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Abstract—Mid-Infrared (MIR) spectroscopy has emerged as
the most economically viable technology to determine milk
values as well as to identify a set of animal phenotypes
related to health, feeding, well-being and environment.
However, Fourier transform-MIR spectra incurs a significant
amount of redundant data. This creates critical issues such
as increased learning complexity while performing Fog and
Cloud based data analytics in smart farming. These issues
can be resolved through data compression using unsuper-
visory techniques like PCA, and perform analytics in the
compressed-domain i.e. without de-compressing. Compres-
sion algorithms should preserve non-linearity of MIRS data
(if exists), since emerging advanced learning algorithms
can improve their prediction accuracy. This study has in-
vestigated the non-linearity between the feature variables
in the measurement-domain as well as in two compressed
domains using standard Linear PCA and Kernel PCA. Also
the non-linearity between the feature variables and the
commonly used target milk quality parameters (Protein,
Lactose, Fat) has been analyzed. The study evaluates the
prediction accuracy using PLS and LS-SVM respectively as
linear and non-linear predictive models.

1. Introduction

Advances in pervasive computation and communi-
cation technologies with IoT systems result in rapid
adoption of Fog/Edge computing based data analytics
to discover near real-time insights in smart farming [1].
The opportunity of collecting and analyzing millions
of high-resolution data demands distributed analytics
across the resource-constrained Fog devices rather than
centralizing raw data. Therefore efficient data storage,
communication and processing techniques are vital [2]
in Distributed Learning (DL) [6] compared to learning
by centralizing data of such applications. This is not
only because of scalability, but also due to significant
contributions towards energy optimization [3], [12].
Instead of aggregating raw data, DL aggregates rich
features from each data source to discover high quality
global knowledge. The success of DL depends on the
accuracy of knowledge aggregation at the same level
where centralized learning could achieve. Therefore,
one of the important task in DL is to prepare data in
a compressed feature space that enables to maximize
information extraction while minimizing computation,
communication and storage resource consumption [2],
[4].

Pasture-based dairy farming is one of the industries,
which has distributed data sources in a large terrain

and essentially requires such optimized systems to ac-
celerate current farming strategies [7]. In smart dairy
farming, farms are being adopted with the new tech-
nologies such as per-animal based milk yield and qual-
ity monitoring, sensor-based animal behaviour track-
ing [5] and robotic milking etc. to improve the quality
and efficiency of dairy production. Among them Mid-
Infrared Spectroscopic (MIRS) milk quality monitoring
and its association analysis with other factors is vital
for milk value analysis and for identifying associated
phenotypes [8]. To apply DL on these datasets, a Com-
pressed Learning (CL) approach (explain in Section 2) is
commonly used to extract descriptive features from the
raw data. Prior knowledge of the general characteristics
of data is essential for a lossy CL approach to retain the
precision of learning.

According to the literature [13], [14], [15], the
linear /non-linear behaviour of data has a considerable
impact on the accuracy of the final learning outcomes.
The purpose of most of these studies were very generic
because they were based on the fact that non-linear
machine learning algorithms have better performances
than linear techniques regardless of their complexity
and the required computational power. However, linear
approaches could achieve the same precision as non-
linear techniques with lesser computation. However, re-
cent data analytics, which are capable of doing complex
learning with modern computational power, pay atten-
tion to employ the most accurate learning approach.
Therefore, understanding the original characteristics of
the data in particular, non-linearity in CL is vital.

In this study, we investigated the linear and non-
linear behaviours of MIRS dataset (Fig. 1) in the con-
text of milk quality predictions. First, pre-processing
removed the impact of water absorbances from our
dataset. Then non-linearity between the features in
measurement-domain as well as in the compressed-
domain were investigated for different milk quality
parameters. Then the CL approach was used to per-
form learning from the compressed data, which re-
duced learning complexity. The impact of non-linearity
were taken into account during the data compression
based on linear (standard) principal component analy-
sis (LPCA) and Kernel PCA (KPCA) techniques. The
learning accuracy of using compressed-domain data
was explored with a linear and a non-linear statistical
predictive models; partial least square (PLS) and least
squares support vector machine (LS-SVM). Section 1
has provided an introduction to the paper with its
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Fig. 1. Water-removed MIR spectra (X) of 712 milk samples in the
wave region 925 — 5005cm . Water removal pre-process has reduced
the feature-space dimensionality from 1060 wavenumbers to 847.

motivation. The remainder of the paper has been struc-
tured as follows. Section 2 discusses the significance
of non-linearity in MIRS data and its importance in
CL. Section 3 provides the methodologies we used to
analyze non-linearity in MIRS milk quality predictions.
Section 4 provides the analytical results based on our
MIRS data followed by the conclusions in the Section 5.

2. Non-linearity and CL in MIRS

The main objective of the traditional data compres-
sion techniques is to reduce data storage and commu-
nication requirements as much as possible while min-
imizing information losses. These compression tech-
niques do not contribute much to reduce learning com-
plexity as de-compression was performed to a similar
complexity prior to the learning process. The chal-
lenge of performing efficient data analytics with higher
dimensions with highly redundant data remains un-
changed. CL concept can be used to overcome this
issue in Fog/Edge computing and in big data ana-
lytics. In CL, the original data (measurement-domain)
is compressed while preserving the original learning
accuracy. De-compression can be postponed until only
if it is necessary. Thus, CL significantly reduces learning
complexity. The data reduction techniques such as PCA
and Wavelet Transformation (WT) has been used for
CL [21].

Fig. 2 illustrates the CL process with unsupervised
PCA compression where the measurement-domain and
the compressed-domain data can either be in the same
or different processing entities. Suppose matrix Yy xp
contains data for p response variables and need to
build a regression model for those in Y (e.g. Lactose,
Protein, Fat milk quality parameters) using Xj;x with
m feature variables and n data samples. In order to pre-
serve the original information and improve the learning
performance in the compressed-domain, (I, G, P) from
the compression should represent the original charac-
teristics of X as much as possible.

In general, CL can be performed either in a sin-
gle processing entity or in many geo-distributed pro-
cessing entities. In a single processing scenario, both
compression and learning can be supervisory since the
compression unit is aware of what the compressed
data is used for. Therefore, an optimal compression
can be performed and continue to the learning process.
In distributed scenario, compression and learning may
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Fig. 2. The matrices of SVD used in classical PCA for deriving our
compressed-domain data, which later be used in CL to predict MQPs.

be performed independently at two different locations.
Unsupervised compression and a supervised learning
should be employed since the compression unit may
not know what will be the learning purpose. Therefore
the compression entity will not aware of the most spe-
cific and relevant information required for the learning.
It may neglect generally the least significant informa-
tion according to the properties of the compression
algorithm (e.g. variants in PCA). In order to achieve a
robust analytic outcome by extracting the most accurate
information, a proper understanding of X with Y is
important because it helps to form well-represented
compressed data and then perform learning in CL [24].

Performing a comprehensive pre-analysis with care-
ful attention at all possible characteristics such as non-
linearity, redundancy (including co-linearity), scaling
and normalization of data helps to understand the data
before applying CL. Therefore, such analysis overcomes
the most decisive challenge in CL to select suitable com-
pression and learning techniques based on the under-
lying behaviour of data. Understanding non-linearity
between the feature variables and with the response
variables can make a significant impact on the accuracy
of CL. If a linear compression technique is used on
the dataset without knowing that data has non-linear
behaviours, compression may loose non-linear property
of the original data. The information losses can be
minimized by first understanding the behaviour though
a pre-analysis and using a non-linear compression to
preserve both linear and non-linear characteristics.

Most of the past studies in MIR spectrometry have
followed the centralized analytics. Y. M. Chen et al. [13]
studied non-invasive determination of sorghum species
with different dimensionality reduction techniques and
non-linear predictive models. Their study proved that
the concern about non-linearity of MIRS sorghum data
contributed for dimensionality reduction as well as
improving the robustness of learning outcomes. The
authors in [14] also considered non-linear associations
between melamine content and MIRS spectra of dairy
products (liquid milk, milk powder and infant for-
mula). The generalization performance of linear and
non-linear dimensionality reduction with a non-linear
learning technique (SVM) has been studied by L. J.



Cao et al. [15]. They explored non-linear dimensionality
reduction methods (KPCA and ICA) to capture higher
order information of the input signal than linear meth-
ods (PCA). As a result, they were able to improve the
generalization performance of their predictive models.
In this study, we looked at non-linearity of MIRS data
used in DL scenarios using CL.

3. Evaluation Methodologies

In this study, we first analyzed linear and non-linear
associations between the measurement-domain vari-
ables in X and then between each compressed-domain
significant feature variables (G) for three selected target
variables Y (Protein, Fat and Lactose). The linear/non-
linear correlation coefficients, PCA reconstruction error
and non-linearity rate (NLR) measures were used with
unsupervised CL (only needed X). Partial residual plots
(PRP) and Durbin-Wotsan (DW) test were used with
supervised approach (needed both X and Y) to describe
the impact of non-linearity using LPCA and KPCA. PLS
and LS-SVM learning approaches were used to examine
the quality of compression based on non-linearity of the
compressed data.

3.1. Linear/Non-linearity Evaluation Measures

Correlation Coefficients: There are different types
of correlation measures such as Pearson’s correlation (cor)
and Maximal correlation (mcor), which are used for dif-
ferent purposes. cor captures only the linear correla-
tion between random variables (generally called as the
correlation coefficient), which is a statistical measure
used to quantify association between random variables
Xi, Xj €R,

cov(X;, X;
cor(X;, X;) = % %) (1)
var(X;),/var(X;)
cor(X;, X;) = 0 does not mean that there is no

association because cor cannot detect if there is a non-
linear association. mcor enables measuring non-linear
correlations by transforming the data, where associa-
tions are not detectable in the original data space and
is defined as;

meor(X;, X;) = maxsqcor(f(X;), (X)) >0 (2)

where f,g € R — R are two functions selected so
that they maximize the correlation of X; and X;. If
there are non-linear associations, mcor > cor and
otherwise mcor = |cor|. The Alternating Conditional
Expectation (ACE) algorithm was used to compute
mcor in our evaluations. In this study, cor and mcor
measures [16] were used to recognize linear and
non-linear associations in our MIRS data X.

NLR: NLR is a quantitative measure for the degree
of non-linearity in data. Most of the measures of non-
linearity are based on the residuals from linear and
non-linear regression fittings. The residual difference
between two fittings gives an idea about the non-
linearity. According to [11], NLR can be defined
assuming that non-linear techniques fit perfectly to

the data (i.e. non-linear fitting residual error is nearly
Z€er0).
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where n number of data points (X;), L; and H; are
supporting points of linear and non-linear regression
fittings, respectively. o = 1Y ||X; — p||? is the vari-
ance of data X and yu is the mean of X. The Equation
(3) indicates the amount of residuals from linear fitting.
Higher NLR will result in higher non-linearity and vise-
versa. Suppose the linear fitting is LPCA, then NLR can
be derived as follows.

1
Zi:1 /\i

NLR =1—
itq A

4)
where A is the i eigenvalue computed form the
covariance matrix of X and [ is the selected dimension

for I = 1,2,---,m. The proof of this formula can be
found in [11].

PRP: A plot obtained using Least Squares Regression
(LSR) fitting can be used to understand the usefulness
of the LSR model parameters and their unknown
functional forms (e.g. non-linearity). According to
[23], partial residuals (component+residuals) are
the residuals of a LSR model fitting added to the
mis-specified part of the model. PRPs are the plots
of partial residuals against the mis-specified part.
Suppose a LSR model in the form;

y=PBo+p1x1+ -+ Buxm + f(xx) + € 5)

where f(x;),k = 1,---,m is an unknown function
to be identified (mis-specified part), B;’s are the LSR
model parameters of the predictor variable x;’s for
i =1,---,m (Bo is intercept) and € is the random
error. PRP of f gives an graphical overview regarding
the effect of f to y when the effect of all other x;s
are controlled. This concept was used to check the
relationship of each feature to their corresponding
response.

DW Test: This statistical test is used as a measure
of auto-correlation (p) of residuals from a LSR fitting
to check whether there is a correlation between the
successive residuals. Since, residual p indicates the
goodness of LSR fit, this can be used as a technique
to identify the relationship (linear/non-linear) of
response variables to its feature variables. The null
hypothesis states Hy : p = 0 and alternative hypothesis
states Hy : p > 0. The test statistic d is computed by,

"71(9—6- )2

j— 1 i—1

i=1 -~ 5 (6)
i=1€

i

d—=

where e and n reflect a residual and the number
of samples. If d < dj, Hy is accepted (residuals are
uncorrelated and normality exists in the model). Hy is



rejected, if d > dy, which reflects that there exists a
correlation in residuals and linearity in the model. The
test is inconclusive, if d; < d < dy;. The d; and dy; are
lower and upper critical values for the test [19].

3.2. Data Compression and Regression Methods

PCA is wused for dimensionality reduction,
visualizations, compression (with loss), de-noising
(removing small variance in the data) and whitening
(de-correlation so that features have unit covariance).
PCA is a variance-based statistical dimensionality
reduction technique. It draws a low dimensional space
and represents each data point by its projection along
the orthogonal directions, which represents maximal
variance of the data. The low dimensional space
is called compressed-domain feature space and the
projections along the directions are called principal
components (PCs). We used LPCA and KPCA [10] in
our evaluations of CL.

LPCA: Fig. 2 shows the process of LPCA with
singular value decomposition (SVD) within the
measurement-domain entity. Given the mean-centered
data set (Xyxm), SVD decomposes X in the form
X = UDVT, where U,V are respectively up}%er and
lower triangular matrices where UTU = [ = VTV (I is
an identity matrix). D is a diagonal matrix in which
elements follow the condition di; < dyp < -+ < dyp
(eigen values of the co-variance matrix of X). Then
the score matrix G = UD (compressed feature space)
and the loading matrix P = V are derived. Finally,
the data is transformed into its compressed-domain
by selecting the scores of the significant | (< m) PCs,
which minimizes the reconstruction error. LPCA is
based on the assumption that correlations are linear.

KPCA: When data has complex non-linear
associations, which is more realistic in practical
datasets such as MIRS data, KPCA like non-linear
feature extraction methods have to be used for data
compression in CL [10], [15], [20]. It has been proved
in many studies that non-linear methods perform
well in dimensionality reduction by capturing global
characteristics in data [15]. In KPCA, the original data
matrix X;x,; € R™ is mapped into a new higher
dimensional space (feature space) FM by a non-linear
function ¢ such that,

¢: R™ — FM 7)
For a certain selection of ¢, FM has arbitrarily large
dimension and then LPCA is performed using “kernel
trick”. According to the Mercer’s theorem, non-linear
mapping function ¢ and the kernel function K are
associated by the equation K(x/,x/) = ¢(x))T - ¢(x).
Given the kernel function K, the normalized kernel
matrix Ky« of the data Xy xy is computed as follows.

where [;,, is a matrix with all elements 1/n.
Then LPCA is applied on K in the feature space,

which is equivalent to non-linear PCA in the
original data domain. There are different types of
kernel functions such as Gaussian (radial basis -
RBF) and polynomial [15] where the RBF kernel;
K(x,x;) = exp(—|lx — x;||*/0?) was used with
02 = 025 x m x mean(var(X)) in our MIRS data
compression.

PLS: The ordinary LSR derives a relationship between
X and Y with the assumption that X variables are
uncorrelated. However, since some data such as MIRS
data violates this assumption, PLS builds regression
models by considering correlations of variables in X
itself as well as between X and Y. Therefore PLS is
considered as a bilinear modelling method in which
X data is projected into a feature space (or latent
variables, LVs) and then simplify relationship between
X and Y to predict Y selecting least number of LVs via
cross-validation. First, decompose both X and Y as the
decomposition was performed in LPCA;
X=TP"+H Y=RQT+L )
where, T and R are the score matrices and P and Q
are the loading matrices. H and L are respectively the
error matrices, which come from the process of PLS
regression of X and Y. Then, LSR is applied for scores
T and R such that R = WT + ¢, where W and e are
respectively the weight matrix (to be estimated) and
the error term, which fits a LSR model for X and Y [9].

LS-SVM: As same as the process explained in
KPCA, when data has complex non-linear associations,
linear models cannot capture them properly. Therefore,
LS-SVM is used to form a regression model in the
feature space {¢(x')}! ;. The regression model in
LS-SVM is given by,

y(x) = Wip(x) +b (10)

where W € R" is the weight vector and b is the bias. LS-
SVM is an optimized algorithm based on the standard
SVM [18]. The optimization problem is formulated as
follows.

) 1 1 &
minJ(W,e) = EWTW + 57 281-2
i=1

where 7 is the regularization parameter and e; is the
random error. The Lagrange multiplier method is used to
solve the optimization task in the LS-SVM algorithm.

L(W,b,e,zx) = ](W,E) - iai{wT(i)(xi) +0b + e _]/k}
i=1

(11)
where «; is Lagrange multipliers. The above Equation
(11) is solved by partial differentiation with respect to
each variable. Then estimation function of y can be
obtained as,

n
y(x) = Y wmK(x,x0) +b; i,j=1,23,---,n (12)
i=1



where K is the kernel function. The selection of the
parameter values 7y and o (RBF kernel parameter) is im-
portant. This is because 7y improves the generalization
performance of the model and ¢ controls the regression
error and also reflects the sensitivity of LS-SVM model
due to noise in input variables [17]. Thus, large v and
o reflect respectively more non-linear model and global
properties. There are different techniques to set param-
eter values in LS-SVM model such as cross-validation,
grid search, Bayesian optimizer [22].

4. Evaluation Results

4.1. MIR Spectroscopic Milk Quality Data

The data used in this paper has been obtained

from Teagasc research dairy farm at Moorepark, Ireland
where MIR spectra was collected (in 35 days starting
from August 2013 and ending in August 2014) using
605 different dairy cattle. The composition of milk was
determined using FOSS MilkScan prediction equations
using FI-MIR technology. The input data matrix con-
tained the spectra of 712 different milk samples in the
wavenumber region 925 — 5005¢m ! with a resolution
of 3.853cm~!. When the wavenumbers were rounded
to the nearest integer, a given spectrum contained 1060
transmittance data points. Therefore, the original MIRS
spectra used (called the gold standard) to apply com-
pression algorithms was a (712 x 1060) dimensional
matrix.
Since spectral values were given in transmittance, we
converted them to absorbance by taking logig of the
reciprocal of given transmittance values. According to
the impact of water absorption in MIRS at 25°C, two
corresponding wave regions were removed as 1607 —
1734cm~! and 3021 — 3707cm ~!. This reduced our spec-
tra to 847 wavenumbers, which we used as the input
data matrix X (Fig. 1) in our analysis. In addition,
the percentages of the selected MQPs corresponding to
each sample were stored in a matrix (Y). Among them
three most commonly used MQPs; Lactose, Protein and
Fat were taken into the evaluations. Then our data com-
pression and regression model calibration/validation
were applied on this gold standard data. R-software
was used for non-linearity analysis and MATLAB was
used for PLS and LS-S5VM model building and evalua-
tions.

4.2. Non-linearity in Measurement-domain Data

To emphasize that there are linear and non-linear
correlations in X, the cor and mcor were computed
for all every pairs of wavenumbers in X. The results
are shown in Fig. 3 with their absolute differences.
According to the variations of color intensity, there are
high and low variations respectively in the regions 925-
3025cm ! and 3025-5005c¢m L. The figure shows both
linear and non-linear correlations in the region 925-
3025cm~1 due to strong mcors values. Even though
mcor > cor among the wavenumbers in both re-
gions 925-3025¢m ! and 3025-5005¢m !, the region 925-
3025¢m ™! shows a higher variation. Both correlations
seem to be similar (linear/no correlation) among the

5005
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Wave Number
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Fig. 3. The absolute difference of Maximal (mcor) and Pearson’s (cor)
correlation coefficients (|mcor — cor|) between feature variables in X.

wavenumbers in the region 3025-5005¢m ! and some in
952-3025cm ! since there are no much color variations
(red regions). Within the region of 925-3025cm !, at
some points the correlation difference is even greater
than 0.6. Maximum of 0.96 was observed between the
wavenumbers 1387cm~! and 1152cm ™! (the strongest
mcor).

In general, there are both linear and non-linear as-
sociations in X and in particular, more non-linear
correlations exist among the wavenumbers up to the
3025cm 1. The correlations between the wavenumbers
above 3025¢m ! are not much stronger in terms of non-
linearity.

To explore the importance of the linear/non-linear
correlations of the feature variables in X, PLS regression
was applied and the regression coefficients (Bs) were
derived for each MQP. Then the correlations of the
wavenumber at significant s (e.g. B > 303) with the
other features were computed for each MQP. Fig. 4
shows the Bs of each MQP and the absolute correla-
tions (mcors and cors) of wevenumbers at the highest
significant B (Lactose - 1745cm 1, Fat - 1734cm~! and
Protein - 1541cm ™) with other coefficients.

In each plot, mcor > cor for all Bs and most of the
correlations are high and fluctuated sharply within the
region 925-3012cm ! compared to the correlations of
the Bs above the wavenumber 3710cm ™. The plot for
Protein are clearly non-linear because the differences
between mcor and cor are higher for many ps. Even
though there is no much non-linearity in the plots for
Lactose and Fat compared to Protein, correlations in
the region 2730-2817cm~! show a clear non-linearity.
Thus these plots reveal that the correlations associated
with the most significant B are non-linear for Protein
compared to the correlations associated with the most
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Fig. 4. PLS regression coefficients and the absolute values of mcor and cor correlations for Lactose, Fat and Protein. The shown correlation
coefficients are between the wavenumber at the most significant regression coefficient with the rest of the wavenumbers.

significant Bs of Lactose and Fat.

With regard to fBs of each MQP, the highest signifi-
cant Bs lie in the regions where both mcor and cor
are more or less similar (linear correlation) in each
plot. There are many coefficients those lie where the
correlations are non-linear. For instance, correlations of
Bs of Protein in the regions 925-1250cm~! and 2034-
2370cm ! contain most of the significant coefficients.
If data is compressed with LPCA, then the wavenum-
bers in these regions will likely to be removed due
to lesser cor correlations. As a consequence, a high
information loss can happen. Non-linear KPCA may
be able to capture those non-linear as well as linear
associations. Therefore, KPCA compressed data may
retain more characteristics from the original data than
LPCA. Therefore, it is important to understand the non-
linearity as a prior knowledge before applying CL.

4.3. Performance of Linear/Non-linear PCA

After analyzing the behaviour of correlations in the
dataset X, its impact on the PCA compression was
investigated. The amount of information captured by
LPCA and KPCA algorithms were considered by com-
puting REs for the first 100 PCs. The results are shown
in Fig. 5 (left). According to the figure, REs of KPCA is
less than that of LPCA. It turns out that KPCA incurs
lesser REs with a lower number of PCs than in the
LPCA. According to KPCA, this is due to existence
of non-linearity in X. For instance, REs of LPCA and
KPCA with 20 PCs are respectively 5.9 x 10~* and
8.6 x 10~7. Therefore, LPCA needs more PCs to achieve
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Fig. 5. Reconstruction Error and NLR of LPCA and KPCA at different

numbers of selected PCs.

the same RE where KPCA can achieve with a lesser
number of PCs. It confirms that the nature of associ-
ations among the variables in data directly affect the
compression.

To further investigate the existence of non-linearity
in X and its impact on compression, the degree of
NLR was computed with LPCA and KPCA at different
number of PCs. Fig. 5 (right) shows the variation of
NLR which represents the linear fitting residual error.
LPCA incurs a higher degree of NLR than KPCA,
which means that non-linear fitting produces lower
residual errors than linear fitting, which confirms the
outcomes of REs. For instance, NLR with 20 PCs is
2.99 x 10~% of LPCA, which is twice higher that in
KPCA (5.59 x 1078). It confirms that there is a non-
linearity between feature variables in X. KPCA captures
non-linearity better than LPCA. Further, the degree of
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Fig. 6. PRPs for PC1 (Fat) and PC2 (Protein) to detect non-linearity

in MIRS data with the first 10 PCs of LPCA (left) and KPCA (right).

NLR decreases with increasing number of PCs. This
shows that extraction of higher dimensional feature
space from the original data has lower degree of non-
linearity.

4.4. Non-linearity between the Features and Tar-
get Variables

DW test was conducted to investigate the non-
linearity between feature variables in X and the re-
sponse variables based on LSR modeling. The scores of
the first 10 PCs derived from LPCA and KPCA were
used to compute LSR residuals to evaluate DW test
statistics for each MQP. The test statistics and corre-
sponding critical values are given in the Table 1. The
results reveal that Protein and Fat predictions have non-
linear behaviors and Lactose has a linear relationship
in the MIRS dataset X.

To make a visual interpretation of non-linearity in Fat

and Protein predictions, which was evidenced by DW
test, their PRPs were drawn using the scores of the first
10 PCs. To get an idea about non-linearity of Fat and
Protein, only the PRP of PC1 and PC2 are shown in
Fig. 6 (LPCA-left and KPCA-right). The divergence of
the non-parametric fit from the fitted LSR line indicates
a degree of non-linearity and the type of non-linear
relationship. The PRPs from the compressed-domain
of LPCA represent higher divergence from the LSR fit
than those using compressed-domain of KPCA. This
confirms that Protein and Fat predictions have non-
linear relationships to X.

Table 1: DW TEST for the SELECTED MQPs WITH FIRST 10PCs
DERIVED FROM LPCA AND KPCA (d;, = 1.8498 and d; = 1.9019).

DW test statistic (d) Decision
MQP . .
LCPA KPCA (linear /non-linear)
Lactose | 1.6559 1.6391 d < dp linear
Fat 1.9680 1.9505 d > dy; non-linear
Protein | 1.9805 1.9779 d > dy; non-linear
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Fig. 7. Prediction accuracy of PLS and LS-SVM based on LPCA and
KPCA compressed data for Protein.

4.5. Learning Accuracy of PLS and LS-SVM

To study the learning performance of the regression
models based on LPCA and KPCA compressed data,
the learning accuracy was computed from PLS and LS-
SVM. First, the dataset was divided into two subsets
as calibration (80% of the samples) and validation (the
remaining samples) by using Kernard-stone sampling
method. Calibrations and validations were performed
for the first 100 PCs and computed the validation R?
(coefficient of determination) as the learning accuracy.
The number of latent variables (LVs) in PLS was se-
lected employing 10-fold cross-validation. We used the
Bayesian optimization approach to select LS-SVM model
parameters; ¢ and o.

Fig. 7 shows the learning accuracy computed from PLS
and LS-SVM models for Protein with different PCs
derived from LPCA and KPCA. Almost the same max-
imum learning accuracy of nearly 74% was achieved
with KPCA compressed data using first 45 and 70
PCs respectively from PLS and LS-SVM. The learning
accuracy was higher with LPCA compressed data than
in KPCA only for lower number of PCs (around <
20 PCs). The number of PCs where the maximum
learning accuracy was achieved is higher with KPCA
than LPCA. In general, comparing all the values, it
turns out that non-linear compression and learning has
improved the leaning accuracy although the feature
space is higher compared to the linear approach.

The same procedure was repeated for Fat and Lac-
tose and the results are shown in Table 2. The ob-
served highest learning accuracies from the original
and LPCA/KPCA compressed data with the corre-
sponding PLS and LS-SVM model parameters (includ-
ing Protein). The number of PCs of with those accura-
cies were observed are also given. All the learning out-
comes show that CL gives higher leaning accuracy than
that was obtained from the original data. Further, the
performance of CL from KPCA compression is better
than that of LPCA except Lactose. The learning per-
formances of LS-SVM models are always higher than
PLS models regardless of the compression technique.
The results show that the learning accuracy from LPCA
compressed data is higher than KPCA. This turns out
that there is a linear relationship between MIRS data
for Lactose prediction.



Table 2: COMPRESSED-DOMAIN LEARNING ACCURACY (R?) of PLS AND LS-SVM PREDICTIONS for LACTOSE,FAT AND PROTEIN

Original Data LPCA KPCA
MQP PLS LS-SVM PLS LS-SVM PLS LS-SVM
R3(LVs) R3(0,7) #PCs | RZ [ #PCs [ R2 (0,7) #PCs | Ry | #PCs [ R} (0,7)
8351 8759 88.03 7932
Lactose | (12) (26.57,5848) | 55 | 8349 | 45 (12.25, 66.91) 95 | 7813 | 95 | (2.28,12.18)
88.04 89.35 88.82 88.89
Fat ®) (35.66,69.56) 65 | 8820 | 45 (17.56,50.5) 55 | 8817 | 75 | (14.2,635)
70.3 722 71.63 73.9
Protein (15 | (5.01,7.4x10% | 40 | 7041 | 55 | (4235,158x10%) | 45 | 73.67 | 70 | (39.66,64.47)

LS-SVM model parameters confirm a non-linearity for
Protein and Fat predictions and a linearity for Lactose
within the MIRS dataset. This is because the highest
v values were observed for Protein with both LPCA
and KPCA. « for Fat was higher than Lactose. Further,
these values verify the results given in Fig. 7 and Table
1. The behaviour of ¢ values was same as 7, which
means Protein predictions have more global behaviour
than Fat and Lactose.

5. Conclusions

First we investigated non-linear behaviours between
the wavenumbers (features) of the MIRS data. Our
investigation has shown that there is a considerable
non-linearity exists and should be captured by the
compression algorithms. Then we have compressed the
original data using both LPCA/KPCA and investigated
non-linearity between the compressed-domain feature
variables and with three selected response variables
(Fat, Protein and Lactose). According to this analysis,
we conclude that Fat and Protein predictions show non-
linear behaviours, which we need to capture in com-
pressed learning. Finally we applied PLS and LS-SVM
regression models on the two compressed-domain data
to show that there is an improvement in accuracies us-
ing non-linear predictions. Therefore, we conclude that
use of a linear unsupervised compression technique has
negative impacts on the prediction accuracy of different
MQPs. Use of non-linear compression techniques such
as KPCA at the compression entity is highly desirable
in compressed learning approach. Otherwise, the ad-
vantages of using complex non-linear predictive models
will not be useful in MIRS based milk quality analytics.
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