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Abstract

Learning Automata is extensively used as a tool by researchers to achieve solutions to various

problems pertaining to engineering. One such application is a learning automata based classi-

fication algorithm. However, at present, learning automata based classifiers have been limited

to only 2-class classification. In this research two learning automata based models, for multi-

class classification, have been presented. The performance of the proposed techniques has

been evaluated using data sets that are extensively used for benchmarking purposes. Since

the ultimate goal of an efficient model is to be accurate with low computational complexity,

both the performance and complexity of the proposed techniques have been evaluated us-

ing the benchmark data sets. Furthermore, the performance of the proposed model has been

compared to the performance of existing and extensively used machine learning algorithms on

the same benchmark data sets. Apart from modeling and testing the algorithms, the present

research also proposes a methodology for evaluating the performance of machine learning

algorithms. A detailed study of the existing performance evaluation techniques for machine

learning algorithms has been provided; highlighting their drawbacks and then proposing a

simple and efficient technique for evaluating their performance. For both pieces of the work,

i.e. both the proposed learning automata based multi-class classification algorithms and the

performance evaluation methodology, the theoretical analysis has been carried out in a tight

mathematical framework supported by simulation results. A theoretical background of learn-

ing automata has also been provided, along with a description of the evolution of the proposed

algorithms from the basics of learning automata theory.
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Chapter 1

Introduction

1.1 Background & Motivation

We are in the era of big data, due to increased human access to the Internet, automation

in industry and other factors. To give a few examples, one hour of video is uploaded to

Youtube, every second [1], Walmart manages more than one million transactions per hour [2],

and Walmart itself has 2.5 petabyte (1015 bytes) of storage for its user database [3]. With

this deluge of data, there is a great need for tools that can analyze the data. The patterns

that may exist in the data can assist in decision making processes, thereby providing benefits

to the end users. The subject that has emerged from finding the patterns existing in data, is

called machine learning. The most basic theoretical model of machine learning consists of an

agent or automaton and an environment. Typically, the responsibility of the environment is

to provide the data, based on which the agent makes decisions. The additional responsibility

of the environment is to evaluate the decision of the agent. Based on the nature of the

learning technique and the nature of the data, machine learning methods are divided into

three broad categories viz. supervised learning, reinforcement learning and unsupervised

learning. Supervised learning [4] is learning from the environment inputs, which are labeled

data. For unsupervised learning [5], the automaton forms the natural groups or clusters of

the environment unlabeled inputs. Reinforcement learning [6] involves sequential interaction

between an active decision making agent and the labeled input supplied by the environment.

In this work, the learning methods, comprising of data with labels, are considered.

The aim of all learning methods is to make the agent predict the data class labels ac-

curately, when the environment provides unseen or unknown data. To fulfill this, normally,

supervised learning methods train the agent with the available data and then apply the train-

ing experience on the unseen or unknown data. However, it is often impractical to obtain

data samples of desired behavior that are both correct and representative of all the situations

in which the agent has to act. Also, for supervised learning, when new data is available for

training, the learning process has to repeat the entire episode from the beginning. In other

words, for supervised learning the training has to be repeated for the older data, along with

the newly available data set. This type of supervised learning is called offline supervised

learning. Considering that we are living in the age of big data, offline supervised learning is

highly inefficient. To overcome this inefficiency, significant research is ongoing to generate the

equivalent online models, of their offline counterparts. One such way of converting an offline

supervised algorithm to its online version, is by enforcing a sliding window of length w and

repeating that in real time. However, the disadvantages of such a technique are:

• it is difficult to select the window length w [7, 8]; and
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• by this process, it is professed that training with the previous w samples are all equally

important, but the next data sample, just one step beyond, is not at all important.

Also, during the training phase of the supervised learning algorithm, the knowledgeable

external supervisor or the environment provides the agent with the correct decisions, which

then aligns itself in such a fashion, such that future predictions are accurate. In certain

scenarios, the environment can only evaluate the decision of the agent by sending a binary

signal, rather than the correct decision. In other words, if the agent’s decision is accurate,

the environment sends +1 and −1 or 0, if it is incorrect. This type of situation might arise

when the environment has to maintain the privacy of the data.

In reinforcement learning, an automaton predicts a class label based on data provided by

the environment, and then informs the decision back to the environment. The environment

evaluates the decision and either rewards or punishes the agent in the form of a scalar signal.

When the agent’s decision is accurate, normally the environment sends back a reward of +1

and for an incorrect decision, the agent gets 0 or −1. The objective of the agent in reinforce-

ment learning is to maximize the expected rewards or minimize the penalties respectively.

The interaction between the agent and the environment is sequential. When the agent is

supplied with a new data sample by the environment, it predicts the class label based on past

experience, accrues a reward or penalty from the environment and then subsequently mod-

ifies the experience. Thus reinforcement learning avoids repetition of computation with the

same data, whenever presented with a new sample, as was the case for the offline supervised

learning algorithms.

1.2 Thesis Contribution

In the context of online unsupervised learning, multi-class classification algorithms has a

subtle advantage of one-vs-all classification algorithms. The reason behind that is, in the

context of one-vs-all classification, the overall computational complexity increases with the

increase of the number of class labels in the data. However the multi-class classifiers are

immuned to this problem. The main contribution of this thesis is the modeling of learning

automata based multi-class classification algorithms and the analysis of their performances

in comparison to other widely used classification algorithms using the benchmark analysis on

four data sets from UCI Machine Learning repository.

The thesis also highlights a new methodology for evaluating the performance of classification

algorithms. The validation of the working principle of the proposed performance evaluation

technique has been carried out in tight mathematical framework.

1.3 Thesis Organization

In Chapter 2, a brief description will be presented on reinforcement learning. However, unlike

in most of the articles in this area, which emphasize supervised learning techniques and tend

to avoid reinforcement learning, in Chapter 2 the similarities between supervised learning and

the reinforcement learning technique, will be depicted.

The theory of learning automata is based on reinforcement learning, which has left an indeli-

ble imprint in the development of modern reinforcement learning research. In the early days

of its origin in Russia, learning automata theory was known for solving a non-associative,

purely selectional learning problem [9]. The theory of learning automata was later extended

to a more versatile and robust version, applicable in a number of areas in engineering [10]. A

learning automata based model, capable of handling contextual input, is available in [11].
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In Chapter 3 the selective, non-associative algorithms based on learning automata, are pre-

sented. Chapter 3 also presents the research responsible for the evolution of the associative

learning automata based algorithms, from the context of non-associative algorithms. Learn-

ing automata based classification algorithms were limited to 2-class classification. In Chapter

4, the existing learning automata based 2-class classification algorithms will be explained

followed by the description of learning automata based multi-class classification algorithms,

which are the primary contribution of this research. The algorithms will be referred as M-

RAMA, which stand for the acronym “Modified REINFORCE Algorithm for Multi-action

Automaton”. The performance of the algorithms, using a synthetic data set will be provided

in Chapter 4. In Chapter 5, the comparison of the performance of the proposed algorithms

compared to existing and extensively used classification algorithms, using benchmark data

sets is highlighted. This section also proposes a new methodology for evaluating the per-

formance of classification algorithms, which has subtle advantages over prevalent techniques,

and which is therefore also a novel contribution of this work.
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Chapter 2

Reinforcement Learning

Reinforcement Learning or learning by trial and error started in the psychology of animal

training [12] in as early as 1928. However, the stimulus-response observed phenomenon in

animal training was never developed into a mathematical model of the process. Clark L. Hull

in 1943 was the first person who proposed the scientific laws of behavior [13]. Subsequent

researches were carried out by William K. Estes [14], Cletus J Burke [15], Robert R. Bush

and Frederick Mosteller [16] and others.

Another thread of reinforcement learning is the pursuit of solutions to the problems per-

taining to optimal control, by using value functions and dynamic programming [17]. The

last, but no less important thread of reinforcement learning, is the thread of learning by

interaction, which was based on a technique popularly referred as the temporal-difference

method [18–21].

All of the references to past research mentioned here, that relate to reinforcement learning,

may differ in approach, but have a similar objective, which is to maximize or minimize the

average reward or penalty respectively. Although the thread of dynamic programming does

not involve active learning in a sense, nonetheless the convergence of all the references evolved

to produce the modern field of reinforcement learning.

In this paragraph, a concise theoretical description of the evolution of reinforcement learn-

ing will be provided, followed by a more quantitative description of the components of rein-

forcement learning in the next paragraph. For the time being, it is assumed that the decision

making task is controlled by the agent or automaton, and the environment is responsible for

the decision evaluation.

In an interacting scenario, an agent or automaton selects actions and, based on the selected

action, the environment sends an evaluative scalar feedback from a stationary probability

distribution. The problems of this type are called Bandit Problems, so named by the analogy

to a slot machine, where each play of one of the slot machine’s levers is similar to the agent’s

action, and the environment feedback is considered equivalent to hitting the jackpot. The

environment that evaluates the action, based on a stationary probability distribution, is

called a stationary environment and for a varied distribution, it is called a non-stationary

environment, which is discussed in the following paragraph.

In the generalized bandit problem, an agent at every instant has to select an action from a set

of n available actions. This type of problem is referred to as an n-armed bandit problem. The

scalar feedback received by the agent for a specific action, is called the value of that action.

The aim of the agent is to select the action that maximizes the expected reward over some

time period. To achieve this, the agent generally maintains the estimates of the action values

and at every instant it is preferable to select the action that has the highest estimated value.

The action which has the highest estimated value, is called a greedy action and the policy of
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selecting the greedy action based on past experience is referred as exploitation. Since the goal

of the agent is to maximize the expected reward, hence it might appear that exploitation is

the correct policy to achieve the goal. However, the policy of exploitation is disadvantageous

in scenarios where the agent is unaware of some values for actions which is not tried even for

ones, and those action values might be greater than the greedy action. To avoid this, it is

preferable to select a greedy action in most of the instances, but also to select a non-greedy

action with a small probability, (say ε). This enables the agent to test every available action

and thereby leaves scope to improve the accrued reward over the long run. This policy is

referred as the ε -greedy method. While selection of a greedy action is called exploitation, the

selection of a non-greedy action is referred as exploration.

Research on the trade-off between exploring and exploiting has been carried out in areas of

identification and control [22], in genetic algorithms [23] and in several other areas. The

theory of learning automata was developed to provide simple solutions for selection learning

problems, like the n-armed bandit problems. The advantage of learning automata over other

approaches of reinforcement learning for selection problems is that, apart from being simple,

the learning automata based models are executable even in low-memory machines.

For some cases, the interaction between the agent and the environment breaks naturally

into sequences and finally ends in a special state. Such sequences of interaction are called

episodes and the final terminating state is called the terminal or absorbing state. These pro-

cesses are collectively called episodic tasks or finite-horizon tasks. For other cases, interaction

between the automaton and the environment continues indefinitely and these processes are

called continuing tasks or infinite horizon tasks. For the episodic tasks, at every interaction

the agent is assumed to possess a representation of its state and, on that basis, selects an

action from the available set of actions. The current action then causes the agent to transit

to a new state. This decision of selecting an action based on the state is called the policy.

Hence, for the episodic tasks, at any instant t, for a selected action at by the agent, the en-

vironment gives an evaluative feedback consisting of both the reward or the penalty and the

transition state of the agent at the instant (t+ 1). If evaluative feedback of the environment

is dependent only on the last action and the state of the agent and is independent of the

any further past histories of the states and the actions, then the interaction is said to satisfy

the Markov property. A reinforcement learning process that satisfies the Markov property is

called a Markov Decision Process(MDP). C.J. Watkins [24] introduced the notion of MDP

in the context of reinforcement learning and the method is known as Q-Learning. Since the

environment informs the next state to which the agent will transit, based on the current state

and the current action, it is assumed that the environment has the information of the state

transition probabilities. More detail on this is provided in Section 3.2.2.

Most reinforcement learning algorithms estimate the value function, which estimates the

future expected reward that can be accumulated for a given action, in a given state, and

thereby follow a specific policy. Generally, the algorithms estimate the state-value function

or action-value function or both. The state-value function estimates the average future re-

wards that can be accumulated, while starting in a particular state; whereas the action-value

estimates the mean reward that can be accrued in the future, by taking a specific action

when in a particular state. By the law of large numbers, both the state-value function and

the action-value function for every state and action respectively, will converge to the true

averages, provided that the number of states and actions encountered, approach infinity.

A policy is said to be an optimal policy, if by following that policy, the optimal state-value

function attains the maximum possible value. In other words, a policy is said to be optimal,

if by following that policy, the transitions of states occur in a manner which enables the agent

to accrue the maximum possible discounted return. In a similar way, optimal policy can be
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defined using the action-value function. Richard Bellman proposed a relationship between the

value of a state and the values of its successor states for episodic problems, thereby recursively

finding the optimal state-value function. This relationship is known as Bellman’s equation

for state-value functions or Bellman’s optimality equation [17]. However, it was observed the

the policy attains optimality long before the convergence of the value functions and Ronald

Howard proposed a technique for finding the optimal policy called policy iteration [25]. Both

the optimal value iteration and the optimal policy iteration technique proposed by Bellman

and Howard require the environment’s state transition model to be available to the agent

beforehand. Bellman also coined the name dynamic programming, referring to a collection

of algorithms that can be used to compute optimal policies, given a complete model of the

environment as a Markov decision process. Bellman also concluded that the computational

requirements grow exponentially with the number of state variables, in problems of dynamic

programming, which he referred to as “the curse of dimensionality”.

Although dynamic programming is computationally complex, it does not involve any active

learning and also assumes a complete knowledge of states to be available to the agent, which

is not related to the exact theory of reinforcement learning, but is nonetheless studied in

every context of reinforcement learning. This is because Andrew Barto and Michael Duff [26]

showed the possibility of the policy evaluation in the context of Monte Carlo algorithms.

Monte Carlo methods do not assume complete knowledge of the environment and require

only experience. Hence, they are capable of operating online. Without any prior knowledge

about the environment, Monte Carlo methods are capable of obtaining the optimal value

function. In Monte Carlo methods, the agent uses the experience while interacting with

the environment by following some policy and updating the value function as the process

reaches the terminal state. In other words, Monte Carlo methods update the value function

incrementally on an episode-by-episode basis, using the estimated discounted rewards over

the entire episode.

However, Monte Carlo methods are not suitable for continuing tasks and also fail to work

in a non-stationary environment. Richard Sutton [21] proposed the TD(0) algorithm, which

updates the value function in the very next step using the immediate reward/penalty and

a constant step size learning parameter. Here TD stands for “Temporal Difference”. TD

algorithms are suitable for non-stationary environments and are capable both for continuing

and episodic tasks. The next step updating technique and the constant step size parameter

makes TD(0) an adaptive algorithm.

Until now, whichever algorithms of reinforcement have been discussed have been in the

context of a non-associative setting, i.e. the algorithms find the optimal policy, which maps

the agent’s actions to states that maximize the expected reward. However, in associative

settings, the environment sends the agent, situations in the form of a vector and the agent

decides the best action for that given context. When the environment context is available

beforehand then supervised learning algorithms happen to be the most suitable. In supervised

learning, a function is assumed to represent the action-context dynamics and, based on the

available context, the learning method constructs an approximation of the entire function.

This method is referred to as function approximation and is extensively used as a classification

technique. The function approximation technique can be used in reinforcement learning as

well. In a nutshell, the TD(0) method, coupled with function approximation, can assist

in building an online reinforcement learning based classifier. The assumed function can be

thought of as the value function, where the agent’s aim is to select the action, such that the

mis-classification error is reduced or the classification accuracy is increased.

For supervised learning, during the training phase a knowledgeable supervisor provides the

true class to the agent, which then minimizes the cost function, which is the difference between
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the true class and the predicted class. However, for reinforcement learning, the agent informs

the predicted class to the environment, which then evaluates the prediction and based on

the assessment, provides the agent either with a reward for correct prediction or a penalty

otherwise. Thus, in a way, although similarities exist between the reinforcement learning

approach in the form of employing function approximation for both cases, there are also

subtle differences between them; where the former technique comprises of a knowledgeable

environment, the latter can operate even with a naive environment.

Learning automata based 2-class classification algorithm has been proposed in [31]. Although

this research is an extension of [31], the present study depicts a learning automata based

multi-class classifier from the existing binary classifier, however, the probability generating

functions used in either research are entirely different. The former uses a sigmoid function as

the function approximation, whereas the latter uses a softmax function.
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Chapter 3

Learning Automata

Learning automata can vaguly defined as the theory that deals with the analysis and synthesis

of automata, which operate in unknown environments. In this chapter the different forms

of the constitutents of learning automata will be defined.

3.1 Environment

c = {c1, c2, ..., cr}

Environment

Input Set α = {α1, α2, ..., αr} Output Set β = {β1, β2, ..., βm}

Figure 3.1: The Environment.

Unknown media in which an automaton or a group of automata can operate is referred as

an environment. Mathematically, an environment is represented by a triple {α, c, β}, where

α = {α1, α2, ..., αr} represents a finite input set and β = {β1, β2, ..., βm} represents an output

set, where each βj ∈ [0, 1]. The set c = {c1, c2, ..., cr} represents the penalty probabilities,

where each element ci ∈ c corresponds to one input αi ∈ α.

Models of an environment, where the output can only attain two values 0 and 1, are referred to

as P-Models. In such models, at any discrete time t = n, n ∈ {0, 1, ...}, β(n) = 1 is identified

as an unfavourable response and β(n) = 0 a favourable response from the environment.

For an unfavourable output β(n) = 1, due to an input α(n) = αi, the penalty probability is

given by

P (β(n) = 1|α(n) = αi) = ci ∀i ∈ {1, 2, ..., r}. (3.1)

3.2 Automaton

Φ = {φ1, φ2, ..., φs}

Transition Function F : Φ× β 7→ Φ

Input set β = {β1, β2, ..., βm} Output Set α = {α1, α2, ..., αr}

Figure 3.2: The Automaton.
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The concept of an automaton, as understood in automata theory, is a very general

one encompassing a wide variety of abstract systems. It is represented by a quintuple

{Φ, α, β, F (·, ·), H(·, ·)}, where Φ is the set of internal states, β is the set of inputs, α is

the set of output actions, F (·, ·) : Φ× β 7→ Φ is the transition function that maps the current

state and the current input into the next state and H(·, ·) : Φ× β 7→ α is the output function

that maps the present state and input to the present action.

However, if the current output is only a function of the present state, then the automaton is

referred to as a state-output automaton. The output function of a state output automaton

is represented by G(·) : Φ 7→ α.

An automaton is called a deterministic automaton, if both F and G are deterministic

mappings and in such cases, for a given initial state and input, the succeeding state and

action are uniquely specified. If F or G is stochastic, the automaton is called a stochastic

automaton.

3.2.1 Deterministic Automaton

φ1 φ2 φ3 φ4

φ1 φ2 φ3 φ4

β = 0

β = 1

Figure 3.3: Transition graphs

φ1

φ2

α1 α2 φ3

φ4

Figure 3.4: Output graph.

When the input set β = {β1, β2, ..., βm} is finite, the mappings of a deterministic automa-

ton can be conveniently represented either in the form of matrices or of graphs. Consider an

automaton for which β = {0, 1} and α = {α1, α2} and Φ = {φ1, φ2, φ3, φ4}. The transition

function can be represented in terms of two matrices F (β = 0) and F (β = 1) where the

entries f
β(0)
ij and f

β(0)
ij are defined as,

fβij =

1 if φi 7→ φj for an input β,

0 otherwise.
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F (0) =



φ1 φ2 φ3 φ4

φ1 1 0 0 0

φ2 1 0 0 0

φ3 0 0 0 1

φ4 0 0 0 1

 F (1) =



φ1 φ2 φ3 φ4

φ1 0 1 0 0

φ2 0 0 1 0

φ3 0 1 0 0

φ4 0 0 1 0



Let, φ1, φ2 correspond to actions α1 and φ3,φ4 to α2 as shown in Figure3.4. Then the

elements gij of the matrix representing the output function G can be defined as,

gij =

1 if G(φi) = αj ,

0 otherwise.

Thus output matrix can be expressed as,

G =



α1 α2

φ1 1 0

φ2 1 0

φ3 0 1

φ4 0 1


Hence, a transition function F for a deterministic automaton can be represented by m ma-

trices of dimension s × s, where m and s represents number of inputs and number of states

respectively. Likewise, the output function G can be represented by an s × r matrix, where

r represents the number of available actions.

3.2.2 Stochastic Automaton

In stochastic automaton the mappings of at least one of the transition functions F and output

function G is stochastic.

When F is stochastic, given the present state and input, the next state is random and F

gives the probabilities of reaching the various states. Thus, F can be specified by a set of

conditional probability matrices {F (β1), F (β2), ..., F (βm)}, where each F (β) ,∀β ∈ β is an

s× s matrix. The elements of each F (β) is given by,

fβij = P{φ(n+ 1) = φj | φ(n) = φi, β(n) = β}, i = 1, 2, ..., s,

j = 1, 2, . . . , s,

β = β1, β2, ..., βm.

(3.2)

Example

From the graph as shown in Figure3.5 the selective elements of the transition function matrix

F are given as,

f034 = P{φ(n+ 1) = φ4 | φ(n) = φ3, β(n) = 0} = 0.75.

f121 = P{φ(n+ 1) = φ1 | φ(n) = φ2, β(n) = 1} = 0.25.

When the output function is stochastic, the elements of conditional probability matrix G

of dimension s× r representing the output function is given by,

gij = P{α(n) = αj | φ(n) = φi}, i = 1, 2, · · · , s,

j = 1, 2, · · · , r.
(3.3)
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Figure 3.5: Stochastic state transition graphs
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Figure 3.6: Stochastic output graph

From the output graph shown in Figure3.6, the elements of the output matrix can be calcu-

lated as follow,

g31 = P{α(n) = α1 | φ(n) = φ3} = 0.1.

Hence, to conserve probability measure we have,

s∑
j=1

fβij = 1, ∀β ∈ β, i.

r∑
j=1

gij = 1, ∀i.
(3.4)

3.2.2.1 State and Action probabilities

At any instant n, let the state probabilities of an automaton be represented by,

π(n) = [π1(n), π2(n), . . . , πs(n)]T . (3.5)

Also,

πj(0) = P{φ(0) = φj}

πj(n) = P{φ(n) = φj | β(0), · · · , β(n− 1)}.

Given the initial state probability π(0) and the input β(0) , the state probability vector at

an instant n = 1 is given by,

πj(n) = P{φ(1) = φj | β(0)}

=

s∑
i=1

P{φ(1) = φj | φ(0) = φi, β(0)}P{φ(0) = φi}

=

s∑
i=1

f
β(0)
ij πi(0).

(3.6)
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The vector form of Eq.3.6 can be expressed as,

π(1) = FT (β(0))π(0). (3.7)

Using the chain-rule, the state vector at any instant n can be written as,

π(n) = FT (β(n− 1))FT (β(n− 2)) · · ·FT (β(0))π(0). (3.8)

However, it is also possible to calculate the action probability vector p(n) whose ith component

pi(n) is given by,

pi(n) = P{α(n) = αi | β(0), . . . , β(n− 1)}, (i = 1, . . . , r). (3.9)

Also, Eq.3.9 can be expressed as,

pi(n) =

s∑
j=1

P{α(n) = αi | φ(n) = φj}P{φ(n) = φj | β(0) . . . , β(n− 1)}

=

s∑
j=1

gjiπj(n).

(3.10)

The total action probability vector can be expressed as,

p(n) = GTπ(n). (3.11)

3.2.2.2 Fixed structure and Variable structure Automata

An automaton can be classified in the set of fixed structure automata, if the conditional

probabilities fij and gij are independent of the instant n and the input sequence.

In a real world scenario, the input β(n) to the automaton changes with the instant n for an

output α(n) and in such cases it is always beneficial to update fij or gij for the automaton

to adapt to the system. The class of automaton where there is a provision for updating the

conditional probabilities is called a variable-structure stochastic automaton class.

3.3 Learning Automata System

A learning automata system consists of the Environment and Automaton connected in a

feedback arrangement, as shown in the block diagram in Figure3.7. The output, β(n), of the

environment forms the input to the automaton and the action(output), α(n), of the automa-

ton provides input to the environment.

Environment

{ c }

Learning Automaton

{ Φ, α, β, F ,H }

α(n) β(n)

Figure 3.7: Feedback connection of automaton and environment.

Starting from an initial state, φ(0), the automaton generates the corresponding action α(0),

which is provided to the environment as the input. Depending on the environment output

β(0), the automaton attains the present state φ(1). This sequence of operations is repeated

to result in a sequence of states, actions and responses of the learning automata system.

An automaton acting in an unknown random environment that tries to improve its perfor-

mance (in some sense), by interaction and a feedback strategy, is referred to as a Learning

Automaton.
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3.3.1 Learning Automata System Performance

At the beginning of the learning process, no prior information is available to the automaton on

the basis of which the different actions αi(i = 1, 2, . . . , r) can be selected. In such scenarios,

the most unbiased option of selecting an action is to choose each action with equal probability.

Thus the probability of the ith action is given by,

pi(n) =
1

r
i = 1, 2, . . . , r.

Such an automaton is called a pure chance automaton. To evaluate the performance of

any automaton operating in an environment at an instant n, as n→∞, this can be compared

to a pure chance automaton introduced in the system at that instant. However, to make such

a comparison, the environment must be considered stationary, i.e. the penalty probabilities

{ci, c2, . . . , cr} have to be independent of the instant n. Let M(n) represents the average

penalty at any instant n for a given action probability vector. Then the average penalty at n

can be expressed as

M(n) = E{β(n) | p(n)}

= P{β(n) = 1 | p(n)}

=

r∑
i=1

P{β(n) = 1 | α(n) = αi}P{α(n) = αi}

=

r∑
i=1

cipi(n).

(3.12)

For a pure chance automaton, the average penalty remains constant over time and is expressed

as,

M(0) =
1

r

r∑
i=1

ci,

= M0 (say).

(3.13)

However, as p(n), limn→∞ p(n) are random variables and consequently, M(n), limn→∞M(n)

are also random variables, hence, for proper evaluation of any automaton, one has to compare

the E[M(n)] with M0. Calculating E[M(n)] gives the following,

E[M(n)] = E{E[β(n) | p(n)]}

= E[β(n)]

= E[

r∑
i=1

cipi(n)]

=

r∑
i=1

ciE[pi(n)]

= c1E[p1(n)] + c2E[p2(n)] + . . .+ crE[pr(n)].

(3.14)

Definition 1.1: A learning automaton is said to be expedient iff ,

lim
n→∞

E[M(n)] < M0. (3.15)

From Eq3.12,

inf M(n) = inf
p(n)
{
r∑
i=1

cipi(n)}

= min
i
{ci}

[
∵

r∑
i=1

pi(n) = 1
]

, cl.

(3.16)
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Definition 1.2: A learning automaton is said to be optimal iff,

lim
n→∞

E[M(n)] = cl where, cl = min
i
{ci}. (3.17)

Definition 1.3: A learning automaton is said to be absolutely expedient iff,

E[M(n+ 1) | p(n)] < M(n) ∀n,

pi(n) ∈ [0, 1],

∀{ci}(i = 1, 2, . . . , r).

(3.18)

Taking the expectation of Eq.3.18 gives ,

E[E[M(n+ 1) | p(n)]] = E[M(n+ 1)],

Therefore E[M(n+ 1)] < E[M(n)]. (3.19)

Thus Eq.3.19 shows that E[M(n)] is strictly monotonically decreasing with n in all sta-

tionary environments.

3.4 Reinforcement Schemes: A brief introduction

In order to make an automaton expedient, rules must be specified for updating the probabil-

ity functions of the feedback based strategy of the LA systems that would result in E[M(n)]

attaining its minimum or maximum value depending on the nature of the problem.

The simplest idea behind the reinforcement scheme for updating the action probabilities for

any action αi, selected by an automaton at an instant n, which received a favorable input

β(n) = 0 from the environment, is that the action probability pi(n) is increased such that

pi(n + 1) ≥ pi(n) and all other components of p(n) are decreased. For an unfavorable input

from the environment, i.e. β(n) = 1 for an action α(n) = αi, the probability pi(n) is de-

creased such that pi(n + 1) < pi(n) and all other components of p(n) are increased. These

increases and decreases in pi(n) are called reward and penalty respectively. If p(n + 1) is a

linear function of p(n), then such a reinforcement scheme is said to be linear; otherwise it is

termed as nonlinear.

A reinforcement scheme where p(n+ 1) is linearly dependent on p(n) and the update scheme

follows the reward and penalty model, is collectively referred to as a Linear Reward-

Penalty scheme. In certain linear schemes, where, due to an unfavorable input from the

environment (β(n) = 1), the action probabilities for the instant (n+ 1) are retained at their

previous values, this is referred to as a Linear Reward-Inaction scheme.

With a similar proposition, the state transition probabilities can be updated. For instance,

if φ(n) = φi, φ(n + 1) = φj and β(n) = β, then fβij is increased if β = 0 and decreased

when β = 1. To preserve the probability measure, that
∑s
j=1 f

β
ij = 1, for all i ∈ (1, 2, . . . , s),

all other elements of the state transition matrix (F ) corresponding to the ith row must be

changed in the opposite fashion.

However, to reduce the complexity of the reinforcement schemes, it can be assumed that

each state corresponds to a distinct action and hence r = s. This assumption reduces the

evaluation of the number of functionals at an instant n, as the update of either the state

transition function or the action probabilities will then represent the entire scenario of the

feedback based LA system.

3.4.1 General Reinforcement scheme

A general update scheme, at an instant n, for a variable structure automaton operating in a

stationary P-Model environment, can be represented as follows:
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If

α(n) = αi (i = 1, 2, . . . , r),

• Case I: When β(n) = 0

pj(n+ 1) = pj(n)− gj [p(n)] ∀j 6= i,

pi(n+ 1) = pi(n) +

r∑
j=1
j 6=i

gj [p(n)].
(3.20)

• Case II: When β(n) = 1

pj(n+ 1) = pj(n) + hj [p(n)] ∀j 6= i,

pi(n+ 1) = pi(n)−
r∑

j=1
j 6=i

hj [p(n)].
(3.21)

The functions gj and hj ∀j ∈ (1, 2, . . . , r), as shown in Eq.3.20 and Eq.3.21, are referred to

as reward and penalty functions respectively.

The following section highlights the description of the process of representing the updating

schemes of an action probability sequence using a discrete-time Markov process.

3.4.2 Reinforcement Schemes as Markov Process

The vector p(n) defined in Eq.3.20 and Eq.3.21 is a random vector. If the automaton is

assumed to be operating in a stationary environment, i.e. ci∀i ∈ (1, 2, . . . , r), and the reward-

penalty functions g and h are independent of the stage number n, the probability p(n + 1)

is determined entirely by p(n) and hence {p(n)}n≥0 is a discrete-time homogeneous Markov

process.

At every instant n, the elements of p(n) ∈ [0, 1] and
∑r
i=1 pi(n) = 1. Hence the unit simplex

Sr , {p | pT = [p1, p2, . . . , pr], 0 ≤ pi ≤ 1,

r∑
i=1

pi = 1} (3.22)

represents the state space of the process {p(n)}n≥0. The interior where all pi ∈ (0, 1) is

denoted as S0
r .

Let ei represent the r-dimensional unit vector, where the ith element is unity and is represented

as eTi , [0, 0, . . . , 1, 0, 0]. Hence ei is the vertex of the simplex Sr. Let the set of all vertices

of Sr be represented by Vr such that

Vr , {e1, e2, . . . , er}. (3.23)

A state p∗ ∈ Sr is called an absorbing state if p(n) = p∗ ⇒ p(k) = p∗ with probability 1

(w.p.1) ∀k ≥ n. The reward and penalty function as shown in Eq.3.20 and Eq.3.21 can be

chosen in a manner so that reinforcement schemes have one or more absorbing states. Such

an updating algorithm is referred as an absorbing algorithm . Updating algorithms that are

devoid of absorbing states are called non-absorbing algorithms. The LR−P reinforcement

scheme falls under the category of non-absorbing algorithm and LR−I , is in the class of

absorbing algorithm.

In Section 3.4 a brief introduction to the Linear Reward-Penalty (LR−P ) scheme has been

highlighted and the following section will discuss in detail the reward and penalty functions,

as well as the other parameters for performance evaluation of the scheme.
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3.4.3 Linear Reward-Penalty Scheme

For mathematical simplicity, the automaton considered for analysis of the LR−P scheme is

considered to have only two actions. However, in a similar analysis to previously, it can be

extended to multi-action automata as well.

Let the reward and penalty function be represented by

gj(p(n)) = apj(j)

and hj(p(n)) = b(1− pj(n)),
(3.24)

where, 0 < a < 1 and 0 < b < 1 is referred to as the reward-penalty parameter.When

a = b, the reinforcement scheme is referred as symmetric LR−P scheme. For mathematical

simplicity, only symmetric LR−P will be analyzed in the present section, however the same

can be carried out for a general LR−P scheme in similar manner. For the instance when b = 0,

LR−P scheme boils down to LR−I reinforcement scheme.

Substituting the reward and penalty functions shown in Eq.3.24 for b = a into Eq.3.21 yields

the following.

If

α(n) = α1,

• Case I: When β(n) = 0

p1(n+ 1) = p1(n) + a(1− p1(n)),

p2(n+ 1) = (1− a)p2(n).
(3.25)

• Case II: When β(n) = 1

p1(n+ 1) = (1− a)p1(n),

p2(n+ 1) = p2(n) + a(1− p2(n)).
(3.26)

In a similar fashion the equations for updating the action probabilities can be expressed when

α(n) = α2.

By investigating the asymptotic behavior of the action probabilities of an automaton following

the LR−P scheme, it can proved that the scheme is expedient. To model the environment

where the automaton is present, it is assumed that the penalty probabilities are {c1, c2}.
A common method to investigate the asymptotic behavior of the action probabilities is to

calculate the conditional expectation of pi(n+ 1), given p(n). Hence for the LR−P scheme,

E[p1(n+ 1) | p(n)] = [p1(n) + a(1− p1(n))][p1(n)(1− c1) + p2(n)c2]

+ [(1− a)p1(n)][p1(n)c1 + p2(n)(1− c1)]

= [1− a(c1 + c2)]p1(n) + ac2.

(3.27)

Taking the expectation of both the sides of Eq.3.27

E[p1(n+ 1)] = [1− a(c1 + c2)]E[p1(n)] + ac2. (3.28)

The quantity in Eq.3.28 represents a linear difference equation and its general solution can

be expressed as

E[p1(n)] = [1− a(c1 + c2)]np1(0) +
ac2

a(c1 + c2)
. (3.29)

Hence,

lim
n→∞

E[p1(n)] =
c2

c1 + c2
if [1− a(c1 + c2) < 1]. (3.30)
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Similarly, it can be shown that

lim
n→∞

E[p2(n)] =
c2

c1 + c2
. (3.31)

From Eq.3.14

lim
n→∞

E[M(n)] = c1 lim
n→∞

E[p1(n)] + c2 lim
n→∞

E[p2(n)]

=
c1c2
c1 + c2

+
c1c2
c1 + c2

= 2
c1c2
c1 + c2

.

(3.32)

And from Eq.3.13

M0 =
1

2

2∑
i=1

ci

=
c1 + c2

2
.

(3.33)

Hence, E[M(n)] < M0 as n → ∞ and c1 6= c2 6= 0. Thus from the above analysis it can be

concluded that the LR−P scheme is expedient.

Figure 3.8: Probability of α1 versus trial instance

Figure 3.9: Probability of α2 versus trial instance

From Eq.3.25 and Eq.3.26 it can be observed that {p(n)}n≥0 is a discrete-time Markov process
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defined on the state space which represented by a unit simplex S2 : {p | p1+p2 = 1, p1, p2 ≥ 0}.
Since p1(n)(or p2(n)) changes, depending on the environment response due to the selection

of either α1 or α2, hence p(n) = ei does not guarantee p(k) = ei ∀k > n , provided ci 6= 0 ,

cj 6= 1 ∀i, j ∈ {1, 2} and i 6= j, where eT1 = [1, 0] and eT2 = [0, 1]. Thus, the LR−P reinforce-

ment scheme is a non-absorbing algorithm, as it is devoid of absorbing states and this will be

demonstrated with a simple simulation experiment in the following.

The simulation experiment considers an automaton consisting of two actions α = {α1, α2}
and operating in a stationary environment characterized by the penalty probabilities c =

{0.4, 0.8}. The action probabilities, p1(n) and p2(n) versus the iteration instances for LR−P ,

symmetric LR−P and LR−I reinforcement schemes are shown in Figure3.8 and Figure3.9 re-

spectively. It can be observed from the figures that as the learning progresses, the probability

of selecting the first action(p1(n)) increases and the probability of second action(p2(n)) de-

creases. This is because of the fact that the environment generates a lesser penalty for the

former over the latter. Neither of the LR−P schemes have absorbing states (theoretically this

has been explained earlier) which is also evident from Figure3.8 and Figure3.9. However, for

the LR−I scheme, as learning progresses, the probability of selecting α1 attains a maximum

value of 1 and that of α2 a possible minimum value of 0, which confirms that the scheme

has absorbing states. Since, the LR−I scheme has absorbing states, hence its performance

is better over the LR−P scheme when operating in a stationary environment. However, the

absorbing algorithms e.g. the LR−I reinforcement scheme are inexpedient for non-stationary

environments, as for these algorithms once the absorbing state is attained, the action prob-

abilities remain unchanged even with the change in the environment penalty probabilities.

Further details on the topics explained in this Section can be found in [10,27–29].

3.5 Non-stationary Environments

Earlier linear reinforcement schemes for an automaton operating in a stationary environment

have been described. As mentioned in the preceding section, an environment is said to be

stationary if the penalty probability ci for an action αi (i = 1, 2, . . . , r) is invariant of the

stage n. In the present section, the reinforcement scheme for an automaton operating in a

non-stationary environment will be detailed. An environment is referred to as non-stationary

if the penalty probability ci corresponding to any action αi (i = 1, 2, . . . , r) varies with time

(or equivalently stage number n). Thus, as an environment response changes, the ordering

of the automaton actions with respect to the performance criterion (E[M(n)]) may vary. If

a learning automaton operates with strategies mentioned earlier in such an environment, it

may become less expedient and even inexpedient. For modeling, the simplest non-stationary

environment is to consider that c(n) can assume s number of values, where s ∈ Z and s <∞.

This implies that the automaton operates in one of a finite set of stationary environments

Ei(i = 1, 2, . . . , s), where Ei represents the ith state of the environment E. Assuming that

the automaton A comprises of s sub-automata, each sub-automaton Ai is deployed in a

stationary environment Ei and updates its action probabilities based on the response of the

environment corresponding to an action αij(j = 1, 2, . . . , r). Further, it is also assumed that

each sub-automaton has an identical reinforcement scheme and the automaton is aware of

the specific environment into which it is operating at any instant.

The assumptions and the methodology mentioned earlier decompose the variability of a non-

stationary environment into a finite number of stationary environments. However, the process

suffers from two principal drawbacks.

• Assigning a separate automaton Ai for every environment Ei is practically infeasible

23



for very large s. Further, since the action probabilities of an automaton Ai are updated

if and only if it is operating in an environment Ei, an insufficient number of switching

instances in the environment Ei may lead the action probabilities of Ai not to converge.

• It has been assumed that the automaton is aware of the environment Ei, in which it

is operating at any instant. This assumption is not pragmatic and in many real world

scenarios this requirement may not be satisfied.

Keeping in mind the drawbacks of the proposed methodology, a learning algorithm will be

highlighted in the Chapter 4 to circumvent these disadvantages.
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Chapter 4

Learning Automata based

classifiers

In Chapter 3 the basic models of learning automata, pertaining to optimal action selection,

have been mentioned. Also, it has been highlighted that those models are insufficient for

tackling non-stationary environments. In this chapter, models that can handle non-stationary

environments will be discussed. It will also be argued that these learning automata based

models, which have evolved for tackling non-stationary environments, are indeed suitable for

classification tasks as well.

4.1 Parameterized Stochastic Learning

In Chapter 3, the drawbacks of decoupling the scenario where an automaton operating in

a non-stationary environment, with multiple automata acting in a finite number of station-

ary environments, has been presented. In this section, an algorithm is presented, based

on parameterizing the action probabilities and constructing mapping vectors representing

the environment states. At any instant n the environment provides the automaton an in-

put x(n) ∈ X, where x(n) ∈ Rl. x(n) is called a context or feature vector and X,

the context or feature space of the environment E. The automaton selects an action

α(n) ∈ {α1, α2, . . . , αr}, which is provided as input to the environment. The probability of

selecting an action α(n) = αi(i = 1, 2, . . . , r) for a given context x(n), at an instant n, is

given by pi(x(n), n). Based on the action α(n) and the context vector x(n), the environment

sends a reinforcement signal β(n) ∈ {0, 1}, to the automaton. The process of associating an

action with the environment context, is termed as associative reinforcement learning.

The penalty probability for an associative reinforcement learning unit can be expressed as

cij = Pr{β(n) = 1 | x(n) = xi, α(n) = αj} i ∈ {1, 2, . . . , s},

j ∈ {1, 2, . . . , r}.
(4.1)

The aim of the learning process is to respond to each context vector xi, with an action αj , with

probability 1, which can be achieved using some reinforcement scheme. A common updating

algorithm, based on the reward-penalty model, for the associative reinforcement learning

process of a two action automaton, is often referred to as an associative reward-penalty,

(AR−P ), scheme. In the following section, a detailed analysis of the AR−P scheme will be

provided, explaining the process of making an automaton, operating in a non-stationary

environment, expedient.
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4.2 Associative Reward-Penalty Scheme

As mentioned earlier, a reinforcement scheme based on contextual information and the reward-

penalty model for a two action automaton is commonly termed as an associative reward-

penalty(AR−P ) scheme. The context space X, of the non-stationary environment E, is the

union of all the context vectors. Mathematically, the context space can be expressed as

X = ∪si=1xi, where xi ∈ Rl and s represents the number of states of the environment. The

set of actions of an automaton at any instant n is represented by {α1, α2} and the probability

of each action is represented by p(αj | xi). To conserve the probability measure,

2∑
j=1

p(αj | xi) = 1 ∀i ∈ {1, 2, . . . , s}. (4.2)

Let a vector θ ∈ Rl represent the internal state of the automaton and is termed as a pa-

rameter vector. The probabilities of the actions at any instant n are calculated based on

the value of θ(n), using a function f(θ(n), x(n) = xi), which is called a parameterizing

function. The parameterizing function is defined as,

f(θ, x) = θTx, (4.3)

such that f(θ, x) ∈ [−1, 1].

At any instant n, given the context vector x(n) = xi the selection of any action α(n) is

expressed as

p(α(n) = α1 | xi) = 1 and p(α(n) = α2 | xi) = 0 if f(θ(n), x(n) = xi) + η(n) > 0

p(α(n) = α1 | xi) = 0 and p(α(n) = α2 | xi) = 1 if f(θ(n), x(n) = xi) + η(n) ≤ 0,

(4.4)

where η(n) are independent and identically distributed (i.i.d.) random variables, within an

interval [−1, 1], with a known distribution Ψ. Although the utility of the distribution function

Ψ may not be clear at this juncture, however is it will be clear at the later part of this segment.

At this point it should be borne in mind that since Ψ is a part of the automaton rather than

the environment, hence it is a known function.

If it is assumed that there exists at least a θ∗ ∈ θ, such that the hyperplane defined by

θ∗
T

x = 0 divides the context space X into two regions, such that α1 is the optimal action

when θ∗
T

x > 0 and α2 is the optimal action when θ∗
T

x ≤ 0. In order to search θ∗, there is a

necessity to design an algorithm using the feedback based strategy of the learning unit.

Let

α(n) =

1 if α(n) = α1,

−1 if α(n) = α2.
(4.5)

At each instant the automaton selects an action α(n) = αi(i = 1, 2), based on the decision

shown in Eq.4.4 and the environment sends back a feedback signal β(n) ∈ {−1, 1}, where

β(n) = 1 denotes a favorable response and unfavorable, otherwise.

In the remaining part of this section, the updating algorithm of the AR−P scheme will

be highlighted and its similarities with the LR−P algorithm, by assigning Ψ with a specific

distribution, will be depicted.

The reinforcement algorithm for the AR−P scheme is expressed as

θ(n+ 1) = θ(n)− ρ(n){E[α(n) | θ(n), x(n)]− β(n)α(n)}x(n) when β(n) = 1,

θ(n+ 1) = θ(n)− λρ(n){E[α(n) | θ(n), x(n)]− β(n)α(n)}x(n) when β(n) = −1.
(4.6)

where 0 < λ ≤ 1, ρ is a decaying step size, s.t. ρ ≥ 0,
∑
n ρ(n) = ∞ and

∑
n ρ(n)2 ≤ ∞.

From Eq.4.4, Eq.4.5 and Eq.4.6 it can be seen that for E[η(n)] = 0, if θTx > 0, then action
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α(n) = α1 is the probable action and α(n) = α2 otherwise. Now let us consider distribution

function Ψ is as follows

Ψ(r) = Pr{η(n) ≤ r} =

 r+1
2 − 1 ≤ r ≤ 1

0 otherwise.
(4.7)

From Eq.4.7 and Eq.4.5,

p(α(n) = −1) = Pr{θ(n)Tx(n) + η(n) ≤ 0}

= Ψ(−θ(n)Tx(n)).
(4.8)

and

p(α(n) = 1) = Pr{θ(n)Tx(n) + η(n) > 0}

= 1−Ψ(−θ(n)Tx(n)).
(4.9)

From Eq.4.8 and Eq.4.9

E[α(n) | θ(n), x(n)] = −1.p(α(n) = −1) + 1.p(α(n) = 1)

= −Ψ(−θ(n)Tx(n)) + 1−Ψ(−θ(n)Tx(n))

= 1− 2Ψ(−θ(n)Tx(n))

= 1− 2

[
−θ(n)Tx(n) + 1

2

]
= θ(n)Tx(n).

(4.10)

Now, consider the scenario when the action chosen by an automaton α(n) = α1 and the

environment response β(n) = 1, at any instant n, then from Eq.4.9

p(α(n+ 1) = 1) = 1−Ψ(−θ(n+ 1)Tx(n))

= 1− 1 + (−θ(n+ 1)Tx(n))

2

=
1 + θ(n)Tx(n)− ρ(n)‖x̂‖2(θ(n)Tx(n)− 1)

2
from Eq.4.6),

= 1− 1− θ(n)Tx(n)

2
+
ρ(n)‖x̂‖2(1− θ(n)Tx(n))

2

= 1−Ψ(−θ(n)Tx(n)) + ρ(n)‖x̂‖2Ψ(−θ(n)Tx(n))

= 1−Ψ(−θ(n)Tx(n)) + ρ(n)‖x̂‖2Ψ(−θ(n)Tx(n)) + ρ(n)‖x̂‖2 − ρ(n)‖x̂‖2

= 1−Ψ(−θ(n)Tx(n))− ρ(n)‖x̂‖2(1−Ψ(−θ(n)Tx(n)) + ρ(n)‖x̂‖2

= p(α(n) = 1) + ρ(n)‖x̂‖2(1− p(α(n) = 1)).

(4.11)

So, for 0 ≤ ρ(n)‖x̂‖2 ≤ 1 in Eq.4.11, the AR−P algorithm reduces to the LR−P scheme, as

shown in Eq.3.25 and Eq.3.26. However, for a different and specific distribution of Ψ and

choosing λ = 0 in Eq.4.6, it can be shown that the AR−P algorithm boils down to LR−I

algorithm.

Since the AR−P algorithm use a step size ρ(n), which asymptotically decays to zero, i.e.

ρ(n)→ 0 as n→∞ and hence is not suitable for online adaptation to problems, where there

could be slower variation of parameters than estimated. Hence, the use of algorithms with

a constant step size is necessary in such real-time scenarios, where there is a requirement

for online adaptation. Another limitation of the AR−P algorithm is that the reinforcement

scheme is feasible only for a two-action automaton, which may not be true in practice, where

an automaton is required to have multiple actions. Further details of the AR−P reinforcement

scheme and its potential applications can found in [11].

In the following section, a version of associative learning will be considered, involving a

constant step size in the reinforcement scheme, which is appropriate for online adaptation.
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Figure 4.1: A LA system comprising of a single learning unit

4.3 REINFORCE Algorithm

In earlier sections it has been mentioned that the aim of all reinforcement schemes is to min-

imize (or maximize) the expected penalty (or reward), by selecting an appropriate action at

every instant n. In the preceding section, the AR−P reinforcement scheme has been described.

However, the algorithm suffers from a major problem, that it is not appropriate for online

adaptation. In this section, a reinforcement scheme, suitable for handling the environment

context and also capable of online adaptation, will be described. A generalized REINFORCE

updating scheme is usually explained by using a feedforward network, consisting of multiple

learning agents. However, for the sake of simplicity and since a feedforward network compris-

ing of a single learning agent is enough to serve our requirement, the REINFORCE algorithm

will be explained using a single learning automaton only.

Let g(ζ, θ, x) = P{α(n) = ζ | θ, x} represent the probability mass function that determines

the probability of selecting an α for the automaton at any instant n, depending on the param-

eters and the incoming environment context. Based on the automaton output α(n) at any

instant n, the environment evaluates it and sends a reinforcement signal β to the automaton.

The probability mass function for determining the automaton output is often called the prob-

ability generating function and the environment generated reinforcement signal is termed the

scalar reinforcement signal.

The probability generating function is assumed to be a Bernoulli distribution which is ex-

pressed as

g(ζ, θ, x) =

1− p if ζ = 0,

p if ζ = 1,
(4.12)

where the quantity p is computed in the following manner,

p = f(s),

s = θTx =

l∑
i=1

θixi.
(4.13)

This special case of probability generating function, where the output values are 0 and 1,

depending on the probabilities defined in Eq.4.12, is called the Bernoulli semi-linear unit.

The function f defined in Eq.4.13 is called a squashing function and a commonly used version
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of this, is a logistic function defined by

f(s) =
1

1 + e−s
. (4.14)

At every instant n the automaton updates its internal state represented by θ depending on

the environment generated scalar reinforcement β. The updating scheme is defined as

θi(n+ 1) = θi(n) + a(β(n)− bi)ei, (4.15)

where a is a learning rate factor, bi is the reinforcement baseline and ei = ∂
∂θi

lng is called

the characteristic eligibility of θi. The learning rate, as in earlier reinforcement schemes, is

0 < a ≤ 1. The update scheme name REINFORCE is an acronym for ”REward Increment

= Nonnegative Factor * Offset Reinforcement * Characteristic Eligibility”. From Eq.4.12

the characteristic eligibility ei can be represented as

∂

∂p
lng =

 1
p if α(n) = 1,

− 1
1−p if α(n) = 0.

(4.16)

where p 6= 0 and p 6= 1. The characteristic eligibility can be expressed in a generalized form

as

∂

∂p
lng =

α(n)− p
p(1− p)

. (4.17)

From Eq.4.13

dp

ds
=
df(s)

ds
= f ′(s) and ,

∂s

∂θi
= xi,

Therefore dp = f ′(s)ds = f ′(s)xi∂θi. (4.18)

Substituting Eq.4.18 in Eq.4.16

1

f ′(s)xi

∂

∂θi
lng =

α(n)− p
p(1− p)

,

=⇒ ∂

∂θi
lng =

α(n)− p
p(1− p)

f ′(s)xi.

(4.19)

The derivative of the function f(s) can be calculated using Eq.4.14 and is as follows

p = f(s) =
1

1 + e−s
,

=⇒ 1− p =
1 + e−s − 1

1 + e−s
=

e−s

1 + e−s
= e−sp.

Let

1 + e−s = z =⇒ −e−sds = dz.

Therefore

f(s) =
1

z
implies f ′(z) = − 1

z2
,

Hence f ′(s) = − −es

(1 + e−s)2
=

1

(1 + e−s)
.

e−s

(1 + e−s)
,

= p(1− p). (4.20)

Substituting the derivative of f(s) from Eq.4.20 in Eq.4.18

∂

∂θi
lng =

p(α(n)− p)(1− p)
p(1− p)

xi,

= (α(n)− p)xi.
(4.21)
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Substituting the value of the character eligibility ei of Eq.4.21 in Eq.4.15

∆θi(n) = a(β(n)− bi)(α(n)− p)xi, (4.22)

where ∆θi(n) = θi(n+1)−θi(n). It can be shown that the unbiased estimate of ∂E{β|θ}∂θi
equals

the quantity [(β(n)− bi)(α(n)− p)xi], and hence from Eq.4.22 it implies that the update of

the automaton internal states θi occurs in a manner, such that the performance measure is

increased. A detailed analysis of the REINFORCE algorithm can be found in [30]. However,

the REINFORCE algorithm shows unbounded behavior when there are no local maxima of

E[β | θ]. This is explained in the following using a simple example.

Example Consider an automaton unit interacting with the environment that has a set of

context vectors x = {x1, x2}, where x1 = (0, 1)T and x2 = (1, 0)T and where the context

vectors are assumed to arrive with equal probabilities. Also the set of actions of the automa-

ton is represented as y = {α1, α2} and the set of automaton internal states is θ = {θ1, θ2}.
Finally, the expected value of the reinforcement is given as

d(α1, x1) = d(α2, x2) = 1− d(α2, x1) = 1− d(α1, x2) = 0.9.

From Eq.4.12, Eq.4.13 and Eq.4.14, the probability generating function can be expressed as

g(α1, θ, x) =
1

1 + e−θT x
,

g(α2, θ, x) = 1− 1

1 + e−θT x
.

(4.23)

Given the expected reinforcement, then the expected scalar reinforcement signal (SRS) from

the environment can be expressed as

E[β | θ] =
1

2

(
E[β | θ, x1] + E[β | θ, x2]

)
=

1

2

(
E[β | θ, x1, α1]g(x, α1, θ) + E[β | θ, x1, α2]g(x, α2, θ)

+ E[β | θ, x2, α1]g(x, α1, θ) + E[β | θ, x2, α2]g(x, α2, θ)
)

=
1

2

( 0.9

1 + e−θ2
+ 0.1[1− 1

1 + e−θ2
] +

0.1

1 + e−θ1
+ 0.9[1− 1

1 + e−θ1
]
)

=
1

2

( 0.9

1 + e−θ2
− 0.1

1 + e−θ2
+

0.1

1 + e−θ1
− 0.9

1 + e−θ1
+ 1
)

=
0.4

1 + e−θ2
− 0.4

1 + e−θ1
+ 0.5. �

Thus, using the previous derivation, the gradients of the SRS with respect to the automa-

ton internal states can be calculated as follows

∂E[β | θ]
∂θ1

= − 0.4e−θ1

(1 + e−θ1)2
,

∂E[β | θ]
∂θ2

=
0.4e−θ2

(1 + e−θ2)2
.

(4.24)

Defining continuous time interpolations θa(·) of θ(·) for a specific learning rate a > 0 as

θa(t) = θ(n) for t ∈ [an, a(n+ 1)]. (4.25)

Then using the weak convergence techniques, it can be shown that the sequence θa converges

weakly, as a→ 0, to z(·), where z(·) satisfies the ODE

ż = ∇θE[β | θ], z(0) = θ(0). (4.26)
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Thus from Eq.4.24 and using Eq.4.26, the corresponding ODE can be expressed as

dθ1
dt

=
∂E[β | θ]
∂θ1

= − 0.4e−θ1

(1 + e−θ1)2
,

dθ2
dt

=
∂E[β | θ]
∂θ2

=
0.4e−θ2

(1 + e−θ2)2
.

(4.27)

The pair of decoupled ODEs in Eq.4.27 show that θ1 and θ2 decreases and increases respec-

tively, without bound. θ1 diverges to −∞ and θ2 to +∞. Thus, from the mathematical

viewpoint mentioned above, it can be concluded that the REINFORCE algorithm exhibits

unbounded behavior, which is undesirable. In the next section an algorithm will be proposed

that will overcome the limitations of the REINFORCE algorithm.

4.4 Modified REINFORCE algorithm

As mentioned earlier, the aim of the REINFORCE algorithm is to maximize the expected

reward E[β | θ] over the entire space θ. However, the REINFORCE algorithm exhibits

unbounded behavior and the explanation has been mentioned in the previous section. To

mitigate this problem, one way is to modify the problem of unconstrained maximization to a

constrained maximization problem. The modified version of the REINFORCE algorithm is

commonly referred to by using the same name, but with the addition of “Modified”, before

it.

The updating scheme of the Modified REINFORCE algorithm is as follows

θi(n+ 1) = θi(n) + aβ(n)ei + aKi[hi(θi(n))− θi(n)], ∀i = (1, 2, . . . , l), (4.28)

where h(θ) = [h1(θ1), h1(θ1)], . . . , hl(θl) and the function hi is defined as

hi(η) =


Li for η ≥ Li

η for |η| ≤ Li

−Li for η ≤ −Li

and Li, Ki > 0 are constants. The nature of the window function h(η) is displayed in

Figure4.2

Figure 4.2: The window function hi(η)

The addition of the constraint to the conventional REINFORCE algorithm is represented

by the third term in Eq.4.28. Thus, the third term acts as a penalizing function in such a
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manner that it pulls back the internal state values to remain in the window −Li ≤ η ≤ Li. For

a detailed reading on the Modified-REINFORCE algorithm, article [31] can be referred.The

algorithms discussed so far consider that an automaton has the option of selecting an action

out of an available two actions at every instant n.

The contribution in this thesis is to extend the Modified REINFORCE algorithm for a multi-

action automaton. In earlier sections it has been mentioned that the selection of an action

α(n) at any instant n is determined by an action probability generating function and the same

for the REINFORCE algorithm is represented by Eq.4.12. Thus, for this approach it can be

borne in mind that extending the modified REINFORCE algorithm requires a change in the

probability generating function and in the following section it will be discussed in detail.

4.5 Modified REINFORCE Algorithm for Multi-Action

Automaton

As mentioned in the preceding sections, the algorithms highlighted have been investigated

only for an automaton having only two actions. In this section an action probability will be

proposed that can extend the algorithms to include multi-action automaton.

For an automaton with r actions, the set of actions is represented by α = {α1, α2, . . . , αr} and

therefore, the matrix representing the internal states of the automaton will have r×l elements,

where l represents the number environment context. The internal state of the automaton at

any instant for an action α(n) = αi is represented by θi = {θi1, θi2, . . . , θil}, where i ∈
{1, 2, . . . , r}. The probability of selecting an action α(n) at any instant is determined by the

action probability generating function, represented by

g(α(n) = αi, x, θ) =
eθ

T
i x∑r

j=1 e
θTj x

. (4.29)

Let the quantity in the numerator of Eq.4.29 be represented as z =
∑r
j=1 e

θTj x. The charac-

teristic eligibility can be expressed as

∂

∂θi
lng(αi, x, θ) =

1

g(αi, x, θ)

∂

∂θi
g(αi, x, θ)

=
1

g(αi, x, θ)

∂

∂θi

eθ
T
i x

z

=
1

g(αi, x, θ)

zxeθ
T
i x − eθTi xxeθTi x

z2

=
xeθ

T
i x

g(αi, x, θ)

[
1

z
− eθ

T
i x

z2

]
= zx

[
1

z
− eθ

T
i x

z2

]
= x

[
1− eθ

T
i x

z

]
= x[1− g(αi, x, θ)].

(4.30)

In a similar fashion, it can be shown that, for all j 6= i

∂

∂θj
lng(αi, x, θ) = −xe

θTj x

z
, ∀j 6= i. (4.31)

Thus, the update scheme can be expressed, by substituting the magnitudes of the character-

istic eligibility from Eq.4.30 and Eq.4.31 in Eq.4.28, as shown in Eq.4.32.
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Assuming α(n) = αi

θi(n+ 1) = θi(n) + aβ(n)x[1− g(αi, x, θ)] + aKi[hi(θi(n))− θi(n)],

θj(n+ 1) = θj(n)− aβ(n)x

[
eθ

T
j x

z

]
+ aKi[hj(θj(n))− θj(n)] i 6= j.

(4.32)

The algorithm represented using Eq.4.32 will be called “M-RAMA(Local)”, which stands

for the acronym “Modified REINFORCE Algorithm for Multi-Action Automaton (Local)”.

This algorithm is suitable for local optimization and in many cases local results do not suffice.

For such cases, an algorithm capable to find the global optimum is necessary. To find the global

optimum of stochastic differential equations, either the simulated annealing algorithm [42] or

the constant temperature heat bath algorithm [43] are generally used. For both algorithms, a

random term is incorporated in the stochastic differential equation to circumvent it from being

stuck at a local optimum. For the simulated annealing algorithm, the random term is slowly

reduced to zero; whereas for the constant temperature heat bath model, it is maintained at

a low constant value. Since the proposed methodology is an online algorithm, the simulated

annealing technique is insufficient, as it is based on a decaying model. Hence the global

equivalent of the scheme presented in Eq.4.32 has to be based on the heat bath technique.

The algorithm which is capable of finding the global optimum is presented in Eq.4.33

θi(n+ 1) = θi(n) + aβ(n)x

[
1− eθ

T
i x∑r

j=1 e
θTj x

]
+ aKih

′

i(θi(n)) +
√
aζi(n),

θj(n+ 1) = θj(n)− aβ(n)x

[
eθ

T
j x

z

]
+ aKih

′

j(θj(n)) +
√
aζj(n) i 6= j.

(4.33)

where hi is defined as

hi(η) =


−(η − Li)2J for η ≥ Li

0 for |η| ≤ Li

−(η + Li)
2J for η ≤ −Li

and ζ is a sequence of i.i.d. random variables of zero mean and variance σ2. J is a positive

integer and h
′

is the first derivative of h.

The algorithm presented using Eq.4.33 will be called “M-RAMA(Global)”. In the remain-

ing part of this section, the performance of M-RAMA(Local) will be analyzed using synthetic

data, which will give a preliminary insight of the working principle of the proposed technique.

The utility of the proposed algorithm can be explained by a simple example. Let an au-

tomaton with three actions α = {α1, α2, α3} operate in an environment with context vector

x = {x1, x2}, where {x1, x2} ∈ [−1, 1]. The context space spanned by x1 and x2 is divided

into three regions by the lines x2 − 2x1 = 1, x2 + 2x1 = 1 and in each region a particular

automaton action is optimal and is shown in Figure4.3. The aim of the reinforcement scheme

mentioned earlier is to align the internal states θ of the automaton in such a manner such

that for every x(n) ∈ Regioni, max(g(α, x, θ)) = g(α(n) = αi, x, θ) > g(α(n) = αj , x, θ),

where i 6= j. The given automaton consists of three actions, hence the internal states of the

automaton have to be 3-dimensional. In order to satisfy the calculation of the probability

generating function for an automaton having 3-dimensional internal states, the environment

context at all instances has be be three dimensional, i.e. x(n) = {x1, x2, x3}. In such cases,

a conventional approach is to consider x3(n) = 1, ∀n. Thus the internal state vector of the

automaton, for an action αi, can be represented as θi = {θi1, θi2, θi3} .
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Figure 4.3: Segregation of context space into three distinct regions and the corresponding

optimal actions in those regions

Every online algorithm requires random samples from the context space to be provided

during the training phase. In this case, during the training of the proposed algorithm, 10, 000

randomly generated points in the context space, are supplied as input. The training phase

utilizes the update equations, as mentioned in Eq.4.32, and, for this example, the simulation is

carried out with the learning parameter a = 0.1. The scalar reinforcement signal β is assumed

to be 0.9, for optimal action and 0.1 otherwise. The initial values of all of the internal states

is assumed to be zero. The training outcome is shown in Figure4.4, where the algorithm

learns well, as can be seen from the colors of the graph, in the mainly correct selection of the

optimal action for a given a set of context inputs.

Similar to other online algorithms, during the testing phase, evaluation of accuracy in

learning of optimal parameters is carried out. For evaluation, a testing set comprising of

10, 000 random points in the context space is generated. For this example, instances where

the algorithm chose incorrect actions is shown in Figure4.5, which is small in number.

To verify the performance of the proposed algorithm, the average probability of selecting an

optimal action is calculated, by executing the algorithm for 1000 instances. The accuracy of

the optimal action selection is greater than 98% and is shown in Figure4.6.

The algorithm described in this section can also be considered as a linear classification or

recognition of objects/patterns, where the feature attributes are numerical quantities. Hence,

the example described above can be thought of as a 2-feature, 3-class linear pattern recogni-

tion problem.

The learning automata algorithms discussed so far explain the process of making an automa-

ton expedient, both when the environment is stationary and non-stationary. As mentioned

earlier, the aim of the learning process is to select an action α(n) at every instant n such that

the expected reward/penalty is maximized/minimized. In all earlier discussions it has been

assumed that the automaton has a finite number of options in selecting an action at an instant

n, i.e. α(n) ∈ {α1, α2, . . . , αr}, where r ∈ N. However, as the number of automaton actions
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Figure 4.4: Selection of optimal action depending on the environment context

Figure 4.5: Instances of incorrect action selected for context points in different regions

increases, the number of iterations required to attain convergence to select an optimal action

also increases significantly. In certain cases, it is required that the set of actions represents

an interval on a real line. A possible solution to such cases is to discretize the entire interval

into smaller segments and each element of the action set is made to represent the magnitude

of the smaller segment. Subsequently, the reinforcement schemes, like the LR−P scheme, are

implemented to solve the problem. However, this approach is somewhat inaccurate in the

sense that, either the discretization may be too coarse for the problem or finer segmentation

increases the number of automaton actions, which in turn makes the system too slow.
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Figure 4.6: Average success probability in selecting the optimal action in all regions.
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Chapter 5

Performance

5.1 Resource requirement for selected machine learning

algorithms

The theoretical estimate for the computing resource requirement of an algorithm for any given

problem can be analyzed using computational complexity theory [32]. In general, the resource

requirement for an algorithm is either measured by its runtime or memory requirement or

by both. A naive way of defining the runtime of an algorithm is the number of operations

executed as a function of the input size, whereas the memory demand is the usage of memory

by the algorithm, while it is executing.

Runtime analysis options:

The runtime of an algorithm can be analyzed using any of the following:

• Worst-case analysis: represents the upper bound of the number of operations of an

algorithm required for any arbitrary input. For example, with an input of size n, the

runtime of the merge sort algorithm is upper bounded by 6n log n + 6n. The designer’s

aim should be that the worst-case runtime grows slowly with input size. The most

widely accepted convention is to represent the runtime of all algorithms, except the

randomized algorithms, by worst-case analysis.

• Average-case analysis: is the average runtime of an algorithm over all possible input

sizes. Typically, the runtime of randomized algorithms is represented using average-case

analysis. Randomized algorithms have the ability to make random selections, which

leads to the calculation of the expected running time.

• Benchmark: represents the runtime of an algorithm when tested under a certain number

of benchmark inputs, which can be assumed to represent practical or typical inputs for

the algorithm.

• Asymptotic analysis: represents the runtime of an algorithm for very large input sizes.

A widely used convention for representing the asymptotic behavior of a deterministic

algorithm is to suppress the constants and lower order terms of the worst-case analy-

sis. For example, in the case of the merge sort algorithm, its asymptotic behavior is

represented by n log n, where n represents the input size.

Further details of the various approaches for algorithm analysis is available in [32].

The Asymptotic runtime can be expressed in generalized mathematical notation as follows:

Definition: T (n) = O(f(n)) if and only if there exists constants c, n0 > 0, such that

T (n) ≤ cf(n), ∀n ≥ n0.
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where, T (n) represent the asymptotic notation of the worst-case runtime of an algorithm and

n represents the input size.

The earlier mathematical statement can be expressed in words as follows: for a large input

n, T (n), i.e. the asymptotic worst-case runtime, which, for large input size is the Asymptotic

runtime, is bounded above by a constant multiple of a function f(n).

In this work, the resource requirements of algorithms are evaluated using Benchmark analysis.

Although Benchmark analysis is considered a naive approach, but at the initial stage of

algorithm design it can still be useful, if the domain of its use is known beforehand. Here,

the benchmark analysis is implemented by selecting a small number of diverse data sets from

scientific data repositories. For the resource requirement evaluation purpose, the IRIS flower

and the Wine data set from UC Irvine (UCI) Machine Learning Repository has been selected

as the benchmark data sets. All the data sets considered here are used by numerous scientific

articles to benchmark the performance of algorithms. In the remaining part of this section,

a comparison of the resource requirements of M-RAMA(Local) and M-RAMA(Global) with

the widely used algorithms like Support Vector Machine with Linear, Quadratic, Gaussian

and Polynomial kernel, Neural Network, Decision Tree, Adaboost is presented. The resource

requirement profiles of the machine learning algorithms for the benchmark data sets are

measured by the embedded profiling tool in MATLAB [33]. The resource requirement profile

of the selected algorithms on the IRIS flower and Wine data sets is presented in Table5.1 and

Table5.2 respectively. For ease of analysis of Table5.1 and Table5.2, the following definitions

are of use

• Allocated memory: is the total amount of memory allocated within the function and

its children.

• Freed memory: is the total amount of memory released within the function and its

children.

• Peak memory: is the maximum amount of memory usage at any instant during the

execution of the function and its children.

• Self memory: is the memory used by the function only. In other words, self memory

does not consider the memory usage by the children of the parent function.

Here, the units for measurement of time and memory are second and kilobit respectively. For

further details on the quantities described earlier, the reader is referred to [33].

5.2 Simulation configurations

In the previous section, the resource requirements of selected machine learning algorithms

on the IRIS and Wine data sets has been presented. In the remaining part of the chapter

a comparison of the performance of both M-RAMA(Local) and M-RAMA(Global) with the

other machine learning algorithms will be presented. The performance of some of the existing

machine learning algorithms will be evaluated on the benchmark data sets and then compared

with the performance of M-RAMA(Local) and M-RAMA(Global) on the same collection of

the data sets. For comparison of the performance of various algorithms, apart from the IRIS

Flower and Wine data sets, the Breast Tissue and the Vehicle data set from the UCI Machine

Learning Repository, has also been considered. Also, for the purpose of performance com-

parison, the Bagging and the Naive Bayes’ classifiers have been incorporated in the selected

set of machine learning algorithms chosen earlier for the resource requirement benchmarking

purpose.
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In this section, the configurations of the algorithms under which the simulation experiment

has been conducted, is mentioned. For the training of the Support Vector Machine algo-

rithms, the Sequential Minimal Optimization (SMO) [34] is used as the optimization method

for the Linear Kernel and Least Squares [35] for the rest. The rationale for this approach

comes from [34], where the author presented the advantage of using SMO over Quadratic

Programming (QP) as the optimization technique for Support Vector Machines with a Linear

Kernel. The benefit arises as, the SMO technique breaks down a large QP problem into a

series of the smallest possible QP problems. This approach of dividing a large problem into

smaller sub-problems reduces the computational complexity manifold.

Apart from this benefit, the simulation study also reveals that the performance efficiency of

SVM with a Linear Kernel and using SMO as optimization method, is far better than using

the SVM with Linear Kernel and using Least Squares as the optimization technique. Also,

for all the SVM algorithms a one-vs-all classification approach has been used, in terms of

performance, the one-vs-all approach is as accurate as any other scheme for multiclass clas-

sification [36].

The multiclass AdaBoost [37] algorithm is one of the most commonly used boosting algo-

rithms, which uses multiple probably approximately correct or PAC learning units. An in-

dividual PAC unit performs slightly better than a random guessing algorithm and thus is a

“weak” learner. However, the performance of the combined unit has arbitrarily high accuracy.

The performance evaluation of the Naive Bayes’ classifier on the Vehicle data set has been

presented in [38] and is the motivation for the inclusion of Naive Bayes’ classifier in the list of

selected algorithms, to benchmark against the originally published results for the same data

set. For the multiclass Adaboost and Bagging algorithms, 100 tree classifiers are employed.

For all data sets, the performance of three-layered Neural Networks has also been presented.

The hidden layer of the network comprises three, four, nine and ten units for the Wine, the

IRIS, the Breast Tissue and the Vehicle data sets respectively. The number of deployed units

in the hidden layer are exactly similar to the dimension of the feature space.

It has been mentioned previously that the learning automata based models (M-RAMA)

are incremental algorithms. In other words, given the feature vector and the corresponding

class, during the process of training, the learning automata based classification algorithm

updates the internal state in a manner such that the misclassification error is reduced. The

update equation for M-RAMA (Local) is given by Eq.5.1

θi(n+ 1) = θi(n) + aβ(n)x

[
1− eθ

T
i x∑r

j=1 e
θTj x

]
+ aKi[hi(θi(n))− θi(n)],

θj(n+ 1) = θj(n)− aβ(n)x

[
eθ

T
j x

z

]
+ aKi[hj(θj(n))− θj(n)] i 6= j.

(5.1)

where, θ represents the internal state, h(θ) = [h1(θ1), h2(θ1), . . . , hl(θl)] and the function hi

is defined as

hi(η) =


Li for η ≥ Li

η for |η| ≤ Li

−Li for η ≤ −Li
and Li, Ki > 0 are constants. x represents the feature or context vector and n signifies the

iteration.

The update equation of M-RAMA (Global) is depicted in Eq.5.2,

θi(n+ 1) = θi(n) + aβ(n)x[1− eθ
T
i x∑r

j=1 e
θTj x

] + aKih
′

i(θi(n)) +
√
aζi(n),

θj(n+ 1) = θj(n)− aβ(n)x[
eθ

T
j x

z
] + aKih

′

j(θj(n)) +
√
aζj(n) i 6= j.

(5.2)
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Parameters
Data sets

Wine IRIS Vehicle Breast tissue

a 0.2 0.2 0.2 0.2

σ 0.002 0.001 0.001 10−6

Table 5.4: Parameter values used for different data sets

where hi is defined as

hi(η) =


−(η − Li)2J for η ≥ Li

0 for |η| ≤ Li

−(η + Li)
2J for η ≤ −Li

and ζ is a sequence of i.i.d. random variables of zero mean and variance σ2. J , a positive

integer and h
′

is the first derivative of h. For both Eq.5.1-5.2, L is a window function.

For the simulation experiment, L is assumed to be 100, J is 1 and K is 15. The rest

of the parameters used in either Eq.5.1 or in Eq.5.2 are summarized in Table5.4. With the

parameter values mentioned earlier, Figure5.1-5.4 shows the training process of the proposed

learning algorithms on the selected data sets. For the completion of the training process, each

training instance for every data set are duplicated for a certain number of times. The training

instances are duplicated for 20, 40, 100 and 60 times for the Wine, IRIS, Breast Tissue and

Vehicle data sets respectively. For scaling of the data features, a mean normalization of the

features has been implemented. The scaled version xi of a feature xi is represented as,

xi =
xi − x̄i
σi

,

where x̄i and σi signifies the mean and standard distribution of the ith feature.

In [39], the authors have conducted performance evaluation of 179 classification algo-

rithms belonging to 17 families over 121 data sets. However, the authors have mostly used

default configurations of classification functions available in different libraries, spread over

many language platforms. The article again concludes that the best performing classifier is

the Random Forest. However, as mentioned in the earlier part of this section, the default

technique for SVM in MATLAB is SMO, but most of the kernels perform much better when

Least Squares is used as an optimization method. Hence, a default configuration might not

be the best. In this work, the selection of the algorithms is semi-random and out of the 17

available families of algorithms, algorithms from 7 families, mostly with their best performing

configuration, has been included.

5.3 Performance evaluation methodology

A widely used approach for evaluating the performance of an algorithm is to calculate the

accuracy over as few as ten instances [40]. The final accuracy is presented in terms of the

mean and the standard deviation of the outcomes. The representation of the performance dis-

tribution, using only the first two moments perhaps assumes the non-existence of higher order

moments, which is true only for normal distributions. To the best of our knowledge, most

of the articles depict the performance of algorithms using only the first moments, assuming

the outcomes to have a Gaussian distribution and do so without performing the normality

test [41]. As mentioned in [42], 50% of the scientific articles published have at least one

statistical error and here it will be verified whether it is sufficient to portray the behavior fol-

lowing the course chosen by the existing articles. Also, typically representing a performance
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Figure 5.1: Training process of the proposed algorithms on the Wine data set

Figure 5.2: Training process of the proposed algorithms on the IRIS data set
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Figure 5.3: Training process of the proposed algorithms on the Breast Tissue data set

Figure 5.4: Training process of the proposed algorithms on the Vehicle data set
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distribution of an algorithm using its mean and standard deviation is valid only when the

distribution is symmetric. For a unimodal, symmetric distribution, the mean, the median and

the mode are all similar; whereas, for a multimodal distribution, the mean and the median

are not identical. Also for a skewed distribution [43], the mean and median are dissimilar.

The performance distribution of all the algorithms considered over the data sets will be pre-

sented pictorially in Figure5.10-5.12 . Apart from this, the skewness and kurtosis of the

performance distributions will be investigated. For a normal distribution, the skewness and

kurtosis are 0 and 3 respectively. For a negatively skewed distribution the mean of the dis-

tribution is situated to the left of the mode of the distribution and for a positively skewed

distribution, the mean is towards the right of the mode. Also, normality tests like the Jarque-

Bera test [44], the Lilliefors test [45], the Anderson-Darlington test [46] and the Chi-Squared

test [47] are included, which might assist in coosing the correct way for representation of

the performance of the algorithms. For all the hypotheses, a 0 test result indicates the null

hypothesis, i.e. the distribution is Gaussian; whereas, a 1 indicates that the test result rejects

the null hypothesis at the 5% significance level.

5.4 Performance of selected machine learning algorithms

For the simulation study, the training and test set constitutes 60% and 40% of the total data

points, respectively. For example, while working with the IRIS data set, the training and test

sets constitute 90 and 60 samples respectively out of the total 150 data points. A prevalent

practice is to select the training and test data set randomly. Hence, for the IRIS flower data

set, the random selection technique generates
(
150
90

)
=
(
150
60

)
= 4.6215×1042 number of training

and test sets. The large number training/test set indicates that it is difficult to evaluate the

performance of an algorithm on every training/test set due to limited computing resources.

On the other hand, selecting some specific training/test set from the available combinations

introduces bias and might not represent the actual performance of the model algorithm.

Even if a small number of training/test sets are randomly selected, to the best of our

knowledge, there is no empirical rule regarding the number of such training/test sets to be

selected for optimal evaluation of the algorithm performance. In such scenarios, an efficient

approach can be the representation of the performance of the designed algorithm by the

moving average accuracy. This gives the stopping criterion for choosing the number of the

instances required for evaluating an algorithm over the data set under consideration. The

process is described as follows:

• Step I: Select training and test set based on random sampling with replacement.

• Step II: Evaluate the performance on the selected training and test set. Let Tst(i)

represents the test set accuracy at instant i = 1, . . . ,M .

• Step III: The moving average accuracy at every instant i by

µi =
Tst(i) + (i− 1)µi−1

i
, ∀i > 1 ,

where µi−1 represents the average accuracy at any instant (i− 1).

• Step IV: Repeat Step I to Step III until, |µi − µi−1| < ε ,∀i ∈ [k, k + s] , is attained,

where ε is a very small positive quantity, 0 < s < k and 0 < k < M .

The technique, though simple, is still extremely useful in the sense that, in spite of evalu-

ating the algorithms over a relatively small number of combinations, it assists in representing

the near actual performance of the algorithms to what would have been, if evaluated over all
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the available combinations. It will be proved in the following that the series of the moving

mean test accuracy, of the sequence of test accuracies, does converge.

Proposition 5.1. If {Xn} is a sequence of i.i.d random variables representing the percentage

test set accuracies, then Xn ∈ [0, 100] for all n ∈ N.

Theorem 5.1. (Popoviciu’s inequality on variance) If Xn ∈ [a, b] for all n ∈ N, where

a, b ∈ R, then V ar(Xn) ≤ (b−a)2
4 .

Definition 5.1. If {Fn} be a sequence of events in the probability space (Ω,F , P ), where Ω

is the sample space and F is the σ-algebra. Then the event,

∞⋂
n=1

∞⋃
m=n

Fm = {ω ∈ Ω|ω ∈ Fminfinitely often}.

is called “Fn infinitely often” and is abbreviated as “Fn i.o.”.

Lemma 5.1. (Borel-Cantelli Lemma) If
∑∞
n=1 P (Fn) <∞, then P (Fni.o.) = 0.

Proof. By Definition 5.1, Fni.o. =
⋂∞
n=1

⋃∞
m=n Fm and hence for each n,

P (Fni.o.) ≤ P (

∞⋃
m=n

Fm) ≤
∞∑
m=n

P (Fm).

Now, given
∑
P (Fm) <∞, then

lim
n→∞

P (Fni.o.) = 0.

Definition 5.2. If {Xn} is a sequence of random variables and assuming X to be some other

variable, then,

(i) Xn converges in probability to X if for all ε > 0, limn→∞ P (|Xn − X| > ε) = 0 and is

represented by Xn
p−→ X.

(ii) Xn converges almost surely to X if P (limn→∞Xn = X) = 1 and is represented by

Xn
a.s.−−→ X.

Theorem 5.2. Let {Xn} be a sequence of random variable defined over a probability space.

If Xk
p−→ X then there exists a subsequence {Xnj

} ⊂ {Xk} such that

Xnk

a.s.−−→ X.

Proof. For each j ∈ N, let nj is so large such that,

P (|Xnj −X| >
1

j
) ≤ 1

j2
.

Let Aj = {|Xnj −X| > 1
j }.

Since, ∑ 1

j2
<∞,

then P (Aj) <∞.

Hence from the Borel-Cantelli lemma 5.1, P (Aj i.o.) = 0.

Theorem 5.3. (Markov Inequality) If X ≥ 0 is a random variable, then for any α > 0,

P (X > α) ≤ E[X]

α
.
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Proof. The expectation of the non-negative random variable X,

E[X] = E[X1{X≤α}] + E[X1{X>α}],

≥ E[X1{X>α}],

≥ αE[1{X>α}] = αP (X > α),

Hence, P (X > α) ≤ E[X]
α .

Theorem 5.4. (Chebyshev Inequality) If X is a random variable with mean µ and variance

σ2 <∞, then ,

P (|X − µ| > kσ) ≤ 1

k2
,∀k > 0.

Proof. As |X − µ|2 ≥ 0 and hence from Markov Inequality 5.3,

P (|X − µ|2 > (kσ)2) ≤ E[|X − µ|2]

(Kσ)2
=

σ2

k2σ2
=

1

k2
.

Therefore P (|X − µ| > kσ) ≤ 1

k2
.

Theorem 5.5. (Sandwich Theorem) Let {Xn}, {Yn} and {Zn} be sequences such that Xn ≤
Yn ≤ Zn and let Xn → l and Zn → l, then Yn also converges to l.

Proof. Please refer [48].

Theorem 5.6. If {Xn} is a sequence of independent and identically distributed random

variable with E[Xi] <∞ and if Sn =
∑n
i=1Xi, then Sn

n

a.s.−−→ E[X], i.e. P (|Sn

n → E[X]|) = 1.

Proof. If {Xn} is a sequence of i.i.d. random variables representing the test set accuracies in

percentage, then using Definition 5.1, every element in the sequence is bounded. Then using

Theorem 5.1, the variance σX of the distribution is bounded from above. Hence, σX < ∞.

Since Xi are independent random variables, using the linearity property of expectation

E[Sn] = nE[X],

Therefore E[
Sn
n

] = E[X].

Also,

V ar(Sn) = nV ar(X),

V ar(
Sn
n

) =
σ2
X

n
.

Using Chebyshev Inequality 5.4,

P (|Sn
n
− E[X]|2 > ε2) ≤

E[|Sn

n − E[X]|2]

ε2
,

≤
V ar(Sn

n )

ε2
,

≤ σ2
X

nε2
.

Therefore P (|Sn
n
− E[X]| > ε) ≤ σ2

X

nε2
.

Taking limits of n,

lim
n→∞

P (|Sn
n
− E[X]| > ε) = lim

n→∞

σ2
X

nε2

= 0
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Therefore
Sn
n

p−→ E[X],

Hence
Sn
n

p−→ µ,

Therefore, under the given conditions Sn

n converges in probability to µ. Using this result and

coupled with the Theorem 5.2 it can be concluded that there exists a subsequence nj such

that Sn

n

a.s.−−→ µ.

Let, nj = j2, ∀j ≥ 1 be the subsequence.

Then,

P (|
Sj2

j2
− µ| > ε) ≤ σ2

X

j2ε2
,

Therefore

∞∑
j=1

P (|
Sj2

j2
− µ| > ε) ≤ ∞, ∀ε > 0.

Using the Borel-Cantelli Lemma 5.1,

Sj2

j2
a.s.−−→ µ, as j →∞.

However, this result is true for only the square terms in the sequence and is yet to be the

proved for the non-square instances in the sequence. Let i be s.t, j2 ≤ i ≤ (j + 1)2.

Since Xj ≥ 0,

Sj2 ≤ Sn ≤ S(j+1)2 ,

Sj2

(j + 1)2
≤ Sn

n
≤
S(j+1)2

j2
,

Sj2

(j + 1)2
j2

j2
≤ Sn

n
≤
S(j+1)2

j2
(j + 1)2

(j + 1)2
,

Therefore
Sj2

j2
j2

(j + 1)2
≤ Sn

n
≤

S(j+1)2

(j + 1)2
(j + 1)2

j2
.

As lim j →∞,

µ ≤ Sn
n
≤ µ.

Applying the Sandwich Theorem 5.5 to the last expression ,

Sn
n

a.s.−−→ µ.

Hence, for a given ε > 0, there exists some n > N , for which Sn

n → µ, where n,N ∈ N. This

forms the backbone of the performance evaluation methodology, where ε is fixed to a small

quantity and then efforts were made to find out the n for which the population mean actually

converge to the distribution mean of the test set accuracy. In [38] the author intuitively felt

that 500 subsets of the total number of combinations are required for estimating the algorithm

performance. It is felt that the author actually tried to highlight that within 500 combinations,

the parameter(error/accuracy) representing the algorithm will converge. However, without

explicitly mentioning an ε, the notion of such declaration is mathematically vague. It is also

felt that the actual choice of the number of combinations required for convergence is not

independent of the data set under consideration, apart from algorithm under test.

As mentioned earlier, a commonly applied approach for selecting the number of training

and test samples is to split the sample set in a ratio of 60% and 40%, where the larger set is

used for training of the algorithm and the remaining for the testing purpose. However, in [38],

the author has evaluated the performance of a handful of algorithms on the vehicle data set,
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using 100 samples of the available 846 data samples as the training set, and the remaining as

the test set. In order to benchmark our proposed algorithms, an identical training/test set

size is followed as mentioned in [38], though it is an unconventional strategy. Other than the

Vehicle data set, the training and the test sets are split in a ratio of 6 : 4 for all the remaining

data sets.

Table5.3 represents the Mean Accuracy of the selected algorithms, estimated over 5000

instances, on all of the four data sets considered here. It has been mentioned earlier that

ε is assigned an arbitrary small quantity and then efforts are made to find the number of

instances for which the parameter representing the performance of an algorithm converge.

For the simulation experiment, the magnitude of ε = 0.007 is assumed. Table5.9 depicts the

instances required for the convergence of chosen machine learning algorithms on the data

sets. The Moving Mean Accuracy (MMA) of the algorithms as a function of instances on the

selected data sets is represented via Figure5.5-5.8. The MMA in Figure5.5-5.8 is displayed

over the window of the starting instance to the instance of convergence of M-RAMA(Global).

Some of the statistical parameters of the accuracy distribution of the selected algorithms

on all the four data sets are presented in Table5.5-5.8. All of these statistical estimates are

calculated up to the instance of convergence of M-RAMA(Global). The accuracy distributions

of the chosen algorithms on all the four data sets are shown in Figures5.9-5.12. These figures

represent the distribution up to the instances of convergence of the individual algorithms.

For example, from Table5.9, the SVM (Linear Kernel) on the IRIS data set converges at 1791

and Figure5.10, depicts the accuracy distribution up to instance 1791.

5.5 Analysis of simulation results

For the problems pertaining to classification, the objective is either to minimize the misclas-

sification error or to maximize the classification accuracy [49]. For a multivariate objective

function f(x1, · · · , xm), xi ∈ R, the aim of an algorithm under test, is to select the best set

of {x∗1, · · · , x∗m}, which gives the least number of misclassified data samples or the maximum

number of accurately classified data points. In other words, the aim of an algorithm is to

search for the global optimum. But often learning algorithms get stuck at a local optimum,

which prevents attaining the goal of least misclassification error or maximum classification

accuracy.

The error/accuracy distribution portrays the behavior of an algorithm. In other words, it

shows how often an algorithm selects the optimum parameters {x∗1, · · · , x∗m}. An algorithm

that selects the global parameters frequently will have the same statistical estimates, i.e.

similar mean, median and mode. For such algorithms the error/accuracy distribution is a

normal distribution. In many cases algorithms fail to select the best set of parameters and

get stuck in a local optimum. For such algorithms the performance distribution is skewed.

Tables5.10-5.13 present the normality test results of the performance distribution, for

every algorithm, on all of the data sets considered here. For most algorithms, the performance

distribution is negatively skewed, except for the Naive Bayes’ on the Vehicle data set.

For the performance distributions of every algorithm on the Wine and IRIS data set, there

is a rejection of the null hypothesis as the outcome of the normality test result, as shown in

Tables5.10-5.11.

For the Vehicle data set, the Jarque-Bera test, the Anderson-Darlington test and the

Chi-Squared test returns null hypothesis of the performance distribution for the SVM with a

fourth order polynomial kernel. The Jarque-Bera test procedure is based on the skewness and

kurtosis of the sample distribution. In other words, the Jarque-Bera test on a data sample

returns a null hypothesis when the skewness and the kurtosis of the distribution is similar to
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that of a normal distribution and this is validated in the following. From Table5.12, both the

skewness and kurtosis of the performance distribution of SVM, with a fourth order polynomial

kernel, has an approximately similar value to a normal distribution and also, the Jarque-Bera

test return a null hypothesis.

Similar observations can be made from Table5.13, where, for the SVM with a Linear kernel,

a fifth order kernel and a quadratic kernel on the Breast Tissue data set, the Jarque-Bera

test returns a null hypothesis along with the magnitude of skewness and kurtosis identical to

a normal distribution.

The normality test results of the accuracy distributions of the selected machine learning

algorithms reveal that denoting their performances with the first two moments are insufficient.

It is suggested that the parameters such as the mode of the distribution, the maximum and

minimum accuracy should be included, as they give deeper insights for performance analysis

of the algorithm under test.

On the whole, M-RAMA has performed well in the tests presented here. From Table5.3

it can be seen that M-RAMA has one of highest mean accuracies of all the considered data

sets. Also, Tables5.5-5.8 shows that M-RAMA has one of the lowest standard deviations on

every selected data set. Moreover, Tables5.5-5.8 shows that M-RAMA has one of the highest

minimum and maximum accuracies, which highlights the stability of M-RAMA. Furthermore,

Table5.9 shows that M-RAMA requires one of lowest number of instances for convergence, as

per the definition given in Section 5.4.

According to [38], the accuracy of the Naive Bayes’ algorithm on the Vehicle data set after

500 instances is 46.80% ± 0.16. The present study, with the same simulation configuration,

finds that the mean accuracy of the Naive Bayes’ algorithm after 500 instances is 46.7%, which

is similar to [38] and that after 5000 iterations, the mean accuracy dips slightly to 45.5%.

In the same scenario, the accuracy of M-RAMA is 66%, which indicates better accuracy of

M-RAMA, under those circumstances.

In Section 5.4, it was mentioned that the number of instances required for the simulation

study is dependent on both the algorithm under test and also on the data set. The MMA for

the SVM algorithm with Gaussian Kernel or Radial Basis function (RBF) shows undulating

characteristics even after 500 instances, which can be seen in Figure5.5. However, the MMA of

the same algorithm shows smooth behavior for the Vehicle data set, even for a small number

of instances. Also, from Table5.9, the convergence of SVM with the RBF kernel requires

3621 and 2197 instances on the Wine and Vehicle data sets respectively. Thus the number

of instances for convergence for the algorithm under discussion is lower in the case of the

Vechicle data set than for the Wine data set. This again validates the assertion that the

required number of instances for the performance evaluation is not independent of the data

set under consideration.

The resource requirements of the selected Machine Learning algorithms on chosen data

sets are mentioned in Section 5.1. Tables5.1-5.2 reveal that the M-RAMA algorithms require

less computational resources than the other chosen algorithms for these data sets. M-RAMA

(Local) requires even less resources than its global counterpart, owing to the fact that the

M-RAMA (Global) requires an additional random term.

Further work will examine the algorithmic complexity, as a function of the number of

data set features, where performance for much larger features should be examined through a

generalized version of complexity analysis.
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Figure 5.5: Performance of selected algorithms on the Wine data set

Figure 5.6: Performance of selected algorithms on the IRIS data set
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Figure 5.7: Performance of selected algorithms on the Vehicle data set

Figure 5.8: Performance of selected algorithms on the Breast Tissue data set
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Figure 5.9: Performance distribution of selected algorithms on the Wine data set

Figure 5.10: Performance distribution of selected algorithms on the Iris data set
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Figure 5.11: Performance distribution of selected algorithms on the Vehicle data set

Figure 5.12: Performance distribution of selected algorithms on the Breast Tissue data set
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Chapter 6

Summary and Conclusion

The focus of the thesis was to model a learning automata based classifier, capable of multi-

class classification. In Chapter 4, two learning automata based algorithms have been proposed

viz. M-RAMA(Local) and M-RAMA(Global). The former algorithm is capable of finding the

local optimum and the latter has the ability to find the global optimum. The performance of

the algorithms has been evaluated using data sets available from the UCI Machine Learning

Repository. The test set accuracy of M-RAMA(Local) and M-RAMA(Global) are almost on

par with the best performing algorithm over every data set considered here. The proposed

algorithms are incremental algorithms and hence are suitable for operating in an online deploy-

ment. The proposed classification algorithms have been implemented in the three different

programming platforms platforms namely Python, MATLAB and C++.

The research also highlighted a new methodology for representing the performance of the

machine learning algorithms. The technique, though simple, still provides a method that

circumvents the process of evaluating the performance of an algorithm under test, over all

combinations of training and test sets of the available data set.

6.1 Future Work

Both M-RAMA(Local) and M-RAMA(Global) are yet to be tested with skewed data sets.

For skewed data sets, representing the performance of machine learning algorithms using only

the test set accuracy is insufficient. In such cases, generally, the performance is represented

by the confusion matrix, precision, recall and F-Score. Further research can be carried out to

observe the performance of M-RAMA(Local) and M-RAMA(Global) with skewed data sets

and evaluate their performances using the parameters mentioned earlier.

Since both M-RAMA(Local) and M-RAMA(Global) are incremental algorithms and hence,

can be used as classification tool for data sets that are noisy in nature. To evaluate the extent

of the algorithms’ ability to handle noise, further research is necessary.

For the present work, the approximation function is assumed to be linear, but this can be

extended to any higher order. The evaluation of the resource requirements for the higher

order function approximation can be carried out in future work. As the order of the approx-

imation function increases, the computational complexity also increases. In that scenario,

implementing the algorithms in the programming platforms capable of computing in a paral-

lel/concurrent fashion is extremely useful. However, for parallel/concurrent computing, pure

functional style of programming is more efficient and robust than both procedural and object

oriented style of programming. Though Python, MATLAB and C++ supports functional

style of programming, however, all of them have some limitations. For example, Python

has limitations in evaluating functions via recursion. Hence, programming platforms such as

65



Haskell, which supports purely functional approach of implementation, is extremely helpful for

parallel/concurrent computations. In future, the algorithms can be implemented in program-

ming platforms like Haskell and others, that supports pure functional style of programming

and investigate the performance of the proposed algorithms.

6.2 Probable applications of this research

The proposed multi-class classification techniques are based on stochastic automata. The

algorithms are also incremental in nature. Being based on stochastic automata, both the

techniques are capable of operating in environments comprising of noisy data. Also, being

iterative algorithms, both the techniques are suitable for handling large data. Given the inher-

ent qualities of Learning Automata and the nature of the modeled algorithms, the proposed

techniques can be used as decision making agents in e-commerce sector, for classification in

online data streaming and in several other areas. The resource requirement study of classifiers

mentioned in Chapter 5 indicates that the learning automata bases algorithms require one

of the least computational resources which make them suitable for deployment in electronic

devices even with low processing strength.
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