
 

 

  

Abstract—Tomorrow’s car will be more automated and 

increasingly connected. Innovative and intuitive interfaces are 
essential to accompany this functional enrichment.  For that, today 
the automotive companies are competing to offer an advanced 
driver assistance system (ADAS) which will be able to provide 
enhanced navigation, collision avoidance, intersection support and 
lane keeping. These vision-based functions require an accurately 
calibrated camera. To achieve such differentiation in ADAS 
requires sophisticated sensors and efficient algorithms. 

This paper explores the different calibration methods applicable 
to vehicle-mounted fish-eye cameras with arbitrary fields of view 
and defines the first steps towards a self-calibration method that 
adequately addresses ADAS requirements. In particular, we 
present a self-calibration method after comparing different camera 
calibration algorithms in context of ADAS requirements. Our 
method gathers data from unknown scenes while the car is moving, 
estimates the camera intrinsic and extrinsic parameters and corrects 
the wide-angle distortion. Our solution enables continuous and 
real-time detection of objects, pedestrians, road markings and other 
cars. In contrast other camera calibration algorithms for ADAS 
need pre-calibration, while the presented method calibrates the 
camera without prior knowledge of the scene and in real-time. 
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I. INTRODUCTION 

Tomorrow’s car will be more automated and increasingly 

connected to assure a high level of safety, as it’s being an  
important factor  for the automotive industry. So as to 
reduce the number of accidents or mitigate its consequences, 
automotive manufacturers are competing to offer an 
advanced driver assistance system (ADAS).  Advanced 
Driver Assistance Systems (ADAS) also known as Active 
safety systems, enhance vehicle safety and driver experience 
by utilizing a variety of connected sensors and electronic 
control units (ECUs). Their global purpose is to reduce road 
accidents and facilitate the driving experience and make it 
more comfortable. ADAS support the driver  at different 
four levels. At the first level, ADAS provide drivers with 
basic information which help them to have safer driving, for 
example information not visible to the driver during parking. 
At the next level, ADAS can give the driver warnings of an 
imminent and possibly hazardous situation to provide them 
enough time to take a safe decision. 
At the last level of intervention involves the system to take 
decision. Independently of level of intervention, 
manufacturers who implement these systems hope to assist 
the driver before a critical situation arises or, at least, to 
reduce the consequences of driver error.  An important 
family of these sensors is video cameras of different classes. 
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Today these are used for recognition of pedestrians, traffic 
signs, and other vehicles, as well as localization of arbitrary 
obstacles, e.g. with the help of stereo vision. To make use of 
these results it is imperative to accurately map positions in 
the camera’s image frame to the direction of the respective 

object with respect to the vehicle coordinate system. 
Determining this mapping is known as calibration. 

II. CAMERA CALIBRATION TECHNIQUES 

Camera calibration is to determine the relation between the 
camera’s units (pixels) and the real world units 
(millimeters). It estimates the parameters of an image sensor 
that can be used also to correct lens distortion, determine the 
location of the camera in world scene and measure the size 
of an object in world units.   

A. Camera Model 

 

Fig. 1 Pinhole model 

 
The pinhole model is the basis for most graphics and vision. 
It’s derived from physical construction of early cameras. In 
this model, the camera parameters are presented in a 4-by-3 

matrix, called the camera matrix and also know by , which 
maps 3-D world scene into the image plane. To calibrate the 
camera it must calculate the camera matrix using intrinsic 
and extrinsic parameters. The extrinsic parameters represent 
the spatial orientation of the camera in the 3-D scene.  .  The 
intrinsic parameters allow a mapping between camera 
coordinates and pixels coordinates in the image frame. The 
intrinsic parameters are: the optical center, also known as 
the principal point, and the skew coefficient. 
 
The extrinsic parameters are used to transforme the world 
points  to camera coordinates. The intrinsic parameters are 
used to map the camera coordinates into the image plane. 
 

          (1) 
 

          (2) 
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Where  is image point,  is the world points 
and P is the camera matrix. The intrinsic parameters are 

presented by the matrix  and the extrinsic parameters 

represented by extrinsic rotation and translation . 

The intrinsic parameters encompass the focal length, the 
principal point, also known as optical center, and a skew 
parameter. Thus defines camera intrinsic matrix K: 
 

        (3) 

 

Where  is the optical center in pixels, ( ) is the 

focal length in pixels and s the skew coefficient, which is 
non-zero if the image axes are not perpendicular. 

 

 
 

Fig. 2 Extrinsic and intrinsic parameters 
 

The extrinsic parameters represent the rotation and 
translation which relates the world coordinate system to the 
camera coordinate system. The intrinsic parameters 
represent a  transformation from the  camera’s coordinates 

into image coordinates.  

B. Related work/ Currents approaches 

There are several camera calibration methods, some of 

which use a line based calibration like Geyer and Daniilidis 

[1] which they present a method of calibration from the 

images of only three lines. Barreto and Araujo [2] presented 

geometric properties of line images study and they conclude 

by giving a calibration method suitable for any kind of 

central catadioptric system. But those approaches required a 

pattern, so they need to have pre-calibration phase. 

Some others are performed by observing a calibration 

object whose geometry in 3-D space is known with very 

good precision. Puig et al. [3] present an approach based on 

the Direct Linear Transformation (DLT) using lifted 

coordinates to calibrate any central catadioptric camera. It 

computes a generic projection matrix valid for any central 

catadioptric system. From this matrix the intrinsic and 

extrinsic parameters are extracted in a closed form and 

refined by nonlinear optimization afterwards. This approach 

requires a single omnidirectional image containing points 

spread in at least three different planes [4]. 

Also some techniques use a 2D calibration pattern with 

control points which can be corners, dots or any 

characteristic that can be easily extracted from the image. 

Scaramuzza et al. [5] propose a technique to calibrate single 

viewpoint omnidirectional cameras. They assume that the 

image projection function can be described by a Taylor 

series expansion whose coefficients are estimated bysolving 

a two-step least squares linear minimization problem [4]. 

The self-calibration uses only point correspondences in 

multiple views without needing to know the camera position 

or knowledge of the scene. The literature on self-calibration 

can be divided into two main approaches: calibration under 

arbitrary and calibration under restricted motion [6]. Civera 

et al. [7] showed that the intrinsic parameters of a radially 

distorted camera can be estimated along with the 3D-

position and camera location (SLAM) in a combined 

filtering method, although they rely on a sophisticated Sum- 

Of-Gaussians filter to handle the nonlinearities. Likewise, 

Micusık et al. [8] present a method for estimating the 

fundamental matrix with the help of a linearized version of 

the radial distortion function based on the work of 

Fitzgibbon [9]. If the camera motion is controlled or known 

within a certain accuracy one can arrive at algorithms which 

usually tend to be numerically more stable. For example, we 

cite the work by Kelly et al. [10] for fusing a visual and an 

inertial sensor and refer to Ramalingam et al. [11] for a 

perspective on calibration under purely translational and 

rotational motion [6]. 

Those approaches for self-calibration weren’t designated 

for an automotive field. Nowadays, Vehicles are not 

information islands any more. Moreover they are connected 

systems with the ability to interact with a broad spectrum of 

external services via vehicle-to-infrastructure (V2I) and 

vehicle-to-vehicle (V2V) communications.  ]. A report 

published by the U.S. Department of Transportation 

(USDOT) showed that vehicle-to-vehicle (V2V) 

communication would be able to reduce about 80% of 

potential vehicle crashes [12].  So vehicles will be able to 

know its own position, the position of other vehicles, 

location and dimensions of physical road infrastructure and 

more. All this automotive specification can enhance those 

different self-calibration techniques to be suitable for vision-

based ADAS.  

III. ADAS CAMERA SELF-CALIBRATION CHALLENGES 

The vision system for driver assistance is an important part 
of ADAS. Existing calibration and self-calibration 
procedures are often general and not a tailor-made for 
specific applications. In object-based calibration the pre-
calibration is mandatory. Self-calibration method is the only 
choice when pre-calibration is impossible. In case of 
accident, car maintenance or calibration problems, it’s waste 

of money and time to change and re-calibrate the camera. 
Self-calibration doesn’t require any pre-calibration, just an 
efficient algorithm to determine the intrinsic and extrinsic 
parameters. Today’s cars are connected and tomorrow will 
be more automated and increasingly interacting with 
environment. Environment data used with vehicle odometry 
present a key opportunity for the next generation of self-
calibration methods. 

IV. METHODOLOGY 

A. Self-Calibration for ADAS 

Assuming that intrinsic parameters are all that’s needed to 

describe the mapping between a world point (with the 

respect of the camera position) and an image point. This 

includes focal length, pixel sizes and lens or mirror 

distortion parameters. This paper focuses on intrinsic 

calibration and assumes that the extrinsic calibration is 

known to certain accuracy. This is reasonable since the 

vehicle chassis defines the position and alignment of the 
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camera [6]. In practice, the calibration procedure implies 

using GPS for vehicle position and for environment data. 

 

 
Fig. 3 Intrinsic parameters determination 

 

This paper presents a self-calibration method that estimates 
the intrinsic parameters without knowledge of the scene. It 
addresses the method under the context of vehicle-mounted 
cameras, so we will have access to all sensor data from the 
ADAS Unit (Speed, Acceleration, I/O…) and data from the 

environment through GPS. The idea is to combine vehicle 
odometry and environment data to have a time synchronized 
data. It calculates the distance driven between successive 
frames of video using GPS data and car’s speed. It’s also 

using a known random object in the road such as the stop 
sign, which will have a known, regulated size. 

 

Fig. 4 Data Synchronized 

 
This environment data allows the intrinsic parameters to be 
calculated to calibrate the camera. Vehicle odometry data 
are also used to recognize when a translation or rotation is 
performed and to localize the camera position over time. 
The presence of these odometry readings is very common in 
modern cars and is readily available on in-vehicle networks. 

B. Test bench: CANape 

 
Fig. 5 CANape for test bench 

 

The lack of test environment pushes researchers to look for 
a test bench which can test different algorithms in real time 
with an interactive interface. Our test environment is based 
on Vector CANape[13], which collects media resources 
(AVI video, Streaming Camera) and Vehicle odometry data 
through the CAN Bus. Combining this data with the camera 
calibration algorithm on Matlab/Simulink, the CANape 
performs a real time simulation and presents a visual 
interface. 
CANape connected to both vehicle data and video provides 
an ideal real-time and data-synchronous test bench. It can 
test and check the feasibility of different calibration 
approaches by uploading the algorithm from 
Matlab/Simulink. It can interact in real time with signals 
thanks to the visual interface. The advantage of the use of 
CANape is that the time synchronized between media data 
and vehicle odometry data. 
 

 
Fig. 6 CANape Visual interface 

V. CONCLUSION 

This work presents a self-calibration method which 

integrates with ADAS and uses environment data with 

vehicle odometry to calibrate a vehicle-mounted camera. In 

future work we want to look more deeply at different self-

calibration methods and check its suitability for ADAS. 
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