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Ca2+-signalling-based Molecular Communication
Systems Towards Nanomedicine Development

M. T. Barros

Abstract

Nanomedicine is an attempt to revolutionize current methods for diagnosing, treating and
preventing diseases that integrates fields such as molecular biology, biotechnology as well
as nanotechnology. One envisioned application is sensing and actuation capabilities at the
molecular scale using nano scale devices, namely nanomachines. While numerous examples
of these applications have been tested in vivo, the real deployments are far from reality.
This is mainly due to limitations in controlling as well as monitoring their performance. At
the same time, the miniature scale of nanomachines means their computational capabilities
are also limited. However, integrating communication and networking functionalities can
provide new opportunities for sensing and actuation applications of nanomachines. One
form of communication that has been recently appointed to realise this vision is Molecular
Communication. Many natural molecular communication systems are found inside the
human body. The current challenge is to utilise these natural systems to create artificial
biocompatible communication networks that can interconnect multiple nanomachines. Such
nanonetworks can represent a new type of communication network that can also be connected
to the Internet, enabling fine granular sensing deep inside the organs and tissues inside the
human body. This new vision is defined as the Internet of Bio-Nano Things (IoBNT).

The focus of this thesis is on developing artificial molecular communication systems for
cellular tissues inside the human body. A model and analysis of a Ca2+-signalling-based
molecular communication system for embedded nanomachines is proposed. A mathematical
framework was developed for 3D tissues of different types of cells that communicate using
Ca2+-signalling, where this framework integrates the gap junction behaviour as well as
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the physiological properties that can affect the communication behaviour. The framework
analyses the end-to-end capacity, molecular delay, as well as molecular gain for the different
types of tissues. Since cellular tissues are flexible body, the communication process is
also modelled considering deformation and structural changes. The thesis also presents
communication protocols from wireless communication networks applied to the Ca2+-
signalling-based molecular communication system. This includes development of protocols,
where channel impairments such as noise and poor information capacity were overcome using
communication-by-silence theory in order to improve the end-to-end data rate for "On-Off
Keying" modulation. The thesis also focuses on applications of the Ca2+-signalling-based
molecular communication system. Firstly, a channel state detection/inference technique
that provides information about the current cellular tissue conditions was designed, termed
Molecular Nanonetwork Inference Process. The inference process utilizes a simple machine
learning algorithm to learn and infer various metrics including the types of deformation,
estimated locations of the nanomachines, as well as the concentration of Ca2+ ions used by
the transmitters. The second application is based on modelling the tripartite synapse, and
focuses particularly on astrocyte cells using Ca2+-signalling to communicate and provide
upkeep to the neuronal networks. A feed-forward feedback control technique has been
proposed to control synaptic quality in the tripartite synapses molecular communication
channel, and this includes regulating the quantity of Ca2+ concentration within the cytosol
in order to prevent any dangerous levels that can lead to diseases. At the same time, the
feed-forward feedback control model is also used for molecular communication systems
in order to prevent excessive noise within the channel, while maintaining decent data rate
performance.

Creating artificial communication systems that are embedded into the tissue, can lead to
new forms of smart tissues that play a major role for future IoBNT vision.
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Chapter 1

Introduction

Communication is an inherent function that has evolved with humans and is a major driving

factor for numerous natural processes that has led to world development that stands today. For

example, cognitive-based communication systems have enabled constant human development,

from speech to written and voice communication, and most recently, multi-perceptual

communication. These advancements are shaping our times of the information era, where our

lives are embedded deep into the communication environment that we live. This has played a

major role in numerous fields such as healthcare, where Information and Communication

Technology (ICT) have been proposed to enable more efficient diagnosis, treatment and

prevention of diseases. However, the current communication systems infrastructure for

healthcare monitoring fails in providing accurate medical information leading to poor decision

making. A new communication paradigm has recently been proposed aiming to achieve

high levels of accuracy by providing medical information at the molecular level. This new

paradigm is termed Molecular Communication, and is expected to transform medicine, in

particular nanomedicine, as well as the healthcare industry.

Molecular communication systems have always existed naturally both within the human

body as well as the environment. Biologists have developed mathematical and statistical

tools for modelling and analysing such systems for more than 100 years. The knowledge
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obtained from those studies have enabled scientific evolution towards using biological

systems, e.g., living organisms or derivatives thereof, to create a wide range of innovative

products. This field is called biotechnology, and runs in parallel with other interdisciplinary

fields, such as bioengineering and biomedical engineering. The field of nanotechnology has

taken biotechnology to the next level. Limitations in diagnosis, treatment and prevention of

diseases are being eliminated by the usage of nanomaterials and nanoparticles [1][2][3]. As

an example, Co-polymer poly(lactic-co-glycolic acid) (PLGA) has been developed for many

years and has been approved by the US Food and Drug Administration (FDA) for the use in

drug delivery, diagnostics and other clinical applications including cardiovascular disease

and cancer treatment, as well as vaccine and tissue engineering. This research area is known

as nanomedicine, and a complete transformation in medicine is expected in the near future.

Nevertheless, the access and control of biological systems at the molecular level is a great

challenge. Nanotechnology alongside with nanomedicine alone is not capable of providing

a complete solution. Limitations in modern nanotechnology are in providing a value chain

solution that can see technology be realised in practical nanomedicine. For example, re-

searchers have proposed the development of miniature devices, either biological or synthetic,

that can not only measure molecular information but actuate upon it, namely nanomachines.

These embedded nanomachines although can perform certain functionalities, are very limited

due to their computational capabilities. However, integrating communication and networking

capabilities for information exchange locally and globally inside the human body will further

enhance their potential applications, and provide an avenue towards deploying them for

practical use. Molecular Communication has appeared as the ideal enabler for that, and its

role in information exchange between nanomachines at the nano/molecular scales will allow

nanomedicine [3] to reach its potentiality.

The Internet of Bio-Nano Things, is a vision where a huge network of nanomachines

will communicate with each other and/or an external gateway for providing nanomedicine
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Fig. 1.1 IoBNT scenario and connection of different nanonetworks inside the human body.
This vision will enable numerous application as described in the figure.

envisioned functionalities, including: real-time monitoring, fast actuation at the molecular

level, fast disease treatment, intelligent drug delivery, tissue engineering and many others.

The envisioned scenario is presented in Figure 1.1, and consists of many networks within the

human body that will be responsible for different medical tasks, including: neurodegenerative

diseases, heart, cancer and glucose monitoring. The presented vision is going to be based

on an interdisciplinary research field involving molecular communication, biotechnology

and nanomedicine. Healthcare is a major industry for the modern society, and evidently any

research in that topic has the potential impact to affect millions of people and generate large

revenue for a number of industries. Based on this, IoBNT can bring along new forms of

real-time health monitoring and response resulting in improved life quality and expectancy.

Currently such technology is only at the early stage of development and many challenges

are faced by the community. Two major challenges are classified: IoBNT theory development

and IoBNT realization. A plurality of molecular communication systems exists inside the

human body, many of which have not been fully understood or modelled; those which are
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modelled have limited analysis on their full functional behaviour. A complete IoBNT theory

development is still on its way, and it is very important for addressing the next challenge,

which is IoBNT realization. This challenge lies in the development of nanomachines and

its interoperability within the human body. At the same time the capabilities of engineering

information transfer between these nanomachines to suit various applications remains to be

investigated before a full IoBNT solution can be realised.

1.1 Path towards using molecular communication in

nanomedicine

As previously introduced, molecular communication enables information transmission at

the molecular/nano scales. This will allow future nanomachines that have communication

capabilities to perform more complex tasks cooperatively as well as providing connections

between different types of nanonetworks. This is the central vision for the foundation of

IoBNT. The long term vision of IoBNT is to have nanonetworks inside the human body

working cooperatively using the envisioned communication platform, and connect to the

cloud to provide a new form of fine granular personal health monitoring solution [4][5][6].

Since the birth of this new field, three main backbone nanonetworks were defined:

nervous nanonetwork, cardiovascular nanonetwork and also endocrine nanonetwork. These

networks were identified as long range molecular communication systems within the human

body.

The nervous nanonetwork provides a communication infrastructure based on the neural-

spike signalling. This relies on the natural neuronal nanonetwork inside the human body,

which consists of the central nervous network and the peripheral nervous network. Differently,

cardiovascular nanonetwork is based on the circulatory system for transmitting information
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through the blood cells. Finally, the endocrine network relies on the glands that emit

hormones as part of their communication process.

Although the modelling of these long range molecular communication have been studied

extensively, they are not sufficient for the development of IoBNT. A major requirement is

integrating short range molecular communication that will connect to the ends of the long

range molecular communication [7]. However, short range nanonetworks still need intense

research work especially due to their complex behaviour at the molecular scale. For example,

communication systems inside the cellular tissues enable short range communication between

the cells, but there are no solutions that address how they can be integrated to long range.

Capitalizing on the need for short-range nanonetworks communication systems, and

in parallel, aiming to provide novel healthcare applications, the focus on this thesis in on

developing molecular communication systems and their protocols within cellular tissues.

In the next subsections, the definition of a molecular communication system as well as

state-of-the-art review, challenges, limitations and objectives of the research work will be

presented.

1.1.1 Generic Model of a Molecular Communication Systems

Molecular communication systems are the primary choice to perform communication be-

tween nanomachines within biological environments. Nanomachines are defined as biological

or synthetic entities capable of performing limited computation, sensing and/or actuation at

the nanoscale [8]. They have the size of a macromolecule ( 100µm). Few approaches are

currently being proposed for the design of nanomachines [8]. However, its realization is not

practical at the current level of available technology [5].

A generic model for a molecular communication system is defined in Fig. 1.2. Based

on the telecommunication system model, it has five components: encoding, transmission,

propagation, reception and decoding. These components are organized into three main
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Transmitter Nanomachine Molecular Channel Receiver Nanomachine 

Encoding Transmission Propagation Reception Decoding 

Fig. 1.2 Communication system based on a transmitter nanomachine, a molecular channel
and a receiver nanomachine. The transmitter nanomachine is responsible for encoding
and transmission of information. The molecular channel is responsible for propagating the
information molecules. Finally, the receiver nanomachine is responsible for receiving and
decoding the information.

blocks: a transmitter nanomachine, a molecular channel and a receiver nanomachine. These

three blocks are further explored in the following subsections.

1.1.1.1 Transmitter Nanomachine

The transmitter nanomachine (or source nanomachine) is responsible for encoding informa-

tion into molecules and releasing it to the environment. There exists many different encoding

approaches and they rely on the properties of the cells. As an example, the commonly used

approach is the concentration modulation technique, in which information is encoded into

the concentration of specific molecules that are released into the channel.

1.1.1.2 Molecular Channel

The molecular channel is the medium in which information molecules propagate from

a transmitter nanomachine to a receiver nanomachine. The propagation process can be

performed in two different ways:

1. Passively: Information molecules are propagated solely based on the characteristics

of the medium. One form of this molecular channel is the diffusion process, and an

example is Ca2+ signalling. This form of communication is the focus of this thesis.
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2. Actively: This form of molecular channel involves an agent/organism that picks up the

information molecules from the transmitter nanomachine and delivers it to the receiver

nanomachine. Examples include: bacteria and nanomotors.

1.1.1.3 Receiver Nanomachine

The receiver nanomachine (or destination nanomachine) is responsible for capturing the

information molecules and also decoding its information. Capturing information molecules

is dependent on the molecular channel and can possibly have different approaches. The most

common approach is based on chemical reactions that are produced by the binding process

of the molecules to the surface of the receiver nanomachine. The binding process also leads

to decoding, since the interpretation of information will result from the chemical reaction

between the molecules and receptors on the surface.

1.2 State-of-the-art review

In the following, the state-of-the-art review on current molecular communication systems

that have been proposed by the communication engineering research community is presented.

The following systems are discussed: diffusion, bacterial and nanomotors molecular commu-

nication systems. The state-of-the-art review in Ca2+ signalling molecular communication

system is presented in Chapter 2 .

1.2.1 Diffusion-based Molecular Communication

Diffusion-based molecular communication system is one of the first proposed models for

molecular communication. The model relies on Brownian motion of molecules in free space,

and the research have concentrated on studying the noise within the channel, modulation

techniques, as well as detection of molecules at the receivers.
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The first end-to-end model for diffusion-based molecular communication was first intro-

duced by Pierobon and Akyildiz [9]. A complete mathematical framework was presented for

the transmitter nanomachine that emits information molecules in free space, the molecular

channel where the molecules diffuse and the binding process of the molecules at the receiver

nanomachine. The performance of the single-link communication system was analysed in

terms of normalized gain and channel group delay, which enabled a mechanism to quantify

how slow and poor the communication gain is. This is followed by more extensive analysis

found in Llaster et al. [10][11], in which the molecular concentration was varied over the

channel and the group delay was measured.

Llaster et al. also extensively analysed an optimal pulse shape for minimizing bit error

rate in [12]. The authors found that using the optimal pulse shape was needed to minimize

the error resulting from the noise within the channel. The channel in this case is the diffusion

of molecules that hang within the environment, interfering with the subsequent bits that are

transmitted. This was followed by a proposal of detection techniques for pulse shapes based

on amplitude and energy of the received molecules [13]. More effective detection techniques

were proposed by Lin and colleagues [14], based on an asynchronous threshold method for

performance improvement. Modulation and detection research in molecular communication

are important for the design of receivers, which has been extensively studied in [15][16][17].

Those studies provided a great variety of mathematical analysis on coding, detection and

modulation specifically for receiver design.

More communication performance metrics were applied to diffusion-based molecular

communication system for analysing noise and error. Firstly, Pierobon et al. developed

mathematical models for interpreting noise in the molecular communication channel in [18]

and [19]. More recently, they have analysed interference in such communication channel

based on power spectral density techniques [20]. This evaluation work has led researchers

to investigate error performance, such as the approach based on pulse-based modulation
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proposed by [21]. Finally, since channel condition information is important for transmission

performance and optimization, Noel et al. provided a mathematical framework for such

performance enhancing tools [22]. This technique estimates channel parameters when the

transmitter nanomachine is sending a constant flow of molecules.

Channel capacity has also been investigated by Pierobon and Akyildiz in [23] and [24].

They have developed a closed form mathematical expression for the information capacity

while taking into account memory and noise characteristics of the system. An information

capacity expression was obtained by combining functions of the diffusion coefficient, the

temperature, the transmitter–receiver distance, the bandwidth of the transmitted signal, and

the average transmitted power. Results showed that a few kbps can be reached within a

distance range of tenth of micrometer and for an average transmitted power around 1 pW.

Even though such modelling and performance analysis have been made, one of the

major limitation is that the proposed molecular communication system is only limited to a

single-link. In order to realise a full networking solution that uses molecular communication

that can be useful for nanomedicine applications, multi-links diffusion-based molecular

communication system has to be intensely investigated. Ahmadzade recently started with a

technique for relaying information in a two-link diffusion-based molecular communication

system [25].

1.2.2 Bacteria-based Molecular Communication

Bacteria are widespread within the environment as well as internally within the human body.

While there are negative aspects of bacteria, such as infections they can cause, they are

essentially needed to provide a stable environment as part of the natural ecosystem. In the

realms of molecular communication, there have been proposals made for using bacteria.

Bacteria-based molecular communication system was first introduced by Cobo and

Akyildiz [26]. They proposed an idea to encode information into the plasmid and embedding
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this into the bacteria. The bacteria will then actively swim towards the receiver nanomachine

to deliver the encoded information. Although their motility process is based on random walk,

bacteria are guided by the process of chemotaxis to reach a destination point. This is achieved

when a chemoattractant substance is released by the receiver. The authors have developed an

end-to-end model for a single-link molecular communication model and analysed the delay,

throughput and capacity.

In the same direction, Lio and Balasubramaniam [27] have shown that using bacteria

conjugation (which is the transfer of DNA molecules from one bacteria to another) can

result in routing based on a network of nanomachines that relay chemoattractants from the

receiver. Also in [28], they have shown how this mechanism is used to achieve multi-link

communication using bacteria-based molecular communication system.

Since then, researchers working on this topic have taken two directions. In the first

direction, communication analysis of this system is being currently investigated based on

modelling and performance evaluation of their delivery performance (e.g., first passage time

as well as delay distribution). In the second direction, researchers are concentrating on

applying this communication system for biological applications.

Recently, researchers developed a closed-form mathematical expression for bacterial

nanonetwork [29]. This is followed by modelling signal transduction for amplitude-based

pulse modulation [30] and collision analysis [31]. From the perspective of medium access

protocols, Krishnaswamy and Sivakumar have developed a source addressing mechanism

[32]. However, these work is based on using molecules emitted from bacterial population

(also known as the process of quorum sensing), rather than the microbes delivering plasmids

to a destination point.

A new communication approach that uses periods of silence was proposed in [33][34]

by Krishnaswamy et al. for molecule based communication using bacterial population.

Synchronized clocks are assumed to be in the transmitter and receiver nanomachines that can
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count the values that are transmitted. Based on the clock counting, information is encoded

into periods of silence between the start and stop pulses. This technique increases the data rate

for super slow bacterial nanonetworks, and has been a source of inspiration for a technique

that is also proposed in this thesis.

Applications for this type of communication were proposed for biological processes.

Lo and Wei concentrated their efforts in developing an autonomous control for molecular

communication in a population of bacteria [35]. This was achieved by a biological con-

troller that is able to change bacteria concentration based on the environmental conditions.

Also, researchers were able to develop a target tracking system using cooperative bacteria

[36][37][38]. In this application, engineered bacteria transmits repellents to search for a

target, and upon discovery of the target, will emit attractants to call the other microbes

towards that location.

1.2.3 Microfluidic-based Molecular Communication

Recently an entire research topic has been devoted to microfluidic communication systems,

where the flow of information is established through propagation of fluids along a miniature

channel. In this model, the transmitter and receiver chambers are interconnected via a mi-

crofluidic channel in a microchip. Such molecular communication system has the advantage

of using fluidic medium to transport information along a guided channel.

Microfluid-based molecular communication system was first introduced and modelled by

Bicen et al. [39][40][41], where the chip was used to allow population of bacteria to emit

molecules for communication. They investigated and modelled many communication aspects,

including: gain, attenuation, interference and capacity. Wirdatmadja et al. [42] investigated

this communication system looking at the achievable data rate performance for OOK shift

keying with communication-by-silence. In this communication process, the information is

transmitted through air bubbles that are pushed under pressure through the aqueous channel.
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Through the communication-by-silence process, the only air bubbles required are two bits,

which are the start and stop bits, where the information is conveyed through the counting

process at the receiver.

1.2.4 Nanomotors-based Molecular Communication

Nanomotors are molecular/nano scales elements found in the cells, where they mobilize by

walking on actin filament skeleton. The walking process is achieved by converting ATP

energy that enables the walking process. They can be divided into biological (e.g., kinesin

motor) or synthetic systems (e.g., carbon nanotube nanomotor). The nanomotors generally

carry information molecules with them which are propagated by the active movement along

the microtubule filament. Even though this is a very limited type of molecular communication

system that is found within the cell, its importance is to provide communication between the

nucleus and the outer membrane. Researchers have been proposing different approaches to

model and realise this form of communication system.

Moore et al. [43] and [44], have proposed modelling this form of biological movement

for molecular communication. This intracellular communication is from the mobilisation

of vesicles in the nucleus, which are transported to the cellular membrane by kinesin mo-

tors. The authors also found that from the movement of the molecular motors, the actin

filament networks can be re-arranged leading to a self-organization process [45]. More

recently, Chahibi and Balasingham [46] have analytically modelled this form of molecular

communication system in terms of delay and attenuation.

1.2.5 Applications for Molecular Communication

Molecular communication has gained attention from engineers and life science researchers

for the potential flexibility and integration with biological systems for medical applications.

Mainly, four applications were investigated that have pushed the field of molecular communi-
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cation research towards the spotlight, namely: nanomedicine, intelligent drug delivery and

Internet of Bio-NanoThings.

1.2.5.1 Nanomedicine

Monitoring and adapting disease treatment and diagnosis at the molecular level are revo-

lutionizing nanomedicine. Molecular communication is going to play an important role in

this field, where the communication between nanomachines will support the execution of

nano/molecular scales monitoring. Felicetti et al. reviewed the challenges and prospects of

molecular communication in nanomedicine, showing a variety of ideas for both diagnosis

and treatment [47].

Disease detection and personalised diagnosis using molecular communication can bring

real-time monitoring in the human tissues. Studying abnormalities in cell-cell communication

is an idea for disease detection and personalised diagnosis of patients at a fine granular scale.

Detection of such abnormalities can be performed using telecommunication tools with low

complexity and, therefore, resulting in easier approaches for implementation.

Molecular communication is going to also bring the treatment of diseases to another

level of effectiveness. Felicetti et al. argued that communication of active nanorobots in

the human body has the potential to improve efficiency in: drug delivery, immune system

activation, tissue engineering and nano surgery. However, the envisioned applications are not

yet properly studied and intense research effort is needed in all the listed topics.

1.2.5.2 Intelligent Drug Delivery

The most studied application of molecular communication is intelligent drug delivery systems

developed by Chahibi et al. [48][49][50][51]. Using molecular communication principles,

drug delivery can enhance its performance of reaching the target by utilising telecommu-

nication theories, such as routing. The rate of drug delivery and its propagation patterns
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can be modelled, therefore, allowing adjustments and improvements to the dosage accu-

racy. Specifically, Chahibi et al. focused on modelling the circulatory system in the blood

stream. Depending on the place that the drug molecules are inserted in the body, the rate and

propagation will be optimum in a specific point of the body. They also worked with antibody-

mediated drug delivery systems, in which small molecules (antibodies) that propagate in the

body and bind selectively to their corresponding receptors (antigens) expressed at the surface

of the diseased cells. This technique is one of the most encouraging therapeutic solutions for

treating several diseases such as cancer.

1.2.5.3 Internet of Bio-NanoThings

Lastly, the Internet of Bio-NanoThings (IoNT), introduced by [52], is a perfect example of

the potential technology that can result from nano communication research. In this vision,

the nanomachines can be connected to each other and then onto an external computing entity

such as the cloud. In the vision of IoBNT [53], the cells are engineered through synthetic

biology, enabling them to have properties similar to a typical Internet of Thing (IoT) device.

The authors discussed how artificial cells can be created to network between heterogeneous

molecular nanonetworks, which in turn can be connected to a bio-cyber interface that links to

an external device outside the body (e.g., mobile phone). Numerous envisioned applications

of IoBNT includes: military, healthcare, security as well as nanomedicine.

1.3 Research scope and objectives of the thesis

The aim of the research in this thesis is to investigate how molecular communication system

for nanomachines can be embedded into human cellular tissues. However, the design of

such system is quite challenging due to the natural body’s characteristics and homoeostasis

requirements to provide stability. The system needs to maintain regular body’s functions as

well as rejection or modifications to the internal immune system. Therefore, a reasonable
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choice in developing such a communication system is to use the already existing signalling

processes that are found within the cellular tissues. One of the most important natural

signalling mechanisms inside cellular tissues is Ca2+ signalling [54][55]. The referred system

is going to be the baseline for the design of Ca2+-signalling-based molecular communication

system, which is the focus of this thesis. The limitations and challenges of this form of

molecular communication system will be addressed as follows:

1. Developing a representative communication model: Natural communication/signalling

processes are hard to model, and this is further amplified when trying to develop an

artificial communication system. The main issue lies in the stochastic nature of this

signalling process that involves both intra and intercellular signalling mechanism

between the cells.

2. Developing communication protocols: In order to advance the field of molecular

communication, as well as develop new research solutions to achieve networking

capabilities between multiple nanomachines, new protocols will need to be incorpo-

rated. However, the design of the protocols must consider the stochastic and uncertain

communication behaviour between the cells described above, as well as the limited

computational capabilities of the nanomachines.

1.3.1 Objectives

Since validation and realization of the proposed Ca2+-signalling-based molecular communi-

cation system are currently not practical, the focus of this thesis is in developing a theoretical

model. This relies on expanding the existing models to capture both the stochastic behaviour

of Ca2+-signalling and the physiological implications that can limit the performance of

the communication system embedded into cellular tissues. Taking this into account, the

thesis is going to extensively analyse and propose the molecular communication model
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based on utilising known telecommunication and information technology theories that will

be applied to the Ca2+ signalling process. By developing this framework for creating a

Ca2+-signalling-based molecular communication system will lead towards new application

within the field of nanomedicine. In the following section, the objectives will be defined into

research questions detailing the challenges in this thesis work.

1.4 Research Questions

Ca2+ signalling within cells has been studied and investigated in molecular biology for more

than 20 years. This form of communication is one of the most abundant signalling modes

found in the body and is responsible for many regulatory mechanisms since its communication

failures are linked to numerous diseases [54][56]. This adds to the motivation of developing a

molecular communication system using this form of signalling for embedded nanomachines

inside the cellular tissue. Therefore, the focus of this thesis is in fully developing and

analysing a theoretical framework for Ca2+-signalling-based Molecular Communication for

Cellular Tissues, and is formalized through the following hypothesis:

"Nanomachines, either artificially eletronically designed (e.g., chips inside a cell) or

synthetically engineered, can be embedded into cellular tissues and perform communication

using Ca2+ signalling."

The system can be visualized in Fig. 1.3. A transmitter nanomachine is capable of

encoding digital information with Ca2+ concentration as well as modulating it. Ca2+ ions

are then diffused into the molecular channel, which is characterized by the intracellular and

intercellular signalling processes between the cells. At the receiver nanomachine, the arrived

Ca2+ concentration is demodulated and decoded. As described earlier, due to the inherent

stochastic behaviour of this signalling process[57][58], a noisy communication channel is

expected.



1.4 Research Questions 28

CS Communication System 

  Transmitter  
Nanomachine 

   Receiver 
Nanomachine 

15 

• Our scenario application assumes that nanomachines (receiver and 
transmitter) are embedded in the cells and are able to stimulate the 
Ca2+  ions for signaling. (e.g. genetic circuits, chip in a cell) 

• We stimulate the production of Ca2+ ions during the transmission of 
bit 1  

• Ca2+ ions are diffused through the neighboring cells and through the 
tissue towards the receiver 

time 

In
pu

t 

10010010111 
Message 

Digital Modulation 

time 

O
ut

pu
t 

10010110111 
Message (with errors) 

Digital Demodulation 

Fig. 1.3 Ca2+-signalling-based molecular communication for cellular tissues. A transmitter
nanomachine releases encoded information using modulated Ca2+ concentration, which is
propagated through the molecular channel. The received signals contains errors that are due
to the noisy characteristics of the molecular channel.

Telecommunication and information technology tools are going to be used for the perfor-

mance analysis, based on the guidelines in [59]. The basic guideline is to define the emission,

propagation and reception processes. The emission process is basically the encoding of a

message by a transmitter nanomachine. The message is then transmitted through a channel,

which in this case is a tissue. The received information is then decoded to a message by the

receiver. The thesis will present representative communication models as well as protocols

for Ca2+ signalling within the tissue for a number of different cell types, and this will be the

basis for the framework.

Five research questions were defined for the development of Ca2+-signalling-based

Molecular Communication for cellular tissues, and they are listed as follows:

1. First Research Question (RQ1) - What type of molecular communication system

model can be developed for Ca2+ signalling in a cellular tissue?

This question addresses the modelling of the molecular communication system for

Ca2+ signalling in a cellular tissue. Ca2+ signalling is basically modelled with ordinary

differential equations with stochastic solvers [60][57][61][62; 63]. Although solutions

have been proposed for transmitting digital bits based on Ca2+ signalling, the proposed

models are incomplete due to unrealistic cellular tissue properties, which do not
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consider stochastic behaviour of gap junctions, different types of cellular tissues and

their physiological properties [60; 99; 102; 104].

2. Second Research Question (RQ2) - How can the physiological shapes or gap junc-

tions’ behaviour from different cells that communicate using Ca2+ signalling affect

information capacity, molecular delay, molecular gain and noise?

Biological systems undergoes different physiological processes over time that might

cause issues to the communication system, and in particular when the objective is to

artificially stimulate Ca2+ ions to transmit bits. The design of a molecular communica-

tion system for cellular tissues needs to incorporate tissue properties and overcome any

negative impact on the performance. A specific property that needs to be incorporated

are the cell shapes. As an example, epithelial tissues have square-shaped cells, blood

cells have a circular shape and muscular cells have an elliptical shape. Diffusion

in cellular tissues depends on the shape of the cells since this impacts on the Ca2+

propagation velocity as well as direction. At the same time, the intercellular signalling

based on the gap junctions closing/opening behaviour also has to be considered (gap

junctions are connections between adjacent cells in the tissues). Since cells in the

human body are naturally soft structures, they can go through shape changes (e.g.,

movements or collisions). The study of the cellular tissue deformation has, therefore,

significant importance in impacting the communication performance.

Each of these properties will be need to be analyzed from the perspective of channel

capacity, noise and gain, as well as the end-to-end delay.

3. Third Research Question (RQ3) - Based on the excessive noise found in the Ca2+-

signalling-based molecular communication system, what new types of modulation and

transmission protocols can be developed?
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Limitation of Ca2+-signalling-based molecular communication systems is in the inher-

ent noise that affects the capacity [5]. The investigation on noise in Ca2+ signalling

channel [64] is a result from the stimulation of ions when information are transmitted.

The noise will be further amplified when the tissue undergoes deformation. This issue

needs to be addressed with the design of new types of modulation and transmission

protocol that may currently be available in conventional wireless networks.

4. Fourth Research Question (RQ4) - Can the current cellular tissue state (e.g., defor-

mation) be detected? If so, what can be done with such information?

Detecting and inferring cellular tissue properties is an attractive tool that can be used

in designing new applications that use Ca2+ signalling communication as well as

diagnose diseases that can emerge from the tissue [65]. By inferring the current state

of the tissue, the protocols can also utilise this information to adapt in order to improve

the communication system performance.

5. Fifth Research Question (RQ5) - Can the cytosolic Ca2+ concentration be con-

trolled? and what are the applications of the control model?

The Ca2+ signalling, as described above, can result in excessive noise due to variations

in the concentrations during intra and intercellular signalling. This noise effect can

occur naturally resulting in diseases (e.g., neurodegenerative diseases), or artificially

when applied to molecular communication. In the latter case, molecular communication

that use Ca2+ are required to stimulate extra quantity of ions to convey information,

which can lead to stress on the cells. Therefore, design of protocols must consider the

effects that variations on Ca2+ concentration can have on the human body.
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1.5 Document Organization

The rest of the thesis is organized as follows. Chapter 2 presents background information

about Ca2+ signalling and the characterization of Ca2+ signalling in the human body. The

research contribution summary is presented in Chapter 3. The research papers containing

the contribution of this thesis are found in Chapters 4 to 8. A discussion about the insights

obtained with the research work in this thesis is presented in Chapter 9. Finally, conclusion

and future work are presented in Chapter 10.



Chapter 2

Ca2+ Signalling

Ca2+ signalling is a natural mechanism that transmits ions at short distances between inter-

connected cells within a tissue. This form of communication can be found in a variety of

cells, providing various physiological and regulatory purposes (e.g., cell growth, prolifer-

ation and fertilization, muscle contraction, neuronal communication, cellular motility and

differentiation), provoked by IP3 stimulation, hormonal or neurotransmitter signals. The

Ca2+ signalling can travel small to medium distances (over several hundred micrometers) by

means of molecular diffusion, propagating across the extracellular space and gap junction

of the neighbouring cells. This powerful biological signalling has brought the attention of

nanonetworks and molecular communication researchers as one form of communication and

networking between nanomachines.

There are numerous reviews on Ca2+ physiology in the literature [66]: in 2003 an entire

issue of Nature Reviews was devoted to the subject and contains reviews of Ca2+ homeostasis

[54], extracellular Ca2+ sensing [67], Ca2+ signalling during embryogenesis [68], the Ca2+-

apoptosis link [69], and the regulation of cardiac contractility by Ca2+ [70]. Other useful

reviews for fundamentals of Ca2+ signalling are [71] and [72].

This chapter presents background information on Ca2+ signalling for the complete

understanding of the work presented in this thesis. The chapter will start with a description
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on how the Ca2+ signalling behaves internally in the cell (intracellular signalling) and, this

is followed by how the waves are propagated to other cells and eventually to the whole tissue

(intercellular signalling).

2.1 Intracellular Ca2+ Signalling

Intracellular Ca2+ signalling is a natural regulatory process inside human cells that leads to

numerous physiological regulations. A number of chemical reactions and their magnitude

are responsible for maintaining Ca2+ concentration within the cytosol, as well as producing

oscillation effects and wave propagation. Ca2+ signalling is dependent on the IP3
1, and its

relationship is important for the communication purpose.

Intracellular Ca2+ signalling occurs in the following way: by stimulating the IP3 the

Ca2+ signals are released (Stimulation). At the same time, the released IP3 also indirectly

controls the influx of Ca2+ ions to the endoplasmic reticulum and its storage in the cytosolic

area (Storage). Besides the stimulation process, certain cellular components are also capable

of self-generating Ca2+ ions (Amplification). Finally, exchange of Ca2+ ions is conducted

in two ways: cell-cell communication (Diffusion) and aleatory exchange of Ca2+ to the

extracellular space (Release) [61]. This process can be visualized in Fig. 2.1.

Ca2+ signalling has been studied first by the biological community, which aimed to

observe how the cellular evolutionary process communicates. Goldbeter et al. [61] modelled

the Ca2+ signalling oscillations in the cytosol inside the cell. They presented a number

of ordinary differential equations that accurately describe the relationships inside the cell

responsible for the Ca2+ production, storage and release. They also presented a method to

stimulate the Ca2+ release at higher frequencies through protein phospohrylation, which is

considered a method for frequency encoding for Ca2+ signals. This work is further extended

1Inositol 1,4,5-trisphosphate (IP3) is a secondary message molecule that travels through the cytosol and
stimulates the release of Ca2+ from the endoplasmic reticulum to the cytosol.
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Fig. 2.1 The stages of the Ca2+ signalling process: (1) The process starts from the stimulation
and extracellular leakage of Ca2+ ions into the cytosol. (2) Transport the Ca2+ ions from
the cellular store (or cytosolic space) to the endoplasmic reticulum. (3) Release of Ca2+

ions from the endoplasmic reticulum into the cytosol, where the release will also include the
leakage of Ca2+ ions (4). Lastly, (5) the Ca2+ ions are transported from the cytosol to the
extracellular space.

by Berridge et al. [73] which has extended the analysis of modulating information through

Ca2+ signals fully developing the theory for AM and FM encoding. Some systems proprieties

of Ca2+ signalling were also investigated under a spatial and temporal analysis in Berrigde et

al. [74]. They concluded that this system might have different spatial and temporal dynamics,

because slow cellular responses are controlled by intracellular Ca2+ signals and faster cellular

responses are controlled by high Ca2+ localized spikes. Other works that analyses the process

of Ca2+ oscillations, regulations and dynamics, are from Tsien et al. [75] and Berrigde et al.

[54].

2.2 Intercellular Ca2+ Signalling

Intercellular Ca2+ signalling is central to development and various regulatory purposes (e.g.,

cell growth and proliferation, fertilization, muscle contraction, neuronal transmission, cellular
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motility and differentiation), and is initiated by IP3 stimulation, or through hormonal or

neurotransmitter signalling. This biological communication platform is found in a variety

of cell types, including: glial or astrocytes [76][77], neurons [78], ephitelium [79][80],

endothelium [81], smooth muscle [82], cardiomyocytes [83], hepatocytes [84], osteocytes

[85], chondrocytes [86], kidney [87], mammary gland [88], mast [89], pancreatic [90], and

keratinocytes [91].

Cells are soft structures that present different shapes and can undergo deformation.

The deformation of a cell can affect the performance of Ca2+ signalling, in particular

communication that is performed through diffusion of molecules inside the cellular tissue.

Masselter and Speck [92] investigate how tissue deformation spatially modulates angiogenic

and angiogenesis signals. This is due to the physical forces applied to the developing tissues.

For example, during vascular development, the deformation caused by such forces has a huge

impact on the Ca2+ signalling and the overall behaviour of the cell. This challenge is also

explored in the thesis.

Chemical synapses depend on a structure that connect the cytosol of two adjacent cells,

namely the Gap Junctions. Once opened, gap junctions allow Ca2+ ions to flow from one

cell to another. Further description on the gap junctions is found in the next section.

2.3 Gap Junction

In intercellular communication, Ca2+ ions are propagated through cellular tissues via a

physical gate that connects the cytosolic areas of two neighbouring cells; these gates are

called Gap Junctions. Fig. 2.2 shows how gap junctions connect two cytosols. The gap

junctions are composed of two connexons, one in each connecting cell, which is formed by

six proteins called connexins—as shown in Fig. 2.3.

Gap junctions are found in many animal cellular tissues with varying configurations

and connectivity. The distribution of the connexins per cell has a fundamental impact
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Fig. 2.2 Side view of a gap junction gate. The intercellular tight junction (2nm) separates the
two neighbouring cells, which are connected via gap junctions. This enables the Ca2+ influx
and efflux through the cellular membranes.
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Fig. 2.3 Top view of the gap junctions. A single gap junction gate is referred to as the
connexon, which is formed by six proteins called connexin. These gates have two states: high
conductance state and a low conductance state—equivalently to the opened or closed status
of the junction.

on the diffusion behaviour. Changes in those characteristics may lead to different types

of diseases, including cancer, cardiac ischemia and cardiac hypertrophy [93]. Given this,

control of gap junction behaviour is a possible tool for drug delivery systems and disease

treatment. Cellular growth is directly involved with gap junction control: regulatory growth

signals are transmitted through gap junctions, and decreased communication capacity may
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lead to uncontrolled growth in extreme cases, as in cancer [94]. Studies have shown how

communication capacity can control growth, in which connexin genes were transfected

into tumorigenic cell lines [95]. Ca2+ intercellular signalling plays two fundamental roles

in influencing the gap junctions channels. It not only activates the gap junction channel,

with intercellular oscillations, but Ca2+ ions can also be transferred to a neighbour cell by

diffusion. Here the focus is only on the diffusion process of the Ca2+ ions through the

junction.

Intercellular diffusion only occurs when both connexons are opened at the same time.

Ca2+ ions can thus flow from a cellular cytosol to another one. The thesis will present how

the gap junction behaviour between the cells will affect the capacity of the communication

channel within the tissue.

2.4 Characterization of Ca2+ Signalling for different types

of cells

Three categories for cells that communicate through Ca2+ signalling were identified. These

includes excitable cells which can be stimulated through electrical current only, non-excitable

cells which are stimulated through chemical reactions, and hybrid excitable and non-excitable

cells hold properties of both. Examples of cells under each of these classifications include:

smooth muscle cells (excitable), epithelial cells (non-excitable) and astrocytes (hybrid). These

cell types typically present different characteristics regarding structure, internal reactions,

size, and location within the human body.

The state-of-the-art modelling that is discussed in this chapter is limited and is not a

good realistic representation of Ca2+ signalling-based molecular communication system.

Intense modelling and analysis is required to fully understand the behaviour of the molecular

communication system, and this can only be achieved by incorporating different properties
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of the cells (e.g., gap junctions, different chemical reactions, multiple stages of the intra

and intercellular signalling, different cell types and their connectivity). This is one of the

motivations for the development of the work presented in this thesis.

2.4.1 Non-excitable cells

Ca2+-signalling-based molecular communication system was first introduced by Nakano et

al. in [96] and [97]. In those works, information is encoded through spikes or oscillations

of the Ca2+ concentration in the cell caused by an external stimulation. The propagation

process can possibly lead to switching of paths through diffusion of the ions in selected

gap junctions, as well as amplification, which can possibly support signal modulation. An

experimental validation was also presented, where Ca2+ waves propagated over HeLa Cx43

cell wires and fluorescent emission was made possible for visualizing the signal transmission

[97].

The first end-to-end model of the Ca2+ signalling communication system as a relay

channel was proposed by Nakano and Liu [60]. A stochastic solver was used to for the

Goldbeter’s model [61], which was based on the Gillespie algorithm. Goldbeter model is

based on two sets of ordinary differential equations that count the oscillatory behaviour

of intracellular Ca2+ signalling for non-excitable cells. The authors investigated the Ca2+-

signalling-based molecular communication from the perspective of information theory with

both the transmitter nanomachine and receiver nanomachine embedded inside an array of one

dimensional cells. Mutual information impact was studied based on a set of system variables

(e.g., concentration, distance, time slot for releasing bits from the transmitter).

2.4.1.1 Epithelial cells

Epithelial cells are one of the most basic type of cells found in animal tissue; they are

responsible for a wide set of tasks, including secretion, selective absorption, protection,
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Fig. 2.4 The stages of the Ca2+ signalling process in the epithelial cells. The process
starts from the stimulation and extracellular leakage of Ca2+ ions into the cytosol. This is
followed by the transport of the Ca2+ ions from the cellular store (or cytosolic space) to the
endoplasmic reticulum. After the transport, the endoplasmic reticulum releases the Ca2+

ions into the cytosol, where the release will also include the leakage of Ca2+ ions. Lastly, the
Ca2+ ions are transported from the cytosol to the extracellular space.

transcellular transport and detection of sensation. The cells can be found throughout the

body, covering both external surfaces (endothelium [81]) and internal organs (kidney cells

[87], hepatocytes [84] and pancreatic cells [90]). One interesting characteristic is their

tightly packed structure, with almost no intercellular space. Epithelial cells come in a variety

of geometrical shapes, including square-shape—referred to as simple cuboidal epithelial

cells—which is the structure considered in this thesis. In vitro and in vivo experiments, like

those reported in [79][80], have investigated the spatial-temporal dynamics of intercellular

Ca2+ signalling in this type of cell.

2.4.2 Excitable cells

An electro-chemical relationship between the concentration of Ca2+ molecules and cellular

membrane voltage is found in excitable cells that enable the propagation of action-potentials.
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This mechanism lies the foundations of neuron-neuron signalling to perform communication

between nanomachines. Long-range communication is thus possible within the human body,

where the nervous system can be used as a backbone network to interconnect numerous

nanomachines embedded within the human body. Researchers are focused on modelling

such communication system but also looking at particular problems for efficient neuronal

transmission.

A neuronal backbone network was proposed as a new communication paradigm by Walsh

et al. [98]. This work was extended by Balasubramaniam et al. [99], in which a multi-

access protocol was presented. The proposed approach uses a genetic algorithm optimization

technique to schedule the transmission window for each transmitter nanomachine, therefore

providing multiple access to the neuronal network channel. They also provided test-bed

experiments using a living neuronal network to demonstrate how a single bit of information

can be transmitted through the stimulation of the neurons.

Recent works have concentrated on modelling the communication performance of the

neuronal nanonetworks. Modelling of synaptic transmission based on presynaptic termi-

nals and transmitter array was proposed in [100]. Caccipuoti et al. showed that neuronal

information is encoded in the release patterns of the presynaptic terminals. Ramezani et al.

[101], on the other hand, were more interested in how the shape of action potential during

axonal propagation can affect a neuronal-based molecular communication system. They

considered the existence of multiple terminals with univesicular release between two neurons,

which is realistic for neurons in the Hippocampal CA region. Different neuron terminals

have different release probabilities and different shape patterns. An inverse relationship was

found between the spike width and the probability of error detection, because theoretically

detection techniques are more efficient with detecting wider shape pulses [101].

Even though solid work has been presented for neuron-neuron molecular communication,

other tissue types also present the same electro-chemical relationship e.g. smooth muscle
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Fig. 2.5 C
a2+ signalling process in the arterial smooth muscle cells.The stages of the Ca2+ signalling
process in arterial smooth muscle cells: The process starts with stimulation and production
of Ca2+ from the CICR and IP3 processes. Ca2+ is then amplified using mitochondria and

sarcoplasmic reticulum. Leakage of Ca2+ outwards into the cytosol is performed by the
Ca2+-ATPase and Potassium efflux. Leakage of Ca2+ inwards within the cell is performed

by VOCCS channels and by Na+/Ca2+ exchange. Finally, the cytosolic Ca2+ ions are
propagated throughout the cellular tissue via diffusion.

cells, and yet no molecular communication system has been proposed based on those. In

these Ca2+ signalling plays a bigger role compared to the neurons and are further explored

in the following.

2.4.2.1 Smooth muscle cells

Smooth muscle is an involuntary tissue comprised of thin, elongated muscle cells found along

the walls of hollow organs such as the digestive tract (lower part of the esophagus, stomach

and intestines), the bladder, the uterus, and various ducts of glands and walls of blood vessels.

A number of studies have found that smooth muscle tissues are capable of propagating Ca2+

throughout the tissue [82]—intercellular Ca2+ signalling in smooth muscle cells helps in the

arteries’ contractile state.
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2.4.3 Hybrid cells

Hybrid cells not only present both excitable and non excitable characteristics but they are

able to perform communication within the two domains. The cell type identified for this role

is astrocytes.

In [102], the authors looked at the communication of neurons and astrocytes. Astrocytes

provide nutrients that support the normal functioning environment of the neurons. The

network was translated into a equivalent cascade circuit, where the frequency response of

the system was deducted. A new tool to understand this heterogeneous communication

and the stimulus-response of the astrocytes-neuron system was proposed. This enabled the

analysis of the tripartite synapses under the power spectral density and the impulse response,

characterizing the communication channel.

Since astrocytes seem to play an important role in neuron-neuron communication and

providing its maintenance and upkeep, investigation into the role of astrocytes communication

and its support for neuronal-based molecular communication systems is an important topic.

In particular, the failure between the astrocytes and neuron communication can lead to a

number of diseases. In this thesis, we investigate how astrocytes can also be utilised for

molecular communication, and how the control of communication between the astrocytes

and neurons can be achieved.

2.4.3.1 Astrocytes

Astrocytes are a star-shaped form of Glia cells, responsible for a wide range of complex and

important functions relating to maintenance of the central nervous system. These functions

include primary roles in synaptic transmission and information processing by neural circuits.

Specifically, these non-neural cells in the brain are responsible for spatial neuron support,

neuron nutrients and oxygen supply, neuronal isolation, pathogen destruction, as well as

removal of dead neurons. Astrocytes are the most abundant cells within the central nervous
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Fig. 2.6 The stages of the Ca2+ signalling process in astrocytes. After stimulation, IP3
is produced by the PLC protein (Phosphoinositide phospholipase C), which leads to the
increase of the internal Ca2+ concentration. This is because we use the isoform PLC, which is
correlated with the internal cytosolic Ca2+ level. This internal concentration is then amplified
using the endoplasmic reticulum. Diffusion of Ca2+ ions through the cellular tissue then
occurs.

system [103]. They can be found in the spinal cord as well as the brain, where they are

responsible for communication with both excitable and non-excitable cells. Studies have

shown that astrocytes propagate intercellular Ca2+ signals over relatively long distances in

response to stimulation [76][77].

2.5 Discussion

The early stage of the molecular communication area is defined by its poor development in

the following three pillars, modelling, analysis and applications. One of the reasons of such

slow progress is the plurality of molecular communication channels and the lack of research

efforts to handle those. They are intrinsic different from each other and many models were
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proposed and discussed in the Introduction and in this chapter. In alignment to that, there

is also the need of more realistic models and pave the basis for the development of new

application using molecular communication. Looking at contributing to all those issues and

pillars, this thesis is concentrated in developing models, analysing them and developing

applications for Ca2+ Signalling-based molecular communication systems. This biological

platform is used to perform communication inside cellular tissues in the IoBNT context,

and, therefore, guaranteeing access to molecular/nano levels in the body. Then molecular

communication and nanomedicine are finally combined as a novel proposed technology,

creating the required impact on the scientific community with trying to trigger a large-scale

research effort for developing this new technology.

The first research effort for the thesis work is in regard to modelling. Information

and communication technology is going to be mixed with biological models for Ca2+

signalling to develop molecular communication systems inside cellular tissues. Particularly,

Nakano’s model for transmitting bits over a line of cells is a great example of that [60].

His communication channel model was developed mixing an intracellular signalling model

and a stochastic solver. Even tough Nakano’s model is important because of the innovative

solution, the following limitations to the model are found: 1) the domain of the model is only

1D and, therefore, unable to be considered as a cellular tissue, 2) the simple model used for

intercellular communication does not consider gap junctions, 3) only one cellular tissue type

is modelled. An extension of Nakano’s model is needed to provide a proper mathematical

framework that can be used for developing molecular communication systems for cellular

tissues. Models for 3D domain tissues, gap junction stochastic behaviour and different tissue

types are then proposed. Secondly is in regard to the analysis, communication and information

technology analysis is used to investigate how some of the biological properties of the system

affects the communication performance. Inspired by Pierobon [9][18][19], adaptations of

telecommunication metrics were used to proper analyse the communication performance
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of the molecular communication system whist taking into account the biological properties

of cellular tissues. The following metrics were used: molecular gain, molecular delay,

capacity, intracellular interference, noise and data rate. And lastly in regard to applications,

new applications were designed using a Ca2+-signalling-based molecular communication

system, including a cellular tissue deformation detection/inference technique and a regulation

technique for intracellular Ca2+ signalling for astrocytes in the tripartite synapses. All these

contributions are better explained in Chapter 3.



Chapter 3

Thesis Research Summary

This chapter presents the complete list of research articles related to this thesis. The chapter

will begin with a short summary for each of the articles, and this will be followed by the

mappings of each of the publications to the research questions.

3.1 Dissemination Work

Published Articles:

P1. (Chapter 4) M. T. Barros, S. Balasubramaniam, B. Jennings. Comparative End-to-end

Analysis of Ca2+ Signaling-based Molecular Communication in Biological Tissues.

IEEE Transactions on Communication, vol. 63, pp. 5128-5142. December 2015.

Summary: A single-link communication system based on Ca2+ signalling in 3D tissue

was modelled in this article. The 3D model of the tissue includes the intra and inter-

cellular Ca2+ signalling combined with the stochastic property of the gap junctions

closing/opening process. Three main types of cellular tissues within the human body

that communicate using Ca2+ signalling were modelled as part of the comparative end-

to-end analysis, and these cells include epithelial cells (non-excitable cells), smooth
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muscle cells (excitable cells) and astrocytes (hybrid cells). The modelling framework

is not only important for molecular communication researchers to analyse the com-

munication performance of each tissue with respect to their signalling behaviour and

physiological properties, but also for biologists and biotechnologists who are interested

in understanding the intercellular Ca2+ signalling process that can lead to diseases.

The performance metrics used to analyse the communication system includes the end-

to-end channel capacity, delay, as well as gain. The analysis found that the propagation

characteristics are highly dependent on the stimulation process of the Ca2+ ions, its

concentration, as well as the physiological shapes of the cells and their connectivity in

the tissue.

P2. (Chapter 5) M. T. Barros, S. Balasubramaniam, B. Jennings, Y. Koucheryavy.Transmission

Protocols for Calcium Signaling based Molecular Communications in Deformable

Cellular Tissues. IEEE Transactions on Nanotechnology, vol. 13, no.4, pp.779-788,

July 2014.

Summary: This article investigated the low performance of OOK modulation for a

single-link Ca2+-based molecular communication system, and how this performance

can be affected by the flexible structure of the tissue. For the flexible structure analy-

sis, a deformation model for cellular tissues was incorporated. The communication

performance analysed the capacity as well as noise between the compressed and un-

compressed tissue structure. The analysis showed that the noise found Ca2+ signalling

is very unique and time-varying compared to conventional wireless networks. There

are different types of noise that depends on the location along the path between the

transmitter and receiver. The noise is highly affected by the variations in the concentra-

tion as well as distance between the transmitter and receiver. In order to improve the

performance, the article proposed the communication-by-silence protocols with block

coding.
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P3. (Chapter 6) M. T. Barros, S. Balasubramaniam, B. Jennings, Using Information

Metrics and Molecular Communications to Detect Cellular Tissue Deformation, IEEE

Transaction on Nanobioscience, vol. 13, pp. 278-288, September 2014.

Summary: While molecular communication to date has largely concentrated on charac-

terizing the communication behaviour, very little attention has been put on defining

novel applications. In this article the use of Ca2+ signalling with synchronized trans-

mission between the nanomachines is used to infer information with regards to the

tissue as well as the shape of deformation. The information includes estimating the

locations of the transmitters as well as the concentration of the emitted Ca2+ ions, and

the type of deformation includes single, double, and S-shaped compression. This is

achieved by monitoring the concentration of Ca2+ signalling within the tissue, and

feeding this data into a simple machine learning algorithm that utilises information

metrics as well as threshold classifiers. The topology considered in the tissue is a star

topology where the transmitter nanomachines will transmit information to the receiver,

which in turn collects and performs the classification.

P4. (Chapter 7) M. T. Barros, S. Balasubramaniam, B. Jennings, Y. Koucheryavy, Adaptive

Transmission Protocol for Molecular Communications in Cellular Tissues. In: The

IEEE Conference on Communication (ICC 2014), 2014, Sydney, Australia.

Summary: This article integrated the inference technique for the tissue deformation to

adaptively change the time-slots for bit transmission between the nanomachines using

Ca2+ signalling. The results showed that the adaptive transmission protocol was able

to accurately infer the type of compression and when the time-slots for bit transmission

is changed, this improved the end-to-end data rate for a single-link communication

network compared to static time-slots.

Submitted Articles:
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Table 3.1 Association between the research questions and publications.

Questions Publications
RQ1 P1
RQ2 P1 and P2
RQ3 P2 and P4
RQ4 P3
RQ5 P5

P5. (Chapter 8) M. T. Barros, S. Balasubramaniam, S. Dey. Set Point Regulation of

Astrocytes’ Intracellular Ca2+ Signalling in Tripartite Synapses. Submitted to IEEE

Transactions on Nanobioscience, January 2016.

Summary: Gliotransmitters found in the tripartite synapses are controlled by the

intracellular Ca2+ signalling of astrocytes (tripartite synapses is the three-way commu-

nication between two neurons and the astrocytes). The gliotransmitters have a huge

impact in the quality of synaptic transmission, and therefore, is linked to numerous

neurodegenerative diseases, including: Alzheimer’s, Parkinson’s, and Depression.

This usually result from the varying concentration of Ca2+ signalling between the

neurons and the astrocytes. The use of Ca2+ signalling in molecular communication

between neurons can also lead to neurodegenerative diseases due to the high concen-

tration required to maintain decent channel capacity. In order regulate the intracellular

Ca2+ signalling between the cells to a desired level, a feed-forward feedback control

mechanism was proposed in this article.

3.2 Thesis Contribution

In the following, a summary contribution for each publication is discussed with respect to

the research questions presented in Chapter 1. Table 3.1 presents a summary of publications

that correspond to each of the research questions.
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1. Contribution 1: Ca2+ signalling mathematical framework for molecular communica-

tion systems.

• P1 : A complete mathematical framework for Ca2+-signalling-based molecular

communication system was introduced in this paper. Three main extensions was

made to the Nakano model.

(a) 3D modelling : Nakano’s model was limited to a simple array of cells. An

extension was added to model 3D structure, and capturing realistic cellular

tissue dynamics. This allowed to infer more accurate information on the

performance of the Ca2+ signalling propagation both temporally and spatially

within the tissue.

(b) Gap junction stochastic model : Nakano’s model lacked the gap junctions

model between the cells. In the proposed framework, the stochastic gap junc-

tion model based on the work of Kilinc and Akan [104] was incorporated.

(c) Different tissue types : The framework incorporated three different tissue

types, and this includes smooth muscle cells (excitable), epithelium (non-

excitable) and astrocytes (hybrid). Excitable tissues are able to conduct

electrical current, while non-excitable tissue only rely on chemical reactions

as part of their communication. Hybrid tissues, on the other hand, are capable

of exhibiting both excitable and non-excitable properties. For each of the

tissue types their intracellular and intercellular Ca2+ signalling as well as

their different shapes and sizes were modelled.

By incorporating these extensions into the 3D model, allowed accurate charac-

terisation of the communication behaviour relating to the physical properties

and structures of the cells, and how this is controlled by the internal chemical

reactions. An interesting finding was observed using the information capacity

metric. System performance changes dramatically when the distance between the
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transmitter and receiver nanomachine is increased. As an example, smooth mus-

cle cells present the highest capacity values for short distance transmission while

it presents the lowest values for other distances. Diffusion properties once again

are the major factor of this behaviour, where the cell’s size is able to push large

quantity of ions into the immediate neigbouring cells but this dies dramatically

as the distance is increased.

The framework analyses the cell-cell diffusion that is affected by the size of the

cells, where the larger cells tend to diffuse less ions through the gap junctions

due to the amount of space. This in turn also affects the velocity of the ion

propagation through the gap junctions. The communication behaviour in 3D is

also related to the internal Ca2+ concentration that is regulated by the chemical

reactions inside the cell. By having different cell types incorporated into the

framework, the impact of different sequence in the chemical reactions allows an

accurate view of how the state of Ca2+ concentration within the cell affects the

diffusion to the neighbouring cells. The article also contributes in defining the

molecular delay and gain for the communication channel. Unlike electromagnetic-

based communication, the molecular delay is measured as the time taken for a

determined quantity of molecules to arrive at the receiver.

The analysis from the framework found that epithelial cells have the lowest delay

performance, and this is mainly due to their size compared to smooth muscle and

astrocyte cells. The comparative analysis from the framework also found that

the gain is influenced by longer distances in the cell’s connectivity within the

tissue. For this reason, the astrocyte cells that have long connectivity resulted in

the lowest channel gain.

This contribution addresses the research question RQ1.
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2. Contribution 2: Characterizing the impact of cell shapes and gap junctions on the

Ca2+-signalling-based molecular communication system

• P1 : As previously discussed, gap junctions have a combined impact on the

Ca2+ signalling communication performance with other physiological properties

such as: size of the cells, number of reactions and diffusion velocity. This

article answers this research question by modelling the different gap junction

closing/opening behaviour for each type of cell, and analysing the concentration

of ions that get diffused to the neighbouring cells. In the case of smooth muscle

cells, the gap junctions are constantly opened with respect to time. However,

the probability of the opening of gap junction in astrocytes is quite low leading

them to be kept closed more often. In the case of epithelial cells, a more dynamic

behaviour is observed where the gap junction performance is initially closed for

the first few seconds after the Ca2+ is stimulated, and appear to stay opened for a

very long period afterwards. Finally, different properties such as, permeability

and functional voltage are found to determine the gap junction behaviour.

• P2 : As mentioned previously, cellular tissue deformation has an effect on the

performance of the proposed Ca2+-signalling-based molecular communication

system. This article addresses this research question based on the following find-

ings: 1) Tissue compression increases Ca2+ ion flows. Under tissue compression,

the size of the cells are changed. For larger sizes, the Ca2+ ion flows are reduced

due to the inverse dependency between the diffusion velocity and the size of the

cells. 2) Tissue deformation increases the information capacity of the channel.

An analogy can be used to explain this result, which is based on the pipe-effect.

Under deformation, Ca2+ ions are directed to a perpendicular direction of the

compressed force. In our scenario, the receiver nanomachine is placed in the

perpendicular direction of the compression force. This effect leads to an increase
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of the incoming Ca2+ ions, which in turn increases the information capacity.

3) Time-slot length for bit transmission patterns are changed due to tissue de-

formation. The comparison between the performance of the time-slot length

between regular and deformed tissue showed different performance patterns.

Lower time-slot lengths led to higher information capacity when the cellular

tissue was compressed. This is also due to the pipe-effect described previously,

where the diffusion of Ca2+ ions will be forced to flow towards the receiver, and

minimising diffusions to other directions. This leads to less quantity of noise

within the channel, enabling the next bit to be transmitted with shorter waiting

periods. This will not be the case when the tissue is not compressed, since larger

quantity of noise will remain within the channel and affect the subsequent bit

transmissions.

This contribution addresses the research question RQ2.

3. Contribution 3: Modulation and transmission protocols for Ca2+-signalling-based

molecular communication system.

Biological systems suffer from molecular noise due to their inherent stochastic proper-

ties. Intercellular Ca2+ signalling is a chaotic process where constant random signalling

appears in the channel as part of the cell’s self-regulation process. This random sig-

nalling as well as the bit transmission contributes to a complex noise pattern within

the channel. In the following works presented in papers P2 and P4, development of

protocols to minimize noise as well as adaptation methods to the varying cellular tissue

structure is presented and discussed.

• P2 : Four different types of noise were found to exist in Ca2+-signalling-based

molecular communication system and this includes: source, system, destination

and reflection noise. Although the source noise presented the highest accumula-
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tive Ca2+ concentration when the waves (which represent the bits) are transmitted

in response to stimulation, the reflective noise affects the channel the most. This

is because of the direct connection between the cells that diffuses the Ca2+ ions,

leading to a reflective response of the waves that propagate back to the line-

of-sight path (the line-of-sight path is the shortest path of cells between the

transmitter and receiver nanomachines). This reflection interferes with the trans-

mission of the subsequent bits, reducing the overall data rate performance. Based

on this, communication-by-silence protocol was used to overcome the excessive

noise effects. Two protocols were proposed: Dynamic Time-Slot Configuration

with Silent Communication and Improved Dynamic Time-Slot Configuration with

Silent Communication (IDTC-SC). Both protocols uses a counting process be-

tween the start and stop bits for conveying information, where the transmitter and

receiver nanomachines are required to have synchronised clocks that counts the

value to be transmitted. Based on the analysis, the the IDTC-SC protocol resulted

in the highest data rate performance, and this was due to the incorporation of

the block code strategy. The block code strategy divides the streams of bits into

blocks that are separated by Block Transition Bit. By subdividing into smaller bit

trains during the transmission, led to a decrease in the average counting periods

of the clock for every transmission.

• P4 : Besides the excessive noise, another factor is the deformable shape of the

tissue that can affect the flow of ions. Based on the research results published

in (P2), it was observed that certain types of deformation can provide a positive

impact on the information capacity performance. To exploit this behaviour in

order to improve the overall performance of the system, an adaptive transmission

protocol was proposed where the time-slot length for each bit transmission would

adjust depending on the type of compression as well as the duration. In order to
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enable this adaptation, two steps are required. In the first step, the cellular tissue

deformation detection from P3 was used to infer the type of deformation. Once

this is known, the transmitter nanomachine will adjust the time-slot adaptively.

The results obtained showed that the proposed adaptive transmission protocol

was able to improve the information capacity performance when compared to

static time-slot configuration.

This contribution addresses the research question RQ3.

4. Contribution 4: Inference Process to detect cellular tissue deformation.

• P3 : This article answers this research question by proposing the Molecu-

lar Nanonetwork Inference Process, which is a technique that utilizies Ca2+-

signalling-based molecular communication and a simple machine learning tech-

nique to infer the state of compression of the tissue. The machine learning

algorithm employs a threshold-based classifier that identifies the threshold bound-

aries based on a training process. The inference/detection mechanism allows

the receiver nanomachine to determine: i) the type of tissue deformation; ii) the

amount of tissue deformation; iii) the amount of Ca2+ concentration emitted

from the transmitter nanomachine; and iv) the distance between transmitter and

receiver nanomachines. The Molecular Nanonetwork Inference Process reached

an average level of 80% percent accuracy. The application of this inference

process is for detection of diseases and other abnormality within the tissue (e.g.,

impairments in the calcium signalling process). For example, current mammog-

raphy techniques to examine breast cancer requires the patients to be exposed to

radiations in order to obtain images of the tumour cells [105]. However, exposing

the patients to frequent radiations is also dangerous and can lead to other forms

of cancer. Therefore, the proposed inference method can provide data from
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embedded nanomachines within the breast tissue that performs periodic sensing.

Based on the accuracy of the Molecular Nanonetwork Inference Process, the

detection of diseases can also obtain similar accuracy.

This contribution addresses the research question RQ4.

5. Contribution 5: Application of control theory to Ca2+-signalling-based molecular

communication system

• P5 : This article addresses this research question by proposing a feed-forward

feedback control model that is incorporated into the astrocytes to control the

Ca2+ signalling concentration in the tripartite synapse. In particular, the aim

is to maintain the concentration within the limits so that this doesn’t lead to

neurodegenerative diseases.

For the case of neurodegenerative diseases prevention, three regions for intracel-

lular Ca2+ concentration were defined: extreme high region, extreme low region,

and stable region. The extreme high region is any value higher than the maximum

Ca2+ concentration levels, while the extreme low region is any value lower than

the minimum Ca2+ concentration levels. The objective of using the control model

is to regulate the Ca2+ concentration in order to maintain stability within the

safe region. The feed-forward feedback control eliminated intracellular Ca2+

oscillation as well as maintained stable regulated Ca2+ concentration in the

stable region.

The applications of this feed-forward feedback control model is to possibly lower

the probability of neurodegenerative disease spreading when the Ca2+ signalling

is impaired. This takes a preventive measure and can slow the progression of

the disease, where engineered astrocytes with the control model will regulate the

quantity of Ca2+ concentration, which in turn will control the gliotransmitters
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between the cells. The implementation of the feed-forward feedback control

technique can be performed using IP3 insertion and extraction. While IP3

insertion can be straightforward, IP3 extraction can be realised using inhibitory

chemicals disabling the intercellular Ca2+ signalling.This article also showed how

the control model can enable molecular nanonetworks to be deployed into the

brain without leading to neurodegenerative diseases. This has not been previously

investigated, where integrating molecular communication nanonetworks into

the brain for sensing and monitoring may result in excessive Ca2+ emission.

However, the control model will ensure that the concentration are within the safe

limits while ensuring that the data rate is not compromised.

This contribution addresses the research question RQ5.
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Abstract—Calcium (Ca2+)-signaling-based molecular commu-
nication is a short-range communication process that diffuses and
propagates ions between the cells of a tissue. The communica-
tion process is initiated via stimulation and amplification of the
production of Ca2+ ions within a cell; these ions then diffuse
through a physical connection between cells called a gap junc-
tion. Ca2+ signaling can be found in different classes of cell. In
excitable cells, initiation of the Ca2+-signaling process is accom-
panied by an electrical component; for nonexcitable cell types,
the electrical component is absent; while hybrid cells exhibit both
behaviors. This paper provides a comparison and analysis of the
communication behavior in tissues comprised three specific cell
types that utilize Ca2+ signaling: epithelium cells (nonexcitable),
smooth muscle cells (excitable), and astrocytes (hybrid). The anal-
ysis focuses on spatiotemporal Ca2+ concentration dynamics and
how they are influenced by the intracellular signaling process, the
molecular diffusion delay, the gain and capacity of the commu-
nication channel, as well as intracellular signaling interference.
This analysis of the communication behavior in the context of
tissues provides insights useful for, inter alia, the design of nanoma-
chines that are situated within tissues and that use analysis of the
communication channel to infer tissue health.

Index Terms—Molecular communication, nanonetworks, Ca2+
signaling, information theory, cellular tissues.

I. INTRODUCTION

I N RECENT years, a growing research community has
formed around modelling biological communications at

the nanoscale, a research field referred to as Molecular
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Communication [1], [2], [3], [4], [5]. Modelling biological cells
and their interactions as a communication system can provide
opportunities in emerging applications of nanotechnology and
nanomedicine [6], [7]. Since the birth of this research field,
numerous biological components and processes have been ana-
lyzed for their suitability for realizing molecular communica-
tion systems, including: diffusion-based systems [8], [9], [10],
bacterial communication [11], FRET [12], [13] and neuronal
communication [14], [15].

A particular biological signaling process proposed as a basis
for molecular communication, one which is found in most
multi-cellular systems, is Calcium (Ca2+) signaling [16]. Ca2+
signaling is a short-range communication process commonly
used by cells within a tissue. The propagation of Ca2+ com-
prises two stages: intracellular and intercellular signaling.
Intracellular signaling results from internal stimulation that
leads to generation and/or amplification of cytosolic Ca2+
concentrations. Intercellular signaling involves propagation
of cytosolic Ca2+ throughout the cellular tissue. Diffusion of
Ca2+ ions is mediated through gates that connect two cytosolic
areas of the cells; these gates are termed Gap Junctions. Ca2+
signaling is exhibited by a number of different classes of
biological cells, but the properties and characteristics of these
cells (e.g., size, spatio-temporal signaling behavior, intracel-
lular signaling components) can vary significantly, resulting
in a significant impact on the behavior of Ca2+ propagation.
In this paper, we investigate three different types of cells in
order to study the communication characteristics within a three
dimensional cellular tissue; these are: excitable cells (specif-
ically smooth muscle cells), non-excitable cells (specifically
epithelial cells) and hybrid excitable and non-excitable cells
(specifically astrocytes).

The main contributions of the paper are:
• Communication Theoretic Analysis of Ca2+ signaling—

a comparative analysis of the end-to-end communication
system for the three different types of tissue. For each
tissue, we consider the differences in intra- and inter-
signaling process for Ca2+ stimulation and generation, as
well as the physiological differences in the cells, to ana-
lyze the spatio-temporal Ca2+ concentration dynamics,
molecular delay, channel gain, capacity and intracellu-
lar signaling interference. This analysis provides the first
comparative analysis of the impact of the cellular proper-
ties of different tissue types on the transmission of digital
bits using Ca2+ signaling through the tissue.

0090-6778 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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• Integrated Ca2+ Signaling 3D Tissue Model—we use
stochastic modelling to model the spatio-temporal
dynamics of Ca2+ signaling [17], presenting a sin-
gle stochastic mathematical framework by which three
dimensional cellular tissues communication of Ca2+ sig-
naling for the three cell types can be analyzed. Internal
cellular reactions are modeled as being triggered by an
stochastic algorithm, and this is coupled with intercellu-
lar diffusion process that is also stochastically scheduled.
The framework also integrates the opening/closing gap
junctions model of Kilinc and Akan [18]—it is this open-
ing/closing behavior that enables cell-cell communication
(intercellular communication).

A thorough understanding of the behavior of Ca2+ signaling
as an end-to-end communication system, to which the analysis
here contributes, will be an essential step towards enabling a
range of applications, including:

1) Communicating nanomachines: Understanding the com-
munication characteristics of Ca2+ signaling for each
type of cell can provide guidelines in designing nanoma-
chines that are able to control and stimulate the intra-
cellular signaling process for communication. Moreover,
this understanding will provide the basis for design of
nanonetworks with optimum communication behavior
embedded within a tissue;

2) Modeling diseases: Impairments in spatio-temporal
dynamic Ca2+ signaling may be indicative of numer-
ous diseases. These include cancer, Alzheimer’s, as well
as muscle diseases known as soft tissue diseases [19],
[20], [21]. Therefore, understanding communication char-
acteristics in different tissue conditions can lead to new
methodologies for early disease detection;

3) Development of intelligent drug delivery systems: New
drug delivery approaches can be optimized through
understanding the performance of Ca2+ signaling and
gap junction properties, so that optimal quantities of drug
molecules to diffuse to target sites can be determined for
therapy [7].

The paper is organized as follows. §II presents essential
background information about Ca2+ signaling as well as the
basic Ca2+ signaling-based molecular communication model.
§III, §IV and §V respectively present specializations of the
basic Ca2+ signaling-based molecular communication model
for excitable, non-excitable and hybrid cell types. §VI intro-
duces the gap junction model, whilst §VII presents the overall
mathematical framework. §VIII presents the end-to-end analy-
sis; finally, §IX concludes the paper.

II. BACKGROUND ON CA2+ SIGNALING

Intracellular Ca2+ signaling occurs in the following way: by
stimulating the IP3

1, bits are encoded through stimulation of
Ca2+ signals and released (Stimulation). At the same time, the
released IP3 also indirectly controls the influx of Ca2+ ions
to the endoplasmic reticulum and its storage in the cytosolic
area (Storage). Besides the stimulation process, certain cellular

1Inositol 1,4,5-trisphosphate (IP3) is a secondary message molecule that
travels through the cytosol and stimulates the release of Ca2+ from the
endoplasmic reticulum to the cytosol.

components are also capable of self-generating Ca2+ ions
(Amplification). Finally, exchange of Ca2+ ions is conducted
in two ways: cell-cell communication (Diffusion) and aleatory
exchange of Ca2+ to the extracellular space (Release) [22].

Intercellular Ca2+ signaling is central to various physiologi-
cal and regulatory purposes (e.g., cell growth and proliferation,
fertilization, muscle contraction, neuronal transmission, cellu-
lar motility and differentiation), and is initiated by IP3 stimu-
lation, or through hormonal or neurotransmitter signaling. This
biological communication platform is found in a variety of cell
types, including: glial or astrocytes [23], [24], neurons [25],
ephitelium [26], [27], endothelium [28], smooth muscle [29],
cardiomyocytes [30], hepatocytes [31], osteocytes [32], chon-
drocytes [33], kidney [34], mammary gland [35], mast [36],
pancreatic [37], and keratinocytes [38].

Goldbeter et al. [22] modelled the internal cellular regula-
tory system of Ca2+. Their model accurately describes internal
cellular reactions responsible for the production, storage and
release of Ca2+. This work originated a variety of models for
different types of tissues [39], [26], [27], [23], [24], [29], also
with different methodologies [40], [41], [42]. Ca2+ signaling
has also been analyzed from the perspective of communica-
tions, see for example [43], [44], [45]. Even though most
of these models are validated, they fail to present one or
more of the following characteristics: 1) gap junction cellu-
lar coupling; 2) analysis of communication characteristics in
three-dimensional tissues; 3) both inter and intracellular analy-
sis; or 4) comparison between tissue types. Moreover, another
problem is getting a closed form expression over distance and
time for the molecular propagation. This is due to the sum-over-
trips problem: the infinite number of trips taken from cell-cell
communication, as explored by Harris and Timofeeva [46]. The
model presented here addresses these deficiencies, providing a
comprehensive treatment of the behavior of intracellular and
intercellular Ca2+ signaling.

As described in the introduction, we have identified three cat-
egories for cells that communicate through Ca2+ signaling. We
define excitable cells as those that can be stimulated through
electrical current only, while non-excitable cells are stimu-
lated through chemical reactions only, and hybrid excitable
and non-excitable cells hold properties of both. Examples of
cells under each of these classifications include: smooth muscle
cells (excitable), epithelial cells (non-excitable) and astrocytes
(hybrid). These cell types typically present different character-
istics regarding structure, internal reactions, size, and location
within the human body. They are distributed throughout the
entire human body, but specific to different localities, as illus-
trated in Fig. 1. Their size varies between 0.5 µm to 50 µm
with very different shapes, e.g., smooth muscle cells present
a thin elongated elliptical shape, epithelial cells have a square
shape and astrocytes have a more complex branching structure.
Such cellular characteristics are further described in the follow-
ing sections, where we will compare and analyze their different
Ca2+ intracellular signaling properties.

In Fig. 1, the biological process is mapped to a commu-
nication system model—the Ca2+ ions release mechanism is
considered as the transmitter, the propagation of Ca2+ across
the tissue is considered as the channel, and finally the receiver
is represented as regions of cells where the Ca2+ concentration
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Fig. 1. Block diagram that outlines the Ca2+ signaling-based molecular com-
munication model. A Ca2+ release mechanism (transmitter (T x)) will lead to
propagation of ions inside the tissue (channel), where Ca2+ will be detected
by a group of cells at a certain distance (receiver (Rx)).The figure shows the
example locations of astrocytes, epithelium and smooth muscle cells, which
are explained in Sections III, IV and V. Intercellular communication is enabled
through the opening/closing of the gap junctions.

level are measured and analyzed. Cells are connected via gap
junctions, which once opened will allow the propagation of
Ca2+ ions from one cell to another. The different structural
properties that characterize the three studied cellular tissues are
also depicted in Fig. 1. Fig. 2 shows the block diagram of intra-
cellular Ca2+ signaling for the three selected cell types—five
common processes were found for all the cells, but the consid-
erable differences regarding the flows between blocks and their
intensity are the real focus of our analysis. These differences are
important for understanding the Ca2+ ion propagation across
the cellular tissue.

III. EXCITABLE CELLS—ARTERIAL SMOOTH

MUSCLE CELLS

In this section we present the model for the intracellular sig-
naling of smooth muscle cells. Smooth muscle is an involuntary
tissue comprised of thin, elongated muscle cells found along
the walls of hollow organs such as the digestive tract (lower
part of the esophagus, stomach and intestines), the bladder, the
uterus, and various ducts of glands and walls of blood vessels.
We focus our analysis on arterial smooth muscle cells, found in
the arteries of human circulatory system, where their contrac-
tion and relaxation is responsible for the regulation of blood
pressure and flow. A number of studies have found that smooth
muscle tissues are capable of propagating Ca2+ throughout
the tissue [29]—intercellular Ca2+ signaling in smooth muscle
cells helps in the arteries’ contractile state.

A model of Ca2+ oscillation in arterial smooth muscle cells
is found in [29], [47]; a visual illustration is provided in
Fig. 3. It models five pools of Ca2+ storage, including: the
cytosolic Ca2+ concentration (Cs) (Eq 1); the IP3 concentra-
tion (Is) (Eq 2); the sarcoplasmic Ca2+ concentration (Ss)

(Eq 3); the cell membrane potential (Vs) (Eq 4); and the open
state probability (�s) of Ca2+ activated potassium channels
(Eq 5). The dynamic changes in the pool concentration are
represented as:

dCs

dt
= υ1 − υ2 + υ3 − υ4 + υ5 − υ6 + υ7 (1)

d Is

dt
= υ8 + υ9 − υ10 (2)

d Ss

dt
= υ2 − υ1 − υ3 (3)

dVs

dt
= γ (−υ11 − υ12 − 2υ6 − υ7 − υ13) + � (4)

d�s

dt
= λ(� − �s) (5)

In the following, we are going to integrate the equations
above to include the internal cellular reactions, which are
illustrated in Fig. 3. The intracellular signaling process, upon
stimulation, is composed of multiple parallel and sequential
reactions. A main process that occurs internally is the Ca2+
regeneration υ1, also known as the Ca2+ Induced Ca2+ Release
(CICR), which is modelled as:

υ1 = �
S2

s

S2
s + s2

c

C4
s

C4
s + c4

c
(6)

in which � is the rate constant, sc is the half-point of the
� Ca2+ efflux sigmoidal and cc is the half-point of the rate
constant � activation sigmoidal.

Upon stimulation, the Ca2+ uptake from the sarcoplamic
reticulum υ2 is represented as:

υ2 = φ
C2

s

C2
s + c2

b

(7)

in which φ is the sarcoplasmic reticulum uptake rate constant
and cb is the half-point of the sarcoplasmic reticulum ATPase
activation sigmoidal. The leakage of Ca2+ from the sarcoplamic
reticulum is modelled by υ3 = L Ss , in which L is the Ca2+
leakage from the sarcoplamic reticulum constant.

The υ4 term models the Ca2+ extrusion from the arte-
rial smooth muscle cells by Ca2+-ATPase pumps, which are
responsible for the metabolism and energy management in
the cell:

υ4 = φc

(
1 + �s − vd

	d

)
(8)

in which φc is the rate constant, vd is the voltage dependence,
	d is the slope of voltage dependence of extrusion ATPase.

The generation of IP3, termed υ5, is modelled as:

υ5 = �
I 2
s

K 2
I + I 2

s

(9)

in which � is the half-saturation constant for agonist-dependent
Ca2+ entry and K 2

I is the rate of IP3 degradation.
The υ6 term models the Ca2+ influx through Voltage-

Operated Ca2+ Channel (VOCCS) channels:

υ6 = χC
�s − vC1

1 + e−[(�s−vC2)/	C ]
(10)
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Fig. 2. Block diagram of the intracellular Ca2+ signaling for Smooth Muscle cells, Epithelial cells and Astrocytes. The five main common blocks involved in this
process are: Stimulation, Amplification, Storage, Release and Diffusion. However, significant differences in terms of the contributing factors and the intensity of
the flows mean that the overall process behavior varies considerably. Correctly modelling these factors is essential to accurately characterize signal propagation
characteristics.

Fig. 3. The stages of the Ca2+ signaling process in Arterial Smooth Muscle
cells: The process starts with stimulation and production of Ca2+ from the
CICR and IP3 processes. Ca2+ is then amplified using mitochondria and sar-
coplasmic reticulum. Leakage of Ca2+ outwards into the cytosol is performed
by the Ca2+-ATPase and Potassium efflux. Leakage of Ca2+ inwards within the
cell is performed by VOCCS channels and by Na+/Ca2+ exchange. Finally, the
cytosolic Ca2+ ions are propagated throughout the cellular tissue via diffusion.

in which χC is the whole cell conductance, vC1 is the reversal
potential, vC2 is the half-point, and 	C is the maximum slope of
the VOCC activation sigmoidal.

The Na+/Ca2+ ratio exchange, termed υ7, is represented as:

υ7 = ϒ7
Cs

Cs + c7
(�s − vp) (11)

in which ϒ7 is the whole cell conductance, c7 is the half-
point for activation, and vp is the reversal potential for the
Na+/Ca2+ exchange.

The constant υ8 is the rate of PLC (Phosphoinositide phos-
pholipase C) activated by the receptor-ligand agonists, while
the term υ9, represented as:

υ9 = E
C2

s

K 2
C + C2

s

(12)

models the protein P LC − δ, in which E is the maximum rate
of P LC − δ and K 2

C is the half-saturation constant for Ca2+
activation of P LC − δ.

The term υ10 = K I Is , models IP3 degradation. The term υ11
models the Na+-K+-ATPase, which is another internal cellular
regulation process. The υ12 models the chloride channel and is
represented as:

υ12 = ϒ12(�s − vh) (13)

in which ϒh is the whole cell conductance for Cl− current and
vh is the reversal potential for K+.

Potassium K+ efflux in the cytosol is modelled by:

υ13 = ϒ13Ws(�s − vK ) (14)

in which ϒ13 is the whole cell conductance for K+ efflux and
vK is the reversal potential for K+.

One property of the smooth muscle cells is the ability to
conduct electrical current. This is added to the model with the
electrical coupling among cells as is expressed as:

� = −g
∑

j

(�s − � j ) (15)

in which g is the homo-cellular electrical coupling coefficient
and j is the index for the number of neighbouring cells. The K+
channel activation is performed through both Ca2+ propagation
and electrical voltage, and is represented as:

� = (Cs + cw)2

(Cs + cw)2 + ηe−[(�s−vc3)/	K ]
(16)

in which cw is the translation factor for Ca2+ dependence of
KCa channel activation sigmoidal, η is the translation factor for
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Fig. 4. The stages of the Ca2+ signaling process in the epithelial cells. The
process starts from the stimulation and extracellular leakage of Ca2+ ions into
the cytosol. This is followed by the transport of the Ca2+ ions from the cellular
store (or cytosolic space) to the endoplasmic reticulum. After the transport,
the endoplasmic reticulum releases the Ca2+ ions into the cytosol, where the
release will also include the leakage of Ca2+ ions. Lastly, the Ca2+ ions are
transported from the cytosol to the extracellular space.

membrane potential dependence of KCa channel activation sig-
moidal, VC3 is the half-point for the KCa channel activation
sigmoidal and 	K is the maximum slope of the KCa activation
sigmoidal.

IV. NON-EXCITABLE CELLS—EPITHELIAL CELLS

Epithelial cells are one of the most basic type of cells
found in animal tissue; they are responsible for a wide set
of tasks, including secretion, selective absorption, protection,
transcellular transport and detection of sensation. Epithelial
cells can be found throughout the body, covering both exter-
nal surfaces (endothelium [28]) and internal organs (kidney
cells [34], hepatocytes [31] and pancreatic cells [37]). One
interesting characteristic is their tightly packed structure, with
almost no intercellular space. Epithelial cells come in a vari-
ety of geometrical shapes, including square-shape—referred
to as simple cuboidal epithelial cells—which is the structure
we consider in our analysis. In vitro and in vivo experiments,
like those reported in [26], [27], have investigated the spatial-
temporal dynamics of intercellular Ca2+ signaling in this type
of cell.

The model proposed by Goldbeter et al. [22] is used for
modeling Ca2+ signaling [48] in epithelial cells; Fig. 4 pro-
vides a visual presentation of the model. Equations (17) and
(18) describe the behavior of the cytosolic Ca2+ concentration
(Ce), as well as the secondary Ca2+ pool concentration (Ee)
[22]. These equation show how the Ca2+ oscillations result
from a simple regenerative process that requires a secondary
pool for system equilibrium. The secondary pool generally is
used for Ca2+ regeneration, however, it has also other functions
including protein transport. In epithelial cells, the secondary
pool is usually the endoplasmic reticulum. The primary pool
has an influx magnitude v1� , where � represents the satu-
ration function of the receptors and v1 represents the rate of
Ca2+ release. The components of the equations as well as
their roles, illustrated in Fig. 4, include: 1) v0: Ca2+ leakage

from the extracellular space into the cellular cytosol; 2) v2:
transport of Ca2+ ions from the cellular cytosol to the endo-
plasmic reticulum, defined by (19); 3) v3: release of Ca2+ from
the cellular endoplasmic reticulum into the cytosol, defined by
(20); 4) k f Ee: Ca2+ leakage from the endoplasmic reticulum
to the cytosol; 5) kCe: transport of Ca2+ ions from the cytosol
to the extracellular space. The cytosolic Ca2+ concentration
(Ce), as well as the secondary Ca2+ pool concentration (Ee)
is represented as:

dCe

dt
= ν0 + ν1� − ν2 + ν3 + k f Ee − kCe (17)

d Ee

dt
= ν2 − ν3 − k f Ee (18)

However, before the Ca2+ ions are diffused to the neigh-
bouring cells, the ions will first need to be activated through
the IP3 receptors, which is an internal cellular secondary chan-
nel that leads to self-amplification. This process will increase
the cytosolic Ca2+ concentration to be ready for diffusion.
The following equations represent the Ca2+ self-amplification
mechanism from the Ca2+ pool due to the activation of the IP3
receptors:

ν2 = VM2
Cn

e

kn
2 + Cn

e
(19)

ν3 = VM3
Em

e

km
R + Em

e
.

C p
e

k p
A + C p

e
(20)

where: VM2 and VM3 are the rate constants; k2, kR and kA are
the threshold constants; and n, m and p are the Hill coeffi-
cients [22], which are used to quantify cooperative binding—
meaning the interaction of one or more molecules into a binding
structure.

V. HYBRID CELLS—ASTROCYTES

Astrocytes are a star-shaped form of Glia cells, responsible
for a wide range of complex and important functions relating
to maintenance of the health of the central nervous system.
These functions include primary roles in synaptic transmis-
sion and information processing by neural circuits. Specifically,
these non-neural cells in the brain are responsible for spatial
neuron support, neuron nutrients and oxygen supply, neuronal
isolation, pathogen destruction, as well as removal of dead neu-
rons. Astrocytes are the most abundant cells within the central
nervous system [49]. They can be found in the spinal cord
as well as the brain, where they are responsible for commu-
nication with both excitable and non-excitable cells. Studies
have shown that astrocytes propagate intercellular Ca2+ sig-
nals over relatively long distances in response to stimulation
[23], [24].

In this section we introduce a model describing Ca2+ oscil-
lations in astrocytes that was proposed by Lavrentovich and
Hemkin [50]; this model is visualized in Fig. 5. The model is
in accordance with experimental observation [50]. Similar to
the smooth muscle excitable cells, there are Ca2+ pool stor-
age models, which includes: Ca2+ concentration in the cytosol
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Fig. 5. The stages of the Ca2+ signaling process in astrocytes. After stimu-
lation, IP3 is produced by the PLC protein (Phosphoinositide phospholipase
C), which leads to the increase of the internal Ca2+ concentration. This is
because we use the isoform PLC, which is correlated with the internal cytosolic
Ca2+ level. This internal concentration is then amplified using the endoplasmic
reticulum. Diffusion of Ca2+ ions through the cellular tissue then occurs.

(Ca) (Eq. 21); Ca2+ concentration in the endoplasmic reticulum
(Ea) (Eq. 22); and IP3 concentration (Ia) (Eq. 23). They are
represented by the following equations:

dCa

dt
= σ0 − κoCa + σ1 − σ2 + κ f (Ea − Ca) (21)

d Ea

dt
= σ2 − σ1 − κ f (Ea − Ca) (22)

d Ia

dt
= σ3 − κd Ia (23)

where σ0 is the flow of Ca2+ from the extracellular space into
the cytosol2, κoCa is the rate of Ca2+ efflux from the cytosol
to the extracellular space, κ f (Ea − Ca) is the leak flux from
the endoplasmic reticulum into the cytosol and κd Ia is the
degradation of IP3.

The σ1 term (Eq. 24), models the Ca2+ flux from the endo-
plasmic reticulum to the cytosol via IP3 stimulation. In common
with excitable and non-excitable cells, this mechanism directly
affects the cytosolic concentration of Ca2+. It is represented as:

σ1 = 4�M3
κn

C1Cn
a

(Cn
a + κn

C1)(C
n
a + κn

C2)

· I m
a

κm
I + I m

a
(Ea − Ca) (24)

where �m3 is the maximum flux value of Ca2+ into the cytosol,
κn

C1 and κn
C2 are the activating and inhibiting variables for the

IP3 and the m and n are the Hill coefficients.
The efflux of Ca2+ from the sarco(endo)plasmic reticulum to

the endoplasmic reticulum is modelled as σ2:

σ2 = �M2
C2

a

κ2
2 + C2

a

(25)

2This term can be extended into a voltage dependent term, called voltage-
gated Ca2+ channels, which was further studied in [51].

Fig. 6. Side view from a gap junction gate. The intercellular tight junc-
tion (2nm) separates the two neighbouring cells, which are connected via
gap junctions. This enables the Ca2+ influx and efflux through the cellular
membranes.

Fig. 7. Top view of the gap junctions. A single gap junction gate is referred to as
the connexon, which is formed by six proteins called connexin. These gates have
two states: high conductance state and a low conductance state—equivalently
to the opened or closed status of the junction.

where �M2 is the maximum flux of Ca2+ in this process.
Finally, σ3 describes IP3 generation by the Phosphoinositide
phospholipase C (PLC) protein:

σ3 = �p
C2

a

κ2
p + C2

a
(26)

where �p is the maximum flux of Ca2+ in this process, and p
is the Hill coefficient.

VI. MODELING GAP JUNCTION BEHAVIOR

In intercellular communication Ca2+ ions are propagated
through cellular tissues via a physical gate that connects the
cytosolic areas of two neighbourings cells; these gates are
called Gap Junctions. Fig. 6 shows how gap junctions connect
two cytosols. The gap junctions are composed of two con-
nexons, one in each connecting cell, which is formed by six
proteins called connexins—as shown in Fig. 7.

Gap junctions are found in many animal cellular tissues
with varying configurations. The distribution of the connexins
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per cell has a fundamental impact on the diffusion behavior.
Changes in those characteristics may lead to different types of
diseases, including cancer, cardiac ischemia and cardiac hyper-
trophy [52]. Given this, control of gap junction behavior is
a possible tool for drug delivery systems and disease treat-
ment. Cellular growth is directly involved with gap junction
control: regulatory growth signals are transmitted through gap
junctions, and decreased communication capacity may lead to
uncontrolled growth in extreme cases, as in cancer [53]. Studies
have shown how communication capacity can control growth,
in which connexin genes were transfected into tumorigenic cell
lines [54]. Ca2+ intercellular signaling plays two fundamental
roles in influencing the gap junctions channels. It not only acti-
vates the gap junction channel, with intercellular oscillations,
but Ca2+ can also be transferred to a neighbour cell by diffu-
sion. Here we focus only on the diffusion process of the Ca2+
ions through the junction.

Intercellular diffusion only occurs when both connexons are
opened at the same time. We present in this section a stochastic
model that models when both gates are opened in each cell.
According to the selected cell types studied in this paper, we
identified two different types of connexins: Cx43 for astrocytes
and smooth muscle cells and Cx45 for epithelial cells.

A stochastic model of gap junction behavior was intro-
duced by Baigent et al. [55] and first studied for molecular
communication by Kilinc and Akan [18]. The model con-
siders voltage-sensitive gap junctions which are assumed to
have two states of conductance for each connexin: an open
state with high conductance and a closed state with low con-
ductance as illustrated in Fig. 7. Based on this, we consider
four basic combination of states from each connexin of the
connexon:

• State HH: Both gates are in a high conductance state. This
probability is denoted by pH H ;

• State HL: One gate is in a high conductance state and the
other is in a low conductance state. This probability is
denoted by pH L ;

• State LH: One gate is in a low conductance state and the
other is in a high conductance state. This probability is
denoted by pL H ;

• State LL: Both gates are in a low conductance state. This
probability is denoted by pL L .

Experimental validation of the model indicated that the
L L state appears to present very low occurrence rates [56],
thus we neglect that state here. Thus, the probabilities should
follow:

pH H + pH L + pL H = 1 (27)

Moreover, pH H , pH L and pL H are interrelated as follows:

dpH L

dt
= β1(ϑ j ) × pH H − α1(ϑ j ) × pL H (28)

dpL H

dt
= β2(ϑ j ) × pH H − α2(ϑ j ) × pH L (29)

where the control of the gap junctions permeability is medi-
ated through the potential difference of the membrane of two

TABLE I
EXPERIMENTAL VARIABLE VALUES FOR CX43 AND CX45 WITH THREE

DIFFERENT TYPES OF CELLS: SMOOTH MUSCLE CELLS, EPITHELIUM

AND ASTROCYTES [55] [57] [58] [59]

Fig. 8. Probability values of states pH H , pH L and pL H for (a) astrocyte tis-
sues, (b) epithelium tissues, and (c) smooth muscle cells. Two different gap
junctions are analyzed: Cx43 for (a) and (c); and Cx45 for (b). All parameter
values used for these calculations are listed in Table I.

adjacent cells (ϑ j ), the gate opening rate is α and gate clos-
ing rate is β. The terms α1(ϑ j ), α2(ϑ j ), β1(ϑ j ) and β2(ϑ j ) are
defined as:

α1(ϑ j ) =λe−Aα(ϑ j −ϑ0) (30)

α2(ϑ j ) =λeAα(ϑ j +ϑ0) (31)

β1(ϑ j ) =λeAβ(ϑ j −ϑ0) (32)

β2(ϑ j ) =λe−Aβ(ϑ j +ϑ0) (33)

where ϑ0 is the junctional voltage at which the opening and
closing rates of the gap junctions have the same common value
λ, and Aα and Aβ are constants that indicate the sensitivity of a
gap junction to the junctional voltage.

For our analysis we used experimental data from the liter-
ature [55], [57], [58], [59] for both types of connexin (Cx43
and Cx45) to solve the equations presented in this section; the
parameter values used are listed in Table I. We can observe the
stochastic behavior of the gap junctions opening and closing for
the three cell types in Fig. 8. We assume that the initial probabil-
ity values are the same for all variables. All the results present
different probability distribution for the two types of gap junc-
tions. Since the opening and closing probabilities of the gap
junctions are different for the different cellular tissue types, we
expect different patterns of Ca2+ propagation (due also to the
impact of different internal cellular properties).
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TABLE II
SIMULATION PARAMETERS FOR ASTROCYTES [50]

TABLE III
SIMULATION PARAMETERS FOR EPITHELIAL CELLS [22]

VII. INTEGRATED CA2+ SIGNALING 3D TISSUE MODEL

Intracellular Ca2+ signaling models were presented in §III,
§IV and §V for the smooth muscle cells, epithelial cells and
astrocytes, respectively. §VI discussed the closing and opening
behavior of the gap junctions that will influence intercellular
Ca2+ diffusion. In this section, a single mathematical frame-
work groups the aforementioned models alongside diffusion
and 3D cellular tissue modelling. Both intracellular and inter-
cellular signaling are modelled together in this framework.
Spatio-temporal dynamics can be studied across a 3D cellular
tissue with an in-depth analysis, correlating phenomenona and
variables at different scales. We divide the description in two
parts: first we discuss 3D modelling of the cellular tissues, then
we discuss the stochastic model for the scheduling of reactions
within individual cells. This framework is an extension of the
models presented by Nakano and Liu [60] and our own previous
work [61], [62], [63].

A. 3D Modelling of Cellular Tissue Structure

We consider a cellular tissue space (S) composed of I ×
J × K cells (c), where ci, j,k (i = 1 . . . I ; j = 1, . . . J and

TABLE IV
SIMULATION PARAMETERS FOR SMOOTH MUSCLE CELLS [47]

k = 1, . . . K ) denotes an arbitrary cell in the tissue. The cells
are connected with a maximum of six neighboring cells. In the
case of the excitable and non-excitable cells, the organization
of the cells is assumed to be a layered lattice. However, for
astrocytes, the organization is going to depend on the type of
topology connection. We use simple regular connection to per-
fectly match our lattice model, that is based on the study of
astrocytes topologies [64].

Consider that each cell contains a set of internal reactions of
P1 and P2 pools as depicted in Fig. 9. Each reaction and pool
for a specific cell type were defined in §III, §IV and §V for
the three cell classes. The stochastic solver computes the val-
ues of each pool over time, selecting and executing scheduled
reactions. The pool will be negatively or positively affected by
a constant α when a certain reaction is executed.

Modelling diffusion in a cellular tissue area captures the
temporal-spatial dynamics of intercellular Ca2+ signaling. We
use Ca2+ concentration difference to model this temporal-
spatial characteristic, as follows [60]:

Z�(i, j, k, n, m, l) = D

v
(|Zn,m,l − Zi, j,k |) × p(.) (34)

where n ∈ (i − 1, i + 1), m ∈ ( j − 1, j + 1), l ∈ (k − 1, k +
1), D is the diffusion coefficient, v is the volume of the cell, and
Z� is the difference in Ca2+ concentration between the cells.
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Fig. 9. Depiction of a three-layered cellular tissue, where each layer contains
an array of cells. Both the reactions within cells and the diffusion process to
neighbouring cells are shown.

p(.) is the probability of the gap junction opening and clos-
ing. Based on §VI, we define three different diffusion reactions
for each cellular connection. Such reactions are the multiplica-
tion of the probabilities (pH H , pH L and pL H ) with the regular
cell-to-cell diffusion probability.

B. Stochastic Solver

We present in this section a stochastic solver, which deter-
mines the quantity of each pool over time. At each time step,
the Gillespie algorithm [65] is executed to select a random cell
and a random internal reaction of that cell based on probability
P(r j , τt ) (Eq. 38), also scheduling a time step (t) to each one
of them.

The process of executing one of the distinct reactions in R
requires a scheduling process divided in two phases—selecting
a reaction and selecting a time step. Each reaction is allocated a
reaction constant (ar ). Considering that α0 is the summation of
all ar in R, the next reaction chosen ru will be:

ru = MAX

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ar j

α0
= ar j

|R|∑
j=1

ar j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, u ∈ N, u ∈ R (35)

which follows the roulette wheel selection process, which
selects the events based on their probability values. However,
u must satisfy the following restriction:

u−1∑
j=1

αr j

α0
< ρ2 ≤

u∑
j=1

αr j

α0
(36)

in which ρ2 is a uniform random variable with values in the
range (0,1).

At each time step (t), a time lapse (τt ) is derived based on α0,
and is represented as:

α0 · τt = ln
1

ρ1
(37)

in which ρ1 is a uniform random variable with values in the

range (0,1). This process ends when
|T |∑
i=0

τi < tθ , where T is the

set of t and tθ is the maximum simulation time.
The effect of executing a reaction is basically changing the

values of the pools. According to the differential equation in
hand, a constant will change the value of the pool accord-
ing to the positive or negative effect of the executed reaction.
The probability of selecting a reaction (P(r j , τt )) is defined as
follows:

P(r j , τt )dt = αr j e
−α0τt dt (38)

The P(r j , τt ) favours a cell ci, j,k with a high value in its pool.
Consequently, a high quantity of Ca2+ will lead to diffusion,
which will model the propagation of the molecules across the
cellular space.

VIII. END-TO-END COMMUNICATION ANALYSIS

We now present an end-to-end analysis of the biological
Ca2+ signaling process. As discussed in §II, the biological pro-
cess was mapped into a communication system with the inten-
tion to provide a greater understanding of those tissue types
using communication and information theory tools. We divide
our analysis into five different parts: spatio-temporal Ca2+ con-
centration dynamics, end-to-end molecular delay, channel gain,
information capacity, and intracellular signaling interference.

For all the results presented here we assume the transmitter
(T x) is positioned at the center of the cellular tissue, and the
receiver (Rx) is positioned in the same layer but at a certain
distance away (Dx) from the T x , where Dx is the number of
cells between the T x and the Rx . A comparison of the actual
size of the three different cell types we consider is shown in
Fig. 11. Also, all used parameters values are found in Tables II,
III and IV.

A. Spatio-Temporal Ca2+ Concentration Dynamics

The Ca2+ concentration levels can be analyzed through heat
maps, giving insights into spatio-temporal molecular propaga-
tion patterns. Fig. 10 presents a heat map graph of a 3 x (10 x l)
x (20 x l) (µm) cellular space, where l is the length of each cell,
as shown in Fig. 11. The stimulation produces an oscillation of
the Ca2+ concentration levels, which are depicted on the right
hand side in Fig. 10.

Regarding the oscillation of Ca2+ concentration levels, the
three tissues present different oscillation frequency values.
Based on experimental data [29], [22], [50], the astrocytes have
the lowest frequency ( f = 0.1 Hz), while the smooth muscle
cells ( f = 0.5 Hz) and epithelial cells ( f = 1 Hz) have the
higher frequencies. An interesting observation is the highest
values for Ca2+ concentration levels reached in each tissue.

67



TAYNNAN BARROS et al.: COMPARATIVE END-TO-END ANALYSIS OF Ca2+- SIGNALING-BASED MOLECULAR COMMUNICATION 5137

Fig. 10. The Ca2+ concentration heat maps (left) and Ca2+ oscillation for a single cell (right). The Rx concentration is 500nM , Dx is 8 cells, and the oscillation
values are: Astrocytes ( f = 0.1 Hz ), smooth muscle cells ( f = 0.5 Hz ) and epithelial ( f = 1 Hz ).

Fig. 11. Comparison between the size of an epithelial, smooth muscle, and
astrocyte cell.

The epithelium has the highest value (Z = 1 µM), followed
by smooth muscle cells (Z = 0.8 µM) and astrocytes (Z =
0.6 µM). These tissues present naturally different diffusion
properties, which are expressed into the diffusion coefficient
(D). Intuitively, higher values of the diffusion coefficients lead
to higher diffusion rates.

Observing the Ca2+ concentration levels alone in Fig. 10,
a difference in patterns and values can be seen. In smooth
muscle cells, the propagation of Ca2+ is limited to short µm
distance. For the epithelium tissue, Ca2+ travels much faster.
This difference in behavior can be explained from Eq. 34, in

which the tissue diffusion coefficients alongside with the cell
volume and the gap junctions’ opening probability will dictate
the diffusion probability. Even though the coefficient of dif-
fusion is higher for smooth muscle cell (D = 250 (µm2/s)),
their volume (v = 8000 µm3) will decrease the probability of
this reaction to occur. Epithelial cells (D = 10 (µm2/s)), on
the other hand, are more likely to diffuse Ca2+ due to a lower
volume (v = 0.0125 µm3). And finally for astrocytes, it stands
somewhere between epithelial cells and smooth muscle cells,
in which coefficient of diffusion (D = 350 (µm2/s)) and their
volume (v = 141.13 µm3) present a fast propagation of Ca2+
even though the cell size (Fig. 11) is relatively large compared
to epithelial cells.

B. End-to-End Molecular Delay

One of the main characteristics of molecular communication
compared to electromagnetic communication is that molecules
are spatially transmitted at far slower rates. Thus, it is under-
standable that end-to-end delay will be a critical consideration.
To fairly measure the amount of molecules that are transmitted
as well as the time it travels over a certain distance of a cellular
tissue, we propose measuring the amount of Ca2+ transmitted
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Fig. 12. End-to-end delay as a function of the distance (number of cells) for a 3
x (3 x l) x (20 x l) (μm) cellular tissue for arterial smooth muscle cells (SMC),
epithelium cells (EPT) and astrocyte cells (AST). The oscillation frequency is
1k H z, for astrocytes with the T x concentration of 2000nM and the Rx con-
centration of 100000nM . For epithelial cells the T x concentration is 2000nM
and the Rx concentration is 10000nM , and for the smooth muscle cells, the T x
concentration is 2000nM and the Rx concentration is 1000nM .

compared to the Ca2+ received over time. In this way, delay
is appropriately measured for each bit, since the information
is encoded into molecular concentration of Ca2+ signals. The
proposed method is modelled by the following formula:∫ TR

0
CR(x, t) dt =

∫ TT

0
CT (t) dt, (39)

in which, CR is a function that returns the Ca2+ concentration
of a Rx at time t , CT returns the T x Ca2+ concentration at time
t , TT is the time slot length of the T x and TR is the time slot
length of the Rx . Here, the end-to-end delay will be TR .

Fig. 12 presents the end-to-end delay results for the three cel-
lular tissues. All three present a natural increase of the delay
over the distance. Epithelial cells present the lowest delay val-
ues, and this is due to the actual size of the cells as shown
in Fig. 11. Astrocytes have the medium delay performance
while the smooth muscle cells have the highest delay values.
In the case of the astrocytes, when the distance of the cells is
higher than three, the IP3 regeneration process from the astro-
cytes start producing and releasing Ca2+ ions and delays the
signal (Eqs 23 and 24). In the case of smooth muscle cells,
which also have have IP3 (Eq 9), its most frequent reaction are
involved with the electrical signal flow (Eqs 13, 14 and 15),
which contributes to the delayed performance.

C. End-to-End Channel Gain

Due to the equal diffusion direction probability (Eq. 34),
Ca2+ may not reach the Rx . Naturally, the amplitude of
the received signal is negatively affected by longer distances
between the T x and Rx . We analyze this phenomenon using
gain, which is calculated using the following formula [66]:

�( f ) = 10log

(
�T ( f )

�T 0( f )

)
, (40)

where �T ( f ) is the average peak concentration and �T 0( f ) is
the initial peak concentration.

Fig. 13 presents the results for the end-to-end channel gain
with respect to the distance (number of cells). The results con-
firm the intuition that longer distances affect negatively in the

Fig. 13. End-to-end gain as a function of the distance (number of cells) for a 3 x
(3 x l) x (20 x l) (µm) cellular tissue for arterial smooth muscle cells, epithelium
cells and astrocyte cells. The oscillation frequency is 1k H z, for astrocytes with
the T x concentration of 2000nM and the Rx concentration of 100000nM . For
epithelial cells the T x concentration is 2000nM and the Rx concentration is
10000nM , and for the smooth muscle cells, the T x concentration is 2000nM
and the Rx concentration is 1000nM .

performance of the system. Astrocytes present the lowest chan-
nel gain, which can be explained by their diffusion mechanism
(Eq 34)—their gap junctions are often opened, allowing a more
free diffusion, which in turn negatively affects the signal prop-
agation. Epithelial cells present the highest channel gain, and
this because of the higher number of cells that the signal prop-
agates through. Once again, based on Eq 34 the cell volume
will dictate the diffusion performance, and since epithelial have
the smallest size, the quantity of Ca2+ ion flow is the high-
est. Finally for smooth muscle cells, the slow decrease of Ca2+
after the stimulation (Eq 1) allows an intense propagation of
Ca2+ across the tissue, but since its size is not comparable to
the epithelium cell, the channel gain is not as high.

D. End-to-End Information Capacity

For the end-to-end information capacity analysis we define a
state transition process for the Rx and T x . For the T x (x) two
states are defined, the stimulation and release of Ca2+ (x = x1)
and silence (x = x0). This resembles the modulation process
used in On-Off Keying (OOK), where x = x1 when a bit 1 and
x = x0 for bit 0 is transmitted. For Rx , the amount of received
Ca2+ will change its state, transitioning from active (y = y1)
and inactive (y = y0). Based on a bit sequence B, the T x will
change its state accordingly and Rx infers the bit sequence.

Time steps are discretized into time-slots (of duration Tb) for
a single bit transmission, where we assume that both the Rx
and the T x are fully synchronized. The synchronization means
that the Rx as well as the T x will have the same clock tim-
ing, and will be aware of each bit transmission in the slot. This
assumption is common in the literature [60], [18], [67] and can
be justified because of the high values of Tb, which enables
a much higher synchronization time compared to conventional
communication systems.

Shannon’s entropy can be used in biological systems
to represent the information content (in bits) in various
processes [68]:

H(X) = −
P∑

x∈X

(x) log2 P(x) (41)
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Fig. 14. End-to-end capacity as a function of the distance (number of cells)
for a 3 x (3 x l) x (20 x l) (µm) cellular tissue, for the arterial smooth muscle,
epithelium and astrocytes cells. For astrocytes the T x concentration is 2000nM
and the Rx concentration is 100000nM . For epithelial cells, the T x concentra-
tion is 2000nM and the Rx concentration is 5000nM , and for smooth muscle
cells the T x concentration is 2000nM and the Rx concentration is 10000nM .

Also, conditional entropy is defined based on the joint
distribution and the conditional distribution of x and y:

H(X |Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x |y), (42)

where Y = {y0, y1}.
All the remaining probabilities are defined as follows:

p(x) = p(x = x0) + p(x = x1) (43)

p(y) = (p(y = y0) + p(y = y1)) ∗ p(y|x) (44)

p(y = y0|x = x0) = 1 − p(y = y1|x = x0) (45)

p(y = y0|x = x1) = 1 − p(y = y1|x = x1) (46)

The mutual information I (X; Y ) is used to determine the
mutual dependence between two variables, and is represented
through the following equation:

I (X; Y ) = H(X) − H(X |Y ),

=
∑
y∈Y

∑
x∈X

p(x)p(y|x) log2
p(y|x)

p(y)
(47)

In our analysis, we utilize the mutual information I (X; Y )

to analyze the quantity of information that is transmitted from
the T x to Rx . The probabilities p(x) and p(y) represents the
probability of each state on the T x or Rx , respectively. Since
Tb is relatively large, the effects of memory in the bit trans-
mission are minimized and we can assume that the channel is
memoryless. Capacity is then defined as:

C(X; Y ) = maxp(x) I (X; Y ) (48)

1) Capacity Versus Dx : The end-to-end capacity results
with respect to distance are presented in Fig. 14. In this analysis,
the activation of the receiver is mediated through two variables:
the receiver concentration and internal Ca2+ concentration. The
values for the receiver concentration are 10,000 nM for smooth
muscle cells, 5,000 nM for epithelial cells and 100,000 nM for
astrocytes. It is clear that for longer (more than four cells) dis-
tance all the three tissue types present poor capacity values with
astrocytes having the highest values followed by epithelial cells

Fig. 15. End-to-end capacity as a function of the distance (number of cells)
for a 3 x (3 x l) x (20 x l) (µm) cellular tissue with the time-slot length of
2, 5, 8, and 10 seconds. For astrocytes the T x concentration is 2000nM and
the Rx concentration is 100000nM . For epithelial cells the T x concentration is
2000nM and the Rx concentration is 10000nM , and for smooth muscle cells
the T x concentration is 2000nM and the Rx concentration is 1000nM .

and lastly, the smooth muscle cells. This is the same order to the
quantity of receiver concentration values, where more a sensi-
tive receiver can be activated by Ca2+ that travelled from longer
distances.

The level of Ca2+ ions in Fig. 10 is higher for shorter dis-
tances in smooth muscle cells compared to both epithelial cells
and astrocytes, which maintain a high capacity value until the
second cell. This is the outcome of the diffusion (Eq 34) pro-
cess and the internal Ca2+ regeneration processes that impacts
the receiver’s activation. In smooth muscle cells, diffusion is
not as efficient due to the cells volume and typically closed
gap junctions (Fig. 8), however its internal IP3 (Eq 9) allows a
maintenance of high concentration of Ca2+ for short distances.
Astrocytes have a very effective Ca2+ regeneration process due
to their IP3 (Eqs 23 and 24). However, their efficient diffu-
sion process maintains a low internal Ca2+ concentration, with
the fastest coefficient of diffusion (D = 350 (µm2/s)). This
causes a faster propagation of Ca2+ throughout the whole tis-
sue (Fig. 10), which also explains a close to flat performance.
Finally, for epithelial cells, with no IP3 regeneration, diffusion
plays a bigger role, where small volume with relatively fast
propagation speed allows fair performance over short distances.

2) Capacity Versus Tb: Fig. 15 presents the capacity ver-
sus Tb analysis with respect to varying distances. Changing the
Tb does not significantly impact on the distribution pattern of
the capacity over the distance. Therefore, the results are valid
with the same explanation used above. However, increasing the
Tb does increase the information capacity, especially if the tis-
sue has long delay values, e.g., for astrocytes or smooth muscle
cells. This happens because the effects of the transmitted bit
on the next one will be minimized, allowing conveying more
information for a longer time.

E. Intracellular Signaling Interference

Capacity is indirectly related to the cytosolic Ca2+ con-
centration in Rx . However, Ca2+ concentration at the Rx
is not only generated due to transmission. Even though the
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Fig. 16. Total interference of the three different tissues for a 3 x (3 x l) x
(20 x l) (µm) cellular space. Transmission of a single pulse with Tb as 10 s.
For astocytes (a) the T x concentration is 2000nM and the Rx concentration is
100000nM . For epithelial cells (b) the T x concentration is 2000nM and the Rx
concentration is 10000nM . And for smooth muscle cells (c) T x concentration
is 2000nM and the Rx concentration is 1000nM .

concentration due to transmission is higher than the concentra-
tion in steady state, internal cellular reactions can interfere with
the reception of information encoded into the propagated Ca2+
concentration—this effect is called intracellular signaling inter-
ference. Such interference can occur differently in each tissue
type because Ca2+ oscillations are regulated differently.

In Fig. 16, we show the interference concentration in the Rx
and the probability of interference. The probability is computed
as the frequency of interference over the set of reactions inside
the tissue. The scenario is the same used in the previous section,
where a pulse is transmitted with a certain Tb. For epithelial
cells and for smooth muscle cells, intracellular signaling inter-
ference is decreased over distance. However, the opposite is
found with astrocytes. The reason for this is the lack of Ca2+
ions at further distance, which activates the regulatory regener-
ation of Ca2+ due to IP3 increase (Eqs 23 and 24) and this is
followed by a direct response from the secondary pool of the
cell (Eq 22).

The IP3 is necessary for Ca2+ regeneration, which unfor-
tunately in this case leads to higher interference. Experiments
have shown that certain types of proteins can inhibit the prop-
agation of IP3, which is ideal for decreasing the intracellular
interference. On the other hand, in smooth muscle cells, the IP3
regulation is not as frequent compared to astrocytes, where the
transmission of electrical current plays the major role (Eqs 13,
14 and 15). Finally for epithelial cells, there is no IP3 mecha-
nism, and therefore Ca2+ is only regenerated by the secondary
pool at lower levels (Eq 18).

IX. CONCLUSIONS

The emergence of molecular communication has attracted
communication engineers to hypothesize communication sys-
tems utilizing biological components. In particular, a number
of proposals for molecular communication are based on uti-
lizing existing natural biological communication processes to
encode information for transmission. One such process is Ca2+
signaling, which is found in a range of cell types within the

human body. Although the natural short range communication
of Ca2+ signaling makes it ideal for molecular communica-
tion, there has been no work to date that has investigated the
impact that different types of cells have on the Ca2+ signaling
performance. In this paper we investigated three different types
of cells from a three-dimensional tissue perspective: excitable
cells (smooth muscle cells), non-excitable cells (epithelial cells)
and hybrid cells (astrocytes). Using the intracellular signal-
ing behavior, intercellular signaling behavior, as well as the
gap junction behavior, we outlined an integrated mathematical
model for analysis of end-to-end communication behavior in a
3D tissue.

Using our model we investigated spatio-temporal Ca2+ con-
centration dynamics, molecular delay, channel gain, informa-
tion capacity and intracellular signaling interference within
the three tissue types. Our results suggest that the complex
intracellular behavior, as well as the varying gap junction
behavior, and size and structure of connections between the
cells can impact on the communication performance differ-
ently. We believe that our findings could benefit molecular
communication researchers when designing nanomachines or
artificial nanonetworks. At the same time, the breakdown of
the intercellular and intracellular signaling may also bene-
fit biotechnologists to understand the breakdown of the Ca2+
signaling process in diseased cells. This could be through mon-
itoring the performance of the channel capacity, delay, gain, as
well as quantity of interference within the tissue. This would
enable new opportunities for targetted drug delivery at the
nanoscale.
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Abstract—Molecular communications is a new paradigm that
enables nanomachines to communicate within a biological environ-
ment. One form of molecular communications is calcium (Ca2+ )
signaling, which occurs naturally in living biological cells. Ca2+

signaling enables cells in a tightly packed tissue structure to com-
municate at short ranges with neighboring cells. The achievable
mutual information of Ca2+ signaling between tissue embedded
nanomachines is investigated in this paper, focusing in particu-
lar on the impact that the deformation of the tissue structure has
on the communication channel. Based on this analysis, a number
of transmission protocols are proposed; nanomachines can uti-
lize these to communicate using Ca2+ signaling. These protocols
are static time-slot configuration, dynamic time-slot configuration,
dynamic time-slot configuration with silent communication, and im-
proved dynamic time-slot configuration with silent communication
(IDTC-SC). The results of a simulation study show that IDTC-SC
provides the maximum data rate when tissues experience frequent
deformation.

Index Terms—Calcium signaling, deformable tissue, molecular
communications, transmission protocols.

I. INTRODUCTION

THE ongoing development of sophisticated nanomachines
is having a profound impact on a number of industries,

including healthcare, biotechnology, and the military. While the
size of the nanomachines has led to a number of important
benefits, this has been accompanied by certain issues, notably
their limited processing capabilities and functionality. In recent
years, nano communications has emerged as a possible solu-
tion to enhance the functionality provided by nanomachines,
in particular by interconnecting devices into nanonetworks
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[1]–[3]. Two forms of nano communications have been ex-
plored: electromagnetic nano communications [4], [5] and
molecular communications [6]–[9]. Here, we focus on the lat-
ter. In molecular communications, information is represented
by molecules that are transported between communicating peers
via a pure biological process.

In recent years, researchers have investigated and proposed
numerous techniques for molecular communications; these
techniques can be broadly classified as being passive or active.
Passive molecular communications uses diffusion to propagate
information molecules from the transmitter to the receiver. Tech-
niques include free-diffusion systems [10]–[12] and calcium
(Ca2+ ) signaling [13], [14]. In contrast, active molecular com-
munications techniques involve an external entity carrying the
information molecules to their destination. Techniques include
the use of a cytoskeleton [15], membrane nanotubes [16], cat-
alytic nanomotors [17], [18], and bacterial nanonetworks [19],
[20]. In this paper, we investigate the Ca2+ signaling passive
technique.

Although the Ca2+ -signaling-based molecular communica-
tions has been studied for 1-D arrays of cells [21], analysis
of its behavior in a cellular tissue environment has been lack-
ing. Of particular concern are the impact of recurrent signals
and the impact of tissue deformation. Recurrent signals occur
as Ca2+ ions are propagated through the cell gap junctions1—
this usually leads to spatially fluctuating noise in the molecular
communications channel. Tissue deformation can also lead to
impairments of the communication channel—cells have a de-
formable body that can take on various shapes under force, and,
since in a tissue cells are interconnected, changes in cell shape
will percolate through the entire tissue. As the cells change their
shape, this affects the quantity of Ca2+ that is diffused from the
cell and thus the overall channel mutual information.

We first investigate the behavior of the Ca2+ signaling in a
three-layered cellular tissue, analyzing the channel performance
under varying time-slot lengths for bit transmission, as well as
under varying concentration of the Ca2+ ions at the receiver and
transmitter. This is followed by an analysis of the channel per-
formance as the tissue undergoes deformation. Results from this
analysis are in turn utilized in the development of new transmis-
sion protocols for nanomachines that seek to maximize the chan-
nel performance as the tissue dynamically deforms. We propose

1Gap junctions refers to the cell-to-cell interconnections. The cellular cyto-
plasms of neighbor cells are directly connected through these junctions.

1536-125X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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four protocols: static time-slot configuration (STC), dynamic
time-slot configuration (DTC), dynamic time-slot configuration
with silent communication (DTC-SC), and improved dynamic
time-slot configuration with silent communication (IDTC-SC).
For STC, the time slots for a bit transmission are static. How-
ever, in the case of DTC, the time slots are dynamically assigned
depending on the state of tissue deformation. For DTC-SC, com-
munication through silence is introduced, wherein start and stop
bits are transmitted to convey specific information between the
transmitter and receiver nanomachine. The last protocol, IDTC-
SC, seeks to improve on DTC-SC by incorporating message
block subdivision. We compare the four protocols through an-
alytical modeling, evaluating the impact on data rate (DR) as
we vary the time-slot lengths, degree of tissue deformation, and
information bits. Our results indicate that IDTC-SC improves
the DR dramatically in comparison to the other three protocols.

This paper is organized as follows. Section II presents the ba-
sic model for Ca2+ signaling and its use in molecular commu-
nications. Section III presents our tissue model and the analysis
of the behavior of Ca2+ signaling in a three-layered tissue struc-
ture. Section IV evaluates the signaling behavior under varying
tissue deformations, while Section V presents an analysis on
the types of noise that can occur in deformed and regular tissue
structures. Section VI presents the four different transmission
protocols that could be utilized in deformable tissue structures.
Finally, Section VII concludes this paper.

II. CALCIUM-BASED MOLECULAR COMMUNICATIONS

This section provides the theoretical background of Ca2+

signaling in a single cell. This will be followed by a description
of the molecular communications system model that utilizes
Ca2+ signaling between the cells in the tissue, as well as the
simulation model that is used throughout the paper.

A. Calcium Signaling Analytical Model

Goldbeter et al. [22] developed an analytical model of Ca2+

signaling formulated as a set of differential equations. Equa-
tions (1) and (2) describe the behavior of the cytosolic Ca2+

concentration (Z), as well as the Ca2+ pool concentration (Y )
[22]. This pool has an influx magnitude v1β, where β repre-
sents the saturation function of the receptors and v1 represents
the rate of Ca2+ release. The components of the equations as
well as their roles, illustrated in Fig. 1, include: 1) v0 : Ca2+

leakage from the extracellular space into the cellular cytosol;
2) v2 : transport of Ca2+ ions from the cellular cytosol to the
endoplasmatic reticulum, define by (3); 3) v3 : release of Ca2+

from the cellular endoplasmatic reticulum into the cytosol; 4)
kf Y : Ca2+ leakage from the endoplasmatic reticulum to the
cytosol; and 5) kZ: transport of Ca2+ ions from the cytosol to
the extracellular space

dZ

dt
= v0 + v1β − v2 + v3 + kf Y − kZ (1)

dY

dt
= v2 − v3 − kf Y. (2)

Fig. 1. Stages of the Ca2+ signaling process: (1) Process starts from the
stimulation and extracellular leakage of Ca2+ ions into the cytosol. (2) Transport
the Ca2+ ions from the cellular store (or cytosolic space) to the endoplasmic
reticulum. (3) Release of Ca2+ ions from the endoplasmic reticulum into the
cytosol, where the release will also include the leakage of Ca2+ ions (4). Lastly,
(5) Ca2+ ions are transported from the cytosol to the extracellular space.

However, before the Ca2+ ions are diffused to the neighbor-
ing cells, the ions will first need to be activated through the
IP3 receptors, which is an internal cellular secondary channel
that leads to self-amplification. This process will increase the cy-
tosolic Ca2+ concentration to be ready for diffusion. The follow-
ing equations represent the Ca2+ self-amplification mechanism
from the Ca2+ pool due to the activation of the IP3 receptors

v2 = VM 2
Zn

Kn
2 + Zn

(3)

v3 = VM 3
Y m

Km
R + Y m

.
Zp

Kp
A + Zp

(4)

where VM 2 and VM 3 are the rate constants; K2 , KR, and KA are
the threshold constants; and n, m, and p are the Hill coefficients
[22].

B. Molecular Communications Utilizing Calcium Signaling

The molecular communications model that utilizes Ca2+ sig-
naling is illustrated in Fig. 2. The original model for a digital
molecular communications system in a single array of cells was
proposed by Nakano and Liu [21]. However, in this paper, we
extend this model to a multilayered cellular tissue, as illustrated
in Fig. 3. The model consists of a transmitter nanomachine Tx,
relay cells, and a receiver nanomachine Rx. The bit transmis-
sion starts when the Ca2+ ions are stimulated at the Tx, which
will eventually lead to its release to the neighboring cells. The
quantity of Ca2+ ions that are released to the neighboring cells
will be βv1 . The relay cells will in turn propagate the Ca2+
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Fig. 2. Utilization of Ca2+ signaling for molecular communications in a
tissue. Our scenario application assumes that nanomachines (receiver and trans-
mitter) are embedded in the cells and are able to stimulate the Ca2+ ions for
signaling. This model is introduced by Nakano and Liu [21].

Fig. 3. Depiction of a three-layered cellular tissue, where each layer contains
an array of cells. Both the reactions within cells and the diffusion process to
neighboring cells are shown.

signal toward the receiver nanomachine. To extend the model
in [21], we need to account for the diffusion of Ca2+ molecules
into all of a cell’s neighbors. For a tissue that consists of a
matrix of I × J cells, where ci,j (i = 1 . . . I and j = 1, . . . J)
denotes an arbitrary cell in the tissue, a concentration difference
is expressed as [21]

ZDiff =
D

l2
(Z(ci ′,j ′) − Z(ci,j )) (5)

where ci,j and ci ′,j ′ are neighboring cells, D is the diffusion
coefficient, l is the length of the cell, and ZDiff is the difference
in Ca2+ concentration between the cells.

In the receiver Rx, the detection of the Ca2+ ions will depend
on the activation process. The following equation describes the
receiver activation process:

ka
Zq

Kq + Zq
(6)

where ka , K, and q are, respectively, the maximum receiver
activation rate, the saturation constant for the cytosolic Ca2+

concentration, and the Hill coefficient. The transition between
the inactive to the active state is dependent on the binding of the
q molecules of Ca2+ ions.

C. Simulation Model

We simulate the Ca2+ signaling in a multilayer cellular tissue
using the model specified above through a series of time steps.
At each step, our simulator executes a Gillespie algorithm [23]
to select a random cell and randomly select an internal reaction
of that cell based on probability PR . The PR is uniformly dis-
tributed over the sum of all values of ZDiff . Therefore, PR favors
a cell ci,j with a high quantity of Ca2+ that is ready to diffuse
to its neighbors. Once the cell ci,j is selected, one of the 12
reaction processes will be randomly selected and executed. The
end of each reaction process will update the concentration of the
free cytosolic Ca2+ ions (Zi,j ), the Ca2+ ions within the endo-
plasmic reticulum (Yi,j ), the number of molecules detected at
the destination as well as the probabilities of all other reactions.

The simulation time steps are discretized into time slots for
a single bit transmission, where we assume that both the Rx
and the Tx are fully synchronized. The synchronization means
that the Rx as well as the Tx will have the same clock timing
and will be aware of each bit transmission in the slot. The
modulation process used in our simulation model is based on
ON–OFF Keying, where the Tx stimulates Ca2+ when a bit 1
is to be sent or emits nothing for bit 0. We also assume that
there is equal probability for each bit to be transmitted. For each
simulation run at the beginning of each time slot, the Tx will
alternate its state based on the previous state, starting with no
emission of Ca2+ , and subsequently producing a sequence of 0
and 1 s . This process will continue repeatedly until the end of
the simulation. The tissue of cells is 40 µm in length with each
cell’s diameter set to 0.5 µm [24], which is roughly the size
and the shape of a typical epithelial mammalian cell (therefore,
there are 80 cells/layer of the tissue). In our simulation scenario,
the Tx is positioned at the center of the 2-D cellular tissue, and
the receiver is positioned in the same layer but at a certain
distance Dx away from the Tx. In line with [21], we used the
following values for the model parameters: v0 = 1 (µM/s), v1

= 100 (1/s), Z = 100 (nM), k = 4.2 (1/s), kf = 1 (1/s), VM 2 =
50 (µM/s), VM 3 = 500 (µM/s), K2 = 1 (µM), KR = 2 (µm),
KA = 0.9 (µM), m = n = 2, p = 4, D = 10 (µm2 /s) l = 0.5
(µm), ka = 2.5 (µM/s), K = 0.6 (nm), q = 4, kia = 0.5 (µM/s),
W = 500 (nM).

III. MUTUAL INFORMATION ON A

CALCIUM-SIGNALING-BASED MOLECULAR COMMUNICATIONS

By considering a multilayer cellular tissue, we can better
analyze the communications performance between two given
endpoints in the tissue, taking account of the impact that noise
resulting from neighboring cell layers may have on the commu-
nications channel. Using results generated with our simulator,
we now describe the use of mutual information I(X;Y ) to
analyze the quantity of information transmitted between the Tx
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Fig. 4. I(X;Y) (in bits) for both the three and single layered (3L and 1L)
cellular tissue as a function of the cell length. This also includes varying the
distance between the Tx and the Rx between 0 and 8 µm.

(X) and Rx (Y ). The mutual information can be represented
through the following equations:

I(X;Y ) =
∑

y∈Y

∑

x∈X

p(x)p(y |x) log2

p(y |x)

p(y)
(7)

p(x) = P (x = x0 ∧ x = x1) (8)

p(y) = P (y = y0 ∧ y = y1) ∗ p(y/x) (9)

p(y = y0 |x = x0) = 1 − p(y = y1 |x = x0) (10)

p(y = y0 |x = x1) = 1 − p(y = y1 |x = x1). (11)

Probabilities p(x) and p(y) represent the internal cellular
states of the Tx and the Rx, respectively. Both the Tx and the Rx
will have two states: 0 or 1. On the sender side, state 1 implies
the release of the Ca2+ ions, and state 0 otherwise. In the Tx side,
state 1 implies the reception of molecules which activates the
Rx, and state 0 otherwise. In the simulations, the Tx transmits
sequences of 0’s and 1’s serially. The Rx state is determined
based on the signals received. If what is received is noise, then
the state is 0 and if the signal is a considerable amount of Ca2+ ,
the state is 1. The probabilities are calculated at the end of the
simulation.

Fig. 4 presents the mutual information I(X;Y ) comparison
between the single and three layer cellular tissue cases as the
distance Dx between the transmitter nanomachine Tx and the
receiver nanomachine Rx is varied. It also shows the impact
of varying the length (diameter) of the cells that make up the
path between the Tx and Rx—changes in a cell’s length impact
on the number of reactions inside that cell, leading to varying
Ca2+ diffusion levels. As shown in the figure, the quantity of
information decreases as the distance between the Tx and the
Rx increases. We can also observe that there is an optimum
point for single tissue layer with cell lengths between 0.6 and
0.7 µm and distance of 0 µm between the Tx and the Rx, which
shows the highest mutual information. On the other hand, for
the same Dx in the three-layered cellular tissue, we observe
that the quantity of information increases as the cell length

Fig. 5. Tissue structure under force.

increases up to 0.9 µm, falling down at higher lengths. However,
once we increase the Dx to 8 µm, the three-layered cellular
tissue has higher information transmitted compared to the single
layer tissue. This indicates that the quantity of recurrent Ca2+

ions (which are the ions that are diffused into the environment)
that are reflected from neighboring cells in the top and bottom
layer of the cellular tissue positively impacts on the end-to-end
quantity of information transmitted. The results demonstrate the
impact of Ca2+ diffusion on a lattice of cells compared to a 1-D
array of cells. In the subsequent sections, the reason for this
impact will be further discussed and analyzed.

IV. IMPACT OF TISSUE DEFORMATION

ON MUTUAL INFORMATION

In this section, we will first describe the background on the
tissue deformation, and this will be followed by a description of
its effect on the communication channel.

A. Tissue Deformation

A tissue has a flexible structure, which allows it to have dif-
ferent shapes when under the influence of force. Intuitively, we
would expect that such deformation will impact on the infor-
mation transmitted for molecular communications, which are
modeled and investigated in this section.

The impact of force applied to the tissue is investigated as fol-
lows. We first consider the impact of tissue deformation (under
increasing force) and its effect on the area of cells that are being
deformed—as illustrated in Fig. 5. As previously discussed, the
length of the cells on the path from the Tx to the Rx impacts on
the diffused quantity of Ca2+ . Since we generalize the shape of
each cell as a square, by applying a force at the middle of the
tissue, we can assume that the cells will change their shape into
approximately a trapezium. The impact of this approximation
is quite low, since our model is based only on the length of the
cell and not in its shape. Based on the location that the force
is applied to the tissue, the cells in the center of the tissue will
have the largest increase in length, with the magnitude of this
increase falling off as the distance from the applied point of
force increases. This effect is illustrated in Fig. 5. Assuming
that the force is applied to the center of the tissue, we compute
the changes in the length of the other cells of the tissue; these
lengths are then used to determine the flow of Ca2+ using the
model described in Section II-A.

We apply simple concepts from geometry to calculate the
length of the cell. Our scenario in this paper is based on a single
type of compression, which is illustrated in Fig. 5. Since the
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Fig. 6. Impact of center cell deformation on the neighboring cell, where a
trapezium shape can be observed.

deformation of the cells is highly correlated and the origin of
deformation is at the center of the cellular tissue, we start by
calculating the length of the center cell in the tissue. The length
and height of each cell are denoted as l, and the length of the
central cell is denoted as lc . Based on a tissue with NL number of
layers and the compression distance (length of the deformation
of the tissue) of !, the value of lc is calculated as follows:

lc =
l2NL

lNL − 2!
. (12)

The effects of the deformation starting from the center cell
are illustrated in Fig. 6. During deformation, the area of the
cell does not change. All the cells are assumed to be in a 2-D
domain. Therefore, based on the calculation of lc , we are also
able to calculate the new height of the center cell α(c) = l2

lc
.

The height of the center cell will in turn provide a value for one
base of the trapezium-shaped cell, where the calculation for the
bottom base of the cells can be represented as

α(c − i) =
l2

lc
+

|z−(c−1)|∑

i=1

!
TL

(13)

where (c − i) represents the cell’s position along the tissue, and
TL represents the length of the tissue that is under deformation.
Equation (13) approximates the lower base of the trapezium-
shaped cell where the lower base α(c − i) is larger than the
higher base α(c) by a factor of !

TL
. Therefore, the bases of the

trapezium-shaped cell will slowly increase as the position of
the cell (c − i) increases outwards toward the tissue boundary.
Using the values of α(c) and α(c − i), we then calculate the
deformed length lc−i of cell (c − i), which is on the basis of the
area of a trapezium as follows:

lc−i =
2l2

α(c − i) + α(c)
. (14)

B. Comparative Analysis of Deformed and Regular
Cellular Tissue

We now build on the relationships that we have established
in the previous sections, using them to investigate the impact
that tissue deformation has on the end-to-end communication
channel. In particular, we investigate: 1) the quantity of noise
from the neighboring cells in the cellular tissue and its impact
on the communication between the Tx and Rx; and 2) the sys-
tem behavior when force is applied to the tissue and how the
deformation impacts on the Ca2+ signaling.

Fig. 7. Ca2+ ion flows as a function of Tx concentration for a three-layered
cellular tissue. The time-slot length is 10s and the Rx concentration is 500 nM.
(a) Regular tissue. (b) Deformed tissue.

Fig. 8. I(X;Y) as a function of the Tx concentration for a three-layered cellular
tissue with varying distances Dx between the Tx and the Rx. The time-slot length
is 10 s, the Tx concentration is 50 nM and the Rx concentration is 500 nM.
(a) Regular tissue. (b) Deformed tissue.

The first parameter considered in our analysis is the concen-
tration of Ca2+ information molecules that are emitted by the
Tx, which we refer to as the Tx concentration. Similarly, we also
evaluate the impact of varying the Rx concentration. One impor-
tant parameter of the system is the time period during which the
Tx emits Ca2+ ions, which we refer to as the time-slot length.

In each experiment, we executed ten simulation runs, where
we changed the random seed of each run to compute the 90%
confidence interval. Our analysis mainly concentrates on the
mutual information I(X;Y) for bits transmitted between the Tx
and the Rx.

1) Quantity of Ca2+ Ion Flows Between Cells: An impor-
tant factor in affecting the information transmitted through the
channel is the quantity of Ca2+ ion flows between the cells in
the tissue. As presented in the results (see Fig. 7), the quantity
of Ca2+ ion flows increases as we increase the concentration at
the Tx. However, we can see that the deformed tissue has a much
smaller quantity of flows compared to the regular tissue. This
is attributed to the varying size of the cells in different parts of
the tissue that are under compression. In certain regions, cells
will have varying sizes which lead to a lower quantity of Ca2+

ion efflux from the cells. The manner the tissue is deformed
contributes to this—in our experiments, the compression acts to
sometimes decrease the size of the distance between the Tx and
the Rx.

2) Sensitivity Analysis of Tx Concentration: Fig. 8 presents
the mutual information I(X;Y) comparison between a regular
and deformed tissue as function of Tx concentration for a three-
layered cellular tissue. In this analysis, the time-slot length of
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Fig. 9. I(X;Y) as a function of the Tx concentration for a three-layered cellular
tissue with varying Rx concentration. The time-slot length is 10 s and the Tx
concentration is 50 nM. (a) Regular tissue. (b) Deformed tissue.

Fig. 10. I(X;Y) as a function of the time-slot length for a three-layered cellular
tissue, with Rx concentration of 500 nM and the Tx concentration of 50 nM.
(a) Regular tissue. (b) Deformed tissue.

10 s and the Rx concentration of 500 nM are the fixed parame-
ters. As expected, the increase in distances between the Tx and
the Rx tends to decrease the number of bits transmitted. How-
ever, an interesting observation is the rise in mutual information
I(X;Y) once the tissue is deformed. We can attribute this to the
pipe-effect, which drives the Ca2+ ions to flow toward one spe-
cific direction. In particular, since the neighboring cells around
the Tx have smaller length, we can also assume minimum noise
will be contributed by those cells. Another interesting point is
the concentration value at the Tx, where we can see that at low
values our mutual information I(X;Y) is the highest.

3) Sensitivity Analysis of Rx Concentration: Fig. 9 presents
the mutual information of I(X;Y) analysis as we vary the quan-
tity of Ca2+ concentration at the Rx. For all the experiments,
we fixed the time-slot length at 10 s and the Tx concentration
at 50 nM. Similar to the variations in the Tx concentration,
we observe that increasing the distances also dramatically de-
creases I(X;Y). However, the difference is marginal as we vary
the concentration at the Rx. This could be due to the fact that
the sensitivity of the concentration at the Rx will not get further
stimulated when we fix the concentration from the Tx. Similar
to the results from the previous section, we can observe that the
mutual information increases as we compress the tissue, and this
is again due to the fact that there is confined physical channel
space to allow the ions to flow from the Tx to the Rx.

4) Sensitive Analysis of Tx Time-Slot Duration: We now in-
vestigate the impact that transmission time-slot duration will
have on the mutual information I(X;Y). From Fig. 10, we ob-
serve that the increase in time-slot length does not guarantee
an increase in the mutual information for the regular tissue,

Fig. 11. Spatial illustration of different types of noise: source noise (red),
destination noise (green), system noise (blue), and the recurrent noise (purple).
Direct pipe-effect for the cellular tissue is shown as the green border.

where we can see an optimal point when the time slot is 10s .
For the deformed tissue, we observe an increase in the mutual
information—due to the pipe-effect—which has a positive im-
pact for all the time-slot lengths in comparison to the regular
tissue structure. An interesting observation is the fact that a
smaller time-slot length results in higher mutual information.
This can be attributed to two factors: the physical compressed
channel of the tissue and the quantity of noise. As described
earlier, the compressed length of neighboring cells will lead to
lower diffusion of Ca2+ , which in turn leads to lower noise in
the environment. This is also coupled with the fact that there
will be less noise emitting from the cells of the higher and lower
layers. Therefore, there is a high correlation between the amount
of concentration, as well as the quantity of noise in the environ-
ment. This is particularly the case when the time-slot duration
is lower.

V. SPATIAL NOISE ANALYSIS

As discussed above, the performance of Ca2+ signaling
molecular communications is impacted by both the noise from
neighboring cells and tissue deformation under force. In the for-
mer case, the noise in the system results from the noise in the
form of leftover Ca2+ ions from a previous transmission. Due
to the spatial characteristic of the tissue and the mechanism of
Ca2+ stimulation from neighboring cells, we identify different
types of noise that impact on the channel, as illustrated in Fig. 11
and outlined as follows:

1) Recurrent noise: Since Ca2+ signaling is a cascading pro-
cess between neighboring cells, a stimulation of one cell
will lead to diffusive stimulation of other cells. Therefore,
after the refractory process from a cell emitting Ca2+ ions,
we find that this cell will get stimulated a bit later on due
to the recurrent Ca2+ signals that are reflected from the
cells on the boundary of the tissue. Refractory process is
a recovery time needed by the cells after the stimulation
and release of Ca2+ ions. As indicated in Fig. 11, this
noise affects the direct path between the Tx and the Rx.

2) Source noise: This noise is due to the recurrent Ca2+

signals that come from the cells surrounding the Tx.
3) Destination noise: This noise is due to the recurrent Ca2+

signals that come from the cells surrounding the Rx.
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Fig. 12. Noise concentration with respect to varying distances for a three-
layered cellular tissue. We include the comparison for the four identified types
of noise: source, destination, recurrent, and system. The time-slot length is 10 s,
Tx concentration is 50 nM, and the Rx concentration is 500 nM. (a) Regular
tissue. (b) Deformed tissue.

Fig. 13. Temporal analysis for the four noise types in a regular tissue. The
time-slot length is 10 s, Rx concentration is 500 nM, and Dx is 8 µm. (a) Tx
concentration = 10 nM. (b) Tx concentration = 100 nM.

Fig. 14. Temporal analysis for the four noise types in a deformed tissue. The
time-slot length is 10 s, Rx concentration is 500 nM, and Dx is 8 µm. (a) Tx
concentration = 10 nM. (b) Tx concentration = 100 nM.

4) System noise: Besides the noise resulting from the trans-
mission of bits from the Tx, there is also the system
noise—“regulatory” ions emitted from each cell as part
of their normal functioning. The concentration of Ca2+

ions for such system noise is usually a very small quantity
compared to the other types of noise.

The impact of each type of noise with respect to varying
distances for both the regular and deformed tissue is shown in
Fig. 12. The results show that different noise types have varying
impact on the channel in terms of concentration. The highest
concentration of noise is the source noise for both the regular and
deformed tissue. We note that the level of recurrent noise is much
lower in deformed tissue—due to the pipelining effect discussed
above. This explains the higher quantity of mutual information
during deformation compared to the regular tissue. Figs. 13 and
14 present the quantity of noise from a temporal perspective. We

can once again observe that the highest level of noise is from
the source noise and that there is an overall reduction in noise
for the deformed tissue compared to the regular tissue. We note
that the deformed tissue with the Tx concentration of 100 nM
shows the peak noise duration for approximately 10 s.

VI. TRANSMISSION PROTOCOLS

Our analysis to this point has shown that there are different
noise characteristics in the cellular tissue, and this is highly de-
pendent on the spatial structure of the tissue due to deformation,
time slots used for transmission, as well as the concentration
of the Ca2+ at the Tx. We have observed that the concentration at
the Rx does not dramatically change the mutual information for
the end-to-end channel. However, a major factor we have found
that impacts the mutual information is the time-slot duration
used for the Ca2+ stimulation, as evident from Fig. 10. We can
see that there are optimal time-slot durations and these differ be-
tween the regular and deformed tissues. Therefore, this presents
opportunities for the development of transmission protocols at
the Tx nanomachine to improve the channel DR, depending on
the compression state of the tissue. In this section, we propose
four transmission protocols: STC, DTC, DTC-SC, and IDTC-
SC. DR is the particular metric that we used to compare the
different protocols for our analysis.

A. Static Time-Slot Configuration

This is the simplest transmission protocol, where the time-
slot lengths are set to static values for each bit transmission. The
DR is represented as 1

Tb
, where Tb is the time-slot duration.

B. Dynamic Time-Slot Configuration

Given that the state of tissue deformation affects the optimum
time slot, the DTC protocol dynamically reconfigures the time-
slot duration depending on the deformation level of the tissue.
We assume that using this approach, the Tx nanomachine can
detect the quantity of source noise to infer the deformation level.
As shown in Fig. 12, the variation in the quantity of source
noise between the regular and deformed tissue is on the order of
two and a half times. Since we assume a three-layered cellular
tissue, the optimum time slots of 5 s(TBC ) and 10 s(TBR ) for
regular and deformed tissue, respectively, are used for the DTC.
For the total transmission duration ∆T , we assume that we know
the probability of compression P (c) (this probability refers to
the frequency of tissue compression). The DR for the DTC
protocol can, therefore, be represented as

DR =
1

∆TP (c)TBC + ∆T (1 − P (c))TBR
. (15)

C. Dynamic Time-Slot Configuration
With Silent Communication

Communication by silence has previously been investigated
in wireless sensor networks [25], and more recently in molec-
ular communications [26]. In the technique, the silence period
between successive signals is itself used to convey information.
A start signal is first transmitted from the Tx, and when this is
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Fig. 15. Illustration of the DTC-SC and the IDTC-SC Transmission Protocols.
(a) The DTC-SC transmission protocol. (b) The IDTC-SC transmission protocol.

received at the Rx, a counter is invoked. This counter will con-
tinue to count until a stop signal arrives at the Rx. This means
that only two signals will be required for the information trans-
mission. Therefore, Tb is only limited to the duration of the start
signal (the stop signal is not considered, since this is transmitted
in parallel to when the clock is running at the receiver). The
operation of DTC-SC is illustrated in Fig. 15. For n number
of bits to be transmitted, the DR for the DTC-SC protocol is
represented as (this equation is modified from [26])

DR =
n

TB + 2n −1
fc

(16)

where fc is the clock frequency of the counter at the receiver
nanomachine. As shown in the equation, the DR is dependent
on the duration of the time slot for transmitting the start signal
and the duration for the counting process at the receiver. Similar
to the DTC, Tb will depend on the state of the tissue, where TBC

is used when there is a deformation and TBR is used when the
tissue state is regular.

D. Improved Dynamic Time-Slot Configuration
With Silent Communication

IDTC-SC seeks to improve over the DTC-SC by first dividing
the information into blocks (see Fig. 15(b) for an illustration).
For each block, a transition bit is transmitted by the transmitter
to indicate transmission of a new block. Using this configuration
can provide further opportunity to reduce the number of clock
counts at the Rx, while ensuring that the DR is high. In order to
realize this, it will require that different signals are transmitted

TABLE I
PARAMETERS STANDARD VALUES

Variable Value

∆t 300 s
TB C 5 s
TB R 10 s
P (c) 0.5
Bs 2
fc 500 (Hz)
n 100

for the start and stop bit, as well as the block transition bit.
For this, we can send Ca2+ signals of different concentration,
where the receiver will be required to have the capability of
distinguishing the different signals. The DR for the IDTC-SC
protocol is represented as

DR =
n ∗ Bs

TB +
( n

B s )∗(2B s −1)

fc

. (17)

Similar to the DTC-SC, the value of the time slot Tb will be
either TBC or TBR depending on the state of the tissue. Bs is
the block size in number of bits. This protocol takes a hybrid
approach that combines signaling as well as counting at the Rx.
As illustrated in Fig. 15(b), sending the same digital bits as in
Fig. 15(a) in three blocks will only require each block to have a
small number of clock counts.

Fig. 16 presents numerical analysis of the four protocols. The
values of the system variables used are shown in Table I. In
Fig. 16(a), we analyze the DR for the different protocols as the
number of transmitted bits varies. We see that the increase in
the number of transmitted bits will lead to IDTC-SC having the
highest DR (the fc is set at 500 Hz). An interesting observation,
which is a general observation valid even for other communi-
cation systems, is the fact that DTC-SC does not perform as
well as the other protocols. The reason for this is because the
waiting time for the clock counting process at the receiver is
longer than transmitting bits in time slots using either DTC or
STC. However, the IDTC-SC integrates the two strategies and
is able to find the right balance where the counting process
for short blocks is faster than sending the bits in sequences of
time slots such as in DTC or STC. Therefore, the use of silence
in molecular communications is most ideal for super-slow net-
works, such as bacteria communication in [26]. In Fig. 16(b), we
compare the performance of the four transmission protocols as
we vary the duration of compression (the percentage indicates
the time that the tissue is under compression). The reason we see
that the IDTC-SC has the highest DR is because as we increase
the duration of compression, we minimize the quantity of noise,
as our previous analysis has shown. However, this also ensures
that each time slot will have shorter durations, and at the same
time minimizes the clock frequency for the Rx. Our confirma-
tion of the optimal time slot is once again shown in Fig. 16(c),
where we see that as we increase the time-slot lengths, the DR
starts to drop. Although the DR does decrease, we also once
again see that the IDTC-SC has a higher performance compared
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Fig. 16. Comparison analysis for the STC, DTC, DTC-SC, and the IDTC-SC transmission protocols, for (a) varying number of bits for transmission, (b) varying
the duration of compression in the tissue, (c) varying the time-slot length, and (d) varying the clock rate.

to the other protocols. In Fig. 16(d), we see that as the clock
frequency increases, this only impacts on the IDTC-SC. This
can be attributed to the shorter time-slot duration and higher
number of information blocks that can be transmitted in each
time slot.

VII. CONCLUSION

In this study, we analyze the use of Ca2+ signaling for molec-
ular communications in a cellular tissue environment. We first
analyze the natural properties of Ca2+ signaling in a three-
layered cellular tissue compared to a single layer, which has
been investigated previously. This was followed by an analysis
of a regular and deformed cellular tissue. Our analysis shows
that while concentration of Ca2+ at the transmitter and receiver
nanomachine does impact on the mutual information, an im-
portant parameter is the time-slot duration used for information
transmission. Since the structure of the tissue impacts on the
duration of the time slot that is used for the transmission, we
propose four protocols to improve the DR for Ca2+ -signaling-
based molecular communications. Our numerical analysis sug-
gests that the IDTC-SC protocol significantly outperforms the
other protocols in terms of DR as we vary the number of bits
for transmission, total transmission duration, and the quantity
of compression in the tissue deformation.
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Using Information Metrics and Molecular
Communication to Detect Cellular

Tissue Deformation
Michael Taynnan Barros , Student Member, IEEE, Sasitharan Balasubramaniam, Senior Member, IEEE, and

Brendan Jennings, Member, IEEE

Abstract—Calcium-signaling-based molecular communication
has been proposed as one form of communication for short range
transmission between nanomachines. This form of communi-
cation is naturally found within cellular tissues, where Ca
ions propagate and diffuse between cells. However, the naturally
flexible structure of cells usually leads to the cells dynamically
changing shape under strain. Since the interconnected cells form
the tissue, a change in shape of one cell will change the shape
of the neighboring cells and the tissue as a whole. This will in
turn dramatically impair the communication channel between the
nanomachines. We propose a process for nanomachines utilizing
Ca based molecular communication to infer and detect the
state of the tissue, which we term the Molecular Nanonetwork
Inference Process. The process employs a threshold based clas-
sifier that identifies its threshold boundaries based on a training
process. The inference/detection mechanism allows the destination
nanomachine to determine: i) the type of tissue deformation; ii)
the amount of tissue deformation; iii) the amount of Ca concen-
tration emitted from the source nanomachine; and iv) its distance
from the destination nanomachines. We evaluate the use of three
information metrics: mutual information, mutual information
with generalized entropy and information distance. Our analysis,
which is conducted on two different topologies, finds that mutual
information with generalized entropy provides the most accurate
inferencing/detection process, enabling the classifier to obtain
80% of accuracy on average.

Index Terms—Molecular communication, nanonetworks, cal-
cium signaling, information theory, tissue deformation.

I. INTRODUCTION

M OLECULAR COMMUNICATION is a new communi-
cation paradigm for nanoscale communication [1]–[3].

By enabling communication to be performed at the nanoscale
within a biological environment numerous novel applications
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can be developed to complement the already mature field of
nanotechnology. An obvious field of application is in health-
care, where more improved diagnostics and monitoring pro-
cesses can be achieved at fine granular scale and also at an
early stage. In recent years, numerous models have been pro-
posed for molecular communication, including diffusion-based
systems [4]–[6], bacteria nanonetworks [7], and Forster Reso-
nance Energy Transfer (FRET) [8], [9].
One particular form of diffusion-based molecular communi-

cation is through Calcium signaling (Ca ) [10]. Ca sig-
naling provides short-range communication between biological
cells, where information is encoded and modulated through the
concentration of Ca ions. Numerous research efforts have tar-
geted the use of Ca for molecular communication, in partic-
ular for nanomachines that may interface to tissues within or-
gans [11], [12].
While utilizing natural Ca signaling for communication

is appealing, there are numerous challenges. Firstly, Ca sig-
naling is a highly stochastic signaling process that involves a
number of chemical reactions that occur stochastically. Sec-
ondly, since Ca signaling is one common communication
mechanism in the tissue, the reliability of the signaling process
is highly reliant on the state of the physical tissue structure. Tis-
sues in their natural form have highly flexible structures that
can change and deform depending on various external forces,
which in turn could affect the Ca ions propagation. This latter
challenge is the motivation of this paper: we aim to develop
an approach that can enable the nanomachines embedded in a
tissue to infer the current state of the molecular nanonetwork.
The inferencing process, which is conducted by the destination
nanomachine, will infer the state of the tissue based on statistics
collected from communication between the different nanoma-
chines. These states may include i) the quantity of deforma-
tion, ii) type of deformation, iii) the concentration of the Ca
emitted from the nanomachines, as well as iv) the distances be-
tween the source and destination nanomachines. We propose a
Molecular Nanonetwork Inference Process, which uses in-
formation metrics in combination with threshold based classi-
fiers during the training phase to detect and infer the state of
the tissues. The three information metrics we evaluate are: mu-
tual information, mutual information with generalized entropy
and information distance. Initially we investigate the proper-
ties of these metrics for a single-hop communication between
the nanomachines, in order to determine the importance of the

1536-1241 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Illustration of tissue deformation: when localized force is applied to
cells this is propagated through the tissue so that all cells experience structural
changes. (a) No compression. (b) Dual compression.

data variance and its impact on inferencing accuracy. This is fol-
lowed by an analysis of the classifier for two different nanoma-
chine topologies that are embedded into a tissue.
This paper is organized as follows. Section II presents the

problem statement of tissue deformation and its impact on
molecular communication systems. Section III presents the
basic model for calcium signaling based molecular commu-
nication, which serves as the model used in our simulations.
Section IV presents our proposed classifier of channel state
information. Section V presents the three information met-
rics used in our proposed classifier. Section VI presents the
performance of the metrics over a single-hop molecular com-
munication system based on calcium signaling. Section VII
presents the accuracy analysis of the proposed approach for
two different topologies. Section VIII presents a discussion
about the nanomachines realization for future envisioned appli-
cations. Finally, Section IX concludes the paper.

II. PROBLEM STATEMENT

In this section we discuss the properties of tissue deformation,
and how this could impact on the Ca signaling within the
tissue.
Since the majority of tissue structures are constructed from

a tight formation of interconnected cells, a change in the struc-
ture of a cell could impact the tissue as a whole. The changes
in shapes of cells can largely be attributed to their structure and
internal composition. Fig. 1 illustrates an example of a tissue
undergoing structural change as a result of compression. Ex-
ample factors that can influence the cell shape changes includes
physical movement, chemotaxing cells or mitotic cleavage [13].
During mitotic cleavage, the stretching process of a cell will
compress the neighboring cells [14]. In [15], a study was con-
ducted on the deformation of cells resulting from the move-
ments in the joint’s cartilage. In particular, the focus of the study
was on the Tibiofemoral joint and its mechanical loading impact
on cells of the musculoskeletal system.
The deformation of the tissue can affect the performance of

molecular communication, in particular communication that is
performed through diffusion of molecules inside the cellular
tissue. Masselter and Speck [16] investigate how tissue defor-
mation spatially modulates angiogenic and angiogenesis sig-
nals. This is due to the physical forces applied to the developing

Fig. 2. Communication disruption due to tissue deformation, (a) normal tissue
structure, (b) double-sided compression, (c) single-sided compression and (d) S
shape deformation.

tissues. For example, during vascular development, the defor-
mation caused by such forces has a huge impact on the Ca
signaling and the overall behavior of the cell. Fig. 2 illustrates
an example of communication disruption that could occur due
to different types of tissue deformation, including: double-sided
tissue compression [Fig. 2(b)], single-sided tissue compression
[Fig. 2(c)] and compression in multiple spots, which we refer to
it as “S” shape deformation [Fig. 2(d)]. Since Ca signaling
diffuses the molecules between tightly packed cells within a
tissue, the communication capacity is largely dependent on the
spatial volume of the cells, which affects the process of in-
voking Ca signaling, as the signals are propagated through
the tissue. Therefore, any physical force that impacts on the spa-
tial volume, will in turn affect the communication capacity.

III. CALCIUM BASED MOLECULAR NANO NETWORK

In this section, we present the simulation model of the Ca
signaling process between the cells within the tissue that we
consider in our study. The Ca signaling process, illustrated
in Fig. 3, is conducted through diffusion of ions that are propa-
gated through the cell gap junctions. There are multiple complex
chemical reactions that occur in sequence and in parallel, where
the signaling process includes stimulation, storage, as well as
the release of Ca ions from the intracellular store. As the
Ca ions are diffused through the gap junction, the ions will
invoke the neighboring cell’s intracellular store, which in turns
leads to repeated signaling process that propagates to the neigh-
boring cells, known as intercellular signaling.

A. Calcium Signaling Analytical Model

Our simulation model of the Ca signaling process is based
on the analytical model proposed by Goldbeter et al. [17]. For
each cell, the (1) and (2) below describe the behavior of the cy-
tosolicCa concentration as well as the intracellular store
concentration . The components of the (1) and (2) are: 1) :
Ca leakage from the extracellular space into the cellular cy-
tosol; 2) : transport of Ca from the cellular cytosol to the
endoplasmic reticulum; 3) : release of Ca from the cellular
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Fig. 3. Illustration of the stimulation, storage, and release of ions in the Ca
signaling process, which gets diffused to the neighboring cells through the gap
junction.

endoplasmic reticulum into the cytosol; 4) : Ca leakage
from the endoplasmic reticulum to the cytosol; 5) : transport
of Ca from the cytosol to the extracellular space. At the same
time, the intracellular pool also has a magnitude for the influx

, where is the saturation function of the internal Ca re-
ceptors in the cell. Both equations represent the Ca behaviour
within the cell, where this leads to oscillations as they are dif-
fused between the cells.

(1)

(2)

However, before the Ca ions are diffused to the neigh-
boring cells, the ions will first need to be activated through the
IP receptors, where this activation will lead to self-amplifica-
tion. These processes are represented in (3) and (4).

(3)

(4)

where and are rate constants; and are
threshold constants; and and are the Hill coefficients.
Finally, the (5) represents the destination activation process

as it receives the Ca ions. For the destination nanomachine,
the transition between the inactive and active state is dependent
on the binding rate of the Ca ions, , which is represented
as:

(5)

where and are respectively, the maximum destination
activation rate, saturation constant for the cytosolic Ca con-
centration and the Hill coefficient.

B. Simulation of the Calcium Signaling Model

In order to simulate the Ca signaling for a cellular tissue,
we extended the original model in [18]. Fig. 4 depicts our model

Fig. 4. Illustration of a three-layered cellular tissue, where each layer contain
an array of cells. Both the reactions within the cells and the diffusion process to
the neighboring cells are shown.

for a cellular tissue.Wemodel the tissue as a 2D lattice structure,
where each cell invokes the (1)–(4) to determine the state of
the Ca ions as it propagates between the cells. We consider a
tissue as a matrix of cells. Let , where and

, denote an arbitrary cell in the tissue. Each cell
also maintains diffusion reactions, which are responsible for the
cell-to-cell propagation of Ca , and is represented as:

(6)

where is the diffusion
coefficient and is the length of the cell.
We assume that the nanomachines are embedded in the tissue

and are able to stimulate the diffusion of Ca ions for commu-
nication. We simulate the Ca signaling in the tissue by eval-
uating the equations presented above at discrete simulated time
steps. At each step, our simulator randomly selects a cell, where
a randomly selected reaction is executed, in line with the Gille-
spie algorithm [19]. The selection of the random cell is based on
a probability , which is uniformly distributed over the sum
of all values of . The favors a cell with a
high Ca concentration, in order to select the cell for diffusion
of Ca ions into the neighbouring cell. One of the internal re-
actions of the cell will be randomly executed once the cell
is selected. For each time step, the concentration of the free cy-
tosolic Ca ions , the Ca ions within the endoplasmic
reticulum , as well as the number of molecules detected
at the destination nanomachine are updated. When the diffusion
is triggered, we assume that the gap junctions are opened.
The communication process is based on the On-Off Keying

(OOK) modulation technique, where we assume that both the
source and destination nanomachines are synchronized. In the
OOK modulation technique, when a bit 1 is to be sent, the
nanomachine stimulates Ca of a particular concentration.
However, in the event a bit 0 is to be transmitted, the source
nanomachine will be silent for that time slot.
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Fig. 5. Flowchart of the Molecular Nanonetwork Inference Process.

The values for the parameters used for the simulation are
based on the values used in [18], which are as follows:
( m/s), (1/s), (nm), (1/s),
(1/s), ( m/s), ( m/s), ( m),

( m), ( m),
( m), ( m/s), (nm),
( m/s), ( m2/s), (nM).

IV. INFERRING TISSUE DEFORMATION WITH THE MOLECULAR
NANONETWORK INFERENCE PROCESS

As introduced earlier, we seek to have a destination nanoma-
chine collects information regarding the communication
between it and different source nanomachines , and ana-
lyze the data to infer the state of the molecular nanonetwork. In
Fig. 5, a flowchart describes the steps that are used in ourMolec-
ular Nanonetwork Inference Process. The three phases are the
statistical information calculation, then training, followed by
the classification. A single-hop communication system is set up
in order to collect information values in the statistical informa-
tion calculation. This information values are mainly based on
information theory metrics for communication systems evalu-
ation, or in short, information metrics. We explore three dif-
ferent information metrics: mutual information, mutual infor-
mation with generalized entropy and information distance. This
is responsible for tracking the differences in channel abnormali-
ties. Then, the data is statically treated and grouped into sample,
which are sent afterwards to the training phase. In this phase
threshold models are then developed based on the collected
samples, including: tissue deformation detection, type of defor-
mation, amount of deformation, Concentration and
distance . Only after that is the classification phase per-
formed, where it is possible to detect channel abnormalities on-
line. We now outline these three phases.

A. Statistical Information Calculations

In the statistical information calculation phase we use in-
formation metrics to process the collected measurement data,
which is converted into samples using statistical processing. In-
formation metrics are further explored in Section V. We assume

that for transmissions from a number of nanomachines, we
collect a set of information metric values. This is followed
by using the confidence intervals to statistically treat the data,
which can be represented as:

(7)

where is the mean of sampled values, is the standard
deviation over a set of values, where is the
confidence level, and finally is the standard normal table
value. All the threshold information, which are the confidence
intervals for all transmissions, will be converted into a sample.
In the case that we want to identify the type of deformation, we
need to train the model with a number of samples that is equal
to the number of deformation types.

B. Training Process

The training process involves determining the thresholds and
boundaries that are used for the classification of the collected
data. We define a decision function , which enables the
classifier to determine if the new collected data is placed in the
right category. The function is represented as:

(8)

where represents the new collected data.

C. Classification Process

Once the training process is completed, the next stage is the
classification process. Here, new information collected at the
destination will be compared to the threshold models that have
been developed previously. This model will have unique char-
acteristics that will be used to identify all listed channel state in-
formation that was introduced earlier. The classifier will be a set
of decision functions , whose cardinality will be equal to the
product of the number of samples and the number of nanoma-
chines in each sample. At the end of each transmission, the col-
lected data will be analyzed by the classifier, and in the event
that the function returns a non-negative value, this will indicate
as the correct inference.

V. INFORMATION METRICS

In this section, we will describe the three different informa-
tion metric algorithms that are used in our training process.
We use digital bit transmission with OOKmodulation, inves-

tigated in [18], [20], [21]. The transmission is based on the state
of the source nanomachine , where a bit one transmission
releases ions of a particular concentration in the channel

, while a bit zero results in no ion emission .
The same is for the destination nanomachine state , where
either it can be receiving ions representing bit 1
or bit 0 . The and are the set of states for both the
source and destination nanomachines.
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A. Mutual Information

Themutual information is used to determine themu-
tual dependence between two random variables, and is repre-
sented through the following equations:

(9)

(10)

In our analysis, we utilize the mutual information
to analyze the quantity of information that is transmitted from
a source nanomachine to a destination nanomachine. The prob-
abilities and represents the probability of each state
on the source nanomachine or the destination nanomachine,
respectively.

B. Mutual Information With Generalized Entropy

Another metric used in information theory to measure the un-
certainty over a random variable is the Generalized Entropy.
The difference in comparison to the Shannon entropy is an in-
creases in the number of dimensions for the data analysis. The
metric belongs to family of functions that quantifies the diver-
sity, uncertainty, and/or the randomness of a system, and it is
largely used to detect the distances between different probability
density functions. We then add this dimension to mutual infor-
mation The generalized entropy is defined as follows:

(11)

where are the probabilities of ,

(12)

When or the probabilities of are all
the same, we have the maximum information entropy which is
represented as follows:

(13)

which indicates high divergence between the probability density
functions.
When , the , as in (14), Generalized Entrophy

converges to the Shannon entropy:

(14)

We use generalized entropy in combination with the mutual
information (15), to amplify the values to different dimensions.
Basically, the usual mutual information formula is used but with
generalized entropy. In this way, we believe that the classifier
will detect the channel characteristics with more accuracy, since

this metric is highly recommended in detecting differences in
probability density functions.

(15)

C. Information Distance

Information distance is another metric that is used to mea-
sure the relationship between stochastic variables. This metric,
proposed by Bennett et al. [22], is commonly applied to pattern
recognition between different classes, which fits to our proposed
classifier. It provides a measure of the divergence between
and and is represented as:

(16)

We consider that the information distance is always nonneg-
ative with . Therefore, based on and , we
have the following equations:

(17)

(18)

which is also known as the Kullback-Leibler divergence [23],
[24].

VI. APPLICATION OF INFORMATION METRICS TO CALCIUM
SIGNALING BASED MOLECULAR COMMUNICATION

Using the simulation model described in Section III-B, we
now analyze the performance for the three different informa-
tion metrics in a single-hop nanonetwork embedded in a cellular
tissue. The objective of the analysis is to observe the pattern of
data collected from the molecular nanonetwork, in order to de-
termine the quantity of divergence and variance in the data that
can be used in the classification process.
We consider a subset of parameters from our model for the

analysis. The first parameter considered is the concentration of
the information molecules encoded in the Ca ions that are
emitted by the source nanomachine, which we refer to as the Tx
concentration. Also the variation of the distances Dx between
the Tx and the receiver (denoted Rx) is included in our analysis.
Another important parameter of the system is the time during
which the Tx releases the Ca ions, which we refer to as the
time-slot length. The tissue structure considered in our analysis
is a three layer lattice of cells that is 40 m long, with each
cell being 0.5 m long. In our simulation scenario the Tx is
positioned in the very center of the 2D cellular tissue lattice,
and the destination will be positioned in the same layer but with
varying distance apart. In each simulation, we executed ten runs
to compute the 90% confidence interval.

A. Mutual Information

In this subsection, we investigate the impact of different de-
formation types on the mutual information of the end-to-end
communication channel.

90



BARROS et al.: USING INFORMATION METRICS AND MOLECULAR COMMUNICATION TO DETECT CELLULAR TISSUE DEFORMATION 283

Fig. 6. Information rate as a function of the Tx concentration for a five-lay-
ered tissue of cell with varying distance Dx analysis. The time-slot length is 10
seconds, the Tx concentration is 50 the Rx concentration is 500 .
(a) Normal tissue. (b)Double-sided compression. (c) Single-sided compression.
(d) S shape compression.

Fig. 6 presents the mutual information comparison for the
tissue under no compression, as well as the three types of com-
pression presented in Fig. 2 (double-sided compression, single-
sided compression, and -shaped compression). The analysis
is with respect to the varying Tx concentration of a five-lay-
ered cellular tissue. In this analysis, the fixed parameters are the
time-slot length of 10 seconds, and the Rx concentration of 500

. An interesting observation in Fig. 6(a)/(b) is that as we
increase the distance , the mutual information starts
to decrease. However, the double-sided compression does have
a higher mutual information . The reason that the un-
compressed tissue has a lower mutual information is
because the Ca ions are subjected to freely move in a larger
area. However, once the compression occurs, this space is con-
fined leading to higher quantity of Ca reaching the destina-
tion. However, the single-sided compression and the shaped
compression has an opposite effect, where we see that the mu-
tual information increases as we increase the distance.
Once again this could be attributed to the nature of the compres-
sion, which could create a dedicated pipe to support directed
Ca ions flows between the source and destination nanoma-
chines. However, an interesting result is the identical mutual in-
formation for certain concentration and distance .
For example, in the case of no compression, there is negligible
difference for Tx concentration of 50 or 100 . Similarly,
for the single-sided and -shaped compression, there is negli-
gible difference in mutual information for the same Tx
concentration. Therefore, this presents a weakness in using mu-
tual information as a metric for classifying or determining the
quantity of concentration at the Tx.

B. Mutual Information With Generalized Entropy Metric

Fig. 7 presents the result of the mutual information
for a single-hop communication between a source and destina-
tion nanomachine in a five-layered tissue. In Fig. 7(a) we first
analyze the varying distances between the nanomachines

Fig. 7. Mutual Information with generalized entropy metric for a five-layered
tissue of cells with a single-hop transmission. The time-slot length is 10 seconds
and the Rx concentration is 500 . (a) Mutual information with respect to
varying distances between the nanomachines. The Tx concentration is fixed at
100 . (b) Mutual information with respect to varying source nanomachine
Ca concentration. The distance between the nanomachines is set at 4 m.

Fig. 8. Information Distance metric for a five-layered tissue of cells with
single-hop transmission. The time-slot length is 10 seconds and the Rx concen-
tration is 500 . (a) Information distance with respect to varying distances
between the nanomachines. The Tx concentration is fixed with 100 .
(b) Information distance with respect to varying source nanomachine Ca
concentration. The distance between the nanomachines is set at 4 m.

with respect to varying . In Fig. 7(b) we analyze the mutual in-
formation for different concentration as we increase
the value of . The results of both graphs shows that as we in-
crease the alpha value, we start to get higher divergence in the
information of the tissue state. This indicates that a higher ac-
curacy can be achieved as we increase the value of ; however,
this comes at the cost of increased computational complexity.

C. Information Distance

For the same number of layers (five) in the tissue, and also for
a single-hop analysis, the results for the information distance is
presented in Fig. 8. The results shows that information distance
converges after . This means that for , we are
able to obtain the highest divergence of data analysis. This pro-
vides an added benefit to our proposed application, where we
can encounter nanomachines that have limited processing capa-
bilities. Therefore, a classifier with the lowest possible value of
keeps the computational complexity low, an interesting fea-

ture for low-processing devices like nanomachines.

D. Variance Analysis of the Information Metrics

We now analyze and compare the variance of the different
information metrics. The variance provides an indication of the
threshold range, where a long range threshold provides the clas-
sifier with greater accuracy in inferring the state of the tissue.
First, in Fig. 9, we analyze the variance with respect to varying
the distance . As we can observe, information distance with
an leads to a reasonably high variance compared to
the generalized metric (including the generalized entropy with
a high value of ). This is due to the fact that when the is in-
creased, the difference between the different probability density
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Fig. 9. Variance analysis with respect to varying distance between nanomachines for a five-layered tissue of cells with a single-hop transmission. The time slot
length is set at 10 seconds, the Tx concentration is 50 , and the Rx concentration is 500 . (a) Normal tissue with no compression. (b) Tissue with one-side
compression. (c) Tissue with a S-type compression.

Fig. 10. Variance analysis with respect to varying source nanomachine Ca concentration for a five-layered tissue of cells with a single-hop transmission. The
time slot length is set at 10 seconds, the distance Dx is 2 m and the Rx concentration is 500 . (a) Normal tissue with no compression. (b) Tissue with
one-side compression. (c) Tissue with a S-type compression.

Fig. 11. Example of tissue deformation and its impact on the changes in the nanonetwork topologies. (a) Topology 1: 5 nodes. (b) Topology 2: 9 nodes. (c) S-shape
deformation on Topology 1. (d) Double-sided deformation on Topology 2.

TABLE I
TOPOLOGY 1

functions will also increase. Now analyzing the variance with
respect to varying the concentration, Fig. 10, we observe the
same results with exactly for the same reason. Just by increasing
the data dimension the variance tends to increase as well. These
results suggest that the information distance metrics should lead
to good classification process. However, we will also see in the
performance evaluation below, that the mutual information with
generalized entropy performed equally as good or better than the
information distance, albeit at higher computational cost.

TABLE II
TOPOLOGY 2

VII. ANALYSIS OF THE INFERENCE PROCESS

In this section we analyze the performance of the proposed
Molecular Nanonetwork Inference Process. Our aim is to eval-
uate the effectiveness of the different information metrics, and
how they will be impacted for different topologies of nanoma-
chines. We consider two different star topologies, depicted in
Fig. 11; in Topology 1 there are 4 source nanomachines and
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Fig. 12. Accuracy of inferring the type of deformation for Topologies 1 and 2. The time-slot length is 10 seconds and theRx concentration is 500 . (a) Average
for all compressing types. (b) Tissue with a one-side compression. (c) Tissue with a S type compression.

1 destination nanomachine, while in Topology 2 there are 8
source nanomachines and 1 destination nanomachine. The de-
tails of the distance between the source nanomachines and des-
tination nanomachines and the concentration of Ca for
each source nanomachine for both topologies are presented in
Tables I and II.
The simulation algorithm operates as follows: We im-

plemented a round robin scheduling algorithm which will
determine which nanomachine will transmit in each time slot.
Each nanomachine will be labeled with a random number (from
one to the maximum number of nanomachines), and the trans-
mitting starts from the lowest to the highest assigned number.
In this case, each nanomachine will transmit in a different time
lapse. We assume that each source nanomachine will perfectly
identify its transmission time for each time slot to avoid any
transmission collisions. There are in total 10 simulation runs,
where during each run we change the seed, and we compute
the 90% confidence interval of each set of results. Our analysis
will mainly concentrate on the accuracy of the classifier using
different information metrics.

A. Tissue Deformation Detection

In our first evaluation we analyze the accuracy of the tissue
deformation detection for both topologies. We simulated two
different types of deformation: single-sided and shape defor-
mation. For both topologies and information metrics, we ob-
tained 100% accuracy in detecting the presence of deforma-
tion. This was an expected result because the probability density
function of the deformed tissues is very different compared to
the distribution of a normal tissue under no deformation. We
observed this in Section VI when we analyzed the mutual infor-
mation —for different types of deformation we get very
different patterns compared to the normal tissue. The reason for
this is because the system is highly sensitive to the changes
in the diameter of the cell, which will determine the quantity
of diffusion, where less diffusion is associated with increased
deformation.

B. Inferring Deformation Types

In this section we analyze the classifier’s ability to accurately
detect the type of deformation in the tissue. As shown in Fig. 12,
the highest accuracy is achieved by the generalized entropy with

for Topology 1. The mutual information , on

Fig. 13. Accuracy of detecting the amount of compression in a one-side type
deformation. We use a single hop transmission in a three-layered tissue. The
time slot length is 10 seconds, the Tx concentration is 10 and 50 , the des-
tination nanomachine distances are set at 0 and 4 m, and the Rx concentration
is 500 . (a) Overall. (b) Varying the amount of deformation from 0 to 80%
of the tissue.

the other hand, resulted in the worst performance. This is at-
tributed to the low divergent probability distribution function,
which results in the mutual information suffering from poor ac-
curacy. Therefore, this result confirms the fact that the accuracy
of the generalized entropy with high values of performs better
compared to other approaches.
The same results are also shown in Fig. 12 for Topology

2, where the mutual information with generalized entropy
resulted in the highest level of accuracy.

One interesting point here, we may note, is that pure mutual
information jumps from 34% (Topology 1) to 58%
(Topology 2) in accuracy detection. The reason for this im-
proved performance is due to the higher number of source
nanomachines. The increase in the number of nanomachines
supports the classifier during the training phase to develop
more accurate thresholds, since the number of nanomachines
equals the number of training samples.

C. Inferring the Quantity of Deformation

In this section we investigate the accuracy in inferring the
quantity of deformation on the tissue. The inferencing process
should infer the quantity of deformation by relating to the per-
centage in length that a tissue is being compressed. For example,
consider a three-layered tissue of cells, were each cell’s diam-
eter is 0.5 m. If the classifier infers that the deformation is of
40%, this means that there is 40% compression over the 1.5
m height of the whole tissue. In this analysis, we used only
single-sided compression and a single-hop transmission with
two different configurations (configuration 1: concentration
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Fig. 14. The Inference/Detection accuracy for source nanomachine concentration and distance information for both Topologies 1 and 2. (a) Normal tissue. (b)
Tissue with a single-side compression. (c) Tissue with a “S” type compression.

of 10 and of 0 ( m); configuration 2: concentra-
tion of 10 and of 4 ( m)). The amount of deformation
is from zero (no compression) to 80%.
The mutual information with generalized entropy

for both values of achieve the best results as shown in Fig. 13.
This is followed by the information distance and the
mutual information .We can note that the values for ac-
curacy are close, which means that the distributions were highly
divergent from each other. As described earlier, the system is
highly sensitive to cell length changes when the tissue is com-
pressed. Therefore, irrespective of the compression quantity, the
divergence will always be high and unique, resulting in efficient
classification that can enable high levels of inference accuracy.
However, when we decompose the results to the varying

amount of deformation as shown in Fig. 13, we can observe
some interesting results. The mutual information with gener-
alized entropy did not always achieve the highest
levels of accuracy for all deformation quantity. At certain
percentage of deformation, the divergence of the probability
density function is so wide that using lower values of can
achieve decent accuracy. An example of this is the result of the
mutual information at 20% deformation, results in the
highest inferencing accuracy.

D. Inferring the Ca Concentration and Distance of the
Source Nanomachines

Besides the state of compression on the tissue, an important
information to infer by the destination nanomachine is the in-
formation of the different source nanomachines. This is cru-
cial in molecular communication, in particular when the var-
ious source nanomachines are distributed randomly in the tissue.
Useful applications of this could be disease detection in specific
parts of the tissue, where the source nanomachines could act
as nanosensors. Therefore, inferring their distance as well
as the amount of Ca concentration emitted from the source
nanomachines (Tx concentration) could provide useful informa-
tion. In particular, accurately inferring these information under
various tissue deformation could be quite challenging. Fig. 14
present the inferring accuracy for the three different types of de-
formation for Topologies 1 and 2.
The mutual information with generalized entropy

, once again, presents the highest levels
of accuracy over all other metrics. This is observed in both
topologies as shown in Fig. 14. Obviously, when the probability

density functions are not too divergent, the use of lower values
of leads to lower levels of accuracy. However, it is inter-
esting to note that in some case there are similar performance
even when the value of increases [Fig. 14(a) and (c)]. We
may safely say that in such cases the use of other information
metrics might be sufficient, since lower values of results in
lower complexity.
When the number of nanomachines increases, the difference

in performance of the information metrics is not very high
(Topology 2). This interesting insight is based on the increased
accuracy of the mutual information metric. The number of
nanomachines is exactly the number of samples that the source
nanomachine has to build the thresholds during the training
phase. Therefore, if the number of nanomachines is higher
it is expected that the probability density function will have
more divergence, which will increase the accuracy level of the
mutual information.

VIII. DISCUSSION

In this section, we are going to discuss the example nanoma-
chines that we can envision in our molecular nanonetwork
embedded in a tissue, as well as potential applications for the
Molecular Nanonetwork Inference Process.

A. Nanomachines

Nanomachines are devices composed of nano components
that are able to perform limited functionalities [1]. The nanoma-
chines can either be produced naturally from biological com-
ponents and systems or assembled artificially. A good example
of natural nanomachines are cellular organisms, which are con-
structed from sophisticated nanoscale biological components.
As we have shown in the communication system within the
tissue, the cells within the tissue can represent the source, des-
tination, as well as the relay nanomachines. However, artificial
manipulation (e.g., synthetic biology) of these biological com-
ponents has gained attention, where specific functionalities can
be integrated into the cells. Therefore, a cell-based nanoma-
chine may include a dedicated engineered genetic circuit [25]
that senses and releases the Ca ions (this could represent
the source nanomachines). In the case of artificially assembled
nanomachines, these devices can be implemented using nano-
electromechanical systems (NEMS) technology. The nanoma-
chine we envision embedded into the tissue could externally
activate the Ca ions, and one example is through the use of
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needles or force probes [26], [27]. The destination nanomachine
could be developed from NEMS that sense molecules produced
around the neighboring cells, or utilize a process of harvesting
molecules.

B. Applications

Numerous research efforts in recent years have been ded-
icated to technologies that enable tissue engineering. Tissue
engineering combines methods of engineering and life science
in the control and design of tissues that can lead to organ
construction [28], [29]. This technology provide alternative
treatment for patients with organ and tissue failure, treatments
that can alleviate issues relating to increasing costs of cur-
rent treatments and the shortage of organ donors [28], [30].
Embedding nanonetworks into the organs constructed from
tissue engineering, could provide new dimensions for advanced
patient care. Langer [31], commented that the use of sensors
embedded into tissues for monitoring and detecting illnesses
can lead to Smart Organs. Another possible real life application
is with breast compression estimation. Mammography volume
is associated with breast cancer, and works like [32] use sim-
ulations for breast compression estimation and rarely human
body data. Breast cancer research is impaired due to unethical
issues of frequent radiation exposure on humans. That is an
ideal scenario for the utilization of the method proposed in
this paper, in which human body data can be obtained with a
minimally invasive approach. At the same time, the vision of
virtual physiological human (VPH) is to develop a technolog-
ical framework that can support integrative biological functions
in the cells, tissue, organs, as well as entire systems within the
human body [33]. Therefore, by combining advanced services
in cloud computing and the technological framework of VPH,
we can utilize the Molecular Nanonetwork Inference Process
to monitor the conditions within the Smart Organs as well as
detect early signs of diseases.

IX. CONCLUSION

We presented a technique that relies on information metrics
and molecular communication to infer the state of the nanonet-
work embedded in the tissue; we term this technique a Molec-
ular Nanonetwork Inference Process. Central to the process is a
classifier that is able to detect the presence of tissue deformation,
the type of tissue deformation, the degree of deformation, the
source nanomachine concentration and the source nanomachine
distance from the destination nanomachine. Classifer thresh-
olds are generated after a training phase using information theo-
retic metrics. We compared three different information metrics:
Mutual Information, Mutual Information with Generalized En-
tropy, and Information distance. First, we compared all the in-
formation metrics in a regular single-hop transmission in a cel-
lular tissue. Our analysis shows that the different metrics results
in various divergence and sparsity of data, which in turn affects
the accuracy of the classifier’s thresholds. This is followed by
evaluating the proposed classifier in a simulation model of a cal-
cium signaling molecular communication system, and we per-
form simulations for two different topologies. We could observe
in all the results that with a average level of accuracy of 80% the

use of mutual information with the generalized entropy in the
classifier outperforms the other information metric techniques.
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Abstract—One form of molecular communications for short
range transmission between nanomachines is Calcium Signaling.
This form of signaling is commonly found in cellular tissues,
which consist of tightly packed cells, whereby Ca2+ ions propa-
gate and diffuse between the cells. However, the natural flexible
structure of cells usually leads to them dynamically changing
shapes under certain strains and forces. Since the interconnected
cells form a tissue, changes in the shape of one cell will change
the shape of neighboring cells and the tissue as a whole. This may
in turn significantly impair the communication channel between
the nanomachines (which we assume to be embedded within the
cells). In order to counter this problem, we propose an adap-
tive transmission protocol for Ca2+ signaling based molecular
communications in cellular tissues. The protocol operates in two
phases. The first phase utilizes information metrics to infer the
state of the tissue; second phase then involves the determination
of the most appropriate time-slot for bit transmission. In this
way, we aim to improve the information rate by using a time
slot length that is appropriate for the prevailing type of tissue
deformation. Through simulation studies we show that, for two
types of deformation and two different topologies, our protocol
can improve the information rate performance by 15%.

Index Terms—Molecular Communication, Nanonetworks, Cal-
cium Signaling, Information Theory, Tissue deformation.

I. INTRODUCTION

Recent years has seen considerable research efforts on how
best to facilitate communication between nano-scale devices.
Of particular interest in this field is Molecular Communica-
tions, which aims to utilize existing biological systems to cre-
ate nanoscale networks [1], [2], [3], [4]. One form of molecular
communication utilizes existing molecular signaling known
as Calcium Signaling (Ca2+). In this form of nanonetwork,
nano devices are embedded into the cells within the tissue and
invoke Ca2+ ions that diffuse through the neighboring cells in
order to propagate information to other nanodevices[5], [6].

While Ca2+ signaling provides an interesting approach for
molecular communication, there are a number of challenges.
Firstly, since the Ca2+ ions propagate and diffuse through the
neighboring cells, this could lead to recurrent signaling the
may result in excessive noise. This will be an issue in the
event of large number of nano devices. Secondly, the natural
form of Ca2+ signaling is highly dependent on the spatial
shape of the cells. As the cells change shape this leads to
different quantities of Ca2+ ions that diffuse out from the

cell. Therefore, the capacity of the communication channel
is highly dependent on the quantity of tissue deformation.
The cellular tissue can be deformed due to a number of
reasons: movement or repairs that lead to cells that proliferate
or differentiate. At the same time, we can also assume that
different types of cellular tissue deformation can affect the
performance of the communication channel in different ways.
In order to counter this challenge, we adopt an approach in
which we first infer the current state of compression of the
tissue, and, using this information, adapt the time slot length
(which we denote Tb) that is used to emit a single transmitted
bit. In this paper we show that it is possible to achieve an
optimal value of information rate using different values of Tb
for different types of cellular tissue deformation. We propose
an adaptive communication protocol, the Adaptive Time-slot
Protocol (ATP), that first detects the cellular tissue state and
then adjusts the Tb to achieve the highest information rate.
Our simulation study shows that ATP can significantly increase
the information rate in comparison to a non-adptive approach.
Our evaluation includes simulating different topology sizes
(e.g. different number of nano devices), where our classifier
performs well with higher quantities of nodes.

This paper is organized as follows. §II presents the problem
statement of tissue deformation and its impact on molecular
communication systems. §III specifies our proposed ATP for
Ca2+ signaling based molecular communications in cellular
tissues. It includes an analysis of the most appropriate metric
to use for inferencing of channel state. §IV describes the
results of a simulation study to evaluate the information rate of
ATP in comparison to a non-adaptive protocol for two different
topologies. Finally, §V concludes the paper.

II. PROBLEM STATEMENT

In this section we discuss the properties of tissue deforma-
tion, and how this could impact on Ca2+ signaling within a
tissue.

A. Tissue Deformation

Since the majority of tissue structures are constructed from
a tight formation of interconnected cells, a change in the
structure of a cell could trigger a structural change in neigh-
boring cells, changes which propagate through the tissue as a
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Fig. 1: Example of tissue deformation, (a) normal cell shape,
(b) expansion of cell under compression.

whole (see Fig. 1). Thus, the majority of cells can undergo
shape changes, in particular under certain strain and forces.
The changes in shapes of cells can largely be attributed to
their structure and internal composition. These component
structures within the cells are mainly the cytoskeleton [7],
which are distributed throughout the cells and have a flexible
structure that maintains the cell shapes. Figure 1 illustrates
an example of cell structural change under a certain load.
Example factors that can influence the cell shape changes
include physical movement, chemotaxing cells or mitotic
cleavage [8]. During mitotic cleavage, the stretching process
of a cell will compress the neighboring cells [9]. Sibole and
Erdemir [10] describe a study conducted on the deformation
of cells resulting from the movements in the joint’s cartilage.
In particular, their focus was on the Tibiofemoral joint and
its mechanical loading impact on cells of the musculoskeletal
system.

B. Communication Disruption

The deformation of the tissue could in turn affect the
performance of molecular communications, in particular com-
munications that is performed through diffusion of molecules
between tightly packed cells. Masselter and Speck [11] investi-
gated how tissue deformation spatially modulates angiogenic
signals and angiogenesis. This is due to the physical forces
applied to the developing tissues. For example, during the
vascular development, the deformation caused by such forces
has a huge impact on the Ca2+ signaling and the overall
behavior of the cell. Fig. 2 illustrates an example of commu-
nication disruption that could occur due to different types of
tissue deformation, including: double-sided tissue compression
(Fig. 2(b)), single-sided tissue compression (Fig. 2(c)) and
compression in multiple spots, which we may refer to it as “S”
shape deformation (Fig. 2(d)). Since Ca2+ signaling diffuses
the molecules between tightly packed cells within a tissue, the
communication capacity is largely dependent on the spatial
volume of the cells, which affects the process of invoking
Ca2+ signaling, as the signals are propagated through the
tissue. Therefore, any physical force that impacts on the spatial
volume, will in turn affect the information rate.

C. Optimal Time-slot

In our scenario application, nanomachines are embedded
into the tissue and transmit information in pre-defined time

!"#$

      Source 

Nanomachine 
Compression  Destination 

Nanomachine 

Calcium Molecule 

!%#$

Compression 

!&#$
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Fig. 2: Communication disruption due to tissue deformation,
(a) regular tissue, (b) double-sided compression, (c) single-
sided compression and (d) “S” shape deformation.

slots (Tb). For each time slot, a single bit is transmitted. Since
the volume of Ca2+ ions that diffuse is highly dependent on
the spatial property of the cells and tissue, the compression
may determine an optimum time-slot duration.

For the four different types of compression presented in
Fig. 2, we evaluate the optimum time-slot duration Tb; the
results are presented in Fig. 3. The first observation we can
make is that as we vary the time-slot duration for the different
compression types, we start to observe that there are optimum
points in the mutual information (denoted I(X;Y )). In the
case of a regular tissue with no compression (Fig. 3(a)), we can
observe that the optimum duration for the time slot is at 10s.
The results from our analysis also shows that the compression
of all types usually leads to higher end-to-end mutual infor-
mation. In the case of Double-sided compression (Fig. 3(b)),
the mutual information is highest when the time slot is the
lowest. The main reason for this is reflected in Fig. 2(b) where
we see that the double compression leads to a dedicated pipe
between the source and destination nanomachines. This means
that there is a directed channel to direct the flow of Ca2+ ions,
leading to lower diffusion and higher concentrations arriving
at the destination. The case of the Single-sided compression is
slightly similar to the performance of the regular tissue (Fig.
3(c)), where the optimum time-slot is at 10s. Double-sided
compression had an optimal value at 5s. This is due to the fact
that the spatial changes of the tissue is very similar. However,
as we move to the S shape compression, we can observe that
the optimum duration is at 10s, with a performance that is
very close to the double compression. Once again this could
be attributed to the channel effect show in Fig. 2(d), leading
to higher quantity of Ca2+ ions flows between the source and
destination nanomachine.

Therefore, from our analysis we can observe that as we
compress the tissue differently and at the same time vary the
time-slot Tb duration, we have different mutual information.
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Fig. 3: I(X;Y) as a function of the time-slot length for a three layered cellular tissue, with Rx of 500nM and the Tx concentration
of 50nM .

This is the basis of our proposed ATP protocol, where we will
need an approach that can help infer the tissue compression
state, in order for us to adapt the time-slot accordingly in order
to maximize the channel capacity.

III. ATP PROTOCOL SPECIFICATION

Due to the variable condition described in the previous
section, we propose in this section the components of the
ATP protocol, which is illustrated in Figure 4. The aim of
the protocol is to be able to adapt the time-slot Tb based
on the current state of the tissue. By adapting Tb we hope
to achieve maximum information rate in our Ca2+ signaling
based molecular communications [12]. The proposed protocol
is divided into two parts, which includes the Inferencing stage,
which is followed by the Tb adaptation stage. The Inferencing
Stage includes: Statistical Information Calculations, Training
and the Classification process. §III-A will present the full
details of the algorithms that we have utilize to infer the
state of the tissue. The process involves collecting information
from the communication behavior between the source and
destination nanomachines, and then utilizing information met-
rics to perform the inferencing process. Once the inferencing
process has converged, and the state of the tissue is known,
the nanomachines will be able to adjust the time-slot Tb for
the bit transmission.

A. Inferencing channel state

We now describe the tissue inferencing process, which
infers the type and degree of deformation. We assume that
a central destination nanomachine receives all the information
from the different source nanomachines, and analyzes the data
to infer the state of the tissue deformation. Although this
could lead to high computation, our approach could enable
the destination nanomachine to feed all information to an
external device, which in turn could feed this to an external
device to perform the statistical information calculation. Based
on the the Statistical Information Calculation process within
the Inferencing stage, we use information theory metrics to
process the collected measurement data, where we convert the
data into samples using statistical processing. The details of
the different information metrics will be discussed below.

We assume that for n transmissions from i number of
nodes, we collect a set ψ of information metric values. This is
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Fig. 4: The stages of the ATP protocol

followed by using the confidence intervals to statistically treat
the data, which can be represented as:

ci(n, ψ) = m(ψ)± Zρ/2(
δ(ψ)

n
) (1)

where m(.) is the mean of the sampled values, δ(.) is the
standard deviation over a set of values, ρ = 1 − (β/100)
where β is the confidence level, and finally Zρ/2 is the Z table
value. All the threshold information, which are the confidence
intervals for all n nodes, will be converted into a sample. In
the case that we want to identify the type of deformation, we
need to train the model with a number of samples that is equal
to the number of deformation types.

This part of the algorithm is very important because this
phase is directly related to the performance of the proposed
protocol. The nanomachines will only be able to adjust well to
the condition of the channel if they are well trained. In this way
the sample data have a higher importance, because samples
with higher data divergence will results in a better adaptation
of the system. In our experiments we used a sample data
that contains all possible configuration of the communication
system. The training phase will also map the best performance
in each type of deformation.
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Now, we will describe the three different information metric
algorithms that are used in our training process.

1) Mutual Information: The mutual information I(X;Y )
is used to determine the mutual dependence between two
variables, and is represented through the following equation:

I(X;Y ) =
∑

y∈Y

∑

x∈X
p(x)p(y|x) log2

p(y|x)
p(y)

(2)

p(x) = P (x = x0 ∧ x = x1) (3)
p(y) = P (y = y0 ∧ y = y1) ∗ p(y/x) (4)

p(y = y0|x = x0) = 1− p(y = y1|x = x0) (5)
p(y = y0|x = x1) = 1− p(y = y1|x = x1) (6)

In our analysis, we utilize the mutual information I(X;Y )
to analyze the quantity of information that is transmitted from
a source nanomachine to a destination nanomachine. The
probabilities p(x) and p(y) represents the probability a digital
bit is transmitted and successful received, respectively.

2) Mutual Information with Generalized Entropy: This
metric is commonly used in information theory to measure the
uncertainty over a random variable. The difference between the
Generalized Entropy in comparison to the Shannon entropy
is an increases in the number of dimensions for the data
analysis. The metric belongs to a family of functions that
quantifies the diversity, uncertainty, and/or the randomness of
a system, and it is largely used to detect the distances between
different probability density function. The generalized entropy
is represented as follows:

Hα(x) =
1

1− α log2(

n∑

i=1

pαi ) (7)

where pi are the probabilities of {x1, x2, ..., xn}, pi ≥ 0 ,

n∑

i=1

pi = 1, α ≥ 0, α 6= 1 (8)

The generalized entropy is used in combination with the
mutual information (Eq. 9), in order to amplify and separate
the samples to a different dimension. Therefore, this should
enable the classifier to accurately detect the state of the tissue
with increased accuracy, since the metric can detect sensitive
differences in the probability density functions.

I(X;Y ) = Hα(X)−Hα(X|Y ) (9)

3) Information Distance: Besides the generalized metric
and the mutual information, information distance is another
metric that is used to measure the uncertainty of the random
variables. This metric was proposed by Bennett et al. [13]
and is commonly applied to pattern recognition between
different classes. The information distance is a measure of
the divergence between two random variables X and Y and
is represented as:

Dα(X||Y ) =
1

α− 1
log2(

n∑

i=1

xαi y
1−α
i ), α ≥ 0. (10)

B. Training Process

The training process involves determining the thresholds and
boundaries that are used for the classifications of the collected
data. We define a decision function f(.), which enables the
classifier to determine if the new collected sample is placed
in the right category. The function f is represented as:

f(x) =

{
1 , x ∈ [−ci(n, ψ),+ci(n, ψ)]
−1 , x /∈ [−ci(n, ψ),+ci(n, ψ)] (11)

where x represents the new collected sample.

C. Classification Process

Once the training process is completed, the next stage is
the classification process. Here, a new information input in
the destination will be compared to the threshold models that
have been developed iteratively. This model will have unique
characteristics that will be used to identify all listed channel
state information that was introduced earlier. The classifier will
be a set of decision function f whose cardinality will be equal
to the product of the number of samples and the number of
nanomachines in each sample. At the end of each transmission,
the collected data will be analyzed by the classifier, and in the
event that the function returns a non-negative value, this will
indicate as the correct inference.

D. Accuracy Performance

1) Tissue Deformation Detection: In our first evaluation
we analyze the accuracy of the tissue deformation detection
for two topologies. We consider two different star topologies
in our analysis (Topology 1 (Fig. 6), and Topology 2 (Fig.
7)). In Topology 1 there are 4 source nanomachines and
1 destination nanomachine, while in Topology 2 there are
8 source nanomachines and 1 destination nanomachine. For
both topologies, the nanomachines are placed randomly within
the tissue, and at the same time the Ca2+ concentration of
the source nanomachines are also randomly selected. The
details of the distance between the source nanomachines and
destination nanomachines Dx and the concentration of Ca2+

for each source nanomachine in Topologies 1 and 2, are
presented in Tables I and II, respectively. We simulated two
different types of deformation: single-sided and “S” shape
deformations. For both topologies and information metrics, we
obtained 100% accuracy in the detection process. This was an
expected result because the probability density function of the
deformed tissues is very different compared to the distribution
of a regular tissue. The reason for this is because the system is
highly sensitive to the changes in the diameter of the cell. The
diameter of the cell will determine the quantity of diffusion,
where less diffusion is associated to increased deformation.
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Fig. 5: Inference accuracy of tissue deformation types for Topologies 1 and 2. The time-slot length is 10 seconds and the Rx
concentration is 500 (nM ).

TABLE I: Setup of Topology 1

Node Z (nM ) Dx (µm)
1 10 0
2 100 2
3 50 4
4 10 8

TABLE II: Setup of Topology 2

Node Z (nM ) Dx (µm)
1 50 8.94
2 10 8
3 50 4
4 50 4.47
5 50 11.31
6 100 2
7 50 5.66
8 10 0
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Fig. 6: Topology 1: 5
nanomachines (4 source and
1 destination).
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Fig. 7: Topology 2: 9
nanomachines (8 source and
1 destination).

2) Inferencing Deformation Types: In this section we an-
alyze the classifier’s ability to accurately detect the type
of deformation in the tissue (Fig. 5). As shown in Fig. 5,
the highest accuracy value is achieve by the generalized
entropy with α = 10 for Topology 1, in which α is the
order of entropy that determines the dimensions of the data
analysis. This result confirms the fact that the accuracy of
the generalized entropy with high values of α performs better
compared to other approaches. The same results are also
shown in Fig. 5 for Topology 2, where the mutual information
with generalized entropy (Iα(X;Y )(α = 10)) resulted in
the highest level of accuracy. This is attributed to the low

divergence in the probability density function, which results in
the mutual information performing with poor accuracy. In the
proposed protocol, we assume that the nanomachines will have
sufficient processing capabilities, then we chose the mutual
information with generalized entropy (Iα(X;Y )(α = 10)) as
our information metric.

IV. ATP PROTOCOL EVALUATION

In this section, we analyze the performance of the proposed
channel state inferencing process. Our objective is to evaluate
the performance of a molecular communication nanonetwork
that adapts the bit duration transmission using the proposed
ATP protocol.

We used the same simulation model mentioned in §II-C with
the two topologies presented in §III-D. Then we implemented
a round robin scheduling algorithm which will determine
which nanomachine will transmit in each time slot. Each
nanomachine will be labeled with a random number (from
one to the maximum number of nanomachines), and the
transmission starts from the lowest to the highest assigned
number. In this case, each nanomachine will transmit in a
different time lapse. We assume that each source nanomachine
will perfectly identify its transmission time for each time-slot
to avoid any transmission collisions. The simulation scenario
mixes the compression process, where half the period will be
based on the double-sided compression while the remaining
period will have the “S” shape compression. There are in
total 10 simulation runs, where during each run we change
the seed, and we compute the confidence interval of each
set of results with a 90% confidence interval. Our analysis
will mainly concentrate on the accuracy of the classifier using
different information metrics approaches described earlier. We
present the setup for the training phase in Table III.

As a benchmark comparison, we compare the ATP protocol
to Static (STC) time-slot durations of 5s and 10s. As shown
in Fig. 8, the highest information rate is achieve by the ATP
protocol for Topology 1. The STC, on the other hand, and
even with two different values of Tb, resulted in the worst
performance. Therefore, this result confirms that using an
adaptive approach achieves higher information rates. The same
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TABLE III: Training Setup

Variable Value
Training Time 100 min

Number of Samples 200
Number of data sets 12

Ca2+ concentration values {10, 50,100} nM
Dx values {0,2,4,8} µm
Tb values {5,10,20,30} s
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Fig. 8: Performance comparison between static time-slots STC
(5 and 10s) and the adaptive ATP protocol, for Topology 1.

pattern is presented in the results for Topology 2, in which
with the increase in the number of nanomachines, we can see
a higher difference between the proposed adaptive approach
versus the STC approach. This is attributed to the adaptability
of the Tb duration when the tissue changes its state.

V. CONCLUSION

In this paper, we propose and analyse a communications
protocol that adapts the bit transmission duration for a molec-
ular communication system based on the Ca2+ signaling that is
dependent on the type and level of tissue deformation caused
by application of force. The proposed approach, which we
term the Adaptive Time-slot Protocol (ATP), has two stages.
The first stage is the inferencing stage, which uses information
metrics to infer the type of compression on the tissue. The
second stage adapts the time-slot duration for the bit transmis-
sion based on the inferencing results. Our analysis found that
as we apply different compression types of the tissue, there
is an optimal time-slot duration for the bit transmission. We
evaluated the protocol using two different star topologies of
nanomachines that are embedded into a tissue, with multiple
types of compression. The results from our simulation show an
average increase in performance of 15% for the ATP protocol
compared to a static time-slot protocol.
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Abstract—Tripartite synapse is a three way communication
process between a pre-synaptic neuron, a post-synaptic neuron
and an astrocyte cell. Synapses are transmitted based on the
gliotransmitters concentration in the channel, which is important
for the signalling quality in this three way communication
between cells using Ca2+ signalling. Abnormal concentration of
gliotransmitters can lead to a number of neurodegenerative dis-
eases, including: Alzheimer’s, Parkinson’s, Epilepsy, Schizophre-
nia and Depression. In this paper we investigate a technique
that can control the root cause of the abnormal concentration
of gliotransmitters, and this is through the Ca2+ signalling.
The paper investigates the use of feed-forward feedback control
technique to control the quantity of IP3 that determines the
concentration of Ca2+ emitted from intracellular signalling.
The application of the control model showed that the quantity
of Ca2+ signalling can be stabilised. The paper focuses on
two applications of the control model. The first application is
to maintain the stability of the Ca2+ concentration in order
to prevent neurodegenerative diseases (extreme high or low
concentration can result in disease progression). The second
application is to improve the data rate performance for molecular
communication that utilises Ca2+ signalling. In the case of the
molecular communication application, the control model showed
that the refractory periods from Ca2+ can be maintained to
lower the noise propagation resulting in shower time-slots for bit
transmission. The proposed approach can lead to novel solutions
for biotechnology development, where synthetic biology can be
used to program the control functionality into the cells.

Index Terms—Molecular Communication, Tripartite Synapses,
Ca2+ Signalling, Astrocytes.

I. INTRODUCTION

The field of biological and medical science in recent years
has witnessed the impact from multi-disciplinary research
efforts that utilize engineering concepts and theory. Examples
of this impact includes new approaches for smart drug delivery
systems [1], [2] and tissue engineering [3], [4], [5], which has
seen fields of nanobiotechnology and information technology
brought together. More recently, telecommunication engineers
are investigating biological communication processes that can
be either used to understand the signalling process and to
correct and adapt them to minimise disease progression, or
developing artificial communication system at the nanoscale.
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S. Balasubramaniam is with the Nano Communications Center (NCC),
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The latter research topic is known as Molecular Communica-
tion [6], [7], [8], and its potential applications includes sensor
and actuator nanonetworks for the human body, as well as new
forms of environmental monitoring for smart cities.

A particular communication process that has attracted the
attention of the molecular communication community is within
the human brain, and specifically through chemical synapses.
Although a known communication process is between neuron-
neuron signalling, another signalling mechanism is performed
by the so-called tripartite synapses, which are formed by
three-way communication of a pre-synaptic neuron, an as-
trocyte and a post-synaptic neuron [9] [10]. The signalling
process starts with an increase of astrocytes’ cytosolic Ca2+

concentration that in turn stimulates the production and release
of gliotransmitters. The internal Ca2+ concentration is then
regenerated with post-synaptic voltage influence, which allows
the increase of IP3 (a protein responsible for Ca2+ stimulation
and production) [11], [12]. An example of gliotransmitters
that are triggered by increasing the Ca2+ signals in astrocytes
[13] is glutamate. Through the Glutamate Dependent NMDA
Receptors (GNMDAR), the astrocytes have a major role in
numerous brain processes such as plasticity, learning and
memory processes [14]. Since, the GNMDAR are the primary
source of Ca2+ signalling in the post-synaptic neuron and
critical for proper functioning of brains processes, the stable
regulation of Ca2+ signalling is very important. Noise in the
astrocytes intracellular Ca2+ signalling can lead to seri-
ous diseases, including: alzheimer’s, epilepsy, schizophrenia,
parkinson’s and depression [15], [16].

For this, our main idea involves the application of control
theory to maintain stable levels of intracellular Ca2+ signalling
process in the cytosol. The modelling of the communication
process and applying control theory for Ca2+ signaling can
provide new approaches for prevention of neurodegenerative
disease [17], [18]. Besides this, the control model can also
be used in developing molecular communication systems in
order to ensure that when information bits are transmitted due
to stimulation of Ca2+ ions in the tripartite synapses, this
will not result in emergence of neurodegenerative diseases.
This disease may emerge from extra stimulation of Ca2+

signalling when transmitting information between implantable
nanomachines within the brain. In this paper we investigate
the usage of a feed-forward feedback control mechanism
to perform indirect astrocytes’ cytosolic Ca2+ concentration
regulation. Since proteins are more easily stimulated, IP3 is
then used as a regulation point where its control will lead to
the accurate stimulation of Ca2+ ions [19], [20].
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The main contributions of the paper are:
• Regulation of Ca2+ Signalling in Astrocytes - The pro-

posed technique is able to control Ca2+ ion levels in
the cytosol of astrocytes. A mathematical framework was
developed to calculate the desired Ca2+ levels based on
a given desired IP3 level and also stability of the system
(the system in this context is the point of communi-
cation between the astrocyte and neuron inter-cellular
signalling). Finally, a disturbance analysis investigated
the benefits of having a feed-forward component in the
control design.

• Cellular Disease Prevention Technique - The proposed
control technique is able to stabilise Ca2+ levels inside
the cells. The stable regulation of Ca2+ levels in astrocyte
cells will also affect the release of glutamate in the
tripartite synapses and, therefore, improve synaptic trans-
mission quality. This approach is an alternative technique
for preventing neurodegenerative diseases compared to
the use of drugs.

• Improve Data Rate Performance in Molecular Commu-
nication - The proposed approach can be used to control
the simulation of Ca2+ ions that is used for molecular
communication between implantable nanomachines that
communicate through networks of astrocyte and neuron
cells. The use of Ca2+ signalling for molecular commu-
nication can result in high quantity of noise propagating
through the tissue, resulting in low data rates. However,
the control model proposed in this paper can control
sufficient quantity of Ca2+ propagation that will result
in minimum amount of noise, which in turn will increase
the data rate. The proposed control model can also be
used to develop new modulation techniques for Ca2+-
signalling-based molecular communication.

The paper is organized as follows. §II introduces the tri-
partite synapses and the intracellular Ca2+ signalling model
for astrocytes. §III presents the oscillation behaviour of reg-
ular Ca2+ signalling process and the problem statement.
§IV presents the feed-forward feedback control technique for
astrocytes’ cytosolic Ca2+ concentration regulation followed
by a stability analysis. §V presents the results and analysis
of the application of the control technique for elimination of
Ca2+ signalling oscillations, disturbance, disease prevention
and data rate improvements. §VI present a discussion about
the future envisioned applications. Finally, §VII. concludes the
paper.

II. TRIPARTITE SYNAPSES

Fig 1 shows an accurate illustration of the tripartite
synapses, in which the concentration of gliotransmitters in
the region that connects both neuron and the astrocyte cells is
linked to the quality of the synapse transmission. Researchers
were able to identify the importance of the astrocytes in the
tripartite synapses [10], and the communication process is
illustrated in Fig 2. The tripartite synapses starts with the
stimulation of the Ca2+ ion production in the astrocytes. The
IP3 concentration is increased from the stimulation and this
will trigger the release of Ca2+ ions to the cytosol from

the endoplasmic reticulum. High quantity of Ca2+ ions will
provoke the release of glutamate 1 to the synaptic channel.
Glutamate is also released from the pre-synaptic neuron in-
voking Ca2+ concentration increase in the astrocytes. These
glutamate molecules go back to the pre-synaptic terminal
either to inhibit or assist further glutamate release. Therefore,
the intracellular Ca2+ signalling in astrocytes of the tripartite
synapses dynamically regulates synaptic transmission. Based
on this, we focus on root of this sequential communication
process by concentrating on the intracellular Ca2+ signalling
process in astrocytes.

The intracellular Ca2+ signalling in astrocytes model consist
of state equations for the Ca2+ concentration in the cytosol
(C) (Eq. 1), kinetics of IP3 receptors (h) (Eq. 2) as well as
the IP3 concentration (I) (Eq. 3). This model is proposed in
[21], and a visual illustration of the model is presented in Fig.
3. The main state equations are defined as follows:

dC

dt
= σ1 + σ2 − σ3, (1)

dh

dt
=
H − h
τ

, (2)

dI

dt
=

1

α
(i0 − I) + βH(E0 − 35) (3)

where α is the constant degradation time of IP3 concentration,
i0 is the IP3 concentration in equilibrium, β is the production
rate of IP3 ions, E0 is the pre-synaptic potential and H(.) is
the Heaviside function. Ca2+-induced Ca2+ release (CICR) is
the trigger process of Ca2+ ions from the sarco(endo)plasmic
reticulum by existing Ca2+ ions within the cytosol. The σ1
models the CICR and is defined as:

σ1 = vm3h3[c0 − (1 + C1)C] (4)

where v is the maximal CICR rate, c0 is the total cell free
Ca2+ concentration depending on the cytosol volume, and C1

is the ratio between the cytosol and endoplasmic reticulum
volume.

The IP3 and Ca2+ ion binding process that is responsible
for providing stable IP3 kinetics is represented as:

m =

(
I

I + d

)(
C

C + d3

)
(5)

where d is the IP3 dissociation constant and d3 is the Ca2+

activation-dissociation constant.
The σ2 is the leakage of Ca2+ ions to the cytosol from the

sarco(endo)plasmic reticum and is represented as:

σ2 = v1[c0 − (1 + C1)C] (6)

where v1 is the maximal rate of Ca2+ ions leakage from the
endoplasmic reticulum.

The efflux of Ca2+ from the sarco(endo)plasmic reticulum
to the endoplasmic reticulum (SERCA) is represented as:

1One type of gliotransmitter, which activates certain signalling processes
in the cells.
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Fig. 1: Tripartite synapses overview, showing the communication process between the astrocyte cell and the pre-synaptic neuron, as well as
the post-synaptic neuron. The three way communication process emits gliotranmitters which are molecules crucial for maintaining synaptic
transmission quality.

IP3 Ca2+ 

Synaptic Voltage 

Stimuli 

Ca2+
AP Ca2+ 

mGluR 

mGluR Channel 

AMPAR NMDAR 

Astrocytes 

Pre-Synaptic Neuron 

Post-Synaptic Neuron 

Vd (t) 

VGCC 

Fig. 2: Model for the Tripartite Synapses. Pre-synaptic neuron, post-
synaptic neuron and the astrocyte communicates through a gliotrans-
mitter channel that is invoked from Ca2+ signalling.

σ3 =
v2C

2

k2 + C2
(7)

where v2 is the maximal rate of SERCA uptake and k is Ca2+

binding affinity.
The following equations are important for modelling h:

H =
Q

Q+ C
(8)

τ =
1

a(Q+ C)
(9)

Q =
I + d

I + d2
d1 (10)

Ca2+
Cytosol 

σ1 

σ2 

I 

σ3 

Endoplasmic 

  reticulum 

h 

Fig. 3: Intracellular Ca2+ signalling model for astrocytes. The
flux/efflux rates control the concentration of Ca2+ signalling. The σ1

models the Ca2+-induced Ca2+ release (CICR). The σ2 is the leakage
of Ca2+ ions to the cytosol from the sarco(endo)plasmic reticum
(SERCA), and σ3 is efflux of Ca2+ from the sarco(endo)plasmic
reticulum to the endoplasmic reticulum.

where d1 is the Ca2+ inactivation dissociation constant, d2 is
the IP3 dissociation constant and a is the IP3 receptors binding
rate for Ca2+ inhibition.

III. PROBLEM STATEMENT

Neurodegenerative diseases are related to the quality of the
synapses in neuronal communication. Poor concentration of
glutamate inside the synaptic channel will lead to poor prop-
agation in the synapses, causing lack of memory, insomnia,
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Fig. 4: Ca2+ oscillation with respect to time. In this illustration the
IP3 = 0.5 µM. The Ca2+ concentration (C - blue line) oscillates
alongside with the kinetics of IP3 receptors (h - dashed yellow line).

depression which are symptoms of most neurodegenerative
diseases. Current treatment to neurodegenerative diseases are
based on drugs that are not effective and only helps to
eliminate symptoms and not really treat them. The brain-blood
barrier, imposed by the central nervous system, prevents drugs
to reach the desired destination and therefore inhibiting the
drugs’ efficiency. Nanotechnology is a promising area that
provided the idea of using nanoparticles to bypass the brain-
blood barrier, which results in a new and exciting frontier for
neurodegenerative treatment research.

Based on what was already presented, it is clear that
controlling Ca2+ levels in astrocytes can indirectly control
the glutamate release and potentially improve the synaptic
transmission. Control of Ca2+ can be achieve with nanopar-
ticles, which include: Carbon Black (CB), Titanium Dioxide
(TiO2) or Zinc Oxide (ZnO) [22]. The main challenge now is
to provide an analysis on the astrocytes Ca2+ concentration
of the tripartite synapses and, therefore, create a theoretical
framework that will be a base for alternative approaches in
preventing neurodegenerative diseases. A regulation technique,
capable of maintaining the healthy state of the tissue while
also maintaining enough glutamate in the tripartite synapses,
would be required in such scenario.

For this, we are looking at how to control levels of Ca2+

in the cytosol. More specifically, internal Ca2+ signalling is
characterized by oscillations invoked by certain range of IP3.
Fig 4 shows the Ca2+ oscillation at IP3 = 0.5 µM and when
production rate of IP3 ions (β - eqn. 3) varies from 0.1-1.5
µM/s. The elimination of such oscillatory behaviour (both of
the Ca2+ oscillation (blue line) and the kinetics of the IP3

oscillation (dashed yellow line)) will give a stable level of the
desired Ca2+ concentration.

Fig 5 shows how the IP3 can affect the intracellular Ca2+

signalling. Basically, increase of IP3 in the system is desired
for regular Ca2+ concentration levels. Since β is responsible
for the IP3 increase, we can assume that it is highly important
for regulation of Ca2+ concentration levels. As soon as IP3

is constant, the Ca2+ concentration will drop. The electrical
component of the astrocytes also plays an important role (E0
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Fig. 5: Effect of both IP3 and the E0 on the Ca2+ concentration. The
Ca2+ concentration is highly dependent on the increasing factor of
IP3 and, therefore, so is the stability.

from Eq. 3). However since the synapses happen periodically,
we are more interested in how to design the control when the
synapses are activated.

The IP3 is then a decisive factor for Ca2+ regulation, in
which its increase is controlled by β. Such behaviour is going
to be further explored with a mathematical model that enables
the intracellular Ca2+ signalling control by regulating IP3

levels.

IV. FEED-FORWARD FEEDBACK CONTROL OF
INTRACELLULAR CA2+ SIGNALLING IN ASTROCYTES

Since IP3 activator nanoparticles can be inserted into the
cell, e.g. Carbon Black (CB), Titanium Dioxide (TiO2) or Zinc
Oxide (ZnO) [22], its regulation of Ca2+ concentration is more
suitable for in vivo scenarios. The approach we are proposing
may integrate nanoparticles to inhibit or activate Ca2+ as part
of the control model.

Fig. 6 shows the flowchart of the desired Ca2+ signalling
set point regulation, and the state feedback and feedforward
control function is represented as [20]:

β = βf −Kf (C − Cf ), (11)

where βf is the desired IP3 level, Cf is the desired Ca2+

concentration level and Kf is the adjustment constant. The
Eq. 11 has been initially proposed for disturbance rejection in
roll-to-roll manufacturing system [20]. They used the control
function of an increasing factor variable that can be related to
β. Also, since the nature of the problem investigated in this
paper is elimination of Ca2+ oscillations, it was clear that such
function would perfectly fit to our output control system.

A. βf and Cf Relationship

To eliminate dependency of multiple variables a mathemat-
ical relationship between βf and Cf is proposed. Suppose
equilibrium exists with (ho,co), then dh

dt = 0 at h = ho and
dC
dt = 0 at c = co. Rewriting Eq. 1 and Eq. 2, we obtain:
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Fig. 6: Ca2+ regulation flowchart based on the regulation of cytosolic
IP3. The input rate of IP3 is a function of the current cytosolic Ca2+

and the current IP3 levels, which makes it both a state feedback and
feed-forward control.

(v1 + zo(h
o)3)× (C0 − (1 + C1)co) =

V2(co)2

k2 + (co)2
, (12)

ho =
Qo

Qo + co
, (13)

zo = v

(
Io

Io + d

)3(
co

co + d3

)3

, (14)

Qo =
Io + d

Io + d2
d1. (15)

Now for Eq. 3, assuming that E0 = 1, we obtain:

dI

dt
=

(
i0
α

+ β

)
− I

α
. (16)

Solving Eq. 16 we thus obtain:

I = (i0 + αβ)(1− e−t
α ). (17)

As t− >∞, I becomes a constant Io, which is represented
as:

Io = (i0 + αβ). (18)

B. System Stability

Since the dynamics in Ca2+ signalling can lead to diseases
and also tissue death, a control model for such a system is
required for proper stability analysis, and this will be presented
in this section.

Consider a function f and g as follows:

f(x) = Ax+A2(x), g(x) = B +B2(x) (19)

where Ax is the linear part of f(x), A2(X) contains the
second and higher order terms of f(x), B = g(0), and B2(x)
contains linear and higher order terms of g(x).

Theorem 1: The system is stable if the matrix A − BK is
Hurwitz. Proof : Stability using Hurwitz matrix is defined as
Re[λi] < 0.

In order to proof this, first we need to find the values of the
matrix, which can be found in the following:

A =




∂f1
∂C

∂f2
∂C

∂f3
∂C

∂f1
∂h

∂f2
∂h

∂f3
∂h

∂f1
∂I

∂f2
∂I

∂f3
∂I




|c=0,h=0,i=0

(20)

where f1 = σ1 + σ2 − σ3, f2 = H−h
τ and f3 = 1

α (i0 − I) +
βH(E0 − 35).

Now, after solving the derivatives of matrix A we obtain,

A =



−v1(1 + C1) 0 0

0 −a× dd1
d2

a× d1(d2−d)
d22

0 0 − 1
α


 (21)

We can define matrix BK as,

BK =




0
0
1



{

(Bf +KfCf )−
[
KF 0 0

]


C
h
I


 (22)

Rewriting the matrix A−BK we obtain:



f1(C, h, I)
f2(C, h, I)
f3(I)




+




0
0
1



{

(Bf +KfCf )−
[
KF 0 0

]


C
h
I



}

(23)

The simplified matrix is represented as:

A−BK =



−v1(1 + C1) 0 0

0 −a× dd1
d2

a× d1(d2−d)
d22

−Kf 0 − 1
α




(24)
We use the determinant rule to calculate the eigenvalues

of A − BK and thus det [λΓ− (A−BK)] = 0. For this,
consider

λΓ− (A−BK) =


λ+ v1(1 + C1) 0 0

0 λ+ a× dd1
d2

−a× d1(d2−d)
d22

Kf 0 λ+ 1
α


 (25)

Finally, the eigenvalues can be computed as follows:

det [λΓ− (A−BK)] =

(λ+ v1(1 + C1))

(
λ+ a× dd1

d2

)(
λ+

1

α

)
= 0 (26)
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TABLE I: Simulation parameters for astrocytes.

Variable Value

v 6s−1

v1 0.11 s−1

c0 2.0µM
C1 0.185
v2 0.9 Ms−1

k 0.1µM
d 0.13µM
d1 1.049 s−1

d2 0.9434µM/s
d3 0.08234µM
a 0.2 s−1

α 1/0.00014µM
i0 0.160µM
β 0.1-1.5µM
E0 35

Based on this the eigenvalues are:(
−v1(1 + C1),−a× dd1

d2
,− 1

α

)
. Since all eigenvalues

are negative, this results in A−BK as Hurwitz.

V. ANALYSIS

We now present an analysis of the proposed regulation
of Ca2+ concentration levels for astrocytes. The analysis is
broken into four parts for a proper understanding of the system
and also quantification of the application impact if this control
technique is utilised. First, we start by showing how the
control system will eliminate intracellular Ca2+ oscillations
in astrocytes, solving the problem defined in Section III. This
is followed by the disturbance analysis, where Gaussian noise
is applied to the intracellular Ca2+ signalling for adding a
controlled abnormal behaviour to the system and observing
system effectiveness while looking at the feed-forward and
feedback techniques separately. Finally, analysis of two main
envisioned application are shown, which consist of a disease
prevention and a data rate performance improvement for a
molecular communication system that utilises Ca2+ signalling
for transmitting information.

A. Elimination of Intracellular Ca2+ Oscillations

As mentioned in Section III, the elimination of the intra-
cellular Ca2+ oscillation is a desired outcome of the control
process. For this we solved Eqs. 1, 2 and 3 using the variables
found in Table I. For the control technique, we replace the β
in Eq. 3 for Eq. 11, in order to integrate the feed-forward
feedback control element to the system. We chose a value of
Cf = 0.32 µM , which is a central value of the system, and
computed the desired βf with an appropriate calibration of the
Kf .

A total elimination of the Ca2+ oscillation is obtained using
the proposed mechanism and this is illustrated in Fig 7. The
Eq. 11, which represents the state feedback and feed-forward
control, can efficiently adjust β accordingly and maintain Ca2+

concentration levels throughout the time period shown. This
positive results demonstrates the effectiveness and potential
of utilizing the control technique to stabilize the excessive
Ca2+ concentration that may either lead to neurodegenerative
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Fig. 7: Elimination of Ca2+ oscillation using the proposed feedback
and feed-forward control technique. Regular Ca2+ oscillations C
(straight lines) is compared to a controlled Ca2+ level C∗ (dashed
line) for IP3 = 0.5 (µM ).

diseases or artificial molecular communication, which will be
further explored in the subsections.

B. Analysis of System Disturbance

Feed-forward control techniques are used in control theory
to stabilize disturbances within a system. The presented Ca2+

signalling model so far is absent of any disturbances or noise
component. In order to analyse the benefit of the feedback
control technique with and without feed-forward separately,
we integrate a noise component and determine the effective-
ness of the approach to stabilize the disturbance. To achieve
this, a disturbance component was added to Eq. 1, and this is
through addition of Gaussian noise [23]. This additional noise
will affect the Ca2+ level in the astrocyte cell’s cytosol.

As illustrated in Fig. 8, the feed-forward control is able to
main the levels of Ca2+ even with the additional Gaussian
noise. This is obtained by the relation of the current Ca2+

concentration levels with the desired level, and therefore,
through the adjustment of β this stability is achieved. This
demonstrates that by controlling the noise effects through the
control technique, excessive Ca2+ concentration levels from
additional noise can be stabilised.

C. Maintaining Stable Ca2+ Concentration

While the previous section presented the case of maintaining
stable Ca2+ concentration due to excessive noise, in this
section we discuss the impact of overall fluctuations in the
cytosolic concentration of the cell. The ability to maintain
stability of the cytosolic Ca2+ concentration levels in astrocyte
cells can not only maintain that healthy state of the cell but
also the synaptic transmission quality in the tripartite synapses.
In the event of fluctuations (extreme low or high) in the overall
concentration, this can lead to a number of neurodegenerative
diseases. For example, low Ca2+ concentration lead to cellular
death and poor functioning of neurons that cause depression,
whereas high Ca2+ concentration is linked with one of the
causes of Alzheimer’s disease [25], [26], [27]. For evaluation
of both extreme high and low concentrations, we developed a
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Fig. 8: The application of the Feed-forward technique to maintain the
desired levels of Ca2+ in the astrocytes’ cytosol.

simple model that shows the effectiveness of the control tech-
nique in maintaining the stable zones of Ca2+ concentration
levels.

We varied the beta in Eq. 3 from 0.1 to 0.9 µM and
compared the resulting Ca2+ concentration levels with the
feed-forward feedback control technique. In the case of when
no control is applied, the Ca2+ oscillations are expected.
Based on the oscillations, we selected the maximum and
minimum values of the final concentrations and used them
to define three regions: extreme high region, extreme low
region, and stable region. The extreme high region is any value
higher than the maximum Ca2+ concentration levels, while the
extreme low region is any value lower than the minimum Ca2+

concentration levels. The stable region, which represents the
safe level in the Ca2+ concentration, is in between the extreme
limits.

Regulation of Ca2+ concentration can effectively maintain
stability in the concentration within the safe region for all
IP3 values as illustrated in Fig. 9. The Cf from Eq. 11 was
selected based on the central value between the maximum and
minimum values of C. The βf was computed based on Cf and
by adjusting this, the system will adjust C to be matched with
Cf .

D. Data Rate of a Molecular Communication System

Molecular communication is a new communication
paradigm that facilitates for nanomachines in biological envi-
ronments to communicate. The Ca2+-signalling-based molec-
ular communication system has been proposed for cellular
tissues, where previous works have explored its performance
for various types of cells [28]. One of the issues regarding the
use of Ca2+ signalling for molecular communication is the
artificial stimulation of the ions for communication purpose,
as well as the excessive noise that can result in poor data rate
performance. The low data rate mainly results from the long bit
transmission periods (Tb) that have to wait in order to allow
the noise within the tissue to die before the following bits
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Fig. 9: Application of the control model to achieve the desired Ca2+

level compared to regions that can result in diseases. Extreme high
region is any value higher than the maximum Ca2+ levels, Extreme
low region is any value lower than the minimum Ca2+ levels, and
the stable region is the Ca2+ levels in between the maximum and
minimum values.

can be transmitted. Barros et. al. [29], [28], showed that large
Tb is desired to achieve reasonable communication capacity
but this results in poor data rate for most types of cells that
communicate using Ca2+ ions. Another reason for the long bit
transmission periods Tb is due to the refractory time of the
Ca2+ oscillation. The refractory time is an inherent process
found in Ca2+ intracellular signalling, where the concentration
of the fluctuating ions are required to stabilise before they
can be stimulated again. Our objective now is to see if
we can integrate the proposed feed-forward feedback control
technique to eliminate the refractory time.

To show the benefits of the proposed control technique for
molecular communication, we present a data rate analysis of
a single hop Ca2+ molecular communication system using
astrocytes. The data rate in such system can be computed
using: (1/Tb) ∗ Nb, where Nb is the number of bits trans-
mitted. We used three Tb values (5s, 10s, 50s) and compared
the performance for the case when the system integrates the
control model as well as without, and varying Nb in the
process.

As demonstrated in Fig. 10 the elimination of the refractory
time provides substantial benefit in improving the data rate
for all the Tb values. On average, the refractory time takes
up to five seconds to be completed. This time is needed for a
complete oscillation cycle from the signalling process of the
cell. However, such oscillatory process can also be eliminated
with the proposed feed-forward feedback control technique.
Then, higher data rate values are reached based on the usage of
the refractory time for the next bit transmission. For example,
with the highest values of data rate (Tb = 5s), without control
reaches a limit of 1000bps while with control reaches 2000bps.

VI. DISCUSSION

In this section, two main application are explored for
the proposed Ca2+ control method, including: prevention of
neurodegenerative diseases and molecular communication. We
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Fig. 10: Data rate performance of a Ca2+-signalling molecular
communication system with Tb values (5s, 10s, 50s). We compare
the performance when the feed-forward feedback control technique
is applied against the system with no control technique that has to
wait for longer refractory periods.

believe that a significant impact will be expected from the
utilization of the proposed method on those topics.

A. Prevention of Neurodegenerative Diseases

Approximately 24 million people worldwide suffer from
dementia or neurodegenerative diseases with an annual cost of
approximately $226 billion in the U.S. alone [30], [31]. Causes
of such remains unknown and only conventional symptomatic
treatment are available for improving the patients’ health.
This is achieved with drugs that target the symptoms alone,
neither treating the underlying disease or at best delaying
its progression. However, as they progress, brain cells die
and connections among cells are lost, causing the disease
symptoms to worsen [32].

A major issue with drug delivery techniques to the brain
is the numerous protective barriers that encapsulates the
central nervous system, and one of this example is blood-
brain barrier [32]. Overcoming the blood-brain barrier can be
achieved through biotechnology, synthetic biology, as well as
nanotechnology, and this can lead to efficient and directed
therapeutic tools. The control model proposed in this paper,
can be developed from a combination of nanoparticles that
are used to control the Ca2+ signalling, as well as synthetic
biology. In the case of synthetic biology, programming of cells
can be achieved that can also lead to stable levels of Ca2+ ions,
preventing fluctuations that may lead to diseases. There are a
number of works that have investigated mechanisms to use
synthetic biology to engineer neurons to prevent neurological
diseases. One example is optogenetics where neurons are
programmed to be sensitive to light at a certain wavelength,
providing a new alternative for externally controlled neural
stimulation.

B. Molecular Communication

The low performance data rate is a natural characteristic
of molecular communication systems due to many factors
including stochastic propagation delay as well as excessive
noise in the environments. These are due to the natural
biological processes that result in poor communication per-
formance. Therefore, integration of engineered processes will
be required to counter these natural processes that can affect
the performance. This engineering process will usually come
through integration of nanotechnology through components
and materials to control the biological process, or through
manipulation of cell using techniques from synthetic biology.

In Section V-D, we showed how the proposed control
technique is beneficial to limit the refractory period in order
to increase the data rate. However, the proposed control
approach is not limited to improving the data rate performance,
but also can be extended to perform other communication
functionalities that will improve the performance, such as
modulation and noise cancellation. Recent work has proposed
a modulation techniques for a Ca2+-signalling based molecu-
lar communication system [38]. Digital modulator such as On-
Off Shift-Keying (OOK) was used in conjunction with few error
control techniques. In [29], noise in Ca2+-signalling molecular
communication was studied and quantified showing that its
high concentration can negatively affect the communication
system performance. The noise will emanate at the transmitter
as the Ca2+ waves are stimulated, along the path as the waves
are propagated, and at the receiver as they stimulate Ca2+

ions to receive digital bits. Therefore, based on this scenario,
and also how we showed that noise can be limited through our
technique, the control model can be engineered into the cells of
the tissue to cancel noise as they propagate along the channel.
This can be achieved by limiting the quantity of IP3 for each
cell that represent the transmitter, along the propagation path,
as well as the receiver.

VII. CONCLUSION

In recent years, nanotechnology has brought together a
number of different disciplines including synthetic biology
and engineering, where the objective is to develop novel
health care solutions to detect, prevent and cure diseases. This
includes the field of molecular communication, where its aim
is to model and construct biological communication systems
for inter and intracellular cellular signalling. This new area
of research aims to develop new approaches for detecting and
preventing diseases that can emerge from impairments in the
communication process, as well as create artificial communi-
cations that connect a network of nanomachines. This paper
investigated one specific type of molecular communication that
utilises Ca2+ signalling between astrocyte cells and pre and
post-synaptic neurons. This three-way communication process
is known as tripartite synapse. In particular, we focus on
applying a feed-forward feedback control technique to main
stability of Ca2+ levels as intercellular signalling is conducted
between the cells. The application of the control model is two
folds: firstly, the regulation of Ca2+ concentration from the
signalling is demonstrated to maintain a stable level in order
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to minimise any fluctuations that can result in neurodegener-
ative diseases, and secondly, application to improve the data
rate performance for molecular communication using Ca2+-
signalling that are triggered from astrocyte cells. Previous
studies have shown that Ca2+-signalling in cellular tissue
can lead to large quantity of noise within the environment,
impairing the data rate performance. However, applying the
control model led to reduction in the refractory period of
the Ca2+-signalling which resulted in smaller time-slot for bit
transmissions. The control model proposed in this paper can
pave the way for novel techniques for disease prevention, as
well as mechanisms to improve the performance of molecular
communication systems. The proposed technique can also
integrate techniques for synthetic biology to program the cells
to integrate this control function.
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Chapter 9

Discussion

The research presented in this thesis has applied common theories from communication

engineering (e.g., characterisation of capacity, delay, noise of the channel) as well as commu-

nication networking protocols (e.g., transmission protocols), and tools from data analysis

(e.g., inference process) to Ca2+-signalling-based molecular communication systems. The

major challenge of this research is mapping these theories that are taking from conventional

communication systems, adapting them, and applying to the physical layer communication

process using Ca2+ ions. This chapter will summarise these contributions and in particular

discuss the insights from the results of the multi-disciplinary research of this thesis.

9.1 Communication-by-Silence in a Tissue

The thesis has analysed the noise that results from the Ca2+ signalling molecular communi-

cation systems, and how there are different types of noise depending on the location along

the tissue. This noise dramatically impacts on the subsequent bits that are to be transmitted

through the channel, and was discussed extensively in Chapter 5. While there are noise in

wireless networks, the major challenge is selecting the protocol from conventional networks

that suits the nature of the noise found in Ca2+-signalling-based molecular communication
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Fig. 9.1 Illustration of the communication-by-silence technique.

systems. The main difference is the time-variations, where in wireless networks, this is in

the order of micro to milliseconds, while in the case of Ca2+ signalling-based molecular

communication systems the noise in the channel can last up to a few sections. This means

that the channel is highly sensitive, and any protocol selected to improve the channel capacity

needs to minimise any additional transmissions that will lead to reflective noise. There-

fore, the solution taken by this thesis is to push all the computational load for improving

the performance into the transmitter and receiver nanomachine itself. By doing this, will

minimise the additional transmissions. Therefore, the most appropriate approach was to

use communication-by-silence that was proposed for wireless networks [106], and was also

proposed for diffusion-based molecular communication [33].

In communication-by-silence, the silence period between successive signals is itself

used to convey information. The communication process only requires two signals to be

transmitted, which meets the objective of minimising any transmission along the channel.

Figure 9.1 illustrates the described process.

The communication-by-silence technique improved data rate by 40 times compared to

the conventional communication encoding process for Ca2+-signalling-based molecular
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communication using OOK. The significant improvement of data rate is based on the number

of bits for transmission, total transmission duration, and the quantity of compression in the

tissue deformation. However, the question remains as to how this could be realised with the

current technologies for developing nanomachines to have counting capabilities and also

synchronised clocks. Although synthetic biology has provided means to program cells into

computing devices, the current engineering methodologies are far from achieving the clock

rate of silicon technologies. However, one approach to realise this is through the silicon chip

that can be embedded into the cells to represent transmitters and receivers [107].

9.2 Molecular Nanonetwork Inference Process

Numerous research efforts in recent years have been dedicated to technologies that enable

Tissue Engineering. Tissue Engineering combines methodologies from engineering and life

science to control and design tissues for organ construction [108; 109]. This technology

provides an alternative treatment for patients that suffer from organ and tissue failure or

shortage of organ donors [108; 110]. The naturally flexible structure of cells usually leads

to them dynamically changing shapes under strain and forces, where numerous diseases

are linked to the changes in the tissues structures. Therefore, detecting and inferring the

tissue deformation is very appealing, where more precise diagnosis of tissue-related diseases

can be achieved. This factor motivated the need to utilize Ca2+ signalling-based molecular

communication to infer and detect the state of the tissue, and this as achieved through the

Molecular Nanonetwork Inference Process.

Figure 9.2 shows the results for the inference accuracy for different tissue types. Mutual

information, mutual information with generalized entropy and information distance were

compared and analysed. The highest accuracy is achieved by the generalized entropy

with α = 10 for a five-node star topology. The mutual information I(X ;Y ), on the other

hand, resulted in the worst performance. This is attributed to the low divergent probability
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Fig. 9.2 Accuracy of inferring the type of deformation for a five-node star topologies.

distribution function, which results in the mutual information suffering from poor accuracy.

Therefore, this result confirms the fact that the accuracy of the generalized entropy with

high values of α performs better compared to other approaches. However, the presented

techniques can also be improved for more accurate inferencing processes with more complex

machine learning algorithms.

Embedding nanonetworks into the organs constructed from tissue engineering could

provide new dimensions for advanced patient care. Langer [111], commented that the use

of sensors embedded into tissues for monitoring and detecting illnesses can lead to Smart

Organs. This allows the usage of multiple transmitter nanomachine sending data to a common

receiver nanomachine. The collected monitoring data can also be transferred externally to

the human body through an interface compatible with the IoBNT. In this case, there is a

possibility of performing intense data processing based on external resources outside the

human body, such as the cloud. Many diagnosis, treatment, and prevention of diseases tools

can be explored and developed in the future using this proposed infrastructure.
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9.3 Performance Comparison Between Ca2+ Signalling in

Different Cellular Tissue Types

The performance comparison of the three tissue was investigated for four different metrics,

which includes spatio-temporal Ca2+ dynamics, molecular delay, molecular gain, information

capacity and intracellular interference. The analysis was concentrated on the following

properties of the cells in the tissues: diffusion velocity as ions pass through the gap junction,

the size, shape of the cell and their connectivity, and the gap junction behaviour for each

cell type. The difference in this comparative analysis compared to previous works on Ca2+

signalling-based molecular communications is integration of these properties and analysing

their relationships and its impact on the communication performance. Previous works have

only selected a single or a few properties to generalise the property of a tissue, which is not

realistic compared to the study conducted in this thesis.

In the literature for Ca2+ signalling, no comparison has been found to date for different

cellular tissue types that uses these ions for communication between the cells. This compari-

son is very important for the characterization of the cellular tissues properties in cell types

including excitable, non-excitable and hybrid cells. In particular since majority of the cells

on the body uses Ca2+ signalling as their communication model. This ranges from cells

found with the heart such as cardiomyocytes to epithelial cells of the skin. This motivated

the comparative study in order to demonstrate to the communication engineering community

how different cell types that communicate through the same signalling mechanism can lead

to different communication performance. This comparative analysis is highly beneficial for

the field of: 1) Biotechnology: This can lead to design of new therapeutic drugs that can

address diseases resulting from impaired Ca2+ signalling; and 2) Nanotechnology: design

of transmitter and receiver nanomachines that suit the channel characteristics and tissue

environments.
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9.4 Feed-forward Feedback Control Technique for Regu-

lation of Intracellular Ca2+ Signalling in Astrocytes

Providing reliable Ca2+-signalling-based molecular communication requires the increase of

Ca2+ concentration that is being transmitted. However, molecular communication engineers

have not take into account that high Ca2+ concentration can be hazardous to the tissue. This

increase in the concentration can lead to cellular tissue diseases, as well as the death of

cells. One example is the uncontrollable tissue growth with cancerous cells that is linked to

high Ca2+ concentration. Another example is neurodegenerative diseases, which is related

to the quality of the synapses in neuronal communication. However, a major challenge is

selecting the most appropriate control technique that is suitable for the behaviour of Ca2+

signalling and its impact on the gliotransmitters. The control technique that was selected

was the feed-forward feedback model. The impact of the feed-forward feedback control

technique on the oscillatory Ca2+ behaviour is shown in the following, Fig 9.3. The proposed

technique can efficiently maintain Ca2+ concentration levels throughout the time period

shown. This positive result demonstrates the effectiveness and the potential of utilising the

control technique to stabilise the excessive Ca2+ concentration.

Control theory has been used extensively in systems biology, and in particular to study

the performance of metabolic pathways and regulations from intracellular signalling within

the cells. However, very little attention has been paid to intercellular signalling. This is the

motivating factor of studying and incorporating control theory to improve the performance

of Ca2+ signalling-based molecular communication systems, but at the same time also to

relate this to prevention of neurodegenerative disease. Since synthetic biology as a field is

gaining popularity with new improved technologies to help engineer various types of cells,

this could be used to engineer astrocytes to incorporate genetic circuits that represent the

control required to maintain stable Ca2+ signalling.
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Chapter 10

Conclusion

Nanotechnology and biotechnology advancements allow intense development in diagnosis,

treatment and prevention of diseases that contributes to the field of nanomedicine. One of

the enablers that will see the success of nanomedicine application as well as open further

opportunities in the future is molecular communication. This communication can play a

role at the nanoscale where molecules interact with the nanomachine as part of the reaction

process with the environments (e.g., enzymes produced from diseased cells), or between

nanomachines to cooperate and increase their capabilities. The latter can lead to new

communication and networking paradigm at the nano and molecular scale, such as new forms

of sensing and actuation. These communication and networking of nanomachines is a small

subset of the vision of Internet of Bio-Nano Things, which will see engineered nanomachines

made from cells that can communicate to the outside world. The impact of this vision will

revolutionize healthcare systems by bringing low cost solutions for the wider population, as

well as improved accuracy in diagnosis that will improve life quality and expectancy.

This thesis concentrated on Ca2+-signalling-based molecular communication systems.

The Ca2+ signalling is a short range natural communication process between cells. In

particular, the focus of the thesis is in proposing a communication system for nanomachine

that are constructed from engineered cells. The communication process is achieved by having
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the transmitter nanomachine encode the information into the concentration of Ca2+ ions that

will propagate over the tissue, and get decoded at a receiver nanomachine.

Research contribution of this thesis are as follows:

A framework for Ca2+-signalling-based molecular communication system, that analyses

the capacity, molecular delay, and molecular gain for three different types of cells. The cells

include excitable cells (smooth muscle cells), non-excitable cells (epithelial cells), as well as

hybrid cells (astrocyte cells). The analysis for these metrics, considered the type of signalling,

which may be due to pure electrical, chemical, as well as a combination, the gap junction

behaviour for each type of cells, their connectivity, as well as their physiological shapes.

The main modulation type that was investigated was On-Off Keying, where the stimulation

of Ca2+ ions will represent a digital bit and a digital zero is an absence of any stimulation.

The contribution from this work is the communication performance analysis that will enable

future design of nanomachines, or nanonetwork applications, to created tailored systems that

suit specific type of applications.

Cells are subject to deformity and can affect the flow of ions that propagate through

the tissue, which means that it can affect the communication performance. This is on top

of the excessive amount of noise that emanate from stimulation of Ca2+ when digital bits

are transmitted. In order to counter this, the thesis explored transmission protocols that are

currently used in noisy environments of wireless networks. The specific protocol explored

was communication-by-silence, which is based on transmitting two bits (Start and Stop)

between a transmitter and a receiver, and utilizing a synchronised clock to count the values

that are to be sent. This form of modulation was most appropriate due to the noise within the

environment. At the same time, enhancements were made to incorporate dynamic time-slots

for each bit transmission depending on the compression of the tissue.

While the deformity exists, and the dynamic time-slots can be used to enhance the data

rate performance, there is a need for the transmitter nanomachines to know the state of the
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tissue to tune the time-slot duration. For this, the thesis proposed the use of an inference

process that will allow the transmitters to collect the data from the Ca2+ and infer the type and

quantity of deformation, locations with respect to the receiver, as well as the concentration of

Ca2+ ions transmitted. The Molecular Nanonetwork Inference Process is a technique based

on a machine learning algorithm that incorporates information metrics and a classification

process. In order to utilise this inference process, the thesis also considered an algorithm

that adapts the time-slots depending on the accuracy of the inference process to allow the

nanomachines to improve its data rate performance.

Since Ca2+ signalling can at time lead to disease due to the excessive quantity that

are propagated between the cells, the thesis explored the use of control theory to stabilise

the concentration for intracellular signalling. A feed-forward feedback control model was

proposed for tripartite synapse that exist between the astrocyte cells that communicate with

neurons (pre and post synaptic). Two applications of the control model were investigated,

which included preventive of neurodegenerative diseases, as well as improving the data rate

for Ca2+-signalling-based molecular communication system. In the first case, the control

model was used to maintain the concentration of intracellular signalling and preventing

it from reaching either extreme high or low, which in the second case, the control model

was used to limit the refractory process in order for the time-slots to be shorted and enable

improved data rate.

In the following section, the future work will be discussed where further research can be

built from the work that has been investigated and proposed in this thesis.

10.1 Future Work

Since the field of molecular communication is still in its infancy, and in particular Ca2+

signalling, there are a number of works that can be investigated in the future. This section

will outline a number of possible topics for the future research.
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10.1.1 Validation and Wet lab

The natural further step after the development of a theoretical framework is its validation. Wet

lab experiments of the proposed Ca2+-signalling-based molecular communication system

needs to be carried to ensure that the proposed theoretical work can lead to novel applications

of the future. This will involve close collaboration with molecular biologists working in

the area of Ca2+ signalling, synthetic biologists that can program cells into a computing

element that represent (transmitter and receivers), as well as researchers from the field of

nanotechnology who work on embedded chips that can be placed into the cells (this is for

the case where the transmitter and receiver are electronic chips that communicate through

interfacing the cells to stimulate Ca2+ ions).

10.1.2 Bio-computing using Ca2+-signalling-based Molecular Commu-

nication System

Bio-computation has been largely studied in bacteria and mammalian cells using transcription-

based boolean logic gates and circuits [112]. However, those techniques often take hours

to days in order to become active as the transcription machinery dictates the speed of

transcriptional-based logic operators. Trying to decrease the processing time of such bi-

ological computation, a multicellular system can be used based on enzyme-computation.

Multicellular computation is also required due to reliability purposes and can be achieved

through intercellular communication that can give an output on a hour-time scale. Thus,

a Bio-computing using Ca2+-signalling-based molecular communication system can be

appropriate approach. This will lead to molecular computing systems that are embedded into

the tissue.
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10.1.3 Tissue Engineering

Numerous research efforts in recent years have been dedicated to technologies that enable

tissue engineering. Tissue engineering combines methods of engineering and life science

in the control and design of tissues that can lead to organ construction [108][109]. This

technology provides an alternative treatment for patients with organ and tissue failure,

treatments that can alleviate issues relating to increasing costs of current treatments and the

shortage of organ donors [108][110]. Embedding nanonetworks into the organs constructed

from tissue engineering, could provide new dimensions for advanced patient care. Langer

[111], commented that the use of sensors embedded into tissues for monitoring and detecting

illnesses can lead to new generation of Smart Organs.

10.1.4 Prevention of Neurodegenerative Diseases

A major issue with drug delivery techniques to the brain is the numerous protective barriers

that encapsulates the central nervous system, and one of this example is blood-brain barrier

[113]. Overcoming the blood-brain barrier can be achieved through biotechnology, synthetic

biology, as well as nanotechnology, and this can lead to efficient and directed therapeutic

tools. The control model proposed in the thesis, can be developed from a combination of

nanoparticles that are used to control the Ca2+ signalling, as well as synthetic biology. In

the case of synthetic biology, programming of cells can be achieved that can also lead to

stable levels of Ca2+ ions, preventing fluctuations that may lead to diseases. There are a

number of works that have investigated mechanisms to use synthetic biology to engineer

neurons to prevent neurological diseases. One example is optogenetics where neurons are

programmed to be sensitive to light at a certain wavelength, providing a new alternative for

externally controlled neural stimulation. In this way, the extension of the proposed model is

going to be developed for measuring the gain in synapse transmission while controlling the

Ca2+ signalling in astrocytes, and preventing neurodegenerative diseases.
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