1.1 on the following page. This
infrastructure represents man-years of effort and is, to the best of our knowledge, the
most comprehensive available for answering such research questions. Apart from
DomainManager, which is used to generate policies and requests for access control
system specification and so is specific to access control performance experiments, the
other components are adaptable to experiments designed to understand the

1.2 Overview of the Dissertation 11

PARPACS

Specify
Models

DomainManager

Scenario
Parameters Policies

Requests

Measurements

Scenario
Parameters

Statistical
Performance

Model

STACS

Fig. 1.1 Overview of the performance testbed (labeled STACS), the (policy and request)
data generator (labeled DomainManager) and the analytics module (labeled PARPACS)
developed to answer the Research Questions posed in this dissertation.

performance of any client-server system. In such systems, clients issue requests to
servers that handle those requests according to some queueing discipline (First In,
First Out (FIFO) is assumed in this dissertation) and issue responses to the clients by
return. Other examples of client-server systems include

Web servers (which receive HyperText Transfer Protocol (HTTP) requests and
either change some internal state (if the HTTP verb is POST or DELETE) or reply
to the client with a response whose body which might contain a web page or
equivalent content that was hosted on the server (if the HTTP verb is GET), and

Database servers which receive Create, Read, Update, Delete (CRUD) requests
from clients and either change the state in the underlying knowledge base, e.g.,
by adding or removing data, or search for the answer to a query, which is then
returned to the client.

In each case, the request-response protocol of access control policy evaluation aligns
exactly with GET requests issued to a web server, and queries (e.g., in the format of a
SQL SELECT statement) issued to a database server. Consequently, the A TooL for
dimensioning Access control Systems (ATLAS) policy evaluation framework outlined
in Figure 1.1 could be used, in principle, when modelling and improving the
performance of web and of database servers; see §2.1.9 for some background.

One of the difficulties with measuring policy evaluation performance is that access
control policies themselves are commercially sensitive. Thus there is a dearth of
publicly available access control policies for the researcher. It is even more difficult to
find requests that are related to those policies. Access Control Policy Tool

1.2 Overview of the Dissertation 12

(ACPT) (Hu et al., 2011) is an excellent tool for model checking and combinatorial
testing of policy sets and includes a GUI for generating access control test suites.
However, since its focus is on testing functional (correctness and completeness)
properties rather than performance, it lacks many of the features of DomainManager

(§ 4.3 on page 126) and it does not have anything comparable to the other major
components (STACS and PARPACS). The domain model we developed is sufficiently
generic that it can be adapted to many other access control scenarios, and the
realisation of that model in DomainManager enables powerful analysis and visualisation
(§ 4.4 on page 143 and § 4.5 on page 159) of the underlying model semantics.

The primary purpose of DomainManager is to enable the production of suites of policies
(§ 4.4 on page 143) and requests (§ 4.5) suitable for access control performance
investigations. The input is a set of rules specified at attribute level (e.g.,
Member.function = Finance), rather than instance level (e.g., Member.name =
Alice. . .). Many configuration options are available, so different variants of policies
and requests can be generated together, supporting comparative experiments.

ACPT is designed to work with model checkers and with Automated Combinatorial
Testing for Software, so combinatorial (mutation and similar schemes) testing can be
conducted and the results collected for analysis. While STACS (§ 3) does not support
the extensive combinatorial testing facilities of Automated Combinatorial Testing for
Software (ACTS), it offers the ability to check that the responses are consistent across
the suite of policies and requests, and uniquely, it collects PDP service time
measurements, labelled with the full context of each measurement. Therefore it works
in concert with DomainManager to enable researchers to conduct multi-factorial
performance experiments.

Having collected the measurements, it is necessary to analyze them: look for unusual
features, fit a statistical model, predict the performance under new conditions and
estimate the uncertainty in those predictions. PARPACS is introduced in Chapter 5 and
plays a major role in answering the extended scenario research questions in Chapter 6.
Using PARPACS, researchers can follow a guided exploration path leading to
recommendations that are based upon modern statistical procedures. PARPACS uses
powerful statistical modelling procedures to build robust representations of the
processes which are used in a PDP to make an access decision. So even though the
PDP, and more generally the response-generating system, is treated as a black box, it
is still possible to use PARPACS to predict its performance in new situations, assuming

1.2 Overview of the Dissertation 13

the measurements from STACS are reliable and representative samples of its
performance behaviour. Those performance predictions from PARPACS can be as
general (e.g., “SunXACML PDP v1.4 has greater performance than SunXACML PDP 2.0.”) or
as specific (e.g., “Given PDP W, policy configuration X, request profile Y, and CPU
configuration Z, increasing the available memory from 2GB to 4GB has no significant
effect on performance.”) as needed. The most important advantage of having a
reliable underlying model is that it is possible to estimate the statistical uncertainty
and hence judge whether a performance difference is statistically significant (i.e.,
unlikely to arise from chance) or not. Because the models are specified as formulae at
run time, it is possible to configure them to include particular terms. These terms
need to be consistent with the attributes of the data, but are otherwise unconstrained.
Consequently, PARPACS can be used to model a whole class of performance models
relating to request-response systems, which include database management systems,
where the request is to perform some CRUD operation and the response is either 1) a
status code to indicate whether the operation succeeded or 2) the results of a query.

The measurement testbed currently collects access control service times without
considering arrival rates and patterns. That is, the PDP instance participating in the
test works serially: it accepts the next request as soon as it returns the response for
the previous request, and the service time covers the PDP processing time only; any
time spent queueing for service is ignored. In a more realistic scenario, that queueing
time would also be considered. However, if queueing time were included, it could
easily dominate the PDP-only service time, in which case it would be difficult to focus
on the PDP-specific effects. Therefore we chose to employ a measurement-based
simulation approach:

1. collect the PDP-only service times;

2. derive the (multivariate) service time distribution and

3. use that distribution to configure discrete event simulations that take account of
the total latency of the access control system

Note that this total delay is dominated by the PDP-only service time and any time
spent waiting in the queue for service. By decoupling the two main latency
components in this way, we can investigate the effects of scaling outwards (of the
PDP), using different queueing disciplines, bunched arrivals, etc., all the while reusing
the results of a single measurement run.

1.2 Overview of the Dissertation 14

The approach is consistent with the methodology for experiment-based scientific
research presented in Algorithm 3.1 on page 61.

1.2.3 Dissertation Organisation

The rest of the dissertation is organised as follows. Chapter 2 on page 19 provides a
longer introduction to the problem than the relatively brief treatment in § 1.1 above.
§ 2.1 describes the background of the problems relating to access control performance.
The topic has many facets, as it includes

• organisational behaviour, regulation and security (§ 2.1.1 on page 19);

• the design of rules-based access control systems (§ 2.1.2 on page 26);

• the industry standard for such systems: eXtensible Access Control Markup
Language (XACML) (§ 2.1.3 on page 29);

• what performance means, in relation to access control, the relationship between
performance and scalability, and what role caching might play (§ 2.1.4 on
page 31);

• why an access control performance testbed would be a valuable contribution
(§ 2.1.5 on page 34);

• how an access control performance testbed could learn from and complement
existing work on access control correctness testing (§ 2.1.6 on page 34)

• policy authoring and conflict detection, which may have a role to play in
performance analysis (§ 2.1.7 on page 35);

• statistical performance models, which enable us to predict performance in
real-life deployments based on the analysis of service times measured under
controlled conditions in the testbed (§ 2.2.11 on page 54);

• taking a wider view, considering recent advances in web service performance and
scalability, and what they might offer (§ 2.1.8 on page 36).

Of course, the research community has also been active, and some of the relevant
publications are reviewed in § 2.2 on page 37. The literature is classified under the
following headings:

1.2 Overview of the Dissertation 15

• the metamodels that policy authors use to structure and express their policies
and that affect performance in interesting ways (§ 2.2.1 on page 38);

• the formal languages, often based on logic programming and semantic web
technologies, that researchers use to understand the meaning and complexity of
policies (§ 2.2.2 on page 40);

• with these foundations, researchers have proposed their own approaches to
reduce the time taken to evaluate the policies for a single request (§ 2.2.3 on
page 42, summarised in Table 2.1 on page 44);

• one of our main contributions is to develop a means of generating policies in
bulk, so we review some of the relevant literature on policy authoring in general
(§ 2.2.4 on page 45);

• our bulk policy generation technique is related to policy refinement, so we review
some relevant papers (§ 2.2.5 on page 46);

• it also makes sense to consider ways of breaking the policy evaluation down to a
set of smaller tasks, suitable for distribution to more than one PDP (§ 2.2.6 on
page 47);

• other researchers have performed PDP intercomparisons, etc., so we survey their
efforts (§ 2.1.5 on page 34);

• policy testing, as least for correctness has a longer history and researchers have
faced similar challenges to those we faced (§ 2.2.8 on page 50);

• the characteristics of a “good” policy set for testing, and how to generate such a
set, were considered by other researchers (§ 2.2.9 on page 51);

• similarly, bulk generation of requests is also needed for testing; other researchers
have generated requests mainly for correctness testing (§ 2.2.10 on page 52)

Given this analysis, the knowledge gaps became more apparent and are presented in
§ 2.3 on page 55. Chapters 3–6 each take a subset of the research questions presented
in Table 2.3 on page 58. and use that subset to motivate their contributions

Chapter 3 on page 59 addresses research question RQ1: “How can access control
evaluation performance be measured for use in performance experiments?”.
Algorithm 3.1 on page 61 outlines the methodology used throughout the research,
which is based on the use of the analysis of performance measurements to answer

1.2 Overview of the Dissertation 16

specific questions, which will often motivate further experiments. The first concern is
with the scope of the performance model, particularly what service time is and why
there should be a distinction between infrequent and frequent arrivals. Having scoped
the performance model, it is then time to describe STACS, its architecture and usage
for both comparative and predictive experiments, and the crucial finding that requests
can be clustered by service time for a given PDP, so the service time distribution can
be quite complex. § 3.4 on page 72 describes how STACS can be used with a
simulation package like OPNET™ to explore the effects of different requests mixes
(§ 3.4.6 on page 84), or to compare different load control algorithms when the request
arrival rate increases (§ 3.4.5 on page 79). We also show that closed form expressions
exist for the queue length and the average time spent in the queue, assuming the
service time follows a hyperexponential distribution with estimated centres (§ 3.4.1 on
page 73). In these experiments, the publicly available continue policies and
associated requests set were used and some interesting findings were made regarding
the PDPs used. § 3.5 on page 91 introduces a prototype PDP using new technologies
with high performance (§ 3.5.1 on page 93) which, despite its limitations, can be
compared with more traditional PDPs (§ 3.5.2 on page 96) using our analysis
framework. The initial (screening) experiment was a direct comparison between the
new PDP named njsrpdp and the reference SunXACML PDP. The comparison indicated
that the performance of the the new PDP was significantly better, so a supplementary
experiment was undertaken to determine whether the reduced request size associated
with njsrpdp contributed to its better performance; it does.

One of the problems with Chapter 3 on page 59 is that it is limited to the continue
policy set and hence is not truly representative of enterprise access control. Thus
Chapter 4 on page 111 describes how to generate suitable policies and requests for the
domain of interest. Indeed, this is also the topic of research question RQ2: “How can
domain models be specified and used to express enterprise access control scenarios?”.
§ 4.1.1 on page 113 describes the challenge of creating policies that are sufficiently
restrictive, but not overly so. § 4.1.3 on page 116 outlines how requests can be related
to policies. § 4.2 on page 117 describes the domain model, particularly its three
component submodels: the static, policy and request models. § 4.3 on page 126
describes the property graph metamodel that underlies all three domain model
components. § 4.4 on page 143 describes one of our main contributions, which is that
many policies can be generated from a seed template policy by means of a special
refinement procedure, described in more detail in Appendix A on page 259. An

1.2 Overview of the Dissertation 17

algorithm for generating requests consistent with those policies is described in § 4.5 on
page 159; more details are provided in Appendix B on page 263. However, to
understand such algorithms, it is necessary to understand the way that policies are
represented in the property graph model, notably the rule and target hierarchies
(§ 4.3.2.1 on page 136). Of course, being a graph, it is possible to derive some
measures that summarise some of its properties (§ 4.6.1 on page 177). It is necessary
to evaluate whether these models, and the software component that manages them
(DomainManager) work well with STACS. Therefore § 4.6 on page 177 does some
comparisons using representative enterprise access control policies and a static model
representing a bank and a consulting company that need to work together closely.

Now that there are many more parameters available for performance experiments, so
there is a need for greatly enhanced visualisation and performance analysis. Therefore,
Chapter 5 on page 182 describes another major research contribution: PARPACS. The
topic addressed in the chapter is RQ3: “How can the data from performance
experiments be used to understand and predict access control evaluation
performance?”. § 5.1 on page 183 introduces the concept of advanced factors which are
made possible by the introduction of DomainManager and the enhanced STACS. The
analysis of such factors requires the development of a new analysis component:
PARPACS. § 5.2 on page 185 provides an overview of this component, particularly its
statistical provenance, mapping access control performance experiments into
procedures that can benefit from the extensive capabilities of R (R Core Team, 2014).
The first step in this mapping is to build the statistical model (§ 5.2 on page 185) and
the easiest way to understand the process is to work through a scenario (§ 5.3.1 on
page 187) where security consultants are attempting to troubleshoot a problematic
access control deployment. This is an integrated scenario, in that it draws upon all the
major software components: STACS, DomainManager and PARPACS. The policies and
requests used are described in § 4.4 on page 143 and § 4.5 on page 159 § 5.3.3 on
page 191 indicates the scope of the measurements collected by STACS. The statistical
model needs to be tuned to fit the measured data (§ 5.3.4 on page 192) through a series
of visualisations (mostly of the behaviour of the residuals) and statistical tests, such as
those outlined by Butler et al. (1999). The statistical model is then sufficiently reliable
to be used for prediction (§ 5.4 on page 201) where the predicted effects of certain
factors and their interactions are used to answer the security consultants’ questions.

1.2 Overview of the Dissertation 18

The analysis in Chapter 5 on page 182 used data that had been summarised and
labelled with composite model factors. This analysis answered some of the consultants’
questions definitively. However the consultants decided to perform a more detailed
follow-up study, mostly relating to the interaction of domain size and request
complexity (Chapter 6 on page 207). The topic addressed in the chapter is mostly
RQ4 “What are the main factors affecting access control evaluation performance?”.
§ 6.1 on page 208 introduces the extended evaluation procedure and § 6.2 on page 209
describes how we check that the decisions are correct (where the expected responses
are known) or consistent across factor settings otherwise. § 6.3 on page 211 describes
the extended scenario questions and § 6.4 on page 213 describes the measurement
runs, model refinements and analysis steps we used. § 6.5.1 on page 221 considers the
performance effects of different policy authoring choices, § 6.5.2 on page 223 considers
the performance effects of different policy optimisations, § 6.5.3 on page 225 considers
the performance effect of different levels of request complexity and § 6.5.4 on page 228
considers, in detailed interaction terms, the effects of domain size on performance.

Finally, Chapter 7 on page 231 draws together the general principles of access control
performance (§ 7.4 on page 247), abstracted mainly from Chapters 3 on page 59, 5 on
page 182 and 6 on page 207. The general principles include our main research
contributions, which are also collected in Tables 1.2 and 1.3. The findings from all the
scenario experiments are assembled in § 7.2 on page 238 for convenience. Although
significant progress has been made, there is still more research to do (§ 7.3 on
page 241) and we hope to continue this research journey.

Chapter 2

Background and Literature Review

2.1 Background

2.1.1 Enterprise communications

Information and communication technologies (ICT) enable people to communicate
with each other and to create and share content more easily than ever before. The
technological and cost barriers to creating and sharing content are much lower than in
previous decades. Direct communication between people is also easier, particularly
when participants share their presence information.

With this greater power comes greater responsibility. For example, individuals need to
protect their privacy from intrusion by unwanted parties, and corporate users need to
protect the confidentiality and integrity of sensitive data, business plans and other
digital resources. That is, some communication events, with or without intermediate
content, are “considered harmful”1.

In an enterprise scenario, the number of possible communication events is very large.
Communication events include sharing a document with a colleague, sending an email
to the team or joining a group chat. Some of these events would not serve the goals of
the enterprise. Indeed, in some companies, particular groups of employees are
prevented from conversing directly for regulatory and/or business governance reasons.
Of course, there are other communication events that are considered valuable and are
facilitated by the enterprise, e.g., events where project teams form groups to work
together and share digital assets, including persistent entities such as computer files
and transient entities such as group chats. The access control of group chats was an
initial motivation for our research and is the canonical use case in this Chapter.

The enterprise network architect and administrators capture this knowledge of
desirable and undesirable communication events and encode it in the form of policies

1With apologies to Edsger Dijskstra. . .

2.1 Background 20

that are used by the enterprise’s access control system to achieve the business goals of
the enterprise.

In the case of enterprises that wish to enforce business rules regarding desirable
communication events, every communication event should be vetted first. Thus,
behind the scenes, Principals issue a request before instigating any communication
event. Each request triggers a policy evaluation and the policy sets themselves become
larger as they need to cover ever more communication events. The resulting policy
evaluation overhead increases network traffic (reducing available bandwidth for other,
more directly useful network communications) and also introduces latency (delay) at
the start of each access attempt. Thus policy evaluation has the potential of becoming
a bottleneck in modern communications. For example, policy control of instant
messaging communications in enterprises necessitates large numbers of policy
evaluations, when many users seek to access a common resource (the group chat) at
approximately the same time and there might be complex rules in place governing a)
who can participate and b) what privileges they have once they have joined the chat.

Requests to initiate communication events require simple but robust and performant
access control procedures that are informed by access control policies. Indeed,
enterprises can purchase products to achieve their access control objectives and
corporate integrated communication solutions (Cisco, 2012; IBM, 2012) have
widespread adoption within industry. The tools have revolutionised communication by
both enabling and controlling it, in near real time. As such, any access control
mechanism used to protect corporation communications must provide a decision in
near real time in order to preserve usability of the underlying communication medium.

However when vendors deploy such systems, they find that meeting the agreed
performance service level can prove challenging; the reasons include:

Compliance An example business policy might be to enforce the principle of
Separation of Duties (SoD) to ensure that credit decisions are made only by an
authorised officer and that all such decisions must be approved by a separate
review committee before they can be issued. Compliance also mandates that all
access requests and responses should be auditable, to ensure that they meet
minimum standards of business practice—this increases the overhead further.
Other sources of regulatory requirements include the Sarbanes-Oxley Act2 and

2From Wikipedia: The Sarbanes–Oxley Act of 2002 (Pub.L. 107–204, 116 Stat. 745, enacted July
30, 2002), also known as the "Public Company Accounting Reform and Investor Protection Act" (in

2.1 Background 21

the FDA/21CFR3 programmes in the food/medical sector. Such regulations
specify mandatory, auditable information management procedures;

BYOD Bring-Your-Own-Device (BYOD) is a growing trend and represents both an
opportunity (lower procurement and training costs) and a threat (less direct
control over client devices). Compared to the days when all devices accessing the
network and its assets were managed centrally and hence implicitly trusted,
there are many more heterogeneous devices and the trust boundary between
client devices and the protected resources they wish to access is much more
complicated. Consequently, it becomes essential to check each access request to
ensure it should be permitted;

Insider threats Recent news reports have highlighted cases such as that of Edward
Snowden (Esposito and Cole, 2013) where employees and/or contractors with
unnecessarily elevated privileges were able to obtain and disclose sensitive data.
The response in many organisations has been to review their privilege
management systems and to introduce additional and even more extensive
controls;

zero-day attacks Pervasive access control can help to limit the risks even of
undiscovered vulnerabilities (Peterson and Nair, 2015). If outside attackers
break through perimeter defences such as firewalls and SSL-based
authentication, rigorous, dynamic access control provides greater defence in
depth by making it harder for attackers to exploit any security breach;

internal requirements Each organisation needs to ensure the confidentiality of its
own sensitive information, such as strategic plans or trade secrets (like the
specifications of products or services). Many organisations also have a duty of
care to protect the privacy (in the form of personally identifiable information) of
stakeholders including their employees, suppliers and customers.

the Senate) and "Corporate and Auditing Accountability and Responsibility Act" (in the House) and
more commonly called Sarbanes–Oxley, Sarbox or SOX, is a United States federal law that set new or
expanded requirements for all U.S. public company boards, management and public accounting firms
for corporate governance and robust accounting procedures.

3From Wikipedia: Title 21 CFR Part 11 is the part of Title 21 of the Code of Federal Regulations
that establishes the United States Food and Drug Administration (FDA) regulations on electronic
records and electronic signatures (ERES). Part 11, as it is commonly called, defines the criteria under
which electronic records and electronic signatures are considered trustworthy, reliable, and equivalent
to paper records (Title 21 CFR Part 11 Section 11.1 (a)).

2.1 Background 22

As mentioned previously, one of the main areas where (near) real-time access control
can be difficult is when managing large scale group chats. Discussions with Cisco
representatives highlighted the access control overheads of managing large scale group
chats that happen within or between complex enterprises. In such organisations, the
organisational structures and roles impose constraints on who can join a chat. Often
the policies are dynamic (context-sensitive) such as when an Ethical Wall (Brewer and
Nash, 1989) security property needs to be enforced. Dynamic policies often lead to
more onerous policy evaluation. For example, when n staff need to join a group chat,
at least ∑n

i=1 i = O(n2) policy evaluations are needed where n is the number of
participants. Moreover, the constraints do not apply just to potential participants.
For example, to protect confidential information, some media exchanges (such as voice
conference calls) may be permitted but sharing certain media types (such as
spreadsheets) between specific (groups of) participants may be prohibited.

Achieving compliance requires specialist knowledge and tools, so enterprises often
purchase solutions and/or expertise from suppliers in the Identity and Access
Management (IAM) sector. Such regulations help to meet societal goals but can be
difficult and expensive to implement, and should not hinder legitimate communication
events which are necessary for enterprise operations.

Clearly, if policy evaluation performance requirements are not met, the overhead of
ensuring conformance with fine-grained access control policies can prove detrimental
to other system requirements such as timeliness of response and general system
usability. That is, policy-based access control systems should ensure that safety
objectives are achieved, without restricting the expected/normal functioning of the
organisation. Therefore the challenge is to maintain a satisfactory user experience
while ensuring that system security goals are met at a reasonable cost and in a flexible
and easily maintained way.

Performance considerations require careful analysis of the full privilege management
system. The potential causes of performance problems are many and varied, from
policy formulation to server configuration. Hence a comprehensive domain model is
needed in which to evaluate different policy-based access control proposals before
deployment. A policy-based management system for access control comprises, at a
minimum, the following entities

1. the policies that encode the business constraints;

2.1 Background 23

2. the requests from Principals (or their agents) to access (potentially) sensitive
resources;

3. a (possibly replicated) decision point, which receives requests, checks the policies
to decide whether access should be granted and then formulates the response;

4. the physical infrastructure (servers, etc.) that is specified, configured and
maintained by administrators acting on behalf of the organisation.

5. the responses from the management system indicating whether access is
permitted or not;

6. the actions triggered by these responses, such as a) maintaining a log of access
requests and responses, b) creating and using an authorisation token if access is
permitted, and c) falling back to an alternative if access is denied;

In this dissertation we consider entities 1) to 5) above.

2.1.1.1 Policy evaluation architecture

The industry standard for policy-based access control is XACML (OASIS
XACML-TC, 2014). The XACML standard also describes an architecture with server
roles etc., and describes how server participate in the overall data flow—see Figure 2.1.
Each flow has a label li where li < lj implies a temporal ordering such that flow i

happens “before” flow j; the overall flow is consistent with the description of the main
features of policy-based access control systems in §2.1.

It is clear from Figure 2.1 that the architecture ensures, owing to its design principles,
that policies can be managed separately from requests. By necessity, they interact at
the Policy Decision Point (PDP), but otherwise the system architect has the freedom
to make implementation choices to ensure that functional safety objectives are met,
while maximising policy evaluation performance and other non-functional utility
measures.

2.1.1.2 Fine-grained policies

For optimal flexibility, fine-grained access rules are needed to ensure that

• access is permitted only where necessary (so security requirements are met), and

2.1 Background 24

PEP

context

handler

4. request

notification

PIP

6. attribute

query

11. response

context

1. policy

8. attribute

environment

resource

subjects

7b. environment

attributes

PAP

obligations

service
13. obligations

PDP

access

requester
2. access request

9. resource

content

3. request 12. response

7c. resource

attributes

7a. subject

attributes

5. attribute

queries

10. attributes

Fig. 2.1 Data flows in policy-based access control—taken from XACML 2.0 stan-
dard (OASIS XACML-TC, 2014)

• access is denied only where necessary (so service functionality is maintained).

Such fine-grained access control enables system administrators to implement security
policies with complex boundaries between what is permitted and what is denied but
also leads, in general, to more complex policy sets, resulting in longer PDP processing
times. Fine-grained access control also means that more types of behaviour need to be
approved so the PDP has more checking to do within a session. As an example, two
Subjects may be permitted to exchange Resources with media type 1 (e.g., voice or
plain email messages) but not Resources with media type 2 (e.g., email or IM file
attachments). As with any security deployment, it is necessary to respond rapidly as
new threats arise, so dynamic updates to rules specifying that decision boundary are
necessary, e.g., in the case of Bring Your Own Device (BYOD). This requirement to
support policy sets that evolve over time makes it more difficult to use caching and
similar strategies to improve PDP performance and scalability.

Organisations are deploying ever more complex communications and content
management systems to control entitlements to read, write and share protected digital
resources. The resulting access control policy infrastructure defines and resolves the

2.1 Background 25

(a) Before: simple boundary, few rules

Permit Deny

Functionality Safety

(b) Now: complex boundary, many rules

Permit Deny

Functionality Safety

Fig. 2.2 The contrast between access control then (coarse-grained) and now (fine-
grained). More context and rules are needed to decide whether to Permit/Deny a given
request in the new regime so the PDP has significantly more work to do.

complex decision boundary between safety and openness, see Figure 2.2. This
complexity poses major usability concerns in real-time corporate communication
scenarios (due to high complexity) and in online social networks (due to large scale).

2.1.1.3 Dynamic policies

Some security properties (such as the maintenance of ethical walls to prevent conflicts
of interest) require dynamic policy enforcement. In the case of ethical walls, where
past access decisions affect present access decisions, the policies are highly dependent
on context. In some workflows, such as loan approval, a SoD security property applies
and sometimes an individual could have a specific role for that workflow instance and
a different role for the next workflow. Since the context changes, this means that each
step in the workflow requires a specific access request to be permitted; it is not
possible to infer whether access should be permitted based just on static information
or previous access decisions outside this workflow.

Generally, resource authorisation decisions are made by considering the request
context, looking up the relevant attributes in policy sets and organisational databases
as necessary. Thus the (setup) time required to respond to an access request can be a
significant overhead when completing a communication event. In many cases, this
overhead is independent of improvements in other factors (such as bandwidth) that
are intended to improve communication performance.

Returning to our motivating example, policy control of enterprise group chats causes
many access requests to be issued, because the access control system must decide
which participant pairs can communicate. Such policy control is needed in

2.1 Background 26

organisations where ethical walls (Brewer and Nash, 1989) must be maintained
between groups for business reasons.

2.1.2 Introduction to access control

We have already seen that access control mechanisms are used to prevent “harmful”
communication events. For example:

• a parent might wish to share family photographs with a grandparent, but not
with the wider user community of a photograph-sharing site;

• in an organisation, corporate governance procedures impose Binding of Duties
(BoD) controls between those who use its resources and those who approve this
use.

Such scenarios require simple but robust and performant access control procedures that
are informed by access control policies. Much of the public literature on access control
policies focuses on techniques to ensure that sets of deployed policies are consistent
with high level security requirements. This dissertation addresses the performance of
the access control evaluation, on the assumption that the policies are correct.

In the enterprise communication events considered in this dissertation, communication
events are modeled as Subjects applying Actions to Resources. Access control is a
system which enables an Authority to limit these interactions. Access control
constraints are binary-valued decisions, being either Permit or Deny. Each decision is
made by searching business Rules to find one or more matches and evaluating the
rules relating to the given request. Rules are combined into business policies.

It should be noted that the functional objective of an access control system is to apply
policies to ensure that Subjects can access Resources if and only if they are entitled to
do so. That is, the access control system should:

• meet its safety objectives: no unauthorised access is granted;

• meet its usability objectives: no authorised access is denied;

• meet its nonfunctional objectives such as performance; to paraphrase the legal
maxim: “access delayed is access denied”;

2.1 Background 27

• is maintainable: it can support and adapt to changes in requirements and the
computing environment.

As we have seen, access control policies often need to be fine-grained (in the sense of
having a large number of low-level (hence highly specific) policies) to take full account
of this context. Attribute-Based Access Control (ABAC) (Hu et al., 2013) was
designed to meet the need for such flexible, fine-grained access control policies, and
the model is sufficiently flexible to be able to support dynamic policies too.

Access control policies appear to be relatively simple, since the policy action is
generally binary-valued: either permit or deny a request. However this is only part of
the story, because policy rules come in (at least) three different forms

1. specific conditions that apply directly to business entities such as employee roles,
resource types and user groups. These direct conditions define constraints on
permitted combinations of Subject, Resource and Environmental attributes;

2. general conditions that apply indirectly to these business entities. They encode
structural relationships between these entities, e.g., a Person can have 0, 1 or
more Roles. While they are encoded as rules, they generally apply to Subjects,
or to Resources, or to Environmental attributes, rather than to combinations of
such entities;

3. general conditions that apply to higher-level abstractions and serve as security
properties such as (static or dynamic) SoD or ethical wall policies.

Thus incoming access requests need to be matched against complex knowledge bases
comprising the three rule types above. The PDP can match the request context
directly against type 1. policies above. The structural relationships supporting Type 2.
policies are often stored in external databases, so the PDP calls on the Policy
Information Point (PIP) to provide this information, possibly resulting in other type 1
policy context matches. Of course, the higher level entities might also be subject to
Type 3. policies, in which case even more policies may become relevant.

Good PDP performance is an important access control system requirement. Indeed, if
policy evaluation performance is poor, the access control system intrudes more and
more on legitimate user activity, so the user experience suffers. Anecdotally, each
policy evaluation takes longer as policy sets grow larger; we see in Chapters 4– 6 how
we can measure this effect.

2.1 Background 28

Access control evaluation performance has been getting some interest at the OASIS
XACML TC. In private correspondence with us, David Brossard (Axiomatics VP
Product Management and XACML TC member) said:

Now that XACML 3.0 has become a standard, we can focus on usability
and adoption. XACML will only succeed with mass adoption. And mass
adoption will only happen if we give end-users and developers the tools
and techniques they want. [David Brossard (Axiomatics), 22 Mar 2013].

My personal impression is that the key to XACML’s future success is
adoption. That will only happen through the adequate tooling and
environments - the output of your proposed research is one such
environment." [David Brossard (Axiomatics) 27 Mar 2013].

2.1.2.1 Extending access control: delegation and usage control

In the enterprise communication scenarios considered in this dissertation, access
control is considered a once-off operation. That is, the requester asks permission to
perform some action on a protected resource, and the responsibility of the access
control system is to provide a correct and timely answer to that specific request.
Subsequent usage of that resource is subject to any existing rules; the requester is
trusted to operate responsibly within the limits of what access has been granted.
However, there are two scenarios where this narrow interpretation of access control
needs to be reviewed:

Delegation is the procedure in which access rights can, with suitable safeguards, be
shared with other entities in response to specific circumstances, such as
“break-glass” policies in emergencies. Often this is done by adding extra rules to
the existing access control policies.

Usage control is where the data is subject to ongoing access checks as its context
changes, e.g., as it passes from one entity to another. Sticky policies bind these
access rules to the resource. Usage control can help to secure the privacy of data
shared by users who wish to maintain control of what happens to their
data (Kelbert and Pretschner, 2012).

Delegation is related to the administration of the access control system itself and so is
largely outside the scope of this dissertation. In practice it can lead to more complex

2.1 Background 29

policies. Rissanen and Lockhart (2014) provides advice for policy authors in this
regard. Usage control is more relevant here, because it is associated with repeated
evaluation of access control policies and hence more load on the access control system
and on the PDP in particular.

2.1.3 Importance of XACML

The technical challenge of pervasive access control is being addressed by the growing
adoption of externalised authorisation systems, in which access control rules are
specified declaratively in an industry-standard language such as eXtensible Access
Control Markup Language (XACML), and where a reference monitor checks every
request for a protected resource.

Indeed, many enterprise-level access control systems encode access controls as XACML
(Moses, 2005) hence researchers focus on XACML policies and requests and their use
in Policy Execution Point (PEP) servers and XACML-based PDPs.

XACML is an industry-standard (OASIS) XML dialect specifying access control rules.
The XACML standard also defines an architecture for access control enforcement.
XACML policies are hierarchical: rules roll up into policies and thence into policy sets,
which can roll up to higher-level policy sets. Listing 2.1 is an example XACML 2.0
policy showing how elements of the policy are nested inside each other. Such policies
can be nested (to arbitrary depth) inside PolicySet elements, which can be nested
inside other PolicySet elements. A full specification is available from the OASIS
website (Moses, 2005).

One of the key features of the XACML architecture is that it externalises access
control so that access policies are collected in one location (the Policy Retrieval Point
(PRP)) and access control can be offered as a service to other applications. The
architecture also provides functional separation between access control and other
network uses, in terms of resources such as servers and bandwidth (OASIS
XACML-TC, 2014). Whilst the flexibility XACML provides is highly valuable, the
manner in which the architecture is implemented can be significant for performance.

2.1 Background 30

Listing 2.1 Example policy: IIA001 from XACML 2.0 conformance test suite (Kuke-
tayev, 2005).
<?xml version="1.0" encoding="UTF-8"?>
<Policy

xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=

"urn:oasis:names:tc:xacml:2.0:policy:schema:os access_control-xacml-2.0-policy-schema-os.xsd"
PolicyId="urn:oasis:names:tc:xacml:2.0:conformance-test:IIA1:policy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides" >
<Description>Policy for Conformance Test IIA001.</Description>
<Target/>
<Rule RuleId="urn:oasis:names:tc:xacml:2.0:conformance-test:IIA1:rule" Effect="Permit" >

<Description>Julius Hibbert can read or write Bart Simpson’s medical record.</Description>
<Target>

<Subjects>
<Subject>

<SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal" >
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string" >

Julius Hibbert</AttributeValue>
<SubjectAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />

</SubjectMatch>
</Subject>

</Subjects>
<Resources>

<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal" >

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#anyURI" >
http://medico.com/record/patient/BartSimpson</AttributeValue>

<ResourceAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="http://www.w3.org/2001/XMLSchema#anyURI" />

</ResourceMatch>
</Resource>

</Resources>
<Actions>

<Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal" >

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string" >
read</AttributeValue>

<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />

</ActionMatch>
</Action>
<Action>

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal" >
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string" >

write</AttributeValue>
<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" />
</ActionMatch>

</Action>
</Actions>

</Target>
</Rule>

</Policy>

2.1 Background 31

Two major research gaps exist:

1. XACML policies are difficult to specify correctly and it is even more difficult to
ensure that they remain correct as security needs evolve;

2. The Access reference monitor function is a complex decision system, whose
performance is not easily predicted because it depends on many factors. Other
factors being equal, the number of rules is a function of the number of elements
in the access control matrix (and hence its complexity scales as
#(Subject)×#(Resource)×#(Action)). Therefore explicit access control
matrices become unwieldy as the domain size increases and so a more scalable
specification of access control requirements is as a set of rules rather than a large
number of Permit/Deny-valued cells in an enormous access control matrix.
However, the rule set could still be very complex and require relatively long
execution times.

The focus of this dissertation is on the latter problem, namely that of predicting the
performance of the system, dimensioning it accordingly, and managing it so that it
continues to meet its performance objectives.

2.1.4 Access Control Performance

In large organizations, enterprise communication and content management systems
provide the environment in which policy based access control systems mediate access
to resources. Note that safety requirements are addressed directly when:

• ensuring that all likely access requests are covered by the available policies;

• ensuring that all access requests are intercepted by the policy system so that no
resource is released for use unless access has been granted.

By contrast, performance considerations require careful analysis of the full
policy-based access system. Performance problems could arise anywhere, from policy
formulation to server configuration. Hence a comprehensive domain model is needed in
which to evaluate different policy-based access control proposals before deployment.

In the standard architecture (Moses, 2005), access requests are sent to Policy
Execution Point (PEP)s, which hand off the access decision itself to one or more
PDPs. The PEP is largely stateless and so scales outwards easily. However, the PDP

2.1 Background 32

needs to consult a policy set for each request and hence can become a performance
bottleneck. Thus PDP performance is an important characteristic of access control
requirements in deployed ICT systems. When addressing PDP and hence system
performance, it is timely to consider what that means in respect of a request-response
system such as an access control reference monitor.

The PDP service time is defined as the time taken from the point that the access
request arrived at the PDP to the time when the response was issued by the same
PDP. As seen by the access-requesting client, it is the latency added by the PDP to
the time taken from requesting access to gaining that access (assuming the response
was Permit).

While latency is the main concern of an individual client, the average number of
requests handled per second has similar importance for overall service performance.
Generally, by reducing service time (which is equivalent to latency for infrequent
arrivals), the (potential) mean service rate is increased. However, the (supply-side)
service rate should always be compared against the (demand-side) arrival rate: if the
latter exceeds the former, even for a short time, queues will develop. If the queue
length is managed carefully, the impact on clients can be minimised. In this
dissertation, most of the focus is on measuring the service time, though queueing is
considered in the simulations in Chapter 3.

2.1.4.1 Access Control Scalability

Scalability is a measure of the ability of a system to continue to respond well as the
system load increases and the available resources increase in proportion with that load.
Some of our experiments consider the effect on service time as domain size increases,
for different resource (memory and CPU) allocations. If the service times grow at a
faster rate than most measures of domain size, the PDP in question does not scale
well in respect of performance. However, scalability is a derived quantity (it is not
measured directly) and so specific performance experiments are needed to answer
specific scalability research questions.

Ensuring the scalability of individual components within that architecture may not be
enough. For example, it is relatively easy to distribute (in the sense of scaling out) the
architecture’s PEP function, but much more challenging to distribute the PDP engine.
When minimising the total latency, some tradeoffs may be needed (e.g., adding more

2.1 Background 33

resources for Component X means that Component Y needs more resources to
benefit), or there might be a net benefit from adding extra components (such as
caching) to the existing mix.

Scalability of the policies themselves can also be a challenge, if the policy set grows
too quickly as the domain size increases. When formulating the policies, one problem
is that policy authors prefer to define policies at a higher level of abstraction than the
request handling system. For example, a policy might reference groups of subjects, but
the corresponding requests generally reference individuals. The resulting “impedance
mismatch” needs to be considered when generating policies and requests that together
represent a domain. A mechanism for doing this constitutes one of the main
contributions of this dissertation.

2.1.4.2 Caching

One of the standard techniques used to improve the performance of stateful
request-response system is to cache “hot” data near where it is needed. If clients can
get the response they need from the cache, this can reduce the load on the policy
server. However, the policy cache proxy itself can become swamped with lookup
queries, in which case it makes sense to create multiple caches. This results in two
problems that need to be addressed

addressing to which cache should the incoming query be directed?

consistency how do the caches remain synchronised with the master copy of the
policies, when that master copy is subject to updates in the policy server?

In such a scenario, consistent hashing can be used to provide a scalable means of
implementing a distributed policy cache. If the policy cache is distributed in this way,
there is no need for individual caches to communicate all the time as they apply cache
coherency protocols, and more policy caches can be added on the fly without
invalidating existing policy caches.

Use of the consistent caching algorithm enables high scalability of busy internet sites
but is challenging to implement with access control policies implemented in XACML.
The main reason is that administrators need to update policies dynamically, but it is
far from trivial to understand how to update the policy caches. Indeed, XACML is
verbose (difficult for humans to interpret any but small policy sets) and has complex

2.1 Background 34

rule combining algorithms (so tools struggle to manage that complexity) and so it
lacks support for change impact analysis.

This dissertation does not address caching any further, although some of the analysis
could be used to help identify the “hot data” that might be suitable for caching.

2.1.5 Use of a testbed

As can be seen in §2.2.3, many researchers have suggested ways in which access
control performance (in the sense of service time per request) can be improved.
Generally, the evidence presented by those researchers is based on comparisons with
the SunXACML PDP reference implementation (Proctor, 2004), often using
unpublished policies and requests. Therefore, while there is a conformance test suite
to check the correctness of a given PDP, there is no common test suite of policies and
requests for performance evaluation. Since the experimental conditions differ, and are
generally not reproducible by other researchers, it is difficult to compare improvements
with each other, or to determine what tradeoffs occur either in respect of functional
requirements (like policy expressiveness) or performance.

2.1.6 Links with policy testing

One of the considerations in correctness testing is to define the minimal covering set
of requests, as this set is designed to exercise the policies in the PDP thoroughly. For
performance evaluation this minimal set of requests should be augmented with
additional requests to perform a more thorough sampling of the rule space, thereby
reducing the risk of missing unexpectedly large policy evaluation times. Augmenting
the minimal set also reduces the stochastic risk associated with the fact that PDP
performance also depends on stochastic parameters such as the distribution of policy
request arrivals. The goal is to achieve both the sampling and the volume
requirements of the PDP performance test. Static analysis of the policy set will
indicate the longest path (by duration) between the root node and all terminal nodes.
However, this is insufficient, because actual performance will depend both on the
average path length for a typical policy request mix and on stochastic quantities such
as the request arrival rate.

2.1 Background 35

2.1.7 Links with policy authoring

Anecdotally, each policy evaluation takes longer as policy sets grow larger. Therefore,
many researchers recommend that policies should be as efficient as possible. One way
of achieving this is to search for (and remove) any redundant policies.

Because it is “easy” to add policies to an existing set, and many Policy Administration
Point (PAP)s do not offer any means of analysing the effects of adding such policies, it
is also easy to introduce policy conflicts inadvertently. XACML expects multiple,
possibly conflicting, policies to become active at once for a given policy evaluation,
and relies on policy- and/or rule-combining algorithms to resolve any discrepancies.
These combining algorithms are generally simple aggregations of rules without richer
semantics such as prioritisation. As an example, assume a policy has four rules
{R1, R2, R3, R4}, which evaluate to {Permit, Deny, Permit, Deny}, respectively. Then
the 3 most common XACML 2.0 rule combining algorithms
{*-first-applicable, *-permit-overrides, *-deny-overrides} evaluate to
{Permit, Permit, Deny}, respectively.

Although these rule-combining algorithms (and their policy- and PolicySet-combining
counterparts) are designed to ensure that a single Decision (Permit or Deny) is given
for every request, they can hide problems arising from inconsistent semantics. For
example, consider the following example of policy conflict:

Rule 1 Person A cannot read Document X

Rule 2a Role B can edit Document X

Rule 2b Person A has role B

Rule 2c Read action is a subset of the Edit action group

Note that the inference of Rules 2a, 2b and 2c is that Person A can read Document X,
which is in direct conflict with Rule 1. Often this will result in an Indeterminate
decision, but, particularly in XACML 3.0, rules elsewhere in the policy set might be
sufficient to resolve the conflict (Brossard, 2014b). Given the hierarchical rules in
XACML, combining algorithms are essential but it could also be argued that such
algorithms hide policy conflicts and also make the access control decision itself less
easily traceable to the relevant policy or policies.

2.1 Background 36

From a performance perspective, a policy conflict might be expected to increase the
service time with no obvious benefit to the policy semantics that were intended by the
policy author.

Perhaps the best way to proceed is either

• to use policy representations that can identify conflicts easily, using logical
operations, or

• to query the underlying policy representation and look for them explicitly.

This dissertation does not consider policy conflicts as such, although it would be
straightforward to generate policies with and without known policy conflicts and to
compare their service times, thereby predicting the effects of those conflicting policies
on measured service times.

2.1.8 Learning from recent web service performance advice

It is also instructive to consider access control systems as part of the larger class of
web services. Indeed, most ICT resources requiring protection are web services and
need to manage their own performance carefully. Thus it is instructive to see what
web service standards and practices might offer to access control deployments. In
particular, cloud computing generates new and highly challenging requirements for
scalability and elasticity. Non-blocking I/O, where interrupt handling is achieved
through the extensive use of callbacks, has re-emerged as a way of maximising web
server utilisation. The need for blocking is removed by passing a callback parameter
that is invoked on completion of the deferred task. Javascript (Crockford, 2011) was
designed as a language to run client-side in the browser and hence was designed to use
asynchronous I/O via callbacks as one of its programming idioms. It is being
re-evaluated as a more general-purpose language with the community promoting
Node.js (Dahl, 2011) as a container for server-side Javascript applications. Many
software engineers claim the result is better scalability and more efficient use of
resources (Lerner, 2011; Tilkov and Vinoski, 2010). More generally, software architects
are exploring the use of the non-blocking I/O approach to re-appraise well-established
software engineering best practices based on threads.

2.2 Literature Review 37

Outside of the Node.js community, similar patterns and frameworks are being used in
the JVM (notably Vert.x4 and the Play Framework5 (which both take advantage of
the Actor model (Agha and Kim, 1999; Haller and Odersky, 2009)).

Another area where work is under way, this time by the XACML community itself, is
in the area of request encoding. Traditionally, XACML has been expressed in XML
format, but there is growing interest in the use of JavaScript Object Notation (JSON)
as a means of encoding access requests. This is because many client applications are
moving away from SOAP/XML to lighter weight REST/JSON (Crockford, 2006)
protocols. If compliant XACML PDPs are unable to accept JSON-encoded requests
and can emit only XML-encoded responses, this would be another area where latency
is added. Consequently, the OASIS XACML TC has published the REST/JSON
profile (Brossard, 2014a) of XACML as an addition to the XACML 3.0 standard.

2.1.9 Performance analysis of database operations

Database performance analysis is of ongoing concern. Data volumes are increasing
rapidly and scaling upwards is not able to keep pace, resulting in the phenomenon of
“Big Data” and growing interest in non-traditional techniques for managing data at
scale. In some scenarios, such as when database management occurs on virtualised
infrastructures in the cloud, this leads to new optimisation objectives (Florescu and
Kossmann, 2009). The recent Beckman report (Abadi et al., 2016) identified “Scalable
big/fast data infrastructures” as the first (of five) grand challenges of database
research at this time. In justifying its conclusion, the authors indicate some of the
complexity arising from many, possibly interacting, factors, all of which makes
performance prediction, hence management, more difficult. It should be noted that
some of these factors, notably “query processing and optimisation” are shared with
access control policy evaluation.

2.2 Literature Review

The background to the research topic has many facets, as indicated in § 2.1. The
facets include enterprise communications management, security modelling, policy

4http://vertx.io/
5https://www.playframework.com/

2.2 Literature Review 38

management and performance modelling. Each has a long established and active
research community, publishing papers that are relevant to our research topic, which
draws upon all of these facets. Therefore we need to survey the literature in disparate
areas, and we consider the most relevant of these below.

2.2.1 Policy metamodels

The two main policy metamodels in use in enterprises are Role-Based Access Control
(RBAC) and ABAC. The former was a great advance over older models which failed to
take account of the flexibility of staff in modern enterprises, who can often change role
according to context; see §2.2.1.1. The latter generalises RBAC by allowing additional
attributes (not just Subject role) to be used when specifying policies, see §2.2.1.2.
Generally, it is possible to represent RBAC policies in ABAC form but not vice-versa.
XACML was designed to represent ABAC policies so, in principle, it should be able to
represent any enterprise access control policy. The converse is that any domain model
for such policies should follow the “spirit” of XACML (as in its metamodel) to ensure
that they are sufficiently representative of the domain. As seen in Chapter 4, the
XACML metamodel provides the scaffolding of the domain model presented in this
dissertation.

2.2.1.1 RBAC

Ferraiolo and Kuhn (1992) is the seminal paper on role-based access controls. The
authors propose that RBAC is a good fit for non-military organisations because the
three basic rules of the RBAC model are sufficiently general to be applied to many
practical scenarios. All that is needed is to configure what is meant by Subject, Role
and Transaction in a given context. Thus objectives requiring the Principle of Least
Privilege and/or BoD can be recast as RBAC policies in a suitable language. Such
protection objectives are also within the scope of the domain model presented here.
The model grew in importance in the early 2000s, largely due to the influence
of (Ferraiolo and Kuhn, 1992). In the context of a corporate intranet, Ferraiolo et al.
(1999) was particularly influential.

Rizvi et al. (2004) is one of the first papers to use the term fine grained access control
(in relation to database queries). However, RBAC was not really suited to this

2.2 Literature Review 39

concept, because of its focus on “coarser” entities such as roles. Practical problems
arise when the number of roles and similar entities become very large.

2.2.1.2 ABAC

Indeed, the need for fine-grained access control was one of the primary motivations for
the ABAC model. The ABAC model was proposed as a generalisation of the the
RBAC (Ferraiolo and Kuhn, 1992) model. ABAC models can represent many of the
dominant models (including DAC, MAC and RBAC) (Jin et al., 2012). ABAC
provides the native access control model used in XACML. The key idea is that policies
can be tuned carefully (by adding and removing selected attributes) to meet a specific
access control objective. For example, a role is just a convenient persistent grouping of
attribute values that may be shared by more than one Subject in a given context. In
many organisations, attributes are maintained as hierarchies in key-value stores (such
as LDAP directories) or in relational databases (such as those used in ERP systems).
The policies themselves are sufficiently complex (e.g., the schema is dynamic (Russello
et al., 2008) and the relationships between entities might even be recursive (in the form
of part-whole hierarchies)) so they do not fit easily into a relational representation.

Even with the RBAC profile, XACML 2.0 does not support the RBAC model with
constraints that would be common in a corporate setting such as SoD, so Ferrini and
Bertino (2009) introduced the XACML+OWL framework where XACML policies
manage authorisation at a role level, but the role hierarchies and the constraints
affecting individuals in roles are managed and decided using an ontology (specified in
OWL). This paper shows that, in a practical implementation, it is necessary to
distinguish between relatively static information (such as the assignment of persons to
roles), policies authorising those roles (commonly specified in XACML format) and
security properties such as the principle of least privilege, which are overarching
concerns that are not easy to specify as static rules (such as might be found in a
XACML policy set). Some of these ideas, around having separate but consistent
models of the static and policy model, form the foundation of the domain model
presented in Chapter 4

2.2 Literature Review 40

2.2.2 Formal policy languages

Zhang et al. (2004) is one of the earliest efforts to write verified policies in a way that
can be translated to XACML and hence incorporated in industry-standard access
control systems. The authors introduce a domain specific language (DSL) they call
RW which offers a terse encoding of access control statements. The compiler and its
underlying database require significant configuration and so their system is not
well-suited to developing large policy sets, but the generated policies have the benefit
of sound logical foundations. The other major contribution is the idea that policies can
be written in one language and then compiled to XACML for use in standard PDPs.

Dougherty et al. (2006) uses another language to represent polices: Datalog. Unlike
the DSLs proposed by many other authors, Datalog is a general-purpose declarative
language, with similar syntax to Prolog. As with RW that was proposed by (Zhang
et al., 2004), it can be used for logic programming and so supports reasoning about
policies. Thus it is more suited to writing policies with large semantic complexity
rather than large size.

Ramli et al. (2014) derive the formal syntax of XACML 3.0, stripped down to its
essentials (excluding the XML details) and uses logical reasoning to derive its formal
semantics, particularly its combining algorithms. With this formal representation in
place, Ramli et al. (2013) show how Answer Set Programming can be used to look for
gaps in the policy coverage and to check whether particular security properties hold.
As with (Dougherty et al., 2006), logic programming provides a means of checking the
semantics of a policy set. Ramli et al. (2014) claim that their treatment of XACML
3.0 is almost complete. Therefore, given suitable tooling to convert a policy set to
their representation, it should be possible to handle most policies that might be
encountered in practice, although they do not say much about the time needed to
conduct such an analysis.

Other researchers are concerned with “quality assurance” of policies, namely whether
and how well a given policy set meets the protection objectives of an organisation.
Sometimes this can be achieved by formal verification techniques, e.g., if the policies
have been specified in (or translated to) representations that are based on Description
Logic (DL). Thus properties such as safety (equivalently: the non-leakage of privileges)
can be recast as constraint satisfaction problems and checked using DL reasoners such
as Pellet (Kolovski et al., 2007; Sirin et al., 2007). The benefit for performance is that

2.2 Literature Review 41

reasoners are designed to search a large rulebase efficiently. If the reasoner’s algorithm
or its implementation is updated in a way that improves its performance, that
improvement is available for policy evaluation too, without the need to address
XACML policy evaluation explicitly. Kolovski et al. (2007) also point out that their
DL representation fits well with OWL-DL ontologies describing the policy domain. In
principle, the domain model could have a common OWL-DL representation for the
static domain data and the constraints that apply to sharing in that scenario. As will
be seen in Chapter 4, it is essential to ensure that the static domain data is consistent
with the constraint model.

Fisler et al. (2005) chose to represent access control policies as propositional logic
statements. The authors model such policy statements as Multi-Terminal Binary
Decision Diagram (MTBDD)s, which encode the rules in a notationally efficient and
scalable fashion as weighted directed graphs. This paper is interesting because it links
the logical treatment of policies (with scope for applying logical operations such as
inferencing) with Binary Decision Diagram (BDD)s (which makes explicit the most
efficient graph-based representation of the policy set).

Policy similarity measures (Lin et al., 2007) can form the basis of techniques to
quantify policy complexity. If there are many similar policies (with overlapping rule
effects), the same decision can be made by following different routes to a decision node.
Thus, in the case of rule combining algorithms such as first-applicable or even
permit-overrides (in the latter case when the similar rules yield a Permit decision), the
size (measured as the number of rules) of the policy set might overestimate the policy
set complexity if there is a large number of similar policies. A good estimate of the
effective policy set size helps to estimate the policy evaluation service time, so “policy
set size” is an important parameter.

In summary, treating XACML policies as logic programs has much potential.
Chapter 4 describes ways of generating policies taking their semantics as given, but it
would be interesting to investigate whether greater knowledge of the policy semantics,
and how they might change as policies are added or as the domain size increases,
could be used to gain insight into access control performance.

2.2 Literature Review 42

2.2.3 Proposals to improve access control performance

The problem of access control evaluation performance has received attention in the
past ten years or so; the level of interest has increased steadily over that time.
XACML is the industry-leading access control architecture and XACML-based PDPs
are common in enterprise communication environments sold by the major vendors.
One option is to look at alternatives to XACML, mostly originating from academia
rather than industry. Proposed languages include PERMIS (Chadwick et al., 2008)
and SecureUML (Lodderstedt et al., 2002). However systems using these languages do
not appear to have any specific performance advantages over XACML and their
adoption is low. Therefore, because of its ubiquity, many researchers have chosen to
address XACML PDP performance in particular.

Liu et al. (2008) was seminal in that it showed that it was possible to evaluate policies
with service times that were typically hundreds of times less than those of the
reference SunXACML PDP (Proctor, 2004) implementation. The authors describe
Xengine PDP that

1. converts the XACML textual policy to numerical form;

2. standardises the numericalised policy by flattening its structure;

3. of the seven standard combining rules, uses only the first-applicable combining
rule;

4. encodes the standardised policies in data structures that are optimised for search
operations.

Liu et al. (2008) used some “real-life” policy sets to which they had access, as well as
some generated policies, together with randomly-generated requests using the
correctness testing request generator described in (Martin et al., 2006). This mix of
policies and requests was used when checking that policy evaluation performance
improved compared to the SunXACML PDP. While the performance results are
impressive, it is not clear that the results will apply to actual deployments, because
the characteristics of the actual policies, requests and infrastructure used are also
likely to affect the performance, and not just the choice of PDP. Liu et al. (2008) also
acknowledge that removing inconsistent and redundant rules, as described by
(Kolovski et al., 2007), might improve performance but note that this was not proven
at the time of writing their paper. Also, while the authors claim (and demonstrate)

2.2 Literature Review 43

dramatic performance increases, this is at the cost of an opaque, non-symbolic policy
representation.

Various researchers made specific policy evaluation improvement proposals by trying
to optimise the policies themselves, independently of the PDP, so that there is a
performance uplift even for the classic SunXACML PDP. These proposals include:

• deriving policy similarity measures, with the potential to short-circuit policy
evaluation (Lin et al., 2007). Policies that are similar do not need to be checked
if a similar policy has already been checked, so this technique would help to
evaluate policies that have large size but moderate complexity (owing to subsets
of policies whose member policies are similar to each other);

• similarly, policy integration, in the context of business federations is considered
in (Mazzoleni et al., 2006)—of course integration could also be seen as a means
of simplifying a policy set and hence improving its evaluation performance. The
key idea is that, by grouping similar policies together, particularly when the
similarity derives from structural properties of the domain, it is possible to
reduce the policies to evaluate;

• policy reconfiguration (Miseldine, 2008), that is changing the structure of a
policy set, by identifying the evaluation graph for a given request and estimating
the evaluation cost for each node in the graph, together with its dependencies.
Depending on the combining algorithms in force, and the partial results of the
evaluation graph, it might be possible to ignore parts of that graph whose
results do not affect the overall result. Generally, an entity (such as a rule or a
policy) is evaluated in the order given by its position in its enclosing entity (such
as a policy or policy set, respectively). If the partial evaluation costs are known,
it might be beneficial to change that evaluation order (so Rule 1 is evaluated
before Rule 2, say) such that the policy semantics do not change, but the
evaluation path has fewer unnecessary evaluations.

• policy reordering (Marouf et al., 2011), exploiting the fact that many combining
rules of the *-overrides form do not require full evaluation of all rules—so, if a
counter-example is found, evaluation of that branch of the policy tree can stop.
The problem is that the rules might not be ordered in a way that allows such
short cuts. Thus Marouf et al. (2011) estimates the statistical distribution of the
requests, clusters the policy rules and reorders the rules based on the estimated

2.2 Literature Review 44

Table 2.1 Summary of techniques for improving XACML evaluation performance

Authors Change policies Change
PDP

Limitations

Marouf et al. (2011) categorisation, reorder-
ing, clustering

No None

Liu et al. (2008) Numericalisation; Tree
structures

Extensive First-
Applicable
policy
combining
rule only

Miseldine (2008) reconfiguration (lim-
ited scope)

No None

Mazzoleni et al. (2006) policy integration (flat-
tening the tree)

No None

Ngo et al. (2013); Pina Ros et al.
(2012)

graph/decision dia-
grams

Yes Depends
on imple-
mentation

Griffin et al. (2012) Node.js PDP Yes Partial
implemen-
tation

Kolovski et al. (2007) Translate into DL (Pel-
let)

Use DL
Reasoner

Excludes
Ordered-*
combi-
nation
rules

distribution of the requests so that policy evaluation time for a specific request
distribution is minimised.

All of these techniques have the advantage, compared to (Liu et al., 2008), that they
could conceivably be applied to any XACML PDP, including SunXACML PDP.

Pina Ros et al. (2012) recast XACML policies as BDD. This format is the most
efficient graph-based representation of Boolean functions (such as policy sets) by
design. As a combinatorial optimisation problem (to find the optimum ordering of the
variables in the Boolean expression), deriving the BDD from the input policy
specification is NP-hard, but once the policies have been transformed into a BDD,
evaluation should be fast. Compared to (Liu et al., 2008), their implementation does
not numericalise the policies and keeps more of the expressiveness of XACML. Thus

2.2 Literature Review 45

comparison functions do not need to be equalities, more combining algorithms are
supported, etc., but their implementation does not support multi-valued attributes.

Ngo et al. (2013) describe a PDP that overcomes most of the restrictions of Xengine
PDP while keeping many of its performance advantages. In particular, they show that
the policies that are not convertible to Xengine PDP’s restricted format can be
handled by their PDP prototype, and yet benefit from the MTBDD formulation of
Xengine PDP. They also extend the coverage of Pina Ros et al. (2012): they handle
all the XACML 3.0 Indeterminate rule combinations, as well as multi-valued
attributes. The theoretical justification is strong and the performance improvement,
relative to SunXACML PDP appears significant, though not as good as Xengine PDP.
However, it is not possible to be more precise, because the performance experiments
suffer from the same problems as those of Xengine PDP and the various “policy
modification” algorithms in that, while it is entirely plausible that significant
performance improvements occur, there is no common experimental setup with which
to compare them against other techniques or indeed to estimate how much
performance will improve in a given policy deployment.

Other proposals include re-engineering the PDP and using lightweight data formats
like JSON that are commonly utilised in highly scalable web systems. In that regard,
Griffin et al. (2012) describes such an implementation.

Table 2.1 summarises the policy evaluation improvement proposals described above.

2.2.4 Policy authoring

Policy authoring is a well-studied topic, with many researchers focusing on the
difficulty of authoring policies that are semantically consistent with higher-level
business objectives (Davy et al., 2007) and with each other (Davy et al., 2008; Jajodia
et al., 1997; NIST/NSA, 2010).

There is general agreement that writing semantically correct, maintainable XACML
policies is difficult, particularly in statutory domains. Abou-Tair et al. (2007) describe
a framework in which German privacy laws are encoded in an ontology from which
XACML policies can be generated. Healthcare record management is another domain
where such approaches show promise (Rahmouni et al., 2009). Such law-based
ontologies provide sound foundations, but might not generalise to other domains.

2.2 Literature Review 46

A less formal (and perhaps more common) starting point would be business process
specifications such as Business Process Execution Language (BPEL) and Business
Process Model and Notation (BPMN) (Wolter et al., 2007). This is attractive because
such specifications decompose security properties such as SoD and BoD into elements
that have the required granularity to be translated directly to XACML.

Using either an ontology or a set of business specifications as a starting point for
policy authoring seems entirely reasonable, and is compatible with the policy
authoring procedures of Chapter 4.

2.2.5 Policy refinement

Stepien et al. (2011) describe ABAC as a generalisation of RBAC, solving some of the
problems encountered with RBAC. For example, ABAC is as suited to Deny rules as it
is to Permit rules. It supports fine-grained policies without the “role-explosion” that
occurs in RBAC when the roles themselves are made too fine-grained, resulting in
inefficient policy specification. They also note the difficulty of writing rules with
complex constraints such as SoD directly as XACML, owing to XACML’s verbosity
and its non-local nature (where related rules can be “scattered” through the policy
hierarchy). The intention of the policy can often be lost in all the detail, and the large
number of ways in which to write policies to achieve the same objective can quickly
result in unmanageable and probably sub-optimal (in performance terms) policy sets.
Therefore they propose a non-technical notation that can be compiled to XACML or
even to Prolog for evaluation, while retaining its conceptual simplicity for the benefit
of less technical policy authors. With regard to policy evaluation performance, they
show that policy authors using their notation sometimes use a more efficient
formulation (fewer, more complex, but also more cohesive rules) than would be the
case if the rules had been written directly in XACML format. They claim this is a
result of reducing the “noise” in the language, and curbing some of its excessive
flexibility. Indeed such cohesive policies should also be more manageable and more
suited to caching.

Craven et al. (2011) describe how policy refinement principles can be used to ease the
task of authoring policies in rapidly changing domains. This is because the policies are
written at a more abstract level. As part of the evaluation process, they use logic
programming to refine the policies, getting the missing details from an UML model.

2.2 Literature Review 47

To some extent, this procedure happens in the XACML architecture when a PIP is
consulted at policy evaluation time. However, the more formal formulation in Craven
et al. (2011) helps because policy refinement has been well studied in the wider policy
community (not just relating to access control) and there is much advice in the
broader literature that might be relevant to the access control domain. Also, with a
careful decomposition/refactoring of the policies, it is possible to use their approach in
the case where multiple policy suites are required.

If a full model is not available, Rochaeli (2009) describes how it may be possible to
write the policies at a higher level of abstraction and then to use DL-based refinement
techniques to derive the missing specific rules (Rochaeli, 2009).

2.2.6 Policy integration and decomposition

One of the drawbacks of the ABAC metamodel is that its flexibility can also be
daunting, in that it is up to the policy author to design the structure of the policies.
Indeed, the OASIS XACML TC have recognised this, and have published
non-normative profiles (analogous to the design patterns used in object-oriented
analysis and design) for typical use cases. Examples include the RBAC (Anderson,
2005) and hierarchical resources (Rissanen et al., 2010) profiles for XACML. Another
form of structuring is concerned with creating policies by combining smaller policy
sets such as when two groups in an enterprise wish to federate their services and the
access control system needs to be updated accordingly.

Mazzoleni et al. (2006) introduce the problem of policy integration, in which separate
“organisations” (possibly within the same overall enterprise) need to combine
separately-administered policy sets. In particular, they introduce algorithms for
combining rules based on their similarity, particularly whether rules converge, diverge,
restrict and extend or shuffle.

Rao et al. (2009) look at a similar problem of “policy composition”, providing an
algebra with which to combine policies represented by MTBDDs.

Decat et al. (2012) describe the inverse problem of how to decompose policies,
particularly where business federations and/or cloud computing are involved, so that
they can be distributed effectively. With a suitable decomposition strategy, it should
be possible to use distributed computing techniques to improve policy evaluation

2.2 Literature Review 48

performance. Clearly, the policy decomposition should be semantically equivalent to
the original policies. Decomposition brings potential advantages in respect of both
managing and evaluating the policies. In a cloud computing scenario, since policies
have their own context, a particular set of rules should be managed and evaluated by
the tenant and a different set of rules is the responsibility of the cloud service provider.
Regarding performance optimisation, it is necessary to estimate the policy evaluation
cost of the sub-policies and this is where performance experiments should help when
decomposing a large policy set into smaller sets to be distributed across multiple
PDPs for better performance.

El Kateb et al. (2012) and the related PolicySplitter tool (Mouelhi, 2015) describe
seven different policy splitting (refactoring) criteria. Policy splitting is related to
policy decomposition in that they both subdivide a policy set into smaller parts that
are more suited to separate evaluation, but they differ in terms of the motivation and
the algorithms used. In the case of policy decomposition, the focus is often on
decomposing sets of policies that were combined for external reasons, e.g., the
amalgamation of business units. In the case of policy splitting, the goal is to use
“algebraic” operations to refactor the policies. In each case, the goal is
divide-and-conquer: to break a large policy set into smaller parts that are better
suited to distributed policy evaluation. The authors show the benefits that accrue
from policy refactoring. Both SunXACML PDP and Xengine PDPs can exhibit
substantial performance improvements when they, and the policies they use, are
distributed. Interestingly, the choice of policy splitting criterion should be matched
carefully to the characteristics of the policy set, of which three were available to the
authors: Library Management, Virtual Meeting and Auction Sales Management. The
number of rules per policy domain is fixed, but the nature of the rules differ, which is
why certain splitting criteria are more suited to a given domain than others. Their
analysis is static, so perhaps careful performance analysis (such as that presented in
this dissertation) would help to make the best choice of policy splitting criterion.

Deng et al. (2014) provide a detailed set of algorithms for distributing policies with
the objective of maximising policy evaluation performance. They decompose the
policies based on structural aspects, such as their Subjects, Resources and Actions,
rather than focusing on the rules themselves. However, the main contribution is that
they also consider requests when distributing the policies: the Policy Enforcement
Point (PEP) hands over requests to a request distribution module which attempts to

2.2 Literature Review 49

match the request to the most suitable PDP, given characteristics of the request.
They propose a greedy algorithm to distribute the policies in an “optimal” way, again
based on the time costs of the sub-policy evaluation times. Their algorithm attempts
to estimate those time costs and their evaluation shows that a distributed SunXACML
PDP deployment using their policy decomposition and request distribution algorithm
outperforms an equivalent naïve distributed SunXACML PDP deployment. However,
a possible weakness in their approach is the use of heuristics for estimating the time
cost; perhaps measurement would help in this regard. Also, while the evaluation shows
the (encouraging) effect of adding PDP threads, they are limited in their ability to
consider other factors such as policy set size and complexity, since they are limited to
three unrelated policy sets. Nevertheless, by placing distributed policy evaluation in
an optimisation setting, it is a very important contribution.

This dissertation does not consider either policy integration or policy
decomposition/splitting any further, but such techniques are consistent with what is
presented later, and could be the source of new performance experiments. We consider
this later in Chapter 7.

2.2.7 Use of testbeds

Other authors have performed experiments comparing PDPs. Turkmen and Crispo
(2008) compare 3 open source PDPs: SunXACML PDP (Proctor, 2004),
EnterpriseXACML PDP (Wang, 2010) and XACML Light (Gryb, 2008) using
generated data, focusing on the client-side concern of access requests processed per
unit time.

Kohler and Brucker (2010) created a flexible proxy between the PEP and PDP to
compare different caching strategies over a single SAP R/3 implementation, using data
derived from scenarios (business processes) supplied by SAP as templates. This is a
testbed to evaluate caching strategies in particular, but its domain is limited to SAP
systems.

Our STACS testbed (Butler et al., 2010, 2011) is, to the best of our knowledge, still
the state of the art in access control performance testbeds.

2.2 Literature Review 50

2.2.8 Policy testing

The problem of generating a large and representative set of policy requests for
performance evaluation is related to that of generating a test set that covers as many
of the policy conditions as possible. By ensuring full coverage, all policy conditions
are checked and so there is a path to each terminal node in the decision tree inferred
from the policy set (Martin, 2006). Martin (2006) also describes how Margrave (Fisler
et al., 2005) can be used to determine redundant rules in a complex policy set, which
can safely be removed for the purposes of correctness testing.

Martin et al. (2006) describe how policy mutation testing (Geist et al., 1992) may be
used to determine how well a given test set of XACML requests discovers faults
(deliberately injected as mutations) in policy sets. The goal is to estimate the effective
coverage of the test set of XACML requests. Typical mutations are CRE (Change
Rule Effect), in which the result of a rule is inverted, e.g., a Permit is changed to a
Deny and vice-versa. Each mutation is generated and the test set of XACML requests
is applied to the mutated policies. If at least one of the XACML requests results in a
different response compared to the response obtained from original (unmutated)
policies, that mutation is said to be killed and the associated XACML request is
marked as essential for inclusion in the test set. Mutation testing can be used to
measure the quality of a test set (of XACML requests in this instance) and hence to
compare two test sets. (Strong) mutation testing may also be used to determine which
XACML requests are essential to achieve each of the required policy, rule and
condition coverage metrics.

Ammann et al. (2003) describe a theoretical model for coverage criteria for logical
expansions. The authors distinguish between Clause Coverage (CC) and Predicate
Coverage (PC) where a predicate comprises one or more logical clauses). Interestingly,
neither coverage criterion subsumes the other, i.e., PC ̸⊆ CC and CC ̸⊆ PC.
Combinatorial Coverage (CoC) is guaranteed to subsume all other forms of logical
coverage, but is unnecessarily onerous, since it has 2n tests where n is the number of
predicates in the policy set. To that extent, Ammann et al. (2003) introduce
Determination (of predicates by clauses) and hence Active Clause Coverage (ACC)
and the concept of active and inactive clauses. Ammann et al. (2003) presents the
subsumption relations between the various flavours of ACC (and its inverse, Inactive

2.2 Literature Review 51

Clause Coverage). They recommend using the Akers derivative (Akers, 1959) to make
a clause determine a predicate.

We note that, while correctness and performance testing share some features, they also
differ in relation to the weight given to finding a minimal testing set to find errors,
versus comparing different mixes of requests to look for performance differences.
Therefore the approach taken in this dissertation does not use mutation testing or
equivalent, and derives its own policies and requests instead.

2.2.9 Generating policies

If the ultimate output is intended to be XACML policies, and the focus is less on
verification than on creation of policies, it could be argued that it is sufficient to use a
XACML policy editor directly. However this is problematic because it is widely
accepted (see for example, (Lang et al., 2008)) that manual editing of XACML policies
is tedious and error-prone. Lang et al. (2008) describe a policy editor that is based on
what they call “policy views”, which derive from a classification of XACML policy
elements into either attribute definitions or policy definitions (which in turn comprise
combinations of restrictions on Subjects, Resources, Actions and Environment). Lang
et al. (2008) describe a prototype that inserts such elements into a XACML policy
template. This idea is developed further in Chapter 4 of this dissertation.

Axiomatics (a leading vendor of ABAC systems) offers Axiomatics Language For
Authorization (ALFA), which is a Domain-Specific Language (DSL) for ABAC policies
that is easier to write than XACML because ALFA omits many of the less important
technical details. Axiomatics provide tools to support ALFA in the form of a
syntax-aware editor based on eclipse that also “compiles” the ALFA source instances
to standards-compliant XACML policy instances. ALFA encapsulates many of the
“policy views” ideas of (Lang et al., 2008) and, by making the policy representation
more explicit, it might also be used for other purposes, such as communicating policies
to other stakeholders.

Coincidentally, and independently of ALFA developments in Axiomatics, we
contributed the BPOL and SPOL languages to (Davy et al., 2013), which showed how
policy refinement techniques, combined with the eclipse language modelling tools
(notably, the Eclipse Modelling Framework (EMF) plugin), could be used to write

2.2 Literature Review 52

policies for federated access control. SPOL is syntactically similar to ALFA but its
policy refinement origins mean that, as an intermediate language between BPOL and
XACML, the language refinement transformations are explicit. While these languages
and the associated tooling help the security administrator to write a single suite of
policies, they are not suited to writing multiple suites of policies, as needed in
performance experiments. However many aspects of their design have motivated the
design choices described in Chapter 4.

As we recall from §2.2.5, Stepien et al. (2011) presented a “non-technical” notation for
access control policies. Since their notation can be transformed to XACML, it could
be used in principle to generate policies in bulk, although that is not its intention.

As an alternative to these approaches which are based on the domain semantics, it is
possible to build policies from their structural elements. Thus it is possible to create
very large sets of synthetic policies with minimal semantic considerations. In that
regard, Turkmen and Crispo (2008) compares the performance of three PDP
implementations, using synthetic policies with differing structures and difficulty rather
than domain semantics.

Summarising, there are good approaches for writing policies with specific
semantics (Davy et al., 2013; Lang et al., 2008; Stepien et al., 2011) and ALFA, or
even for bulk generation of policies based on technical criteria (rather than domain
semantics) (Turkmen and Crispo, 2008), but there is a research gap relating to the
bulk generation of policies based on domain semantics. This research gap is addressed
in Chapter 4.

2.2.10 Generating requests

To date, the focus in the literature has been on means of generating sets of requests to
send to a PDP in order to exercise the PDP’s associated policy set in a manner that
ensures coverage of all possible policy conditions. Thus, the emphasis has been on
functional testing, not performance evaluation. However, the two tasks are related,
since the the problem of generating a large and representative set of policy requests for
performance evaluation is related to that of generating a test set that covers as many
of the policy conditions as possible. By ensuring full coverage, we ensure that all
policy conditions are checked and hence there is a path to each terminal node in the

2.2 Literature Review 53

decision tree inferred from the policy set (Martin, 2006). This is a necessary but not
sufficient condition for any performance test set to capture worst case performance for
a given conditional system under test; it is not sufficient as there could be many paths
from the root of the policy set “tree” to its leaves which represent terminal decisions
such as Permit, Deny, Indeterminate and Not Applicable. Each path potentially has a
different time cost and there is no guarantee that a covering set includes the paths
with the highest cost.

There is already substantial research on applying functional testing of decision systems
to policy-based systems. Martin (2006) describes how Margrave (Fisler et al., 2005)
can be used to determine which rules in a complex policy are redundant. Let policy A

be the policy under test, and policy B be the same, except the decision of the
specified rule is inverted. If that rule is redundant, Margrave will identify no change
impact between policies A and B, otherwise it will generate counter examples as
policy requests. Thus Margrave can be used to generate policy requests to exercise the
rules which are deemed to be essential.

The ALFA system is an attractive policy editor but the NIST ACPT (Hu, 2008) has a
wider scope because it also offers a means to generate access requests. The ACPT
policy editor provides a GUI by which authors can assemble policies using text controls
such as dropdown menus; ACPT creates (necessarily verbose) XACML behind the
scenes. In that regard it is reminiscent of the prototype policy editor of (Lang et al.,
2008). However, it is also designed to integrate with the NIST combinatorial testing
tool ACTS (Hu et al., 2011; Kuhn et al., 2010) as described in (Hu, 2008). The focus
is on creating policy sets and generating adequate access requests with which to test
those policies, particularly their correctness. Such testing can be done combinatorially
and/or by mutation testing (Martin et al., 2008). Thus the policy requests are
generated to test access control policies and not for their own sake. Therefore, the
requests to be generated are selected based on their ability to “debug” a policy set and
are typically thrown away unless they identify an incorrect policy or conflicts between
policies. This is in contrast to the aim of generating events (arising from typical usage
scenarios) to provide a representative set of requests for these scenarios.

Bertolino et al. (2012) describe some new techniques for generating requests, notably
the “Simple Combinatorial” and “Incremental XPT” algorithms. They claim that
their incremental algorithms improve on the methods in (Martin et al., 2006) in the
sense that they achieve the same (or better) levels of coverage for smaller (or the

2.2 Literature Review 54

same) numbers of requests. The focus remains on coverage rather than on making the
requests as similar as possible to the types of request encountered in practice.

Turkmen and Crispo (2008) generate synthetic requests to match their synthetic
policies. Note that a request set with good policy coverage might also be suitable for
identifying worst case performance. However, for more general performance testing,
more control would be needed, e.g., to generate requests representative of actual
deployments and/or requests parameterised with particular performance predictors.
The difficulty with synthetic policies and requests is that an actual deployment has a
performance profile that is a weighted combination of the performance of synthetic
policies and requests. In practice, those (unknown) weights play an important role in
ensuring the external validity of any performance investigation.

Li et al. (2008) describe a similar experiment to that of (Turkmen and Crispo, 2008),
using a different set of PDPs, but with more details concerning how the policies and
requests are generated. In particular, their policy synthesiser uses policy templates
with the missing details being added so as to generate policies with specific technical
properties (such as attribute type) rather than domain semantics. The request
generator creates requests as exhaustive combinations of attribute id and value

pairs (Martin et al., 2006) (it ignores the semantics of the policies and was originally
developed for policy coverage testing), which is unlikely to be representative of
real-world requests, either in type or distribution.

In summary, there are many proposals for generating requests for the combinatorial
testing of policies, with the emphasis being on policy coverage, not fidelity to the
typical profile of requests in that domain, which is the objective of the request
generation algorithm presented in Chapter 4.

2.2.11 Performance models

As mentioned above, the industry standard language for expressing access control
policies is XACML (OASIS XACML-TC, 2005a). The XACML architecture supports
highly scalable PEPs but the performance of the PDPs is a concern. Generally the
response of other researchers is not to develop performance models, but to perform
direct comparisons of the performance of a particular policy evaluation scheme against
a known reference.

2.3 Research questions 55

The PDP has to solve a complex search problem, depending on many factors such as
the number of rules sharing a Target that matches the request, how deeply nested the
policy set is and what rule- and/or policy-combining algorithm is in force. Therefore
an explicit performance model would be complex and might be difficult to find.

Rather than trying to build a (fragile) explicit model for service times, it is possible to
collect timing observations and build a simpler statistical model based on these
observations. This experimental approach operates at the level of request ensembles
rather than individual requests. While some detailed insight is lost, we potentially
gain a flexible model that can be updated easily (e.g., in respect of clusters of
observed requests, arrival rates, etc). Our previous research in access control
performance (Butler et al., 2010, 2011) developed relatively limited statistical
predictive models of performance and form the basis of the extended performance
models presented in this dissertation.

2.3 Research questions

Table 2.2 classifies the main requirements for a policy performance investigation study,
as identified from the review of the state of the art (§ 2.1 and § 2.2). The state of the
art is evolving particularly quickly in relation to the manipulation of policies
(integration, decomposition, splitting, etc.) but advances in experimental evaluation of
policies appear to have slowed, perhaps given the availability of tools such as ACPT,
which is intended for correctness and completion testing, not performance.

Another feature is the fact that policy analysis tends to get much more attention than
request analysis—most researchers see requests as just a means to test policy
properties. A select few—Marouf et al. (2011) and Deng et al. (2014) are notable
exceptions in this regard—have addressed the question of whether it is better to
consider both policies and requests as predictors of access control system performance.
This is a theme that pays a major part in this dissertation.

Apart from our own papers, the most recent influential experimentally-based access
control policy performance analysis is Turkmen and Crispo (2008) and we have
concerns about its external validity. Our papers have begun to address this gap,
notably Butler and Jennings (2015), but it is noteworthy that other researchers have

2.3 Research questions 56

Table 2.2 Summary of Requirements and Methods

Requirements Methods

1 Support multiple access control mod-
els: DAC, MAC, RBAC and their
variants (Ferraiolo and Kuhn, 1992;
Jin et al., 2012) and dynamic poli-
cies (Brewer and Nash, 1989; Russello
et al., 2008)

Offer ABAC model with support
for various access model “design
patterns”

2 Support policy analysis (Davy et al.,
2008; Jajodia et al., 1997; Lin et al.,
2007; NIST/NSA, 2010)

Flexible representation can support
inference

3 Support policy combination (Maz-
zoleni et al., 2006; Rao et al., 2009)

Attributes can be compared and
rule similarity can be computed

4 Separation of concerns between at-
tribute and rule definitions (Hu, 2008;
Kuhn et al., 2010; Lang et al., 2008)

Model has two or more linked com-
ponents

5 Consider how to generate policies and
requests (Bertolino et al., 2012; Martin
et al., 2006)

Identify options for generating se-
mantically consistent policies and
requests

6 Measure the benefits from policy im-
provements such as refactoring and de-
composition (Decat et al., 2012; Deng
et al., 2014; El Kateb et al., 2012)

Allow different variants of the same
policy: check that the same deci-
sions are made and compare their
performance

2.3 Research questions 57

generally not tried to use performance measurements gathered under controlled
conditions to predict access control performance in real deployments.

Table 2.2 also indicates how these requirements can be realised in this dissertation.
They appear as general themes, e.g., the representation of policies and requests and its
role in performance experiments plays a major role in Chapter 4 and is the main
subject of the evaluation in Chapter 6.

We believe a testing framework for XACML policy evaluation is needed, to facilitate
research into the performance and scalability problems facing XACML-based access
control. The aim of our work is to provide a flexible (in the sense of being easily
configured) framework, enabling researchers to perform quantitative experiments
(hence under controlled and repeatable conditions). Indeed, performance testing needs
to respond to (transient) environmental conditions by replicating the request set in a
manner which is similar to the typical load on a PDP. This dissertation describes such
a performance testbed, which forms one of the main research contributions.

Table 2.3 presents the research questions that are addressed in this dissertation. As
can be seen, they are motivated by considering the research background and related
literature earlier in this chapter.

Subsequent chapters in this dissertation consider these questions in turn.

2.3 Research questions 58

Table 2.3 Research questions addressed in this dissertation

ID Question

RQ1

How can access control evaluation performance be measured for use in
performance experiments?

– What form does the service time distribution take?
– What simulations can be performed to explore the effect of different

request arrival patterns?
– What analysis can be performed when the systems under test use

different languages, frameworks and encodings?

RQ2

How can domain models be specified and used to express enterprise
access control scenarios?

– How can different variants of domain models be specified in a
flexible and easy to use way?
– How can access control evaluation performance be compared at

different domain sizes?

RQ3
How can the data from performance experiments be used to understand
and predict access control evaluation performance?

– What types of exploratory data analysis are suitable for the perfor-
mance experiments?
– What are the steps needed to build statistical models predicting

access control performance?

RQ4
What are the main factors affecting access control evaluation perfor-
mance?

– What are the effects of PDP choice, domain size and resources?
– What are the effects of domain size, policy and request characteris-

tics?

Chapter 3

STACS: a testbed to explore access
control performance

Table 3.1 Research questions addressed in Chapter 3

ID Question

RQ1

How can access control evaluation performance be measured for use in
performance experiments?

– What form does the service time distribution take?
– What simulations can be performed to explore the effect of different

request arrival patterns?
– What analysis can be performed when the systems under test use different

languages, frameworks and encodings?

RQ2

How can domain models be specified and used to express enterprise access
control scenarios?

– How can different variants of domain models be specified in a flexible
and easy to use way?
– How can access control evaluation performance be compared at different

domain sizes?

RQ3
How can the data from performance experiments be used to understand
and predict access control evaluation performance?

– What types of exploratory data analysis are suitable for the performance
experiments?
– What are the steps needed to build statistical models predicting access

control performance?

RQ4
What are the main factors affecting access control evaluation performance?

– What are the effects of PDP choice, domain size and resources?
– What are the effects of domain size, policy and request characteristics?

3.1 Methodology 60

This chapter introduces the policy evaluation service time measurement testbed that
is featured in this dissertation. The first step in managing access control system
performance is to measure the time taken by the PDP when evaluating the policies for
a set of requests. We developed a measurement testbed for this purpose and this
chapter reviews the scope of the performance model that underpins the measurement
testbed (§ 3.2 on page 62), with that model having different characteristics, depending
on the frequency of request arrivals. Having set the scene, § 3.3 on page 65 introduces
the testbed, indicating how it can be used for different measurement scenarios. Two
major usages of the testbed are then presented. The first uses measurement-based
simulation (§ 3.4 on page 72) to collect service time measurements, characterise them
and configure two types of simulation to generate predictions where the request
ensemble needs to be considered as a unit, i.e., any performance predictions are based
on request ensembles having a given range of characteristics. The second usage (§ 3.5
on page 91) treats the requests as just a means to exercise the policy set and deployed
PDPs, and is more concerned with measuring the effects of different resource choices.
The first theme is not developed further in this dissertation, but we intend to return to
it in future research. The second theme is extended greatly in Chapter 4 on page 111
(which addresses the problem of generating artifacts that more closely represent the
enterprise access control domain), Chapter 5 on page 182 (which expands upon the
statistical model, to take account of the vastly richer domain model introduced in the
previous chapter) and Chapter 6 on page 207 drills down into the enhanced “domain +
statistical” model to identify some representative performance predictions.

Of course the research investigation in this, and subsequent chapters, needs to be
placed on a sound philosophical and methodical foundation. In particular, the
objectives and limitations of the testbed need to be considered, as well as the way that
experiments conducted in the testbed can relate to performance of access control
systems in enterprise deployments. § 3.1 below attempts to place the methodology in
context and to address some of the concerns above, and provides some justification for
the work described in later chapters.

3.1 Methodology

The research methodology used in this dissertation has the pattern in Algorithm 3.1.

3.1 Methodology 61

Algorithm 3.1 Dissertation methodology
1: Model the domain, leaving some free parameters
2: repeat
3: Assign values to the free parameters in the model
4: Configure performance experiments
5: Measure service times
6: Estimate parameters/predict performance
7: Recommend improvements
8: until (Performance is acceptable) or (No significant improvement is possible)

The procedure in Algorithm 3.1 is typical of engineering and experimental computer
science. It is based on positivist philosophy1, in which the scientific method is used to
set up a falsifiable hypothesis such as “The performance model f with parameters
x = {xi} has better performance and scalability than model f ′ with parameters
x′ = {x′

i}”. However, the complexity of the underlying domain is such that the model
can provide only a partial explanation of access control performance in enterprises.
Indeed, its uncertainty is sufficiently large that a post-positivist (more specifically:
critical realist) perspective is more appropriate: a) all observations have error (and
even our estimates of that error are uncertain) and b) there is an objective (but
effectively unknowable) model to predict access control evaluation performance.
Consequently, it is unreasonable to expect, in a single study, to build a faithful model
of access control system performance, except for very specific, constrained scenarios.

§3.2 presents the scope of our performance model, indicating that the focus of our
study is on the time taken by the PDP to make access control decisions. In addition
to the model predicting the service time of a single request, it is also necessary to
consider access control performance of an ensemble of requests arriving with a
specified temporal distribution. Requests are generated by a stochastic process, so
queueing will occur except in (uninteresting) cases where request inter-arrival times
are much greater than request service times. Queueing is considered in §3.2.2.2 and in
more detail in §3.4.

1To quote Lord Kelvin: “To measure is to know.” and “If you can not measure it, you can not
improve it.”

3.2 Scope of the performance model 62

3.2 Scope of the performance model

3.2.1 Overview of the model used in this dissertation

In a request-response system, requests arrive at one or more servers, which compute
responses to these requests. Usually, as is the case here, a response is generated by the
server for each incoming request. Therefore it is meaningful to consider the service
time t as being the time taken by the server to compute a response for a given request.
Each request is generated by some external process, which affects the rate and type of
requests that arrive at the server(s). The observed request arrival distribution is
a(t; pa), where t represents arrival time and pa is a set of (unknown) parameters that
affect how the requests are generated. Similarly, the observed service times belong to a
distribution b(t; pc, ps, a(t)−), where pc represents the relevant parameters of the
computational procedure that generates the response from the request, ps represents
the performance-influencing parameters of the server and a(t)− represents the
(historical) set of arrivals from time t = 0 until the time t = T when the server starts
to process the specific request for which the service time is captured.

The complete model has many stochastic elements and interdependencies which make
both controlled experiments and prediction more difficult. Therefore, in this
dissertation, the following simplifications are applied

Isolated servers. In practice, each server will have many running processes as it
manages a workload that includes serving the requests but also includes other
tasks. However, to reduce the scope for nuisance factors yielding spurious
conclusions, the service times are assumed to be independent of all other server
processes and STACS is configured accordingly, so that other processes, even data
collection, require negligible resources compared to the main process(es) on each
server that serves the requests.

Decoupled arrival and service processes. When the arrival rate increases
relative to the service rate, a queue forms at the server. This introduces some
queueing overheads, as the server needs to manage the queue in addition to
computing the response to each request. However most servers have some
multiprocessing ability: processes can run in parallel either at the operating
system or other levels (e.g., as threads in the Java Virtual Machine (JVM)). If
multiple CPU cores are available, some pipelining/parallel processing is possible,

3.2 Scope of the performance model 63

and the average service time is reduced accordingly. The presence of both
queueing overhead and multiprocessing speedup means that the time taken to
service a specific request depends on what was previously in the queue; these two
factors introduce a stochastic element to the estimate of service time. If there is
a way to remove this dependence, the service time becomes easier to predict.

Single servers only. A single queue with multiple servers often exhibits less
extreme variation in response time than if each server had its own queue.
However this “smoothing” effect applies to ensembles of requests and introduces
another stochastic factor that influences service time, again making performance
prediction more difficult.

All requests are served with the same priority. There are many queueing
disciplines, of which the most common is probably FIFO. Furthermore, when the
queue size exceeds a given limit, some requests might be dropped and need to be
resubmitted at a later time. Again these features introduce stochastic
components into the predictive model for service times.

These simplifications/assumptions are designed to minimise the stochastic elements of
request evaluation. However such simplifications are not common in practice.
Therefore it could be argued that predictions based on the simplified model are
unrealistic. However, the removal of many of these sources of uncertainty has the
following benefits:

• by reducing the sources of uncertainty, predictive models can focus on fewer but
more easily controlled factors, such as hardware capabilities (RAM size, CPU
clock speed), server configuration and request formulation;

• notably, if the hardware capabilities and server configuration are maintained at
constant values, it is possible to focus on the characteristics of the requests to
predict performance. This would enable more intelligent load-balancing based on
inspection of the incoming requests.

As will be seen in § 3.4.5 on page 79 and § 3.4.6 on page 84, it is possible to
reintroduce stochastic effects in a controlled fashion through a procedure known as
measurement-based simulation; see § 3.4 on page 72. Therefore this hybrid approach
helps to derive insights into possible specific interventions by system administrators,
while leaving open the possibility of synthesising stochastic and non-stochastic models
to generate performance predictions for more realistic scenarios.

3.2 Scope of the performance model 64

It should be noted that the models, predictions and analysis in Chapter 4 to
Chapter 6, inclusive, are all based on the simplifications described above. Indeed,
further work in the form of simulations would be needed to map such results to a less
controlled, but more realistic deployment. The present chapter describes some initial
efforts in this regard, see § 3.4.5 on page 79 and § 3.4.6 on page 84. The main
objective of such proposed hybrid (measurement, modelling and simulation)
experiments would be to determine the extent to which the measurement and
modelling findings are still significant when stochastic factors are reintroduced. While
the addition of stochastic factors is not expected to change findings such as the
ranking of PDPs by performance, the differences might become less dramatic because
stochastic factors such as arrival distributions are likely to introduce greater
performance variability and hence reduce the power of many statistical procedures.

3.2.2 Access control arrival analysis

3.2.2.1 Intermittent request arrivals

If requests arrive infrequently, so the PDP has already responded to the previous
request, there is no time for a queue to develop. In such a case, the performance
model can be used to analyse the factors that are expected to affect the service time
per request. Typical factors might include the PDP, the policy set size, the way the
policies are encoded, the memory available to the PDP, etc.

In practice, the model will have a statistical component, enabling the effects of such
factors to be estimated and visualised. Reducing the service time has a direct effect on
throughput and latency.

3.2.2.2 Frequent request arrivals

If the request arrival rate increases, and/or the request service time increases, the
performance model described in §3.2.2.1 is no longer adequate. It becomes necessary
for the performance model to consider the effects of a build-up of requests at the PDP.
The delay experienced by the entity that submitted the access request is no longer a
simple function of the service time of that specific request.

3.3 Introduction to STACS 65

Using Kendall’s notation from queueing theory (Kleinrock, 1975), we expect policy
evaluation to take the form of a queueing system of type M/G/k/q. We assume that
each policy server has the same characteristics and that

• the arrival process is Memoryless (M): the number of arrivals before time t does
not affect the number of arrivals after t. This is generally true, except where
requests are generated in bunches, e.g., to prevent conflicts of interest;

• the service process follows a General distribution: we do not yet know the form
of the distribution, in particular whether service time can be written as a
function of requests2;

• there are k policy servers, possibly physically distributed, each with its own
(logical) queue;

• there are q service waiting places. Assuming n is the number of policy requests
that can be held in each server’s buffer, q ≡ kn.

Using this model we can estimate average queue lengths, capacity and expected
throughput for given queue parameters. Alternatively, given practical constraints on
server numbers (k), memory size (hence n) and per-server queue lengths (hence a
possible need for load balancing between PDPs), and targets for throughput, etc., we
can “solve” for the estimated service rates. If the estimated service rate cannot be
achieved, neither can the throughput. In that case we can suggest what additional
servers, cache sizes, etc., are needed.

3.3 Introduction to STACS

Many enterprise-level access control systems encode access controls as
XACML (Moses, 2005) hence researchers focus on XACML policies and requests and
their use in PEPs and XACML-based PDPs.

One of the key steps in Algorithm 3.1 is to measure PDP service time performance tp.
Most PDP implementations are not instrumented to capture service times, so
obtaining the measurements would be difficult (forcing in new features to an existing

2As will be seen later in this chapter, in many deployments, the requests can be clustered by
service time (resulting in peaks at specific times) but the relative size of each peak depends on the
request mix.

3.3 Introduction to STACS 66

system) and apt to introduce severe measurement errors. Even if it were possible to
collect such measurements in this way with sufficient accuracy, it is not clear whether
it would be productive. Implementing a data collection strategy in a production
environment has both advantages and disadvantages. The main advantage is that the
measurements apply to the PDP configuration under test, and so their external
validity is assured (because the test and production environments are identical).
However, there are serious disadvantages, including the fact that the measuring system
itself places extra load on the production access control system, when the latter can be
assumed to be suffering from performance difficulties already. Furthermore, it is
difficult to see how to apply Algorithm 3.1 in a production environment. Firstly, the
researcher has limited control over the infrastructure and so any study is observational,
which severely limits its statistical power. Secondly, the overall optimisation loop
pre-supposes that infrastructure managers would permit changes to a production
environment, where those changes, though predicted to improve performance, might
have unforeseen consequences.

Given the significant drawbacks described above, STACS (Butler, 2015c) provides a
“safe” environment in which to measure access control performance and to validate
performance improvement interventions before applying them in a production
environment. Note that STACS makes Algorithm 3.1 a practical proposition:
implementing Algorithm 3.1 on STACS solves the problems identified above with
conducting performance experiments with a production access control system.
However, the downside is that it is necessary to limit any threats to external validity
owing to the fact that a testbed is used in place of the real system.

STACS needs to be able to do more than collect measurements. For example, typical
performance measures of a PDP set include latency and throughput, so it needs to be
able to compute both. Moreover, it is also necessary for STACS to supply data to other
analysis components for purposes such as visualisation and performance prediction.

One of the key benefits of STACS is that it provides a common standard for comparing
different PDPs and different access control performance improvement proposals,
without favouring any of the competing PDPs and/or proposals (Butler et al., 2010).
In that regard, the evidence presented by access control performance researchers has
traditionally been based on comparisons with the SunXACML PDP reference
implementation (Proctor, 2004), often using unpublished policies and requests. Hence
it is difficult to compare one approach with another, or to determine what tradeoffs

3.3 Introduction to STACS 67

Measurements

Scenario
Parameters

STACS

PDP

xts
xtc

Requests

Policies

Fig. 3.1 XACML Load Testing System Architecture (STACS).

occur. The aim of STACS is to provide a flexible (easily configured) framework,
enabling researchers to perform quantitative experiments (not just observational
studies) under representative, controlled and repeatable conditions.

3.3.1 STACS Overview

The architecture of the STACS load testing framework is presented in Figure 3.1, and is
a development of that presented in Butler et al. (2010). The XTS (server) comprises a
PDP, a simplified “universal” PEP and specific PDP adapter. Each PDP
implementation needs an adapter to wrap calls from the universal PEP. The adapter
also brackets each PDP call with timing calls to compute the elapsed time at the PDP.

If tin is the time at which the request leaves the adapter for the PDP, and tout

is the time at which the response arrives at the adapter from the PDP, the
measured service time tp ≡ tout − tin.

The XTC (client) submits requests to XTS. XTA collects the results and writes them
either to a text file in the file system or, more commonly, a table in a database.
Figure 3.1 presents the architecture of STACS.

3.3.2 Access Control Service Time distribution

The continue-a policy set described by Fisler et al. (2005) was loaded into the
SunXACML PDP policy repository. An instrumented PEP (XACML Testing Server
(XTS)) was developed within STACS to call the SunXACML PDP, with timing hooks
inserted in XTS to capture the total time spent per request a) converting the

3.3 Introduction to STACS 68

cluster
decision 1 2 3 4 5 6 7 8 9 Total

Deny 34 12 18 26 11 6 5 10 22 144
NA 9 5 5 5 1 6 31

Permit 6 4 2 5 1 1 3 3 25
Total 49 21 25 36 12 7 6 13 31 200

Table 3.2 Contingency table relating observed decisions to inferred request clusters

XACML-encoded request into the PDP’s internal representation in memory, b)
searching the policy set for matching policies and c) returning the decision as a
XACML-encoded response. Two hundred representative requests (the single set from
Fisler et al. (2005)) were issued against the server and the timings were recorded in a
text file. This process was repeated 100 times, in random order, on a laptop that was
otherwise idle, to minimise the effect of anomalous timings (if a background process
started, say). The algorithm used to process this raw data to provide clustered
measurement data for simulation purposes is presented below. More context is needed
to interpret the clusters—as can be seen from Table 3.2, there is no direct relationship
between policy decisions and cluster membership.

Let t = t(S, P ; R, q) ∈ Ru×q be the set of PDP service times, where S represents
(characteristics of) the PDP server, P represents the policy set to search, R is the set
of requests, r = |R|, U is the combination of S × P ×R experimental conditions,
u = |U | and q is the number of replicate measurements of t, holding conditions S, P, R

fixed. A kernel smoother (Wand and Jones, 1994) provides a finer discretisation of the
domain, easing the task of locating the peaks.

Algorithm 3.2 lines 1–2 removes anomalous service times by choosing the minimum of
the replicate service times for each S × P ×R combination of experimental conditions.
Lines 3–4 compute the (probability) density of service times for each S × P

combination, based on the r available service times for that combination. Lines 5–6
inspect the service time density function for each S × P combination and estimates
the number n of request clusters. Lines 7–12 compute a function of each service time
distribution such that the minima of this function are candidate cluster centres. Lines
13–14 label requests according to their membership of the service time clusters, for
each of the S × P service time distributions. Lines 15-16 estimate the mean and
variance of the Gaussian distribution fitted to service times of requests in the
|S| × |P | × n clusters. In Line 6, the user needs to intervene to judge the number of

3.3 Introduction to STACS 69

Algorithm 3.2 Algorithm to derive the Request-cluster contingency table
1: for i=1 to r do
2: Calculate the median t̃ = t̃(S, P ; R).
3: Apply a Gaussian kernel smoother d = d(t), with window size 0.05 (milliseconds), generating

m = 1000 density points. /* Visually inspect the density function and decide the number of
peaks. */

4: Compute ḋ(t) and d̈(t) by finite difference approximation.
5: Sort |ḋ|.
6: Count the peaks, say n
7: for i=1 TO n do
8: if |ḋi| < tol and d̈i < 0 and di > 0 then
9: Store the location of peak[i] as p̂i ≡ (t̂i, d̂i)

10: Set λ1 = tmin;λn+1 = tmin
11: for i=2 TO n do
12: Compute the cluster interval breakpoint λi = αt̂i + βt̂i−1 where α = ŷi−1

ŷi−1+ŷi
and β = ŷi

ŷi−1+ŷi

13: for i=1 to r do
14: Find maxj(λj) such that λj <= ti. Then cluster indices Cj = Cj ∪ {i}.
15: for i=1 TO n do
16: Fit a Gaussian distribution Ni(µi, σ2

i) and store µi and σ2
i .

17: Create a Decision × Request-cluster contingency table.

peaks n by visually inspecting a plot of the smoother from Lines 3–4 above; otherwise
the algorithm is fully automatic. The algorithm was implemented in R (Hornik, 2009).

The continue-a policies with the associated single requests (Krishnamurthi, 2003)
were used in (Butler et al., 2010). An example run using these policies and requests is
shown in Figure 3.2. Figure 3.2a shows service time measurements as a histogram
overlaid with a fitted density curve; this is the starting point for the algorithm.
Figure 3.2a indicates how the cluster end-points are derived from the service time
density curve.

Two PDP implementations (SunXACML PDP (Moses, 2005) and EnterpriseXACML
PDP (Wang, 2010)) were each given the same policies and requests and each gave the
same response for every policy-request combination. However the service time
distributions were different. The most interesting feature in Figure 3.3 is the evidence
that service times are clustered around a small number (less than 10) of times.
Consequently the statistical distribution of the service time sample is not a classical
distribution; rather, it is a mixture of simple unimodal distributions. Indeed, both
PDP implementations in the experiment show some evidence of service time clustering,
but at different cluster centres. Since policy evaluation is essentially a search
operation, and the search can terminate once the decision is known beyond doubt,

3.3 Introduction to STACS 70

Median processing times for 'single' request set

milliseconds

D
en

si
ty

1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

2.
0

(a) Distribution of measured request pro-
cessing times.

●

●

●

●

●

●

●

●

●

1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

Timing intervals defining request clusters

milliseconds

sm
oo

th
ed

 d
en

si
ty

(b) Assigning requests to clusters.

Fig. 3.2 Clustered service times for continue-a policies and requests on SunXACML PDP.

EnterpriseXacml PDP: Resampled Single request set

Median duration per policy evaluation (milliseconds)

D
en

si
ty

: f
re

qu
en

ci
es

 n
or

m
al

is
ed

 s
o

th
at

 a
re

a
un

de
r

cu
rv

e
=

 1

1.4 1.6 1.8 2.0 2.2 2.4 2.6

0
5

10
15

20
25

(a) EnterpriseXACML PDP evaluation du-
ration frequencies.

SunXacml PDP: Resampled Single request set

Median duration per policy evaluation (milliseconds)

D
en

si
ty

: f
re

qu
en

ci
es

 n
or

m
al

is
ed

 s
o

th
at

 a
re

a
un

de
r

cu
rv

e
=

 1

1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(b) SunXACML PDP evaluation duration fre-
quencies.

Fig. 3.3 Comparison of the performance profiles of two XACML PDPs on the same
policy and request sets.

3.3 Introduction to STACS 71

different cluster centres reflect differences in how that search proceeds in each PDP.
For example, if the PDP indexes the policies in an effective manner, it might be
possible to locate the policies that match a request in “constant” time; otherwise the
PDP needs to search the policy tree and the service time is a function of the paths used
to search the tree.

The findings are valid for that combination of policies and requests since we
employ a randomised block experimental design and control for other known
factors.

3.3.3 Uses of STACS

The STACS testbed can be used for two purposes:

Prediction of dynamic conditions To estimate a performance metric given a new
set of conditions, e.g., a change in the access request mix, or rapid changes in
request arrival rates. Here time plays an important role because future access
control performance depends on current load and queue length. In this case, the
measurement testbed of STACS needs to be augmented with simulation, as
described in § 3.4.

Comparison of static parameters To estimate the effects of an experimental
treatment under controlled conditions, by comparing cases with or without that
treatment. Treatments might include projected PDP improvements, increased
policy set size, etc. No temporal ordering is implied: the effects would be the
same even if the order in which the treatments were applied was shuffled.

§3.4 describes the former prediction scenario, where STACS collected service times
which were then processed to configure a discrete event simulation to estimate the
effectiveness of a proportional thinning admission control algorithm in cases where the
PDP was subject to very high request arrival rates. Butler et al. (2011) provides more
information on how simulation based on service time measurements obtained with
STACS can be used to predict the latency experienced by users when the request arrival
rate is high enough to be considered “frequent”.

§ 3.5 describes the latter comparison scenario, where STACS was used to analyse the
effects of switching to a dramatically different PDP implementations, and even to

3.4 Measurement based simulation 72

estimate how much of the performance difference was due to different secondary
factors. Griffin et al. (2012) presents a new PDP design and shows, using experiments
involving STACS, how its performance exceeds that of more conventional PDPs like
SunXACML PDP and EnterpriseXACML PDP.

3.4 Measurement based simulation

By instrumenting the open source SunXACML PDP implementation, we noticed that the
execution time of many of the steps taken by the PDP do not depend on the data (i.e.,
the policy set and incoming request). The major exception to this observation is the
policy search step, where the PDP seeks to match the request against the policy set.
This is a complex search problem, depending on many factors such as the number of
rules sharing a Target that matches the request, how deeply nested the policy set is
and what rule- and/or policy-combining algorithm is in force. Rather than trying to
build a (fragile) explicit model, we collect timing observations and build a simpler
implicit model and predict its behaviour by simulation. This experimental approach
operates at the level of request ensembles rather than individual requests. While we
lose some detailed insight, we gain a flexible model that can be updated easily (e.g., in
respect of clusters of observed request). We can also model an admission control
scenario, where the PEP rations admission to the PDP to prevent PDP utilisation
from exceeding an operational threshold.

The simulation tool we use (OPNET™) has extensive support for queueing
experiments, enabling powerful analysis of “what if?” scenarios using simulated data.
However, our simulation experiments are grounded in actual measurements from real
PDPs, thereby reducing threats to their external validity (Thakkar et al., 2008). By
taking measurements regularly, we can also monitor the performance impact of policy
changes, by analogy with the use of Margrave to do (logical) policy change impact
analysis (Fisler et al., 2005).

Measurement-based simulation for performance modelling and enhancement has a long
history (Jamin et al., 1997). Sometimes it offers the only practical approach for
modelling the behaviour of a complex system in difficult conditions. However, for a
given performance improvement technique, such as those outlined in Chapter 2, it is
difficult to decide whether that improvement technique brings material benefits in

3.4 Measurement based simulation 73

PDP performance. Our initial studies suggest that Measurement Based Simulation
provides a way of answering that question.

While the explicit analytical model presented in § 3.4.1 is attractive and convenient for
sensitivity analysis and other uses, it is not sufficient:

• explicit formulae are unknown for quantities such as the queue length variance

• known formulae evaluate mean values only, reflecting long-term queue evolution
not transient effects

• if an explicit service time distribution model is not available, explicit formulae
will not exist.

To overcome these limitations, we developed a simulation model. Following the
explicit model, we model the XACML PDP as a single processor, serving a single
queue and employing a FIFO queueing discipline. The justification is that both PDPs
used in the study are single-threaded, deployed on a single server and the XTC

component of STACS ensures that each request waits until the PDP has issued a
response for the previous request that was submitted. Arriving XACML requests are
placed at the tail of the queue and served in order of arrival. For the M/Hk/1 queue
corresponding to our analytic model, we view the simulated PDP as comprising k

disjoint components, each associated with a single request cluster. Request tokens are
produced by k Markov processes representing the k clusters of requests. The token
generation rate of each Markov process becomes the inter-arrival rate of the queue for
the appropriate PDP cluster-specific component. By this device, we decouple request
token generation and consumption into separate per-cluster streams; see Figure 3.4.

3.4.1 Mean Value Analysis of an Analytical Queueing Model

A PDP can be modelled as a queue: requests arrive with mean arrival rate λ and exit
with rate µ(s). For the queue length to be bounded, we require ρ < 1, where ρ = λx̄,
where x̄ is the mean service time. In typical deployments, the arrival process may be
nonstationary, e.g., request arrival rates are greater during working hours. However, in
the simplest case, the arrival process is memoryless and hence the inter-arrival times
have an exponential distribution, as assumed in this dissertation. We consider
nonstationary entensions to the model in §3.4.3. The simplest queueing model is
M/M/1 with FIFO scheduling. Since the measured service times are known to be

3.4 Measurement based simulation 74

Cluster 1

Cluster 2

Cluster 3

λ
1

λ
2

λ 3

Cluster 1

Cluster 2

Cluster 3

λ
1

λ
2

λ
3

μ
1

μ
2

μ
3

Producer Consumer

λ

Fig. 3.4 Decomposing the simulation request token producers and consumers into
cluster-specific components.

clustered, the queue does not satisfy the assumptions of this simple model. Instead,
we model the queue as M/G/1, i.e., access requests are generated by a Markov process
(hence arrivals are memoryless), but the service times are drawn from a “General”
distribution. Because of the presence of request clustering, we choose to model PDP
service times as being drawn from a distribution, hyperexponential; see Equation 3.5.
Each exponential term is associated with a single measured request cluster. The
weights combining the exponential distributions depend on the arrival rates of requests
belonging to the different request clusters.

The PDP utilisation, (equivalently: mean load on the server at equilibrium) is

ρ = λx̄, where ρ < 1 for the queue to remain bounded (3.1)

By definition, the coefficient of variation Cb of the service time distribution with
density function b(x) is defined by

C2
b

def= σ2
b

x̄2 (3.2)

where

x̄ ≡ E{X} =
∫ ∞

0
xb(x) dx

σ2
b ≡ E{X2} − (E{X})2 =

∫ ∞

0
x2b(x) dx− x̄2. (3.3)

3.4 Measurement based simulation 75

The Pollaczek-Khinchin mean-value formula for mean queue length, denoted q̄ at
departure instants (Kleinrock, 1975, Eq 5.63) is

q̄ = ρ + ρ2 (1 + C2
b)

2(1− ρ) , (3.4)

which is an explicit formula in terms of the quantities defined in Equations 3.1 and 3.2.

For hyperexponentially-distributed service times, the service density function is

b(x) def=
p∑

i=1
αi µ

(s)
i e−µ

(s)
i x, (3.5)

where
p∑

i=1
αi ≡ 1 ≡

∫ ∞

0
b(x)dx

Substituting Equation 3.5 into Equation 3.3 gives

x̄ =
p∑

i=1

αi

µ
(s)
i

σ2
b =

p∑
i=1

2αi

(µ(s)
i)2

. (3.6)

Note that µ
(s)
i and 1

µ
(s)
i

are the mean service rate and mean service time, respectively
for cluster i. We can substitute Equation 3.6 in Equation 3.2 and hence in Equation
3.4 to obtain q̄.

Therefore, given p request clusters, with measurements of the mean service time per
request cluster µ

(s
i), we can compute expected queue lengths q̄ for different request

cluster mixes αi, i = 1, 2, . . . , p.

We can also compute the mean queue waiting time using (Kleinrock, 1975, 5.70)

W = ρ
(1 + C2

b)
2(1− ρ) x̄ (3.7)

Note that mean value analysis yields the mean and variance of the service time
distribution as closed form expressions involving known quantities, namely the service
time cluster centres and the relative frequencies of the service time clusters.
Furthermore, the mean waiting time is also a closed form expression, depending on the
same quantities, together with the mean arrival rate of the requests taken as a whole.

3.4 Measurement based simulation 76

3.4.1.1 Control objectives

As described above, an M/G/1 queue is assumed to be a good model for access
control policy evaluation at a single PDP. Therefore, it is possible to interpret control
objectives such as

• Ensure the mean queue length q̄ < N̄allowed;

• Ensure the mean queue waiting time W < t̄allowed;

in terms of the parameters of Equation 3.4 and Equation 3.7, respectively. The goal of
the system administrator is to (re)configure the access control system so that these
targets (N̄allowed and t̄allowed) are achieved, at least in a mean-value sense. The
controllable parameters include a) the number of servers (PDPs) available; b) the
request arrival rate; c) the service time distribution of the combination of PDP, policy
set and request.

Replicating the PDP might be expected to generate a significant performance
improvement, assuming the requests can be routed efficiently to servers that are not
particularly busy. However, such load balancing considerations are outside the scope
of this dissertation.

The system administrator is unlikely to have much control over the rate at which
requests arrive, as they arise from the normal business processes of the enterprise.
However, one of the findings in this dissertation is that requests can be clustered
according to their service times. Knowledge of this clustering could be used to ensure
that as many as possible of the incoming requests belong to clusters with short service
times.

Service time distributions depend on the choice of PDP so, other factors being equal,
the system administrator should choose the PDP with the most favourable service
time profile. The service time distribution might also depend on the way the policies
are formulated. Often there are many ways to specify policies to achieve the same
semantic objectives (i.e., the same decisions (output) are made for the same requests
(input). The STACS testbed can be used to compare different policy formulations,
hence determine the service time profile for each.

Therefore, given a relatively small set of parameters (notably including a model of the
service time distribution (b(t))), Equation 3.4 and Equation 3.7 can be used to

3.4 Measurement based simulation 77

estimate the mean queue length and waiting time respectively, which in turn can be
compared against their control limits.

Of course, the closed form expressions above represent only the expected values of the
queue-length and time-in-queue random variables. Observed queue-length and
time-in-queue will, in many cases, exceed their expected (mean) values. Indeed,
control objectives expressed in terms of mean values might be achieved, even though
worst-case objectives might not. Therefore, to address such concerns, discrete event
simulation approaches and numerical experiments are described in §3.4.5 and §3.4.6.

3.4.2 Service times and arrival rates

We note that the arrival rate of each cluster-serving component is the product αiλ of

• the relative frequency of requests belonging to that cluster: αi

• the global arrival rate, ignoring cluster membership: λ

Because of the way αi is defined,

λ ≡
k∑

i=1
αiλ =

k∑
i=1

λi. (3.8)

The user needs to specify the (per-cluster) mean inter-arrival times 1
λi

and the
measurement-derived mean service times 1

x̄i
of the discrete event simulation. The

mean service time is estimated by computing the weighted mean of the individual
cluster service means. In practice, αi would be found by classifying actual access
requests (labelling them by their service time cluster) obtaining the empirical
distribution of {αi}.

Using the cluster assignments C(ri) = j (ri being the ith request type and C being the
function mapping ri into cluster index j) from the measurements above, we can

1. Compute the mean service time x̄ using Equation 3.6

2. Estimate the capacity (the maximum arrival rate λ such that the queue length
remains acceptable (ρ < R where R < 1) of the PDP server used to generate the
measurement data above for a given mean service time.

3.4 Measurement based simulation 78

3.4.3 Extending the model: steady state plus overload

Because the request arrivals (both baseline and overload) are generated by a
(memoryless) Markov process, overload requests can be modelled separately from
baseline requests. That is,

ρ = ρ(base) + ρ(overload) (3.9)

where, in general terms, the utilisation

ρ(⊙) = λ(⊙)x̄(⊙) (3.10)

and the general service mean

x̄(⊙) =
n∑

j=1
α

(⊙)
j x̄j (3.11)

Let λ(overload) = γλ(base) where γ is the overload factor; then

x̄(base) =
n∑

j=1
α

(base)
j x̄j

x̄(overload) =
n∑

j=1
α

(overload)
j x̄j (3.12)

So

ρ(base) = λ(base)
n∑

j=1
α(base)x̄j as before;

ρ(overload) = γλ(base)
n∑

j=1
α

(overload)
j x̄j (3.13)

The base arrival rate can be computed from the base utilisation and base service
times:

λ(base) = ρ(base)∑n
j=1 α(base)x̄j

(3.14)

Note that the free parameters in Equation 3.13 are γ and {α(overload)
j , j = 1, . . . , n}; all

other parameters are either measured directly or computable from measurements.

3.4 Measurement based simulation 79

3.4.4 Policies and requests used

The policy set used in the following trials is the same continue-a set referenced in
(Fisler et al., 2005) and obtained as part of the Xengine PDP source distribution. The
policy set was loaded into each PDP policy repository. As with § 3.3.2, two hundred
requests from the single set were used, but augmented here with requests from the
multi22 (Fisler et al., 2005). This made four hundred requests in all, separated into
two hundred in each group.

As in §3.3.2, these requests were issued against the server and the timings were
recorded in a text file. This process was repeated 100 times (with the order of the
requests being randomised in each replication) on a server instance (hosting the XTS
component) that was otherwise idle, to minimise the effect of anomalous timings (if a
background process started, say).

3.4.5 Scenario 1: Load Control

When a server is under heavy load, typically when the arrival rate exceeds the service
rate, it is sometimes better to apply an admission control procedure to meet quality of
service requirements. If some requests have higher priority than others, the high
priority requests should be served first. Even if requests have equal priority, but the
request arrivals are “bunched together”, which is typical of a bursty temporal profile
of request arrivals, other forms of admission control may be beneficial. Indeed, the
management of large queues of requests is itself a drain on already stretched PDP
system resources. Consequently, if the PEP clients take responsibility for re-sending
the requests if they have not received a response within a reasonable time, this can
help to improve overall throughput because management of the queue is delegated to
the PEPs. In such situations, a simple admission control algorithm like proportional
thinning (Jennings, 2001) becomes attractive. The algorithm is described in § 3.4.5.1.
§ 3.4.5.2 presents a simulation study of how STACS can be used to explore the benefits
of this algorithm for controlling admission to heavily loaded PDPs.

3.4 Measurement based simulation 80

Requests

Requests

Responses

Timings

Traffic Generator
Traffic

Generator

Traffic Generator
Queue

Analyser

Cluster
distributions

A B

C

D

E F

Fig. 3.5 The main measurement system and simulator components.

3.4.5.1 Load Control Algorithm Specification

We studied XACML PDP performance by considering its worst-case behaviour, i.e.,
when the request arrival rate approaches the capacity of the PDP processor. We reuse
established methods from network management, notably measurement-based
admission control (Jennings et al., 2001; Thakkar et al., 2008). The architecture is
shown in Figure 3.5. Note that the PEP collects timing measurements, which are then
analysed and used in the simulator.

We specified a load control algorithm that aims to ensure that the number of XACML
requests forwarded to the PDP by the PEP is such that the processor of the PDP does
not overload. In practice this means that, during periods of high demand, the number
of requests sent to the PDP is sufficient to keep its processor utilisation (which we
refer to as “Carried Load”) at its maximum capacity, or some utilisation close to that
capacity – in our experiments we parametrise the load control to aim for 90%
processor utilisation.

We argue that the load control should be placed at the PEP, as placing it at the PDP
would mean utilising PDP processor capacity itself to perform load control actions
during high load conditions. Furthermore, since the PEP and PDP form a closed

3.4 Measurement based simulation 81

system, we assume that it is possible for the load control algorithm at the PEP to be
configured with measurements of the mean processing times for the identified XACML
request clusters, plus information allowing the mapping of individual XACML requests
to their corresponding identified request cluster.

Our proposed load control operates as follows. Every time a request arrives at the
PEP a Bernoulli trial is performed to ascertain whether the request is admitted, that
is, forwarded to the PDP. The trial uses a percentage thinning coefficient, denoted pa,
where 0 ≤ pa ≤ 1 and generates a random number r in the range (0, 1). It uses these
values to make a decision as follows:

Decision =

ADMIT r ≤ pa

REJECT r > pa

The coefficient pa (which is effectively a probability of acceptance) is calculated at the
start of each control interval, (t, t + T), and remains constant during that interval. To
calculate the value of pa the PEP maintains counters for the number of arrivals of
requests of each cluster during each control interval. The counter for requests of
cluster i for control interval (t, t + T) is denoted ci(t, t + T). As XACML requests are
typically generated by a large number of independent actors we argue that it is
reasonable to model request arrivals at the PEP as a Poisson arrival process. The
properties of the Poisson process mean that the number of arrivals in an interval
(t− T, t) is as good an estimate of the number of arrivals that will happen in (t, t + T)
as any. Therefore, we set the estimated number of arrivals of cluster i for control
interval (t, t + T), denoted ĉi(t, t + T), as:

ĉi(t, t + T) = ci(t− T, t)

If we let x̄i denote the mean processing time of a cluster i request at the PDP then we
can estimate the expected offered load for control interval (t, t + T), denoted
Ô(t, t + T), as:

Ô(t, t + T) =
∑

i

ĉi(t, t + T)s̄i

3.4 Measurement based simulation 82

Given this, we can calculate the percentage thinning coefficient, where Ctarget denotes
the target PDP processor load as a fraction of its total capacity, as:

pa =

CtargetT

Ô(t,t+T) Ô(t, t + T) > CtargetT

1 Ô(t, t + T) ≤ CtargetT

Thus, pa will be set to 1 – so that all requests will be accepted – if the expected
offered load is less than the PDP processor target load. Otherwise, it is set to accept
the percentage of the offered load that should result in achieving the target PDP
processor load. It should be noted that, for brevity, we formulated this algorithm
under the assumption of a single PEP, it is straightforward to generalise to the
multiple PEP case. For the multiple PEP scenario each PEP would act independently
to control utilisation of its predefined shared of the PDP processor.

3.4.5.2 Simulation Model and Experimental Analysis

We model the PDP as a single processor, served by a single FIFO queue of infinite
length. Arriving requests are placed at the tail of the queue and served in order.
Processing times for individual requests are randomly selected using an exponential
distribution for the request cluster in question. Crucially, the mean values used to
create these distributions are those values obtained using the measurement testbed
STACS, see § 3.3.2.

We model a single PEP, which receives XACML requests from nine independent
sources, each generating requests for one of the nine identified XACML request
clusters. The sources generate requests with exponentially distributed inter-arrival
times (a Poisson process). The mean inter-arrival rates for each request cluster are set
such that the steady State load on the PDP corresponds to 50% processor utilisation.
Furthermore, the proportion of arrivals of the various request clusters in steady state
corresponds to the proportion of requests falling into the nine clusters when
measurements were taken using the continue-a policies and single and multi22

requests (200 of each). As we assume the PDP processor is the bottleneck in the
system we model neither the PEP processor, nor the network connecting the PEP and
PDP.

3.4 Measurement based simulation 83

We run simulations for a duration of 2000s, with a steady State load of 50% PDP
processor capacity and an overload period between 500s and 1000s, during which the
offered load is 125% of PDP processor capacity. We assume that if the PEP rejects a
XACML request this is interpreted as a Deny result by the requester; thus there is no
need to model request reattempts. We model the overload traffic as being equally
caused by requests for 3 of the 9 identified request clusters (namely clusters 6, 8 and
9). Our load control algorithm is parameterised to aim to achieve a maximum 90%
utilisation of the PDP processor.

We now present simulation results for two cases: a) where no load control is applied
and b) where our percentage thinning load control is applied. Figure 3.6a shows the
offered and carried loads for both cases. We see that when no load control is applied
the PDP processor becomes quickly saturated and this saturation lasts well beyond
the duration of the actual overload event. This prolonged saturation is due to the
buildup of a very large PDP processor queue, which takes a long time to service.
Figure 3.7a shows the queuing delay experienced by requests for the no load control
case. We see that the queuing delay quickly builds up to unacceptable levels, such
that even when requests are eventually processed the delay has reached unacceptable
levels from the point-of-view of the actor requesting access to a resource.

On the other hand, Figure 3.6b and Figure 3.7b show that when our load control is
activated the situation is greatly improved. Figure 3.6b shows that the load control
algorithm broadly succeeds in maintaining the PDP processor utilisation at an average
90% during the overload period. Figure 3.7b shows that the queue size does not build
up to the degree that the queuing delay experienced by requests reaches unacceptable
levels.

Whilst these results do confirm that our load control algorithm succeeds in fulfilling its
objectives we note that it has two main limitations. Firstly, it will operate successfully
only if the profile of request processing times at the PDP remains roughly as expected.
Thus, it would need to be reconfigured every time the deployed policy set changes or
the profile of policy requests against this policy set changes. Ideally, the load control
would dynamically adapt to such changes but that is not the case with this version of
the algorithm. Secondly, when overload occurs the load control algorithm treats all
request clusters similarly. All are throttled at the same rate, regardless of which
clusters are responsible for creating the overload. Furthermore, the algorithm is
unaware of the fact that certain request clusters might be more important from an

3.4 Measurement based simulation 84

0 500 1000 1500 2000

0.
0

0.
5

1.
0

1.
5

Carried Load and Offered Load: No control applied

time (seconds)

lo
ad

 (
er

la
ng

s)

Estimated Offered Load
Carried Load

(a) Without Control.

0 500 1000 1500 2000

0.
0

0.
5

1.
0

1.
5

Carried Load and Offered Load: PT control applied

time (seconds)

lo
ad

 (
er

la
ng

s)

Estimated Offered Load
Carried Load

(b) With PT Control.

Fig. 3.6 Effect of PT (Percentage Thinning) Control on Carried Load when Offered
Load exceeds PDP processor capacity.

access control perspective. Arguably, an ideal XACML load control algorithm would
have the ability to prioritise the processing of particular request types over others
during overload conditions.

3.4.6 Scenario 2: Exploring the effects of different mixes of
requests

As seen in §3.3.2, the requests form clusters based on their service time. One
interpretation is that particular groups of requests might look different to each other
but from the perspective of the PDP with a given set of policies, they could be
equivalent. That is, the amount of computation required by the PDP is much the
same for all requests in that cluster. However, it is difficult to determine cluster
membership just by inspecting the requests. The service time density is defined both
by the peak locations and their widths. The peak locations depend on the (PDP ×
Policy × Request) combination but the request mix affects the (relative) peak heights.
Therefore, when modelling the performance of PDP with frequent requests, it is
necessary for any simulation to take account of the request mix. The following
experiment used STACS to estimate the service time density and then used OPNET to
simulate “favourable” and “unfavourable” request mixes.

3.4 Measurement based simulation 85

0 500 1000 1500 2000

0
20

40
60

80
10

0
12

0

Queueing delay: No Control Applied

time (seconds)

Q
ue

ui
ng

 d
el

ay
 (

se
co

nd
s)

(a) Without Control.

0 500 1000 1500 2000

0
20

40
60

80
10

0
12

0

Queueing delay: PT Control Applied

time (seconds)

Q
ue

ui
ng

 d
el

ay
 (

se
co

nd
s)

(b) With PT Control—Note max delay is
1.5 seconds compared to Figure 3.7a.

Fig. 3.7 Effect of PT (Percentage Thinning) Control on Queueing Delay when Offered
Load exceeds PDP processor capacity.

3.4.6.1 Scenario 2 setup

Balanced full factorial trials were run as indicated in Table 3.3. Each host used the
Ubuntu 10.04 LTS operating system. They had identical versions of applications such
as Java (JDK 7). The same testbed source code was deployed on each. Both used
dual-core 64-bit Intel processors. They differed in that bear had a 32-bit operating
system rather than a 64-bit operating system as on inisherk. They also had different
motherboards and memory configuration. Indeed, inisherk was about two years

host pdp Request Group

bear
SunXACML single

multi22

EnterpriseXACML single
multi22

inisherk
SunXACML single

multi22

EnterpriseXACML single
multi22

Table 3.3 Main experimental conditions for the trials

3.4 Measurement based simulation 86

newer than bear and hence might be expected to have generally lower service times,
however we cannot assume that all requests will be subject to the same speedup factor.
It is also inadvisable to assume that request cluster membership is the same for
different hosts: some requests could “migrate” to nearby clusters owing to differences
in aspects such as memory configuration between hosts.

The two PDP implementations are representative of different design goals. SunXACML

PDP was designed as a reference implementation, EnterpriseXACML PDP as an
implementation with more focus on performance (Wang, 2010). They were developed
independently and hence might be expected to exhibit different service time clustering
behaviour. The XACML structural differences between the single and multi22

request groups are not the focus here, rather the fact that their service times were
expected to cluster differently.

The 16 cases in Table 3.3 summarise a more detailed experiment in which there are 100
replicate measurements on each of the 200 request types in the specified request group.
Each arrival weight αj depends on the arrival rate of requests in cluster j relative to
requests from all clusters. Ideally αj would be computed by observing the frequency of
requests in an actual deployment. For the purpose of this scenario, we assume request
types have identical arrival rates, in which case αj is the relative size of cluster j.

The simulation model uses the OPNET™ simulation environment. OPNET
simulations are time-based, so the user needs to specify the mean request inter-arrival
time (1

λ
, the mean service time per request (1

µ
) and the simulation duration T .

OPNET’s Discrete Event Simulator produces and consumes “requests” (more
correctly, standard tokens) and records the queueing statistics requested by the user.
OPNET request tokens are tagged by cluster ID and directed to a simulated server
that handles one request at a time with the mean service time depending on the
cluster ID tag, consistent with Figure 3.4.

3.4.6.2 Measured service times and clustering

Figure 3.8 shows how service times are distributed for a given PDP-data combination.
Plots like this alerted us to the presence of service time clustering. Referring to
Figure 3.8, visual inspection suggests the number of clusters n is 8 and the relative
spacing tolerance is 0.05.

3.4 Measurement based simulation 87Service times for 'single' request set
on host 'bear' using 'SunXacmlPDP'

seconds

de
ns

ity
 (

sc
al

ed
 s

o
th

at
 T

ot
al

 H
is

to
gr

am
 A

re
a

=
 1

)

0.002 0.003 0.004

0
50

0
10

00
15

00

Fig. 3.8 Distribution of measured request service times on bear using SunXACML PDP.

Figure 3.9a shows the clusters found by Algorithm 3.2 when applied to the data in
Figure 3.8. Clearly the clustering algorithm finds the main features in the service time
data, though the cluster boundaries are not easily defined. For comparison,
Figure 3.9b shows the equivalent clusters when EnterpriseXACML PDP is used instead
of SunXACML PDP. In this case there are only 3 clusters, with most requests being
assigned to the first cluster.

The plots for cases using inisherk instead of bear and multi22 instead of single are
qualitatively similar to the Figures shown, indicating that the gross features (e.g.,
number of clusters and their sizes) of the service time distribution are determined by
the PDP implementation.

3.4.6.3 Case study 1: Comparison

Given the experimental setup from Section 3.4.6.1 and corresponding measurements
from the testbed, namely

• the decision made by the PDP (decision)

• request type (1 to 200, ind)

• the service time

3.4 Measurement based simulation 88

●
●

●

●

●

●

●

●

0.001 0.002 0.003 0.004 0.005

0
50

0
10

00
15

00

Service time intervals define request clusters for 'single'
 request set on host 'bear' using 'SunXacmlPDP'

seconds

de
ns

ity
 (

sc
al

ed
 s

o
th

at
 T

ot
al

 H
is

to
gr

am
 A

re
a

=
 1

)

(a) Using SunXACML PDP

●

● ●

0.0014 0.0016 0.0018 0.0020 0.0022 0.0024

0
10

00
0

20
00

0
30

00
0

40
00

0

Service time intervals define request clusters for 'single'
 request set on host 'bear' using 'EnterpriseXacmlPDP'

seconds

de
ns

ity
 (

sc
al

ed
 s

o
th

at
 T

ot
al

 H
is

to
gr

am
 A

re
a

=
 1

)

(b) Using EnterpriseXACML PDP

Fig. 3.9 Clustering SunXACML PDP and EnterpriseXACML PDP service times. Service
times for SunXACML PDP have more clusters (9) compared to EnterpriseXACML PDP (3).
Note that the host (bear), policies and requests are the same, so the differences in
request service time distribution are wholly attributable to the choice of PDP.

• the cluster index

we performed an Analysis of Variance to determine the contributions of factors and
their interactions to the overall variance, see Table 3.4. We note that all the identified
factors, and their interactions, are very significant, except for the interaction between
host and reqGrp.

Given this evidence that the ANOVA model appears significant, we proceeded to an
Analysis of Means. Reviewing Tables 3.5 and 3.6, inisherk outperforms bear and
EnterpriseXACML PDP outperforms SunXACML PDP, respectively.

Table 3.7 indicates that service times for multi22 requests are slightly less than those
for single requests, but more detailed study (i.e., white box testing) would be needed
to discover why this might be true.

Interestingly, Table 3.8 indicates that service mean times differ greatly by decision,
with NotApplicable decisions taking longer to make. This suggests that (some) PDPs
might “fall through” to that decision only if other decisions are not available. It also
suggests that there is a strong case for keeping policy sets up to date to avoid such
(long service time) edge cases.

We present the 2-level interaction results in Tables 3.9, 3.10 and 3.11. Generally, they
confirm the overall main effects analysis above, but there is one anomalous result in

3.4 Measurement based simulation 89

Mean Sq F value Pr(>F) Code
host 2.8e-04 1.91e+04 0 ***
pdp 4.2e-05 2.83e+02 0 ***
reqGrp 1.9e-06 1.32e+01 2.99e-04 ***
decision 4.6e-05 3.14e+02 0 ***
ind 5.5e-07 3.74e+00 0 ***
host:pdp 5.9e-06 4.03e+01 3.00e-10 ***
host:reqGrp 5.3e-08 3.60e-01 0.54e+00
pdp:reqGrp 2.9e-05 1.95e+02 0 ***
host:pdp:reqGrp 2.7e-06 1.85e+01 1.78e-05 ***
Residuals 1.5e-07

Table 3.4 Analysis of variance relating (measured) Service Times to experimental factors
host, pdp, reqGrp, decision, ind. A blank Code implies P > 0.05 (not significant) and
Code = ’***’ implies P < 0.001 (very significant).

bear inisherk
1.8e-03 9.5e-04

rep 800 800
Table 3.5 Comparison of service times for Hosts bear and inisherk.

SunXacmlPDP EnterpriseXacmlPDP
1.5e-03 1.2e-03

rep 800 800
Table 3.6 Comparison of service times for PDPs SunXacmlPDP and EnterpriseXacmlPDP.

single multi22
1.4e-03 1.3e-03

rep 800 800
Table 3.7 Comparison of service times for Request Groups single and multi22.

Deny NotApplicable Permit
1.3e-03 2.1e-03 1.1e-03

rep 1244 136 220
Table 3.8 Comparison of service times for Decisions Deny, NotApplicable and Permit.

3.4 Measurement based simulation 90

PDP
SunXacmlPDP EnterpriseXacmlPDP

host bear 2.01e-03 1.56e-03
inisherk 1.05e-03 0.840e-03

Table 3.9 Comparison of service times for pdp:host interactions.

Request Group
single multi22

host bear 1.83e-03 1.75e-03
inisherk 0.970e-03 0.920e-03

Table 3.10 Comparison of service times for request Group:host interactions.

that the mean service time for EnterpriseXACML PDP on inisherk is greater than it
is on bear. Again, further study would be needed to discover why this is the case.

Summarising, collecting measurements from a balanced full factorial design such as
this can provide insight into PDP performance because the researcher is able to
control experimental conditions in STACS.

3.4.6.4 Case study 2: Prediction

In this scenario, we model the case where the PDP has reached a steady state (ρ = 0.5
is a constant), then 25% of request types suddenly have triple (3×) their arrival rate,
which is maintained over a prolonged period and then returns to its previous ρ = 0.5
level. Thus λ(overload) = 0.25(3− 1)λ(base) = 0.5λ(base), so the overload factor is γ = 0.5.
While this is an idealised scenario, it might represent a situation where there is a
sudden rise in access control requests on the hour as project groups attempt to initiate
group chat sessions across a matrix-structured organisation.

Request Group
single multi22

host SunXacmlPDP 1.70e-03 1.36e-03
EnterpriseXacmlPDP 1.10e-03 1.30e-03

Table 3.11 Comparison of service times for request Group:pdp interactions.

3.5 Measuring performance and resource usage 91

To make the scenario more concrete, we need to choose how the additional requests
are distributed across the clusters. We consider two such request distributions: low
where the extra requests are skewed towards lower service times hence the lower
clusters, and high where they are skewed in the opposite direction. For the free
parameters in the model, we choose

α
(overload:lo)
j = n− j + 1∑n

i=1 i

α
(overload:hi)
j = j∑n

i=1 i
(3.15)

Substituting Equations 3.14 and 3.15 in Equation 3.13 gives the required explicit
expression for the overload process contributions ρ(overload:lo) and ρ(overload:hi).

The OPNET simulation model can also be extended to include overload arrival
profiles equivalent to Equations 3.13. Note that the simulation results (indicated by
points) and explicit results (indicated by lines) in Figure 3.10 agree well and that the
distribution of overload requests affects the overall load experienced by the PDP.
Equivalent plots for EnterpriseXACML PDP showed smaller differences between the
favourable and unfavourable overload request profiles, due to that PDP’s different
clustering behaviour.

3.5 Measuring performance and resource usage

If the focus changes to prediction of the access control system performance for single
requests, simulation of large numbers of request arrivals is no longer necessary. The
emphasis changes to designing experiments where measurements are taken and
statistical procedures (ANOVA and related analysis techniques) are used to analyse
those measurements to understand how the service time changes in response to
changes in factors such as resource capability, PDP choice, request type, etc.

As an example of such an analysis, we consider a comparison between the established
SunXACML PDP and a prototype (incomplete and far from production quality) PDP
developed by a colleague to see whether a PDP using a non-blocking I/O
approach (Griffin et al., 2011) could have higher performance than the existing
reference PDP. This comparison is described in this section.

3.5 Measuring performance and resource usage 92

●

●●●
●

●●●
●●
●●
●●
●
●
●
●●●

●
●
●
●●●●●●●●●●

●
●●
●●●

●

●

●●●●●
●

●●
●
●

●●
●
●

●●
●
●●●

●

●
●●●●●●●

●●●●
●
●●
●

●

●●
●●
●
●
●●
●●
●●●

●●
●●
●

●●●●
●

●

●
●●●●

●●
●
●
●

●
●●
●●●

●●●●●●●
●●
●●●

●
●
●●
●●
●●
●●●●●

●●
●●
●
●
●

●●
●●
●●
●●●●●●●●●●●●●●●

●●
●
●●
●●
●●●

●
●●●●●

●●●
●
●
●
●
●●
●
●●

●

●●●
●

●●●
●●
●●
●●
●
●
●
●●●

●
●
●
●●●●●●●●●●

●
●●
●●●

●

●

●●●●●
●

●●
●
●

●
●●●●●

●●
●
●

●
●●●

●
●●●

●
●●●●

●●●●●
●

●
●
●
●●●●●

●

●●

●
●
●
●●
●
●●●●

●
●
●
●●
●●
●●●

●
●●●

●

●
●●
●
●
●●●

●●
●●
●●●

●
●●●●

●
●●●

●●
●
●

●●
●●

●

●
●

●●
●
●●●●

●
●
●
●
●
●●

●
●●
●
●
●●
●

●
●●●●●●●●

●
●
●●●●

●●●
●
●●
●

●
●●●●

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

seconds

Lo
ad

 fa
ct

or
 (

rh
o)

Fig. 3.10 Comparing server utilisation for 2 different overload request profiles. Un-
favourable (mostly high service time) overload requests: max(ρ) > 0.8 are represented
by a red line. Favourable (mostly low service time) overload requests: max(ρ) < 0.8
are represented by the black line. The difference is due to the difference in the request
mix.

3.5 Measuring performance and resource usage 93

feature Traditional (JEE) New Generation (Node.js)
concurrency single-threaded but with

non-blocking I/O imple-
mented using callbacks

multi-threaded but with
locks and transactions to
manage shared state

container JVM (established; well-
tested; stable)

Node.js (new; becoming
more stable)

development
language

originally Java but now
many languages compile
to JVM bytecode

Javascript (or related lan-
guages like CoffeeScript
and TypeScript that com-
pile to Javascript)

serialisation
format

traditionally binary or
XML; more recently
JSON, YAML etc. added

Native support for JSON;
support for other formats
using Node packages

Table 3.12 Traditional versus more lightweight modern approaches for building request
handling systems (such as web services)

3.5.1 The Case for a PDP using newer technology

Griffin et al. (2012) describes how applications using new combinations of
architectures, languages, concurrency models and frameworks can perform very well
compared to more traditional approaches. The work contrasts the traditional Java EE
approach with one of the newer alternatives, as summarised in Table 3.12.

At least for “simple” web services, Node.js (Tilkov and Vinoski, 2010) provides an
environment to execute server-side Javascript. Griffin et al. (2011) shows that this
architecture-language-environment combination is capable of very impressive
performance. However, it was not clear whether such performance gains were still
achievable when the request triggers policy evaluation at the PDP. Therefore, a
colleague (Dr. Leigh Griffin) developed a prototype PDP which he named njsrpdp

with the following characteristics:

• the PDP, PEP and PRP were written in Javascript;

• he translated the continue-a policies and the associated single requests to
JSON;

• he uploaded and saved the policies in a redis key-value store and optimised it
for the fast retrieval of policies;

3.5 Measuring performance and resource usage 94

• the PEP served many of the functions of XTS and XACML Testing Client
(XTC) of STACS.

Our hypothesis was that the following features lead to improved PDP evaluation
performance:

• Policies and requests should be encoded more efficiently

– policies and requests should be relatively terse, to reduce the string
handling overhead per request;

– policies and requests should be encoded in a way that minimizes the
parsing overhead;

– policies should be directly implementable.

• PDP implementations should be more efficient

– policies and requests should be stored in ways that make retrieval more
flexible and efficient;

– the PDP should scale outwards, to enable more efficient use of available
resources.

Before proceeding to describe the performance experiments, it is necessary to state the
following caveats concerning njsrpdp:

• it does not support all the features of XACML 2.0 policies, just those that were
essential for the continue-a policies and associated single requests. As an
example, it ignores any <Condition> elements.

• it is concerned only with making the correct decision for those policies with
those requests: other features of a PDP (such as error handling or even working
with policies that have been nested to an arbitrary depth) are not considered.

One of the consequences of these restrictions is that the fit between the Javascript
code and the JSON policies and requests is almost seamless. Indeed, Griffin et al.
(2012) describe the combination as being “friction-free”: the parsing of policies and
requests is trivial and policy decisions are made by looking up keys in a tree.

While some of the performance gains would be lost if the PDP had all the features of
a XACML PDP, we believe it would still be highly competitive with existing PDPs.
In that regard, work has completed on the development of a Javascript/Node.js/JSON

3.5 Measuring performance and resource usage 95

PDP that passes all the XACML 2.0 conformance tests (Kuketayev, 2005). We have
rerun the experiment described below with the full PDP and the results are broadly
similar, although there are some features, e.g., relating to PDP memory usage and
synchronisation, that are new. We intend to investigate these and other issues by
extending the study using the greatly enhanced framework presented in Chapter 4.

Listing 3.1 JSONPL (JSON Policy Language) Policy Excerpt. The original XACML-
encoded policy fragment had 1473 characters versus 454 characters (including generous
whitespace, to aid readability) for the equivalent policy in JSONPL encoding. The
whitespace to the left of the policy fragment is significant: this degree of indentation
indicates the highly nested structure of the original policy.

"Policy":{
"id":"RPSlist.7.0.1" ,
"target":{

"subjects":{
"subject":{

"role":"admin"
}

},
"resources":{

"resource":{
"isPending":"false"

}
},
"actions":{

"action":{
"action-type":"write"

}
}

},
"rule":{

"id":"RPSlist.7.0.1.r.1" ,
"effect":"permit"

}
}

Listing 3.1 is a fragment of the continue-a policy set after it was converted manually
from XACML to JSON. Similarly, Listing 3.2 is the result of manually converting the
the first request in the single request set from XACML to JSON.

3.5 Measuring performance and resource usage 96

Listing 3.2 JSON Request example, converted manually from 1-req.xml from the
single requests associated with the continue-a policy set.
{

"subject" : {
"category" : "access-subject"

,"role" : "pc-chair"
}

,"resource" : {
"isPending" : "false"

,"resource-id" : "DEFAULT RESOURCE"
}

,"action" : {
"action-type" : "write"

}
}

Two features are apparent: the structure and conditions of the continue policy set
and single request set are maintained, and the JSON policy encoding is much less
verbose than the corresponding XML encoding. Thus the two policy encodings express
the same rules when interpreted by the relevant PDP. Thus providing these policies
and requests to njsrpdp is semantically equivalent to submitting their XACML
equivalents to more traditional PDPs like SunXACML PDP and EnterpriseXACML PDP.

3.5.2 Comparison of PDPs

Experiments were performed to compare the JSON/Node.js/Redis implementation
described above with more traditional XACML/Java implementations of SunXACML

PDP and EnterpriseXACML PDP. A set of XACML policies and their related requests
was chosen and were translated manually to their JSONPL equivalents. The two
Java-based PDP implementations were placed in STACS (Butler et al., 2011) so that
service times per request could be recorded in a repeatable fashion. The prototype
Node.js implementation was instrumented in the same way, taking advantage of the
Node.js eventing model to collect service times based on the same triggering events
that were used in STACS:

• PDP Policy Read start;

• PDP Policy Read end;

3.5 Measuring performance and resource usage 97

Table 3.13 Service time measurements and their context.

Name Type Possible values
policy Common continue
reqGrp Common single
host Factor bear, inisherk
pdp Factor SunXACML PDP, EnterpriseXACML PDP, njsrpdp
duration Response Numeric

• Request arrives at PDP;

• Response leaves PDP.

A simplified queueing discipline was employed, namely, when response n from the
PDP arrived at the PEP, it triggered the submission of request n + 1 from the PEP to
the PDP. This sequential processing was easily achieved in STACS using loops and in
the njsrpdp harness using callbacks. The entire experiment was replicated Nrep = 100
times, in random order, for each set of host × pdp conditions.

The measured service time data was standardized to use the same labels and time
units to ensure that data features were consistent between STACS and non-STACS

sources.

The factors considered in our main experiment are shown in Table 3.13. The continue

policy and single request group are published (in XACML form) as part of the test
suite for XEngine (Liu et al., 2008) and were translated to JSON format as described
earlier. This policy set and associated requests was used in the experiments and
models access control rules and requests for a Conference Paper Management System.
While that domain does not require microsecond evaluation times, the policy set
contains reasonably complex business rules such as separation of duties constraints
and other features representative of real-time corporate communications. The two
host instances were Intel 64-bit dual-core machines, each with 2GB RAM but differing
in other computing resources, running Ubuntu 11.04.

The primary experiment compares njsrpdp with two existing XACML PDP
implementations. The secondary experiment examines how njsrpdp achieves increased
performance.

3.5 Measuring performance and resource usage 98

Table 3.14 Analysis of Variance: host, pdp, host:pdp effects are very significant—α
probability underflows machine epsilon ε.

Dfa SumSq MeanSqb F valuec Pr(>F)
host 1 1.97e-05 1.97e-05 2.24e+04 < ε
pdp 2 1.15e-04 5.75e-05 6.55e+05 < ε
decision 2 1.00e-09 5.00e-10 5.14e-01 0.60
requestIndex 190 1.61e-07 1.00e-09 9.67e-01 0.61
host:pdp 2 7.50e-06 3.75e-06 4.27e+03 < ε
Residualsd 954 8.37e-07 1.00e-09

a(Number of) degrees of freedom
bSumSq/Df
cF ratio: MeanSq/MeanSq_Residuals
dOther, unspecified factors

Table 3.15 Analysis of Means: host inisherk has better performance than bear.

host bear inisherk
time 6.3e-04 3.7e-04
#replicates 576 576

3.5.3 Comparison experiment 1: njsrpdp vs. its peers

Figure 3.11 shows histograms of the service times for SunXACML PDP, a reference
Java-based XACML PDP, compared with the service times for njsrpdp, the
implementation introduced in §3.5.1. The influence of the host and pdp factors can be
seen clearly. Indeed, njsrpdp has noticeably better performance when other factors
are equal. The EnterpriseXACML PDP has service times that are generally higher than
those in the reference SunXACML PDP; see Table 3.16. One possible explanation is that
the EnterpriseXACML PDP reads the schema file and verifies each request against the
schema before attempting to parse the request. By contrast, the SunXACML PDP does
not check each request beforehand: if the request is faulty, an exception occurs.

Table 3.16 Analysis of Means: PDP njsrpdp has better performance than the other
PDPs.

pdp SunXACML PDP EnterpriseXACML PDP njsrpdp

pdp 5.56e-04 8.61e-04 9.3e-05
#replicates 384 384 384

3.5 Measuring performance and resource usage 99

seconds

d
e

n
s
it
y
 (

s
c
a

le
d

 s
o

 t
h

a
t

e
a

c
h

 h
is

to
g

ra
m

 a
re

a
 =

 1
)

0.00000 0.00015 0.00030 0.00045 0.00060 0.00075

0
3
0
0
0
0

6
0
0
0
0

9
0
0
0
0

1
2
0
0
0
0

1
5
0
0
0
0

inisherk−njsr bear−njsr inisherk−SX bear−SX

Fig. 3.11 Comparative service time histograms for hosts bear and inisherk and PDP
implementations SunXACML PDP and njsrpdp, for Scenario 1A.

(a) njsrpdp on bear
on host 'bear' using 'njsrPDP'

seconds

d
e
n
s
it
y
 (

s
c
a
le

d
 s

o
 t
h
a
t
T
o
ta

l
H

is
to

g
ra

m
 A

re
a
 =

 1
)

0.000105 0.000115 0.000125 0.000135

0
2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

(b) njsrpdp on inisherk
on host 'inisherk' using 'njsrPDP'

seconds

d
e
n
s
it
y
 (

s
c
a
le

d
 s

o
 t
h
a
t
T
o
ta

l
H

is
to

g
ra

m
 A

re
a
 =

 1
)

6.8e−05 7.2e−05 7.6e−05 8.0e−05

0
5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

Fig. 3.12 njsrpdp request service times on hosts bear and inisherk.

3.5 Measuring performance and resource usage 100

The Node.js/Redis prototype PDP implementation, labeled njsrpdp in Figure 3.12 has
the following performance features:

1. The mean service time per request is much less (one sixth that of SunXACML PDP,
one eighth that of EnterpriseXACML PDP), see Table 3.16.

2. The performance profile for njsrpdp is bell-shaped; for EnterpriseXACML PDP it
is approximately uniformly distributed; for SunXACML PDP it is a skewed mixed
distribution.

3. The implementation on the two hosts shows a similar profile (see Figure 3.12)
though with different performance levels, see Table 3.15 because inisherk has a
faster CPU and more L1 cache. This suggests that performance scales vertically
on a single host and also that the performance profile and observations are
reproducible.

It should be noted from Table 3.14 that these differences are statistically significant
(Hothorn and Everitt, 2009) and hence are highly unlikely to arise by chance. The
challenge is to show how the design principles outlined in §3.5.1 and implemented in
the njsrpdp prototype contribute to the statistically significant performance
improvements summarized in Table 3.16.

The system resources used by the JSON and XACML implementations were captured
using dstat, which collects resource statistics (cpu, memory, disk usage, etc) on a
timed basis while the experiments run in the testbed. Figure 3.13 shows that njsrpdp

uses far less CPU (10% versus 60%, say). The cpu wait time is generally low,
suggesting that both Node.js and the JVM are quite efficient. However, the user cpu
cycles are much greater for the Java/XACML implementations. The CPU has to work
much harder to evaluate policies in Java/XACML PDP implementations. This is
consistent with observations elsewhere in building scalable web applications (Griffin
et al., 2011). Furthermore, the idle cpu usage is much higher for njsrpdp, suggesting
there is much more capacity available for increased throughput.

The memory usage was also recorded and shown in Figure 3.14, supporting the
contention that njsrpdp makes particularly efficient use of computing resources,
including 35% less memory.

3.5 Measuring performance and resource usage 101

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l
ll

l
l
l

l
ll

l

l

l

l
llll

bear.njsr inisherk.njsr bear.sxex inisherk.sxex

0
2

0
4

0
6

0
8

0
1

0
0

%
 u

s
a

g
e

l

l

l

l

l
l

l

l

l

l

l
l

l
ll

l

l

l

l

l

l

l

0
2

0
4

0
6

0
8

0
1

0
0

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l
l
ll

l

l

l

ll

ll

0
2

0
4

0
6

0
8

0
1

0
0

user wait idle

Fig. 3.13 CPU usage for selected host × pdp combinations. Hosts are bear and
inisherk and PDPs are SunXACML PDP, EnterpriseXACML PDP (collectively labeled sxex)
and njsrpdp (labeled njsr). If memory is labelled ‘user’, it is assigned to a user process;
if it is labelled ‘idle’ it is available for other processes; if it is labelled ‘wait’ it is neither
assigned to a user process, nor is it available for use by other processes. Generally:
more wait = less efficient, more user = more busy on user tasks, more idle = more
scope for scalability if those resources can be used.

3.5 Measuring performance and resource usage 102

lll

llll

l

l
lll
l

ll
llll

l

l

l

bear.njsr inisherk.njsr bear.sxex inisherk.sxex

4
5

0
5

0
0

5
5

0
6

0
0

6
5

0
7

0
0

7
5

0

M
B

 o
f

m
e

m
o

ry
 u

s
e

d

Fig. 3.14 Memory usage for different host × pdp combinations. It can be seen that
SunXACML PDP hods onto much more memory than njsrpdp. However, preliminary
results from our evaluation of a full XACML 2.0-conformant PDP implemented in
Node.js (contrasted with the incomplete njsrpdp prototype presented in this Figure)
suggests that low memory usage is not typical of Node.js applications in general.

3.5 Measuring performance and resource usage 103

Table 3.17 Scenario conditions

Manually
generated
Policies

Auto gener-
ated policies
(bloated)

Manually generated Requests Scenario
1A

Scenario 1B

Auto generated requests (bloated, prepared) Scenario
2A

Scenario 2B

Auto generated requests (bloated, on the fly) Scenario
3A

Scenario 3B

3.5.4 Comparison experiment 2: What are the benefits of
terse policies and/or requests?

The results in §3.5.2 indicate that njsrpdp performance is significantly better than
either of the JVM-based PDPs. There are at least two possible reasons for this
improvement:

1. the Node.js-based PDP could be more efficient;

2. the JSON-encoded policies and requests are shorter than their XML counterparts

A further set of experiments was conducted to determine how much of that
improvement is due to each of the two possible causes above. Six experimental
scenarios are considered as described in Table 3.17 and were used to compare the
effects of different policy and request formulations for a given PDP (in this case, the
njsrpdp prototype).

Referring to Figure 3.15, we see the main features of the scenarios to be compared
with each other. Summarising,

• the A scenarios formulate the policies as JSON in ways that are “optimized” for
evaluation performance, while the B scenarios use the policies as translated by a
generic XML to JSON converter.

• the “1” scenarios formulate the requests as JSON in ways that are “optimized”
for evaluation performance

3.5 Measuring performance and resource usage 104

(a) Scenario 1A: Manual×Manual

JSON

Policy
JSON

Request

PEP PDP

(b) Scenario 1B: Manual×Auto

JSON

Policy
JSON

Request

PEP PDP

XML

Policy

Xml2json

translation

(c) Scenario 2A: Prepared-Auto×Manual

JSON

Policy
JSON

Request

PEP PDP

Xml2json

translation

XML

Request

(d) Scenario 2B: Prepared-Auto×Auto

JSON

Policy
JSON

Request

PEP PDP

XML

Policy

Xml2json

translation

Xml2json

translation

XML

Request

(e) Scenario 3A: Inflight-Auto×Manual

JSON

Policy

PEP PDP

Xml2json

translation

XML

Request

(f) Scenario 3B: Inflight-Auto×Auto

PEP PDP

XML

Policy

Xml2json

translation

Xml2json

translation

XML

Request

Fig. 3.15 njsrpdp policy×request scenarios; scenario conditions are defined in Table 3.17.

3.5 Measuring performance and resource usage 105

• the “2” and “3” scenarios use the requests as translated by a generic XML to
JSON converter. They differ in respect of when the translation occurs: before
reaching the PEP for “2”, or within the PEP itself for “3”.

Note that the experimental conditions in Scenario 1A are those used when comparing
njsrpdp with the SunXACML PDP and EnterpriseXACML PDP, see §3.5.2.

In summary, all of the policies and request artifacts were originally encoded as
XACML and so they benefit from the XACML ecosystem. However the artifacts are
converted to JSON by different methods and at different stages of policy evaluation.
The performance improvements arising from each research contribution can be
estimated by comparing the timing results.

Scenario 3 incurs serious overheads. Firstly, the converter requires 83% of the total
time needed to make the access decision. Secondly, translation introduces a large
object that needs to be maintained at the top of the callback chain. When the PDP
evaluates and wishes to pass its decision to the PEP it must “walk” back up the
callback chain. The top level callback needs to retain a link including the context of
the request and its arguments throughout the whole chain. By placing such a large
object in the top callback, translation imposes greater overheads down the callback
chain, so the computation time is increased. Therefore the next step is to investigate
how the system would perform if the penalty for translation, which increases
evaluation time in two ways, were removed.

By pre-translating the requests the overhead incurred in translating the requests at
run time is removed as well as the added overheads in the callback chain. The
challenge becomes that of guaranteeing safe and accurate policy evaluation. One
complication is that, depending on the XML schema, the ordering of some child
elements may be unspecified. Consequently the position of sibling child elements in
policies within the same policy set can be different. A XACML PDP’s XML parser
has no difficulty in this regard but the translating program makes no allowance for
consistency in the generated JSON. Thus njsrpdp has to account for this, handling all
ordering permutations so as to operate correctly. While these problems also occur in
Scenario 3, the additional translation overhead masked this feature. A minor
performance gain was identified when using a combination of pre-translated JSON
requests and optimized (JSONPL-formatted) policies, as there is less overall bloat.

3.5 Measuring performance and resource usage 106

ll l

lll l

ll ll

l ll ll

s
c
e

n
a

ri
o

1
A

s
c
e

n
a

ri
o

2
A

s
c
e

n
a

ri
o

1
B

s
c
e

n
a

ri
o

2
B

6.0e−05 6.5e−05 7.0e−05 7.5e−05 8.0e−05 8.5e−05 9.0e−05

service time (seconds)

Fig. 3.16 Service times for Scenarios 1A, 1B, 2A, 2B. The Scenarios are defined in
Table 3.17 and shown schematically in Figure 3.15. Scenario 1A (manual policies,
manual requests) gives the best performance, with lower performance when the policies
are auto-generated. Scenario 2A and Scenario 2B show very similar performance to
each other, so if requests are auto-generated, there is little to be gained from manually
generating the policies.

3.5 Measuring performance and resource usage 107

seconds

d
e
n
s
it
y
 (

s
c
a
le

d
 s

o
 t
h
a
t
e
a
c
h
 h

is
to

g
ra

m
 a

re
a
 =

 1
)

0.00000 0.00015 0.00030 0.00045 0.00060 0.00075

0
4
0
0
0
0

8
0
0
0
0

1
2
0
0
0
0

Scenario1A Scenario2B SunXacml Scenario3B EnterpriseXacml

Fig. 3.17 Service time comparison. Ranked in decreasing order of performance (left to
right in the figure above), they are: njsrpdp Scenario 1A, 2B; SunXACML PDP; njsrpdp
Scenario 3B, EnterpriseXACML PDP.

The boxplot in Figure 3.16 indicates that the best performance is obtained when
optimized (JSONPL) policies and requests are used (Scenario 1A) and that
performance degrades as bloated/more complex automatically translated JSON is
used to represent polices and requests (Scenario 2B).

The service time histograms in Figure 3.17 show how different njsrpdp scenarios
compare with “traditional” PDP implementations. Clearly there is no net performance
benefit of the JSON implementation when requests are translated on the fly: mean
services times for njsrpdp Scenario 3A are greater than those for SunXACML PDP, but
njsrpdp has much greater performance potential (see Scenario 1A).

Table 3.18 confirms that factors such as scenario type, decision and request type are
significant when modelling service times. The comparison of mean service times for
each Scenario in Table 3.19 shows how different Scenario 3 is to the others, and how
much request format optimization affects performance (compare Scenario 1A and 2A).

3.6 Extending STACS 108

Table 3.18 Analysis of Variance for Scenario service times

Df Sum Sq Mean Sq F value Pr(>F)
scenario 5 6.4e-05 1.27e-05 7.43e+05 < ε
decision 2 1.0e-09 4.00e-10 2.54e+01 1.8e-11
requestIndex 190 8.0e-09 0.00e+00 2.32e+00 < ε
Residuals 954 1.6e-08 0.00e+00

Table 3.19 Mean service times for each of the Scenarios

1A 6.4e-05 1B 7.4e-05
2A 7.8e-05 2B 7.8e-05
3A 57.8e-05 3B 56.5e-05

3.6 Extending STACS

STACS has enabled us to undertake rich performance experiments, as described earlier
in this Chapter and published in (Butler et al., 2010, 2011; Griffin et al., 2012).
However, the comparison of SunXACML PDP with njsrpdp highlighted the assumption
that any PDP under test could be deployed in the same JVM as the XTS universal
PEP component of STACS. This restriction is being removed as work has started on
distributing STACS across more than one host in a client-server architecture. This will
enable researchers to measure service times of distributed access control systems
directly, in addition to the current procedure where service times are measured on a
single PDP and the performance of a distributed access control system is estimated by
means of measurement-based simulation. Other extensions have already been
implemented, including:

• All factors defining an experiment, such as choice of PDP, policy encoding
format etc., are now modeled as properties and externalised in text files. STACS

reads those configuration files and the same software can thus handle a huge
variety of different measurement scenarios without changing STACS code.

• STACS v1.0 stored the performance results in text files on the file system, with the
context of a result depending on both a label in a given results file, as well as the
full path to that results file. While that was convenient for small experiments, it
soon became cumbersome as experiments grew more complex. It also made
comparison of JVM-based and non JVM-based PDP implementations more

3.7 Summary 109

difficult because of a lack of standards. Therefore, the measured service times
are now stored in a relational database, and the chosen table schema makes it
easy to handle different experimental scenarios with minimal change to STACS.

The two enhancements above greatly ease the task of a researcher who wishes to apply
STACS to measure access control service times in new scenarios, such as those that will
be discussed in Chapter 4.

3.7 Summary

This chapter describes STACS, our response to the perceived need for a testbed in
which to perform access control performance experiments. We have seen how request
service times collected using STACS have been used to compare the performance of
different PDPs, even when the underlying technology and policy formats are
dramatically different. One of the most interesting features of the service time
measurements is the fact that the service time distribution for a given PDP appears to
be a mixture of simple, overlapping distributions associated with emergent request
clusters. This behaviour is indicative of the internal working of that PDP. Looking
beyond the analysis of infrequent request arrivals, to cases where some request
queueing occurs, we have also seen how service time measurements from STACS can be
used as the basis of measurement based simulation. One experiment considered the
queueing effects of keeping the request arrival rate constant and varying the request
mix, the other considered the effect of keeping the request mix constant but increasing
the arrival rate, and using techniques such as proportional thinning to manage the
size of the queue. All of these experiments and simulations serve to validate STACS as
an access control performance testbed.

However, although STACS provides a useful basis for performance experimentation, the
analysis in this chapter is not sufficient to prove the external validity of STACS because
it is not based on policies and requests from our domain of interest, which is enterprise
communication control. This is because suitable policy and request sets have proven
difficult to obtain. Therefore, the primary contribution of Chapter 4 is a set of
algorithms for generating representative policies and requests consistent with each
other and with a specified domain model. The secondary contribution is that the
generated policies and requests have free parameters that enable them to match

3.7 Summary 110

different sizes of domain. Consequently, it is possible to perform experiments in which
uninteresting factors are controlled (set to a constant value) and the domain semantics
are maintained, while allowing the researcher to vary interesting factors such as the
domain size.

Note that the STACS framework can be extended to other client-server performance
experiments, by adding suitable adapter and scenario run classes. The biggest
challenge would be to map the factors of that scenario in that domain to properties
that can be used by the adapter and run classes in STACS.

Chapter 4

DomainManager: A domain model
and tools to configure STACS

Table 4.1 Research questions addressed in Chapter 4

ID Question

RQ1

How can access control evaluation performance be measured for use in
performance experiments?

– What form does the service time distribution take?
– What simulations can be performed to explore the effect of different

request arrival patterns?
– What analysis can be performed when the systems under test use different

languages, frameworks and encodings?

RQ2

How can domain models be specified and used to express enterprise access
control scenarios?

– How can different variants of domain models be specified in a flexible
and easy to use way?
– How can access control evaluation performance be compared at different

domain sizes?

RQ3
How can the data from performance experiments be used to understand
and predict access control evaluation performance?

– What types of exploratory data analysis are suitable for the performance
experiments?
– What are the steps needed to build statistical models predicting access

control performance?

RQ4
What are the main factors affecting access control evaluation performance?

– What are the effects of PDP choice, domain size and resources?
– What are the effects of domain size, policy and request characteristics?

4.1 Introduction 112

4.1 Introduction

In Chapter 3 and in (Butler et al., 2010, 2011; Griffin et al., 2012), we described STACS,
a software platform to investigate the performance of a PDP implementation by
measuring the service times per request. While the experiments proved that STACS

provided a principled means of evaluating access control performance under controlled
conditions, the public domain policies and requests that were used were not
representative of a typical real-world deployment. Hence, only limited claims could be
made in relation to access control performance.

Policies and requests relating to enterprise access control have not been made publicly
available, so there was a need to generate such artifacts. Also, access control
performance is commonly believed to depend to some extent on the characteristics of
the policy sets used to make those access decisions, so the policies (and their
associated requests) became a subject for study in their own right.

An enterprise access control policy is a means of specifying the security properties that
need to hold in an enterprise. Such security properties do not arise in isolation: they
are in response to requirements that need to be captured as rules and expressed in
terms of the enterprise itself. The rules are stated in terms of the enterprise
stakeholders, the resources being protected and the activities that occur. Thus what is
needed is a comprehensive domain model for enterprise access control, extensions to
STACS to run more the more extensive experiments facilitated by this domain model,
and an analysis component that has the ability to derive statistical insights from the
new, more comprehensive measurement experiments.

The enterprise access control domain model (see §4.2) enables policy and request
generation but an application is needed to manage that model by populating it with
data and using the data in the model to generate policies and requests. In that regard
we developed DomainManager to manage the enterprise access control domain model
and to make the authoring of large policy sets easier. The key insight is that
enterprise policies may often be very large, having structure in the form of implicit
entity hierarchies, but their very size makes this structure hard to identify and exploit.
Indeed, there are often patterns governing how policies are formulated by policy
authors but the structure is often much less obvious when the policies are cast in a
form suitable for deployment in a PDP. DomainManager provides a way to use these
patterns, enabling its users to create and edit a smaller set of template policies and

4.1 Introduction 113

then to automatically derive the full policy set and its corresponding example requests
from the template set.

Secondly, we enhanced STACS, primarily to be able to handle the much richer scenarios
supported by DomainManager and hence the much larger and more context-rich
measurement sets that arise in each experiment (see §3.6).

One of the main advantages of the greatly enhanced domain model and scenario
investigations supported by DomainManager and STACS is that the scope for statistical
analysis and insight increases dramatically. First steps towards such an analysis
component were described in (Butler et al., 2011; Griffin et al., 2012) and discussed in
Chapter 3. However, after DomainManager was developed, more factors became
available to explain the performance of the system under test, and this potential for
richer statistical models offers greater opportunities and challenges than before. Given
this requirement, we developed PARPACS to interpret the measurements (see
Chapter 5). However, in the present Chapter, §4.6 describes a preliminary evaluation
of DomainManager using the types of analysis (design plots, service time density plots
and ANOVA) used in Chapter 3.

4.1.1 Policy authoring

The first step is to identify access control policies (modelled as constraints on
behaviour) that meet whatever safety objectives are specific to the organization. This
challenge is addressed in research on policy authoring, see Davy et al. (2013). Some of
the issues to consider include:

• ensuring that the constraints are both necessary and sufficient. That is, they
protect sensitive resources in all realistic contexts (Lampson, 1974) (and so the
protection is adequate) but they do not prevent legitimate business operations
and processes (and so the protection is minimal) (Egelman et al., 2010; Johnson,
2012);

• ensuring that the constraint set is efficient in the sense that constraint conflicts
are few and preferably nonexistent. Some conflicts affect constraint coverage
(described above). Other conflicts increase the size of the policy set because they
result in redundant constraints, or inefficient representation of constraints as

4.1 Introduction 114

policies, such as when n policies are used to represent k, k ≪ n independent
constraints.

Since most policy authoring occurs offline, its effect on the time needed for policy
evaluation is indirect. Some policy formulations have better evaluation performance
characteristics than others, but knowledge of the effects on performance is generally
not available when a change is made to a policy set.

4.1.2 Policy Generation approaches

There are (at least) three basic techniques that can be used to generate policies

1. Overloading the XACML schema document. XACML policies are
specified in a dialect of XML. OASIS has published the XACML policy schema
document (OASIS XACML-TC, 2005b). This schema document describes the
main components of the language, namely policy sets, policies, targets, rules and
conditions, and how they relate to each other. However XML schema documents
can also define the “vocabulary” that can be used, e.g., lists of user names,
shared resources, etc. Hierarchies can be modelled easily in the tree structure of
the XML document. Using an XML editor, a local copy of the XACML schema
document can be created, which can be augmented with lists of possible values
(subjects and resources) maintained as suitable hierarchies and TAXI (Bertolino
et al., 2007) can be used to generate policies from the augmented XML schema
document.

2. Using a domain-specific language optimised for specifying large
policy sets. A domain specific language (DSL) can be designed to specify a set
of policies based on hierarchies of subjects and resources, with inbuilt iteration
to facilitate creation of large policy sets. An editor for this domain specific
language could be built and a converter/loader developed to store the policies in
memory. The SunXACML PDP policy server implementation (Proctor, 2004)
already provides classes to serialize in-memory policies in XACML format.
Defining DSLs and building tools to convert between the DSL and the target
language is a feature of Model/Language Driven Architectures. A DSL such as
ALFA (see Chapter 2) could be used as a basis for such a “large policy set” DSL.

4.1 Introduction 115

3. Editing a property graph representation Policy authoring and the related
topic of policy conflict analysis have been studied by researchers over many
years, and this is likely to continue. Bulk policy generation adds problems of
scale since it becomes very difficult to understand a large set of policies, or even
to specify them in a convenient and transparent way. The procedure introduced
in § 4.4 uses linked graph models to generate policies.

Technique 2 requires more development effort than Technique 1 but is cleaner, since
Technique 1 does not support the same degree of semantic control, in particular it
does not model groups explicitly. Thus Technique 1 makes the creation of large
group-based policy sets a more manual process. Technique 2 is attractive, given that
significant tooling is available in eclipse, building upon the underlying language
metamodel of eclipse to simplify the manual editing of DSLs. The difficulty is that
semi-automated editing is required, and this requires much more complex
manipulation of largely opaque eclipse metamodel objects. Technique 3 exploits the
fact that policies connect rules to attributes, and the rules themselves are statements
connecting attributes. Hence a graph representation is appropriate for representing
policies, and graph operations (such as path finding, traversals, etc.) can be used to
generate new policy statements. As with Technique 2, the working representation of
the domain (i.e., the eclipse language metamodel for Technique 2 and the property
graph for Technique 3) needs to be converted to a standard policy language such as
XACML for evaluation purposes. However, eclipse (particularly its Xtext distribution)
provides many tools to help convert from one language representation to another,
usually when the EBNF representation of the grammar of both the source and target
languages are specified. In the case of Technique 3, the source representation (a
schema-free graph but with rigorously-enforced conventions regarding what data can
and must be stored in each entity) does not have a formal grammar, but the target
language (XACML) has an XML schema document that serves to define its syntax. Both
Technique 2 and 3 require an explicit step that can be viewed as deserialising the
internal representation to one that can be consumed by a PDP.

Technique 3) (i.e., inferring a large set of policies from a smaller set of
template policies) is the approach that is featured in this dissertation.

4.1 Introduction 116

4.1.3 Request Generation approaches

During normal operations within an organization, Principals issue access requests that
the access control system must review against the constraints. For this to happen in a
reliable fashion, policies “cover” a scenario by protecting some of the resources
participating in that scenario.

To achieve both safety and performance objectives, it is essential that the generated
requests should be consistent with the policies (so that policy coverage is adequate)
and with the underlying processes for which access is requested.

For better performance, it is also necessary to consider the time required to assemble
and encode the access request, particularly if it requires significant processing, e.g., if
it needs to issue a database or web service call to provide the necessary details for
matching to proceed. In that regard, to achieve better performance, many PIP

implementations cache the attribute lookups and /or store them in memory, so that
the lookup data is available to the PDP when evaluating each request.

It is essential to ensure that the policies and requests share the same basic concept
vocabulary and structure, otherwise matching operations are ill-posed. In the case of
incompatible XACML policies and requests, the PDP will typically return decisions such
as Not Applicable or Indeterminate. The former is often caused by gaps in rule
coverage; the latter by more complex exceptions that are caught by the PDP. With
XACML 3.0, Indeterminate is split into three kinds that participate in different ways
in combining algorithms, which facilitates finer control when handling edge cases and
easier debugging of exceptions. In general, such non Permit-Deny decisions can be
viewed as warnings concerning the “semantic quality” (domain coverage) of the policy
set used by that PDP. Optionally, PEPs may be configured to map such exceptional
cases to more acceptable decisions such as Permit or Deny. This makes life easier for
the access-requesting clients, but care should be taken not to “hide” indefinitely the
deficiencies in the policy set.

A further requirement is that the number of requests to be generated should be “large
enough” that the generated requests provide a representative sample of requests to
explore both the semantics (decision mix) and the performance characteristics of a
given policy-PDP combination.

Two approaches were considered. Each can be considered complementary to the other:

4.2 Components of the domain model 117

Generating requests from first principles Weighted sampling of the people,
resources and actions in the domain, generating combinations of these entities
that can be interpreted as access requests.

Reverse engineering from the policies analysing the policies and inferring the
types of requests that the policies are designed to permit and to deny.

The first approach has the potential to create much larger sets of requests than the
second, but the challenge is to make them more representative of actual and expected
behaviour. Indeed, our experiments showed that the reverse engineering approach
generally gave more satisfactory results than the forward generation approach:

1. more Permit and Deny decisions relative to Not Applicable and Indeterminate

decisions;

2. a more representative balance of Permit decisions compared to Deny decisions;

3. an adequate number of requests generated without the need to devise an
arbitrary sampling strategy to make the set more manageable.

Approach 2) (i.e., reverse engineering requests from policies) is the approach
that is featured in this dissertation.

4.2 Components of the domain model

The scope and complexity of the domain (policy-based access control in organizations)
arises from the difficulty of representing resource sharing and the typical constraints
on that sharing. Our response to this complexity is to create a set of linked
representations to make the domain model more tractable.

The representations and their relationships comprising the domain model are outlined
in Figure 4.1. The model is divided into subcomponents according to use case:

1. the static model acts as a foundation: it defines the fundamental vocabulary and
relationships underlying the operations of a given organization;

2. the policy model defines the constraints and authorization rules enforcing the
security model and objectives of the organization;

4.2 Components of the domain model 118

Static

Model

Policy

Model

Request

Model

Expressed In

Terms of

Expressed In

Terms of

generated from

Fig. 4.1 Domain model overview: concepts and interactions. Note that the static,
policy and request models are merged into a common model, with the entities retaining
a modelType attribute which can be Static, Policy or Request.

3. the request model defines the instances of activity in the organization for which
authorization is required.

An application is needed to maintain consistency between such loosely-coupled model
components and to support operations like adding and updating data, querying and
visualising the overall model. DomainManager fulfills that role.

DomainManager can be used to generate (suites of) access control policies. As such it
has some features in common with more general purpose policy authoring tools.
However, its inputs include simpler policies, which it uses to generate policies and
requests according to parameter settings that control various characteristics of the
resulting policies and requests. As such it complements other policy authoring tools.
Work is under way to build a set of tools to streamline the production of its inputs,
thereby bypassing the need for an external policy authoring system.

The first representation of the domain model that we used was relational in the sense
that the entities are decomposed into simpler concepts and stored in tables, so that
they can be reassembled using primary-foreign key relationships. The policy and
request relational submodels are designed to capture knowledge about the domain
with the same basic representation as is used in the XACML 2.0 metamodel. That is,
the relational schema vocabulary and the structure of both the policy and context
models is a transformation of the vocabulary and structures found in the XACML2
policy (OASIS XACML-TC, 2005b) and context (OASIS XACML-TC, 2005c) XML
schema documents into an equivalent Third Normal Form (3NF) relational model.
The static model (comprising Assets, Agents, Actions and their groups) is designed to
act as a foundation for modelling business processes to which access control needs to
apply.

4.2 Components of the domain model 119

LU
_O

rg
an

is
at

io
n_

Ty
pe

- i
d

in
t [

PA
]

- o
rg

an
is

at
io

n_
ty

pe
_d

s T
EX

T

O
 r

g
a

n
i s

 a
 t

i o
 n

- i
d

in
t [

PA
]

- o
rg

an
is

at
io

n_
ds

 T
EX

T
- o

rg
an

is
at

io
n_

ty
pe

_i
d

in
t [

FK
]

- o
rg

an
is

at
io

n_
se

ct
or

_i
d

in
t [

FK
]

- o
rg

an
is

at
io

n_
he

ad
qu

ar
te

re
d_

id
 in

t [
FK

]

LU
_O

rg
an

is
at

io
n_

Se
ct

or

- i
d

in
t [

PA
]

- o
rg

an
is

at
io

n_
se

ct
or

_d
s T

EX
T

L
U

 _
 O

 r
g

a
n

i s
 a

 t
i o

 n
 _

 H
 e

 a
 d

 q
 u

 a
 r

t e
 r

e
d

- i
d

in
t [

PA
]

- o
rg

an
is

at
io

n_
he

ad
qu

ar
te

re
d_

ds
 T

EX
T

LU
_M

em
be

r_
Le

ve
l

- i
d

in
t [

PA
]

- m
em

be
r_

le
ve

l_
ds

 T
EX

T

M
em

be
r

- i
d

in
t [

PA
]

- m
em

be
r_

ds
 T

EX
T

- o
rg

an
is

at
io

n_
id

 in
t [

FK
]

- m
em

be
r_

le
ve

l_
id

 in
t [

FK
]

- m
em

be
r_

fu
nc

tio
n_

id
 in

t [
FK

]
- m

em
be

r_
ro

le
_i

d
in

t [
FK

]

LU
_M

em
be

r_
Fu

nc
tio

n

- i
d

in
t [

PA
]

- m
em

be
r_

fu
nc

tio
n_

ds
 T

EX
T

LU
_M

em
be

r_
Ro

le

- i
d

in
t [

PA
]

- m
em

be
r_

ro
le

_d
s T

EX
T

LU
_G

ro
up

_T
er

m

- i
d

in
t [

PA
]

- g
ro

up
_t

er
m

_d
s T

EX
T

A
ss

et
_G

ro
up

- i
d

in
t [

PA
]

- a
ss

et
_g

ro
up

_d
s T

EX
T

- g
ro

up
_t

yp
e_

id
 in

t [
FK

]
- g

ro
up

_t
er

m
_i

d
in

t [
FK

]
- g

ro
up

_c
at

eg
or

y_
id

 in
t [

FK
]

O
 r

g
a

n
i s

 a
 t

i o
 n

 _
 G

 r
o

u
p

- i
d

in
t [

PA
]

- o
rg

an
is

at
io

n_
gr

ou
p_

ds
 T

EX
T

- g
ro

up
_t

yp
e_

id
 in

t [
FK

]
- g

ro
up

_t
er

m
_i

d
in

t [
FK

]
- g

ro
up

_c
at

eg
or

y_
id

 in
t [

FK
]

M
em

be
r_

G
ro

up

- i
d

in
t [

PA
]

- m
em

be
r_

gr
ou

p_
ds

 T
EX

T
- g

ro
up

_t
yp

e_
id

 in
t [

FK
]

- g
ro

up
_t

er
m

_i
d

in
t [

FK
]

- g
ro

up
_c

at
eg

or
y_

id
 in

t [
FK

]

LU
_G

ro
up

_C
at

eg
or

y

- i
d

in
t [

PA
]

- g
ro

up
_c

at
eg

or
y_

ds
 T

EX
T

LU
_G

ro
up

_T
yp

e

- i
d

in
t [

PA
]

- g
ro

up
_t

yp
e_

ds
 T

EX
T

LU
_A

ss
et

_T
yp

e

- i
d

in
t [

PA
]

- a
ss

et
_t

yp
e_

ds
 T

EX
T

A
 s

s e
 t

- i
d

in
t [

PA
]

- a
ss

et
_d

s T
EX

T
- a

ss
et

_t
yp

e_
id

 in
t [

FK
]

- a
ss

et
_i

nt
eg

rit
y_

id
 in

t [
FK

]
- a

ss
et

_c
on

fid
en

tia
lit

y_
id

 in
t [

FK
]

LU
_A

ss
et

_I
nt

eg
rit

y

- i
d

in
t [

PA
]

- a
ss

et
_i

nt
eg

rit
y_

ds
 T

EX
T

LU
_A

ss
et

_C
on

fid
en

tia
lit

y

- i
d

in
t [

PA
]

- a
ss

et
_c

on
fid

en
tia

lit
y_

ds
 T

EX
T

A
ss

et
_J

oi
n_

G
ro

up

- i
d

in
t [

PA
]

- a
ss

et
_i

d
in

t [
FK

]
- a

ss
et

_g
ro

up
_i

d
in

t [
FK

]

A
ss

et
_G

ro
up

_J
oi

n_
G

ro
up

- i
d

in
t [

PA
]

- a
ss

et
_s

ub
gr

ou
p_

id
 in

t [
FK

]
- a

ss
et

_g
ro

up
_i

d
in

t [
FK

]

O
rg

an
is

at
io

n_
Jo

in
_G

ro
up

- i
d

in
t [

PA
]

- o
rg

an
is

at
io

n_
id

 in
t [

FK
]

- o
rg

an
is

at
io

n_
gr

ou
p_

id
 in

t [
FK

]

O
rg

an
is

at
io

n_
G

ro
up

_J
oi

n_
G

ro
up

- i
d

in
t [

PA
]

- o
rg

an
is

at
io

n_
su

bg
ro

up
_i

d
in

t [
FK

]
- o

rg
an

is
at

io
n_

gr
ou

p_
id

 in
t [

FK
]

M
em

be
r_

Jo
in

_G
ro

up

- i
d

in
t [

PA
]

- m
em

be
r_

id
 in

t [
FK

]
- m

em
be

r_
gr

ou
p_

id
 in

t [
FK

]

M
em

be
r_

G
ro

up
_J

oi
n_

G
ro

up

- i
d

in
t [

PA
]

- m
em

be
r_

su
bg

ro
up

_i
d

in
t [

FK
]

- m
em

be
r_

gr
ou

p_
id

 in
t [

FK
]

Fi
g.

4.
2

G
ra

ph
ic

al
re

pr
es

en
ta

tio
n

of
th

e
st

at
ic

re
la

tio
na

ls
ch

em
a

de
fin

in
g

sh
ar

in
g

op
er

at
io

ns
in

or
ga

ni
za

tio
n(

s)
.

4.2 Components of the domain model 120

Table 4.2 Static model: Entities and Attributes.

Entity type Entity name Attribute

Agent

organisation
headquartered
sector
type

Member
function
level
role

Asset Asset
confidentiality
integrity
type

Action Action type

Group Group
category
term
type

The lookup LU_* tables in Figure 4.2 are used to supply lookup data for the domain
model, but the remaining static tables and also the policy and context (request and
response) tables are not used to support the domain model—the property graph
model described in §4.3 instead in the latest version of DomainManager.

4.2.1 The static model

The starting point for the static model is to define three hierarchies: for Agent

(comprising Members and organisations), Asset and Action. Each hierarchy has a rich
set of attributes, such as might be encountered in typical instances of resource sharing
within and between organizations. Because the model represents static (or possibly
slowly changing) entities only, instances of events (where an Agent performs an Action

on Asset) are not represented in this model component.

Apart from Action, these entities can be combined into Groups. Furthermore, Member

instances can be associated with organisations, which differ from MemberGroup

entities in that they are persistent rather than transient. For example, a MemberGroup

could contain members of a team tasked with delivering a new product, but the
Members could belong to one or more organisations.

4.2 Components of the domain model 121

Table 4.3 Static model: Attributes and example values

Entity name Attribute Example values

organisation
headquartered ‘National’, ‘Same bloc’, ‘Other’
sector ‘Banking’, ‘Consulting’
type ‘Public’, ‘Private’

Member
function ‘Finance’, ‘Technical’
level ‘Senior’, ‘Support’
role ‘Manager’, ‘Analyst’

Asset
confidentiality ‘Low’, ‘Medium’
integrity ‘Low’, ‘Medium’
type ‘Webpage’, ‘Chat’

Action type ‘Document’, ‘Communication’, ‘Task’

Group
category ‘Project’, ‘Supply chain’
term ‘Short’, ‘Medium’
type ‘Member’, ‘Asset’

Table 4.2 outlines the entities in the static model, together with their descriptive
attributes. Of course, an instance of such an entity would have an associated name in
addition to the attributes listed in the table. Table 4.3 indicates typical values for
each attribute of each entity in the static model. The static model can be extended
easily: it is trivial to add new values for existing attributes and new attributes can be
added also with slightly more effort in DomainManager.

This static model is indicative of the enterprise communications domain, and is
motivated by the original discussions with Cisco staff. This static metamodel is used
by all DomainManager example policies and requests used in this dissertation. For other
domains, such as access control in an online social network, the static model would
contain different data and possibly attributes that are more pertinent to that domain.
However the basic concepts remain the same: Agents, Assets and Actions have
attributes that are relevant to access control policy specification and evaluation. The
relational schema is inflexible in this regard, so an alternative representation is
presented in §4.3.

4.2 Components of the domain model 122

4.2.2 The policy model

The most noticeable feature of the XACML 2 policy schema in Figure 4.3 is the
presence of hierarchies of Subject, Resource, Action and Environment that are
combined in Target relations. This is consistent with traditional access control
concepts, where the reference monitor needs to check whether particular combinations
of Subjects (often termed Principals in the security literature) are permitted to
perform specific Actions on specific Resources, when the decision possibly depends on
some contextual (Environment) conditions.

While this relational model is able to express policies that are consistent with XACML
2, it is perhaps too closely coupled to XACML 2 policy specifications. Indeed, the
corresponding schema for XACML 3 is quite different, because Subject, Resource,
Action and Environment entities are implicit, the distinction between them being
captured in the data stored in generic entities. Therefore, different model
representations would be needed for each language dialect, so a more fundamental
representation would be more valuable.

4.2.3 The context model

The XACML 2 context schema in Figure 4.4 also shows that Subjects, Resources,
Actions and Environments play a key role in specifying requests. Again, for XACML
3, these “hard” schema distinctions are replaced by “soft” data distinctions.
Furthermore, as a consequence of the equal treatment of these entities in XACML 3,
the distinction between Subject and Resource, compared to Action and Environment
that is visible in Figure 4.4 no longer applies.

Therefore, the relational context schema suffers from the same practical difficulties as
the relational policy schema. We therefore propose an alternative domain model
representation in § 4.3. As will be seen, the alternative representation is more
dynamic and flexible and so is also more suitable for the operations we require, such
as policy and request generation.

4.2 Components of the domain model 123

LU
_M

at
ch

- i
d

in
t [

PA
]

- m
at

ch
_d

s T
EX

T

Su
bj

ec
t_

M
at

ch

- i
d

in
t [

PA
]

- m
at

ch
_i

d
in

t [
FK

]
- s

ub
je

ct
_a

ttr
ib

ut
e_

id
 in

t [
FK

]

Re
so

ur
ce

_M
at

ch

- i
d

in
t [

PA
]

- m
at

ch
_i

d
in

t [
FK

]
- r

es
ou

rc
e_

at
tri

bu
te

_i
d

in
t [

FK
]

A
ct

io
n_

M
at

ch

- i
d

in
t [

PA
]

- m
at

ch
_i

d
in

t [
FK

]
- a

ct
io

n_
at

tri
bu

te
_i

d
in

t [
FK

]

En
vi

ro
nm

en
t_

M
at

ch

- i
d

in
t [

PA
]

- m
at

ch
_i

d
in

t [
FK

]
- e

nv
iro

nm
en

t_
at

tri
bu

te
_i

d
in

t [
FK

]

LU
_C

om
bi

ni
ng

_A
lg

or
ith

m

- i
d

in
t [

PA
]

- c
om

bi
ni

ng
_a

lg
or

ith
m

_d
s T

EX
T

Ru
le

_J
oi

n_
G

ro
up

- i
d

in
t [

PA
]

- r
ul

e_
id

 in
t [

FK
]

- r
ul

e_
gr

ou
p_

id
 in

t [
FK

]
- c

om
bi

ni
ng

_a
lg

or
ith

m
_i

d
in

t [
FK

]

Po
lic

y_
Jo

in
_G

ro
up

- i
d

in
t [

PA
]

- p
ol

ic
y_

id
 in

t [
FK

]
- p

ol
ic

y_
gr

ou
p_

id
 in

t [
FK

]
- c

om
bi

ni
ng

_a
lg

or
ith

m
_i

d
in

t [
FK

]

LU
_R

ul
e_

Co
nd

iti
on

- i
d

in
t [

PA
]

- r
ul

e_
co

nd
iti

on
_d

s T
EX

T

Ru
le

- i
d

in
t [

PA
]

- r
ul

e_
ds

 T
EX

T
- r

ul
e_

eff
ec

t_
id

 in
t [

FK
]

- r
ul

e_
co

nd
iti

on
_i

d
in

t [
FK

]

LU
_R

ul
e_

Eff
ec

t

- i
d

in
t [

PA
]

- r
ul

e_
eff

ec
t_

ds
 T

EX
T

LU
_O

bl
ig

at
io

n

- i
d

in
t [

PA
]

- o
bl

ig
at

io
n_

ds
 T

EX
T

O
bl

ig
at

io
n_

Jo
in

_G
ro

up

- i
d

in
t [

PA
]

- o
bl

ig
at

io
n_

id
 in

t [
FK

]
- o

bl
ig

at
io

n_
gr

ou
p_

id
 in

t [
FK

]

LU
_S

ub
je

ct
_C

at
eg

or
y

- i
d

in
t [

PA
]

- s
ub

je
ct

_c
at

eg
or

y_
ds

 T
EX

T

S
u

b
j e

 c
 t

- i
d

in
t [

PA
]

- s
ub

je
ct

_m
at

ch
_g

ro
up

_i
d

in
t [

FK
]

- s
ub

je
ct

_m
at

ch
_i

d
in

t [
FK

]
- s

ub
je

ct
_c

at
eg

or
y_

id
 in

t [
FK

]
- r

eq
ue

st_
is

o8
60

1_
ds

 T
EX

T
[N

]
- s

es
si

on
_s

ta
rt_

is
o8

60
1_

ds
 T

EX
T

[N
]

LU
_S

ub
je

ct
_A

ttr
ib

ut
e

- i
d

in
t [

PA
]

- s
ub

je
ct

_a
ttr

ib
ut

e_
ds

 T
EX

T

LU
_R

es
ou

rc
e_

A
ttr

ib
ut

e

- i
d

in
t [

PA
]

- r
es

ou
rc

e_
at

tri
bu

te
_d

s T
EX

T

LU
_A

ct
io

n_
A

ttr
ib

ut
e

- i
d

in
t [

PA
]

- a
ct

io
n_

at
tri

bu
te

_d
s T

EX
T

LU
_E

nv
iro

nm
en

t_
A

ttr
ib

ut
e

- i
d

in
t [

PA
]

- e
nv

iro
nm

en
t_

at
tri

bu
te

_d
s T

EX
T

LU
_O

bl
ig

at
io

n_
G

ro
up

- i
d

in
t [

PA
]

- o
bl

ig
at

io
n_

gr
ou

p_
ds

 T
EX

T

LU
_S

ub
je

ct
_M

at
ch

_G
ro

up

- i
d

in
t [

PA
]

- s
ub

je
ct

_m
at

ch
_g

ro
up

_d
s T

EX
T

LU
_R

es
ou

rc
e_

M
at

ch
_G

ro
up

- i
d

in
t [

PA
]

- r
es

ou
rc

e_
m

at
ch

_g
ro

up
_d

s T
EX

T

R
 e

 s
o

u
r c

 e

- i
d

in
t [

PA
]

- r
es

ou
rc

e_
m

at
ch

_g
ro

up
_i

d
in

t [
FK

]
- r

es
ou

rc
e_

m
at

ch
_i

d
in

t [
FK

]

LU
_A

ct
io

n_
M

at
ch

_G
ro

up

- i
d

in
t [

PA
]

- a
ct

io
n_

m
at

ch
_g

ro
up

_d
s T

EX
T

A
ct

io
n

- i
d

in
t [

PA
]

- a
ct

io
n_

m
at

ch
_g

ro
up

_i
d

in
t [

FK
]

- a
ct

io
n_

m
at

ch
_i

d
in

t [
FK

]

LU
_E

nv
iro

nm
en

t_
M

at
ch

_G
ro

up

- i
d

in
t [

PA
]

- e
nv

iro
nm

en
t_

m
at

ch
_g

ro
up

_d
s T

EX
T

E
n

v
i r

 o
 n

 m
 e

 n
 t

- i
d

in
t [

PA
]

- e
nv

iro
nm

en
t_

m
at

ch
_g

ro
up

_i
d

in
t [

FK
]

- e
nv

iro
nm

en
t_

m
at

ch
_i

d
in

t [
FK

]

LU
_P

ol
ic

y_
G

ro
up

- i
d

in
t [

PA
]

- p
ol

ic
y_

gr
ou

p_
ds

 T
EX

T

LU
_R

ul
e_

G
ro

up

- i
d

in
t [

PA
]

- r
ul

e_
gr

ou
p_

ds
 T

EX
T

T
a

r g
 e

 t

- i
d

in
t [

PA
]

- s
ub

je
ct

_i
d

in
t [

FK
]

- r
es

ou
rc

e_
id

 in
t [

FK
]

- a
ct

io
n_

id
 in

t [
FK

]
- e

nv
iro

nm
en

t_
id

 in
t [

FK
]

Po
lic

y

- i
d

in
t [

PA
]

- p
ol

ic
y_

ds
 T

EX
T

- t
ar

ge
t_

id
 in

t [
FK

]
- r

ul
e_

jo
in

_g
ro

up
_i

d
in

t [
FK

]
- o

bl
ig

at
io

n_
jo

in
_g

ro
up

_i
d

in
t [

FK
]

Po
lic

y_
Se

t

- i
d

in
t [

PA
]

- p
ol

ic
y_

se
t_

ds
 T

EX
T

- p
ol

ic
y_

jo
in

_g
ro

up
_i

d
in

t [
FK

]
- t

ar
ge

t_
id

 in
t [

FK
]

- o
bl

ig
at

io
n_

jo
in

_g
ro

up
_i

d
in

t [
FK

]

Fi
g.

4.
3

G
ra

ph
ica

lr
ep

re
se

nt
at

io
n

of
th

e
po

lic
y

re
la

tio
na

ls
ch

em
a

de
fin

in
g

co
ns

tr
ai

nt
so

n
sh

ar
in

g
op

er
at

io
ns

in
or

ga
ni

za
tio

n(
s)

.

4.2 Components of the domain model 124

The lookup tables in the static schema continue to be used as a means of
collecting lookup information for the improved model, but the rest of that
schema, together with the policy and request schemas, is no longer used.

4.2 Components of the domain model 125

LU
_D

ec
is

io
n

- i
d

in
t [

PA
]

- d
ec

is
io

n_
ds

 T
EX

T

R
 e

 s
u

l t

- i
d

in
t [

PA
]

- d
ec

is
io

n_
id

 in
t [

FK
]

- s
ta

tu
s_

id
 in

t [
FK

]
- r

eq
_o

bl
ig

at
io

n_
jo

in
_g

ro
up

_i
d

in
t [

FK
]

- r
eq

_r
es

ou
rc

e_
id

 in
t [

FK
]

LU
_S

ta
tu

s

- i
d

in
t [

PA
]

- s
ta

tu
s_

ds
 T

EX
T

LU
_R

es
ul

t_
G

ro
up

- i
d

in
t [

PA
]

- r
es

ul
t_

gr
ou

p_
ds

 T
EX

T

Re
su

lt_
Jo

in
_G

ro
up

- i
d

in
t [

PA
]

- r
es

ul
t_

id
 in

t [
FK

]
- r

es
ul

t_
gr

ou
p_

id
 in

t [
FK

]

LU
_A

ttr
ib

ut
e_

G
ro

up

- i
d

in
t [

PA
]

- a
ttr

ib
ut

e_
gr

ou
p_

ds
 T

EX
T

A
ttr

ib
ut

e_
Jo

in
_G

ro
up

- i
d

in
t [

PA
]

- a
ttr

ib
ut

e_
id

 in
t [

FK
]

- a
ttr

ib
ut

e_
gr

ou
p_

id
 in

t [
FK

]

LU
_D

at
a_

Ty
pe

- i
d

in
t [

PA
]

- d
at

a_
ty

pe
_d

s T
EX

T A
 t

t r
 i

b
u

t e

- i
d

in
t [

PA
]

- a
ttr

ib
ut

e_
ds

 T
EX

T
- d

at
a_

ty
pe

_i
d

in
t [

FK
]

- i
ss

ue
r_

id
 in

t [
FK

]

LU
_I

ss
ue

r

- i
d

in
t [

PA
]

- i
ss

ue
r_

ds
 T

EX
T

LU
_R

eq
_O

bl
ig

at
io

n

- i
d

in
t [

PA
]

- r
eq

_o
bl

ig
at

io
n_

ds
 T

EX
T

Re
q_

O
bl

ig
at

io
n_

Jo
in

_G
ro

up

- i
d

in
t [

PA
]

- r
eq

_o
bl

ig
at

io
n_

id
 in

t [
FK

]
- r

eq
_o

bl
ig

at
io

n_
gr

ou
p_

id
 in

t [
FK

]

LU
_R

eq
_O

bl
ig

at
io

n_
G

ro
up

- i
d

in
t [

PA
]

- r
eq

_o
bl

ig
at

io
n_

gr
ou

p_
ds

 T
EX

T

LU
_R

eq
_S

ub
je

ct
_C

at
eg

or
y

- i
d

in
t [

PA
]

- r
eq

_s
ub

je
ct

_c
at

eg
or

y_
ds

 T
EX

T

Re
q_

Su
bj

ec
t

- i
d

in
t [

PA
]

- r
eq

_s
ub

je
ct

_c
at

eg
or

y_
id

 in
t [

FK
]

- a
ttr

ib
ut

e_
jo

in
_g

ro
up

_i
d

in
t [

FK
]

Re
q_

Re
so

ur
ce

- i
d

in
t [

PA
]

- a
ttr

ib
ut

e_
jo

in
_g

ro
up

_i
d

in
t [

FK
]

Re
q_

A
ct

io
n

- i
d

in
t [

PA
]

- a
ttr

ib
ut

e_
jo

in
_g

ro
up

_i
d

in
t [

FK
]

Re
q_

En
vi

ro
nm

en
t

- i
d

in
t [

PA
]

- a
ttr

ib
ut

e_
jo

in
_g

ro
up

_i
d

in
t [

FK
]

R
 e

 q
 u

 e
 s

t

- i
d

in
t [

PA
]

- r
eq

_s
ub

je
ct

_i
d

in
t [

FK
]

- r
eq

_r
es

ou
rc

e_
id

 in
t [

FK
]

- r
eq

_a
ct

io
n_

id
 in

t [
FK

]
- r

eq
_e

nv
iro

nm
en

t_
id

 in
t [

FK
]

R
e

s p
 o

 n
 s

e

- i
d

in
t [

PA
]

- r
es

ul
t_

jo
in

_g
ro

up
_i

d
in

t [
FK

]

Fi
g.

4.
4

G
ra

ph
ica

lr
ep

re
se

nt
at

io
n

of
th

e
co

nt
ex

tr
ela

tio
na

ls
ch

em
a

de
fin

in
g

ac
ce

ss
re

qu
es

ts
an

d
co

rr
es

po
nd

in
g

re
sp

on
se

s
re

la
tin

g
to

sh
ar

in
g

op
er

at
io

ns
in

or
ga

ni
za

tio
n(

s)
.

4.3 A graph representation of the domain model 126

4.3 A graph representation of the domain model

Given the difficulties associated with the relational models for domain components,
(static, policy and context), we propose a new representation. The domain is to be
modelled as a property graph (Rodriguez and Neubauer, 2010) as this provides a
flexible and expressive formalism for domain modelling. A property graph is a directed,
labeled, attributed multi-graph. More formally, a property graph G = G(V, E) is a
function of vertices V = {vi}, i = 0, . . . , nv and edges E = {ek}, k = 1, . . . , nk, where
each edge eij = vi → vj and where k has a 1-1 correspondence with ij. We say that
the edge eij defines the adjacency relationship linking two vertices vi and vj. In a
domain model, the edge eij is the kth relationship in the model, relating vi and vj.
Some or all of the vertices and edges may have one or more attributes (typed scalar
data) associated with them. Indeed, one such attribute might be the name (label) of
the vertex or edge, but, for modelling purposes, we choose to consider the name as
being distinct in character from other attributes.

Robinson et al. (2015) position graph databases (i.e., database management systems
that support property graph models directly) as one of the NoSQL
quadrants (Robinson et al., 2015, Figure 2-1). The other quadrants are Document
stores, Key-Value stores and Big-Table/Column stores. The property graph model
appeared to be a good fit to the needs of modelling a complex domain, for the
following reasons:

1. a relational model would be difficult to modify to handle new scenarios because,
even with mature DBMS tooling, schema changes can result in relatively
expensive database refactoring. However, relational models remain important
sources of data (in the form of lookup tables, etc.) for the domain model;

2. the other NoSQL models lack expressivity: key-value stores lack direct support
for relationships between entities; document stores have richer composite “values”
so high-level relationships are explicit but lower-level relationships are baked
into the document objects; column stores capture hierarchical relationships well
but do not enable any entity to be linked with any other entity, dynamically. By
contrast, apart from atomic entities such as vertices and edges, graph databases
are schema-free, although an informal schema can be imposed dynamically in
response to the needs of a given scenario;

4.3 A graph representation of the domain model 127

3. the property graph model includes semantic graphs as a special case, so it is
possible to map from a property graph instance to a semantic graph instance
and many features will be shared. Conversely, it is also possible to perform an
inverse mapping—indeed, it is somewhat easier. The main challenges with the
forward mapping are to convert taxonomies into OWL SubClassOf axioms and
the vertex and edge attributes into OWL (Object-, DataType-, Annotation-)
property axioms (Motik et al., 2012). Within the exported OWL ontology, there
is direct support for semantic restrictions such as quantification but these need
to be added to the property graph model explicitly and implemented in the
application that manages the property graph database;

4. parts of a graph are themselves graphs, so at the level of syntax, structures can
be broken down and reassembled easily. This feature is used heavily when
deriving rules and generating new policies and requests;

5. many of the operations required when using the domain model are concerned
with following relationships and traversing (sub)graphs. Such operations are
directly supported in the property graph model.

Property graphs (Robinson et al., 2015) offer a flexible metamodel for many forms of
domain model. The nodes and edges in the graph can each represent domain entities,
with each entity comprising a set of properties, realised as attribute name-value pairs.
Of course, other types of graph (notably semantic graphs comprising RDF triples) can
be used to model domains. Unlike semantic graphs, property graphs store knowledge
in domain entities in a form that needs to be interpreted by the application. Thus, in
contrast to ontologies, there are no explicit axioms in property graph models. Instead
such knowledge is implicit in the graph itself and needs to be inferred by the
application (DomainManager in this case).

In the case of an enterprise, it is possible to model the static domain in terms of
Member, organisation, Asset and Action nodes and their associated subnodes and
edges. This static model acts as a foundation for the policy model that encapsulates
the access control rules in that enterprise. The static model also supports the
request-generating event model, in the sense that interactions between static model
entities need to be checked against the policies. Note that the three models (static,
policy and request) take the form of property graphs; indeed, the combined domain

4.3 A graph representation of the domain model 128

Scenario
Parameters

DomainManager

Policies

PolicyGen

Requests

RequestGen

Specify
Models

Static Policy Request

Property Graphs

Scenario
Parameters

Fig. 4.5 Generation of policy and request sets. The models are specified as property
graphs, stored in a graph database. Scenario parameters mandate the characteristics
and size of the policy and request sets generated by the PolicyGen and RequestGen
processes.

model is still a property graph, comprising the three component models with
additional edges to capture their relationships.

Given a domain model in property graph format, it is relatively easy to analyse,
modify and derive new data. In practice it is also necessary to extract the policies and
requests from the model in text format, notably in XACML 2.0 syntax, for deployment
in existing access control systems. This is what the PolicyGen and RequestGen
components (depicted in Figure 4.5) do, based on scenario-specific parameters that
control the characteristics and number of generated policies and requests.

The property graph domain model is based on the premise that there exist both
prototypical and derived (specialised) entities. The prototypical entities for the
domain model are AccessNode and AccessRelationship. These contain the attributes
that are common to all derived entities, such as the entity name, manager (derived
type), modelGroup, etc. Specialised variants of these prototype entities are derived to
contain entities such as Policy and MemberJoinGroup respectively. The collection of
attributes of each extended AccessNode (equivalently, AccessRelationship) define an
informal type. Even though it is not a requirement of property graphs, DomainManager

ensures that domain model entities of the same type share the same attributes (but
not the same attribute values). This use of “typed” entities is akin to a schema in a
relational database. Unlike a relational database, a new entity (node or relationship)
is created for each instance (analogous to a row in a relational table). Generally, the

4.3 A graph representation of the domain model 129

combination of (a subset of the) label and attribute values in an entity (node or
relationship) is unique across all entities in the database, by analogy with the key in a
relational table. Consequently a node may be retrieved either:

• directly, by looking up its attribute values (effectively, its key), using a separate
data structure (an index over the nodes). This is how non-graph storage
technologies (relational, key-value, document- or column-) stores perform
queries; or

• indirectly, by navigating to it by following a path from another node. This form
of querying is unique to graph databases; notably, it is supported by RDF triple
stores as a special instance of a graph database.

Each index is a global data structure to enable the application to find nodes (or edges)
satisfying criteria specified as logical relationships involving the properties of a set of
nodes (or edges). As an example, the Member index can be queried to return (a set of
references to) static nodes where a member (person) is Senior and works in the
Finance department. Although the index adds complexity to graph operations such as
insertion and deletion of nodes (or edges), it has the great benefit that such
graph-global queries can be answered without the need to visit every node (or edge) in
the graph.

Having found a set of nodes (or edges) using an index query, the next step is often to
follow paths beginning (or ending) at these nodes (or edges). An index query is not
needed to progress along every step of the path. Instead, graph database
implementations are optimised to make such in-graph (local) operations very efficient.

One of the great benefits of storing a property graph model in a graph database such
as neo4j Eifrem et al. (2015) is that the logical and physical models are identical. The
person modelling the domain does not need to maintain separate logical and physical
views of the domain model. This also means that the choice of graph database
implementation is not critical at an early stage, although implementation choices can
have significant effects on query performance and similar issues. Apart from the
obvious API differences, the two most important features from a (physical) modelling
point of view are how the graph database manages indexes, and how to interact with
the graph database (e.g., by issuing in-process calls to the graph database engine via
its API, or by sending requests to a TCP socket or to a web service over HTTP, etc.).

4.3 A graph representation of the domain model 130

4.3.1 The static model with semantic enhancements

Listing 4.1 Example specification of how to generate 10 Document Assets and 3
variants of Chat Assets for the small domain.
seed = 1234
nGroups = 4
0.fixed.group = Document
0.fixed.type = Marketing Plan, Corporate Strategy
0.omit.confidentiality = Unspecified, Unknown
0.omit.integrity = Unspecified, Unknown
0.namePrefixes = Part, Section, Chapter, Webpage
0.attributeCombinationCount = 6
1.fixed.group = Communication
1.fixed.type = Chat Room
1.fixed.confidentiality = High
1.fixed.integrity = Unspecified
1.namePrefixes = All Bank Staff Chat
1.attributeCombinationCount = 1
2.fixed.group = Communication
2.fixed.type = Chat Room
2.fixed.confidentiality = Medium
2.fixed.integrity = High
2.namePrefixes = All Project Staff Chat
2.attributeCombinationCount = 1
3.fixed.group = Communication
3.fixed.type = Chat Room
3.fixed.confidentiality = Medium
3.fixed.integrity = Medium
3.namePrefixes = All Bank Finance Staff Chat
3.attributeCombinationCount = 1
small.instanceCount = 10, 1, 1, 1
medium.instanceCount = 60, 4, 3, 3
large.instanceCount = 110, 7, 5, 5

The descriptive attributes of the static domain are defined and managed in an external
relational model. The instances of static model entities such as Asset are created in
the graph database by combining the relevant properties (e.g.,
Asset.confidentiality, Asset.integrity and Asset.type in the case of Asset) and
assigning each instance combination a name. The instances are generated by a process
of sampling with replacement.

For example, Listing 4.1 specifies that, when bulk generating Asset instances for the
small domain:

• Sampling with replacement is used; the seed is specified so that the generation
procedure is repeatable (but not predictable) across runs.

• small.instanceCount = 10, 1, 1, 1 Generate 10 instances of group 0
(Document) and one each of groups 1,2,3 (Chat).

4.3 A graph representation of the domain model 131

• 0.fixed.type = Marketing Plan, Corporate Strategy The Asset type
property of each document is drawn with replacement from Marketing Plan,

Corporate Strategy.

• 0.omit.confidentiality = Unspecified, Unknown The Asset confidentiality
property of each Document is selected with replacement from all values of the
Lu_Asset_Confidentiality table excluding Unspecified, Unknown.

• 0.omit.integrity = Unspecified, Unknown The Asset integrity property of
each Document is selected with replacement from all values of the
Lu_Asset_Integrity table excluding Unspecified, Unknown.

• Each document is assigned a generated name starting with one of Part,

Section, Chapter, Webpage.

Note that this procedure is trivially scalable to larger numbers of instances and, with
a little more effort, to additional properties of Asset. The DSLs used to specify other
base entities of the STATIC model are similar.

The static model is stored as a property graph and hence can be visualised as such.
We colour the nodes according to their “type” and use a radial layout to make it easier
to understand. Comparing Figures 4.6 and 4.7, it is clear that the graph has
structures that become even more apparent as the domain size increases. The rapid
increase in the number of nodes and edges is also noteworthy. The corresponding large
static model has similar features.

Although the static model is populated with generated data, we believe that real
organisations with content management system share many of the same features as
those evident in our generated data.

4.3.1.1 Semantic enhancements

The procedure described above is insufficient to capture the rich semantics of the
static domain. This is because each Entity instance is generated in isolation and does
not take account of links and semantic constraints between such entities. Note that
these static constraints should not be confused with policy rules:

• Static constraints are intrinsic to a well-specified static domain: they are
definitional and do not need to be checked and/or enforced by the policy system.

4.3 A graph representation of the domain model 132

STATIC

Actn
Actn.t

Ast

Ast.c

Ast.g

Ast.i

Ast.t

AstGp

AstGp.c

AstGp.tm

AstGp.tp
EnvtMbr

Mbr.f

Mbr.l

Mbr.r

MbrGp

MbrGp.c

MbrGp.tm

MbrGp.tp

Org

Org.h

Org.s
Org.t

Fig. 4.6 The small static model, represented as a property graph, in a radial layout.
The legend uses a similar layout and it is clear that most of the static model consists of
Asset and Member nodes and attributes. Each of the static nodes corresponds to a row
of a look up table in the static relational model (Figure 4.2). As an example, the node
labelled Ast.i corresponds to the asset_integrity_ds field in the Lu_Asset_Integrity
table, with values described in Table 4.2.

4.3 A graph representation of the domain model 133

Fig. 4.7 The medium static model, represented as a property graph, in a radial layout.
It is clear that the graph size grows more rapidly than any of its component entities,
e.g., Assets.

4.3 A graph representation of the domain model 134

Table 4.4 Category mapping from static model entities to policy model entities

Static Category Policy
Member

Subject SubjectOrganisation
MemberGroup
OrganisationGroup
Asset Resource ResourceAssetGroup
Action Action ActionActionType

• Policy constraints define the boundary between desired and undesired behaviour
between static model entities. Based on knowledge in the static model only,
there is no reason why a particular relationship should or should not exist.
However, it might need to checked and/or enforced as a business policy.

Static constraints are analogous to the axioms in an ontology.

Given a static entity Estatic, its category is defined by its relationship to a policy
model entity S, R, A (Subject, Resource or Action). A given Estatic has a category
relationship with one of S, R, A. The category relationships are shown in Table 4.4.

Two types of static constraint are considered:

1. Within-category, such as Member:MemberGroup (Many:Many) and
Member:organisation (1:Many)

2. Between-category, such as Asset:Action, which encodes the fact that some
actions on some assets are meaningless or infeasible.

Listing 4.2 Example specification of how to assign existing Members to two existing
Organisations
nGroups = 2
0.Organisation.name = National Bank
0.Member.function = Marketing, Finance
0.Member.role = Manager, Decision Maker, Officer
1.Organisation.name = Can-Do Consultants
1.Member.function = Technical
1.Member.role = Analyst, Implementer

For the Within-category case, Listing 4.2 states that

4.3 A graph representation of the domain model 135

1. Members with Member.function ∈ {Marketing, Finance} and
Member.role ∈ {Manager, Decision Maker, Officer} belong to an organisation

named National Bank.

2. Members with Member.function ∈ {Technical} and Member.role ∈ {Analyst,
Implementer} belong to an organisation named Can-Do Consultants.

Listing 4.3 Example specification of how to align AssetGroups with ActionTypes
join.AssetGroup.name = Action.type

For the Between-category case, Listing 4.3 states that Asset and ActionType share the
same domain, which is defined in the relational model as {Communication, Document,
Person, Task}. If this were a relational and not a graph model, the two underlying
columns would be related with a foreign key constraint. However there is more than
just data equivalence: Asset and ActionType are semantically linked in the sense that

Actions with type a = ActionType are associated only with Assets with
group a = Asset. All other combinations of Actions and Assets are
invalid. Moreover, this principle applies to all model types: static, policy
and request.

Static entities can have many properties and participate in hierarchies (tax-
onomies). However, it is also necessary to apply within-category definitional
constraints such as “Member X belongs to MemberGroup Y and Member-
Group Z” and “Member X belongs to Organisation Y" and between-category
constraints such as “ActionType X can be applied to AssetGroup X”.

These semantic constraints are not stored in the graph database. Instead they are built
into the PolicyGen and RequestGen procedures and are enforced when populating the
policy and request model entities, as described in § 4.4 and § 4.5 respectively.

By contrast with the relational model, the property graph model above can be
modified easily to match any reasonable (Agent, Asset, Action)-based static domain,
just by adding data to the graph.

4.3 A graph representation of the domain model 136

4.3.2 The policy and context models

4.3.2.1 Rules and (target) hierarchies

XACML policy evaluation starts with Target Matching. Indeed, if a rule is to apply,
the attributes of the request must:

1. satisfy the Target condition of the rule;

2. satisfy any additional requirements in the optional general Condition element,

in that order.

According to the XACML 3.0 standard Rissanen (2013, §3.3.1.3)

Condition represents a Boolean expression that refines the
applicability of the rule beyond the predicates implied by its target.
Therefore, it may be absent.

The Condition element can have arbitrarily complicated logic expressions encoded in
combinations of Function elements. Indeed, for a PDP to conform to the XACML

standard, it needs to support the large set of Functions listed in Rissanen (2013,
Appendix A.3). Many PDP implementations also enable their users to add
user-specified Functions that are typically Boolean-valued functions of attributes.

However, each Condition is invoked only when the Target of that rule and the
corresponding request attributes match. In a large policy set, efficient Target
matching is necessary, but not sufficient, for good policy evaluation performance. Even
if Target matching is efficient, evaluation of the general Conditions arising from the
matched targets could limit policy evaluation performance. However, because it is not
evaluated as frequently as the Target conditions, we assume that the Condition filter
has a second-order influence on policy evaluation performance. By omitting
Condition, the expressiveness of the policies in the domain model is reduced, but the
remaining expressiveness is adequate for the scenarios considered in this dissertation.
The main advantage of omitting Condition processing is to make it easier to analyse
policies, because policy evaluation reduces to asking whether logical statements with a
constrained structure (of the form: “Is the Target of a given rule satisfied by a given
request?”) are true or false.

4.3 A graph representation of the domain model 137

Other authors also separate Target matching from Condition evaluation. For example,
Tschantz and Krishnamurthi (2006) introduce Core XACML which is a proper subset
of XACML (and hence is accepted by all conforming PDPs). They prove that Core
XACML has certain semantic properties such as determinism and lack of monotonicity,
so it is a non-trivial subset of XACML. Core XACML and the XACML subset supported
by DomainManager are similar, e.g., the absence of general Condition elements, but
there are some aspects where Core XACML is more restrictive than “DomainManager

XACML”, e.g., in respect of combining algorithms. (Masi et al., 2012) also
distinguishes between XACML-excluding-conditions and full XACML, by defining
separate parsers for conditions and the remainder of XACML.

Assumption 4.1. The Condition element of XACML policies is ignored in this
dissertation and rules are evaluated based on their Target conditions only.

Apart from Conditions, XACML policies can specify other security requirements,
apart from access control decisions. The most important of these include Obligations.
Typically an Obligation is triggered after a decision is made by the PDP. For example,
if the decision was to permit access to a controlled resource, there might be an
obligation to log the fact that access was granted, and to add the Subject to a
controlled list for audit purposes. If the decision was to deny access, there are also
scenarios where that decision should trigger further action, e.g., to permit reduced
access to the resource or full access to a less sensitive substitute resource.

The PDP generally hands Obligations to the PEP for further action. Obligations are
often enacted in an asynchronous fashion and hence do not contribute to latency at
the PDP and might not even be noticeable to users. Of course, each Obligation adds
to the load on the overall security infrastructure. Obligations can themselves be
combined during policy evaluation, so that multiple obligation actions are triggered
after the access decision is made. However, it is probably more common that a single
Obligation action, if any, is triggered. The focus in this dissertation is on access
control decision performance. A study that was more inclusive of the entire security
infrastructure would be needed to estimate the performance effects of Obligations.

Assumption 4.2. The Obligation element of XACML policies is out of scope in
this dissertation because the focus is on access control decision performance only and

4.3 A graph representation of the domain model 138

Fig. 4.8 Example Target Hierarchy: T = S ∧ R ∧ A ∧ E, where CSubject .= S =
((c1,1 ∧ c1,2) ∨ c2,1), CResource .= R = (c3,1 ∧ c3,2 ∧ c3,3), CAction .= A = (c4,1 ∨ c5,1) and
CEnvironment .= E = ⊤.

Obligations are enacted outside of the PDP and depend on factors that are external to
the access control system per se.

Generally, a Target consists of Subject, Resource, Action and Environment entities.
According to access control conventions, an Agent (Subject) wishes to perform an
Action on an Asset (Resource), subject to external conditions captured in an
Environment clause. Each of these entities comprises a set of sub-conditions that need
to be composed to form the Target condition. More formally, let C represent a
Subject (S), Resource (R), Action (A) or Environment (E) target entity. Then C can
be decomposed into subentities ci and ci,j as follows:

C =
∨
i

ci (4.1)

where ci =
∧
j

ci,j, (4.2)

where ∨ represents disjunction (logical or) and ∧ represents conjunction (logical and).

For convenience, C is named a Collected Target Component (CTC), ci is named a
Target Component (TC) and ci,j is a Target SubComponent (TSC), a logical clause of
the target condition. An example target hierarchy using this notation is shown

4.3 A graph representation of the domain model 139

graphically in Figure 4.8. For illustration, let

c1,1 =Member.level = Senior

c1,2 =Member.role = Finance

c2,1 =Organisation.name = Acme Bank

c3,1 =Asset.confidentiality = High

c3,2 =Asset.integrity = High

c3,3 =Asset.type = Financial Plan

c4,1 =Action.name = Read

c5,1 =Action.write = Write

c1 =c1,1 ∧ c1,2

c2 =c2,1

c3 =c3,1 ∧ c3,2 ∧ c3,3

c4 =c4,1

c5 =c5,1

S =c1 ∨ c2

R =c3

A =c4 ∨ c5

E =⊤
T =S ∧R ∧ A ∧ E.

As can be seen, the Target comprises a hierarchy of Boolean-valued expressions. There
is no limit to the number of TSCs and TCs in each expression. Furthermore, Targets
can be nested within Targets, in which case the Rule-, Policy- or PolicySet-combining
algorithm can be used to evaluate the overall match value. The entity hierarchy in
Figure 4.8 is an example of the target conditions to be applied when matching access
requests against policy rules.

4.3.2.2 Canonical representation

We make the further assumption that the vocabulary of the domain model is limited
to a finite symbol alphabet for each entity. As an example, Asset.confidentiality

4.3 A graph representation of the domain model 140

can be either low, medium or high; Time.hourOfDay can be one of 09.00, 10.00, etc.
Thus it is possible (without loss of expressiveness) to reformulate as necessary so that
each clause cij asserts identity between concepts. More formally: if it is assumed that
the domain of each entity (such as Asset.confidentiality) is both discrete and finite,
clauses with other verbs (̸=, ⊆, or even ≤ (if the symbols satisfy an ordering relation))
can be reformulated as combinations of equality constraints.

Thus a clause asserting inequality can be expressed by enumerating the complement of
the clause with the inequality verb replaced with equality. As an example, let

ci,j := Asset.confidentiality ̸= high

. Then we can restate ci,j as

ci,j :=(Asset.confidentiality = low)∨
(Asset.confidentiality = medium).

Other non-equality clauses can be reformulated as equality clauses using similar
constructive procedures.

The revised target hierarchy is constructed as follows. For each derived equality clause,
a new target component (cı̂) is created as follows:

cı̂ =
∧

k;k ̸=j

ci,k ∧ ciȷ̃, (4.3)

where ciȷ̃ is a clause of the same form as cij but using one of the complement attribute
values ȷ̃ of attribute value j.

Expanding on the example above, letting

ci :=(Asset.type = document)∧
(Asset.confidentiality ̸= high),

4.3 A graph representation of the domain model 141

and using De Morgan’s Laws, it is clear that this is equivalent to

ci :=((Asset.type = document)∧
(Asset.confidentiality = low))
∨((Asset.type = document)∧

(Asset.confidentiality = medium)).

Set containment, such as

ci,j := (Asset.confidentiality ⊆ {low,medium})

can be rewritten as

ci,j :=((Asset.confidentiality = low)∨
(Asset.confidentiality = medium))

and the same transformation to ci is possible, as described above.

Summarising, there are many alternative ways of formulating the same collected target
component. The “canonical formulation” of a Collected Target Component (CTC) is a
disjunction of conjunctions of equality clauses. While this formulation does not
generally minimise the number of logical clauses needed to specify the collected target
component, it has the benefit of being easier to analyse, as will be seen in §4.4.

Assumption 4.3. The static entities are drawn from an enumerable set:
S = {s1, s2, . . . , sn}, where S is known a priori for each entity type (members, assets,
etc.) Consequently, the canonical representation of any Target is a conjunction of CTC

entities, each of which is a disjunction of TC entities, each of which is a conjunction of
TSC entities, each of which is an equality clause. This representation can express any
qualifying Target, though it is not guaranteed to be the most efficient representation
(measured by number of logical clauses).

4.3 A graph representation of the domain model 142

4.3.2.3 Policy and request clauses

One of the key features of the XACML metamodel that is replicated in the domain
model described in this dissertation is the structural similarity between target
conditions and access requests. Indeed, the target hierarchy is practically identical to
the request hierarchy. A target (equivalently, request) has Subject, Resource, Action

and Environment CTCs. Each CTC is a disjunction of TCs, although in the case of a
request, the disjunction is degenerate for Action and Environment CTCs, because only
one TC is permitted in each case. Each TC comprises a conjunction of TSCs. However,
the interpretation of the TSCs differs between policies and requests. In the case of
policies, each TSC is a logical condition clause, evaluating to true or false as part of a
rule. In the case of requests, each TSC is a definitional clause, specifying the context of
the request. The purpose of policy evaluation is to find the targets that match the
context definitions and to evaluate the matching target hierarchies, applying the
relevant rule and/or policy combining algorithms to derive the overall policy decision.

In XACML 3, the structural hierarchy of Policy Target entities is the same as that of
Request entities, but in earlier versions of XACML, the Request structure is slightly
simpler than a Policy Target because the Action and Environment target component
types for a Request are TCs, not CTCs as they are for Subjects and Resources.

Policy targets and Requests are structurally equivalent, differing mainly in
intent. This makes policy evaluation easier, but also has potential benefits
when generating policies and requests.

4.3.2.4 Clause restrictiveness

As more TSCs ci,j are added, the target entity generally becomes more restrictive; the
least restrictive is the “empty” CTC, such as E in Figure 4.8 that evaluates to a
tautology (⊤). Furthermore, an instance-based TSC is satisfied by a single instance and
so is generally more restrictive than an attribute-based TSC, which is often satisfied by
multiple instances.

For example, requiring that the name attribute of a request sub component should
equal a specified name (e.g., ci,j := Asset.name = marketing-plan-2014 is more
restrictive than requiring that a descriptive attribute (which could be shared by many

4.4 Generating policies—PolicyGen 143

instances) should equal a specified descriptive value (e.g.,
ci,j := Asset.confidentiality = high).

4.3.2.5 Policy matching

By restricting target components to equality constraints only, they are strictly additive:
ci,j ∩ ci,k, j ̸= k is more restrictive than either ci,j or ci,k alone, for all j ̸= k. Thus a
request clause of the form ci,j ∩ ci,k, j ̸= k is more restricted than a policy target
clause ci,j and hence is “matched” by it. The converse is not true. In other words,
more specific request clauses match less specific policy targets but not vice-versa. If a
request is to match a policy, all of its target components must “match” (be
semantically contained in) all the target components of a given rule CTC. The overall
access decision is computed by semantically aggregating the target matches according
to the rule and policy combining algorithms in force at each target in the policy tree.

4.4 Generating policies—PolicyGen

Policy authoring and the related topic of policy conflict analysis have been studied by
researchers over many years (Davy et al., 2008). Bulk policy generation adds problems
of scale since it becomes very difficult to understand a large set of policies, or even to
specify them in a convenient and transparent way. One way to proceed, which we
adopt, is to start with a well-specified smaller set of “template” policies and to add
extra policies until the desired scale of policy set is achieved. With this approach, the
problem becomes one of “scaling up” from a relatively small number of semantically
consistent policies. However, it is necessary to constrain the rules being added to the
smaller policy set so that the decisions remain predictable.

Template policies specify rules in terms of statements involving attributes. A property
graph can represent such template policies, and graph operations (such as path finding
and traversals) can be used to generate “full” policy statements.

Bulk policy generation can be “primed” by writing template policies in a convenient
Domain Specific Language (DSL). These high level, attribute-based policies
deliberately avoid reference to instances of Subjects and Resources. Instead, they are
specified as (combinations of) Subject and/or Resource attributes. Such high-level

4.4 Generating policies—PolicyGen 144

policies have the following advantages over more concrete low-level (instance-based)
policies

• they are easier to interpret because the “business” intention of each policy is
more explicit;

• they can be specified by business users who do not need to concern themselves
with implementation details;

• even for relatively complex access control requirements, the number of policy
rules depends upon the size of the domain vocabulary, which is generally much
smaller than the number of instances (of Subjects and Resources, particularly)
in the domain;

• the template policies are generally more stable in the face of change, e.g., as staff
join and leave an organisation, the same template policies still apply as they did
before any such change at instance level. They would still need to change if
larger scale changes occurred, say as new groups/teams were formed, attributes
were added or removed, etc.

The main disadvantage is that there is an “impedance mismatch” with the incoming
requests, which are generally defined at instance level because they are necessarily
more concrete and explicit. Therefore, either the policies or the requests need to be
transformed to the specification level expected by the other.

Using the template policies described above, it is possible to infer instance-
based policies by linking the policy targets to the instances defined in the
static domain model.

The example template policy in Listing 4.4 has a syntax that is based on Java property
files and can be parsed in DomainManager. The policy contains typical business rules
controlling interactions between a Bank and a service provider. As with XACML, rules
can be combined in a policy via a rule combination strategy (permit_overrides in this
example) There is one Deny guard clause. Even a short policy set can have complex
conditions and the intended logic is expressed in a terse, more explicit form than in
other policy representations like XML-encoded XACML, where is far more verbose.

Note that the policy DSL assigns settings using the same basic syntax as Java
properties files, but some terms in the DSL, such as policyRef, are keywords in the

4.4 Generating policies—PolicyGen 145

DSL and hence are interpreted by the parser as having special meaning. The following
features are noteworthy

• There is one policy set (G3) with three policies (G0, G1, G2) and eight rules
(R0, R1, R2, R3, R4, R6, R7, R9).

• One rule (R9) is to deny everything. The other rules permit access in specific
scenarios.

• Policy G0 has rules defining situations where Subjects are permitted to Read or
Write documents.

• Policy G1 has rules permitting Subjects to Setup or Join group chats.

• Policy G2 has a default rule to deny all access.

• PolicySet G3 uses a First Applicable algorithm to combine policies G0, G1 and
G2. Note that if any of the Target conditions in G0 or G1 hold, a Permit rule
applies. Otherwise the decision “falls through” to the G2 rules, so the default
Deny rule applies.

• TSCs (target clauses) define the conditions for each rule.

• TSC labels have the form RuleId.TargetComponentType.Id.

• If there are multiple instances of TSCs with the same label, the corresponding
logical clauses are ANDed together. Otherwise, TSCs having the same RuleId

and TargetComponentType but different Id belong to different target components
and are ORed together.

• The most complex CTC is R4.Subjct, where S has two TCs each with two TSCs,
hence the structure (SUBJECT.3 ∧ SUBJECT.1) ∨ (SUBJECT.3 ∧ SUBJECT.0).

In addition to the high-level policies described above, it is necessary to infer
instance-based policies by linking the policy targets to the instances defined in the
static domain model. For every high-level TC, we lookup its attributes in the property
graph and identify the Subject, Resource and Action instances sharing these
attributes, resulting in the corresponding instance-based formulation. Typically, a
single high-level TC corresponds to many low-level target conditions.

Butler and Jennings (2015) and § A describe the algorithm used in DomainManager to
generate instance policies from high-level template policy specifications.

4.4 Generating policies—PolicyGen 146

Summarising, based on the user-supplied policy DSL, both an attribute- and an
instance-based policy formulation can be created and represented in the property
graph model. Given specifications of both the static domain and the template policies
to be applied on that domain, it is possible to derive instance-level policies that can be
deployed in a PDP. In property graph form, it is instructive to derive some graph
measures (see § 4.6.1) and to visualise the generated policies (see §4.4.3). The
DomainManager application prototype (Butler, 2015a) collects the policy template
specifications, generates the instance-based policies in property graph format and also
enables the user to export XACML 2.0-format policies encoded as XML or JSON for
use in performance experiments. We now outline the steps involved in the policy
generation process.

4.4 Generating policies—PolicyGen 147

Listing 4.4 Listing of the base template access control policy used in this dissertation
ref = PermitOverrides-OneDeny
staticRef = large
policyCategory = PO-OD
policyVersion = 0.1
runId = 1

baseGroups=G3

SUBJECT.0=Member.level,equals,Chief
SUBJECT.1=Member.level,equals,Senior
SUBJECT.2=Member.function,equals,Finance
SUBJECT.3=Member.function,equals,Marketing
SUBJECT.4=Organisation.name,equals,National Bank
SUBJECT.5=Member.role,equals,Implementer
RESOURCE.0=Asset.confidentiality,equals,High
RESOURCE.1=Asset.integrity,equals,High
RESOURCE.2=Asset.integrity,equals,Medium
RESOURCE.3=Asset.type,equals,Corporate Strategy
RESOURCE.4=Asset.type,equals,Marketing Plan
RESOURCE.5=Asset.type,equals,Chat Room
ACTION.0=Action.name,equals,Read
ACTION.1=Action.name,equals,Write
ACTION.2=Action.name,equals,Setup
ACTION.3=Action.name,equals,Participate In

Groups=G0,G1,G2,G3
Rules=R0,R1,R2,R3,R4,R6,R7,R9

R0.Desc=Member.level = Chief can Read Asset.confidentiality = High
R0.Subjct.0=SUBJECT.0
R0.Resrce.0=RESOURCE.0
R0.Action.0=ACTION.0
R0.Decisn=Permit

R1.Desc=Member.level = Senior can Read any permitted Asset
R1.Subjct.0=SUBJECT.1
R1.Action.0=ACTION.0
R1.Decisn=Permit

R2.Desc=Member.level = Senior can Write Asset.integrity = High \
OR Asset.integrity = Medium
R2.Subjct.0=SUBJECT.1
R2.Resrce.0=RESOURCE.1
R2.Resrce.1=RESOURCE.2
R2.Action.0=ACTION.1
R2.Decisn=Permit

R3.Desc=Member.level = Chief AND Member.function = Finance can Read \
OR Write any permitted asset
R3.Subjct.0=SUBJECT.2
R3.Subjct.0=SUBJECT.0
R3.Action.0=ACTION.0
R3.Action.1=ACTION.1
R3.Decisn=Permit

R4.Desc=Member.function=Marketing AND Member.level = (Senior or Chief) \
can Read any permitted asset
R4.Subjct.0=SUBJECT.3
R4.Subjct.0=SUBJECT.1
R4.Subjct.1=SUBJECT.3
R4.Subjct.1=SUBJECT.0
R4.Action.0=ACTION.0
R4.Decisn=Permit

G0.Desc=Combine rules R0-R4 with permit_overrides\, for Organisation.name = \
National Bank and Asset.type = Corporate Strategy or Marketing Plan
G0.Cntains=R0,R1,R2,R3,R4
G0.CmbnAlg=permit_overrides
G0.Subjct.0=SUBJECT.4
G0.Resrce.0=RESOURCE.3
G0.Resrce.1=RESOURCE.4

R6.Desc=Member.role=Implementer can Setup any permitted asset
R6.Subjct.0=SUBJECT.5
R6.Action.0=ACTION.2
R6.Decisn=Permit

R7.Desc=Member.function = Marketing OR Member.function = Finance can \
Participate In any permitted asset
R7.Subjct.0=SUBJECT.2
R7.Subjct.1=SUBJECT.3
R7.Action.0=ACTION.3
R7.Decisn=Permit

G1.Desc=Combine rules R6-R7 with permit_overrides\, for Asset.type = Chat Room
G1.Cntains=R6,R7
G1.CmbnAlg=permit_overrides
G1.Resrce.0=RESOURCE.5

R9.Desc=Default decision is to deny access
R9.Decisn=Deny

G2.Desc=Safety default: deny everything
G2.Cntains=R9
G2.CmbnAlg=permit_overrides

G3.Desc=Combine groups G0\,G1 and G2 with permit_overrides
G3.Cntains=G0,G1,G2
G3.CmbnAlg=permit_overrides

4.4 Generating policies—PolicyGen 148

4.4.1 Step 1—populate the template policy facade

At present, the template policies are specified in a DSL, of which Listing 4.4 is an
example. However, this DSL might change in future, particularly if it became possible
to export template policies from an existing policy deployment. Therefore the template
policies are loaded into an in-memory facade which is a slightly simplified version (e.g.,
RuleGroupFacade eventually maps to both Policy and PolicySet of the property
graph model). This use of an intermediate facade representation has two advantages:

1. If new template policy specification formats are added, new software is needed
to transform it to the facade model, but both the core property graph model
and the complex algorithms that depend on it can be left untouched.

2. It is possible to begin the data transformation process when populating the
property graph from the facade objects. In particular, it is convenient to
supplement the template policy with additional conditions to ensure that
within-category static model semantic conditions are applied when generating
instance policies and requests from the template policies.

In the case of the latter advantage, these between-category conditions are difficult to
apply unless we have easy access to the two relevant entity categories (Action and
Resource in this case) before they are committed to the database.

4.4.2 Step 2—instantiate the template policy entities in the
property graph

The facade object graph is a Directed Acyclic Graph (DAG) with a finite set of
RuleGroupFacade root nodes. Typically there is only one such root node. Starting
from each root node, it is possible to recursively descend through the tree induced
from that node, populating the property graph nodes from the bottom up. That is,
each TargetSubCompFacade becomes a TSC, and the set of TargetSubCompFacades
referenced in a TargetCompFacade become a set of HAS_TARGET_SUBCOMP relationships
between a TC node and the TSC nodes that it references. Thus we have concordance
between policy semantics and its graph representation: each TC entity entity is a
conjunction of TSC entities, or equivalently each TC node has a HAS_TARGET_SUBCOMP

4.4 Generating policies—PolicyGen 149

relationship to a set of TSC nodes, which is derived from each TargetCompFacade object
containing a set of references to its TargetSubCompFacades.

Similar considerations recurse back up the tree from the TSC leaves to the root Policy

or PolicySet node, via CTC HAS_TARGET_COMPONENT relationships to TC nodes, Target

{HAS_SUBJECT, HAS_RESOURCE, HAS_ACTION, HAS_ENVIRONMENT} relationships to CTC

nodes, Rule HAS_TARGET relationships to Target nodes, etc.

Along the way, DomainManager collects the user-specified properties from the facade
objects and populates the relevant graph nodes and edges with this data. In addition,
it derives, for the TSC, TC, CTC and Target nodes, the index queries that can be used to
derive the corresponding instance-based TSC, TC, CTC and Target nodes. Each of these
index queries is termed an instance query and is derived by aggregating its sub
instance queries using the same composition operator that is used by the template
entity which contains that instance query. Indeed, since the composition operator can
be taken outside the instance query, it is possible to define a set of recurrence relations
to create the instance queries, starting from the instance queries for the TSCs.

Let Q(e) be the instance query associated with template (attribute-based) policy
element e, where e ∈ {TSC, TC, CTC, Target}. Then Q(e) satisfies the following:

Q(ci,j) .= {Ti,j ∈ tk}. (4.4)
Q(ci) .= Q(

∧
j

{ci,j}) =
∧
j

{Q(ci,j)}. (4.5)

Q(c) .= Q(
∨
i

{ci}) =
∨
i

{Q(ci)}. (4.6)

Q(T) .= Q(c(S) ∧ c(R) ∧ c(A) ∧ c(E)) = Q(c(S)) ∧Q(c(R)) ∧ . . . (4.7)

where T is any Target, c(◦) is a CTC where T HAS_SUBJECT c(S), etc. Also c is any CTC,
ci is a TC where c HAS_TARGET_COMPONENT ci and ci,j is a TSC where ci

HAS_TARGET_SUBCOMP ci,j.

Figure 4.9 indicates that the hierarchical structure is almost identical to that of the
XACML metamodel. The main difference is that the relationships in the graph
capture the links between entities in an explicit manner, and thereby play a vital role
in specifying the template policy as a property graph. Although it is not obvious, each
node and relationship contains a rich set of properties so that, by writing suitable

4.4 Generating policies—PolicyGen 150

Listing 4.5 Listing of the cutdown base template access control policy used to illustrate
policy generation. It is derived from Listing 4.4 but with some rules and rule groups
removed to reduce the visual clutter in the graph visualisations.
baseGroups=G0

SUBJECT.0=Member.level,string-equal,Chief
SUBJECT.1=Member.level,string-equal,Senior
SUBJECT.2=Member.function,string-equal,Finance
SUBJECT.4=Organisation.name,string-equal,National Bank
RESOURCE.1=Asset.integrity,string-equal,High
RESOURCE.2=Asset.integrity,string-equal,Medium
RESOURCE.3=Asset.type,string-equal,Corporate Strategy
RESOURCE.4=Asset.type,string-equal,Marketing Plan
ACTION.0=Action.name,string-equal,Read
ACTION.1=Action.name,string-equal,Write

Groups=G0
Rules=R2,R3,R5

R2.Desc=Member.level = Senior can Write Asset.integrity = High \
OR Asset.integrity = Medium
R2.Subjct.0=SUBJECT.1
R2.Resrce.0=RESOURCE.1
R2.Resrce.1=RESOURCE.2
R2.Action.0=ACTION.1
R2.Decisn=Permit

R3.Desc=Member.level = Chief AND Member.function = Finance can Read \
or Write any permitted asset
R3.Subjct.0=SUBJECT.2
R3.Subjct.0=SUBJECT.0
R3.Action.0=ACTION.0
R3.Action.1=ACTION.1
R3.Decisn=Permit

R5.Desc=Default decision is to deny access
R5.Decisn=Deny

G0.Desc=Combine rules R0-R5 with first_applicable\, for Organisation.name = \
National Bank and Asset.type = Corporate Strategy or Marketing Plan
G0.Cntains=R2,R3,R5
G0.CmbnAlg=first_applicable
G0.Subjct.0=SUBJECT.4
G0.Resrce.0=RESOURCE.3
G0.Resrce.1=RESOURCE.4

queries against the graph, it is possible to derive new information such as the policy
graph measures introduced in § 4.6.1.

Figure 4.9 shows the template policy, as specified by the policy author. It lacks many
features of a full policy; these missing features are presented in § 4.4.2.1 (semantic
constraints), and § 4.4.3 (instance-based policies).

4.4.2.1 Enforcing the static semantic constraints

It is timely to consider how the static semantic constraints impact upon policy
generation. Generally, within-category constraints are enforced when deriving the TSC

instance queries and have no effect on the template (attribute-based) policy model. In
effect, infeasible TSC nodes are omitted from the instance-based policy, with effects
that propagate up the policy tree to the Target nodes.

4.4 Generating policies—PolicyGen 151

POLICY

CTCCmbnPolPolSetRuleTgtTCTSC

Fig. 4.9 Cutdown template policy model derived from Listing 4.5, represented as a
property graph. The hierarchical structure of the policy, its 3 rules and their components
is maintained in the graph.

However, between-category constraints are more difficult to apply by filtering the TSC

nodes in this way. Two approaches were considered:

use more complex instance queries With this solution, the template policy
represented as a property graph closely matches the structure of the template
policy specified by the user in the DSL. However, the instance queries are more
complex and the instance-based policies look different in kind to the
attribute-based policies from which they were derived.

augment the template policies With this solution, it might become necessary to
add attribute-based TC nodes so that the resulting attribute-based policy takes
account of the static semantic constraints, in which case the instance queries can
be derived as normal, without taking special care to ensure that the static
semantic constraints are satisfied.

DomainManager version 1.x used the first approach, but DomainManager version 2.x uses
the second. Despite some reservations, mostly related to the blurring of the distinction
between static model and policy model considerations, we now believe the second
approach is better.

Firstly, it appears that (human) policy authors are not purist about such distinctions
and may add extra TCs anyway, though perhaps not in all cases where they would be
needed for this purpose. Conversely, in some cases, policy authors add such TCs even

4.4 Generating policies—PolicyGen 152

when they are not strictly necessary, i.e., they over-specify the policies. Functionally,
these unnecessary conditions do not affect the decisions made during policy evaluation,
though they might affect policy evaluation performance. So if extra template policy
TCs are already in place, why not use them?

Secondly, it should be noted that instance requests also need to satisfy
between-category semantic constraints. If the second approach is used, these
constraints can be applied with less effort than would be needed for the first approach.
For this reason, Occam’s Razor suggests that the second approach has more merit.

Thirdly, if a variety of different semantic constraints were needed, it is easier to add
them explicitly in the form of extra TCs rather than more implicitly by altering the
queries used to derive the instance policies.

Lastly, it is possible to parametrise the second approach by introducing the factor
extraTcType, which can take any of the following values:

• none, where the semantic constraints are ignored: this choice is not recommended

• minimal, where the only TCs that are added are those that are necessary for the
semantic constraints

• full, where additional TCs of a similar kind to the minimal set are added, but
that do not change the policy semantics.

This is an added bonus in the sense that, when considering access control evaluation
performance, one of the features of interest relates to the “quality” of the policy set,
and this factor provides a way of measuring one aspect of this quality.

To implement the second approach, we need to apply the augmentAsset and
augmentAction operations described in Algorithm 4.1.

Figures 4.10a and 4.10b can be compared with Figure 4.9 as that represents the
cutdown policy specified in the DSL (Listing 4.5), or equivalently extraTcType = none.
As can be seen, the minimal policy has two extra TCs to ensure that rule R2 applies to
Asset.type = Document because the associated Action is Read which has Action.type

= Document. The full policy has these additional TCs, plus a few more. It adds an
Action.type = Document condition to the policy G0 target, because even though there
are no other Action TCs in that target, the associated Resource TCs resolve to
Asset.type = Document and so this induces an Action.type = Document TC to ensure

4.4 Generating policies—PolicyGen 153

Algorithm 4.1 The augmentAsset operation that is used when extraTcType ≠ none
to ensure that the between-category (Asset-Action) semantic constraint is applied.
Note that, when extraTcType = full, additional resource TCs are added even if there
was no {c(R)

i } there in the first place. Otherwise (i.e., extraTcType = minimal), such
empty elements are left unchanged. The augmentAction operation is similar but with
the roles of Asset and Action exchanged.
Require: Policy CTCfacade c; extraTcType
Ensure: Add extra TCfacade ci and corresponding changes to CTCfacade

procedure augmentAsset(c, extraTcType)
{c(A)

i,j } ← findActionAttributeTscIn(c)
if {c(A)

i,j } = ∅ then
STOP

else
for all {c(A)

i,j } do
if attribute(c(A)

i,j) = Action.type then
actionType← value(c(A)

i,j)
else

action← value(c(A)
i,j)

Lookup action = a among the Action nodes in the property graph
actionType← type(a)

{c(R)
i,j } ← findResourceAttributeTscIn(c)

if {c(R)
i,j } = ∅ then

if extraTcType = full then
Create {c(R)

i,j } based on Action.type = actionType
Create {c(R)

i } to reference {c(R)
i,j }

Create {c(R)} to reference {c(R)
i }

else
Create {c(R)

i,j } based on Action.type = actionType
Create {c(R)

i } to reference {c(R)
i,j }

Add {c(R)
i } to the existing set of TCs referenced by c(R)

4.4 Generating policies—PolicyGen 154

(a) Cutdown COARSE policy with extraTcType = minimal.

(b) Cutdown COARSE policy with extraTcType = full.

POLICY

CTCCmbnPolPolSetRuleTgtTCTSC

Fig. 4.10 Cutdown COARSE policy model (template policy plus extra TCs, represented
as a property graph, comparing extraTcType = minimal with extraTcType = full.
The minimal extra TCs (compared to the base template policy model (extraTcType =
none) is highlighted with a yellow background. The TCs added specifically for the full
constraint type are highlighted with a green background.

4.4 Generating policies—PolicyGen 155

consistency is maintained. Elsewhere, Rule R3 gains an Asset.type = Document

condition for similar reasons: the associated Action TCs relate to Read and Write,
which have Action.type = Document and so Asset.type = Document is added to
Resource TC.

Thus, even in the case of a relatively small policy set, these semantic constraints can
add multiple TCs to the template policy. Also, the full constraints can occur in real
policy sets, perhaps accidentally as policies are added over time. Since they do not
affect the correctness of the policy decision, it is often difficult to identify such
redundant rules. Figures 4.10a and 4.9 indicate how they can sometimes be discovered
by visualising the underlying policy graph.

The template policies are represented in the property graph and hence enjoy
the benefits of that representation: ease of manipulation, ease of analysis
and the ready availability of many options for visualising the graph and
hence the rules governing a domain.

4.4.3 Step 3—derive instance policies and instantiate in the
property graph

Each instance policy tree differ from its source template policy tree only in relation to
the Target elements and their descendants. That is, nodes such as Policy and Rule

are unchanged but each Target node should have a relationship with instance-based
CTCs in addition to the existing relationships with template CTCs. DomainManager uses
the Granularity property to distinguish between template (Granularity = COARSE)
and instance-based (Granularity = FINE) policy model nodes and edges. Furthermore
DomainManager also distinguishes between extraTcType = minimal and
extraTcType = full for each Granularity.

Starting from each Target t, its instance query is used to identify the set of matching
static model nodes. Each of the static model nodes in that set is used to derive the
FINE TSC node c

(⊙)
i,j that is satisfied by that static model node and no other static

model node. That is, if the static model node is N and its name key has a value of valu,
the corresponding FINE TSC is N.name = valu.

4.4 Generating policies—PolicyGen 156

A FINE TC c
(⊙)
i is created for each of these FINE TSC c

(⊙)
i,j nodes, where again each of

these FINE TC c
(⊙)
i nodes has a single HAS_TARGETSUBCOMP relationship with one of the

set of FINE TSC c
(⊙)
i,j nodes. Thus the number of FINE TC nodes is the same as the

number of FINE TSC nodes.

The FINE CTC c(⊙) has a HAS_TARGETCOMPONENT relationship with each of the FINE TC

c
(⊙)
i nodes.

Note that ⊙ is a placeholder and represents any one of subject (S), resource (R),
action (A) or environment (E). Thus the Target node can have a FINE HAS_SUBJECT

relationship with the Granularity = FINE CTC c(S). For convenience, the COARSE

Target is a different node to the FINE node. Even though they are separate nodes, it is
possible to look one up from the other because the FINE Target node has an
IS_REFINED_FROM relationship to the COARSE Target node1.

More details of the algorithm used to refine COARSE policies can be found in
Appendix A. In particular it shows that enumeration and aggregation operations form
the core of the algorithm used by PolicyGen.

Referring to Figures 4.11a and 4.11b, it is clear that each Granularity = FINE Target
is matched with a Granularity = COARSE Target via an IS_REFINED_FROM relationship,
and that all nodes “above” Target in the hierarchy are shared with the COARSE policy.
Also, there is a significant increase in the number of TSC and TC components compared
to the template (Granularity = COARSE) policy. The differences between the minimal
and full policies are also magnified, as seen by the nodes that are highlighted with a
green background. It should be emphasised that these diagrams relate to the small
domain. As might be expected from the dramatic growth in the static model when the
domain size increases (see Figures 4.6 and 4.7) the size of the FINE policy set depends
superlinearly upon the size of the domain. However, as can be seen the size of the
policy set is decoupled from the complexity of the semantics in the template policy
from which it was derived.

1(Moffett and Sloman, 1993) introduced the concept of policy hierarchies and the refinement
operations that convert a policy into a less abstract (equivalently: more concrete) form. In our
formulation, there are only two levels in the “policy hierarchy”: attribute-based (template) polices
with COARSE granularity, and instance-based policies with FINE granularity. Consequently, policy
refinement in our formulation relates to deriving the instance-based policies from the attribute-based
policy specification.

4.4 Generating policies—PolicyGen 157

(a) Cutdown FINE policy with extraTcType = minimal.

(b) Cutdown FINE policy with extraTcType = full.

POLICY

CTCCmbnPolPolSetRuleTgtTCTSC

Fig. 4.11 Cutdown template policy model, with extraTcType = minimal and
Granularity = FINE and extraTcType = full displayed together for ease of com-
parison. The highlighted nodes in the middle of each graph are the nodes that are
shared with the COARSE Policy and its Rules and Targets. The nodes comprising the
extra TCs that were added to support the semantic constraints are highlighted with a
green background.

4.4 Generating policies—PolicyGen 158

Because each set of instance policies is generated from a common set of
template policies and a specific static domain, it is relatively easy to generate
instance policies for different domain sizes. By measuring the performance of
sets of instance policies that differ by domain size, it is possible to compare
the effect of domain size on access control evaluation performance.

4.4.4 Step 4—export policies

The property graph model contains the policy model graph in all its “flavours”:
granularity, choice of extraTcType, choice of linked static model, etc. However, for
performance experiments, the corresponding textual language representation needs to
be exported.

The first step is that the specification of the required export language needs to be
transformed into a (Java) class model. In the case of XACML 2 and XACML 3
policies and requests, this can be achieved using suitable language tools because the
language specifications have each been published in Xml Schema Document (XSD)
format. Thus, using a Java And Xml Binding (JAXB) provider such as eclipselink,
it is possible to configure the provider’s Xml to Java Compiler (xjc) tool to derive the
set of Java classes that are equivalent to the XACML 2 (or XACML 3) XSD model.

Other languages might use different specification formats: Extended Backus-Naur
form (EBNF) grammars, etc. For many such formats, tooling such as antlr can often
be used to help users to create class models to represent language instances.

DomainManager follows the path from each source Policy and/or PolicySet policy
model root node to its TSC policy model leaf nodes. DomainManager maps each node in
that path into its corresponding xjc-generated class so the resulting object contains
the relevant data and fits into the appropriate slot in the object model graph.

The JAXB provider can then marshal this object graph to text, which can then be
written to the file system as XACML 2 policy files (say).

The overall data binding process is outlined in Figure 4.12. Note that the generation
of the language-specific class model (the upper path labeled “1. XML Schema
Document” → “2. Derived Java classes”) is a once-off operation.

4.5 Generating requests—RequestGen 159

1. XML

Schema

5. XML

Document

2.

Derived

Classes

4.

Objects

Compile

Structure

Defined By
Instances of

Unmarshal

Marshal

Transform

3.

Fig. 4.12 JAXB: Binding Java classes to XML schema documents, transforming the
graph policy model nodes to populate the Java objects that are instances of these
classes, and marshalling the resulting Java objects to XML documents (policies in this
instance).

However, the generation of policy files requires the following steps in DomainManager:

1. recursive descent through the property graph policy model for each policy model
root node;

2. transformation of the policy model nodes on the path to Java objects that are
instances of the language-specific class model (“4. Objects” in Figure 4.12);

3. marshalling the Java objects to textual policy files (“5. XML Document” in
Figure 4.12).

4.5 Generating requests—RequestGen

The PolicyGen component of DomainManager, described in § 4.4, receives template
policies and derives COARSE policies (by adding TCs to enforce the semantic
constraints) and refines these COARSE policies to FINE policies (by evaluating the
instance queries and merging static domain data into the COARSE policies). This is
sufficient for static analysis of the policies. However, a representative set of policies is
necessary but not sufficient for domain-aware access control performance experiments.
Such experiments require other artifacts, notably a set of requests that is
representative of the domain, consistent with the policies used to control access and
substantial to capture as many exceptional cases as is reasonable.

4.5 Generating requests—RequestGen 160

§ 4.1.3 describes several approaches and recommends one of these (Approach 2) for the
generation of representative and consistent requests. We now present the RequestGen
component of DomainManager, which implements request generation Approach 2 and
which also strives to ensure that the generated request set is substantial.

For Approach 2, discussed in § 4.1.3, where requests are to be generated from the
policies, it is necessary to derive the requests from the bottom up, i.e., starting with
the TSCs. Stage 1 is described in § 4.5.1.

Stage 2 (see § 4.5.2) is to derive the request TCs from the policy TCs and the request
TSCs. Although the request TCs share many of the properties of the policy TCs from
which they were derived, their HAS_TARGET_SUBCOMP relationships with request TSCs are
typically more varied than the equivalent policy HAS_TARGET_SUBCOMP relationships.
This is particularly the case when useTscReduction is True. Also, generally speaking,
there are more request TCs than policy TCs.

Stage 3 is to derive the request CTCs from the policy CTCs and the request TCs, as
described in § 4.5.3.

§ 4.5.4 describes Stage 4, where the COARSE Requests are created by generating all
possible combinations of request CTCs and TCs so that each combination is related to a
single request.

Stage 5 (presented in § 4.5.5) is where instance-based (FINE) Requests are derived
from the attribute-based (COARSE) Requests that were created in Step 4.

The five stages described above build the requests in a “layer-by-layer” fashion. This
is in contrast to policy generation, where the hierarchical structure of the policy set is
known a priori from the template policies and so PolicyGen can proceed in a
top-down manner. Indeed, as a consequence, PolicyGen is always aware of its “place”
in the policy graph. However, RequestGen does not have this “structure map” to hand
as it derives the request set. Instead, the structure of that request set emerges from
the bottom-up. The layer-by-layer evolution of requests also enables consistent
treatment of all entities in that layer, so RequestGen enforces semantic constraints at
each layer right up to Request.

An alternative specification of Steps 1–4 above can be found in § B.1, where the
algorithms used by RequestGen are presented.

4.5 Generating requests—RequestGen 161

POLICY

CTCCmbnPolPolSetRuleTgtTCTSC

CONTEXT

CTC ReqTCTSC

Fig. 4.13 One-to-one correspondence with IS_DERIVED_FROM relationship between policy
TSCs and request TSCs.

4.5.1 Step 1—derive the request TargetSubComponents

The context TSCs are functionally the same as the policy TSCs. DomainManager

performs a graph-global search for the Granularity = COARSE TSCs (c(P)
i,j) with the

specified extraTcType. It then a) makes a copy of each of the nodes, b) changes each
copied node’s modelGroup and c) creates an IS_DERIVED_FROM relationship from each
request TSC to its source policy TSC, see Figure 4.13. At the end of Stage 1,
DomainManager has persisted the set of request TSCs {cR

i,j} in the database.

4.5.2 Step 2—derive the request TargetComponents

The first step is to perform a graph-global search to find all the COARSE policy TC

nodes ({c(P)
i }). Note that each policy TC node is treated the same as all the others: its

position in the policy hierarchy is not of interest at this stage. Next DomainManager

performs a graph-local search on each policy TC (c(P)
I) to find its set of COARSE policy

TSCs ({c(P)
I,j }).

At this point there is a major choice to be made, depending on the value of
useTscReduction. In the simplest case, useTscReduction is FALSE and the set of

4.5 Generating requests—RequestGen 162

policy TSCs {c(P)
I,j } is used, without alteration, as the source of the request TSCs {c(R)

I,j }
by looking them up in the graph using the IS_DERIVED_FROM request TSC to policy TSC

relationship created in Stage 1. Otherwise, useTscReduction is TRUE and the power
set of the set of policy TSC nodes P(P)

I,j = P({c(P)
I,j }) is created. By definition, ∅ ⊆ P(P)

I,j

but this is discarded, because the intention is that there should be no degenerate
coarse TC, where a degenerate TC has no HAS_TARGET_SUBCOMP relationship with a TSC.
Consequently, if |{c(P)

I,j }| = 1, it does not matter what the value of useTscReduction is.
However, in more interesting cases where the number of policy TSCs for a given policy
TC exceeds 1, the power set introduces more variation in the request TCs that can be
derived.

Figure 4.14 is a comparison of COARSE Request TCs for 2× 2 combinations of
extraTcType (minimal and full) and useTscReduction (with and without). The first
observation is that, across all four cases, there are some (unhighlighted) COARSE
request TCs that are derived directly from the equivalent policy TC, without change to
its structure, typically where the policy TC has a single TSC. Also, it is possible to see
the two extra policy TC when extraTcType = full compared to extraTcType =
minimal. Interesting subgraphs in Figure 4.14 are highlighted with yellow, pale green
and pale orange backgrounds.

The “yellow subgraph” is an instance of the case where a COARSE policy TC

(R3_SUBJECT_0) has two TCs (Member.function = Finance and Member.level = Chief).
We recall that there is an implicit AND operation between the two TSCs. When
useTscReduction is False (Figures 4.14a and 4.14c), the derived request TC has the
same structure. However, when useTscReduction is False (Figures 4.14b and 4.14d),
RequestGen derives two extra request TCs, one for each of the two individual request
TCs.

The “pale green subgraph” shows that the policy TCs R2_ACTION_0 and R3_ACTION_1

are functionally equivalent because they both have a single policy TSC Action.name =
Write. They are labeled differently because they have different locations in the
template graph. Only one request TC is derived, because the position in the template
policy is immaterial for context nodes. However, it is still possible to lookup the two
source policy TC nodes by following the two IS_DERIVED_FROM edges. Also, because
there is only one TSC involved, the setting of useTscReduction has no effect in this
subgraph.

4.5 Generating requests—RequestGen 163

(a) Minimal Without TSC reduction. (b) Minimal With TSC reduction.

(c) Full Without TSC reduction. (d) Full With TSC reduction.

POLICY

CTCCmbnPolPolSetRuleTgtTCTSC

CONTEXT

CTC ReqTCTSC

Fig. 4.14 Comparison of COARSE Request TCs, showing their relationship with the
request TSCs and the policy TCs.

4.5 Generating requests—RequestGen 164

The “pale orange subgraph” is concerned with the policy TCs R2_RESOURCE_0 and
R2_RESOURCE_1 from the template policy and R3_RESOURCE_0 added for extraTcType =
minimal. When extraTcType = minimal, policy TC G0_RESOURCE_0 is included in this
group, but when extraTcType = minimal, it is treated as one of the unremarkable set
of TCs. In most cases, the number of request TCs exceeds the number of policy TCs
from which they were derived, particularly when useTscReduction is True (as might
be expected).

RequestGen is able to derive new request TCs based on the policy TSCs and
TCs. The degree to which new TCs are derived depends on various settings
that can be controlled by the DomainManager user. The new TCs are available
in the graph for use when deriving other request entities.

4.5.3 Step 3—derive the request
CollectedTargetComponents

The procedure to derive request CTCs is analogous to that used to derive request TCs.
Step 1 performs a graph-global search to find all the COARSE policy CTC nodes ({c(P)

k }).
In Step 2, DomainManager performs a graph-local search on each policy CTC (c(P)

k) to
find its set of COARSE policy TCs ({c(P)

k,I }).

It is possible to use the policy TCs directly (Step 3a) or, if useTcReduction is True, to
use the power set of {c(P)

k,I } (with the empty set removed) to derive new CTCs (Step 3b).
Each element of the reduced power set gives rise to a new request CTC. One of those
elements has all the request TCs derived from the source policy CTC, but in the case
where {c(P)

k,I } has more than one element, there will be other elements of the reduced
power set with fewer request TCs, resulting in new request CTCs. All of this is
equivalent to the case when deriving request TCs from policy TCs, with
useTscReduction for generating request TCs playing a similar role to useTcReduction

for generating request CTCs.

However, there is an additional step when deriving the COARSE request CTCs. Given
each set of policy TCs, we can (Step 4) lookup the request TCs for that set, by reversing
the direction of the IS_DERIVED_FROM edges for each policy TC. Consequently the set of
request CTCs can benefit from the enlarged set of request TCs arising from the case

4.5 Generating requests—RequestGen 165

when useTscReduction is True. Also, by using the set of policy TCs {c(P)
k,I }, rather than

the set of request TCs {c(R)
k,I } when generating the power set, fewer but better CTCs can

be generated. Therefore, the set of request CTCs can be made quite comprehensive
while still being derived from the policy CTCs.

In Step 5, each RESOURCE request CTC is checked to ensure that it is associated with
one and only one Asset.type, as it should be because all RESOURCE policy CTCs are
associated with only one Asset.type and each request CTC is derived by disassembling
and reassembling related policy CTCs. Any RESOURCE request CTC that does not
satisfy this condition is removed from the set. The check proceeds by looking at each
request TC associated with each RESOURCE request CTC, descending to its TSC

node(s), converting each TSC to an Asset lookup checking the AssetGroup associated
with the Assets returned by that Asset lookup.

Figure 4.15 compares the generation of request CTCs, when extraTcType = full. It
shows the effect of the choice of useTscReduction and useTcReduction. The subgraphs
with the pale orange background are COARSE Action TCs and are included for
completeness because Actions participate in Requests at the TC level, not the CTC level
used by Subjects and Resources. The smaller subgraph relates to the Action.type =
Document condition; the larger relates to Action.name = Read and Write.

The two unmarked Request CTCs in each subplot relate to two conditions derived from
G0_SUBJECT (Organisation.name = National Bank) and R2_SUBJECT (Member.level =
Senior). Since they are isolated single conditions, they are not affected by different
settings of useTscReduction and useTcReduction.

The subgraph with the pale blue background is derived from G0_RESOURCE, which has
two conditions Asset.type = Marketing Plan and Asset.type = Corporate Strategy.
useTscReduction has no effect because the two policy TC each have a single TSC.
However, because of the double condition represented by the two policy TCs, when
useTcReduction is True, three CTCs can be formed from the three member set defined
by the power set of the TCs less the empty set.

The subgraph with the pale green background is derived from R3_SUBJECT, which has
two TSCs Member.function = Finance and Member.level = Chief. In this case, when
useTscReduction = True (Figures 4.15b and 4.15d), three possible request TCs are
derived from the power set of the set containing the two TSCs. Since there is only one
policy TC, the setting of useTcReduction has no effect.

4.5 Generating requests—RequestGen 166

(a) Full Without TSC and Without TC re-
duction.

(b) Full With TSC and Without TC reduction.

(c) Full Without TSC and With TC reduction.

(d) Full With TSC and With TC reduction.

POLICY

CTCCmbnPolPolSetRuleTgtTCTSC

CONTEXT

CTC ReqTCTSC

Fig. 4.15 Comparison of COARSE Request CTCs, showing their relationship with the
request TCs and the policy CTCs. Also shown is the COARSE Action Request TCs and
their relationships (subgraphs with pale orange background).

4.5 Generating requests—RequestGen 167

By far the most complex situation arises in the subgraph with the yellow background.
The policy CTCs are R3_RESOURCE and R2_RESOURCE which is associated with two policy
TCs each of which is associated with two TSCs. Consequently the R2_RESOURCE policy
CTC is the source of seven request TCs (from three policy TCs) when useTscReduction is
True and four request CTCs (from two policy CTCs) when useTcReduction is True.

The corresponding figures for request CTCs when extraTcType is minimal is not shown.
However, it has the same characteristics the differences are wholly due to the fact that
full and minimal policy CTCs are different.

RequestGen is able to derive new request CTCs based on the policy CTCs and
any request TCs. Settings such as useTscReduction and useTscReduction

can be used together and their effect is cumulative, but controlled, so that
a) the request CTCs can differ but not too much from the source policy CTCs
and TCs and b) there are few if any logically-redundant clauses of the form
A ∧ A and A ∨ A.

4.5.4 Step 4—create COARSE (attribute-based) requests

Unlike XACML 3, XACML 2 treats SUBJECTs and RESOURCEs differently from
ACTIONs and ENVIRONMENTs Moses (2005). In terms of our property graph
model, for each XACML 2 Request, the SUBJECT and RESOURCE are each CTCs
and the ACTIONs and ENVIRONMENTs are each TCs.

In Step 1, DomainManager performs a graph-global search for each of the following:

• SUBJECT request CTCs

• RESOURCE request CTCs

• ACTION request TCs

• ENVIRONMENT request TCs

Step 2 is to classify the RESOURCE CTCs by AssetGroup. By classify, we mean that a
set of CTC is associated with a value of Asset.

4.5 Generating requests—RequestGen 168

Step 3 is to classify the ACTION TCs by ActionType. Note that the values of
AssetGroup and ActionType are drawn from the same set: Document, Communication,
etc.

Step 4 is to derive the expanded resource CTCs. Each (expanded) CTC can be
associated with a single AssetGroup. If a CTC does not satisfy this condition, it is
expanded by ANDing it with a CTC with this property. We note that the condition is
satisfied by construction for policies when extraTcType is either minimal or full. The
condition continues to be satisfied unless either TSC or TC reduction is applied. In such
circumstances, a subset of request TCs might not be sufficient to associate the derived
CTC with a single AssetGroup.

Step 5 makes 3 passes through the augmented resource CTCs. The first pass “pivots”
the labelled resource CTCs so that instead of assigning an AssetGroup label to each
resource CTC, resource CTCs sharing the same AssetGroup are collected together in a
set, and the entire set (and not its individual elements) is labelled with AssetGroup.
The second pass considers the set of resource CTCs that has not yet been assigned an
AssetGroup. Let cunclassified be an unclassified resource CTC. DomainManager can
consider each of the “active” AssetGroups, and each of the classified resource CTCs
associated with that AssetGroup. Let cclassified represent any of these resource CTCs.
Then, by definition, cunclassified ∧ cclassified is associated with the same AssetGroup as
cclassified and so can be added to the set of such classified resource CTCs. Note that
conjunction (ANDing) of two CTCs is achieved by recursively ANDing their TCs by
assembling the set union of their TSCs.

Symbolically, DomainManager computes

caugmented = cunclassified ∧ cclassified (4.8)
= {cunclassified

i ,∀i} ∧ {cunclassified
j i, ∀j} (4.9)

= {cunclassified
i ∧ cunclassified

j ,∀i, j} (4.10)
= {{cunclassified

i,l , ∀l} ∧ i{cunclassified
j,m ,∀m}, ∀i, j} (4.11)

= {{cunclassified
i,l ∪ cunclassified

j,m ,∀l, m},∀i, j}. (4.12)

A side effect of the second pass is that more resource CTCs can be generated by this
CTC conjunction process. Each combined CTC is traceable back to its two source
request resource CTCs using AUGMENTED_FROM_UNCLASSIFIED_RESOURCE and

4.5 Generating requests—RequestGen 169

Cunclassified

Cclassified

Cunclassified

Cclassified

Caugmented

AUGMENTED FROM UNCLASSIFIED RESOURCE

IS DERIVED FROM

IS DERIVED FROM

IS DERIVED FROM

IS DERIVED FROM

AUGMENTED FROM CLASSIFIED RESOURCE

Fig. 4.16 The augmented request resource CTC caugmented is derived from an unclassified
request resource CTC cunclassified and a classified request CTC cclassified, each of which is
derived from a policy resource CTC. Note that, by transitive closure, caugmented has an
IS_DERIVED_FROM relationship back to each of the source policy CTCs.

AUGMENTED_FROM_CLASSIFIED_RESOURCE relationships. It is then possible to compute
the transitive closure of these relationships, together with the IS_REFINED_FROM

relationships, as shown in Figure 4.16.

In the third pass, the unclassified RESOURCE request CTCs are removed from the
data structure containing the output of the first pass, and the augmented
RESOURCE request CTCs arising from the second pass are distributed in that data
structure, depending on their associated AssetGroup.

The semantic constraints are checked and reapplied if necessary to ensure
that each entity that is available for combination as an access request is
internally consistent and has metadata to ensure that it can be combined
with other entities to form a semantically valid request.

Now that the components of a request are in place, it is necessary to generate all valid
combinations as requests. DomainManager uses the following nested loop structure

For all Action TC: a
Lookup the ActionGroup of a: aG
For all Resource CTC with AssetGroup aG: r

For all Subject CTC: s
For all Environment TC: e

generateRequest(s, r, a, e)

4.5 Generating requests—RequestGen 170

As can be seen, the semantic constraints are built into the loop structure and ensure
that the generated Action-Resource combinations are valid. If other cross-entity
constraints are needed, they can be applied in a similar way.

Figure 4.17 shows the requests that are generated by RequestGen, depending on
factors that also affects policies (extraTcType) and that affect only request generation
(useTscReduction and useTcReduction).

Although the plots look complex, the structure is repeated for each request. That is,
each request has a relationship to a SUBJECT CTC, a RESOURCE CTC and an
ACTION TC, similar to the XACML 2.0 request hierarchy in Figure 4.18. Note that
there is no ENVIRONMENT TC, because it does not appear in the template policy
(see Listing 4.5). The CTCs and TCs are shared amongst the set of COARSE requests,
which is designed to contain all semantically valid combinations. Clearly the settings
affect the number of requests, but this is because they affect the number of CTCs and
TCs.

As soon as the generated requests have been added to the property graph, they are
available for analysis (see §4.6.1) and for use in performance experiments. As was the
case with PolicyGen, it is necessary to export the requests as XACML using a similar
procedure to that outlined in § 4.4.4. Interestingly, the requests can be exported in
JSON-encoded XACML 2.0 as well as the more traditional XML representation, if
that is desired. Also, DomainManager can export requests in property specification
format equivalent to that employed by the policy author when specifying the policies.
See Listing 4.4 for an example of the syntax of such a policy specification. The
advantage of the property specification format is that it enables easier comparison
between template policies and the requests that were generated from them.

RequestGen generates exhaustive combinations of the SUBJECT, RESOURCE,
ACTION and ENVIRONMENT domain entities, subject to any cross-entity
semantic constraints, and these are exported as individual requests.

4.5.5 Step 5—create FINE (instance-based) requests

The procedure for generating instance-based requests is analogous to that for
generating instance-based policies from the granularity = COARSE policies, which

4.5 Generating requests—RequestGen 171

(a) Full Without TSC and Without TC reduc-
tion.

(b) Full With TSC and With TC reduction.

(c) Minimal Without TSC and Without TC
reduction.

(d) Minimal With TSC and With TC reduc-
tion.

CONTEXT

CTC ReqTCTSC

Fig. 4.17 Comparison of COARSE Requests, for different settings of extraTcType,
useTscReduction and useTcReduction.

4.5 Generating requests—RequestGen 172

XACML 2.0 XACML 3.0

Request
Subject

CTC
Resource

CTC
Action
TC/CTC

Environment
TC/CTC

Request level CTC level TC level

Fig. 4.18 Comparison of the structure of XACML 2.0 (note the mix of SUBJECT and
RESOURCE CTCs and ACTION and ENVIRONMENT TCs) versus XACML 3.0 (CTCs
only) requests.

themselves are slightly modified (owing to the addition of semantic constraints in the
form of extra TCs) versions of the template policies specified by the DomainManager

user.

The main difference between policy and request generation is that requests are built
“layer-by-layer” for the reasons outlined in § 4.5. Stages 1 to 4 are described in
§ 4.5.1,4.5.2, 4.5.3 and 4.5.4.

Instance-based requests are refined from the attribute-based requests in a top-down
manner. The top level structure of XACML 2.0 and XACML 3.0 requests is compared
in Figure 4.18. Note that, at this level of detail, the structure of attribute-based and
instance-based requests is identical for a given version of XACML.

For each COARSE entity whose parent is Request, DomainManager looks up the
instance nodes that satisfy the entity’s instance query. For example, the instance nodes
satisfying a SUBJECT CTC instance query might be Alice and Bob. The corresponding
instance TSCs would be Member.name = Alice and Member.name = Bob. The instance
TCs would look the same: Member.name = Alice and Member.name = Bob. In this
regard, we note that there is only one instance TSC per instance TC given the equality
constraints that are currently supported by DomainManager. This is because an entity
(a Person in this case) cannot, simultaneously, correspond to more than one unique
instance. The instance CTC would be Member.name = Alice OR Member.name = Bob.

4.5 Generating requests—RequestGen 173

When the COARSE entity is a TC (say a XACML2.0 ACTION), care is needed,
because only one ACTION instance can be used in that place. This is in contrast to
an instance CTC, where the set of instances is unbounded. Therefore DomainManager

needs to ensure that the COARSE TC is semantically consistent before it can be
refined to an instance-based (FINE) TC. Generally it is easier to achieve this with CTC

nodes because TC nodes can be added (or the TC reduction can be limited, so they are
not removed)) to ensure that the instance nodes belong to a single AssetGroup or
ActionType such as Document.

It should be noted that each COARSE CTC induces an instance CTC which has its own
hierarchy of TCs and TSCs. For XACML 2.0 requests, each COARSE Action and
Environment request model TC node does the same.

For each derived node, an IS_REFINED_FROM edge is added, relating that instance node
to the attribute node which was its source. As with the policy model, for each
instance-based request model node, the Granularity property takes the value FINE; for
the source attribute-based request model node, the value is COARSE.

RequestGen generates an instance-based request corresponding to each
attribute-based request, where the instances depend on the STATIC domain
model and are combined according to the structure of the source attribute-
based request.

4.5.6 Varying the request complexity

As described in § 4.5.5, the instance-based requests are derived from the
attribute-based requests by querying the database for each of the attribute-based
REQUEST model nodes. This is the same procedure that is followed in the POLICY
model, but the interpretation is different. For policies, the full set of instance-based
nodes is required each time. Otherwise it is impossible to guarantee that the
semantics of the template policy will be honoured for all requests. However, the
request does not need to be as comprehensive. Often requests need to reference a
small number of instances. Therefore we can control the request complexity by
controlling how many of the instances that match the relevant instance query (such as
“Look for Persons where Member.function = Sales AND Member.role = Manager”) are

4.5 Generating requests—RequestGen 174

used. DomainManager distinguishes between requestComplexity = Sgl, Dbl and ALL,
depending on whether the instance query result set is limited to one (e.g., Alice) or
two (e.g., Alice and Bob) matching instances, or is unlimited (e.g., the entire
Department of which Alice and Bob are members). Note that the requestComplexity

applies only to instance-based requests but otherwise can be varied independently of
other settings such as the (static) domain size, or useTcReduction, etc.

Therefore, DomainManager generates three FINE requests (labeled Sgl, Dbl and ALL)
for each COARSE request.

Different request complexities of instance-based requests can be generated
together and labeled as such, making it easier to compare the effects of
different request complexities.

A further consequence of the instance-based query is that sometimes, particularly
when the instances are limited (e.g., Sgl) and/or the the domain size is small, the
results of the query can be the same for several different instance queries. For
example, “Alice” might satisfy the query Member.level = Senior AND

Member.function = Finance. She might also satisfy a seemingly unrelated instance
condition such as Join.year < 2010. When the attribute-based request is assembled
from such general conditions, these queries are treated as distinct. However, if the
requestComplexity is SGL, the resulting instance CTCs will each be Member.name =
Alice. Therefore the set (more correctly: bag) of refined instance-based requests will
contain duplicate entries. This is unfortunate for two reasons:

1. the dimension of the space of generated requests is less than expected, so there
is the possibility that the requests fail to sample the PDP execution paths
effectively.

2. if we assume all the instance-based requests are unique, this could lead to
clustered service times (the measured outputs) just because the inputs (in this
case the requests) are clustered. This is misleading and could result in spurious
observations being made about the data.

DomainManager takes account of this feature (the near certainty that the derived
instance queries will contain some duplicates) by using the following algorithm:

4.5 Generating requests—RequestGen 175

1. Find groups of duplicate requests, say those labeled A,B,C.

2. In the file system:

Keep exported request A and delete the exported requests B and C.

3. In the database:

Add IS_EQUIVALENT_TO relationship between B and A and between C and A.

More details of this algorithm are presented in § B.2.

The requests that are submitted to the PDP for performance testing can be
assumed to be unique at the instance-level. Consequently, if two requests are
found, consistently, to have very similar service times, this feature is worthy
of investigation.

The requestComplexity factor is a characteristic of access control policies in practice
as well as being a technical setting for RequestGen. Generally, simple access requests
are associated with questions like “Can X do Y with Z?”. More complex scenarios
require much more context to be provided to the PDP. For example, to avoid conflicts
of interest, the access request might look like “Can X1, X2, X3 and X4 do Y with Z?”.
This is an example of a request with higher complexity, in much the same sense as the
requestComplexity factor used by RequestGen in DomainManager. Another way such
complex requests might arise is if the requesting entity is a proxy for a set of users
and/or resources—in this way, access requests are “batched together” and a single
decision is given for all entities participating in the request. Therefore, by carefully
tuning the requestComplexity parameter, it is possible to model some interesting
scenarios.

Figure 4.19 compares the generated FINE requests, showing the effects of the
combination of the Boolean-valued useTscReduction and useTcReduction factors, as
well as comparing the least complex (SGL) and most complex (All) settings.
Conservative extraTcType = Full COARSE policies were used by RequestGen in each
case. When refining these COARSE policies, the small static domain was used.

Figures 4.19a and 4.19d can also be compared with the equivalent COARSE requests
(Figures 4.17a and 4.17b, respectively). The layout algorithm used when plotting
rearranges the nodes and edges, but the number of Request, CTC and Action TC nodes
does not change. The most interesting change is the addition of Request-to-Request
IS_EQUIVALENT_TO relationships, which are particularly noticeable in Figure 4.19a.

4.5 Generating requests—RequestGen 176

(a) Full Without TSC and Without TC reduc-
tion; requestComplexity = SGL.

(b) Full Without TSC and Without TC reduc-
tion; requestComplexity = ALL.

(c) Full With TSC and With TC reduction;
requestComplexity = SGL.

(d) Full With TSC and With TC reduction;
requestComplexity = ALL.

CONTEXT

CTC ReqTCTSC

Fig. 4.19 Comparison of FINE (instance-based) Requests, ranging from the small-
est and simplest (useTscReduction = useTcReduction = False; requestComplexity =
SGL) to the largest and most complex (useTscReduction = useTcReduction = True;
requestComplexity = ALL).

4.6 DomainManager Evaluation 177

Note that comparatively few instance-based TSCs are used: 5, 6, 21 and 21 in
Figures 4.19a, 4.19c, 4.19b and 4.19d, respectively. Yet RequestGen in DomainManager

is able to generate 27 (Figures 4.19a and 4.19b) and 63 (Figures 4.19c and 4.19d)
requests. For Figure 4.19a there are only 4 unique requests; for Figure 4.19c there are
8, for Figure 4.19b there are 6 while for Figure 4.19d there are 12. The rate of unique
FINE requests per generated COARSE request is interesting: 0.15, 0.13, 0.22, 0.19.
Thus for a relatively small static domain and few policy rules, typically less than one
in 5 of the generated requests are unique. One interpretation of this finding is that the
scope to generate broadly based requests, starting from the policies, is limited,
particularly when the static domain has small size. Another, perhaps more favourable
interpretation, is that there were relatively few rules in the policy to begin with, and
the number of unique FINE requests that can be generated is limited by the semantic
complexity of the underlying policy. Thus, in an indirect way, RequestGen is also able
to provide insight (in the form of visualisations such as those in Figure 4.19) into the
policy set being used in ATLAS performance experiments.

4.6 DomainManager Evaluation

4.6.1 Graph measures

Since the generated policies and requests are represented as graphs, graph-theoretic
measures can be used to estimate policy set size and complexity. Many of the
better-known graph measures are more suited to small-world networks. However,
policies and requests have a different structure, being forests (collections of trees). The
proposed graph measures are leaf count and total path length. For the latter, all paths
start from the root(s) of the corresponding graph structure (either a policy set or a
request) and each step in the path has unit length.

Such graph measures summarise the underlying structure but ignore semantic
considerations. For example, some rules (hence branches in the policy tree) are
evaluated more frequently and this feature is not included in either measure. Thus
(static) graph measures do not take account of such evaluation-time
(policy-with-request) behaviour. However the measures can be calculated easily by
DomainManager and may even be able to give a rough indication of relative
performance.

4.6 DomainManager Evaluation 178

Since the domain model we use is a graph representation, visualisation can provide
insight into what policy properties “look like” and why the performance has a
particular profile. For example, Figure 4.7 indicates why, when Granularity = FINE,
both policy leaf count and path length grow so rapidly with domain size, and can also
be used to motivate the choice of other graph measures that might be relevant.
Inspection of sets of these diagrams, and those of the policy and context models, can
help when interpreting the measured service times.

4.6.2 Service time analysis

The policy and request generation algorithms are applied in the following scenario. A
security administrator (“Alice”) wishes to estimate the effect of (static) domain size on
policy evaluation performance. She designs an experiment in which the domain size
factor (denoted DS) has levels {S, M, L} (small, medium and large). She also has
secondary questions concerning the effects of different policy and request generation
choices, so she adds four extra factors:

• SC (static constraints), which indicates whether the policy generator adds the (M)
minimal set of static constraints or goes further and over-specifies them (F:
full), thereby increasing policy redundancy;

• RC, which indicates whether there are single (‘Sgl’) or multiple (‘Mlt’) conditions
per request TC;

• TscR, which indicates whether reduced request TSCs are used when generating
requests (t) or not (f);

• TcR, which indicates whether reduced request TCs are used (t) when generating
requests or not (f).

Her experiment runs on a server (Ubuntu 14.04.1 LTS, Java 7, 4 cores, 2Gb memory)
running SunXacml PDP (subversion revision 137). She collects her measurements
using STACS (Butler et al., 2010, 2011).

Listing 4.4 is the template policy used in the experiment. There are 4 Action.types
labeled ‘Document’ and 2 labeled ‘Communication’. For domain size S, M, L there are
10, 60 and 110 assets respectively, and 6, 40 and 74 persons respectively. The
generated policies for domain size S, M, L have 157, 834 and 1534 conditions if SC=F

4.6 DomainManager Evaluation 179

0.
01

0.
03

0.
05

Factors

m
ed

ia
n

du
ra

tio
n

(s
)

S

M

L

FM
Sgl

Mlt

ft
f

t

D
S

S
C

R
C

T
sc

R

T
cR

Fig. 4.20 Median service times for each level of each factor, as well as the overall
median. Both the domain size DS and request complexity RC are seen to have significant
impacts on the median service time, where as the settings for SC, TscR and TcR have a
much weaker influence—the median service for each level of these factors departs very
little from the grand median.

and 78, 444 and 823 conditions if SC=M. The number of unique generated requests
depends on the domain size, the request cardinality and the 22 = 4 combined settings
of TscR and TcR. It ranges from 14 requests (DS=S, RC=‘Sgl’, and TscR=TcR=‘N’; 3
TSCs per request) to 128 requests (DS=L=‘f‘, RC=‘Mlt’, and TscR=TcR=‘t’; average 150
TSCs per request). The requests were issued in random order to the PDP. Nine
replicate service time measurements were collected per unique combination of
parameters.

Figure 4.20 indicates that service times tend to increase markedly with domain size
(DS) and request complexity (RC). Figure 4.21a confirms this heuristic and suggest that
as the domain size increases there are clusters of requests whose services times increase

4.6 DomainManager Evaluation 180

(a) Service time density: DS in {‘S’,‘M’,‘L’}

0.00 0.05 0.10 0.15

0
50

15
0

25
0

duration

D
en

si
ty

DS

S
M
L

(b) Service time density: RC in {‘Sgl’,‘Mlt’}

0.00 0.05 0.10 0.15

0
50

10
0

15
0

duration
D

en
si

ty

RC

Sgl
Mlt

Fig. 4.21 Selected service time density plots. Three clusters of service times are apparent
in each plot and appear to be associated with larger domains (hence policies) and
higher cardinality requests.

significantly. This information, together with request frequency data from production
systems, can subsequently be used to assess the likelihood that the access control
system is meeting its service level agreements. The trends are not surprising as the
SunXacml PDP always decides requests by performing a full scan of the policies.
Meanwhile, Figure 4.21b suggests that single request cardinality leads to shorter and
more predictable service times.

This preliminary analysis indicates the effects of some factors that were not available
and hence not considered in out earlier papers Butler et al. (2010, 2011). However it is
not complete, because it is likely that there is an interaction between domain size
(hence policy set size) and request complexity (hence request size), but this analysis
does not take account of it. The actual effect of a factor is computed as the sum of the
main effects (of that factor on its own) and the contributions from the interactions in
which it is a member. If those interactions effects are significant, the resulting effect
could differ significantly from the main effects (ignoring interactions). Therefore, a
new analysis component (denoted PARPACS) was developed to provide a more
comprehensive and statistically robust analysis of how these new factors influence
access control service times. This new component is presented in Chapter 5.

4.7 Summary 181

4.7 Summary

This chapter addresses one of the main drawbacks with (Butler et al., 2011) and
similar papers—namely, that it is difficult to extrapolate from performance
measurements gathered using a small, domain-specific set of policies and requests to
provide insights into likely performance in an arbitrary deployment scenario.

The evaluation in §4.6 shows how the policy and request generation algorithms can be
applied in practice, and how the types of analysis described in Chapter 3 can be
applied to a more relevant domain configuration. This is a significant contribution, as
previous studies of access control performance have been hampered by the lack of a)
policies and requests tailored to the domain under study and b) a means of generating
suites of such policies and requests, fully parametrised and graded by difficulty.

Note that DomainManager is tuned to the problem of specifying policies and requests
for use in access control policy evaluation experiments. Hence it would probably need
to be replaced if ATLAS were to be used for other types of experiments, such as
predicting database query performance.

Chapter 5

Analysing enterprise access control
performance with PARPACS

Table 5.1 Research questions addressed in Chapter 5

ID Question

RQ1

How can access control evaluation performance be measured for use in
performance experiments?

– What form does the service time distribution take?
– What simulations can be performed to explore the effect of different

request arrival patterns?
– What analysis can be performed when the systems under test use different

languages, frameworks and encodings?

RQ2

How can domain models be specified and used to express enterprise access
control scenarios?

– How can different variants of domain models be specified in a flexible
and easy to use way?
– How can access control evaluation performance be compared at different

domain sizes?

RQ3
How can the data from performance experiments be used to understand
and predict access control evaluation performance?

– What types of exploratory data analysis are suitable for the performance
experiments?
– What are the steps needed to build statistical models predicting access

control performance?

RQ4
What are the main factors affecting access control evaluation performance?

– What are the effects of PDP choice, domain size and resources?
– What are the effects of domain size, policy and request characteristics?

5.1 Adding more factors 183

5.1 Adding more factors

One of the most interesting features of DomainManager and its associated property
graph model is the fact that it enables rich enterprise access control scenarios to be
modelled. Some of the factors that have been considered to date include:

basic The following factors are available when the researcher has minimal control
over the policies and requests, so the policies and requests are used as provided:

PDP As has been seen in §3.3.2, PDPs differ in respect of both mean service
time and induced request clusters. This is even more apparent when the
PDPs use different technologies (§ 5.3 and § 5.4);

request groupings §3.4.6.3 shows that there are performance differences
between the single and multi22 request groups in respect of their
performance with the continue-a policies;

host §3.4.6.3 also shows that performance is affected by differences in CPU,
memory and other resources. Generally, performance increases as more
resources become available, but there are exceptions, see § 5.4;

encoding format §3.5.1 indicates that the encoding used (XML versus JSON)
might also have an effect, e.g., because one is easier to parse than the other,
although this factor might be confounded with the PDP factor;

advanced When the policies and requests are generated using DomainManager, many
additional factors can be considered in performance experiments. We have
already seen the following

Policy specification redundancy Policy semantics can be over- or
under-specified. For example, rule clauses can be added that are redundant
in the sense that their removal does not change the policy decision from
Permit to Deny or vice-versa. Optionally, DomainManager is able to
generate over-specified policies.

Request Complexity Instance-level requests are generated by querying the
property graph. Optionally, the result set of each query can be limited to 1,
2 or all instances of TSCs satisfying the query. Thus the size and complexity
of the requests can thus be represented by the Request Complexity factor.

5.1 Adding more factors 184

TSCr, TCr When generating requests, it is possible to tweak the generated
requests to make them more or less similar to the policies from which they
were generated. These factors can be used to represent different mixes of
requests that might be more or less similar to their policy source.

However, as will be seen in this Chapter, many more factors are available. The
analysis in previous chapters has used visualisation (predominantly service time
distribution (density) plots, boxplots by factor-level combination and design plots)
and ANalysis Of VAriance (ANOVA) tables (to indicate what factors appear to be
statistically significant) and ANalysis Of Means (ANOM) tables (to estimate the
service time for a given factor when other factors are held constant).

This type of analysis is limited and does not scale particularly well to larger and more
complex sets of factors, for the following reasons:

• as factor numbers grow, analysing their interactions becomes more important
because, even though more of the behaviour in the dependent variable (service
time in this case) is explained by the extra factors, it becomes more difficult to
ascribe that behaviour to the factors themselves. Interactions also need to be
considered—they were not considered in their own right in the analysis
described in previous chapters;

• other types of plot (such as residual plots, effects plots, Cook’s Distance plots)
are more appropriate when trying to answer more complex statistical questions,
such as: Do all the service times come from a single distribution, or are there
contaminants from another distribution that could be affecting the results?

• ANOVA and ANOM can be used to compare given factor-level combinations,
but without a common statistical model it is difficult to make more general
statements, particularly relating to factor-level combinations that were not
measured in the experiment. Also, if the model includes significant interactions
of non-significant factors, the ANOM results need very careful interpretation.

Therefore the PARPACS (Butler, 2015b) component of ATLAS was developed to fill these
gaps. As will be seen in §5.3, it greatly enhances the utility of the access control
performance experiments, and integrates well with the existing DomainManager and
STACS components in the form of the ATLAS framework, see Figure 5.1.

5.2 PARPACS Overview 185

PARPACS

Specify
Models

DomainManager

Scenario
Parameters Policies

Requests

Measurements

Scenario
Parameters

Statistical
Performance

Model

STACS

Fig. 5.1 Overview of the ATLAS framework. Users specify static, policy and request
models along with scenario-specific parameters. DomainManager generates representative
policies and associated requests, which provide the input for the STACS measurement
process. PARPACS analyzes the raw measurement data and generates a statistical
performance model.

5.2 PARPACS Overview

PARPACS provides statistical analysis of STACS measurement data; it has two main
objectives:

1. to enable comparison of the decisions made by combinations of policies and
requests—PARPACS can check that the semantic effects (access control decisions)
are consistent across the parameters that vary in the experimental scenario;

2. to investigate the relationship between the factors in the experiment and the
measured service times, and enable derivation of statistical models predicting
access control performance.

For the latter objective, PARPACS extracts the required service times from the
measurements obtained using STACS. To do this, it employs a SQL SELECT statement
with conditions that select the required service times. In cases where the source
measurements have more factors than are needed in a given analysis scenario, a
(weighted) average can be taken over the unwanted factors and the resulting service
times will have only the required factor settings. As an example, let the measured
service times be associated with factors Fmeasured = {f1, f2, . . . , fp, fp+1, . . . , fq}, and
the desired service times be associated with factors Fanalysis = {f1, f2, . . . , fp}. Then a
simple query specifying just Fanalysis will return multiple rows per factor level
combination so, by convention, the mean of these service times is used as the

5.2 PARPACS Overview 186

representative value. In practice, this is achieved by applying a relational projection
with aggregation on duration by the AVERAGE function.

The resulting set of data is then loaded into an R (R Core Team, 2014) dataframe for
analysis. The first step is to explore the data using plots and statistical tests. The
objective of this exploration is to determine whether the data, in its present form, can
be fitted successfully with a linear model. If the data is not suitable yet, the
exploration indicates what steps to take to configure the data and/or the linear model
so that the resulting fitted model faithfully captures the information and hence the
predictive capacity of the data. The fitted model can then be used both to understand
the underlying relationship between the controlled factors (such as domain size,
memory allocation, etc.) and the time required to decide whether the request should
be permitted or not. These insights can then be used to: 1) diagnose performance
issues; 2) suggest how to resolve these issues; and 3) build systems that are more likely
to achieve their performance objectives than those based on more informal/less
objective performance models.

It should be noted that PARPACS attempts to build a statistical model, not a
mathematical model (Mason et al., 2003, Chapter 1). This is because of the apparent
difficulty of deriving a comprehensive mathematical model relating the controllable
factors to the measured service times. The statistical model also includes a way to
estimate the uncertainty in any of its predictions. However, the downside is that great
care needs to be taken to validate the statistical model and to interpret its features.
PARPACS is designed for maximum flexibility. For example, by editing a single
statement in one module, it is possible to change the model formula used when fitting
the linear model. It is then possible to rerun the analysis and compare with previous
versions. This feature is essential to facilitate the use of PARPACS for optimization of
PDP performance.

Building a reliable statistical model, particularly one with many terms, is a
challenging exercise. The basic form of a linear statistical model is

yi = f(a, xi) + εi, (5.1)

where yi represents the ith observation of the dependent variable (service time in this
case); xi represents the terms in the model (a selection of factors, numeric predictors
and their interactions) for the ith observation; a represents a set of model coefficients

5.3 Investigating PDP and resource choices 187

to be estimated when fitting the statistical model to the data, εi is the residual error
between the statistical model and the ith observation and f is a function (represented
in R by its model formula) that is linear in a.

In ideal circumstances, f contains the minimum set of terms needed to ensure that ε

is distributed as a Normal distribution, centred on zero and with a variance that is
“small” relative to the variability in the data. These principles will be used throughout
this chapter to ensure that a given model is reliable, before attempting a statistical
interpretation. In addition to employing extensive model validation techniques (Butler
et al., 1999), PARPACS uses effects plots (Fox, 2003) to aid understanding of factor and
interaction terms in the model, and how they influence the service time.

PARPACS was designed to support very general performance models. As such, it is not
limited to (models of) access control performance data. It is designed to support the
fitting of any model that can be expressed as a model formula, such as those used by
R. The PARPACS user captures the salient features of the statistical model in a set of 4
configuration files which each configure an aspect of how PARPACS operates. For
example, one file defines the SQL statement used to extract the relevant performance
data, another defines the model formula and related statistical model configuration,
etc. Together, these 4 files define the scenario that is investigated using PARPACS. For
the purpose of this dissertation, the scenarios relate to access control performance, but
other scenarios (such as web service performance) can be investigated in the same way.

5.3 Investigating PDP and resource choices

5.3.1 Scenario Motivation and Overview

The following scenario has been chosen to indicate how ATLAS can help to diagnose
performance problems in practice.

Assume that an organization has deployed an access control system that is
experiencing policy evaluation performance problems that manifest
themselves as increased latency as seen by users. The organization is
growing rapidly in size and complexity and senior management has
commissioned a study into the scalability of the existing system and in
particular, its ability to grow with increasing demand. A team of security

5.3 Investigating PDP and resource choices 188

consultants/experts is tasked with identifying the reasons for the
performance problems and of proposing some solutions.

The approach reflecting current best practice would be to treat the access control
system as a black box and to run tests on equivalent deployments, adding system
resources until adequate performance is achieved. If the system is viewed as a black
box with a predictable policy evaluation time, it would then be possible to reason
about the scalability of a given privilege management deployment. However, this
approach has significant weaknesses. The main problem is that the performance of the
underlying policy evaluation is difficult to characterize in terms of known quantities
such as system resources. Indeed, apparently small changes to the policies can have
dramatic effects on the service time per request. Therefore, apart from resulting in
inefficiencies, it is often difficult to say whether this “point solution” has validity in
the target deployment, particularly in the long term. It is precisely the lack of a
robust per-request policy evaluation service time estimation procedure that motivates
the use of the combined modelling/measurement procedure facilitated by ATLAS.

The security consultants decide to focus on one of the key interactions
where access controls are needed. The customer organization (assume it is
a Bank) frequently needs to buy in expertise from technical consultants,
such as system integrators, experts in web design, etc. Often such third
parties need privileged access to sensitive systems. While trust,
confidentiality and similar agreements are in place between the Bank and
suppliers of specialist services, it is also necessary for the Bank’s own
security staff to alter its access controls to ensure that external staff can
provide the required service while not compromising the security of the
Bank’s data. Given this scenario the consultants use ATLAS to investigate
the performance problems.

5.3.1.1 Influence of domain size on policies and requests

The consultants capture information about the problem domain and
use this to configure the static model (typically describing attributes and
relationships between persons (such as might be found in an LDAP
directory), or describing resources (such as might be found in a document
database with rich metadata)).

5.3 Investigating PDP and resource choices 189

The consultants also capture information on the access rules specified
by the business stakeholders. DomainManager is then used to create three
different sets of policies (and hence requests), depending on the size of the
static domain: small S, medium M and large L. A different form of size
measurement is concerned with the complexity, measured as the number of
conditions per request target component, which we term the request
cardinality, which can be single Sgl or multiple Mlt.

5.3.1.2 Choice of PDP

The consultants note that the organisation uses the reference classic
SunXACML PDP. They note that other PDPs exists, notably Enterprise
XACML (which claims to perform better because it indexes the policies for
faster lookups) and SunXACML 2.0 has been released with a revised
codebase that is claimed to be easier to maintain (since it uses the Spring
Framework for many tasks, replacing custom-built and hard to maintain
code). Consequently, the consultants consider performing experiments in
which three PDPs are compared: “classic” SunXACML SX, SunXACML
2.0 SX2 and Enterprise XACML EX.

5.3.1.3 Availability of computing resources: memory and number of
cores

The consultants also decide to test whether adding memory (RAM)
and/or processor cores can offset any performance shortfall arising from
the larger domain sizes, etc. Often when levels of performance decrease,
the response of the system administrators is to provide more computing
resources (more/faster processors, more memory, larger/faster disks, more
bandwidth, etc.). The consultants wish to investigate the degree to which
adding extra resources such as these would help to offset the expected
reduction in performance when the domain size increases.

5.3 Investigating PDP and resource choices 190

5.3.2 Review of Policy and Request Generation

Policy and request generation are the responsibility of the PolicyGen and RequestGen
(§ 4.4 on page 143 and § 4.5 on page 159) components of DomainManager. In this
section we briefly recall the main features of these procedures and highlight the main
settings that are the subject of the consultants’ performance investigation.

Listing 4.1 on page 130 is a listing specifying that, say for DomainSize = medium, 60
Document (Marketing Plan, Corporate Strategy) asset entities should be created,
with generated names beginning Part, Chapter, Section and Webpage, etc. Listing 4.4
on page 147 is a listing of the template policy used in this scenario. As can be seen, it
shares the hierarchical nature of XACML (groups contain rules and/or other groups)
and much of its terminology (Subject, Resource, etc.), but the encoding is very
different. Logical statements such as SUBJECT.0 can be combined with other
statements of the same class (such as SUBJECT.2) either by:

• conjunction (AND), e.g., R3.Subjct.0 takes two values SUBJECT.2 and
SUBJECT.0 which are ANDed together; or by

• disjunction (OR), e.g., R3.Action.0 is ORed with R3.Action.1.

In this example, there is a single template policy set G3 containing three template
policies G0, G1, G2. Several variants of the policy are policy, differing in relation to
choice of combining algorithm and placement of the fall-through Deny clause(s); the
setting that controls these choices is PolicyRef. The template policy is modified to
add semantic constraints according to the setting of ExtraTcType, such as
ExtraTcType = full.

The requests are generated by collecting the logical statements used in the template
policy rules (such as SUBJECT.2 and RESOURCE.3) and assembling them into
attribute-based requests, where the interpretation of the logical statement changes
from a filter (when used in a policy) to a question (when used in a request) like “CAN
subject_terms action_terms resource_terms?” In turn these attribute-based requests
can be used to generate instance-based requests. At this point, there is an option: to
list all the matching instance-based logical statements, or just one that represents that
set of statements. For example, an attribute-based logical statement such as
“Member.level = Senior" could map to any subset of “Member.name = Alice01 OR
Member.name = Alice03 OR Member.name = Alice06 ’.’ If we consistently choose just

5.3 Investigating PDP and resource choices 191

one, say “Member.name = Alice03” whenever such an option arises, we say the
resulting request has single cardinality (factor: RequestCardinality = Sgl (single)).
Otherwise, if all such optional statements are used, it has multiple request cardinality
(factor: RqCrd = Mlt (multiple)). Such “multi”-requests might arise when requests are
batched together either for reasons of performance (perhaps it is faster to decide on
one composite request rather than many smaller related requests) or because the
security property requires such a composite check (such as would be the case with
ethical wall policies (Brewer and Nash, 1989)).

5.3.3 Obtaining measured service times

Algorithm 5.1 Outline of the nested loop used in STACS for measurement runs.
Requests are batched for evaluation at the PDP—we do not currently measure queuing
delays for arriving requests.

for all {memory,nProc} ∈ {{2,4,6,8}, {4,8}} do
for all Dsize ∈ {S,M,L} do

for all Pdp ∈ {SX, SX2, EX} do
readPolicies()
for all RqCrd ∈ {S, M} do

for all Rep ∈ 0. . . 8 do
shuffledRequests ← shuffle(1. . . nreq)
for all Req ∈ shuffledRequests do

request ← readRequest(Req)
t ← measureServiceTime(Dsize, Pdp, RqCrd, request)
saveInDbTable(memory, nProc, Dsize, policyRef, Pdp, RqCrd, Rep, Req, t)

The procedure followed by STACS is shown in Algorithm 5.1. Note that the changes in
memory and nProc take place when the VM on which STACS is deployed is restarted
with the revised memory and nProc settings. STACS provides an adapter for each of the
three PDP implementations under test, so that each can perform the “readPolicies()”,
“readRequest()” and “measureServiceTime()” operations mentioned in Algorithm 5.1.

Lastly, it should be noted that the deeply nested loops (see Algorithm 5.1) and the
scale of the domain settings (see Table 5.2, which compares the policies and requests
generated by DomainManager using the template policy in Listing 4.4 with the simpler
continue set presented in (Krishnamurthi, 2003) and used for performance
experiments in (Butler et al., 2011; Griffin et al., 2012)) mean that between 1 and 2
million policy evaluations are performed per VM setting combination. Interestingly, it
was found that the greater stability achieved by running the experiment on a VM

5.3 Investigating PDP and resource choices 192

Table 5.2 Size and scale of the experimental runs.

Dsize Metric Generated Continue
#(VM setting combinations (memory,
nProc))

8 8

#(Number of Rules per policy set) 9 298
S

Avg. #(Conditions per policy set)
112

678M 639
L 1163

#(Request variants) 1280 400
#(reps) 9 100
Avg. #(Conditions per request (RC =
Sgl))

4 3

S Avg. #(Conditions per
request (RC = Mlt))

15
6M 80

L 145

server in a data center rather than a user machine meant that #reps could be reduced
from 100 (for earlier continue-a runs) to 9 when using policies and requests
generated by DomainManager. Note that these operations are augmented with other
tasks (notably, managing the service time data) during a STACS run. Thus STACS run
times, on typical hardware, are exhaustive and can take several hours, during which
time the CPU usage of the server is high. This observation supports the assertion that
such runs need to be performed offline in a dedicated testbed, rather than against the
production access control deployment.

5.3.4 Deriving the performance model

Before estimating the performance model, it is necessary to examine the data, to
identify any unexpected features and to prepare the ground so that the statistical
model used for predicting performance is a faithful representation of the measured
data and, by extension, of the service times that might be encountered in practice.

While it is possible to make qualitative judgments regarding the factors and their
effects based purely on the data, a model is needed to predict performance for other
settings and, more importantly, to estimate the uncertainty in all predictions (even for
those where the settings were part of the data used to estimate the model). Fitting a

5.3 Investigating PDP and resource choices 193

(a) All 9 replicates.
0.

00
5

0.
01

0
0.

01
5

Factors

m
ed

ia
n

of
 d

ur
at

io
n

EX

SX

SX2

N

Y

S

M

L

Sgl

Mlt 2

4
6

8
4

8

0

1

2

3
4
5
6
78

Pdp Decisn Dsize RqCrd Memory nProc Rep

(b) Middle 3 replicates.

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4

Factors

m
ed

ia
n

of
 d

ur
at

io
n

EX

SX

SX2

N

Y

SM

L

Sgl

Mlt
2

4

6

8
4

8 3

4
5

Pdp Decisn Dsize RqCrd Memory nProc Rep

Fig. 5.2 Median service times for each level of each factor, as well as the overall median,
when either all replicates are included (Figure 5.2a) or only the middle three replicates
are included (Figure 5.2b).

model to such a large and complex data set requires care. A good fit is expected to
have the following characteristics (Croarkin and Tobias, 2015, §1.2;4.4.4) and (Butler
et al., 1999):

• the residuals ei = yi − f(xi) have equal variance σ2 across the domain of the
data;

• the distribution of the residuals is unimodal and symmetric around zero,
preferably Normal;

• the residuals have no structure—all structure in the data is captured in the
model.

These desirable properties are used to check whether the model is adequate, in which
case internal validity is assured.

5.3.4.1 Step 1: Restriction of reps

The simplest exploratory plot is a design plot (R Core Team, 2014, plot.design()) of
the main factors and their levels, with the median of the service times per factor-level
setting, together with the overall median, as shown in Figure 5.2. Note that, despite
the fact that the requests arrive at the PDP in random order (due to the “shuffle()”

5.3 Investigating PDP and resource choices 194

(a) All 9 replicates.

−6 −4 −2 0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

logTransDuration

D
en

si
ty

Rep

0
1
2
3
4
5
6
7
8

(b) Middle 3 replicates.

−7 −6 −5 −4 −3 −2 −1 0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

logTransDuration

D
en

si
ty

Rep

3
4
5

Fig. 5.3 Logarithm of the service time distributions, comparing different groups of
replicates: all 9 replicates versus the middle three replicates only. When all replicates
are included, the distributions show more variability in shape.

operation in Algorithm 5.1), there is a clear downward trend in service times as the
replication index increases. It is known that the Java Virtual Machine (JVM) uses
caching of commonly used objects, so we believe that, over time, the JVM optimizes
its object cache, resulting in shorter average execution times—it “remembers” requests
it has seen before. Note that this feature is provided by the JVM without any need for
intervention by the developer. In an enterprise scenario we would expect a majority of
frequent requests and a smaller number of less frequently occurring requests, so the
(average) object cache hit rate would be quite high as seems to be the case with the
middle 3 replicates here. In supporting evidence, we note that the service times also
converge in a distributional (shape) sense as the Rep index increases, suggesting this is
a systematic effect across all other factors, see Figure 5.3. The logarithm of service
time durations is used in these density plots, otherwise the range of service time
durations is so great that it is difficult to see the differences. Clearly, the distributions
are quite different when the full range of replicates is used, but they have settled into
a more consistent pattern when only the middle replicates are concerned. This, per
request analysis, is consistent with the median analysis in Figure 5.2. Therefore, we
analyze further only the middle 3 (of 9 replicates) as a compromise between one
extreme, where no caching occurs because all requests are new arrivals, to the other

5.3 Investigating PDP and resource choices 195

(a) Residuals: main factors only.

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●
●●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●●●

●

●

●●●
●

●●●
●●●

●●●●●●
●●●

●
●●

●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●

●●
●

●
●
●

●
●●

●●●
●●●●●●●
●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●

●●
●

●
●●

●●●●●●
●●●●●●●●●

●●●
●●●

●●●●●●
●●●

●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●
●●●●●●●●●

●●●●●●●●●●●●

−0.05 0.00 0.05 0.10 0.15

−
0.

1
0.

0
0.

1
0.

2
0.

3

Fitted values

P
ea

rs
on

 r
es

id
ua

ls

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●
●●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●●●

●

●

●●●
●

●●●
●●●

●●●●●●
●●●

●
●●

●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●

●●
●

●
●
●

●
●●

●●●
●●●●●●●
●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●

●●
●

●
●●

●●●●●●
●●●●●●●●●

●●●
●●●

●●●●●●
●●●

●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●

●●●
●●●●●●●●●

●●●●●●●●●●●●

198196

(b) Quantile-Quantile plot: main factors
only.

−3 −2 −1 0 1 2 3

−
1

0
1

2
3

4

t Quantiles
S

tu
de

nt
iz

ed
 R

es
id

ua
ls

(li
ne

ar
M

od
el

)

● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●

●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●

●

●
●●●●●●

●●
●●●
●
●●●●●●●

●●●●●
●●
●●●●●

●

●●●
●●

●
●

●

●
●

●

● ● ●198196197

(c) Residuals: all factors and their inter-
actions.

●
●
●
●●
●

●●●
●
●
●●●●
●
●●

●

●

●

●●●
●●
●

●
●
●
●●
●
●●
●
●●
●
●●
●
●●●
●●●

●

●

●

●●
●●

●●

●

●●
●
●●

●

●●

●

●

●

●

●●

●●
●

●
●
●
●●●
●●
●
●●●
●●
●
●●●
●●
●
●●●
●
●
●

●
●●●●
●●●●●●●
●●●
●
●●
●
●●
●
●●
●
●●
●
●●
●●
●
●●
●
●
●●
●
●●
●
●●
●
●
●

●
●●
●●●
●
●●
●●●
●
●●
●

●●

●
●
●

●
●
●

●
●●
●
●
●

●
●
●

●
●
●

●
●●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●●
●
●●
●

●●
●●
●

●
●
●

●●
●
●●●
●
●
●

●
●
●

●●
●
●●●●●●
●●
●
●●●
●●●
●

●
●
●●●

●

●●

●

●●

●

●

●

●

●
●

●
●
●

●
●●
●
●
●

●
●

●

●●●
●●●
●●
●
●●
●
●●●
●●●
●●
●

●
●
●
●●●
●●●
●●●

●
●
●
●
●●
●●●
●
●
●
●●
●
●●●
●●
●
●●●
●●
●
●●●●●●

●
●
●

●

●
●

●
●●
●●
●
●
●●

●

●
●

●
●●
●
●
●

●
●●
●
●
●
●●●
●●●
●●●
●●●
●●●●●●

●
●

●

●

●

●●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●
●

●

●
●

●
●
●

●

●
●

●
●
●

●

●
●

●
●●

●
●
●

●
●●
●●
●
●●
●
●
●

●

●●
●
●●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●
●

●

●
●

●
●
●

●

●
●

●
●●

●
●
●

●●
●
●●
●
●●
●

●
●

●

●●
●
●●
●
●●●

●
●
●
●●●
●
●
●
●
●●

●

●●
●
●●
●●●
●
●
●

●

●●

●
●
●
●●
●
●
●●

●
●●
●●
●

●
●
●

●
●
●

●

●
●

●●●
●
●
●
●
●●

●

●●

●
●●
●●●
●
●
●

●
●
●

●
●●
●●
●
●
●●

●
●
●

●
●
●
●●
●
●
●●

●

●

●

●
●●
●●

●

●
●
●

●
●

●

●
●
●
●●
●

●

●
●

●

●

●

●●

●

●
●●

●
●
●

●

●
●

●
●●
●
●●

●

●●

●

●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●●

●
●●

0.0 0.1 0.2 0.3 0.4

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Fitted values

P
ea

rs
on

 r
es

id
ua

ls

●
●
●
●●
●

●●●
●
●
●●●●
●
●●

●

●

●

●●●
●●
●

●
●
●
●●
●
●●
●
●●
●
●●
●
●●●
●●●

●

●

●

●●
●●

●●

●

●●
●
●●

●

●●

●

●

●

●

●●

●●
●

●
●
●
●●●
●●
●
●●●
●●
●
●●●
●●
●
●●●
●
●
●

●
●●●●
●●●●●●●
●●●
●
●●
●
●●
●
●●
●
●●
●
●●
●●
●
●●
●
●
●●
●
●●
●
●●
●
●
●

●
●●
●●●
●
●●
●●●
●
●●
●

●●

●
●
●

●
●
●

●
●●
●
●
●

●
●
●

●
●
●

●
●●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●●
●
●●
●

●●
●●
●

●
●
●

●●
●
●●●
●
●
●

●
●
●

●●
●
●●●●●●
●●
●
●●●
●●●
●

●
●
●●●

●

●●

●

●●

●

●

●

●

●
●

●
●
●

●
●●
●
●
●

●
●

●

●●●
●●●
●●
●
●●
●
●●●
●●●
●●
●

●
●
●
●●●
●●●
●●●

●
●
●
●
●●
●●●
●
●
●
●●
●
●●●
●●
●
●●●
●●
●
●●●●●●

●
●
●

●

●
●

●
●●
●●
●
●
●●

●

●
●

●
●●
●
●
●

●
●●
●
●
●
●●●
●●●
●●●
●●●
●●●●●●

●
●

●

●

●

●●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●
●

●

●
●

●
●
●

●

●
●

●
●
●

●

●
●

●
●●

●
●
●

●
●●
●●
●
●●
●
●
●

●

●●
●
●●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●
●

●

●
●

●
●
●

●

●
●

●
●●

●
●
●

●●
●
●●
●
●●
●

●
●

●

●●
●
●●
●
●●●

●
●
●
●●●
●
●
●
●
●●

●

●●
●
●●
●●●
●
●
●

●

●●

●
●
●
●●
●
●
●●

●
●●
●●
●

●
●
●

●
●
●

●

●
●

●●●
●
●
●
●
●●

●

●●

●
●●
●●●
●
●
●

●
●
●

●
●●
●●
●
●
●●

●
●
●

●
●
●
●●
●
●
●●

●

●

●

●
●●
●●

●

●
●
●

●
●

●

●
●
●
●●
●

●

●
●

●

●

●

●●

●

●
●●

●
●
●

●

●
●

●
●●
●
●●

●

●●

●

●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●●

●
●●

260

202

(d) Quantile-Quantile plot: all factors and
their interactions.

−3 −2 −1 0 1 2 3

−
5

0
5

10

t Quantiles

S
tu

de
nt

iz
ed

 R
es

id
ua

ls
(li

ne
ar

M
od

el
)

●

●

●

● ●

●

●●

●
●
●
●
●
●

●●●●
●●●●

●●●●
●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●

●●●●
●●●

●●

●
●●

●●●

●●
●
●

●

●

●

● ●
●

●

●260

202

254

Fig. 5.4 Comparison of the Main-Only and Full Factorial models for the untransformed
middle replicates (indexed 3,4,5): residuals and Quantile-Quantile plots. If the residuals
had a Normal distribution, the quantile-quantile plot would be a straight line.

extreme, where (nearly) all evaluations become cache lookups because the requests are
repeat arrivals.

5.3 Investigating PDP and resource choices 196

5.3.4.2 Step 2: Adding interaction terms

The first consideration is whether the model contains terms (factors in this case) that
are sufficient to explain the variability of the data. In the first (main factors only)
model, only the factors in Figure 5.2b are included as terms in the model. In the
second, extra terms are added: all 2-, 3-, 4-, 5- and 6-way interactions, so the model is
now full factorial. As can be seen in Figure 5.4a, the (main-only) set of residuals still
has lots of structure, most of which no longer exists in the second (full factorial)
model, implying that the extended model accounts for more of the structure in the
data with less of that structure left in the residuals. Another way of analysing the
residuals is to consider whether they follow a Normal distribution. In that regard, a
convenient method of visualising differences between a standardised empirical
distribution (of the residuals of the fit to the measured service times) and a reference
distribution (the Normal distribution centred on zero with unit variance) is to use a
quantile-quantile plot (Lane, 2015, §8.1). The quantile-quantile plots confirm that
there is systematic underfitting (see Figure 5.4b) unless the additional interaction
terms are added. Referring to Figure 5.4d, there is very good agreement between the
residuals and the desired Normal distribution, except in the tails, where it appears the
residual distribution has fatter tails than the Normal distribution. This “lack of fit” is
addressed later, but for now we note that the full factorial model is used in preference
to the simpler “main factors-only” model.

5.3.4.3 Step 3: Transforming the data

Analysis of the residuals indicates that the model does not capture all the “behavior”
in the data (see Figure 5.4c), and the residuals are not Normally distributed (see
Figure 5.4d). The scope to add more terms, to make the model more flexible and
reduce its bias, is limited, because the model is already full factorial. However, one of
the standard techniques in regression analysis, particularly when presented with a lack
of fit with no obvious terms to be added to the model, is to consider a transformation
of either the predictor variables or the dependent variable. The latter is often easier to
apply and a suitable Box-Cox transformation (Fox and Weisberg, 2011, §6.4.1)
parameter λ can be estimated by examining the log-likelihood plot in Figure 5.5.

5.3 Investigating PDP and resource choices 197

−3 −2 −1 0 1 2 3

−
80

00
−

60
00

−
40

00
−

20
00

λ

lo
g−

Li
ke

lih
oo

d

 95%

Fig. 5.5 Maximum-likelihood estimation of the Box-Cox parameter λ for the full
factorial model; this plot motivates the choice of λ = 1

3 .

The Box-Cox transformation has the following definition

ytrans = yλ − 1
λ

, when λ ̸= 0;

= log y otherwise. (5.2)

The dependent variable, to which the Box-Cox transformation is to be be applied, is
the service time duration in this case. As can be seen from Figure 5.5, the log
likelihood is maximised when λ is approximately 1

3 . Therefore, we apply the
transformation and consider what improvements, if any, are obtained when the
transformed data is submitted for anaylsis. In this case, the improvement we seek is
that the variance of the residuals is more constant over the range of the service time
data. § 6.4.1 on page 216 defines other types of improvement, and how different
procedures can be used to define power transformations to achieve those improvement
objectives.

Comparing Figure 5.4c with Figure 5.6a we can see that the distribution of the
residuals has less variation over the range of the measured service times, so the
structure remaining in the residuals is now negligible, as desired. Comparing
Figure 5.4d with Figure 5.6b we see that agreement between the residuals and
reference Normal quantiles extends far into the tails, suggesting that the residuals are
much closer to being Normally distributed, as desired. Good improvement can be seen
when comparing Figure 5.7b against Figure 5.7a, where it can be seen that there is no

5.3 Investigating PDP and resource choices 198

(a) Residuals.

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

−2.5 −2.0 −1.5 −1.0

−
0.

02
0.

00
0.

02
0.

04

Fitted values

P
ea

rs
on

 r
es

id
ua

ls

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

280
577

(b) Quantile-Quantile plot.

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

t Quantiles

S
tu

de
nt

iz
ed

 R
es

id
ua

ls
(li

ne
ar

M
od

el
)

● ●
● ●

●●●●
●●●●●

●●
●●

●●●
●●●

●●●●●●
●●●
●●●●

●●●●●●●●
●●●●
●●●●●●●●●●●

●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●

●●●
●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●
●●●●●●●

●●●●●●●
●●
●●●●●●●

●●●●●
●●●●●

●●
●●●

●●●
●●●

●
●●

●
●●●●●●

●

●

●

●

●
●

●280
577

625

Fig. 5.6 Analysis of the residuals of all factors and their interactions of the transformed
model when λ = 1

3 , for comparison with equivalent plots for untransformed data
(Figure 5.4c and , respectively).

Table 5.3 Levene test for homogeneity of variance: Reps 3–5, full factorial model,
λ = 1

3 .

Df F value Pr(>F)
Group 287 0.49 1

576

significant trend and the variance is approximately constant over the range of the
fitted data, as desired. The Levene test for homogeneity of variance (Croarkin and
Tobias, 2015, §1.3.5.10) suggests, as enumerated in Table 5.3, that there is no reason
to doubt that subsets of the residuals have equal variance, even if data were to be
collected again and a new model (of the same type) fitted to the data.

Also note that, even with the Box-Cox transformation, the residuals suggest that the
interaction terms are still needed, and the combination of the two refinements yields a
better model than either refinement alone.

The combined Global Validation of Linear Model Assumptions (GVLMA) test (Peña
and Slate, 2006) suggests that most assumptions of the linear model are met. The
exception is the heteroscedasticity of the residuals: the variance of the error (as
estimated by the residuals) is not constant over the range of the fit. However, we
discount this concern because the plots suggest that much of the remaining

5.3 Investigating PDP and resource choices 199

(a) Untransformed data

0.001 0.002 0.005 0.010 0.020 0.050 0.100 0.200 0.500

1e
−

03
1e

−
02

1e
−

01
1e

+
00

1e
+

01

Fitted Values

A
bs

ol
ut

e
S

tu
de

nt
iz

ed
 R

es
id

ua
ls

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

(b) Transformed data

1.0 1.5 2.0 2.5 3.00.
00

1
0.

00
5

0.
05

0
0.

50
0

Fitted Values

A
bs

ol
ut

e
S

tu
de

nt
iz

ed
 R

es
id

ua
ls

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

Fig. 5.7 Spread-level plot of full factorial model residuals, comparing those derived
from the original untransformed data with those from the transformed (λ = 1

3) data.

Table 5.4 Global Validation of Linear Model Assumptions: Reps 3–5, full factorial
model, λ = 1

3 .

Value p-value Decision
Global Stat 10.2 0.037 Assumptions NOT satisfied!

Skewness 0.559 0.455 Assumptions acceptable.
Kurtosis 2.40 0.122 Assumptions acceptable.

Link Function 0.00 1.00 Assumptions acceptable.
Heteroscedasticity 7.26E+00 0.007 Assumptions NOT satisfied!

non-constant error variance is caused by the fact that there are unavoidable “gaps” in
the data (see Figure 5.6a), where the variance is unknown and hence the test cannot
assume that it is constant across those gaps.

The dramatic reduction in the number of outliers indicated in Figure 5.8b is very
encouraging, as is the fact that the Cook’s distance plot shows remarkable consistency
across all observations. This plot can be compared with the untransformed data case
(see Figure 5.8a) where clear evidence of the presence of outliers, lack of fit and
high-leverage points is presented.

5.3 Investigating PDP and resource choices 200

(a) Untransformed data (λ = 1).

0.
00

0.
05

0.
10

0.
15

C
oo

k'
s

di
st

an
ce

●●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●●●●●●●●●●●●
●
●●●●●●●●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●●●●●●●●●
●
●
●
●●●

●

●
●
●●

●●
●●●

●

●
●
●●●●●●●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●●●●●●●●●●●●
●
●●●●●●●●●●

●●●●●●●●●
●●●●●●

●●●

−
5

0
5

10
S

tu
de

nt
iz

ed
 r

es
id

ua
ls

●●
●●●
●●●●●●●●●●

●●●
●
●
●
●●●●●●

●●●
●●●
●●●●●●

●●
●
●●●●●●

●
●
●
●●●
●
●●
●
●●
●
●●
●
●●

●

●
●

●
●●
●●●
●
●●
●●●
●●●●●●

●●
●
●●●●●●●●●

●●
●
●●●●●●●●●●●●●●●

●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●

●●●
●●●●●●

●●●●●●●●●
●
●●
●
●●
●
●●
●
●●
●●●
●
●●
●●●
●●●
●
●●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●●

●
●

●

●
●
●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●
●●
●
●●
●●
●
●●●
●●
●
●●●
●●●
●●
●
●●●●●●●●●●●●

●●●●●●
●
●●●
●●
●

●●

●

●●
●
●
●

●
●
●

●
●
●
●
●●
●●●
●●
●
●●●●●●●●●

●●
●
●●●●●●

●●●
●
●●
●●●●●●●●●

●
●●
●●●●●●

●●●
●●●
●●●●●●●●●

●●●●●●●●●
●
●
●

●
●
●
●●●
●●●
●●●
●
●
●
●●●
●●●
●
●●
●●●●●●

●●●●●●●●●●●●●●●
●
●

●

●

●

●●

●

●

●

●
●

●●
●●

●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●●
●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●
●

●
●●
●
●
●
●●●

●

●●
●
●●
●
●●
●●●
●
●
●
●●●
●●●●●●

●●
●
●●●
●●●

●

●
●

●

●
●

●
●●

●
●
●

●
●●

●

●
●

●●
●
●
●
●
●
●●
●
●
●
●●●
●●●
●●●
●●
●
●●●
●●●
●●●
●
●●
●●●●●●

●●●
●
●●
●●●●●●

●●●
●
●●
●●●
●●●
●●●
●
●●
●●●
●●●
●●●
●
●
●
●●●
●●●
●●●
●
●●
●●●●●●

●●●
●
●●
●●●
●●●
●●●
●
●●
●●●
●●●
●●●
●
●
●

●●●
●●
●
●●●
●
●
●
●
●●
●●
●

●
●●

●
●
●
●●
●
●●●
●
●●

●
●
●
●
●●●●●

●
●●

●

●

●

●●
●
●●

●

●
●
●

●
●

●

●
●●
●●
●

●

●
●

●

●

●

●●

●

●●●

●
●●

●

●
●

●

●●
●
●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B
on

fe
rr

on
i p

−
va

lu
e

●●

●●

●

●
●

●

●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●●

●●

●

●

●

●

●●●

●

●●

●●●

0 200 400 600 800

Index

(b) Transformed data (λ = 1
3).

0.
00

0.
05

0.
10

0.
15

C
oo

k'
s

di
st

an
ce

●●
●
●●●●●●●●●●●●●●●

●
●

●

●●●●●
●●●●●●●●●●●●●●●

●
●●●●●●

●
●
●
●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●
●
●
●●
●●
●
●
●●
●●
●
●
●●
●
●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●
●
●●
●
●
●
●
●●
●
●●
●
●●
●
●●
●●
●
●●●●●●●●●●●

●
●●●
●
●●●●●

●
●●●●●●

●●●●●●●
●
●

●
●●
●

●

●
●
●
●●●●●●

●
●●●●●●●

●●
●●
●
●●●●●

●
●
●●●
●
●
●●●●●●●

●

●

●

●
●
●

●

●

●

●
●
●●
●
●
●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●
●
●
●●●●●●●●●●●●●●●●●●

●
●●●●●

●
●●
●
●●
●
●
●●
●
●●
●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●

●
●
●●
●
●●●●●●●●●●

●
●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●
●
●●

●

●
●●●●●●

●
●●
●

●
●
●●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●
●●●
●
●
●
●●●●●

●
●●
●●
●
●
●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●
●

●

●●
●●●

●
●
●

●
●
●

●
●●

●

●

●

●●

●
●●
●
●
●

●

●
●
●
●

●

●

●
●
●
●
●
●
●
●●●
●
●
●●●●●●●●●●

●●
●
●●●●●●

●

●

●●

●
●●
●
●
●

●

●
●●●

●

●
●
●
●
●●
●
●●●●

●
●●●●●●●●●●●

●
●
●
●●●●●●●●●

●
●
●
●●●
●
●
●●●●

●

●
●●●●●●●

●
●
●●
●●
●
●
●●●
●●
●●
●
●●
●
●
●●
●
●●
●
●
●

●
●
●●●
●
●
●●●●

●

●
●●●●●●●

●
●
●●
●●
●
●
●●●
●●●●

●
●
●●
●
●●
●
●
●●●
●
●
●
●●●●●●●●●●●

●●●●●●●
●
●
●●
●
●
●●●●●●●●●

●
●
●●●●●●●●●●

●

●

●

●●●●●
●●●●

●
●
●●●●●●●

●

●
●●
●
●
●●
●
●●●
●
●●
●
●
●●●●●●●

−
10

−
5

0
5

10
S

tu
de

nt
iz

ed
 r

es
id

ua
ls

●

●

●

●●

●

●●
●
●

●
●
●
●●

●

●●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●
●
●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●
●
●●
●
●

●
●

●●●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●
●
●
●

●
●

●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●●

●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●●

●

●●

●

●
●●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●
●
●

●
●
●
●●

●

●

●

●●

●

●

●

●
●
●●
●●
●●
●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●
●

●

●
●

●●●
●
●
●
●●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●●

●

●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B
on

fe
rr

on
i p

−
va

lu
e

●●●

●

●●

0 200 400 600 800

Index

Fig. 5.8 Outlier, leverage and influence analysis for the full factorial model applied
to untransformed data (λ = 1) and transformed data (λ = 1

3). With the transformed
model, each observation has about the same leverage (measured by Cook’s distance (Fox
and Weisberg, 2011, §6.3.3)) as its peers, hence the fit is very stable, as desired. The
same feature applies to the studentised residuals (where they have been scaled by the
estimated standard error, which itself is much smaller for the transformed model).
Lastly, the Bonferroni-corrected probability of each observation being generated by
chance (and not being a contaminant from a different distribution, and hence an outlier)
is very close to 1 in all cases except one, where the probability is approximately 0.93,
which exceeds the critical value 0.05. Hence, we accept the null hypothesis that there
is no strong evidence of an outlier in the transformed data, relative to the full factorial
model.

.

5.4 Scenario predictions 201

There is overwhelming evidence that the model has internal validity, and
Figure 5.8 presents partial evidence of its external validity.

5.4 Scenario predictions

The nature of the model is that the terms are treated either as factors (PDP and
Decision) or as ordered factors (Dsize, RequestComplexity, memory and nProc). Each
of these (ordered) factors has a finite number (2, 3 or 4) of levels. In the case of
unordered factors, the model estimates should be viewed as point estimates: they are
valid only for that level of the factor. As an example, the model can predict the
performance of any one of the existing PDPs for which measurements were taken, but
the performance of a new PDP cannot be predicted based on the available data from
the existing PDPs. In the case of ordered factors, it is possible to interpolate existing
model estimates in order to estimate the performance at a new intermediate setting.
As an example, if the domain size increases to lie somewhere in the range [S, M, L], it
would be possible to estimate the performance at this intermediate size setting,
without the need to collect additional data.

For unordered factors such as PDP, new settings require new measurements
and estimation of a new statistical model. For ordered factors such as Dsize,
RequestComplexity, memory and nProc, the existing statistical model can be
used to estimate the performance at intermediate settings of those factors.

After estimating a model, and validating that model, the model may be used to
predict the access control performance under specified conditions. In this regard, the
performance is measured as the mean service time to process an access request. The
security consultants may wish to find the answers to questions of the following form:

• Does the system meet its performance objective, such as that the expected
service time E(T) = t̄ ≤ ttol?

• What is/are the limiting settings at which the expected service time just
achieves its performance objectives: E(T) = t̄ = ttol?

5.4 Scenario predictions 202

The critical feature is that the model estimates the effects of each factor level
combination (see Fox (2003)). In the case of a single ordered factor, it is possible to
use an interpolation scheme such as barycentric interpolating polynomials (Berrut and
Trefethen, 2004) to estimate its effect at intermediate values. More generally, if several
parameters (such as Dsize and ReqCrd (equivalent to request complexity)) are varied,
the corresponding effects table should be consulted. If the service time duration is to
be predicted at one of the grid points, its value (and uncertainty) can be selected from
the table. If not, a multivariate grid interpolation procedure, such as that described
in (Gasca and Sauer, 2000) can be used to estimate the service time duration at
intermediate points. Because of the high degree of precision (equivalently: small
uncertainty) in the effect estimates at the grid points, the uncertainty is dominated by
any systematic errors arising from the choice of polynomial fit between the grid points.

The data measured in the experiment is sufficiently rich that a full factorial model can
be estimated, and hence the effects can be estimated for each combination of each
factor at the factor levels used in the experiment. Figure 5.9 highlights some of the
more interesting features. Firstly, the PDP, Dsize and RqCrd factor main effects are
significant. Note that the error bars at the estimated points are tiny compared to the
variation in the response (i.e., the service times) with each of these factors. Since DSize

is an ordered factor with 3 levels, we can see that, if other factors are held constant,
the service time increases roughly linearly with the domain size (see Figure 5.9b). If
we look at the two-factor interactions, such as Dsize with PDP in Figure 5.9d, we see
that the effects are additive: the SX2 PDP performs particularly poorly as the domain
size increases, consistent with the observation earlier that its performance is not
scalable in respect of domain size. If we consider both Dsize and RqCrd, which each
measure an aspect of the size and complexity of the domain, Figure 5.9e indicates that
this is also additive: larger domains (for policy purposes) and more complex requests
result in longer policy evaluation times, and we can even quantify the difference.

Not all interactions show such properties—sometimes changing one factor (such as
Decision or memory) has little difference on another (such as RqCrd): see Figure 5.9g
where the two traces are very similar, apart from a vertical translation due to differing
RqCrd. We also notice that the variability in performance with respect to memory is
much less than that for RqCrd. Also, contrary to expectation, service times do not
decrease monotonically as memory is added, but the slight increase in service times
when memory is 6Gb is negligible in this case.

5.4 Scenario predictions 203

Lastly, if we select the three-factor interaction of Dsize, PDP and RqCrd we can see
that their additive nature persists even for such higher-order interactions (see
Figure 5.9h). That is, the worst-possible performance occurs with the “slowest” PDP
with the largest domain and the most complicated requests, and the contributions of
each of these factors is mostly additive.

5.4 Scenario predictions 204

(a) Effects plot: PDP.

Pdp

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

−2.0

EX SX SX2

●

●

●

(b) Effects plot: Dsize.

Dsize

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

−2.0

S M L

●

●

●

(c) Effects plot: RqCrd.

RqCrd

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

−2.0

Sgl Mlt

●

●

(d) Effects plot: Dsize:PDP.

Dsize

−2.6

−2.4

−2.2

−2.0

−1.8

−1.6

S M L

● ● ●

 : Pdp EX

● ● ●

 : Pdp SX

−2.6

−2.4

−2.2

−2.0

−1.8

−1.6

●

●

●

 : Pdp SX2

(e) Effects plot: Dsize:RqCrd.

Dsize

−2.6

−2.4

−2.2

−2.0

−1.8

−1.6

S M L

●
● ●

 : RqCrd Sgl

S M L

●

●

●

 : RqCrd Mlt

(f) Effects plot: PDP:RqCrd

Pdp

−2.6

−2.4

−2.2

−2.0

−1.8

−1.6

EX SX SX2

●

●

●

 : RqCrd Sgl

EX SX SX2

●

●

●

 : RqCrd Mlt

(g) Effects plot: RqCrd:memory.

Memory

−2.6

−2.4

−2.2

−2.0

−1.8

−1.6

2 4 6 8

●

●
●

●

 : RqCrd Sgl

2 4 6 8

●
● ● ●

 : RqCrd Mlt

(h) Effects plot:
Dsize:PDP:RqCrd.

Dsize

−2.5

−2.0

−1.5

−1.0

S M L

● ● ●

 : Pdp EX
 : RqCrd Sgl

● ● ●

 : Pdp SX
 : RqCrd Sgl

S M L

●
●

●

 : Pdp SX2
 : RqCrd Sgl

● ●
●

 : Pdp EX
 : RqCrd Mlt

S M L

● ● ●

 : Pdp SX
 : RqCrd Mlt

−2.5

−2.0

−1.5

−1.0

●

●

●

 : Pdp SX2
 : RqCrd Mlt

(i) Effects plot:
Dsize:PDP:Decision:RqCrd:memory.

Memory

−2.5
−2.0
−1.5
−1.0

2 4 6 8

● ● ● ●

 : Dsize S
 : Pdp EX

 : Decisn N
 : RqCrd Sgl

● ● ● ●

 : Dsize M
 : Pdp EX

 : Decisn N
 : RqCrd Sgl

2 4 6 8

● ● ● ●

 : Dsize L
 : Pdp EX

 : Decisn N
 : RqCrd Sgl

● ● ● ●

 : Dsize S
 : Pdp SX

 : Decisn N
 : RqCrd Sgl

2 4 6 8

● ● ● ●

 : Dsize M
 : Pdp SX

 : Decisn N
 : RqCrd Sgl

● ● ● ●

 : Dsize L
 : Pdp SX

 : Decisn N
 : RqCrd Sgl

● ● ● ●

 : Dsize S
 : Pdp SX2

 : Decisn N
 : RqCrd Sgl

● ● ● ●

 : Dsize M
 : Pdp SX2

 : Decisn N
 : RqCrd Sgl

● ● ● ●

 : Dsize L
 : Pdp SX2

 : Decisn N
 : RqCrd Sgl

● ● ● ●

 : Dsize S
 : Pdp EX

 : Decisn Y
 : RqCrd Sgl

● ● ● ●

 : Dsize M
 : Pdp EX

 : Decisn Y
 : RqCrd Sgl

−2.5
−2.0
−1.5
−1.0

● ● ● ●

 : Dsize L
 : Pdp EX

 : Decisn Y
 : RqCrd Sgl

−2.5
−2.0
−1.5
−1.0

● ● ● ●

 : Dsize S
 : Pdp SX

 : Decisn Y
 : RqCrd Sgl

● ● ● ●

 : Dsize M
 : Pdp SX

 : Decisn Y
 : RqCrd Sgl

● ● ● ●

 : Dsize L
 : Pdp SX

 : Decisn Y
 : RqCrd Sgl

● ● ● ●

 : Dsize S
 : Pdp SX2

 : Decisn Y
 : RqCrd Sgl

● ● ● ●

 : Dsize M
 : Pdp SX2

 : Decisn Y
 : RqCrd Sgl

● ● ● ●

 : Dsize L
 : Pdp SX2

 : Decisn Y
 : RqCrd Sgl

● ● ● ●

 : Dsize S
 : Pdp EX

 : Decisn N
 : RqCrd Mlt

● ● ● ●

 : Dsize M
 : Pdp EX

 : Decisn N
 : RqCrd Mlt

● ● ● ●

 : Dsize L
 : Pdp EX

 : Decisn N
 : RqCrd Mlt

● ● ● ●

 : Dsize S
 : Pdp SX

 : Decisn N
 : RqCrd Mlt

● ● ● ●

 : Dsize M
 : Pdp SX

 : Decisn N
 : RqCrd Mlt

−2.5
−2.0
−1.5
−1.0

● ● ● ●

 : Dsize L
 : Pdp SX

 : Decisn N
 : RqCrd Mlt

−2.5
−2.0
−1.5
−1.0

● ● ● ●

 : Dsize S
 : Pdp SX2

 : Decisn N
 : RqCrd Mlt

● ● ● ●

 : Dsize M
 : Pdp SX2

 : Decisn N
 : RqCrd Mlt

● ● ● ●
 : Dsize L

 : Pdp SX2
 : Decisn N

 : RqCrd Mlt

● ● ● ●

 : Dsize S
 : Pdp EX

 : Decisn Y
 : RqCrd Mlt

● ● ● ●

 : Dsize M
 : Pdp EX

 : Decisn Y
 : RqCrd Mlt

● ● ● ●

 : Dsize L
 : Pdp EX

 : Decisn Y
 : RqCrd Mlt

● ● ● ●

 : Dsize S
 : Pdp SX

 : Decisn Y
 : RqCrd Mlt

2 4 6 8

● ● ● ●

 : Dsize M
 : Pdp SX

 : Decisn Y
 : RqCrd Mlt

● ● ● ●

 : Dsize L
 : Pdp SX

 : Decisn Y
 : RqCrd Mlt

2 4 6 8

● ● ● ●

 : Dsize S
 : Pdp SX2

 : Decisn Y
 : RqCrd Mlt

● ● ● ●

 : Dsize M
 : Pdp SX2

 : Decisn Y
 : RqCrd Mlt

2 4 6 8

−2.5
−2.0
−1.5
−1.0● ● ● ●

 : Dsize L
 : Pdp SX2

 : Decisn Y
 : RqCrd Mlt

Fig. 5.9 Selected effects estimated from transformed data with λ = 1
3 . The y-axis is

in units of the Box-Cox transformed service times. Each of the panel plots shows the
effect of the highlighted factor (or factor interaction) term in the statistical model,
taking account of the contribution both of that model term and the interaction
terms that include that term (Fox, 2003). Indeed, the effect of a model term is
the marginal contribution to the service time for that level of that term, including
its interactions, averaged over all non-related terms in the model. Therefore, when
predicting performance from a factorial model with many significant interaction terms,
it is easier to interpret the effects computed from the model coefficients than the
coefficients themselves. Each panel plot enables even high-dimensional effect surfaces
to be visualised by means of a series of linked 2-D effect plots. For example, Figure 5.9f
indicates how the (transformed) service times vary with Dsize, for each of the six data
subsets (two RqCrd levels and three Pdp). Clearly, the SunXacml 2.0 PDP performs worse
than the other two PDPs, and this effect is accentuated when the incoming requests
have multiple (rather than single) cardinality.

5.5 PARPACS Summary 205

5.5 PARPACS Summary

The purpose of ATLAS is to help its users to understand what factors affect access
control system performance; compare several scenarios in a testbed; and provide a
robust basis for predicting the performance in a production deployment. The last of
these is perhaps the most difficult because it requires both internal and external
validity. Internal validity is relatively easy to achieve in a designed experiment (Mason
et al., 2003) such as this because, inter alia, it is possible to control many factors
directly, and confounding can be minimized in a full factorial experiment. External
validity is more difficult to prove, because it relates (in this case) to whether the
experiment findings will generalize to actual deployments. Thus, in the description of
the results that follows in this section, we look for any hints that external validity is
compromised, in which case the (notional) security consultants would not have a
sound basis for the advice they provide their clients.

The use of designed experiments and statistical safeguards in ATLAS promote
the internal validity of its predictive models. Gross violations of external
validity can be identified (e.g., suspicious patterns of outliers) but it is not
possible to make any guarantees. This is because external validity depends
on the mapping from actual deployment scenarios to the scenarios supported
by ATLAS.

PARPACS plays an essential role in ATLAS, as it helps to make sense of complex (20+
factors), large scale (O(106) measurements) experiments. It is extensible because
specifications like the model formulas can be defined outside PARPACS, making
comparison of models as easy as comparison of factors. Furthermore, a suite of
different statistical procedures and visualisation plots is available; the researcher can
configure PARPACS to use those that are most appropriate to the scenario under study.

As mentioned earlier, PARPACS can, in principle, be used for many different types of
performance experiment. Aspects relating to a specific scenario have been abstracted
from the rest of PARPACS, so users need to edit only 4 configuration files1 to customize
PARPACS for a given scenario. That said, there is a big difference between editing
configuration files and knowing what configuration settings to choose. The former task

1A fifth file is needed if a Box-Cox transformation is required.

5.5 PARPACS Summary 206

is relatively easy compared to the latter. PARPACS offers many different statistical
analyses. The majority of these analysis procedures are designed to validate the model,
by checking that it is a faithful representation of the data. These procedures are
complex and sometimes seem to contradict each other, though they can usually be
found to be consistent based on emerging insights from other analyses and
visualisations. Sometimes a procedure or plot will indicate how a particular model
deficiency can be addressed, but often other procedures are needed to interpret the
problem and indicate a possible solution. Most of these procedures are highly sensitive
to the context in which they are applied. As with Big Data initiatives more generally,
considerable statistical/data science expertise is needed to make the best use of the
analytical procedures, visualisations and predictions available in PARPACS. However,
given suitable knowledge and training, it remains a very powerful tool in the hands of
an expert user.

Given the availability of STACS, DomainManager and PARPACS, the stage is set for an
investigation of the influence of policy authoring choices on access control evaluation
performance. This is the main topic of Chapter 6.

Chapter 6

Influence of policy settings on
access control performance

Table 6.1 Research questions addressed in Chapter 6

ID Question

RQ1

How can access control evaluation performance be measured for use in
performance experiments?

– What form does the service time distribution take?
– What simulations can be performed to explore the effect of different

request arrival patterns?
– What analysis can be performed when the systems under test use different

languages, frameworks and encodings?

RQ2

How can domain models be specified and used to express enterprise access
control scenarios?

– How can different variants of domain models be specified in a flexible
and easy to use way?
– How can access control evaluation performance be compared at different

domain sizes?

RQ3
How can the data from performance experiments be used to understand
and predict access control evaluation performance?

– What types of exploratory data analysis are suitable for the performance
experiments?
– What are the steps needed to build statistical models predicting access

control performance?

RQ4
What are the main factors affecting access control evaluation performance?

– What are the effects of PDP choice, domain size and resources?
– What are the effects of domain size, policy and request characteristics?

6.1 Introduction to the extended evaluation 208

6.1 Introduction to the extended evaluation

ATLAS was used in Chapter 5 to investigate the effects of major changes to the access
control deployment. Such changes relate to:

• the use of different PDPs;

• altering the memory available to the server instance;

• gross changes to the policies (notably, the size of the static domain being
protected);

• different request complexity settings (cardinality changes from 1 to unbounded);

Interesting findings presented in § 5.4 on page 201 include the following:

1. Adding more computing resources (such as memory) do not always benefit
performance;

2. Efforts to improve the manageability of a codebase can harm performance
(SunXACML v2.0 is not as performant as “classic” SunXACML v1.4);

3. Larger static domains result in larger instance policies and less performance.

However, one of the features that appears self-evident, and which is assumed by many
authors, is that policy authoring choices affect performance. The evaluation in
Chapter 5 does not address this issue; it is addressed in this chapter instead.

It should be noted that the existing service time measurements collected by STACS and
used in Chapter 5 are adequate for the analysis of the present chapter, because they
already include the additional factors relating to policy authoring and related concerns.
Indeed, the policies and requests used in Chapter 5 had several different “flavours”
that were not relevant to the analysis of that chapter. Consequently, for the analysis
in Chapter 5, PARPACS computed the partial averages of the measured service times
with respect to those extraneous policy authoring factors, see § 5.2. Note that the
findings of that chapter relate to those partial averages of service time measurements.

In the present Chapter, those policy authoring factors take centre stage and so partial
averaging with respect to these policy authoring factors is not needed. Instead, the
“raw” service time measurements are used by PARPACS and the findings that are
identified and discussed later in the chapter relate to these “raw” service time
measurements.

6.2 Access control decision analysis 209

6.2 Access control decision analysis

One of the advantages of the domain model is that it can support iterative policy
authoring. It is often desirable for a policy set to be robust in the sense that
perturbing its input (the requests) has minimal impact on the output (the responses).
This is particularly valuable in enterprise access control, where the requests will evolve
as the business environment changes. Thus as new requests arise, the policies should
make decisions that are “reasonable” in the sense that they enforce the overall security
objectives of the enterprise. If a new request is sufficiently different from the
conditions expressed in the policies, it may be unclear what the decision should be in
this case. The PDP should then indicate that an exceptional request has been
received, in which case the policy author should take action.

One way of measuring this desirable quality of a policy set is to define stability criteria
and to check how well they hold for a given policy set. In particular, the following
criteria are considered: that each request with a given request id (and hence derived
from the same attribute-level request) has the same response regardless of

• DS (domain size is small, medium, or large)

• PR (how the policy rules are laid out): all 4 combinations of First Applicable

and Permit Overrides combining rules with Distributed Deny and One Deny

guard rules. The levels used are FD, FO, PD, PO, where the first letter relates to
the combining rule (First Applicable and Permit Overrides) and the second
character relates to the guard clause placement (Distributed Deny and One

Deny).

• PS (Policy Specification level: extraTcType is one of minimal or full)

• pdp: the response should depend on standard features only of the PDP

While the settings above should not affect the semantics, other settings relating to
request generation do. They include:

• request generation adjustments: AS = (TscR, TcR) (each being either f or t) etc.;

• request cardinality constraints: the request complexity RC can be Sgl, Dbl or Mlt

(the latter being unconstrained).

6.2 Access control decision analysis 210

The request generation adjustments affect the number and nature of the
attribute-level requests, so there is no reason why response ri(a1) = ri(a2),∀i where
AS = a1 and AS = a2 are different request generation adjustment settings. Indeed, in
the scenario considered in §6.3, there are 28 distinct attribute-level requests when
a1 = (TscR, TcR) = (f, f) (in which case i = 1, . . . , 28) and 440 distinct
attribute-level requests when a2 = (TscR, TcR) = (t, t) (so i = 1, . . . , 440). Clearly
there is no way that responses r(. . . , ap)i = r(. . . , aq)i unless p = q in which case the
request indices are drawn from the same range 1, . . . , r, say.

If instance-level requests ri(ap) and rj(ap) belong to the same duplicate group of
instance-level requests (see § 4.5.6 on page 173), they will have the same response (by
definition of requests that are duplicates of each other).

These properties can be checked easily because STACS returns both the access decision
and the service time in the ServiceTimeResponse database view. PARPACS derives the
DecisionAnalysis table from the ServiceTimeResponse database view and exports the
results of queries on byStaticRef.csv to check the following assertions:

• The same Response is given, for each request (indexed by reqId) issued against
the same PDP and policies, where the requests differ only in relation to DS. Thus
r(. . . , ASk, RCj, DS = S)i = r(. . . , ASk, RCj, DS = M)i = r(. . . , ASk, RCj, DS =
M)i,∀i, j, k. This is checked by querying the responses and grouping them by
staticRef and RCji and ASk;

• The same Response is given, for each request (indexed by reqId), issued against
the same PDP and policies, where the requests differ only in relation to PR. Thus
r(. . . , ASk, RCj, PR = FD)i = r(. . . , ASk, RCj, PR = FO)i = r(. . . , ASk, RCj, PR = PO)i =
r(. . . , ASk, RCj, PR = PO)i,∀i, j, k. This is checked by querying the responses and
grouping them by policyRef and RCj and ASk;

• The same Response is given, for each request (indexed by reqId), issued against
the same PDP and policies, where the requests differ only in relation to PS. Thus
r(. . . , ASk, RCj, PS = minimal)i = r(. . . , ASk, RCj, PS = full)i. This is checked by
querying the responses and grouping them by policySpecification level
(labeled as extraTcType) and RCj ans ASk.

If these access decision checks, summarised in Table 6.2, apply, it shows that the
semantics of different “flavours” of generated policies and requests are predictable and
match what was expected at specification time. Thus the policy-request combinations

6.3 Outline of the extended scenarios 211

Table 6.2 Consistent Decisions

Parameter Desired outcome
DS Same decision for corresponding ({small, medium, large})

instance-based requests
PR Same decision for corresponding

({FA-DD, FA-OD, PO-DD, PO-OD}) requests
PS Same decision for corresponding ({minimal, full}) re-

quests

have predictable responses and hence the semantics are stable. It is then possible to
focus on service time analysis, safe in the knowledge that the semantics are well
behaved. These checks are performed for each set of measurements that are used in a
performance analysis.

6.3 Outline of the extended scenarios

Table 6.3 outlines the main properties and their values as used in the evaluation tests.
The DS label describes the “size” of the static model, where size relates to the number
of instances per attribute combination. The PR label identifies variants of a policy
definition. In this case, it takes the form XY, where X identifies the policy and rule
combining algorithm used (FirstApplicable or PermitOverrides) and Y

(DistributedDeny or OneDeny) identifies the strategy for placement of the guard Deny

clause: distributed through the policy set or just at the end. The PS label indicates the
degree to which extra TCs are added to the template policies to ensure that the static
semantic constraints are enforced. For PS = minimal, the only TCs added are those
that are necessary. If PS = full, some additional TCs are added that over-specify the
semantic constraints while not changing the decisions made by the policies.

The RC label describes settings for request generation. The RC labels indicate how
many matching instances are included in each request target component: one, two or
all. This relates to the fact that the number of instances in the graph that match an
attribute query can vary dramatically—from none to a large number. Depending on
the scenario, a series of individual requests could be issued, or a single composite
request issued instead. Two Boolean indicators TscR and TcR capture the possible
component reduction adjustments made when generating requests, see § 4.5 and

6.3 Outline of the extended scenarios 212

Table 6.3 Scenario parameters

Property id Values Comments
Domain Size DS S, M, L size of static model
Policy Ref PR FD, FO, PD, PO [Rule-combining algorithm]-[how the

default clause is handled]
Policy Spec level PS minimal, full different levels of extra TCs used to

enforce static semantic constraints
contextSubRef RC Sgl, Dbl, Mlt Single-, double- and (unlimited)

multi-cardinality request complex-
ity

Tsc Reduction TscR f,t has TSC reduction been used when
generating requests?

Tc Reduction TcR f,t has TC reduction been used when
generating requests?

pdp Pdp SX SunXACML PDP
memory Mm 2GB, 4GB total memory allocated to the server
nProc nP 4, 8 number of processor cores
policy LC pLC N policy leaf count, ranges over the

natural numbers
policy TPL pPL N policy total path length, ranges over

the natural numbers
request LC pLC N request leaf count, ranges over the

natural numbers
request TPL pPL N request total path length, ranges

over the natural numbers

6.4 Access control performance analysis 213

Appendix B. As PDP, the “classic” SunXACML v1.4 with traditional DOM-based
parsing (SX) is used; service time data for the other PDPs is excluded (filtered) from
the analysis. The memory and nProc parameters label the amount of computing
resource available to PDP during policy evaluation.

Summarising, this set of parameters is rich enough to explore the following Scenario
Questions:

SQ1 If particular changes are made to the organisation of a policy set (c.f., the PR

setting) which could lead to evaluation shortcuts, what are the effects on access
control evaluation performance?

SQ2 Regarding PS, generally PS=minimal instance-level policies have fewer clauses
than PS=full instance-level policies, other factors being equal. What are the
effects on access control evaluation performance?

SQ3 What are the effects of instance-based request complexity (c.f., RC) on decision
outcomes and evaluation performance?

SQ4 How does static model size influence instance-level policy performance?

In our survey of the literature (§ 2.1.7 on page 35, 2.2.8 on page 50, 2.2.9 on
page 51 and 2.2.10 on page 52), we have not discovered any other publications
where such questions specific to policy formulation could be addressed in a
comprehensive manner. The remainder of this Chapter presents the answers
we found, using ATLAS, to these questions.

6.4 Access control performance analysis

Four STACS runs were performed, for each of the four combinations of memory and
number of processing cores in Table 6.3. In each STACS run, there was a nested loop
with the innermost loop being over nine replicate runs of each request to be submitted
to the PDP, with the policies chosen for that set of requests. However, the order in
which the requests are submitted was randomised a) to reduce effects due to
sequencing (repeating the same request nine times introduces unwelcome serial

6.4 Access control performance analysis 214

Table 6.4 Specification of the two model versions and the two model scopes, showing
the right hand side of each model formula. Predictors such as poly(pLC,2) use R
syntax for a quadratic polynomial in pLC (policy leaf count in this case). I2, I4 and A4
represent the modelVer=2 insignificant and the modelVer=4 insignificant and aliased
terms, respectively.

ver scope model formula (right hand side only)

2 mainOnly DS+Dn+PR+PS+TscR+TcR+RC+Mm+nP

sig (DS+Dn+PR+PS+TscR+TcR+RC+Mm+nP)3 - I2)

4 mainOnly Dn+PR+PS+TscR+TcR+Mm+nP+poly(pLC,2)+poly(pPL,2)+poly(rLC,2)+poly(rPL,2)

sig (Dn+PR+PS+TscR+TcR+Mm+nP+poly(pLC,2)+poly(pPL,2)+poly(rLC,2)+poly(rPL,2))2 - A4 - I4

correlation in the data) and b) to reflect typical usage, where requests do not arrive at
the PDP in any specific order.

Two families of model formulae were used, labeled as modelVer=2 and modelVer=4. In
the first, all terms are categorical (discrete-valued) factors; in the second, some
numerical predictors replace the equivalent categorical factors. In the case of
modelVer=4, the numerical predictors
poly(pLC,2)+poly(pPL,2)+poly(rLC,2)+poly(rPL,2) relate to the size of the
instance-based policy sets and requests and replace the discrete-level DS+RC factors
which serve a similar purpose in the case of modelVer=2.

Both models are linear functions of their predictors but the decomposition of the
variance differs. In the first model, ANOVA techniques are suitable because all
predictors have discrete levels. In the second, the mix of predictor types requires the
use of ANalysis of COVAriance (ANCOVA) techniques, where the variance is first
partitioned using the covariates (numerical predictors) and then by the categorical
factors. Consequently, interactions between factors and numerical predictors are more
difficult to analyse, and interactions between numerical predictors need to be treated
by mapping the predictors onto pseudo-factors clustered over ranges of their
independent variables.

For each modelVer there are two variants: one with main factors only (labeled
modelScope=mainOnly), the other including all main factors with added significant
interactions (labeled modelScope=sig); see Table 6.4.

The sig variants were obtained by 1) considering all interactions up to and including
3-way for modelVer=2 and up to 2-way interactions for modelVer=4, then 2)

6.4 Access control performance analysis 215

(a) All 9 replicates.
0.

00
2

0.
00

4
0.

00
6

Factors

m
ed

ia
n

du
ra

tio
n

(s
)

SM
L

N

Y FDFOPDPO FM ft

f

t

Sgl
Dbl
Mlt

2

4
4
8

0

1

2

3
4
5678

D
s

D
n

P
R

P
S

T
sc

R

T
cR R
C

M
m nP R
p

(b) Middle 3 replicates.

0.
00

20
0.

00
25

0.
00

30

Factors

m
ed

ia
n

du
ra

tio
n

(s
)

S

M

L

N

Y

FDFOPDPO F
M f

t

f

t

Sgl

Dbl

Mlt

2

4

4

8
3

4

5

D
s

D
n

P
R

P
S

T
sc

R

T
cR R
C

M
m nP R
p

Fig. 6.1 Median service times for each level of each factor when modelVer=2, as well as
the overall median, when either all replicates are included (Figure 6.1a) or only the
middle three replicates are included (Figure 6.1b). Note the change of scale between
the two plots.

iteratively removing those that contributed the least to the fit, as measured by the
Akaike Information Criterion (AIC) (Akaike, 1974; Butler et al., 1999) of a particular
statistical model fitted to the service time measurements. This procedure (dropping a
term, recalculating the AIC of the new fit, then either stopping or selecting the next
term to drop) is repeated until further improvement in the AIC is impossible. At that
point the model formula is assumed to have the best balance (among models in that
class) between closely following the given measurements in that data set and
generalising to other instances of the data, were the experiments to be repeated.

In the case of modelVer=4, there is an added complication in that some of the
interactions are aliased and hence cannot be estimated from the data. The aliased
interaction terms are PS:poly(pLC,2) + PS:poly(pPL,2) +

poly(pLC,2):poly(pPL,2); these terms (labelled A4 in Table 6.4) need to be removed
before the insignificant terms are removed. By contrast, the observation matrix (Mason
et al., 2003) for modelVer=2 has full rank so all terms can be estimated.

6.4 Access control performance analysis 216

6.4.1 Refining each model

Two further model refinements are implemented. Firstly, it became clear from initial
exploration of the results of the experiment that, even with the randomization of the
order in which requests arrived, there is a pronounced downward trend in service times
as the replication id increases, even as all other settings are kept fixed, see Figure 6.1a.
It is known that the Java Virtual Machine (JVM) uses intelligent garbage collection
internally to improve performance. The purpose of garbage collection is to find a good
compromise between keeping objects in memory (so that they can be used again in an
efficient manner) and releasing the memory for new objects (so that the application
does not run out of memory). Since this is a dedicated run of a JVM-based PDP in
STACS, there is no other application software competing with the PDP in the JVM.
Thus it is likely that the highly controlled testbed environment makes it easier for the
JVM garbage collection algorithms to predict what objects should be held in memory
and what should be dropped. However, in a typical enterprise deployment, it is likely
that many requests would be similar to each other in any case and so some caching of
access decisions would occur in practice. As a compromise, we choose only the middle
three (of nine) replicates for analysis, and discard the other 6 replicates, see
Figure 6.1b. By filtering data in this way, the three replicates in use are more
representative of those in the desired scenario. With this interpretation, it is also
acceptable not to treat the replication id as a factor in the analysis and to treat the
three measurements per setting combination as true statistical replicates.

The second refinement is a response to the apparent underfitting common to the four
models outlined in Table 6.4. Since the scope to add new terms is limited (recall that
the model formulae have been reduced from larger, less efficient expressions),
heteroscedasticity is visible in Figure 6.3 and the most serious problems appear to be
in the upper tails (see Figure 6.2), transformation of the dependent variable (service
time duration in this case) is indicated. A Box-Cox transformation (Fox and Weisberg,
2011, §6.4.1) applied to the dependent variable y with parameter λ is a power
transformation typically applied to the dependent variable; see Equation 5.2 on
page 197 in § 5.3.4.3.

The purpose of the power transformation can be 1) to stabilise the variance (reduce
the heteroscedasticity), 2) to make the response mean a linear function of the
predictors, or 3) to make the distribution of the residuals more symmetric. In

6.4 Access control performance analysis 217

(a) Quantile-Quantile residual plot, sig mod-
elVer=2.

(b) Quantile-Quantile residual plot, sig mod-
elVer=4.

Fig. 6.2 Quantile-quantile diagnostic plots, comparing the standardised residuals
against a standard Normal distribution, for modelVer=2 and 4, respectively. Only minor
differences are visible. In each case the relevant modelScope=’sig’ formula is used and it
seems that the residual distribution is right-skewed compared to a Normal distribution.

§ 5.3.4.3, the purpose was stabilising the variance (i.e., purpose 1) in this list). For the
present chapter, the other purposes are also valid and so were considered separately.
Procedures from the R car package (Fox and Weisberg, 2011) were used to estimate λ,
these procedures being powerTransform(), inverseResponsePlot and symboxPlot

respectively. As might be expected, the procedures did not agree on the optimal λ,
being -0.2, 0.1 and -0.3 respectively for modelVer=2 and -0.3, -0.1 and -0.2 respectively
for modelVer=4. Of the three alternative λ values for each modelVer, the
variance-stabilising transformation λ from the powerTransform() procedure was
chosen, for the following reasons:

• The best fit to the residuals in Figure 6.3 is very close to being a constant
through the origin. Although there is a small amount of curvature in the best fit
to the residuals, there is little evidence against the requirement that the fit
should be a linear function of the predictors.

• There is evidence from Figure 6.3 and Figure 6.2 that the residual distribution is
skewed in favour of more large residuals, but that this is correlated with larger
service times. Therefore, we choose to stabilise the variance over the range of

6.4 Access control performance analysis 218

Fig. 6.3 Residual plot for modelVer=2 (modelVer=4 looks similar) and modelScope=’sig’ showing
how residuals tend to increase as the dependent variable (service time duration) increases
and there also appear to be upper outliers.

measured service times in the hopes that this step will also make the
distribution of the residuals more symmetric.

The residuals of the fitted models obtained from the transformed data have more
desirable features than the residuals obtained from the untransformed data.
Comparing Figure 6.5 with Figure 6.3,

• the fit to the residuals is a constant through the origin, suggesting the linear
model is adequate;

• the residuals have little or no structure (so most of the structure is captured in
the model itself);

• there are fewer discordant observations, so some of the formerly unexplained
observations are now explained by the model and so might be considered
“mainstream”.

6.5 The Extended Scenario Questions 219

(a) Quantile-Quantile residual plot, sig mod-
elVer=2.

(b) Quantile-Quantile residual plot, sig mod-
elVer=4.

Fig. 6.4 Quantile-quantile diagnostic plots, comparing the standardised residuals against
a standard Normal distribution, for modelVer=2 and 4, with λ = −0.3 and λ = −0.25
respectively. Compared to Figure 6.2, there is much better agreement between the
residuals and a standard Normal distribution.

Comparing Figure 6.4 to Figure 6.2, agreement between the fit and the data extends
much further into the tails, so analysis of the residuals suggests the revised model is
significantly better and, in particular, is a better basis for prediction.

The improved statistical models can be used to estimate the effect of (com-
binations of) the scenario parameters and hence to predict the consequences
for access control performance.

As with § 5.4, effects plots (Fox, 2003) are used to visualize the estimated service time
arising from different settings of factors, numeric predictors and their interactions.

6.5 The Extended Scenario Questions

The enhanced models, summarised as the two model versions in Table 6.4, contain
many factors and numerical predictors. Indeed, when interactions are considered,
hundreds of terms can be estimated. However, the majority of these terms do not have

6.5 The Extended Scenario Questions 220

Fig. 6.5 Residual plot for modelVer=2 (modelVer=4 looks similar) and modelScope=‘sig’. Com-
pared to Figure 6.3 the residuals form a symmetric cloud and there are fewer outliers.

a simple interpretation. Therefore, we take a different (demand-led) approach: what
are the detailed research questions that, if answered, increase understanding of how
service times depend on the factors being measured in the experiment. The detailed
questions are termed Scenario Questions,

• to avoid confusion with the overall Research Questions of this dissertation, and

• to emphasise that they might correspond to scenarios studied by the security
consultants introduced in § 5.3.

The first two scenario questions relate to the effect of policy authoring choices, the
third to request handling and the last (of four) relates to the effect of domain size,
represented as a graph measure, on measured service times.

6.5 The Extended Scenario Questions 221

(a) modelVer=2.
−

15
.5

−
14

.5
−

13
.5

Factors

m
ed

ia
n

du
ra

tio
n

(s
)

S

M

L

N

Y

FDFOPDPO F
M f

t

f

t

Sgl

Dbl

Mlt

2

4

4

8
3

4

5

D
s

D
n

P
R

P
S

T
sc

R

T
cR R
C

M
m nP R
p

(b) modelVer=4.

−
24

−
22

−
20

−
18

−
16

Factors

m
ed

ia
n

du
ra

tio
n

(s
)

N

Y
FDFOPDPO FM

f
t

f

t

2

4
4

8 3
4
5 78147

444
823

831

834

1430
15101534

295718

1677
3109

4056

4071

6967
73677487

4

5

6
8
910

11

13

15

16

17
18

20

22
32

41

4251

52

57

63

75

81

82
91

92
93

101

102

113

131
149

150

168
186

242
6

7

8

9
12
14

15

16
18

19
21

22

23
25

26
33
53

65

71

7391

93

96

103

115

121

123

132

141

143151
168

189201

225
261

280
373

D
n

P
R

P
S

T
sc

R
T

cR M
m nP R
p

fp
LC

fp
P

L
fr

LC fr
P

L

Fig. 6.6 Median transformed service times for each level of each factor when modelVer=2
(Figure 6.6a) and when modelVer=4 (Figure 6.6b). In the latter, the numeric parameters
pLC, pPL, rLC and rPL have been represented as factors, for easy comparison with the
factors in the model.

6.5.1 SQ1: Influence of Rule Combination and Placement
(PR)

When policy authors specify a template (attribute-level) policy such as that in
Figure 4.4, they can choose to arrange the rules any way they wish. One common
pattern in access control policy authoring is to specify an “A” group of rules which all
have a rule effect of either permitting or denying access, together with a smaller “B”
group of guard conditions (each having the opposite rule effect to that found within
the “A” group). It is likely that there is an optimal arrangement of “A” and “B”
groups such that the amortized number of rule evaluations is minimized, thereby
improving performance. The problem is that it is unclear what that optimal “A”-“B”
rule structure should be a priori. In Figure 4.4 a Permit-Overrides combining rule is
used, with just a single Deny clause, hence PR = PO-OD in this case. Three other policy
arrangements are possible that are labeled with suitable PR values.

As can be seen from Figure 6.6 the PR factor has the least direct effect of all the
factors considered in both models. Figure 6.7 indicates that, while the main effects are
insignificant (see Figure 6.7a), some of the two-way interactions are significant. For
example, the relative ordering of the effects as a function of PR level changes both in

6.5 The Extended Scenario Questions 222

(a) Effects plot, modelVer=2, PR.

PR

0.0020

0.0025

0.0030

FD FO PD PO

● ● ● ●

(b) Effects plot, modelVer=2, PR:PS.

PR

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

FD FO PD PO

●
● ●

●

 : PS F

FD FO PD PO

●

● ●
●

 : PS M

(c) Effects plot, modelVer=2, PR:TcR.

PR

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

FD FO PD PO

●

●

●

●

 : TcR f

FD FO PD PO

● ●
● ●

 : TcR t

(d) Effects plot, modelVer=4, PR:poly(pLC,2).

pPL

−10
 −5
 0
 5
 10
 15

1e3 3e3 5e3 7e3

 : PR FD : PR FO

 : PR PD
1e3 3e3 5e3 7e3

−10
 −5
 0
 5
 10
 15

 : PR PO

Fig. 6.7 Selected PolicyRef (PR) main and 2-way interaction effects from modelVer=2
and modelVer=4. The main effects are not significant but the chosen interaction effects
plots are significant. For factors, the 95% confidence limits of an estimated quantity
are indicated by error bars. For numerical predictors, grey shading serves the same
purpose as error bars do for factors.

Figure 6.7b and Figure 6.7c. Performance when PR is FA-OD or PO-DD dis-improves
when PS changes from full (more conditions in general) to minimal (fewer conditions
in general). This is counter-intuitive, in that usually the assumption is that more
conditions result in longer evaluation time. What might be happening here is that the

6.5 The Extended Scenario Questions 223

location (in the policy set) of the extra conditions is also significant because, if
removed, short-cut evaluation might no longer be possible. Figure 6.7c indicates that
characteristics of the requests should also be considered when choosing the best
combining algorithms in the policies. For example, note the relative ordering of the PR

factor levels when TcR = f: (“down”, “up”, “down”), compared to the the ordering
when TcR = t: (“up”, “down”, “up”). Figure 6.7d shows that the effects of the
numerical predictors can even change from convex to concave functions based on the
the PR setting. Thus an aggregate value such as policy leaf count pLC, which depends
mostly on domain size rather than the arrangement of the policies, can show quite
different effects across its domain.

Summarising, the way the combining algorithms are used influences performance, but
only in conjunction with other settings, and it is very difficult to predict what the best
PR would be for a specific policy set unless service time measurements are available.

6.5.2 SQ2: Influence of Policy Specification Level (PS)

The template policy in Listing 4.4 does not ensure that static semantic constraints
hold. When DomainManager derives the COARSE policies from the template policy, it
adds TCs as necessary to enforce the static semantic constraints. When
PS ≡ extraTcType = minimal, the extra TCs are just enough to enforce the semantic
constraints. Otherwise, DomainManager adds as many TCs as it can
(PS ≡ extraTcType = full), such that the semantic constraints hold and the decisions
are not affected. One way of interpreting PS ≡ extraTcType = full is that the policies
are over-specified, such as might occur when policy authors attempt to maintain large,
complex policy hierarchies. We understand there is a strong temptation for policy
authors to add extra rules “just in case”.

Another interpretation is that policy authors accept that some policy redundancy
exists and wish to predict the possible performance benefits if this redundancy were to
be removed. The purpose of this investigation is to determine whether such effort (by
policy authors or by DomainManager) is worthwhile.

Figure 6.6 indicates that the PS factor has relatively little effect but Figure 6.8a
suggests it is still statistically significant (note that there is no overlap between the
estimated service times when PS=full and PS=minimal. Figure 6.7b and Figure 6.8b

6.5 The Extended Scenario Questions 224

(a) Effects plot, modelVer=2, PS.

PS

0.0020

0.0025

0.0030

F M

●

●

(b) Effects plot, modelVer=2, DS:PS.

Ds

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

S M L

●

●

●

 : PS F

S M L

●

●

●

 : PS M

Fig. 6.8 Selected PolicySelection level (PS) main and 2-way interaction effects from
modelVer=2. The main effects and interaction with domain size are significant, the
latter because the expected service times do not increase unless DS is ’M’ (medium).

suggest that PS has a small interaction with PR and with DS, but otherwise seems
independent of the other factors. It is aliased with the policy graph measures, such as
leaf count. Indeed, the leaf count when PS=minimal is generally a little over half that
when PS=full, showing that there is a lot of scope within DomainManager to reduce
the number of clauses. Unfortunately, the predicted service times when PS=F is less
than that when PS=M. Such a finding is surprising, because most policy authors
assume that removing redundancy must result in shorter service times. Clearly this is
not always the case. Of course, reducing redundancy generally does make the policies
easier to manage, but that may be at the cost of reduced performance.

In some cases, removing redundant policy rules can harm performance.

Summarising, to optimise policy evaluation performance, it is generally not enough to
optimise the policy set alone, e.g., by statically analysing the policies and removing
redundancy and similar conflicts. This is because the configuration of the requests
play a role—some redundancy might actually benefit performance. The only way to
know whether a semantically-redundant rule improves performance is to conduct
comparative experiments in a testbed such as STACS.

6.5 The Extended Scenario Questions 225

6.5.3 SQ3: Influence of Request Cardinality (RC)

Sometimes the context needed to specify a request can be extensive, especially in cases
where multiple requests are batched together. Combining requests in this way might
be intended to help performance. Alternatively, the intention might be to satisfy a
higher-order security property such as binding of duties, where subject S1 and S2 might
need to cooperate to perform actions A1 and A2 on resources R1 and R2. This
higher-order access request combines several simple requests of the form “Can X do Y
with Z?”.

When DomainManager generates requests, the attribute-level definitional clauses are
derived from the policy set and their complexity varies from an empty clause (a
tautology) up to the full complexity of the attribute-level policy element from which it
was derived. One attribute-level request is created for each unique combination of such
attribute-level definitional clauses. When deriving instance-level requests, more than
one instance-level definitional clause can often be derived from a given attribute-level
definitional clause. Consequently, the request generator can produce different requests
depending on how many instance-level clauses are included for each attribute-level
request clause. The generated requests are labeled with requestComplexity (labelled
RC in plots). In PARPACS, measured service times use the equivalent request complexity
(RC) label, where RC can take the values Sgl, Dbl and Mlt depending on whether the
instance-based request clause cardinality is only 1, no more than 2 or unlimited.

The RC factor is part of modelVer=2 but not of modelVer=4, because its definition
overlaps with that of numerical terms like pLC. If both RC and rLC were included, any
model-fitting procedure would struggle to estimate the model coefficient of each term
independently of the other.

Generally, the difference between RC=Sgl and RC=Dbl is negligible (see Figure 6.9a
and Figure 6.9c). Indeed, Figure 6.9c indicates that the times for RC=Sgl are also very
similar to RC=Mlt when Mm=2Gb, but if more memory is added, there is a dramatic
reduction in the RC=Sgl times, but not as much reduction in the RC=Mlt times.
Therefore, when memory is limited, the JVM seems to throw out all request objects
from memory (regardless of their size) but when more memory is available, it
preferentially keeps the smaller requests in memory. Perhaps when memory is
essentially unlimited, all requests would be kept in memory and the performance of
the larger (RC=Mlt) requests would approach that of the smaller requests. This is

6.5 The Extended Scenario Questions 226

(a) Effects plot, modelVer=2, RC.

RC

0.0020

0.0025

0.0030

Sgl Dbl Mlt

● ●

●

(b) Effects plot, modelVer=2, DS:RC.

Ds

0.0015
0.0020
0.0025
0.0030
0.0035
0.0040

S M L

● ●

●

 : RC Sgl

●
●

●

 : RC Dbl
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040

●

●

●

 : RC Mlt

(c) Effects plot, modelVer=2, RC:Mm.

RC

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

Sgl Dbl Mlt

● ● ●

 : Mm 2

Sgl Dbl Mlt

● ●

●

 : Mm 4

(d) Effects plot, modelVer=4, Mm:poly(rLc,2).

rLC

−20

 0

 20

 40

 60

 80

100

 60 80 100 120 140 160 180 200

 : TcR f

 60 80 100 120 140 160 180 200

 : TcR t

Fig. 6.9 Selected contextRef (RC) main and selected 2-way interaction effects from
modelVer=2, with the poly(rLC,2) main effects from modelVer=2 for comparison.
Generally, the difference between RC=Sgl and RC=Dbl is minimal compared to the
difference between RC=Sgl and RC=Mlt.

consistent with the comments in §6.4.1 that JVM memory management plays a
significant part in PDP performance.

6.5 The Extended Scenario Questions 227

If there are many high complexity requests, adding memory can result in
significantly better performance.

Figure 6.9b shows a surprising interaction between domain size (DS) and request
complexity (RC). For smaller requests (RC ∈ {Sgl, Dbl}), measured service times
actually decrease as the domain size increases. For RC = Mlt, the measured service
time increases, as might be expected. This might be due to the fact that requests with
few definitional conditions tend to match many policies unless the policies themselves
have a large number of security conditions, in which case policy-request matches are
fewer, so can take longer to find. It suggests that the best performance is obtained if
the polices have many conditions and the requests have few, or if the policies have few
conditions and the requests have many.

Figure 6.9d indicates that the request leaf count (rLC) has a very limited effect on
service time; this conclusion also applies to any interaction terms involving rLC. The
lack of explanatory power is consistent with Figure 6.6b, where the median for each
value (level if viewed as a factor) of rLC shows no obvious pattern:
{113, 63, 13, 20, 5, 16, . . . , 41, 81, 75}. Thus a simple measure of the size of the request
is not sufficient to predict, either on its own or in conjunction with other factors, the
time it takes to process that request. Furthermore, similar comments apply to the
related request path length (rPL). By contrast, the request cardinality (RC) is a much
better predictor because it encodes a structural feature of each request, rather than
measuring what appears to be an irrelevant detail. Unfortunately, this means that it is
difficult to see how to predict PDP performance based on measured structural
characteristics of the policies and requests alone (i.e., without taking account of the
matching semantics, which would generally require evaluation of the policies and
requests, preferably by a PDP in a testbed such as that provided by STACS).

Simple, statically-derived structural measures of policies and requests, such
as pPL and rLC respectively, have poor predictive power on their own. That
fact, together with the presence of significant interactions among the other
factors, indicates measurement-based predictions, as derived by the STACS

and PARPACS components of ATLAS, are needed in practice.

6.5 The Extended Scenario Questions 228

6.5.4 SQ4: Influence of domain size (DS, pLC)

The size of the the static domain clearly influences the size of the generated
instance-level policy set, and also the size of individual requests, particularly when
RC = Mlt. For modelVer=2, domain size appears as an explicit DS factor. For
modelVer=4, measures of graph entity size such as pLC and pPL (for policies) and rLC

and rPL (for requests) are used instead. The purpose of this research question is to
determine whether there is a way to predict whether domain size (however it is
represented) can predict policy evaluation performance (measured as service times).

Figure 6.10a it appears that service times increase roughly linearly with domain size,
if all other factors are kept constant. However, this is only part of the story. There are
occasions when performance increases as the domain size DS) increases from ’medium’
(M) to ’large’ (L), see Figure 6.10b when TcR=f, particularly so when PS=M. One
explanation might be that the policy is generally smaller when PS=M and the request
becomes more general and so matches fewer policy clauses when TcR=f, so there are
fewer rules to combine.

This is even more dramatic in the case of Figure 6.10c, where the service times
decrease as the domain size increases from small to medium to large when the request
cardinality (RC) is limited to Sgl and Dbl. This is particularly true when there is less
memory available (Mm=2 rather than Mm=4). Less working memory means that keeping
objects in memory becomes less attractive, and keeping track of many matches (of
non-specific requests against specific policies) becomes more expensive (i.e., it
increases the service time).

The policy leaf count (pLC) is positively correlated with domain size (DS), but it is not
as good a predictor of PDP performance since the associated effects are small and the
uncertainties are large. Nevertheless it is interesting that the “best estimate” of effects
(small as they are) switches from negative to positive curvature as memory is increased.

6.6 Summary of the extended scenarios 229

(a) Effects plot, modelVer=2, DS.

Ds

0.0020

0.0025

0.0030

S M L

●

●

●

(b) Effects plot, modelVer=2, DS:PS:TcR.

Ds

0.0015
0.0020
0.0025
0.0030
0.0035
0.0040
0.0045

S M L

●
●

●

 : PS F
 : TcR f

●

●

●

 : PS M
 : TcR f

● ●

●

 : PS F
 : TcR t

S M L

0.0015
0.0020
0.0025
0.0030
0.0035
0.0040
0.0045

● ●

●

 : PS M
 : TcR t

(c) Effects plot, modelVer=2, DS:RC:Mm.

Ds

0.0015
0.0020
0.0025
0.0030
0.0035
0.0040
0.0045

S M L

●
●

●

 : RC Sgl
 : Mm 2

●
●

●

 : RC Dbl
 : Mm 2

S M L

●
●

●

 : RC Mlt
 : Mm 2

● ●
●

 : RC Sgl
 : Mm 4

S M L

● ●
●

 : RC Dbl
 : Mm 4

0.0015
0.0020
0.0025
0.0030
0.0035
0.0040
0.0045

●
●

●

 : RC Mlt
 : Mm 4

(d) Effects plot, modelVer=4, Mm:poly(pLC,2).

pLC

 −5

 0

 5

 10

 200 600 1000 1400

 : Mm : 2
 200 600 1000 1400

 : Mm 4

Fig. 6.10 Selected RC main and 2-way interaction effects from modelVer=2, with the
poly(pLC,2) main effects from modelVer=4 for comparison. The difference between
RC=Sgl and RC=Dbl is minimal compared to that between RC=Sgl and RC=Mlt.

6.6 Summary of the extended scenarios

The analysis and scenarios in §5.4 focused mainly on inter-PDP, domain size and
resource effects. By contrast, the four scenario questions (§6.5.1, §6.5.2, §6.5.3 and
§6.5.4) drill down in finer detail to policy and request characteristics. One
consequence is that, with more terms involved, hence larger data sets being submitted
for analysis, there is less averaging of the data and more detailed features emerge. At

6.6 Summary of the extended scenarios 230

the very least, we learn that it is difficult to make general statements about access
control performance, because the main factors tell only part of the story. However,
with suitable analysis, it is possible to get an answer to a specific question.

In some cases there are apparent differences between the findings of the basic scenarios
in Chapter 5 and those of the more detailed scenarios in this chapter. For example,
according to § 5.4 on page 201, adding memory has relatively little effect, but as we
see above, when memory is limited and certain policy and request properties hold,
adding memory can improve performance. Note that the same service time
measurement data was used in both analyses. The different conclusions result from
the presence of significant interaction effects so, if those effects are ignored, much of
the variability in the data is unexplained (and hence averaged over the remaining
main factors, becoming statistically invisible). As a consequence, care must be taken
to “ask the right question” of the form “If other factors (and interactions) can be
ignored, how does interaction X:Y (say) affect access control policy evaluation time?”.

ATLAS, and PARPACS in particular, is designed to provide statistical answers
to precisely phrased questions, at whatever level of detail/filtering is required
by its user.

It should also be noted that, even though both the scale and scope of the data used in
the scenarios in this chapter are much greater than those of the summarised data in
§ 5.3, some features persist. Indeed, filtering by rep number (choosing just the middle
three) and Box-Cox transformation of the service times help when fitting reliable
statistical models in both situations. This is particularly interesting as these features
appear to be multiscale in nature: they can be found at many levels of detail, unlike
the scenario questions where specific statistical treatment is required.

The results in this chapter provide insights into policy evaluation and are statistically
robust. However, in a real deployment, performance will be complicated by 1)
queueing effects and 2) the fact that actual requests belong to a scenario-specific
distribution: some requests arrive more frequently than others. These two factors
ensure that actual performance will differ from the expected performance predictions
from ATLAS. Therefore, these two considerations should be taken into account when
setting up measurement-based simulations based on the ATLAS performance
estimates. Such simulation results are more likely to transfer to actual deployments.

Chapter 7

Conclusions and Recommendations

This Chapter reviews the Research Questions and summarises the answers that are
derived elsewhere in this dissertation. We then highlight the main Research
Contributions and link them to the answers to the Research Questions. Having
summarised the main achievements of the work to date, we then present some possible
extensions, ending with some conclusions about access control evaluation performance.

7.1 Review of the Research Questions

Table 1.1 on page 4 outlines the Research Questions addressed in this dissertation, and
is replicated as Table 7.1 in this chapter for convenience.

We address each of the Research Questions in turn below.

7.1.1 RQ1: How can access control evaluation performance
be measured for use in performance experiments?

For the purpose of this dissertation, access control performance is interpreted in terms
of the time taken to decide whether to permit or deny an access request, see § 3.2.
The time taken for this operation adds to latency of any attempt to use a protected
resource. This dissertation focuses on the time taken by the PDP to make the access
decision.

Having defined what to measure, the next question is to define how to measure it.
This is where the STACS measurement testbed (§ 3.3 on page 65) plays a role. As a
testbed, it enables a researcher to measure policy evaluation performance by
computing the elapsed time per request evaluation at the PDP. STACS also records the
full context associated with a given request evaluation, including details of the PDP,
policies, the request itself and the server instance on which the PDP is hosted. Each
request evaluation generates a row in a ServiceTime table in a relational database.

7.1 Review of the Research Questions 232

Table 7.1 High-level Research Questions addressed in this dissertation

ID Question
RQ1 How can access control evaluation performance be measured for use in

performance experiments?
RQ2 How can domain models be specified and used to express enterprise

access control scenarios?
RQ3 How can the data from performance experiments be used to understand

and predict access control evaluation performance?
RQ4 What are the main factors affecting access control evaluation perfor-

mance?

These records are kept for offline analysis. Figure 3.1 on page 67 shows the STACS

architecture.

Having annotated measurements is not enough, in the sense that it is also necessary to
support measurement scenarios, as mentioned below.

7.1.1.1 RQ1.1: What form does the service time distribution take?

§ 3.3.2 indicates that the service time distribution is generally not a simple
distribution, such as a decaying exponential, say. Instead, it appears that service time
requests are clustered at particular times. We believe this is because there are some
requests for which the PDP follows the same search/matching path in the policies.
Thus, while a group of requests might look different to each other, they are similar in
terms of how they match the policies available to the PDP. Thus a typical service time
distribution is best seen as a mixture of simpler distributions. The cluster positions
and heights are derived from the service time measurements, which themselves depend
on all the factors in the experiment.

7.1.1.2 RQ1.2: What simulations can be performed to explore the effect
of different request arrival patterns?

§ 3.4 on page 72 describes several scenarios that feature measurement based
simulation. One simulation (§ 3.4.5 on page 79) is used to investigate the effect of
different admission control algorithms for a specific mix of requests (hence service time
distribution), but with the mean arrival rate being varied from ρ = 0.5 to ρ = 1.25

7.1 Review of the Research Questions 233

and back to ρ = 0.5. This arrival pattern is meant to replicate intermittent overload
conditions and the belief is that, by basing the simulation on the temporal distribution
of the measured service times, the findings of the simulation are applicable to actual
deployments having that request profile. The second simulation (§ 3.4.6 on page 84)
assumes that the mean arrival rate stays the same, but the relative frequency of the
requests change. Hence the service time distribution, which is weighted by the number
of requests per cluster, changes and the question we seek to answer is how sensitive is
the average latency to changes in request (and hence service time) distribution. Both
of these scenarios extend the per-request service time measurements from STACS to
become composite estimates of performance that change when the underlying
conditions affecting request arrival rates change.

7.1.1.3 RQ1.3: What analysis can be performed when the systems under
test use different languages, frameworks and encodings?

Even when relatively little is known about the policies and requests used in a
performance experiment, it is still possible to compare various other factors, notably
the PDP itself. § 3.4.6.3 on page 87 indicates that STACS is able to rank PDPs by their
performance. Another possibility is to compare two very different PDPs: the reference
SunXACML PDP (Java-based, working with XML-encoded XACML policies and requests)
and a prototype njsrpdp (Javascript-based, working with JSON-encoded XACML
policies and requests). STACS is able to quantify the relative performance advantage of
the prototype PDP, and is partially able to explain that advantage by considering the
differences in resource usage (§ 3.5 on page 91).

7.1.2 RQ2: How can domain models be specified and used
to express enterprise access control scenarios?

RQ1 focused on collecting service time measurements, and on relatively simple
analyses, typically relating to PDP comparisons and estimating performance as a
function of both service time distribution and request arrival rate changes. Policies
and requests taken from a different domain are used, given the absence of publicly
available enterprise access control policy and request sets. Therefore we set out to
build a domain model for enterprise access control that is flexible enough to express

7.1 Review of the Research Questions 234

typical policies and requests and to specify variants of these artifacts in order to
compare the effects of different access control system specifications in that domain.
We designed a relational model that had static, policy and request components, but
which could be linked together as necessary (§ 4.2 on page 117). However, we found
that the linked model was better realised as a property graph, because linking data
using such models is trivial (using additional edges between the data nodes) and
extending a property graph model to use additional properties per entity is much
easier to accomplish than is the case with relational models (§ 4.3 on page 126).

To specify the models, it is necessary to:

1. define the static domain (creating instances of agents, assets and actions, and
assigning attributes to each instance—§ 4.3.1 on page 130);

2. specify the rules in a hierarchical structure, expressing them in terms of the
attributes in the static domain—these are the template policies;

3. derive the instance-based policies from 1) and 2) using the PolicyGen procedure
in DomainManager (§ 4.4 on page 143);

4. derive the attribute- and instance-based requests from the attribute- and
instance-based policies, respectively, using the RequestGen procedure in
DomainManager (§ 4.5 on page 159).

In addition to the basic specification of the policies and requests, many different
settings (factors) can be configured when generating the policies and requests. These
range from quite technical settings such as extraTcType, through structural settings
such as requestCardinality to major changes in settings such as exportLanguage.
Thus it is possible to compare variants of deployment scenarios in the testbed.

7.1.2.1 RQ2.1: How can different variants of domain models be specified
in a flexible and easy to use way?

The key to achieving this objective is a rigorous separation of concerns, so parameter a

can be specified to have values a1 or a2 independently of parameter b. As an example,
extraTcType can be set to any of three values, and tcReduction can be set to either of
two values, so 3× 2 = 6 combinations of settings are possible. All of the policy
generation settings can be composed in this way (§ 4.4 on page 143).

7.1 Review of the Research Questions 235

Since requests are generated from policies, they depend on the policy settings as well
as the settings that apply only to requests, such as requestComplexity (§ 4.5 on
page 159).

7.1.2.2 RQ2.2 How can access control evaluation performance be
compared at different domain sizes?

Because domain size is decoupled from policy semantics, it is easy to generate instance
policies for different domain sizes. These instance policy sets are then suitable for
performance comparisons (§ 4.4.3).

7.1.3 RQ3: How can the data from performance
experiments be used to understand and predict access
control evaluation performance?

As mentioned above, STACS and DomainManager provide the flexibility to conduct
experiments that collect large volumes of service time measurements, and ensure that
each measurement is fully annotated with all the context (attribute values) associated
with that measurement. The scenarios are specified in terms of composable
parameters, hence attributes. Because of this degree of experimental control,
experiments are nominally full factorial in nature. Hence statistical procedures in the
PARPACS component (§ 5.2 on page 185) can be used to estimate the effects of the main
factors and as many of the multi-way interactions such that the observation matrix
remains full rank).

7.1.3.1 RQ3.1: What types of exploratory data analysis are suitable for
the performance experiments?

The first step in the analysis is to explore the data using statistical tests and plots,
with the goal of deriving a (statistical) performance model (§ 5.3.4 on page 192).
Among the exploratory plots used are design plots for the main factors, service time
density plots, residual plots and variants of these. A guided statistical procedure is
used to find an acceptable fit to the data. Some of the steps include removing
unnecessary data, transforming the service time measurements and including the main

7.1 Review of the Research Questions 236

factors and all their interactions. All these model terms can be estimated because the
observation matrix has full rank.

Many of the findings relating to access control performance were discovered while
exploring the data. Examples include the benefits of the JVM holding objects in
memory and the fact that there are more factors governing performance than just the
main (controlled) factors, but if interaction terms are added to the model, it can
account for some of this variability.

7.1.3.2 RQ3.2: What are the steps needed to build statistical models
predicting access control performance?

Some of the steps to build statistical models occur while exploring the data, as
described above. However, building an acceptable statistical model includes checking
that various statistical properties hold (§ 5.3.4 on page 192 and § 6.4.1 on page 216).
As soon as a reliable statistical model has been found, it can be used to estimate (and
hence predict) access control performance. Because of the large number of terms in
the model, we present our predictions as effect plots for selected factors and their
interactions. Examples of such plots can be found in § 5.4 on page 201 and § 6.5 on
page 219.

7.1.4 RQ4: What are the main factors affecting access
control evaluation performance?

The factors affecting performance include:

• the mix of requests;

• the choice of PDP;

• the size of the domain;

• the complexity of the requests being handled;

• memory;

• the presence or not of redundant rule clauses.

7.1 Review of the Research Questions 237

However some of these (notably memory and rule redundancy) are more significant in
interaction terms.

Other factors such as policy tweaks, the access decision, etc., tend to have relatively
small effects.

7.1.4.1 RQ4.1: What are the effects of PDP choice, domain size and
resources?

PDP choice has a very large effect, see Figure 3.11 on page 99 and Figure 5.2 on
page 193.

The domain size also has a large effect, see Figure 5.9b on page 204. Its interaction
with the Pdp and RqCrd factors is also significant (see Figures 5.9d 5.9e on page 204,
respectively).

Memory does affect service time, but its interactions are more significant. Indeed, if
there is already enough memory available, adding more can result in lower
performance (Figure 5.2 on page 193).

7.1.4.2 RQ4.2: What are the effects of domain size, policy and request
characteristics?

After the choice of PDP, policy and request characteristics are probably the next best
predictors of performance, see Figure 6.1.

7.1.5 Extension to general client-server performance

These research questions are quite specific in the sense of applying to access control
performance. However, it is possible to rephrase them so that they apply to other
domains. As an example, equivalent research questions relating to database
performance might read:

RQ1-db How can database query performance be measured for use in performance
experiments?

7.2 Summary of main contributions 238

RQ2-db How can domain models (in the form of data to be stored in the database,
and representative queries against this data) be specified and used to express
database query scenarios?

RQ3-db How can the data from performance experiments be used to understand and
predict database query performance?

RQ4=db What are the main factors affecting database query performance?

As can be seen, variants of the Research Questions used in this dissertation can be
used in many other client-server settings where server performance is a concern.

7.2 Summary of main contributions

The main contributions have been presented in tabular form in Table 1.2 on page 8,
for findings that are expected to apply to other enterprise access control scenarios, and
Table 1.3 on page 10 for innovative models and infrastructure that is intended to
enable future research advances.

Some highlights are listed below:

• Service times are clustered and the clustering is particularly sensitive to the
choice of PDP, as well as to latent properties of the policies and requests (§ 3.3.2
on page 67);

• Given the service time distribution, the researcher can use simulations to
investigate the effects of varying request arrival rates and/or mixes of requests
(§ 3.4.6 on page 84;

• The prototype njsrpdp has shorter service times and uses less memory and CPU
resources than either SunXACML PDP or EnterpriseXACML PDP (§ 3.5.3 on
page 98);

• Although it was not possible to decouple the efficiency advantages of using the
Node.js prototype PDP from those accruing from the use of JSON policies and
requests, it is clear that reducing the size of each JSON request has a significant
effect, but making the policy encoding more efficient has negligible effect (§ 3.5.4
on page 103);

7.2 Summary of main contributions 239

• Turkmen and Crispo (2008) suggests that EnterpriseXACML PDP has better
evaluation performance than SunXACML PDP on their test data. § 3.4.6.2 on
page 86 uses continue policies and agrees with this. Also, the service time
distribution suggests that SunXACML PDP has fewer request clusters and so is
more predictable. However, when the multi22 requests are excluded and outliers
are removed, § 3.5.2 on page 96 suggests that the position is reversed. This
suggests that SunXACML PDP has more extreme values but, for relatively simple
policies and requests, might even outperform EnterpriseXACML PDP, see § 3.4.6.2
on page 86 and § 3.5.2 on page 96;

• SunXACML PDP v1.2 has much better scalability than SunXACML PDP v2.0. One of
the main changes with SunXACML PDP v2.0 is to delegate XML processing to a
JAXB provider and to elements of the Spring framework, as this provides a
better abstraction for element finding and hence should make maintenance and
extension easier. Unfortunately, this comes with a high price in performance
terms, where the effects plots for PDP (Figure 5.9a on page 204), PDP:DS PDP ×
DomainSize interaction: (Figure 5.9d on page 204) and PDP:DS:RCA (PDP ×
DomainSize × RequestCardinality interaction: (Figure 5.9h on page 204)
strongly indicate a problem with the scalability of SunXACML PDP v2.0 that is
much more serious than that with SunXACML PDP v1.2. (§ 5.4 on page 201)

• The JVM caches evaluation results automatically. The garbage collection rate of
the JVM is sufficiently low (on a dedicated PDP server) that subsequent
requests (of the same kind) can get the result from the cache much faster than
calculating it anew each time, see Figure 5.3 on page 194 and Figure 6.1 on
page 215 (§ 5.3.4.1 on page 193).

• Simple linear predictive models are not sufficient. A linear model can be used for
prediction, but it needs more than just the main factors: second, third and
higher order interactions are also significant. The researcher can control the
main factors but, when building the model that fits the data, there is clear
evidence of underfitting unless many of the interaction terms are also included,
see Figure 5.4 on page 195 (§ 5.3.4.2 on page 196)

• A linear model with factors and interactions underfits the data unless the
dependent variable (service time in this instance) is transformed to make the
distribution of the residuals more constant over its range. Ideally, the residuals

7.2 Summary of main contributions 240

of a linear least squares fit have constant variance over the range of the
dependent variable and have their distribution is symmetric and centred on 0,
etc. When these assumptions do not apply, a transformation can help, as it does
here. Compare Figure 5.4d on page 195 (untransformed) against Figure 5.6b on
page 198 (transformed). See also § 5.3.4.3 on page 196;

• Measured service times are needed to predict performance. It is possible to
measure many characteristics of policies and requests, but it is difficult to build
a reliable predictive model from just those terms. It would be much more
convenient to use the (static) characteristics of policies and requests to predict
performance, precluding the need for extensive measurement experiments.
Unfortunately the predictive power of many of these characteristics is weak. See
Figure 6.6 on page 221 where it is obvious that the leaf count and path length
parameters have no obvious correlation with service time, and this feature is
made even more clear in effect plots such as Figure 6.7 on page 222 (§ 6.5.1 on
page 221);

• Some of the “rules of thumb” relating policies to performance are misleading.
Small changes to policy structure have minimal effects on performance: when
writing policies, there are many ways of tweaking the rules to achieve the same
results. However such changes seem to have little effect on performance. See
Figure 6.6 on page 221 where it is clear that the PR factor, which encodes several
types of policy structure, has almost no effect on performance compared to other
factors. (§ 6.5.1 on page 221);

• Removing duplicate rule clauses can increase service times. Most researchers
assume that removing duplicate rule clauses should reduce service times.
However this is not always the case, see Figure 6.7 on page 222 and Figure 6.8
on page 224, possibly because certain evaluation shortcuts disappear when the
duplicate clauses are removed. This suggests that sometimes it is better to leave
some redundancy in the policy set, in lieu of refactoring the policy set to
optimise the placement of those logical conditions (§ 6.5.2 on page 223);

• Increasing the Request Cardinality (hence request size) and simultaneously
increasing the policy size is not guaranteed to increase service times compared to
smaller policies and requests. See Figure 6.9b on page 226 where we believe this
is down to the fact that a search problem can stop as soon as either a match has

7.3 Recommendations for Future Work 241

been found, or cannot be found. If a request is “large” it needs to match a
“large” part of the policy but a smaller request could match more of a large
policy, in principle. Indeed, the complexity of each request receives little
attention in the literature but it seems that the best performance is obtained
when either the policies or the requests have many logical clauses (Ds = ‘S’ and
RC = ‘Mlt’ or Ds = ‘L’ and RC = ‘Sgl’), but not both large (§ 6.5.3 on page 225);

• Adding more system resources does not always improve performance. Most
researchers assume that PDP resource demands are elastic in the sense that
adding more memory/CPU helps the PDP to scale upwards as load increases.
This is not always true. When more than adequate resources are available, e.g.
in the case of Figure 5.2b on page 193 and Figure 5.9g on page 204, it appears
that changing the resources has no effect. Real enterprise scenarios might be
expected to have greater semantic complexity (not just size, as here) and so
perhaps additional memory would be advisable then. When memory and CPU
are more limited, see Figure 6.1b on page 215, it is clear from the
Dsize:RqCrd:Mem interaction effects plot (Figure 6.10c on page 229 that the
dependence on memory is not monotonic. This suggests that beyond a certain
point (predicted by the experiment) it might be better to scale outwards rather
than upwards. Alternatively, consider policy decomposition techniques (Decat
et al., 2012; Deng et al., 2014; El Kateb et al., 2012), particularly for larger
domains (§ 6.5.4 on page 228).

7.3 Recommendations for Future Work

Given the research contributions presented in §7.4, it can be asked whether more
research contributions are possible from the same source. The answer is yes; seven
areas for future work are outlined in this Section.

7.3.1 Work in Progress; Short Term

Work in this category has either started and is largely complete, or is well understood
and has relatively low risk.

7.3 Recommendations for Future Work 242

7.3.1.1 Comparison of XACML 2.0 vs XACML 3.0

The XACML 3.0 specification (Rissanen, 2013) has been published and work has
started on extending DomainManager to be able to export XACML 3.0 policies and
requests, in addition to the XACML 2.0 described in this dissertation. Note that the
features of the exported policies and requests are those that are shared by XACML 2.0
and 3.0.

As well as extending DomainManager, additional PDP adapters are needed for STACS.
Candidate open source XACML 3.0 PDPs include Balana (Asela, 2015),
ATTxacml (Dragosh and Knust, 2015), xacml4j (Sevelis, 2014) and sne-xacml (Ngo,
2014).

An adapter for Balana has already been added to STACS. Interestingly, Balana can
evaluate both XACML 2.0 and 3.0 policies and requests, so it is possible to compare it
with other XACML 2.0 PDPs using a common set of XACML 2.0 test artifacts, and
to use the XACML 3.0 versions of those artifacts to compare its XACML 3.0 policy
evaluation performance with its XACML 2.0 policy evaluation performance. We have
some preliminary results that suggest that Balana’s XACML 2.0 and 3.0 performance
are very similar, and as a XACML 2.0 PDP, it performs as well as SunXACML PDP v1.2
from which it was derived.

Since sne-xacml was developed with high performance as an explicit objective, it
would be interesting to compare it against its XACML 3.0 peers, such as Balana. A
suitable research question might be: “To what extent does the optimised BDD
formulation of sne-xacml improve performance compared to more traditional
formulations?”

7.3.1.2 Comparison of Javascript/JSON versus Java/XML PDPs

§3.5 describes a set of experiments in which the performance of a limited prototype
PDP (njsrpdp) was compared with that the reference SunXACML PDP implementation.
njsrpdp was implemented in Javascript and works with JSON policies and requests
only. As a prototype, it did not implement all the XACML 2.0 specification, just
enough for the continue policies and the single requests; even the multi22 requests
were out of scope.

7.3 Recommendations for Future Work 243

In parallel with the work described in this dissertation, a colleague (Mr Fan Zhang)
has taken the SunXACML PDP implementation and re-implemented it in Javascript. His
njspdp accepts XML-encoded policies and either XML- or JSON-encoded requests.
The new PDP is a full implementation of the XACML 2.0 specification: it passes the
XACML 2.0 conformance test suite (Kuketayev, 2005). Performance comparisons with
SunXACML PDP suggests njspdp is significantly faster.

Since the new PDP is essentially a fork of SunXACML PDP v1.2 but using Javascript
patterns, idioms, syntax and libraries instead of their Java counterparts, we propose
the following research question: “What is the performance benefit of migrating
SunXACML PDP from Java on the JVM to the Javascript/Node.js ecosystem, and what
is the added benefit (if any) of encoding requests in JSON rather than XML?”

7.3.1.3 Making DomainManager easier to use

The plethora of files and settings used to configure a DomainManager scenario run (to
generate policies and requests) can be daunting for new users. A colleague (Mr
Shahzada Ali Saleem) has built a prototype web application to capture the required
configuration settings in a more friendly way, using context-sensitive web forms and
information flows. His GUI saves DomainManager scenario configurations in text files in
the standard format format required by DomainManager. However, the scope for user
error and misconfiguration in these files is greatly reduced, compared to editing them
manually.

7.3.2 Medium Term

Work in this category has not started and would require significant software
engineering to complete. It would also require a new suite of experiments to capture
the measurements and interpret the results.

7.3.2.1 Attribute-level versus instance-level evaluation

§4.4 describes a technique to address the impedance mismatch between attribute-level
policies and instance-level requests. PolicyGen (a component of DomainManager)
starts from the attribute-level template policies and generates instance-level policies

7.3 Recommendations for Future Work 244

that are consistent with the access requests submitted to the PDP. This has the
benefit that we can resolve the mismatch at the policy authoring stage, rather than at
the policy evaluation stage. However it also means that policy generation should be
run frequently, to ensure that the generated policies are up to date.

Another way to resolve this mismatch is to forego the generation of instance-level
policies from attribute-level policies. Instead, the procedure would be to convert
instance-level requests to attribute-level requests, by looking up their attributes in a
PIP before sending them to the PDP for evaluation. There are at least three potential
benefits to this approach:

1. Policy refreshes would be less frequent. There is no need to refresh the policies
unless an attribute-level rule is added, removed or updated. Such changes would
not happen as often as changes elsewhere in the domain model.

2. The policy set is smaller, so other factors being equal, the service time for each
evaluation might be less.

3. The mapping from instance-level to attribute-level requests would be
many-to-one, so many of the (formerly instance-level) requests would appear as
duplicates to the PDP. Consequently caching of responses becomes much more
attractive.

The main drawback is that more computation is needed at policy evaluation time,
before the request arrives at the PDP.

It would be very interesting to compare the two approaches. A research question
might be “What is the performance benefit of evaluating policies and requests at
attribute-level rather than instance-level, and is it better overall when the extra
evaluation-stage lookup times are included?”

7.3.2.2 Access control in the Internet of Things

Another colleague, Mr Michael Wall, is looking for a MSc dissertation topic relating to
access control in the Internet of Things. We have discussed various options, but the
topic is most likely to relate to modifying policies so that they can be evaluated in a
distributed fashion on resource-constrained devices, where increased energy efficiency
is as important as reduced service times per request.

7.3 Recommendations for Future Work 245

7.3.3 Longer Term

Work in this category has not started and could potentially form the basis of new lines
of research.

7.3.3.1 Analyse distributed PDP performance

At present STACS can be used to measure access control performance on a single PDP
at a time. Furthermore, the PDP under test operates in the same JVM or Node.js
instance as STACS. However, in enterprise deployments, access control systems are
distributed across different servers. Communication between servers is via TCP
sockets or web service calls. Thus service time also needs to include request and
response transport overheads. Depending on the request arrival distribution and
transport protocols, queueing is also possible. In that case, it is also possible to
consider the effects of different queueing service disciplines, and the benefits of
multiple service points (PDPs in this scenario) and hence whether the PDP function
should be scaled outwards.

The OPNET™ simulations in §3.4 helped to predict some of the queueing behaviour
of single PDP deployments. If this were combined with measurements of multiple
and/or distributed PDP deployments, it would greatly expand the types of analysis
currently available in ATLAS.

7.3.3.2 Performance-aware policy authoring

At the moment, we understand that policy authoring focuses primarily on functional
requirements such as completeness and correctness. However, given knowledge of
typical requests, it might be possible to arrange the rules in such a way that it is
easier to find a match. One way might be to transform the internal graph
representation of the (template) policy to a Multi-Terminal Binary Decision Diagram,
which is also a graph but in a condensed format. The enhanced DomainManager could
then export that condensed graph as an “optimised” XACML policy set. Other types
of policy optimisation could also be tried, such as policy reconfiguration, etc.

7.3 Recommendations for Future Work 246

7.3.3.3 Extension to database performance analysis

Since one of the common use cases for enterprise access control is to protect data that
is retrieved from a database, it would be interesting to consider access control
performance in this wider context. Row-oriented, disk-based relational database
management systems such as those offered by Oracle® Microsoft® and similar vendors
had become dominant. DBA certification courses included a module on performance
tuning. However, databases themselves, and the infrastructure supporting them, are
now much more varied. In relation to infrastructure, the traditional model of the
database being hosted on a large server with attached storage has given way to
distributed database deployments, hosted on virtualised infrastructure, possibly
off-premises, with storage being decoupled from management functions and iwith
multiple layers of abstraction (query rewriters, load balancers, etc.) being added
between the client and server. Even the database management system itself has
changed, with a growing list of alternatives including NewSQL (where the query
language and logical model remains the same, but the physical implementation is
dramatically different, e.g., being column-oriented (e.g., MonetDB), or in-memory
(e.g., VoltDB), or massively parallel (e.g., NuoDB)). Other database storage systems
eschew the relational model and offer query languages that might look like SQL, but
have different semantics. Such databases are often termed Not-only SQL (NoSQL)
and include key-value stores (e.g., redis), document databases (e.g., mongodb®),
column-family (e.g., HBase, built on hadoop), semantic databases/linked data stores
(e.g., GraphDB™) and graph databases (e.g., neo4j™) (Robinson et al., 2015).

With all these differences in models, infrastructure and technology, there is a wealth of
factors to consider before deploying a database. Many of these factors will affect
performance. Simplistic comparisons, using standard benchmarks and metrics, tell
only part of the story. What is needed is a means of generating meaningful
scenario-specific data for populating the database, coupled with an event model for
generating representative queries against that data. By conducting performance
experiments, and fitting a statistical model to the performance data collected from
these experiments, it should be possible to make predictions about performance and
scalability, and to estimate the uncertainty in those predictions.

7.4 Access Control Evaluation Performance: General Principles 247

As stated in previous chapters, the ATLAS framework provides a good basis upon which
to start planning and implementing a performance analysis framework for other
domains:

Performance testbed The generic components of STACS are relevant, but a lot of
software engineering challenges remain, e.g., to build a set of adapters that hide
many of the specifics of how to formulate queries and interpret responses.

Data and query generation DomainManager indicates the scope of what would be
required, but a completely new component would be needed to generate data
and query artifacts for database performance experiments.

Reporting and Analysis PARPACS has the software engineering in place to be
extended into new settings such as database performance analysis. However,
subject matter experts would be needed to configure the new scenarios, and a
data scientist would be needed to work with such experts to interpret the results.

Therefore, this extension would be considerably more challenging than even the
extension to integrate performance prediction into policy authoring.

7.3.4 Future work summary

While the research to date has led to significant research contributions and interesting
findings, there is still scope for new research to be conducted based on what has been
achieved to date.

In that regard we intend to look for research collaborations and funding opportunities
to continue our research on client-server performance analysis and on access control
performance analysis in particular.

7.4 Access Control Evaluation Performance:
General Principles

Having studied access control performance, and attempted to advance the state of the
art, we strongly believe in the following principles:

7.4 Access Control Evaluation Performance: General Principles 248

An Experimental Testbed is Needed. The lack of an agreed benchmark, either
in terms of a testbed, or indeed a reproducible means of running experiments on
that testbed should it exist, meant that the evaluation in each case was less
convincing than it could have been. For the research to be reproducible, it is
necessary to provide more details on the experimental conditions. This is
especially true in relation to performance experiments. The use of a common
testbed like STACS would greatly ease the reporting of experimental evaluations,
e.g., it means that service times are measured and aggregated in a consistent
fashion, so that part of the results presentation does not need further
elaboration. The researcher is then free to discuss more significant details of the
performance experiment, such as what computing resources were available, or
what policies and requests were used;

Relevant policies are needed. Turkmen and Crispo (2008) note that it is very
difficult for researchers to obtain actual policies and requests, owing to the
sensitivity of the policy and request data itself. DomainManager provides a
partial solution: it uses policy refinement principles to generate instance-level
policies from attribute-level policies. However, it still needs template policies as
input. Such policies are best written by subject matter experts. Perhaps such
experts might be persuaded to share their policies with the research community,
since they would not need to reveal instance-level details about their enterprises.

Requests consistent with those policies are needed. Enterprise access request
data is likely to remain sensitive. However, DomainManager’s RequestGen

procedure can generate requests from policies. These requests are consistent
with the policies used to generate them (by construction) and yet they are also
somewhat different (owing to TC and/or TSC reduction). Perhaps in future
RequestGen could have further options for bulk request generation;

Formal performance analysis is needed. We have already seen that STACS

enables researchers to collect service time measurements from experiments.
Furthermore DomainManager enables those researchers to control what policies
and requests are used in those experiments. All of this effort is to no avail unless
researchers can analyse the measurements and interpret the results. The first
requirement, with any such analysis, is to select and condition the data in
preparation for that analysis. PARPACS can be configured to use a variety of data
adapters. The next requirement is to explore the data, plotting it and learning

7.4 Access Control Evaluation Performance: General Principles 249

about its features: what main effects are larger than others? what does the
service time distribution look like? etc. Given this understanding of the main
features, PARPACS enables the researcher to fit extended linear models to the
prepared data. Because of a rigorous separation between control and function
within PARPACS, control settings such as model terms, desired diagnostic plots
etc. can be set externally and PARPACS will respect those settings and provide
customised analyses. Other authors appear to use a more limited analysis
procedure that what is available in PARPACS, so it appears that PARPACS

represents a considerable improvement over what is available to other researchers
who investigate access control evaluation performance;

An integrated toolchain is needed. Given the scope and complexity of STACS,
DomainManager and PARPACS, it is essential for them to work together. This is
achieved by ensuring that control flow, data formats, etc. are consistent. Use of
control tables in a sqlite database ensures that all analyses are versioned and
traceable to the relevant STACS and DomainManager runs. The components work
together in such a seamless fashion that it is possible to consider that they
belong to an overarching framework, which we call ATLAS. As such, they can be
used to solve engineering problems, such as dimensioning an access control
system prior to deployment.

We believe these principles provide a sound foundation for future research on access
control evaluation performance.

Bibliography
Abadi, D., Agrawal, R., Ailamaki, A., Balazinska, M., Bernstein, P. A., Carey, M. J.,

Chaudhuri, S., Chaudhuri, S., Dean, J., Doan, A., Franklin, M. J., Gehrke, J., Haas,
L. M., Halevy, A. Y., Hellerstein, J. M., Ioannidis, Y. E., Jagadish, H. V.,
Kossmann, D., Madden, S., Mehrotra, S., Milo, T., Naughton, J. F., Ramakrishnan,
R., Markl, V., Olston, C., Ooi, B. C., Ré, C., Suciu, D., Stonebraker, M., Walter, T.,
and Widom, J. (2016). The Beckman Report on Database Research. Commun.
ACM, 59(2):92–99.

Abou-Tair, D. e. D. I., Berlik, S., and Kelter, U. (2007). Enforcing Privacy by Means
of an Ontology Driven XACML Framework. In IAS ’07: Proceedings of the Third
International Symposium on Information Assurance and Security, pages 279–284,
Washington, DC, USA. IEEE Computer Society.

Agha, G. A. and Kim, W. (1999). Actors: A unifying model for parallel and
distributed computing. Journal of Systems Architecture, 45(15):1263 – 1277.

Akaike, H. (1974). A new look at the statistical model identification. Automatic
Control, IEEE Transactions on, 19(6):716–723.

Akers, Jr., S. B. (1959). On a Theory of Boolean Functions. Journal of the Society for
Industrial and Applied Mathematics, 7(4):487–498.

Ammann, P., Offutt, J., and Huang, H. (2003). Coverage Criteria for Logical
Expressions. In ISSRE ’03: Proceedings of the 14th International Symposium on
Software Reliability Engineering, page 99, Washington, DC, USA. IEEE Computer
Society.

Anderson, A. H. (2005). Core and hierarchical role based access control (RBAC)
profile of XACML v2.0. OASIS Standard.

Asela (2015). “Balana” The Open source XACML 3.0 implementation.
Berrut, J.-P. and Trefethen, L. N. (2004). Barycentric Lagrange Interpolation. SIAM

Review, 46(3):501 – 517.
Bertolino, A., Daoudagh, S., Lonetti, F., and Marchetti, E. (2012). Automatic

XACML Requests Generation for Policy Testing. In Proc. IEEE Fifth International
Conference on Software Testing, Verification and Validation (ICST 12), pages
842–849.

Bertolino, A., Gao, J., Marchetti, E., and Polini, A. (2007). TAXI–A Tool for
XML-Based Testing. In Software Engineering - Companion, 2007. ICSE 2007
Companion. 29th International Conference on, pages 53–54.

Brewer, D. F. C. and Nash, M. J. (1989). The Chinese Wall Security Policy. In IEEE
Symposium on Security and Privacy, pages 206–214.

Brossard, D. (2014a). Json profile of XACML 3.0 Version 1.0.
Brossard, D. (2014b). Understanding XACML combining algorithms. Developer Blog.

Bibliography 251

Butler, B. (2015a). DomainManager application. Git Code Repository. Accessed
2015-11-12.

Butler, B. (2015b). PARPACS application. Git Code Repository. Accessed 2015-11-12.
Butler, B. (2015c). STACS application. Git Code Repository. Accessed 2015-11-12.
Butler, B., Cox, M., Forbes, A., Harris, P., and Lord, G. (1999). Model validation in

the context of metrology: a survey. NPL Report 19/99, National Physical
Laboratory, Teddington, UK. UK NMS Software Support for Metrology Programme.

Butler, B. and Jennings, B. (2015). Measurement and Prediction of Access Control
Policy Evaluation Performance. Network and Service Management, IEEE
Transactions on, 12(4):526–539.

Butler, B., Jennings, B., and Botvich, D. (2010). XACML Policy Performance
Evaluation Using a Flexible Load Testing Framework. In Proc. 17th ACM
Conference on Computer and Communications Security (CCS 2010), pages 648–650.
ACM. Short paper.

Butler, B., Jennings, B., and Botvich, D. (2011). An experimental testbed to predict
the performance of XACML Policy Decision Points. In Proc. IM 2011 -
TechSessions.

Chadwick, D., Zhao, G., Otenko, S., Laborde, R., Su, L., and Nguyen, T. A. (2008).
Permis: a modular authorization infrastructure. Concurr. Comput. : Pract. Exper.,
20:1341–1357.

Cisco (2012). Voice and Unified Communications.
Craven, R., Lobo, J., Lupu, E., Russo, A., and Sloman, M. (2011). Policy refinement:

Decomposition and operationalization for dynamic domains. In Proc. 7th
International Conference on Network and Service Management (CNSM 2011), pages
1–9.

Croarkin, C. and Tobias, P. (2015). NIST/SEMATECH e-Handbook of Statistical
Methods. Accessed 2015-03-10.

Crockford, D. (2006). JSON: The Fat Free Alternative to XML. In 15th International
WWW Conference, Edinburgh.

Crockford, D. (2011). ECMAScript Language Specification.
Dahl, R. (2011). Node.js: Evented IO for V8 javascript.
Davy, S., Barron, J., Shi, L., Butler, B., Jennings, B., Griffin, K., and Collins, K.

(2013). A Language Driven Approach to Multi-System Access Control. In Proc. IM
2013 - AppSessions, Ghent, Belgium.

Davy, S., Jennings, B., and Strassner, J. (2007). The policy continuum–a formal
model. In Proceedings of the Second IEEE International Workshop on Modelling
Autonomic Communications Environments (MACE 2007), pages 65–79.

Davy, S., Jennings, B., and Strassner, J. (2008). The policy continuum—Policy
authoring and conflict analysis. Computer Communications, 31(13):2981–2995.

Bibliography 252

Special Issue on “Self-organization and self-management in communications as
applied to autonomic networks”.

Decat, M., Lagaisse, B., and Joosen, W. (2012). Toward Efficient and
Confidentiality-aware Federation of Access Control Policies. In Proc. 7th Workshop
on Middleware for Next Generation Internet Computing (MW4NG ’12), pages
41–46. ACM.

Deng, F., Chen, P., Zhang, L.-Y., Wang, X.-Q., Li, S.-D., and Xu, H. (2014). Policy
Decomposition for Evaluation Performance Improvement of PDP. Mathematical
Problems in Engineering, 2014:14.

Dougherty, D. J., Fisler, K., and Krishnamurthi, S. (2006). Specifying and Reasoning
About Dynamic Access-Control Policies. In IJCAR, pages 632–646.

Dragosh, P. and Knust, H. (2015). AT&T XACML 3.0 Implementation. Now part of
the Apache OpenAz incubator project at
http://incubator.apache.org/projects/openaz.html.

Egelman, S., Molnar, D., Christin, N., Acquisti, A., Herley, C., and Krishnamurthi, S.
(2010). Please continue to hold: An empirical study on user tolerance of security
delays. In WEIS.

Eifrem, E., Hunger, M., and Robinson, J. (2015). Neo4j database.
El Kateb, D., Mouelhi, T., Le Traon, Y., Hwang, J., and Xie, T. (2012). Refactoring

Access Control Policies for Performance Improvement. In Proc. 3rd ACM/SPEC
International Conference on Performance Engineering (ICPE ’12), pages 323–334.
ACM.

Esposito, R. and Cole, M. (2013). How Snowden did it.
http://www.nbcnews.com/news/other/how-snowden-did-it-f8C11003160. NBC
News article.

Ferraiolo, D. and Kuhn, R. (1992). Role-Based Access Control. In Proc. 15th
NIST-NCSC National Computer Security Conference, pages 554–563.

Ferraiolo, D. F., Barkley, J. F., and Kuhn, D. R. (1999). A role-based access control
model and reference implementation within a corporate intranet. ACM Trans. Inf.
Syst. Secur., 2:34–64.

Ferrini, R. and Bertino, E. (2009). Supporting RBAC with XACML+OWL. In Proc.
14th ACM Symposium on Access Control Models And Technologies (SACMAT 09),
pages 145–154. ACM.

Fisler, K., Krishnamurthi, S., Meyerovich, L. A., and Tschantz, M. C. (2005).
Verification and change-impact analysis of access-control policies. In ICSE ’05:
Proceedings of the 27th international conference on Software engineering, pages
196–205, New York, NY, USA. ACM.

Florescu, D. and Kossmann, D. (2009). Rethinking cost and performance of database
systems. SIGMOD Rec., 38(1):43–48.

Bibliography 253

Fox, J. (2003). Effect Displays in R for Generalised Linear Models. Journal of
Statistical Software, 8(15):1–27.

Fox, J. and Weisberg, S. (2011). An R Companion to Applied Regression. Sage,
Thousand Oaks CA, 2nd edition.

Gasca, M. and Sauer, T. (2000). On the history of multivariate polynomial
interpolation. Journal of Computational and Applied Mathematics, 122(1–2):23–35.
Special Issue: Numerical Analysis in the 20th Century Vol. II: Interpolation and
Extrapolation.

Geist, R., Offutt, A. J., and Harris, Jr., F. C. (1992). Estimation and Enhancement of
Real-Time Software Reliability Through Mutation Analysis. IEEE Trans. Comput.,
41(5):550–558.

Griffin, L., Butler, B., de Leastar, E., Jennings, B., and Botvich, D. (2012). On the
performance of access control policy evaluation. In IEEE International Symposium
on Policies for Distributed Systems and Networks (POLICY 2012), pages 25–32.
IEEE.

Griffin, L., Ryan, K., de Leastar, E., and Botvich, D. (2011). Scaling Instant
Messaging communication services: A comparison of blocking and non-blocking
techniques. In Computers and Communications (ISCC), 2011 IEEE Symposium on,
pages 550 –557.

Gryb, O. (2008). XACML Light Reference.
http://oleg.internetkeep.net/xacml/doc/XACMLightReference.html. Accessed
2010-04-19.

Haller, P. and Odersky, M. (2009). Scala actors: Unifying thread-based and
event-based programming. Theoretical Computer Science, 410(2–3):202 – 220.
Distributed Computing Techniques.

Hornik, K. (2009). The R FAQ. ISBN 3-900051-08-9.
Hothorn, T. and Everitt, B. S. (2009). A Handbook of Statistical Analyses Using R,

Second Edition. Chapman and Hall/CRC, 2 edition.
Hu, V. C. (2008). ACPT: Access Control Policy Tool. NIST, Gaithersburg, MD.
Hu, V. C., Ferraiolo, D., Kuhn, R., Friedman, A. R., Lang, A. J., Cogdell, M. M.,

Schnitzer, A., Sandlin, K., Miller, R., and Scarfone, K. (2013). NIST 800-162
(Draft): Guide to Attribute Based Access Control (ABAC) Definition and
Considerations. Technical report, NIST, Gaithersburg, MD. Draft: Public comment
period: April 22, 2013 through May 31, 2013.

Hu, V. C., Kuhn, D. R., Xie, T., and Hwang, J. (2011). Model Checking for
Verification of Mandatory Access Control Models and Properties. International
Journal of Software Engineering and Knowledge Engineering, 21(01):103–127.

IBM (2012). Unified Communications.
Jajodia, S., Samarati, P., Subrahmanian, V. S., and Bertino, E. (1997). A unified

framework for enforcing multiple access control policies. In Proceedings of the 1997

Bibliography 254

ACM SIGMOD international conference on Management of data, SIGMOD ’97,
pages 474–485, New York, NY, USA. ACM.

Jamin, S., Danzig, P. B., Shenker, S. J., and Zhang, L. (1997). A measurement-based
admission control algorithm for integrated service packet networks. IEEE/ACM
Trans. Netw., 5(1):56–70.

Jennings, B. (2001). Network-oriented Load Control for SS.7/IN. PhD thesis, Dublin
City University.

Jennings, B., Arvidsson, Å., and Curran, T. (2001). A token-based strategy for
co-ordinated, profit-optimal control of multiple IN resources. In Teletraffic
Engineering in the Internet Era (Proc. 17th Int’l Teletraffic Congress - ITC17),
volume 1, pages 245–258. Elsevier.

Jin, X., Krishnan, R., and Sandhu, R. (2012). A Unified Attribute-Based Access
Control Model Covering DAC, MAC and RBAC. In Cuppens-Boulahia, N.,
Cuppens, F., and Garcia-Alfaro, J., editors, Proceedings of the 26th Annual IFIP
WG 11.3 conference on Data and Applications Security and Privacy, volume 7371 of
Lecture Notes in Computer Science, pages 41–55. Springer Berlin Heidelberg.

Johnson, M. (2012). Toward Usable Access Control for End-users: A Case Study of
Facebook Privacy Settings. PhD thesis, Columbia University.

Kelbert, F. and Pretschner, A. (2012). Towards a policy enforcement infrastructure for
distributed usage control. In Proceedings of the 17th ACM Symposium on Access
Control Models and Technologies, SACMAT ’12, pages 119–122, New York, NY,
USA. ACM.

Kleinrock, L. (1975). Queueing Systems, Volume 1: Theory. Wiley-Interscience.
Kohler, M. and Brucker, A. D. (2010). Caching strategies: An empirical evaluation. In

International Workshop on Security Measurements and Metrics (MetriSec), pages
1–8. ACM Press, New York, NY, USA.

Kolovski, V., Hendler, J., and Parsia, B. (2007). Analyzing web access control policies.
In Proc. 16th international conference on World Wide Web (WWW ’07), pages
677–686. ACM.

Krishnamurthi, S. (2003). The CONTINUE Server (or, How I Administered PADL
2002 and 2003). In Verónica Dahl and Philip Wadler, editor, Proc. Symposium on
the Practical Aspects of Declarative Languages (PADL 03), Lecture Notes in
Computer Science 2562., pages 2–16. Springer.

Kuhn, D. R., Kacker, R. N., and Lei, Y. (2010). NIST 800-142: Practical
Combinatorial Testing. Technical report, NIST, Gaithersburg, MD.

Kuketayev, A. (2005). Oasis XACML 2.0 Conformance tests. Accessed 2010-01-14.
Lampson, B. W. (1974). Protection. SIGOPS Oper. Syst. Rev., 8:18–24.
Lane, D. M. (2015). Online Statistics Education: A Multimedia Course of Study.

Accessed Feb 2015.

Bibliography 255

Lang, B., Zhao, N., Ge, K., and Chen, K. (2008). An xacml policy generating method
based on policy view. In Third International Conference on Pervasive Computing
and Applications (ICPCA 2008), volume 1, pages 295–301.

Lerner, R. M. (2011). At the forge: Node.JS. Linux J., 205.
Li, N., Hwang, J., and Xie, T. (2008). Multiple-implementation testing for XACML

implementations. In Proc. 2008 workshop on Testing, Analysis, and Verification of
Web services and applications (TAV-WEB ’08), pages 27–33. ACM.

Lin, D., Rao, P., Bertino, E., and Lobo, J. (2007). An approach to evaluate policy
similarity. In Proc. 12th ACM Symposium on Access Control Models And
Technologies (SACMAT ’07), pages 1–10. ACM.

Liu, A. X., Chen, F., Hwang, J., and Xie, T. (2008). Xengine: a fast and scalable
XACML policy evaluation engine. In Proc. ACM SIGMETRICS international
conference on Measurement and Modeling of Computer Systems (SIGMETRICS
2008), pages 265–276. ACM.

Lodderstedt, T., Basin, D. A., and Doser, J. (2002). SecureUML: A UML-Based
Modeling Language for Model-Driven Security. In Proceedings of the 5th
International Conference on The Unified Modeling Language, UML ’02, pages
426–441, London, UK. Springer-Verlag.

Marouf, S., Shehab, M., Squicciarini, A., and Sundareswaran, S. (2011). Adaptive
Reordering and Clustering-Based Framework for Efficient XACML Policy
Evaluation. IEEE Transactions on Services Computing, 4(4):300–313.

Martin, E. (2006). Automated test generation for access control policies. In OOPSLA
’06: Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications, pages 752–753, New York, NY,
USA. ACM.

Martin, E., Hwang, J., Xie, T., and Hu, V. (2008). Assessing quality of policy
properties in verification of access control policies. In Computer Security
Applications Conference, 2008. ACSAC 2008. Annual, pages 163–172.

Martin, E., Xie, T., and Yu, T. (2006). Defining and Measuring Policy Coverage in
Testing Access Control Policies. In Ning, P., Qing, S., and Li, N., editors,
Information and Communications Security, volume 4307 of Lecture Notes in
Computer Science, pages 139–158. Springer Berlin Heidelberg.

Masi, M., Pugliese, R., and Tiezzi, F. (2012). Formalisation and implementation of
the xacml access control mechanism. In Proceedings of the 4th international
conference on Engineering Secure Software and Systems, ESSoS’12, pages 60–74,
Berlin, Heidelberg. Springer-Verlag.

Mason, R. L., Gunst, R. F., and Hess, J. L. (2003). Statistical Design and Analysis of
Experiments, with Applications to Engineering and Science. Wiley-Interscience, 2
edition.

Mazzoleni, P., Bertino, E., Crispo, B., and Sivasubramanian, S. (2006). XACML
policy integration algorithms: not to be confused with XACML policy combination

Bibliography 256

algorithms! In Proc. Eleventh ACM Symposium on Access Control Models And
Technologies (SACMAT ’06), pages 219–227. ACM.

Miseldine, P. L. (2008). Automated XACML policy reconfiguration for evaluation
optimisation. In Proc. Fourth international workshop on Software Engineering for
Secure Systems (SESS ’08), pages 1–8. ACM.

Moffett, J. and Sloman, M. (1993). Policy hierarchies for distributed systems
management. Selected Areas in Communications, IEEE Journal on,
11(9):1404–1414.

Moses, T. (2005). eXtensible Access Control Markup Language TC v2.0 (XACML).
Accessed 2016-02-10.

Motik, B., Patel-Schneider, P. F., and Parsia, B. (2012). Owl 2 web ontology language:
Structural specification and functional-style syntax.

Mouelhi, T. (2015). Policysplitter tool. Accessed 2015-03-10.
Ngo, C. (2014). High performance XACML PDP Engine.
Ngo, C., Makkes, M. X., Demchenko, Y., and de Laat, C. (2013). Multi-data-types

Interval Decision Diagrams for XACML Evaluation Engine. In Proc. 11th
International Conference on Privacy, Security and Trust (PST 2013).

NIST/NSA (2010). NIST Interagency/Internal Report (NISTIR) - 7657: A Report on
the Privilege (Access) Management Workshop. Technical report, NIST,
Gaithersburg, MD.

OASIS XACML-TC (2005a). ALL XACML 2.0 documents. Accessed: 2015-03-10.
OASIS XACML-TC (2005b). XACML 2.0 Policy Schema. Accessed 2009-11-25.
OASIS XACML-TC (2005c). XACML 2.0 Request Schema. Accessed 2009-11-25.
OASIS XACML-TC (2014). OASIS XACML TC webpage. Accessed 2014-07-30.
Peña, E. A. and Slate, E. H. (2006). Global Validation of Linear Model Assumptions.

Journal of the American Statistical Association, 101(473):pp. 341–354.
Peterson, G. and Nair, S. K. (2015). Getting the OWASP Top Ten Right with

dynamic authorization. White Paper 84. Accessed 2015-03-10.
Pina Ros, S., Lischka, M., and Gómez Mármol, F. (2012). Graph-based XACML

evaluation. In Proceedings of the 17th ACM Symposium on Access Control Models
and Technologies, SACMAT ’12, pages 83–92, New York, NY, USA. ACM.

Proctor, S. (2004). Sun’s XACML Implementation - Programmer’s Guide for Version
1.2. Accessed 2015-10-03.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Rahmouni, H., Solomonides, T., Mont, M. C., and Shiu, S. (2009). Privacy
Compliance in European Healthgrid domains: An Ontology-Based Approach. In

Bibliography 257

22nd IEEE International Symposium on Computer-Based Medical Systems, 2009.
CBMS 2009., pages 1–8.

Ramli, C. D. P. K., Nielson, H. R., and Nielson, F. (2013). XACML 3.0 in Answer Set
Programming. In Albert, E., editor, Logic-Based Program Synthesis and
Transformation, volume 7844 of Lecture Notes in Computer Science, pages 89–105.
Springer Berlin Heidelberg.

Ramli, C. D. P. K., Nielson, H. R., and Nielson, F. (2014). The Logic of XACML.
Science of Computer Programming, 83(0):80 – 105. Formal Aspects of Component
Software (FACS 2011 selected & extended papers).

Rao, P., Lin, D., Bertino, E., Li, N., and Lobo, J. (2009). An algebra for fine-grained
integration of XACML policies. In SACMAT ’09: Proceedings of the 14th ACM
Symposium on Access Control Models And Technologies, pages 63–72, New York,
NY, USA. ACM.

Rissanen, E. (2013). eXtensible Access Control Markup Language (XACML) Version
3.0. Accessed: 2015-06-10.

Rissanen, E., Levinson, R., and Lockhart, H. (2010). XACML v3.0 Hierarchical
Resource Profile Version 1.0.
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cd-03-en.pdf.
OASIS Standard.

Rissanen, E. and Lockhart, H. (2014). XACML v3.0 Administration and Delegation
Profile Version 1.0. OASIS Standard.

Rizvi, S., Mendelzon, A., Sudarshan, S., and Roy, P. (2004). Extending query
rewriting techniques for fine-grained access control. In Proc. 2004 ACM SIGMOD
international conference on Management of Data (SIGMOD ’04), pages 551–562.
ACM.

Robinson, I., Webber, J., and Eifrem, E. (2015). Graph Databases, Second Edition.
O’Reilly Media.

Rochaeli, T. (2009). An Automated Policy Refinement Process Supported by Expert
Knowledge. PhD thesis, TU Darmstadt.

Rodriguez, M. A. and Neubauer, P. (2010). Constructions from dots and lines. Bulletin
of the American Society for Information Science and Technology, 36(6):35–41.

Russello, G., Dong, C., and Dulay, N. (2008). A workflow-based access control
framework for e-health applications. In Advanced Information Networking and
Applications - Workshops, 2008. AINAW 2008. 22nd International Conference on,
pages 111–120.

Sevelis, V. (2014). Implementation of OASIS XACML 2.0 & 3.0 specification in Java
programming language.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. (2007). Pellet: A
practical owl-dl reasoner. Web Semantics: Science, Services and Agents on the
World Wide Web, 5(2):51 – 53. Software Engineering and the Semantic Web.

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-cd-03-en.pdf

Bibliography 258

Stepien, B., Matwin, S., and Felty, A. P. (2011). Advantages of a non-technical
XACML notation in role-based models. In Proc. Ninth Annual International
Conference on Privacy, Security and Trust (PST 11), pages 193–200. IEEE.

Thakkar, D., Hassan, A. E., Hamann, G., and Flora, P. (2008). A framework for
measurement based performance modeling. In WOSP ’08: Proceedings of the 7th
international workshop on Software and performance, pages 55–66, New York, NY,
USA. ACM.

Tilkov, S. and Vinoski, S. (2010). Node.js: Using JavaScript to Build
High-Performance Network Programs. IEEE Internet Computing, 14(6):80 –83.

Tschantz, M. C. and Krishnamurthi, S. (2006). Towards reasonability properties for
access-control policy languages. In Proceedings of the eleventh ACM symposium on
Access control models and technologies, SACMAT ’06, pages 160–169, New York,
NY, USA. ACM.

Turkmen, F. and Crispo, B. (2008). Performance evaluation of XACML PDP
implementations. In Proc. 2008 ACM workshop on Secure Web Services (SWS ’08),
pages 37–44. ACM.

Wand, M. P. and Jones, M. C. (1994). Kernel Smoothing (Monographs on Statistics
and Applied Probability). Chapman & Hall/CRC.

Wang, Z. (2010). Enterprise Java XACML.
http://code.google.com/p/enterprise-java-xacml/wiki/DevelopmentPlan. Accessed
2010-04-19.

Wolter, C., Schaad, A., and Meinel, C. (2007). Deriving XACML Policies from
Business Process Models. In Weske, M., Hacid, M.-S., and Godart, C., editors, Web
Information Systems Engineering – WISE 2007 Workshops, volume 4832 of Lecture
Notes in Computer Science, pages 142–153. Springer Berlin / Heidelberg.

Zhang, N., Ryan, M., and Guelev, D. P. (2004). Synthesising verified access control
systems in XACML. In FMSE ’04: Proceedings of the 2004 ACM workshop on
Formal methods in security engineering, pages 56–65, New York, NY, USA. ACM.

Appendix A

Policy Refinement for Bulk Policy
Generation

§ 4.4 describes, at a high level, the steps needed to generate FINE (instance-based)
policies, particularly the main steps involved, see § 4.4.1, § 4.4.2, § 4.4.3 and § 4.4.4,
in that order.

The present chapter provides more details on how COARSE (attribute-based) policies
can be refined to FINE (instance-based) policies and is supplementary to § 4.4.3. In
particular, it provides a more formal justification of parts of the algorithm used by
PolicyGen when refining a COARSE policy. This chapter considers the general
problem of how FINE entities at level i can be derived from COARSE entities at the
same level together with FINE entities at the lower level i− 1. As an example, FINE
CTCs can be derived from COARSE CTCs, when combined with the relevant FINE TCs.

A.1 Refining a coarse policy

The policy DSL fragments can be parsed and transformed into the property graph
representation quite easily, because the target hierarchies themselves are graphs. Each
TSC equality clause can be linked to the static domain as follows. Let ci,j :=
Type.attribute = value. Using an index on Type, it is possible to find the property
graph node which has attribute = value, and then to add a relationship between the
ci,j node and that node. Staying with the example policy in Figure 4.4, an example
clause such as c1,0 := i (Asset.confidentiality = High) has a :satisfied_by

relationship with the corresponding static model lookup graph node. There could be
many of these static model nodes, hence :satisfied_by relationships incident on that
attribute-level clause.

The next step is to lookup the instances sharing the attribute-value pair specified in
the TC clause. Staying with the same example of c1,0 := (Asset.confidentiality =

A.1 Refining a coarse policy 260

Asset.confidentiality
=

High

Asset.confidentiality
=

High

c1,0 ci,j

type=Asset.confidentiality
value=High

lookup

name=Marketing Plan
confidentiality=High

Assetx

name=Payroll Details
confidentiality=High

Assety

:satisfied_By :satisfied_By

:has_confidentiality :has_confidentiality

Fig. A.1 Example of how instance-level target subcomponent clauses can be derived
from attribute-level target subcomponent clauses

High), it is possible to navigate the property graph to lookup the instances of Asset

where the attribute Asset.confidentiality has the value High. The lookup process is
shown in Figure A.1 As can be seen in the Figure, for a given attribute-level clause
ci,j

1, there may be many instance-level clauses and this results in instance-level policy
sets that are typically much larger than the originating attribute-level policy sets. The
derived instance-level clauses represent alternative matches and hence are combined by
disjunction (OR).

Since each attribute-based TSC clause ci,j expands to a disjunction of instance-based
TSC clauses, and the TSCs themselves are combined by disjunction to form TCs, we have

ci
.=
∨
j

ci,j

ci,j ≡
∨
k

c̃i,k (A.1)

then ci ≡
∨
j

(∨
k

c̃i,k

)

1A node with a pale background signifies a policy model entity; a white background indicates a
static model entity

A.1 Refining a coarse policy 261

Some simplifications may be possible by applying logical identities, e.g., ∀i, p, we have
c̃i,p

.= c̃i,p ∨ c̃i,p and c̃i,p ∨ ¬c̃i,p ≡ ⊤.

Each TSC ci,j has the form StaticEntity.Property = valu, where a Subject
StaticEntity is one of Member or organisation, a Resource StaticEntity is Agent

and an Action StaticEntity is Action. Static properties include name, Member.role,
Asset.confidentiality and Action.type. Then there may exist zero, one or many
relationships of the form

{ci,j [StaticEntity.Property = valu] hasInstance−−−−→

StaticEntity [(Property = valu]} (A.2)

where ci,j is a TSC and Entity[a = b] is the set of entity instances where property a

takes the value b. We define two procedures

enumeration This is where a coarse attribute-based TSC ci,j becomes a set of fine
instance-based TSCs {c̃(k)

(i,j)}.

aggregation This is where either an attribute-based or an instance-based target sub
entity is combined with its peers to yield its parent entity. Thus TSCs can be
aggregated to TCs, which can be aggregated to CTCs, which can be aggregated to
a Target. Further aggregation (across Targets) is complicated and is best left to
PDP implementations.

Aggregation of attribute-based target sub entities is unlikely to simplify a policy set to
any great extent because the terms are distinct and the (human) policy author might
be expected to exclude unnecessary terms like A and B in (A ∩B) ∪ C, since that
expression reduces to C, ∀{A, B} whenever A ̸= B.

By contrast, aggregation of instance-based target sub entities can be much more
productive because of the identities relating logical operations to set operations, viz.

{c̃(α)
i,j } ∧ {c̃

(β)
i,k } = {c̃(α)

i,j } ∩ {c̃
(β)
i,k } (A.3)

{c̃(α)
i,j } ∨ {c̃

(β)
i,k } = {c̃(α)

i,j } ∪ {c̃
(β)
i,k } (A.4)

This reformulation of the policies has two consequences

A.1 Refining a coarse policy 262

1. the instance-level target hierarchy is less deeply nested because CTCs comprise
instance-level TCs only; there is no need for a conjunction (AND) of TSCs.

2. the matching conditions become more explicit and can be re-interpreted as set
membership conditions, e.g., when matching Subjects (or equivalently,
Resources, Actions or Environments), does the request’s entity instance belong
in the set specified in the instance-based target component clause?

Otherwise the structure of the policy set is unchanged, e.g., the same rule nesting, rule
effect and combining algorithms apply.

Appendix B

Bulk Request Generation
Algorithm

§ 4.5 presented a step-by-step procedure for generating COARSE and FINE requests
from COARSE policies and the static domain model. The steps are described
informally and visualisation of the evolving graph representation of the request model
is used to aid understanding. Many of the details of the algorithms are deferred to the
present chapter, which presents a more formal, algorithmic description of RequestGen.
This chapter is split into two parts: 1) the algorithms for deriving COARSE request
model entities, hence the COARSE requests themselves, from the same COARSE
(attribute-based policies) that were used by PolicyGen, and 2) how to recognise and
remove duplicate FINE (instance-based) requests that were refined from the COARSE
requests.

B.1 Algorithms for generating requests from a
policy set

As described in §4.5, it is necessary to generate requests that are semantically
consistent with the policies used in the performance experiment. Furthermore, using
the policy model as a basis, and not the static model, makes this alignment between
policies and requests easier to achieve.

Algorithm B.1 indicates how TCs ccontext
i can be derived from their policy-model

counterparts. Step 0 is to derive the request model TSCs from the policy model TSCs,
changing their properties as necessary. The first real step, as shown in Algorithm B.1,
is to search the graph database for all policy TCs. One of the semantic restrictions to
be applied is that, for each Action TC, all the Action TSCs ccontext

i,j referenced by it must
share the same Action.type. That is, actions relating to different AssetGroups cannot

B.1 Algorithms for generating requests from a policy set 264

Algorithm B.1 Selected procedures used in the algorithm to derive context TCs
{c context

i } from existing policy TCs {c policy
i }

Require: Policy TSCs {c policy
i,j }; Policy TCs {c policy

i }
Ensure: Persist context TCs {c context

i } and Relationships {c context
i

derfivedFrom−−−−−−→ {c policy
k }}

procedure DeriveRequestTC(tct)
{c policy

i } ← findSourceTcSet(tct)
if tct = Action then
{c context

i } ← restrictActionTc({c policy
i })

else
for all {c policy

i } do
P({c policy

i,j })← derivePowerSet({c policy
i,j })

for all P({c policy
i,j }) do

c context
i ← deriveDestTC(tct)

Accumulate c context
i in {c context

i }
Create {c context

i
derivedFrom−−−−−−→ {c policy

k }}

procedure findSourceTcSet(tct)
Search db for {c policy

i } given tct
for all {c policy

i } do
if
∣∣∣{c policy

i,j
hasTSC←−−−− c policy

i }
∣∣∣ > 0 then

Accumulate c policy
i in {c policy

i }
Persist and return {c policy

i }

procedure restrictActionTc({c policy
i })

for all {c policy
i } do

for all {c policy
i,j } do

Lookup Action.type for {c policy
i,j }

Accumulate Action.type in {Action.type}
if |{Action.type}| = 1 then

Accumulate c policy
i in {c policy

i }
Persist and return {c policy

i }

procedure deriveDestTC(tct,{c policy
i,j })

Derive context attributes from {c policy
i,j }

Persist and return {c context
i }

B.1 Algorithms for generating requests from a policy set 265

participate in the same Action TC; if any multi-ActionType TC is found, it should be
omitted.

If the context TCs are based solely on the policy TCs, the resulting request set might
not have sufficient diversity to represent rich, dynamic domains. Thus we consider
ways of adding modified TCs. In that regard, the power set of the set of TSCs referenced
by a given TC has an interesting interpretation. Each proper subset represents a (sub)
component reduction and hence a less specific set of conditions. Because the reduced
context TC is less specific, it no longer matches the policy TC which was its source, yet
it still uses (some of) the same basic terms. Consequently, the derived reduced target
component TcR shares much of the “meaning” of its source, but is sufficiently different
that it no longer matches. By definition, the power set generates all possible reduced
TCs and hence maximises the available coverage. This feature (i.e., component
reduction) is necessary to ensure that some requests match (particularly those that
were derived with minimal changes from the policy TCs) and others do not, making for
a more realistic mixture of requests and hence a variety of decisions.

To support future analytical requirements, the Many:One IS_DERIVED_FROM

relationship links each context TC to its source policy TC. The context TCs are saved in
the database and hence are available for aggregation.

Algorithm B.2 describes how context CTCs (Ccontext) are derived from the combination
of policy CTCs and the context TCs (ccontext

i) derived according to Algorithm B.1. Many
of the procedures used to generate context CTCs are similar to those used to generate
context TCs. In particular, the context CTCs are based on the policy CTCs having a
mimimum of one policy TC. An analogous component reduction procedure is used to
generate a greater diversity of context CTCs. Both the CTCs and the derivedFrom

relationships are stored in the graph database as before.

However, there are differences in relation to what semantic restrictions apply. The first
semantic difference results from the fact that, in XACML 2.0 requests, the Subject

and Resource parts of the requests can each be a set of CTCs, but the Action and
Environment parts can each be a set of TCs. Thus there is no need to generate Action

and Environment request CTCs.

Consequent upon that, the semantic restriction regarding Resource-Action
combinations should be applied to Resource CTCs only. Again, there is a restriction to
ensure that only one AssetGroup is associated with each resource CTC, and also that

B.1 Algorithms for generating requests from a policy set 266

Algorithm B.2 Selected procedures used in the algorithm to derive context collected
target components {Ccontext} from existing policy collected target components {Cpolicy}
Require: Policy target components {c policy

i }; Policy collected target components {C policy}
Ensure: Persist context collected target components {C context} and {C̃ context derfivedFrom−−−−−−→ {C policy}}

procedure DeriveRequestCTC(tct)
{c policy

i } ← findSourceCtcSet(tct)
for all C̃ policy ∈ {C policy} do
P({c policy

i })← derivePowerSet({c policy
i })

for all c̃ policy ∈ P({c policy
i }) do

if
∣∣∣P({c policy

i })
∣∣∣ > 0 then

C context ← deriveDestCtc(tct, c̃ policy)
Accumulate C context in {C context}

if tct = Resource then
{C context

valid } ← restrictResourceCtc({C context})

procedure findSourceCtcSet(tct)
Search db for {C policy} given tct
for all C̃ policy ∈ {C policy} do

if
∣∣∣{C̃ policy hasTC←−−− C policy

i }
∣∣∣ > 0 then

Accumulate C̃ policy in {C policy}
Persist and return {C policy}

procedure deriveDestCTC(tct,{c policy
i })

Derive context attributes from {c policy
i }

Persist and return {C context}

procedure restrictResourceCTC({C context})
Initialise {C context

valid } ← {}
for C̃ context ∈ {C context} do

if attr(C̃ context) = Asset.type then
for c context

i,j ∈ C̃ context do
Find an asset a where Asset.type(a) = valu(c context

i,j)
Find group(ai,j) using ai,j

hasGroup−−−−→ group(ai,j)
Accumulate {a group

i,j }; a group
i,j

.= group(ai,j)
if
∣∣{a group

i,j }
∣∣ = 1 then

Accumulate C̃ context in {C context
valid }

Persist and return {C context
valid }.

B.1 Algorithms for generating requests from a policy set 267

each Resource CTC should be labeled with its associated Asset (which is semantically
equivalent to the ActionType of any Action TC that can be combined with this
Resource).

Algorithm B.3 describes how the context Action and Environment TCs and the context
Subject and Resource CTCs can be assembled to form the generated requests. The first
step is to collect the relevant CTCs and TCs from the graph database. Again, any
“empty” Subject and Resource CTCs, or Action and Environment TCs are excluded since
they are not representative of most domains, where requests tend to be quite specific.

The requests are assembled using a full enumeration of all possible combinations of
Subject, Resource, Action and Environment as described above, less any semantic
restrictions, particularly those affecting Resource-Action combinations.

The Resource CTCs and Action TCs need to be classified by AssetGroup (equivalently:
ActionType). The database lookup algorithm is similar to that followed in Algorithms
B.2 and B.1, respectively. However, there is a complication assigning a single
ActionType to a Resource CTC if, as is often the case, that CTC has at least one TC that
does not resolve to a clause involving a single Asset. As an example, a clause requiring
that Asset.confidentiality = High could apply to Asset instances having either
Communication or Document AssetGroup. If such a clause were encountered as one of
the constituent TSCs in a TC, but at least one of the other constituent TSCs could be
classified with an AssetGroup, the overall TC can be assigned that AssetGroup
successfully because the TSCs are ANDed together. However, the presence of even one
unclassified TC constituent is a problem for a CTC, because TCs are combined by
disjunction (OR) and hence a single AssetGroup cannot be assigned to the overall CTC.
One solution to this problem is to expand the set of Resource CTCs. This is done by
combining each unclassified resource CTC CR

0 with a classified resource CTC CR
p , by

ANDing them at the TSC level and then aggregating up to the CTC level. The resulting
C̃+

R CTC inherits its classification from the CR
p classified CTC.

The number of generated requests can be computed as follows. Let nS
.= |{C}S| and

nE
.= |{c}E|. Also let n

(i)
R

.=
∣∣∣{C}(ti)

R

∣∣∣ and n
(i)
A

.=
∣∣∣{c}(ti)

A

∣∣∣ where ti is the ith Asset

(equivalently, ActionType).

Then the number of generated requests, n is

n = nS

(∑
i

n
(i)
R n

(i)
A

)
nE (B.1)

B.1 Algorithms for generating requests from a policy set 268

Algorithm B.3 Selected procedures used to assemble requests from (collected) target
components {ccontext

i } and {Ccontext}
procedure assembleRequests()
{{CS}, {CR}} ← getSRctc()
{{cA

i }, {cE
i }} ← getAEtc()

{Ĉ}R ← classifyResourceCTC({C}R)
{ĉi}A ← classifyActionTC({ci}A)
{C̃}+

R ← expandResourceCTC({Ĉ}R)
for cA

i ∈ {Ci}A do
atype ← type(CA

i)
for ĈR ∈ {C̃}+

R(a type) do
for CS ∈ {C}S do

for cE
i ∈ {C}E do

Persist Request(CS, ĈR, cA
i , cE

i)

procedure getSRctc()
Search db for {CS} and {CR}
for tct ∈ {S, R} do

for Ctct ∈ {Ctct} do
if
∣∣∣{Ctct hasTc−−−→ ctct

i }
∣∣∣ < 1 then

Omit Ctct

return {{CS}, {CR}}

procedure getAEtc()
Search db for {cA

i } and {cE
i }

for tct ∈ {A, E} do
for ctct

i ∈ {ctct
i } do

if
∣∣∣{ctct

i
hasTsc−−−→ ctct

i,j }
∣∣∣ < 1 then

Omit ctct
i

return {{cA
i }, {cE

i }}

procedure ctcAndCtc(CR
(1), CR

(2))
for cR

i,(1) ∈ {c
R
k,(1) | C

R
(1)

hasTC−−−→ cR
k,(1)} do

for cR
i,(2) ∈ {c

R
k,(2) | C

R
(2)

hasTC−−−→ cR
k,(2)} do

{c̃i,j} ← {cR
i,k,(1) | c

R
i,(1)

hasTSC−−−−→ cR
i,k,(1)} ∪

{cR
i,k,(2) | c

R
i,(2)

hasTSC−−−−→ cR
i,k,(2)}

Create new c̃i where c̃i
hasTSC−−−−→ {c̃i,j}

Create new C̃ where C̃
hasTC−−−→ {c̃i}

Persist and return C̃

procedure classifyResourceCTC({CR})
for CR ∈ {C}R do

for cR
i ∈ {cR

k | CR hasTC−−−→ cR
k } do

for cR
i,j ∈ {cR

i,k | cR
i

hasTsC−−−→ cR
i,k} do

Accumulate rtype = {type(cR
i,j)}

if
∣∣rtype

∣∣ = 0 then
ActionType(CR)← NotAssignedYet

else
Search db for Asset A with type(A) =

rtype
ActionType(CR)← Asset(A)

return {{CR}, {ActionType(CR)}}

procedure classifyActionTC({cA
i })

for cA
i ∈ {ci}A do

for cA
i,j ∈ {cA

i,k | cA
i

hasTSC−−−−→ cA
i,k} do

Accumulate atype = {type(cA
i,j)}

Search db for Action A with type(A) =
Atype

ActionType(CA)← ActionType(A)
return {{cA

i }, {ActionType(cA
i)}}

procedure expandResourceCTC({Ĉ resource})
Pass 1:
for CR ∈ {CR} do

Derive the relation that partitions {CR} as
{ActionTypep −→ {CR}p}

Pass 2:
for CR

0 ∈ {NotAssignedYet −→ {CR}} do
for ActionType ∈ {ActionType} do

for CR
p ∈ {ActionType −→ {CR}} do

if ActionTypep ≠ NotAssignedYet
then

Accumulate ctcAndCtc(CR
p , CR

0)
in C̃+

R

Pass 3:
for ActionType ∈ {ActionType} do

for CR
p ∈ {ActionType −→ {CR}} do

if ActionTypep ̸= NotAssignedYet
then

Accumulate CR
p in C̃+

R

B.2 Removing duplicate instance-based requests 269

The following settings: extraTcType = full and useTscReduction = useTcReduction

= True tend to result in the most requests being generated from a given policy set. In
the case of the policy set in Listing 4.4 this evaluates to

n = 11× (2× 15 + 2× 5)× 1 = 440

requests.

B.2 Removing duplicate instance-based requests

The CTCs (Subject and Resource) and TCs (Action and Environment) of each
generated instance-based request are obtained by querying the property graph.
Sometimes different attribute-based queries return the same instances, particularly
when a limit is imposed on the number of TCs assigned to each CTC in each request.

Let

Ci → c̃α ∪ c̃β ∪ c̃γ . . . (B.2)
Cj → c̃α ∪ c̃β ∪ c̃δ . . . (B.3)

(B.4)

Then if Ci and Cj are both limited to the first two terms, the resulting restricted CTCs
are identical (C(2)

i = C
(2)
j) and if this occurs for all Subject, Resource, Action and

Environment parts of each request, the resulting requests are equal: R
(2)
i = R

(2)
j .

In such cases, treating R
(2)
i and R

(2)
j as distinct for all i and j is misleading and can

lead to spurious peaks in the service time distribution. In turn, this could lead to
invalid statistical interpretation of those service times.

Consequently, DomainManager looks for groups of such duplicate instance-based
requests. For each duplicate group, it

1. records the id of the source attribute-based request used to generate each
request in a duplicate instance-based request group,

2. deletes all but one request (i.e., the request with the lowest id) in that duplicate
instance-based request group.

B.2 Removing duplicate instance-based requests 270

By following this procedure, all instance-based requests submitted for performance
measurement are distinct, but it is still possible to link those measured service times
back to the attribute-based requests which were their source. Moreover, if any peaks
arise in the service time distribution, it is caused by more subtle semantic interaction
between a group of instance-based requests (whose membership is not known until
after they have been submitted to the PDP) and the policy set used by the access
control system.

List of Acronyms

Symbols

3NF

Third Normal Form. 118

A

ABAC

Attribute-Based Access Control. See Glossary: Attribute-Based Access Control,
27, 38, 39, 46, 47, 51, 271

ACPT

Access Control Policy Tool. See Glossary: Access Control Policy Tool, 11, 12, 53,
55, 271

ACTS

Automated Combinatorial Testing for Software. See Glossary: Automated
Combinatorial Testing for Software, 12, 271

AIC

Akaike Information Criterion. See Glossary: Akaike Information Criterion, 214,
271

ALFA

Axiomatics Language For Authorization. See Glossary: Axiomatics Language
For Authorization, 51, 52, 53, 271

ANCOVA

ANalysis of COVAriance. 214

ANOM

ANalysis Of Means. 184

List of Acronyms 272

ANOVA

ANalysis Of VAriance. 184, 214

ATLAS

A TooL for dimensioning Access control Systems. See Glossary: A TooL for
dimensioning Access control Systems, 11, 175, 181, 184, 187, 188, 205, 207, 213,
227, 230, 245, 246, 249, 272

B

BDD

Binary Decision Diagram. See Glossary: Binary Decision Diagram, 41, 44, 242,
272, see

BoD

Binding of Duties. See Glossary: Binding of Duties, 26, 38, 45, 272

BPEL

Business Process Execution Language. See Glossary: Business Process
Execution Language, 45, 272

BPMN

Business Process Model and Notation. See Glossary: Business Process Model
and Notation, 45, 272

BYOD

Bring Your Own Device. See Glossary: Bring Your Own Device, 24, 272

C

CRUD

Create, Read, Update, Delete. 11, 12

CTC

Collected Target Component. See Glossary: Collected Target Component, 138,
141, 142, 145, 149, 152, 155, 156, 160, 164, 165, 167, 168, 169, 170, 172, 173, 174,
175, 259, 261, 265, 267, 269, 272

List of Acronyms 273

D

DAG

Directed Acyclic Graph. 148

DL

Description Logic. See Glossary: Description Logic, 40, 47, 273

DNF

Disjunctive Normal Form. See Glossary: Disjunctive Normal Form, 273

DomainManager

Domain model Manager. See Glossary: Domain model Manager, 10, 11, 12, 16,
17, 112, 113, 118, 120, 121, 127, 128, 136, 144, 145, 149, 151, 155, 158, 159, 160,
161, 164, 167, 168, 169, 170, 172, 173, 174, 175, 177, 181, 182, 183, 184, 189, 191,
206, 223, 225, 234, 235, 241, 242, 243, 245, 247, 248, 249, 269, 273

DSL

Domain-Specific Language. 51, 131, 152

E

EBNF

Extended Backus-Naur form. 158

ETL

Extract, Transform, Load. See Glossary: Extract, Transform, Load, 273

F

FIFO

First In, First Out. 10, 63, 73, 82

G

List of Acronyms 274

GMP

Good Manufacturing Practices. See Glossary: Good Manufacturing Practices,
273

H

HTTP

HyperText Transfer Protocol. 11

I

IAM

Identity and Access Management. See Glossary: Identity and Access
Management, 22, 274

J

JAXB

Java And Xml Binding. 158, 239

JSON

JavaScript Object Notation. 37, 45

JVM

Java Virtual Machine. See Glossary: Java Virtual Machine, 7, 9, 62, 236, 274

M

MTBDD

Multi-Terminal Binary Decision Diagram. See Glossary: Multi-Terminal Binary
Decision Diagram, 41, 45, 47, 245, 274

N

NoSQL

Not-only SQL. 245

List of Acronyms 275

P

PAP

Policy Administration Point. 35

PARPACS

Performance Analysis, Reporting and Prediction of Access Control Systems. See
Glossary: Performance Analysis, Reporting and Prediction of Access Control
Systems, 10, 11, 12, 17, 113, 180, 184, 185, 186, 187, 205, 206, 208, 210, 225, 227,
230, 235, 247, 248, 249, 275

PDP

Policy Decision Point. xii, 7, 8, 9, 12, 13, 15, 24, 27, 28, 29, 31, 32, 34, 37, 39, 41,
42, 44, 45, 47, 48, 49, 52, 54, 57, 59, 61, 63, 64, 65, 66, 67, 69, 71, 72, 73, 75, 76,
79, 80, 81, 82, 83, 84, 86, 87, 91, 93, 94, 95, 100, 108, 109, 136, 137, 175, 201,
209, 211, 231, 232, 233, 236, 237, 238, 243, 244, 245, 261, 269

PEP

Policy Execution Point. 29, 31, 32, 48, 49, 54, 65, 67, 79, 80, 81, 82, 93, 107, 116,
137

PIP

Policy Information Point. 27, 46, 116, 244

PRP

Policy Retrieval Point. 29, 93

R

RBAC

Role-Based Access Control. See Glossary: Role-Based Access Control, 38, 39, 46,
47, 275

S

List of Acronyms 276

SoD

Separation of Duties. See Glossary: Separation of Duties, 20, 25, 27, 39, 45, 46,
275

STACS

Scalability Testbed for Access Control Systems. See Glossary: Scalability
Testbed for Access Control Systems, vii, 10, 11, 12, 15, 16, 17, 49, 62, 66, 67, 66,
67, 71, 73, 76, 79, 82, 84, 90, 93, 96, 97, 107, 108, 109, 110, 111, 112, 113, 184,
185, 191, 206, 208, 210, 213, 224, 227, 231, 232, 233, 235, 242, 245, 247, 248, 249,
276

SVM

support vector machine. See Glossary: support vector machine, 276

T

TC

Target Component. See Glossary: Target Component, xvii, 138, 139, 141, 142,
145, 148, 149, 151, 152, 155, 156, 159, 160, 161, 162, 164, 165, 167, 168, 170, 172,
170, 172, 173, 175, 178, 211, 223, 248, 259, 260, 261, 263, 265, 267, 269, 276

TSC

Target SubComponent. See Glossary: Target SubComponent, 138, 139, 141, 142,
145, 148, 149, 150, 155, 158, 160, 161, 162, 164, 165, 168, 172, 173, 175, 178, 183,
211, 248, 259, 260, 261, 263, 265, 267, 276

X

XACML

eXtensible Access Control Markup Language. 14, 27, 28, 29, 31, 33, 35, 37, 38,
39, 41, 42, 44, 45, 46, 47, 50, 51, 52, 53, 54, 57, 65, 67, 73, 80, 82, 86, 94, 95, 115,
116, 136, 233

xjc

Xml to Java Compiler. 158

List of Acronyms 277

XSD

Xml Schema Document. 158

XTC

XACML Testing Client. 93

XTS

XACML Testing Server. 67, 79, 93, 107

List of Symbols

λ

mean arrival rate, used in queueing theory. 73

µ(s)

mean exit (service) rate, used in queueing theory. 73

ρ

ratio of mean arrival rate to mean service rate, used in queueing theory. 73

Glossary

A

Access Control Policy Tool

Suite of tools provided by NIST and colleagues which can be used to generate a
policy and related requests.. 11, 271

AccessNode

Prototypical property graph node, with basic properties and methods that are
available to all the typed domain model nodes that extend AccessNode. 128

AccessRelationship

Prototypical property graph relationship joining two AccessNodes, with basic
properties and methods that are available to all the typed domain model
relationships that extend AccessRelationship. 128

Action

Model entity (static, policy and request) that represents the operation that an
Agent wishes to apply to an Asset. An example would be: Read (a document).
26, 120, 121, 127, 134, 135, 138, 141, 261, 263, 265, 267, 269

Action.type

Model property (static, policy and request) that represents the type of operation
that an Agent wishes to apply to an Asset. It is a property of Action and each
instance is associated with an ActionType node. 261, 263

ActionType

Model entity (static, policy and request) that represents the type of operation
that an Agent wishes to apply to an Asset. Examples include: Document and
Task: Read a Document and Delegate a Task. 135, 265, 267

Actor

Formal concurrency model, where Actors are independent computational units.
On receipt of a message, an Actor can send a finite number of messages to other

Glossary 280

Actors and/or create a finite number of Actors and/or decide its won behaviour
when it receives its next message. 36

Agent

Static model entity that represents the actor performing an action. Member and
Organisation entities are examples of Agent. 120, 121, 135, 261

Akaike Information Criterion

Akaike’s Information Criterion, a measure of model fit that seeks to balance two
objectives: closeness to the data (associated with small residuals) with the
ability to generalise to other data sets of the same kind (associated with
parsimony: small number of model terms).. 214, 271

antlr

a tool for generating parsers for a given context-free grammar, such as might be
used to convert from one language to another.. 158

Asset

Static model entity that represents the object that an Agent to which an Agent
wishes to apply an Action. An example would be: MarketingPlan (to read). 120,
121, 127, 130, 134, 135, 259, 267

Asset

Static model entity that represents a group of Assets. An example would be:
Documents, Group Chats. 135, 167, 265, 267

Asset.confidentiality

Static model property that represents the confidentiality attribute of an Asset–
-ypically affects read-type operations. Examples include: Low, Medium. 130,
139, 140, 141, 142, 259, 261, 267

Asset.integrity

Static model property that represents the integrity attribute of an Asset -
typically affects write-type operations. Examples include: Low, Medium. 130

Glossary 281

Asset.type

Static model property that represents the type attribute of an Asset. Examples
include: PriceList, CommunicationChannel. 130, 140, 165, 265

A TooL for dimensioning Access control Systems

A set of applications: DomainManager, STACS and PARPACS, together with
essential testbed components like databases, that work together to enable
researchers to investigate the performance of access control systems. 11, 272

adminssion control

In telecoms, admission control is a mechanism used to check whether there are
sufficient resources for a communication event to occur. More generally,
admission control can be used to prevent a queue growing beyond a specified
size.. 10

Attribute-Based Access Control

Access control specification where policies are specified in terms of the attributes
of the entities to which the rules are applied. Any entry property can be an
attribute.. 27, 271

Automated Combinatorial Testing for Software

Suite of tools provided by NIST and colleagues which searches for faults in
software by considering single factor and low-degree interaction factor faults, as
this is usually sufficient.. 12, 271

Axiomatics

Axiomatics (http://www.axiomatics.com) is the leading independent supplier of
ABAC solutions. Its headquarters are in Stockholm and it is very active in the
OASIS XACML TC.. see ABAC, OASIS & XACML, 27, 28, 51

Axiomatics Language For Authorization

A language developed by Axiomatics which can be compiled to XACML but has
much less verbose syntax.. 51, 271

B

Glossary 282

Binary Decision Diagram

Directed Acyclic Graph used to represent, in compressed form, an arbitrarily
complex Boolean function. 41, 272

Binding of Duties

Constraint that enforces the requirement that if person S1 works on task ti,
he/she must also work on task tj where i ̸= j in a given workflow.. 26, 272

Bring Your Own Device

Growing prevalence of employees using their personal electronic devices (phones
and tablets) to access (privileged) resources in their employer’s network. 24, 272

Business Process Model and Notation

Graphical notation with standard shapes and connectors to represent business
process models. BPMN 2 introduced execution semantics to supplement the
existing diagram elements.. 45, 272

Business Process Execution Language

OASIS standard language to express how services should be orchestrated, to
enable both “programming in the large” and “programming in the small” of
large systems of loosely-coupled components. 45, 272

C

Collected Target Component

Policy and Request domain entity, comprising a disjunction of Target
Components. 138, 141, 272

Condition

Policy model entity corresponding to the Condition element of a XACML Rule,
Policy or PolicySet. It is a logical condition that is applied only of the
associated Target conditions are true. 136, 137

D

Glossary 283

Description Logic

A Description Logic (DL) models concepts, roles and individuals, and their
relationships, using taxonomies and axioms.. 40, 273

Disjunctive Normal Form

Logical expression written as a disjunction of the conjunction of simple logical
conditions.. 273

distribution, hyperexponential

statistical distribution f(x); f(x) > 0∀x;
∫∞

−∞ f(x)dx = 1 consisting of the
weighted sum of exponential distributions with non-coincident “centres”. 73

Domain model Manager

Application that uses static, policy and context specifications to populate a
property graph, that infers instance policies from template policies, and which
can export policies and requests in standard policy languages. 10, 273

E

Environment

Policy and Request model entity corresponding to the Environment element of a
XACML 2.0 Target or Request element, used for general/contextual conditions.
It is an example of a CTC in a policy Target and a TC in a request. 138, 141,
265, 267, 269

Ethical Wall

Previously known as “Chinese Wall”: communications boundary between staff in
an enterprise, designed to prevent the flow of information (often in one directon)
that might lead to the receiver having a conflict of interest. 21

Extract, Transform, Load

Data integration pattern used in data warehousing and related domains to 1)
take data from a source system (capturing its context as metadata), 2)
transform it according to metadata mapping rules and 3) to store the
transformed data in a target system. 273

Glossary 284

extraTcType

A template policy might not always specify certain semantic restrictions that
apply to the static domain, e.g., that certain actionTypes apply only to certain
assetGroups. These conditions can be added to the template policy rules in the
form of additional TargetComponents. This term relates to the scope of the
extra TCs: either minimal (just enough) or full (overspecified).. 209

G

Good Manufacturing Practices

Quality standards/guidelines for to ensure that food and pharmaceuticals are
safe for human use - they include extensive requirements for data integrity and
traceability. 273

Granularity

Attribute-based policies, such as those specified in template policies are defined
to have COARSE granularity. Instance-based policies are defined to have FINE
granularity, because their conditions are more specific. 155, 156

I

Identity and Access Management

Identity and Access Management is the security discipline that enables the right
individuals to access the right resources at the right times for the right reasons.
22, 274

J

Java Virtual Machine

Abstract machine that enables the host to run Java (and other languages that
compile to a compatible bytecode) programs.. 7, 9, 62, 274

M

Glossary 285

Member

Static model entity that represents an individual Agent that wishes to perform
some action to an Asset. An example would be: Manager (to read a document).
120, 127, 134, 135, 261

Member.function

Static model property that represents the function attribute of Member -
typically his/her affiliation. Examples include: Sales, Finance. 134, 135

Member.role

Static model property that represents the role attribute of a Member - typically
his/her job title in a given context. Examples include: Developer, Clerk. 134,
135, 261

MemberGroup

Static model entity that represents a group of Members, less ormal than an
Organisation, and easier to be setup, dissolved and changed. Example: Project
team. 120, 134

model formula

Compact symbolic formula introduced in Chapter 2 of Chambers and Hastie
(1991). Example: y ∼ x1 ∗ x2, where a response y is to modeled as a linear
statistical model in terms of two predictors x1 and x2 and their interaction
x1 : x2. 186, 187, 205

multiscale

Numerical data obtained from experiments has a granularity that depends on its
context. Generally, less context implies more summarisation implies coarser
granularity. A phenomenon has multiscale characteristics if it can be found at
different granularity levels. 230

Multi-Terminal Binary Decision Diagram

Directed Acyclic Graph used to represent, in compressed form, an arbitrarily
complex function over a discrete set. It simplifies to a hen that set has two
elements.. 41, 245, 274

Glossary 286

N

NP-hard

from wikipedia: class of problems that are “at least as hard as the hardest
problems in NP”, where NP is Non-deterministic Polynomial time. 44

O

OASIS

OASIS is a not-for-profit consortium that brings people together to agree on
intelligent ways to exchange information over the Internet and within their
organizations. 27, 29, 37, 47

Obligation

A XACML policy can optionally include obligations that constitute actions to
be taken at the instigation of the PEP, depending on the decision taken by the
PDP. Examples include logging the fact that access was granted.. 137

observation matrix

Matrix A = A(x) defined by y = Ap + ε, where y is the dependent variable, p is
the vector of model parameters (to be estimated) and ε is the vector of model
residuals, centred on 0. If y has a nonlinear dependence on p, A = A(x; p) is
the (linearised) Jacobian of that functional relationship.. 215

OPNET

Discrete Event simulation package. see DL, 15, 72, 84, 86, 91, 245

organisation

Static model entity that represents an Agent comprising a persistent group of
individuals that wishes to perform some action to an Asset. An example would
be: Bank (to join a pension scheme). 120, 127, 134, 135, 261

OWL

Web Ontology Language, standardised by W3C mainly for use in the semantic
web/linked data community, but can also be used to specify ontologies more
generally.. 39

Glossary 287

OWL-DL

Web Ontology Language corresponding to DL, designed to provide the
maximum expressiveness possible while retaining computational completeness,
decidability, and the availability of practical reasoning algorithms. see DL, 40

P

njspdp

Node.js PDP: a full XACML 2.0-compliant PDP developed by Fan Zhang in
Javascript, using XML-encoded policies and either XML- or JSON-encoded
requests, deployed in a Node.js instance. 242

sne-xacml

Open source XACML 3.0 PDP with a focus on high-performance that
implements the Multi-data-types Interval Decision Diagrams presented in Ngo,
Demchenko and de Laat (2013). 242

xacml4j

Open source XACML PDP that supports both XACML 2.0 and XACML 3.0
and the JSON profile for the latter. 242

ATTxacml

Open source XACML 3.0 implementation developed by AT&T. It includes a
PDP, PAP and other components. The PDP component has been selected to
form the reference PDP implementation used by the Apache OpenAz incubation
project begun by Hal Lockhart, co-chair of the OASIS XACML TC. 242

Balana

Open source XACML 3.0 PDP implementation, derived from the SunXACML
reference XACML 2.0 PDP, and part of the WSO2 Identity and Access
Management suite. 242

njsrpdp

Node.js with redis PDP: an early prototype PDP developed by Leigh Griffin in
Javascript, using JSON-encoded policies and requests, deployed in a Node.js
instance. xii, xv, 15, 93, 94, 95, 97, 98, 100, 103, 105, 107, 233, 238, 242

Glossary 288

EnterpriseXACML PDP

XACML PDP that passes the XACML 2.0 conformance test suite and is claimed
to perform better than SunXACML PDP because it indexes the policies and so
does not have to scan the full policy set, for each request, to find a match. xii,
49, 69, 71, 86, 87, 88, 91, 95, 96, 97, 98, 100, 105, 107, 238

SunXACML PDP

XACML PDP developed in Java originally by Seth Proctor and colleagues at
Sun Microsystems, offered to the community in open source form as the
reference PDP for XACML 1.0 and 2.0. Work on the original version 1.4
stopped with subversion revision 137. Version 2.0 was re-engineered to use the
Spring framework for greater flexibility. xii, 12, 15, 34, 42, 43, 44, 45, 48, 49, 66,
67, 69, 68, 69, 71, 72, 86, 87, 88, 91, 95, 96, 97, 98, 100, 105, 107, 114, 211, 233,
238, 239, 242, 243

Xengine PDP

PDP developed in Java that implements most of the XACML 2.0 standard but,
for conforming policies, its performance is very fast because of the use of
numericalisation, rewriting rules as first-applicable and evaluating rules using
MTBDD. see MTBDD, 42, 45, 48

Performance Analysis, Reporting and Prediction of Access Control Systems

Application that enables its users to query the results (both service times and
decisions) of a STACS run and which offers extensive statistical procedures and
visualisation to understand the performance of a given access control system. 10,
275

Play Framework

Play (https://www.playframework.com/) is built on Akka and a lightweight,
stateless architecture. It offers predictable and minimal resource consumption
for highly-scalable applications. 36

power set

The power set P(A) of a set A is the set of all subsets of A, including the empty
set ∅ and A itself. If |X| is the cardinality of any set X, then |P(A)| = 2|S|.. 161

Glossary 289

Principal

the access-requesting entity: it could be a group, a person or an agent acting for
either. 20

proportional thinning

admission control procedure where a fixed percentage of overload requests are
not admitted to the server, the objective being to control the queue size. 79, 109

R

Request

When interacting with protected resources, agents (people and/or software
acting on the behalf) might require access to some of those resources. The
privilege management system provides a reference monitor that intercepts this
activity and forwards each access request to the PDP for a decision.. 142

Resource

Policy and Request model entity corresponding to the Resource (related to the
static model Asset) element of a XACML 2.0 Target or Request element. It is
an example of a CTC. 26, 138, 141, 265, 267, 269

Role-Based Access Control

Access control specification where policies are specified in terms of combinations
of attributes (termed roles) of the subjects.. 38, 275

Rule

Policy model entity having a Target and a Rule Effect (e.g., Permit)
corresponding to the XACML 2.0 policy element of the same name.. see Target,
26

S

Scalability Testbed for Access Control Systems

Application that enables its users to configure and run controlled, repeatable
performance experiments in a testbed. vii, 276

Glossary 290

Separation of Duties

Constraint that distributes a workflow across two or more entities, to reduce the
likelihood of mistakes or abuse of power. As an example, the person who makes
an investment decision is not the person who makes the actual investment.. 20,
275

service time

The timings obtained via the Adapter capture the total time spent by the PDP
per request a) converting the XACML-encoded request into the PDP’s internal
representation in memory, b) searching the policy set for matching policies and
c) returning the decision as a XACML-encoded response. xii, 60, 61, 64, 65, 68,
69, 68, 71, 73, 75, 77, 86

Subject

Policy and Request model entity corresponding to the Subject (related to the
static model Member and Organisation) element of a XACML 2.0 Target or
Request element. It is an example of a CTC. 26, 138, 141, 145, 265, 267, 269

support vector machine

Statistical pattern recognition technique. 276

T

Target

Policy model entity corresponding to the Target element of a XACML Rule,
Policy or PolicySet. It is a Conjunction of CTC elements. 54, 136, 137, 138, 141,
142, 145, 149, 150, 155, 156, 261

TargetComponentType

Policy and Request model entity associated with XACML 2.0 CTC hierarchies
each of which must be associated with a single Target Component Type:
Subject, Resource, Action or Environment. 145

Target SubComponent

Policy and Request domain entity, a simple logical “Subject-Action-Resource”
condition; the lowest level in the Target hierarchy. 138, 276

Glossary 291

Target Component

Policy and Request domain entity, comprising a conjunction of Target
SubComponents. xvii, 138, 276

U

usage control

Access control is concerned with once-off checks of what can be done. Sometimes
the access policies are sticky (i.e., are bound to the digital asset they protect)
and so are invoked each subsequuent reuse of that asset, to ensure that such
usage is consistent with the original access conditions.. 6

V

Vert.x

Vert.x is a lightweight, high performance application platform for the JVM that
uses message-passing with nonblocking I/O and the Actor concurrency model..
see Actor, 36

Index
Brossard, David, 28

Collins, Kevin, 1

Griffin, Keith, 1
Griffin, Leigh, 93

Saleem, Shahzada Ali, 243
Snowden, Edward, 21

Wall, Michael, 244

Zhang, Fan, 243

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Source Examples
	Publications
	1 Introduction
	1.1 Problem Statement
	1.2 Overview of the Dissertation
	1.2.1 Introduction to access control evaluation performance
	1.2.2 Main Contributions
	1.2.2.1 Contributions specific to understanding access control performance
	1.2.2.2 Contributions to understanding request-response system performance

	1.2.3 Dissertation Organisation

	2 Background and Literature Review
	2.1 Background
	2.1.1 Enterprise communications
	2.1.1.1 Policy evaluation architecture
	2.1.1.2 Fine-grained policies
	2.1.1.3 Dynamic policies

	2.1.2 Introduction to access control
	2.1.2.1 Extending access control: delegation and usage control

	2.1.3 Importance of XACML
	2.1.4 Access Control Performance
	2.1.4.1 Access Control Scalability
	2.1.4.2 Caching

	2.1.5 Use of a testbed
	2.1.6 Links with policy testing
	2.1.7 Links with policy authoring
	2.1.8 Learning from recent web service performance advice
	2.1.9 Performance analysis of database operations

	2.2 Literature Review
	2.2.1 Policy metamodels
	2.2.1.1 RBAC
	2.2.1.2 ABAC

	2.2.2 Formal policy languages
	2.2.3 Proposals to improve access control performance
	2.2.4 Policy authoring
	2.2.5 Policy refinement
	2.2.6 Policy integration and decomposition
	2.2.7 Use of testbeds
	2.2.8 Policy testing
	2.2.9 Generating policies
	2.2.10 Generating requests
	2.2.11 Performance models

	2.3 Research questions

	3 STACS: a testbed to explore access control performance
	3.1 Methodology
	3.2 Scope of the performance model
	3.2.1 Overview of the model used in this dissertation
	3.2.2 Access control arrival analysis
	3.2.2.1 Intermittent request arrivals
	3.2.2.2 Frequent request arrivals

	3.3 Introduction to STACS
	3.3.1 STACS Overview
	3.3.2 Access Control Service Time distribution
	3.3.3 Uses of STACS

	3.4 Measurement based simulation
	3.4.1 Mean Value Analysis of an Analytical Queueing Model
	3.4.1.1 Control objectives

	3.4.2 Service times and arrival rates
	3.4.3 Extending the model: steady state plus overload
	3.4.4 Policies and requests used
	3.4.5 Scenario 1: Load Control
	3.4.5.1 Load Control Algorithm Specification
	3.4.5.2 Simulation Model and Experimental Analysis

	3.4.6 Scenario 2: Exploring the effects of different mixes of requests
	3.4.6.1 Scenario 2 setup
	3.4.6.2 Measured service times and clustering
	3.4.6.3 Case study 1: Comparison
	3.4.6.4 Case study 2: Prediction

	3.5 Measuring performance and resource usage
	3.5.1 The Case for a PDP using newer technology
	3.5.2 Comparison of PDPs
	3.5.3 Comparison experiment 1: njsrpdp vs. its peers
	3.5.4 Comparison experiment 2: What are the benefits of terse policies and/or requests?

	3.6 Extending STACS
	3.7 Summary

	4 DomainManager: A domain model and tools to configure STACS
	4.1 Introduction
	4.1.1 Policy authoring
	4.1.2 Policy Generation approaches
	4.1.3 Request Generation approaches

	4.2 Components of the domain model
	4.2.1 The static model
	4.2.2 The policy model
	4.2.3 The context model

	4.3 A graph representation of the domain model
	4.3.1 The static model with semantic enhancements
	4.3.1.1 Semantic enhancements

	4.3.2 The policy and context models
	4.3.2.1 Rules and (target) hierarchies
	4.3.2.2 Canonical representation
	4.3.2.3 Policy and request clauses
	4.3.2.4 Clause restrictiveness
	4.3.2.5 Policy matching

	4.4 Generating policies—PolicyGen
	4.4.1 Step 1—populate the template policy facade
	4.4.2 Step 2—instantiate the template policy entities in the property graph
	4.4.2.1 Enforcing the static semantic constraints

	4.4.3 Step 3—derive instance policies and instantiate in the property graph
	4.4.4 Step 4—export policies

	4.5 Generating requests—RequestGen
	4.5.1 Step 1—derive the request TargetSubComponents
	4.5.2 Step 2—derive the request TargetComponents
	4.5.3 Step 3—derive the request CollectedTargetComponents
	4.5.4 Step 4—create COARSE (attribute-based) requests
	4.5.5 Step 5—create FINE (instance-based) requests
	4.5.6 Varying the request complexity

	4.6 DomainManager Evaluation
	4.6.1 Graph measures
	4.6.2 Service time analysis

	4.7 Summary

	5 Analysing enterprise access control performance with PARPACS
	5.1 Adding more factors
	5.2 PARPACS Overview
	5.3 Investigating PDP and resource choices
	5.3.1 Scenario Motivation and Overview
	5.3.1.1 Influence of domain size on policies and requests
	5.3.1.2 Choice of PDP
	5.3.1.3 Availability of computing resources: memory and number of cores

	5.3.2 Review of Policy and Request Generation
	5.3.3 Obtaining measured service times
	5.3.4 Deriving the performance model
	5.3.4.1 Step 1: Restriction of reps
	5.3.4.2 Step 2: Adding interaction terms
	5.3.4.3 Step 3: Transforming the data

	5.4 Scenario predictions
	5.5 PARPACS Summary

	6 Influence of policy settings on access control performance
	6.1 Introduction to the extended evaluation
	6.2 Access control decision analysis
	6.3 Outline of the extended scenarios
	6.4 Access control performance analysis
	6.4.1 Refining each model

	6.5 The Extended Scenario Questions
	6.5.1 SQ1: Influence of Rule Combination and Placement (PR)
	6.5.2 SQ2: Influence of Policy Specification Level (PS)
	6.5.3 SQ3: Influence of Request Cardinality (RC)
	6.5.4 SQ4: Influence of domain size (DS, pLC)

	6.6 Summary of the extended scenarios

	7 Conclusions and Recommendations
	7.1 Review of the Research Questions
	7.1.1 RQ1: How can access control evaluation performance be measured for use in performance experiments?
	7.1.1.1 RQ1.1: What form does the service time distribution take?
	7.1.1.2 RQ1.2: What simulations can be performed to explore the effect of different request arrival patterns?
	7.1.1.3 RQ1.3: What analysis can be performed when the systems under test use different languages, frameworks and encodings?

	7.1.2 RQ2: How can domain models be specified and used to express enterprise access control scenarios?
	7.1.2.1 RQ2.1: How can different variants of domain models be specified in a flexible and easy to use way?
	7.1.2.2 RQ2.2 How can access control evaluation performance be compared at different domain sizes?

	7.1.3 RQ3: How can the data from performance experiments be used to understand and predict access control evaluation performance?
	7.1.3.1 RQ3.1: What types of exploratory data analysis are suitable for the performance experiments?
	7.1.3.2 RQ3.2: What are the steps needed to build statistical models predicting access control performance?

	7.1.4 RQ4: What are the main factors affecting access control evaluation performance?
	7.1.4.1 RQ4.1: What are the effects of PDP choice, domain size and resources?
	7.1.4.2 RQ4.2: What are the effects of domain size, policy and request characteristics?

	7.1.5 Extension to general client-server performance

	7.2 Summary of main contributions
	7.3 Recommendations for Future Work
	7.3.1 Work in Progress; Short Term
	7.3.1.1 Comparison of XACML 2.0 vs XACML 3.0
	7.3.1.2 Comparison of Javascript/JSON versus Java/XML PDPs
	7.3.1.3 Making DomainManager easier to use

	7.3.2 Medium Term
	7.3.2.1 Attribute-level versus instance-level evaluation
	7.3.2.2 Access control in the Internet of Things

	7.3.3 Longer Term
	7.3.3.1 Analyse distributed PDP performance
	7.3.3.2 Performance-aware policy authoring
	7.3.3.3 Extension to database performance analysis

	7.3.4 Future work summary

	7.4 Access Control Evaluation Performance: General Principles

	Bibliography
	Appendix A Policy Refinement for Bulk Policy Generation
	A.1 Refining a coarse policy

	Appendix B Bulk Request Generation Algorithm
	B.1 Algorithms for generating requests from a policy set
	B.2 Removing duplicate instance-based requests

	List of Acronyms
	List of Symbols
	Glossary
	Index

