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Abstract

With advances in the Internet of Things, the use of Wireless Sensor Networks (WSN) has
been widely proposed for monitoring and automation of farm processes under the umbrella
of Precision Farming. In conventional WSN systems, data gathered by sensors is transmitted
to remote cloud servers for analysis. These systems, however, incur delay in getting insights
into the processes due to the high volume of data generated on the farms coupled with
the poor Internet connectivity. This negatively affects the delay-sensitive applications that
require immediate response. The Fog Computing paradigm suggests a shift in intelligence
from the cloud towards the network edges to cater to the requirements of delay-sensitive
applications. It proposes the use of compute, memory and networking resources available
at edge devices such as gateways, routers and sensors to reduce dependency on cloud and,
thereby, improve the responsiveness of the system. In this work, we focus our attention
on the development of on-board intelligence for sensor devices in the context of Precision
Farming. Firstly, we identify gaps in the current WSN-based Precision Farming technologies
and examine the suitability of Edge Mining, an instance of Fog Computing, for real-time
event detection in farm processes. In addition, we propose an extension of the Edge Mining
approach to allow for context-aware operation of sensor devices in farms. A WSN prototype
consisting of a plug-n-play universal sensor device and gateway node has been designed to
validate the performance of these algorithms. Next, we develop two cooperative frameworks
- Collaborative Edge Mining and Iterative Edge Mining, to represent the analytic problems as
a set of cooperative Edge Mining-based tasks for parallel and sequential analysis respectively
within WSN. The cooperation between tasks allows for scaling of analysis within and across
devices to improve computational capability of the network. Finally, we discuss resource
management through cooperative computing within WSN. Cooperation between devices is
considered to improve accuracy and timeliness of in-network analytics while optimizing the
use of energy resources of sensor devices for improved network longevity.
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Chapter 1

Introduction

1.1 Background and Motivation

In this section, we provide the background and motivation for the research presented in this
thesis. We describe modern-day Wireless Sensor Networks (WSN) in section 1.1.1, followed
by the envisioned future WSN in section 1.1.2. We discuss the Fog Computing paradigm that,
in our opinion, lays foundation for the design of future WSN in section 1.1.3, and present the
key design challenges that must be addressed for realization of future WSN in section 1.1.4.

1.1.1 Wireless Sensor Networks today

A typical WSN consists of small, inexpensive, battery-operated sensor devices that are
deployed over a large area for continuous monitoring of the environment, and gateway
nodes to collate the sensor data and upload it onto the cloud for analysis and sharing with
the end-users. With developments in Information and Communication Technologies (ICT)
along with design of micro-services, WSN presents itself as a powerful tool for real-time
monitoring/surveillance, and has been identified as the key enabler of the Internet of Things
(IoT) paradigm. As a result, significant attention has been given to improve the design and
capabilities of WSN over the past decade. For instance, tremendous efforts have been made
to increase energy efficiency and computation capability of sensor devices. Conventionally
limited to sense and send, certain tasks assigned to these devices, today, are of relatively high
computational intensity (e.g. data fusion [1], localization [2]). A few sensor devices, today,
are also capable of harvesting energy from natural sources such as wind and solar energy [3]
for continuous use. Furthermore, several improvements have been achieved in development
of communication technologies for WSN. Various low-power, short-range (e.g. Zigbee [4],
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bluetooth-low-energy [5]) and long-range (e.g. LoRa [6]) communication techniques have
been designed and used in the recent past. A comparative study of the emerging wireless
technologies for WSN is presented in [7]. Design of these technologies ensures the suitability
of using WSN systems in both urban and rural areas.

Standardization of communication technologies for WSN along with the simultaneous
efforts to allow inter-operability of sensor devices, have diversified the types of sensors being
deployed in a given system. A WSN, today, may include devices not only of different types
(e.g. temperature, CO2) but also of different makes and models (e.g. TelosB, Micaz, Iris).
This diversification makes WSN systems thorough and multi-purpose for use in different
application domains such as agriculture, health-care, transportation, environmental sensing
and industrial monitoring. In health-care, for instance, the use of WSN has been proposed for
numerous applications such as remote patient monitoring and tracking, remote diagnostics
and examination, and medical asset tracking as discussed in [8]. WSN will allow design
of early warning systems and reduce costs otherwise incurred in periodic hospital checks.
In transportation, WSN has been used to build smart roads, rails and runways, augmented
maps and Intelligent Transportation Systems (ITS) to improve safety of people and reduce
delays while travelling. An instance of a WSN system for ITS has been presented in [9].
In agriculture, use of WSN has been suggested for monitoring and automation of tasks
relating to environment management, crop growth, yield mapping, and health and mobility
management of livestock under the umbrella of Precision Farming [10]. A detailed survey
on characterization and classification of WSN applications is presented in [11].

An important aspect of WSN is timely and efficient management of data for extraction of
information. The use of Cloud Computing has been suggested for analyzing the ‘big data’
collected by sensors. Accordingly, several communication protocols for efficient transmission
of data from sensor network to cloud have been proposed, to date. Data collected by sensors
can be categorized as either delay-critical, delay-tolerant or delay-insensitive depending on
the application scenario. Subsequently, the networking approach used within WSN can be
either periodic or event-driven, deterministic or opportunistic, topology or location-based,
direct-delivery or multi-hop to meet the latency, accuracy and energy requirements [12]. For
instance, the authors in [13] use opportunistic networking to transfer delay-tolerant data
in smart dairy farms. The approach uses milking cows to gather data from farms that is
transferred to a cloud gateway, hosted in the parlour, using direct-delivery as cows go for
milking. Alternatively, numerous routing protocols have been designed for data transmission
in a multi-hop WSN. In [14], the authors present a context-aware, gradient gravity routing
protocol that uses interactions between WSN and end-user devices for targeted delivery of



1.1 Background and Motivation 3

data. The authors in [15] discuss the design of a fuzzy logic-based multi-dimensional link
quality indicator that is integrated in the Collection Tree Protocol (CTP) for reliable data
communication in multi-hop WSN. The use of LoRaWAN for low-power data transfer over
wide area networks has also been discussed in [6].

For analysis of data, Cloud Computing facilitates on-demand and pay-as-you-go access to
computational power, memory, and other resources on remote servers via the Internet. Several
cloud-based data mining platforms have been designed, to date. Apache Hadoop software
library, for instance, is a framework that allows for distributed batch processing of large data
sets across clusters of computers [16]. Alternatively, stream processing platforms including
Storm [17] and Spark [18] by Apache have also been developed to improve timeliness of
analysis. MapReduce is a widely used distributed programming model that is used by these
platforms for easy parallelization of the processing tasks [19]. A large number of distributed
and parallel data mining algorithms have been implemented using the MapReduce model.
These algorithms are roughly divided into 4 categories - Association Rule Mining (e.g.
Apriori, Frequent Pattern Growth), Classification (e.g. Decision Trees, Neural Networks),
Clustering (e.g. K-means) and Stream data mining (e.g. MILE) as presented in [20]. While
Cloud Computing enables informed decision making, big data mining brings in series of new
challenges and complexities related to data storage and energy consumption. Additionally,
big data mining algorithms must address issues related to scalability, heterogeneity and
security of data. Ongoing work is, therefore, focused on improving the existing approaches
to deliver secure and timely information to the end-users for improved decision making.

1.1.2 Wireless Sensor Networks tomorrow

Despite the recent advances in WSN technology, continuous efforts are being made to further
improve the design and efficiency of sensor devices. This ranges from the design of sensor
devices for large IoT objects such as buildings and vehicles to small personal devices such as
mobile phones, health monitoring wearables and medical pills. Several attempts at reducing
the dimensions of sensor devices have been made to make them more suited for embedded
systems, as well as allow their deployment in relatively inaccessible areas, for instance
inside human body, for continuous monitoring. With parallel advances in nanotechnology,
design of nano-sensors is a natural extension of WSN systems. Development of man-made
or natural nano-sensors using techniques such as top-down lithography, bottom-up assembly,
and molecular self-assembly is being investigated. Moreover, design of networking protocols
suitable for communication at nano-scale has been proposed to pave way for nano-networks
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within WSN. Such nano-networks are expected to monitor processes that ensue at molecular
scale for design of early forecasting systems. However, due to limitations of size and
resources, these networks must be integrated with WSN, in future, for communication and
analysis of data. Furthermore, with increase in deployment of WSN systems in rural areas,
improvements in the design of energy harvesting WSN must be realized. Energy harvesting
WSN are expected to enable indefinite use of sensor devices while reducing the energy
footprint of operation to ensure ‘green computing’. This is also useful for the design of
nano-sensors where inclusion of an external battery-unit may not be feasible.

The continuous use of future WSN is expected to generate unprecedented volume and
variety of data causing information overload on the cloud. While Cloud Computing offers a
cost-effective solution for analysis of sensor data, such a data explosion would result into
communication and processing delays on cloud servers, in turn, leading to latency in getting
useful insights in the data. These delays will be further enhanced in remotely connected
application domains such as smart agriculture [21] that suffer from poor communication
bandwidth and may not have a continuous, ubiquitous network connectivity to the cloud.
To mitigate these challenges, we envisage the design of future smart sensor devices that
would incorporate certain intelligence to perform real-time, on-board data processing before
transmitting data to cloud. Besides deciding where and how to route data packets, we
presume that the sensor devices will be capable of deciding what information to send to
cloud on-the-go. As such, the design of future WSN is expected to be user-centric and
capable of performing in-network analytics to not only reduce redundancy in sensor data but
generate real-time alerts based on the given specifications. Through localized processing of
data, future WSN design would allow reduced communication to the cloud and facilitate
optimization of both sensor and cloud resources. In doing so, it would also improve the
security and privacy of the sensor data.

Furthermore, owing to the dynamic nature of application/user requirements, we envisage
the sensor-based intelligence to exhibit flexibility to adapt to these changes. That is, WSN-
based services must be re-configurable on-the-go to meet changes in requirements so as
to ensure computational accuracy while optimizing the use of device resources. Given the
large number of devices in a typical WSN, we also envision cooperation between nearby
smart sensor devices to improve computational capability of the network. Collaborative
in-network analysis between different sensor devices would allow integration of various types
of information for provision of more complex services, which are beyond the capabilities
of an individual device, within the network. Moreover, cooperation through computation
offloading among devices would allow load balancing across the network for improved
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energy balance and, in turn, network longevity. Collective participation of sensor devices in
analytic tasks could also lead to a potential improvement in the accuracy of predictions made
by individual devices, thereby, improving the performance of WSN. Finally,we expect the
design of future WSN to facilitate contextualization of the sensor data/services to improve the
decision making process. Location and user-awareness owing to on-board data analysis would
help develop spatial correlation between data-sets to add relevance to the data. Moreover,
location-awareness could help improve communication of data to the cloud by means of
opportunistic and location-based networking, to improve energy utilization within WSN.

1.1.3 Fog Computing

The Cloud Computing approach facilitates on-demand use of a cluster of servers, hosted
remotely on the Internet, for storage, analysis and management of data. It allows easy scaling
up and down of resources in case of variable task loads to avoid under/over-provisioning
of resources. By facilitating such flexibility in resource utilization, it saves the capital
expenditure, in particular the energy cost of maintaining the ICT infrastructure, incurred by
the small and medium enterprises. This computing architecture functioned well until WSN
systems generated some large data-sets in remotely connected applications such as in rural
agriculture where back-haul connectivity is limited between the remote rural farms/factories
and the cloud. The intermittent Internet connectivity in such applications causes unnecessary
delay in communication and computation of data, which is undesirable especially in delay-
critical scenarios. This issue is further enhanced as advances in IoT and mobile technology
have caused majority of our interactions with the world to be increasingly dependent on
real-time, context-aware services. For IoT to ensure reliable delivery of services to end-users
and improve Quality of Experience, we, therefore, suggest the design of future WSN to
incorporate smart sensors that are self-sustaining and operate autonomously to perform
real-time, on-board data analysis. To do so, we expect the design of future WSN to borrow
principles from Fog Computing.

Fog Computing [22] is a new computing paradigm that proposes partial migration of
intelligence away from the cloud and towards the network edges. It follows the concept of
data gravity and suggests the use of compute, storage and networking resources available
closer to the data sources for hierarchical and scalable analysis of data along the sensor-cloud
continuum, prior to sending it to the cloud. On one hand, Fog Computing aims at optimizing
the network resource utilization through managing, disseminating and responding to queries
at the edge. On the other hand, it allows for faster insights into the data despite intermittent
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connectivity or high mobility of devices. Due to resource-constraints of the edge, however,
the fog works in junction with the cloud for big data analysis. While edge analytics is
suggested for real-time alert generation, results of edge-based analysis are sent to cloud
for future analysis and deep learning. The reduced packet transmissions to cloud allows
for improved energy profile of devices as well as reduced resource (memory and energy)
requirements in the cloud. The suitability of Fog Computing over Cloud Computing for IoT
applications has been discussed in [23] and [24]. The studies highlight the benefits of using
the Fog Computing approach, especially, in scenarios where majority of the applications are
delay-critical. A reference architecture has been recently proposed for Fog Computing in
[25]. The architecture is based on a set of core principles (referred to as pillars) including
security, scalability, autonomy, agility and programmability that must be adhered to while
designing future IoT/WSN systems.

Apart from the above considerations, one of the key challenges in Fog Computing is to
determine what and how much computation to offload at the edge in order to balance the
resource trade-off between communication and computation tasks on the edge devices. This
is primarily determined based on the application requirements (latency vs. accuracy) as well
as the type of fog agent (edge device) used for analysis. Over the past few years, numerous
interpretations of fog agents within IoT have been discussed. While some approaches propose
the use of computational resources at network devices such as switches, with increase in
number of mobile-phones, a number of studies have suggested the use of free computation
slots on user mobile phones [26]. A cluster of mobile-phones in vicinity is considered as an
ad-hoc cloudlet and used for computation offloading [27]. This concept has evolved in the
recent years and has come to be known as Mobile Edge Computing (MEC) where mobile
operators leverage resources of the edge devices rather than the centralized servers in cloud
computing for data processing. Recent studies further extend the concept of fog to extreme
edge of the network, i.e. sensor devices, to cater to WSN applications that lack such relatively
powerful edge devices. This is primarily supported by the tremendous improvements in
computation capabilities of sensor devices [28] as well as the design of pervasive low-power
wireless technologies like ULP-PAN and LP-WAN. Certain in-network processing within
WSN (referred here as sensor analytics) has already been proposed. In [29], for instance,
the authors discuss use of in-network data fusion to improve the accuracy of a WSN-based
tracking system. While data fusion techniques allow localized data reduction, they lack
predictive capabilities and limit the analytics performed within WSN. In this work, we review
the existing sensor analytic techniques and aim to extend the current work for the design of
contextualized, user-centric services within WSN in the context of Precision Farming.
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1.1.4 Challenges

While the opportunities for WSN are vast, some fundamental gaps still exist in the under-
standing and preparedness of WSN at scale. We envision that features of future WSN would
include autonomy, context-awareness, flexibility and self-sufficiency, resulting in their rapid
adoption in varied application domains. These features pose certain design challenges, some
of which are considered in this work. The challenges below are presented in the context
of Precision Farming (discussed in detail in section 2.1). However, the relevance of these
challenges is not limited exclusively by the example, and remains significant for realizing
future WSN in other application domains.

• C1. Robustness in the absence of external connectivity and diminishing resources

WSN systems are usually deployed for monitoring remote areas, an easy access and
continuous network connectivity to which is often unavailable. To ensure uninterrupted,
efficient delivery of services, these systems must be capable of autonomous operation
for real-time analysis of data without relying on third party components such as cloud
servers. That is, on-board functionality of sensor devices must extend beyond data
collection and communication to include significant analytics for timely detection of
events. Depending on the application scenario and availability of cloud resources, the
functionality should offer various levels of autonomy to WSN operation. In extreme
conditions (with no Internet connectivity) sensor-based analytics should facilitate
real-time services within WSN. For instance, a WSN system in rural farms should
operate autonomously to perform localization of animals as they move around the farm
for on-farm navigation and real-time detection of behaviour anomalies. However, a
lack of suite of analytics suitable for sensors has been identified. While certain data
mining techniques have been designed for edge devices such as mobile-phones, these
techniques are usually too complex for deployment on sensors. Design of low-power,
light-weight analytics for sensor devices is, therefore, of utmost importance.

• C2. Robustness when device capabilities are limited
Despite the tremendous improvements in design and capabilities of sensor devices,
these devices are characterized by limited compute-power, memory and energy re-
sources. In addition, their design is constrained with the type and number of sensors
featured, and communication range. The analytics deployed on sensor devices must
adhere to these resource constraints for smooth operation. As such, the analytics adds
to the WSN functionality besides its original data collection and communication tasks.
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Hence, the WSN should perform analytics such that it does not significantly impact the
monitoring tasks itself. A trade-off between analytics functionality implemented by
the WSN and resource expenditure must be considered. Furthermore, current sensor
analytic approaches consider operation on sensor devices in isolation with each other,
thereby, limiting functionality delegated to WSN. Future WSN must facilitate out-
sourcing and collaboration of analytic tasks to sensor devices in close vicinity of each
other to enable scaling of analysis within the network. Such cooperation would also
ensure load balancing among devices to prevent formation of bottlenecks. Cooperative
analytics between different environmental sensors (e.g. temperature and humidity) in
a farm, for instance, can be used to deduce the joint effect of the farm variables on
animal health to ensure their well-being.

• C3. The need to adapt
Owing to difficulty in replacing sensor devices in remote areas, lifetime maximization
is one of the key challenges in the design of a WSN system. Whereas on-board analysis
has the potential to improve energy profile of devices (through reduced packet trans-
missions to cloud), data analytics with very stringent application deadlines (that require
higher clock speeds) may exhaust the device resources and cause failure. As such,
the configuration of sensor analytics is determined by the application requirements
that usually vary over time. The functionality in sensor devices today, however, is
hard-coded and does not allow re-configuration based on changing requirements and
scenarios. To optimize the use of on-board resources, analytics should be flexible
and must accommodate changes on-the-go to maintain the trade-off between accuracy
of results and energy efficiency (i.e. longevity) of the devices. For instance, while
continuous (possibly rapid) computations may be required for localization of animals
as they move around a farm during the day, the frequency of localization should be
reduced during the evening as animals rest within the sheds. Moreover, while certain
applications require precise analysis (e.g. sub-meter location accuracy), others may
have more flexible requirements, thereby, requiring reduced computations.

• C4. Energy Efficiency
The sensor devices, today, are primarily battery-powered. Even with energy harvest-
ing in future, these devices will remain energy constrained owing to limited battery
capacity. It is, therefore, of utmost importance to ensure efficient use of these scare
resources. While computation forms one aspect of energy consumption on these
devices, communication of data to cloud is the most expensive task performed by
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Fig. 1.1 Conceptual diagram to depict the relationship between WSN design challenges

the devices. The energy cost depends on frequency (on-off of radio) and number of
packet transmissions, and the distance between devices and the cloud. Endeavours to
minimize the transmissions over long distances to cloud must be made to optimize
energy efficiency of the devices while ensuring timely access to information. Care
must be taken to avoid the formation of bottlenecks so as to improve the network
lifetime. Furthermore, cooperative computing via computation offloading must be
considered to make efficient use of computational resources within the network and
avoid over-utilization of individual devices. Such cooperation would ensure energy
balance across devices, thereby, improving sustainability of the network operation.
Energy-aware computation offloading, for instance, could improve computation capa-
bilities of a heterogeneous energy harvesting WSN by minimizing total energy cost
required by analytic tasks.

The research challenges discussed above complement each other as shown in fig. 1.1 and
must be addressed sequentially to allow for the design of future WSN. The first challenge,



10 Introduction

C1, is concerned with the design of robust sensor devices that are capable of performing
on-board analytics in addition to sense and send tasks for improved responsiveness of WSN
applications, especially, in the absence of external resources and Internet connectivity. The
pool of analytics must adhere to the resource constraints of sensor devices to ensure smooth
and uninterrupted operation. Next, C2 is concerned with the design of frameworks that allow
cooperation between the analytic tasks (identified in C1) distributed within and across sensor
devices. These frameworks should allow improved scalability of in-network analysis as well
as ensure load balancing and fairness among devices. As such, while C1 considers the design
of analytic models suitable for sensor-based implementation, C2 considers the outsourcing
and collaboration between these analytic models for improved network-wide analytics. The
third challenge, C3, addresses the need to adapt the analytic models identified in C1 as well
as the interaction between the models based on frameworks designed in C2 with changes in
user requirements to improve the accuracy of predictions. The adaptation is also aimed to
enhance the energy efficiency of sensor operation and complements the last challenge C4.
C4, in particular, considers energy management through collective and cooperative analysis
across devices to jointly optimize computation and communication energy consumption of
the network as a whole.

1.2 Research Scope of the thesis

In this section, we discuss the scope of research presented in this thesis. Section 1.2.1
presents the limitations of current WSN systems that are the focus of this work, followed by
the research objectives in section 1.2.2.

1.2.1 Limitations

The compute, memory and battery constraints of sensor devices pose significant limitations
to their adoption. While increasing capacity of each sensor device or installing additional
infrastructure (e.g. increase in number of sensors or gateways) would improve the capabilities
of a WSN system, it is often cumbersome and leads to an increase in the operational
costs. In this work, we, therefore, aim at achieving performance improvements in WSN by
incorporating intelligence within sensor devices to allow real-time predictions as well as
optimize the use of already existing resources. We also consider application and context-
aware operation of sensor devices to manage the trade-off between prediction accuracy and
resource-utilization. The limitations as considered by this work are discussed as under.
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• Sensor analytics: The design of on-board intelligence for sensor devices is limited
to data analytic techniques. While the use of machine learning (ML) algorithms
such as neural networks over WSN topology would also facilitate real-time analysis,
the learning involved with these algorithms is computationally-intensive and may
adversely affect the performance of WSN. Moreover, the learning is particularly
difficult in case of dynamic network topology with large number of mobile nodes, such
as WSN consisting of animal wearable devices as considered in this work. Therefore,
we consider a WSN architecture wherein light-weight analytic tasks are performed
on sensor devices while the compute-intensive learning is performed on the cloud.
Interaction between sensor-cloud is facilitated to allow exchange of sensor data and
update of analytic models. Use of sensor analytics ensures efficient and timely response
to events and thus, correlates with the challenge C1 (Autonomy).

• Isolated analysis: As discussed previously, WSN comprises of devices that are
resource-constrained (challenge C2 (Resource-constrained devices)). In addition,
current WSN systems consider sensor operation in isolation from each other. This
limits the extent of analytics that can be performed by WSN. To allow scalability of
analysis, we study cooperation and integration of different sensor analytic tasks, as
opposed to the use of other more powerful edge devices (e.g. gateways or mobile-
phones) which are often unavailable in remote applications such as smart farming,
or use of data from third party services (e.g. weather stations). While cooperation
between sequential tasks is considered for vertical scaling of analysis within a device,
cooperation between parallel tasks is realized for horizontal scaling of analysis across
the network. Such cooperation within WSN not only allows efficient use of existing
resources by offering load balancing but also improves context-awareness of device
operation with respect to each other.

• Performance and resource trade-off: Since analytic tasks add to the existing func-
tionality of sensor devices, a resource trade-off between computation and monitoring
tasks must be resolved. Whereas devices today do not allow ease of programmabil-
ity, we strive to offer flexibility in sensor-based analytics to optimize frequency of
computation while meeting application requirements and ensuring continuous mon-
itoring. The flexibility is incorporated using ML-based learning on the cloud, and
delay-tolerant integration of sensors with cloud. Note, however, we do not consider the
cost-metric associated with the use of cloud resources for performance measurement.
Moreover, we consider cooperative analytics as well as context-aware communication
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within WSN to optimize the energy consumption of devices. The optimal number of
sensor devices for such analysis or handover of tasks between devices has not been
considered. This limitation correlates with the challenges C3 (Flexibility) and C4
(Energy Efficiency).

1.2.2 Objectives

To address the challenges identified in section 1.1.4, our work focuses on the design of
an autonomous WSN system capable of integrating, processing and managing data from
different sensors to deliver real-time services. To do so, firstly, we explore and design a suite
of analytic techniques suitable for sensor devices. In particular, we focus on the development
of on-board intelligence for wearable sensor technology in the context of Precision Farming.
Secondly, we design cooperative frameworks that allow interaction between different analytic
tasks for scaling of analysis within WSN. And finally, we address the issue of flexibility in
device intelligence for adapting sensor operation to changing user-requirements and ensuring
energy management within WSN. The objectives of the study are represented by the following
Research Questions (RQ).

• RQ1. Sensor analytics: What pool of data analytics techniques are most suitable for
on-board execution on miniature IoT devices? How are these techniques relevant in
the context of Precision Farming?

• RQ2. Cooperative WSN: What algorithmic frameworks can be designed to represent
real-life services as a set of cooperative data analytic tasks deployed within WSN?

• RQ3. Flexibility and Energy Management in Cooperative WSN: How can the ser-
vices be re-configured on-the-go to meet the changes in application requirements while
ensuring resource efficiency of the sensor devices?

1.3 The approach

In this section, we describe the research approach that has been developed to answer the
research questions. The three questions are addressed sequentially, and each research question
is based on findings of previous questions. The methodology used to validate the findings of
the research questions is discussed in section 1.3.1.

• RQ1. Sensor-based analytics: To determine the design considerations that must be
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Fig. 1.2 Sensor analytics a) Data fusion b) Edge Mining c) ANN d) Location awareness [30]

taken into account while developing the suite of analytics for sensor devices, we
first identify the limitations of the current WSN solutions and the challenges to be
addressed for the realization of future WSN, in the context of Precision Farming [30].
As highlighted by existing studies, a major drawback of the existing WSN technologies
is lack of decision-support systems that allow real-time decision making for automation
of processes. While the existing systems enable fine-grained monitoring of a farm, they
fail to provide timely and easy access to insights that can help farmers make informed
decisions. To overcome this limitation and improve responsiveness of the existing
systems, we consider the suitability of sensor-based analytics. We review certain
analytic techniques such as Data Fusion [1], Edge Mining [31] and Artificial Neural
Networks [32] (fig. 1.2) that have been previously proposed for sensor-based execution,
and reflect on the benefits and challenges associated with their use in Precision Farming
applications. These techniques incorporate some level of intelligence and can facilitate
on-board alert generation for delay-critical events. Moreover, they reduce redundancy
in data and improve the quality of data exchange within the network to, in turn, enhance
energy efficiency of sensor operation. We present the pool of analytics that would
best fit the capability and constraints of sensor devices, while meeting the application
requirements. The select techniques are light-weight for ease of implementation on
sensor devices, and are extensible to act as building blocks for design of in-network
services in future WSN. Chapter 2 provides a detailed discussion on the existing
techniques.
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(a) (b)
Fig. 1.3 (a) L-SIP algorithm (b) Memory gain [34]

Of the existing techniques, the Edge Mining approach presents a particularly good fit
for the design of smart sensor devices. It proposes the use of data mining techniques
on-board sensor devices such that instead of reporting raw data, each sensor reports
only the occurrence of significant, application-specific events. The sensor systematizes
historical readings using simplistic models based on linear, decision-tree or histogram
representation of data, which are updated continuously with regards to new readings.
Changes in models are assessed against user-specified thresholds and reported as
important events if they cannot be predicted using past estimates with reasonable
accuracy. The Edge Mining approach is based on the Spanish Inquisition Protocol
(SIP) [33] and represents a new stage in sensor intelligence. To validate the suitability
of Edge Mining for Precision Farming applications, we consider the use of Linear
SIP (L-SIP), an instance of Edge Mining, for data compression and event detection
on-board sensor devices [34]. The approach is developed as a proof-of-concept and is
shown to increase longevity of device operation while improving responsiveness of
WSN-based systems. Furthermore, we present an extension of the ClassAct approach,
another instance of Edge Mining, for activity monitoring and localization of cows
in dairy farms [35]. The approach allows for location-aware sensing as cows move
around the farm. These techniques are discussed as under.

We propose the use of L-SIP on-board sensor device for intelligent data collection
(sense and send) in smart dairy farms [34]. Owing to poor Internet connectivity in rural
farms, we suggest delay-tolerant communication for reliable data transfer to cloud.
We discuss the design of our animal wearable sensor device that monitors animal
health and mobility, as well as acts as a mobile agent to collect data from static in-field
sensors. All data is stored locally on the wearable device until it is in the vicinity of a
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Fig. 1.4 Difference between ClassAct, IEM and IEM2.0 [35]

gateway. While this approach provides a solution for data communication in remotely
connected areas, given the wide-variety of data that must be gathered on a farm, the
memory constraints of sensor devices pose a major challenge in its realization. We
examine the suitability of using L-SIP for lossless data compression on-board sensor
devices as shown in fig. 1.3a. L-SIP represents sensor data as a linear model wherein
the application state is encoded as a vector of smoothed point-in-time value and rate of
change. While a number of techniques have been proposed for estimating the state,
we use the double Exponentially Weighted Moving Average (dEWMA) to calculate
the new state, per sensing cycle. An event is detected if the new state value cannot be
predicted using linear extrapolation of the the previous state with a desired accuracy
specified by a threshold e . As such, instead of storing raw data, we suggest conversion
of sensor data into linear models that are stored only at the occurrence of such events.
In doing so, L-SIP reduces memory requirements of sensor devices and improves
the operational time of the network. Moreover, it reduces redundancy in data and
also allows real-time detection of events to improve responsiveness of the system.
The approach is shown to be data agnostic to suit the variety of farm data such as
temperature, humidity and acceleration, and achieve a memory gain of up to 70% for
user-specified e values as shown in fig. 1.3b. Furthermore, use of L-SIP has been
shown to facilitate signal reconstruction with reasonable accuracy, if required.

ClassAct [36] is a decision-tree classifier that represents the sensor data as a smoothed
probability distribution over a given set of states. The index of the most probable state
is chosen and sent to the cloud if it differs from the previous estimate. The approach
is used for activity recognition of people in [36], and has been shown to perform
reasonably well for classification of low-level activity states such as walking, standing
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Fig. 1.5 Gaussian Mixture Effect on single-feature classification for low (a = 0.05 (a)) and
low-to-medium mixture effects (a = 0.15 (b)); Joint windowed mean & variance classifica-
tion for low and medium mixture effects (a 2 0.05,0.4 (c)) [35]

and sitting. ClassAct, however, basis its prediction on values of low-order moments
such as windowed mean and variance at fixed points in time. This limits its use in
applications where the given states have significantly overlapping values (and therefore
similar mean and variance), despite coming from different distributions. We study
the effect of mixed Gaussian signals, for instance overlapping signals represented
by a normal distribution and a Gaussian mixture, on accuracy of ClassAct-based
classification, and present an extension of the ClassAct approach, IEM2.0, to cater to
the above limitation [35]. Our approach considers the distribution of signal over time
and basis prediction on windowed minimum and maximum values that capture the
temporal pattern of the signal. IEM2.0 is an extension of ClassAct and IEM approaches
(discussed as part of RQ2) and significantly improves the prediction accuracy while
reducing the number of computations. The difference in the three approaches is
illustrated in fig. 1.4. We analyze the predictive capabilities of our approach as
compared to ClassAct for different Gaussian mixture proportions. The approach is
shown to be particularly useful when the mixture is highly imbalanced as shown in fig.
1.5. Furthermore, we demonstrate its suitability with respect to activity recognition
and localization of animals in dairy farms. We discuss the use of our classification
technique for high-level activity classification (i.e. milking, grazing), and further
propose Activity Sequence-based Map Matching (ASMM) for localization of animals
in paddock, parlour and in-transit between parlor and paddock using the given farm
topology. The proposed approach allows for contextualization of sensor data collected
by the devices for improved decision making. An extensive evaluation of the approach
along with memory analysis for the algorithm has been carried out using real-world
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(a) (b)
Fig. 1.6 (a) CEM algorithm (b) CEM state diagram for THI detection [37]

animal mobility data collected in dairy farms to assess the suitability of our methods
for sensor-based execution.

• RQ2. Cooperative WSN: Although the Edge Mining-based analytic techniques (dis-
cussed above) improve autonomy of sensor operation, they consider analysis on each
device in isolation from each other. This not only constraints the amount of com-
putation that can be offloaded to WSN, it also limits the predictive capabilities of
system wherein integration of multilpe sub-tasks/data-sets is required for detection of
application-specific events. To address these limitations, we propose two cooperative
frameworks - Collaborative Edge Mining (CEM) [37] and Iterative Edge Mining (IEM)
[38], that allow distributed computing within WSN for provision of real-time services.
Both frameworks have been implemented by considering distribution of Edge Mining
algorithms that act as building blocks for required services on sensor devices, and
facilitating interaction between them for integration of results.

CEM has been proposed to facilitate distribution and parallelization of analysis within
WSN. A subset of application logic or an Edge Mining task is delegated to each
sensor device based on the analytic model, application requirements, and availability
of resources such as type of sensors. The intermediate results of individual analysis
are then integrated within the network to detect more complex, application-specific
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(a) (b)
Fig. 1.7 (a) IEM algorithm (b) IEM state diagram for activity recognition [38]

events. While Edge Mining-based tasks on individual devices are performed per
sensing cycle, their results are integrated only if an intermediate event is detected by
any device to check for significant updates in the application-state. The intelligent
(event-based) interaction between different tasks prevents over-utilization of sensor
resources. Moreover, the horizontal scaling of analysis within WSN improves the
load and energy balancing across devices. Such cooperation between devices allows
for improved computation capability of network, and lays foundation for design of
integrated systems in future WSN. Combined analysis of information from different
devices also reduces packet transmissions to cloud as compared to the conventional
Edge Mining approach, thereby, improving energy efficiency of the sensor operation.
We illustrate the use of CEM framework for detection of Heat Stress in animals as
shown in fig 1.6. The severity of Heat Stress is estimated using Temperature-Humidity
Index (THI), which can be calculated using static temperature and humidity sensors
on a farm. We discuss the design of an animal wearable collar device that acts as
a master node to initiate the THI calculation on static sensors, as well as a mobile
sink node to collect THI updates from sensors. Each sensor device that participates
in analysis runs the L-SIP algorithm to estimate changes in temperature or humidity
states. Upon detection of event by any device, the state information is exchanged to
update the THI value. As opposed to Edge Mining approach wherein both temperature
and humidity states would be sent to sink for calculation of THI, the CEM approach
requires transmission of only the THI updates. It, thus, improves the network compute
capability as well as improves energy efficiency of WSN operation.
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Whereas CEM aims at improving the computational capacity of a WSN system-as-a-
whole, IEM is proposed to improve compute capability of each sensor device. It is
implemented by superimposing correlated and sequential Edge Mining tasks on a single
device, and facilitating intelligent interaction between them to output the application
state. The tasks are designed and integrated such that the analysis performed by each
subsequent task is based on the output of the previous task. The application-specific
state is determined by the output of the final task. Moreover, frequency of execution of
the subsequent tasks is governed by occurrence of intermediate events resulting from
analysis of the prior tasks. By doing so, IEM regulates the number of computations
performed by each device to prevent over-utilization of its resources. IEM, thus,
allows vertical scaling of analysis within a device. The joint analysis performed by
superimposed tasks, in turn, leads to significant reduction in packets transmitted to
the cloud. We illustrate the use of IEM for real-time activity monitoring of animals
within a farm as shown in fig. 1.7. IEM is implemented based on interaction between
two Edge Mining algorithms - Bare Necessities (BN) and ClassAct. Firstly, BN takes
raw acceleration readings and converts them into an intermediate state represented as
histogram distribution across bins, where each bin defines an intermediary, application-
relevant state. The distribution suggests the relative time spent in each of the states,
and is updated per sensing cycle. The distributions are also smoothed over the past
estimates on account of no sudden changes in activity state. An intermediate event is
detected if change in distribution of any bin exceeds a given threshold (after smoothing).
The ClassAct algorithm is invoked only at occurrence of such events. It takes the
updated distribution generated by BN as input to the classifier, and identifies the activity
state. The frequency of classification is, thus, governed by the threshold parameter to
ensure optimal use of CPU resources while meeting the accuracy requirements. The
reduced frequency of computations, as compared to conventional ClassAct approach
that runs per sensing cycle, is particularly beneficial in case of large decision-trees.
The performance of IEM is evaluated in terms of accuracy of classification as well
as frequency of classification across different mobility patterns and scenarios. The
approach has also been shown suitable for localization of elderly in behavioural-
tracking Ambient Assisted Living (AAL) applications [39].

• RQ3. Flexibility and Energy Management in Cooperative WSN: Depending on the
application, WSN-based services can be deployed using either one or combination of
the cooperative frameworks discussed above. Owing to varying application require-
ments as well as dynamic network topology, design of future WSN must facilitate
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(a) (b)
Fig. 1.8 (a) WSN architecture for user localization (b) Evolution of GA fitness value [40]

re-configuration of the services to adapt to these changes. For instance, in case of IEM-
based localization, a certain behavioural tracking AAL application may have varying
accuracy requirements based on the scenario. While it may need precise localization in
some instances, it may suffice to obtain coarse location at other times. The frequency
of computations, governed by the input parameters of the IEM model, must then be
changed accordingly to optimize the use of sensor resources while ensuring computa-
tional accuracy. To allow such flexibility in analysis, we consider integration of the
fog-enabled WSN with the cloud. We propose the design of a dual analytical frame-
work wherein the sensor-based analytics is performed for real-time predictions, and
cloud-based learning is performed using historical data to update the sensor analytic
models based on changing application requirements [40]. Delay-tolerant communi-
cation is proposed to facilitate exchange of data and the updated models between
sensor and cloud. We illustrate the use of this framework for achieving flexibility in
IEM-based localization to balance trade-off between prediction accuracy and energy
consumption of device with changes in user-specified requirements in the context of
location-based AAL applications as shown in fig. 1.8a. We implement cloud-based
learning using Genetic Algorithms (GA) to find the optimal set of parameter values for
sensor-based IEM model. The use of GA is considered owing to its ability to generate
high quality solutions for a large search space in polynomial time as shown in fig.
1.8b. We define a fitness function that minimizes error in classification and localization
along with number of on-board classifications. The performance of GA is primarily
governed by the weights assigned to each term in the fitness function. The IEM model
can, thus, be easily updated by varying the weights of terms as desired. We evaluate the
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(a) (b)
Fig. 1.9 (a) System architecture (b) Behavioural state transitions using CASMM [35]

performance of GA-based model for different activity sequences and mobility patterns
obtained from the Kasteren data-set [41].

Energy management plays a crucial role in the design of future WSN. The energy
consumed by the computation tasks is proportional to the number of CPU cycles
required as well as the frequency of computations. As discussed above, while real-time
computations are performed on-board sensor devices, input parameters for sensor
analytic models can be updated using cloud-based learning as shown in fig. 1.9a. The
optimal parameter values are determined based on an objective function defined by
application requirements. For instance, such an objective function can be used to relax
either accuracy requirements for reduced computations or the task completion deadlines
for reduced clock frequency to, in turn, reduce energy consumption through on-board
computations. Whereas the on-board analysis forms one aspect of energy consumption
on devices, data communication from sensor to cloud is the most energy-intensive
task performed by these devices. To minimize this cost, we propose a context-aware,
event-driven communication approach for data transfer to cloud. We exploit the
location information of devices obtained through IEM2.0-based activity classification
and collaborative ASMM (CASMM) approach, and propose transmission of data only
at the occurrence of change in location [35]. Since real-time predictions are made
independently on-board sensor devices, delay-tolerant communication of these results
to cloud allows improved energy efficiency of devices by reducing the unnecessary
redundant and periodic packet transmissions. As such, the energy cost associated
with communication is then directly proportional to the accuracy of localization.
While a high frequency of classification can be used to improve performance, it may
burden the device resources. Instead, we exploit the spatial-temporal coherence of
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neighboring devices and suggest cooperative activity state detection, prior to ASMM,
for improved accuracy of localization (referred to as CASMM as shown in fig. 1.9b).
We envisage a set of participating devices in close vicinity of each other as a coalition
that exhibits a common activity state based on the location (e.g. milking in parlor), and
facilitate exchange of updates in activity state between devices to improve accuracy
of individual predictions. We adopt a majority-voting scheme to make the activity
state consistent within the coalition. However, the cooperation between devices itself
incurs an additional overhead. We model the communication cost associated with
both cooperation between devices as well as packet transmissions to cloud, and aim
at reducing the net cost for the network. The effect of different coalition size on
the accuracy of localization and, thereby, communication cost is studied for resource
optimization within WSN.

Furthermore, we suggest cooperative computing via computation offloading in hetero-
geneous energy harvesting WSN for optimizing the use of in-network computational
resources [42]. In computation offloading, a sensor device (initiating node (IN)) of-
floads partial computation to a neighbouring device, known as the cooperating node
(CN), such that the given task completion deadline is met while optimizing the energy
resources of the network. Accordingly, we model the computation and communication
(device-to-device) costs associated with cooperative computing as well as micro-solar
energy harvesting capacity of sensor devices, and discuss an energy-aware optimal
task partitioning algorithm for computation offloading in energy harvesting WSN. The
cooperation allows for improved computational capability of WSN while delivering
timely responses for latency-sensitive applications and reducing the net energy cost of
the network. The energy-aware nature of our algorithm takes into account status of both
stored and harvested energy on device and has been considered for different energy-
harvesting scenarios such as presence of IN and CN in shadow-shadow, shadow-light
and light-light respectively. The approach improves energy balance of a WSN which is
an important factor for its long-term autonomous operation as well as reduces energy
waste due to overflows. We discuss the use of Lagrange Multipliers to solve the equal
constrained optimization problems. We also present an energy-aware, utility-based
technique for selection of the CN. The approach aims at improving fairness within
the network to avoid over-utilization of certain devices. The proposed techniques are
evaluated using the Simgrid simulator. The results show reduced energy consumption
of the network along with an improved average operational time of sensor devices.
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(a) (b) (c)
Fig. 1.10 (a) Collar device (b) Animal wearable collars (c) Cloud gateway

1.3.1 Validation

To validate the approach developed for each research question, we perform analysis of
real-world sensor data collected using a WSN prototype. The WSN comprises of two kinds
of devices - wearable sensor devices and cloud gateway. The wearable device is a plug-n-play
universal sensor node consisting of various sensors for application-specific data collection.
On-board implementation of sensor analytic techniques is proposed on these devices for
real-time event generation. The gateway node is used to gather data collected by the wearable
devices for uploading on the cloud. R-based analysis is performed on the cloud to train the
analytic models and test their performance using the sensor data.

• Collar device: Collar device (fig. 1.10a) forms the most integral part of our WSN
prototype. The primary component of the collar device is the IEEE 802.15.4 compliant,
low-power CM5000 mote [43]. It consists of a MSP430F1611 micro-processor, a
CC2420 802.15.4, 2.4GHz wireless module for radio communication, and an on-board
SHT11 sensor to collect temperature and humidity readings. The mote features a
program memory of 48KB, a 10KB RAM for storing state of program variables, as
well as an additional flash memory of 1MB for storing sensor data. The non-volatile
nature of the flash prevents loss of data despite device failures. The CM5000 mote
also consists of a 6 and 10-pin connector to allow for additional sensors. To facilitate
mobility tracking, we connect a 10 degrees of freedom (DOF) MPU9255 Inertial
Measurement Unit (IMU) [44] to the mote. The IMU consists of an MPU6050 and
HMC5883L for measuring 3-axis acceleration, orientation (gyroscope) and 3-axis
magnetic field (magnetometer). It features a user-programmable full scale range to
ensure accurate tracking for both slow and fast motion. We also connect a Ublox
NEO-6M Global Positioning System (GPS) receiver [45] to our collar device. While
the GPS enables node localization, it adversely affects the battery-life of devices. It’s
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use is, therefore, limited in this work for estimating memory requirements while using
GPS readings on sensor nodes. The entire device is powered using 2xAA batteries
(3V) and boxed in a pelican casing as shown in fig. 1.10b. Based on the application,
a TinyOS program [46] sits on the collar devices for data collection and analysis
tasks. The design of program varies for each study and is discussed in the respective
publications.

• Cloud gateway: The gateway node consists of a CM5000 mote connected to a Rasp-
berry Pi (v. B2) [47] module as shown in fig. 1.10c. As mentioned above, the role of
gateway is to collect data from collar devices and upload it onto the cloud for future
analysis. Accordingly, a TinyOS application runs on the CM5000 mote of the gateway
for data collection from the collar devices via mote-to-mote communication (using
Zigbee protocol). To establish connection with the gateway, a device temporarily joins
the 802.15.4 Personal Area Network (PAN) of the gateway by sending an association
request. At any given time, the gateway can connect to a predefined number of collar
devices. If the node is currently connected to the predefined maximum, it does not
confirm association and a random back-off mechanism is activated on the collar device
to retry association. Otherwise, an acknowledgement is sent from the CM5000 mote
on the gateway to the device confirming its association. Once the device is connected
to the gateway, it sends its data packets over the radio until the flash is empty. These
packets are further transferred by the gateway mote to the Raspberry Pi. A JAVA
application is built for Raspberry Pi, using TinyOS tools, to collect and store the
incoming data. The data, thus, generated is periodically pushed to a private Gitlab
(cloud) repository using a WiFi dongle. Upon completion of data transmission, the
device sends a disassociation request to the gateway requesting to leave the PAN, and
subsequently resumes its operation.

The use of above hardware is considered owing to the ability to program the sensor
devices. The implementation of algorithms (included in respective publications) is generic,
making them suitable for use with any other off-the-shelf WSN devices. We conduct
experiments outside our laboratory for collecting data to validate the approach developed
in RQ2, and parts of RQ1 (data compression using L-SIP) and RQ3 (flexibility in analysis).
Partial findings of RQ1 (localization) and RQ3 (cooperation via collective participation for
energy management) are validated using data collected from a pilot study conducted in
Dairygold-sponsored farm located in Kilworth, Co. Cork, Ireland. The experiment aimed
at collecting mobility data of 5 cows selected randomly from a herd of 46, over a period
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Fig. 1.11 Key achievements of the research work

of 5 days in June 2017, which was later analyzed to evaluate the performance of sensor-
based localization. The details of the experiment are discussed in appendix H. Besides the
prototype-based analysis, partial findings of RQ3 (cooperation via computation offloading for
energy management) are also validated via a series of SimGrid simulations [48]. SimGrid is
an open-source simulator that allows to study the behavior of large-scale distributed networks
such as P2P systems.

1.4 The Contribution

We believe this thesis makes a significant contribution towards the design of future, fog-
enabled WSN systems. In this section, we summarize the key achievements of this work as
depicted in fig. 1.11. The achievements are mapped to each research question, and are color-
coded to highlight their significance. The extent of contribution from each research question
to this thesis has also been illustrated. Achievements 1 and 2 (A1 and A2) relate to the
findings from the background research carried out for this work to identify gaps in existing
WSN-based solutions for Precision Farming as well as limitations of the current sensor
analytic techniques (RQ1). As part of A2, a WSN prototype was also developed to validate
the suitability of Edge Mining for real-time event detection in Precision Farming applications.
A3 corresponds to the design of IEM2.0 that allows improved on-board classification and
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adds to the pool of sensor-based analytics. Achievements 4 and 5 (A4 and A5) result from
the design of novel cooperative frameworks - CEM and IEM, for distributed analysis within
WSN and their validation using our prototype for various applications. These achievements
emanate from research carried out as part of RQ2. A6 corresponds to the design of dual-
analytical framework that allows sensor-cloud integration to enable flexibility in sensor
analytic models. We consider the design issues in implementation of such a system in rural
applications as well as the selection of algorithms for both cloud-based learning and sensor
analytics. Lastly, achievements 7 and 8 (A7 and A8) result from the design of peer-to-peer
cooperative analytic approaches that aim at optimizing energy consumption within WSN and
their use in different WSN topology. The work addresses a novel area of work in WSN and
presents possible solutions to improve scalability of analysis within WSN while ensuring
load balancing and fairness among devices. A6, A7 and A8 emanate from research carried
out as part of RQ3. The achievements have been discussed in greater detail below.

� RQ1. Sensor-based analytics

• A1. We have examined the need for WSN to improve Precision Farming practices,
along with the gaps in existing solutions in [30]. A serious lack of autonomy
has been identified as a major drawback in the design of WSN-based systems.
This arises owing to a significant lack of intelligence in sensor operation coupled
with high dependency on intermittently-available cloud resources for storage and
analysis of data. In future, these problems are expected to be enhanced due to
the adoption of Internet of Nano-Things in farming practices as discussed in [49].
To enable autonomous operation of WSN-based systems, we, therefore, suggest
realization of smart sensor devices for future WSN.

• A2. We have identified the pool of data analytic techniques suitable for sensor-
based execution, along with the benefits and challenges associated with their use
in the context of Precision Farming in [30]. Real-time analytics on-board sensor
devices is expected to provide fast accessibility to data insight, improve resource
efficiency of the network as well as ensure security of data. Of the proposed
techniques, the Edge Mining approach, in our opinion, is the most suitable for
sensor-based analytics. We have validated the use of L-SIP, an instance of Edge
Mining, for intelligent data collection in dairy farms using our WSN prototype
(discussed in 1.3.1) in [34] as a proof-of-concept. The approach is shown to be
data agnostic and allows real-time event detection while significantly reducing
the redundancy in data. The reduced memory requirement on sensor devices is,
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in turn, expected to improve the operational time of devices when adopting a
delay-tolerant communication approach.

• A3. We proposed an extension of the ClassAct approach, an instance of Edge
Mining, for real-time activity recognition and localization on-board sensor de-
vices in [35]. The approach relies on self-measurements from IMU and uses a
decision tree classifier for activity state recognition. The sequence of activities
generated is used as input for ASMM to identify the device location. Unlike
ClassAct, the approach basis classification on distribution of data. In doing so,
it is shown to be better suited for separating two different signals, represented
by Gaussian mixtures, that have significantly overlapping values and an unequal
likelihood of occurrence. The approach is extensively evaluated for localization
of animals within a farm using real-world acceleration data of cows collected dur-
ing a pilot study in Dairygold-sponsored farm in Kilworth, Ireland. The analysis
shows that our approach can achieve a localization accuracy of up to 99%. More-
over, an array-based implementation of the approach is discussed and a resource
assessment is carried out to verify its suitability for device-based implementation.
The analysis confirms a very low memory footprint of the approach.

� RQ2. Cooperative WSN

• A4. We developed the CEM framework for distributed and parallel processing
within WSN as presented in [37]. The framework delegates separate tasks (we
considered Edge Mining algorithms) to devices that participate together in on-site
analysis, and integrates their intermediate results to detect application-specific
events. CEM allows scaling of analysis across WSN based on sensor capabilities,
and lays foundation for the design of integrated sensor systems on-farm. The
performance of CEM has been evaluated for estimation of Temperature Humidity
Index, an important metric for Heat Stress detection in cows, across different
values of input parameters and compared to the original Edge Mining approach.
The analysis shows that CEM facilitates on-site detection of more complex events
while reducing packet transmissions within the network, as compared to Edge
Mining, for improved energy profile of the devices.

• A5. We developed the IEM framework for intelligent, sequential analysis of tasks
within a device in [38]. IEM allows interaction of correlated tasks on the same
device such that the execution of the subsequent tasks is dependent on the output
of the previous task. The application state is determined by the outcome of the
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final task. As such, IEM improves compute ability of a device while ensuring
efficient resource utilization. As a proof-of-concept, IEM is implemented as the
superimposition of two Edge Mining algorithms - BN and ClassAct, for activity
monitoring and behaviour analysis of animals. The approach is evaluated for
accuracy of predictions and frequency of computations across different input
parameters using real-life data from our prototype. The analysis confirms high
prediction accuracy of IEM with very few computations on-board. Furthermore,
the suitability of IEM has been demonstrated for localization of the elderly
in AAL applications in [39]. Given the topology information and the activity
sequence generated by IEM, the user location is estimated by calculating the
distance covered over time.

� RQ3. Flexibility and Energy Management in Cooperative WSN

• A6. We have proposed flexibility in sensor-based analytics with changes in
user-preferences through sensor-cloud integration, and demonstrated its use for
re-configuration of IEM-based localization in AAL applications in [40]. The
use of cloud-based learning using GA approach is shown to optimize the sensor-
based IEM model, using historical data, in order to balance the trade-off between
classification accuracy and frequency of computations in IEM-based localization.
A delay-tolerant communication framework is used to send the updated model
back to the device. An evaluation of the dual analytical framework (IEM-GA)
is carried out using acceleration data collected by our wearable device across
different activity sequences obtained from the Kasteren data-set. The analysis
shows that GA-based learning allows easy adaptation of analysis (using different
fitness functions) to changes in user requirements, achieves a fast learning curve,
as well as optimizes sensor performance.

• A7. We proposed a coalition-based cooperative data analytic approach within
WSN in [35]. Depending on availability of devices, we conceive a group of
devices in vicinity of each other as a coalition. Collective participation of devices
(within a coalition) in analytic tasks is suggested to improve accuracy of individ-
ual sensor-based predictions (using a majority voting scheme). We demonstrate
the use of cooperative analysis for improving localization accuracy of devices
using approach developed in A3. We exploit this information to minimize number
of transmissions to cloud following a context-aware, event-driven communica-
tion framework wherein data packets are transmitted to the cloud only at the
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Table 1.1 Research achievements

Res. Question Challenge Achievement Presented in publication Appx.

RQ1 C1

A1 IEEE Intelligent Systems [30] A
ACM NanoCom [49] B

A2 IEEE Intelligent Systems [30] A
IEEE SenseApp [34] C

A3 ACM Trans. Sen. Netw. [35] H

RQ2 C2
A4 IEEE WD [37] D

A5 IEEE ICNC [38] E
IEEE ICE/ITMC [39] F

RQ3 C3
A6 IEEE PIMRC [40] G
A7 ACM Trans. Sen. Netw. [35] H
A8 Sustainable Computing [42] I

occurrence of a change in location. We define an optimization function that
considers the communication cost between device-to-device and device-to-cloud,
and study the effect of different coalition sizes on the accuracy of predictions
and short and long-range transmissions in order to minimize the total energy cost.
The analysis shows that our cooperation approach along with the delay-tolerant
communication framework can reduce the net energy consumption of a network
by 90%.

• A8. We developed theoretical models for cooperative computing via computation
offloading in micro-solar powered heterogeneous energy harvesting WSN as
presented in [42]. We discuss optimal data partitioning so as to minimize the
total energy consumption (communication and computation) while meeting the
application deadline requirements based on the energy harvesting status of sensor
nodes under different scenarios. The evaluation of our models shows a reduction
in both energy losses, and waste due to energy conversion and overflows respec-
tively, as compared to a data partitioning algorithms that offload computation
tasks without taking the energy harvesting status of nodes into consideration. In
addition, our approach reduces net energy consumption of the network while
improving energy balance across sensor devices for sustainable operation. We
also discuss an energy-aware cooperating node selection strategy based on a
utility function for improved fairness within the network.
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As highlighted in fig. 1.11, few of the achievements discussed above are minor and
result primarily from the background research performed during the study. The achievements
resulting from RQ2 (A4 and A5) marked the first milestone for our research through design of
CEM and IEM frameworks. These frameworks are novel and lay foundation for distributed,
peer-to-peer cooperative analysis in WSN, which is particularly important in applications
where input data is distributed across devices. This contribution allows to overcome one
of the significant limitation of current analytic approaches that consider operation on each
sensor device in isolation with each other. Another milestone was achieved through design of
IEM-GA based analytical framework (A6) that allows reconfiguration of sensor intelligence,
and addresses the challenge of flexibility in current WSN solutions. Finally, the last key
milestone for our research was the design of peer-to-peer cooperative analysis frameworks
through collective participation in analytics (A3 and A7) and computation offloading (A8)
for energy management in WSN. Together, all these achievements allow for the design of
future WSN. The achievements have been mapped to the 9 research publications that have
resulted from this work and are shown in table 1.1. As part of the continuous study of the
research questions, a single publication partially answers more than one research question
and multiple publications combined try to address a single question.

1.4.1 Publications

Results of the research carried out as part of this PhD have been documented in a number of
research articles. A complete list of the articles is presented in chapter 4.

Articles related to the first research question include 3 peer-reviewed articles and parts
of 1 peer-reviewed article. Of the four articles, one article has been published in IEEE
Intelligent Systems (appx. A), two articles have been presented in the proceedings of
2nd ACM International Conference on Nanoscale Computing and Communication (ACM
NanoCom ’15) (appx. B) and Eleventh IEEE International Workshop on Practical Issues in
Building Sensor Network Applications (IEEE SenseApp ’16) (appx. C), and one article has
been published in ACM Transactions on Sensor Networks (appx. H).

Articles related to the second research question include 3 peer-reviewed articles that have
been presented in the proceedings of three conferences - Eighth Wireless Days Conference
(appx. D), International Conference on Computing, Networking and Communications (ICNC
2017) (appx. E) and 23rd ICE/IEEE International Technology Management Conference
(ICE/IEEE ITMC 2017) (appx. F).
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Articles related to the third research question include 2 peer-reviewed articles and parts
of 1 peer-reviewed article. Of the three articles, one article was presented in the proceedings
of the 28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications (IEEE PIMRC 2017) (appx. G), and other two articles were published in
Sustainable Computing: Informatics Systems (appx. I) and ACM Transactions on Sensor
Networks (appx. H).





Chapter 2

State-of-the-art

In this chapter, we present state-of-the-art solutions that address the problems considered
in this research. Firstly, we discuss the existing WSN solutions for Precision Farming
applications in section 2.1. We highlight the challenges associated with current technologies
that have been addressed in our work. Next, we discuss the currently proposed sensor
analytic approaches in section 2.2, followed by an overview of the state-of-the-art localization
techniques used in WSN in section 2.3. Finally, we review the recent work carried out with
respect to resource management via in-network analysis in section 2.4.

2.1 Precision Farming

The mounting population coupled with diminishing arable land and unpredictable weather
conditions raises concerns of food security in near future, thus, making it imperative to
efficiently utilize the available natural resources. The use of ICT in agriculture has been
proposed to allow precise monitoring and automation of farm processes under the umbrella of
Precision Farming. This is expected to improve control over the farm processes and, in turn,
increase the productivity and sustainability of farming. Originally, Remote Sensing along
with Geographic Information Systems (GIS) and GPS was used for monitoring the farms
[50]. However, these systems are expensive and offer limited spatial-temporal resolution.
Today, WSN-based systems have been widely proposed for accurate real-time monitoring of
farming practices. Sensor devices facilitate collection of a wide variety of farm data such as
soil composition and dynamics, crop growth, climate changes and animal health and mobility.
Timely analysis of the sensor data allows prediction of the onset of diseases or adverse
weather conditions in early warning systems to help farmers make informed decisions [51].
Furthermore, analysis of data enables precise application of chemicals/fertilizers to specific
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areas in a farm. This can significantly reduce the input costs by minimizing wastage while
allowing improved productivity. A review of WSN applications in Precision Farming has
been presented in [52].

Certain agricultural sensor systems exist already. K. Taylor et al., for instance, describe a
WSN system deployed in Kirby farm near Armidale, New South Wales [53]. The system
incorporates various sensors to monitor soil moisture, temperature, humidity and pressure,
rainfall, and hail. Monitoring data from sensors is pushed to a centralized entity, where it
is enriched and analyzed to be sent to farmers. A survey conducted in Netherlands [54]
shows that almost two fifths of the farms surveyed have adopted some sensor-based farm
monitoring. Another study [55] discusses the use of unmanned robotic systems for farming
applications. These systems aim at automation of certain farm monitoring and mapping
tasks (such as yield mapping) to reduce manual labor. Several WSN-based systems have also
been designed for monitoring animal health and mobility, with the aim of early detection
of diseases to promote animal welfare. A review of various sensor systems for animal
health management in dairy farming has been presented in [56]. These systems are primarily
designed to monitor animal fertility, metabolism, and Mastitis. A few systems have also been
developed for mobility monitoring of animals. Mobility patterns give an understanding of
animal behavior and can be used to detect health issues such as Lameness [57]. Additionally,
mobility tracking facilitates implementation of the Virtual Fence (VF) technology that uses
acoustic and electric stimuli to control the movement of animals within a farm. Current
VF solutions make use of either electromagnetic coupling between animal wearable sensor
devices and an insulated wire unrolled in the farm [58] or GPS receivers fitted to the wearable
devices to estimate the position of animals with respect to the VF [59].

Despite the numerous advantages, very few WSN-based systems have been put into
use for farming practices. This is primarily due to the limited capability of sensor devices
coupled with the lack of infrastructure in a typical farm. Conventionally, the tasks assigned to
these devices are limited to data collection and transmission while the analysis takes place on
the cloud. A study conducted by Rutten et. al. [56] describes such a system for animal health
management and highlights the lack of analytics and intelligence in sensor devices. This
introduces latency in analysis and poses a major constraint in WSN implementation in large-
scale, rural farm environments that suffer from intermittent or no Internet connectivity. While
additional infrastructure may resolve certain issues, it would increase the deployment and
maintenance costs of the system causing reluctance among farmers to embrace use of WSN
systems. Consequently, there is a need to improve operation of WSN to allow on-site analysis
and prediction, especially, for latency-sensitive phenomenons to develop cost-effective and
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autonomous farming solutions. Such systems will not only allow easy accessibility to data
insights but also promote information security through local data reduction. The need for
intelligent WSN becomes inevitable with the design of nano-sensors for future farming [60].
While nano-sensors would allow early detection of processes that ensue at molecular scale,
they will cause explosion of data generated by the farms, thereby, necessitating in-network
analytics for ensuring real-time responsiveness of the system. Furthermore, while different
WSN systems have been designed to cater to various aspects of a farm - crops, soil, yield and
animals, these systems work independent of each other. This causes difficulty and delay in
correlating data from different systems to improve the decision making process. Cooperation
between these systems is, thus, desirable for the design of effective decision-support systems
that aim at integrated farm management. Such a system, for instance, will allow timely
analysis of the effects of feed on animal behaviour and, in turn, milk quality in a dairy farm
to help improve the overall productivity of the farm. We consider these gaps in existing
solutions for the design of future WSN through the research presented in this thesis.

2.2 Sensor analytics

Although recently proposed, few sensor analytic techniques have already been implemented.
This section presents the key techniques that are currently in use.

1. Data fusion: Often, data generated within WSN has a high degree of redundancy owing
to overlap in the area monitored by individual sensors. Data fusion techniques aim at
combining the data originating from adjoining sensor nodes to reduce this redundancy
as well as produce a more accurate result. Such reductions in data result into lesser
packet exchange within the network, thereby, improving the energy efficiency of the
sensor devices. The reduced traffic also leads to fewer collisions within the network,
improving the reliability of data transfer within WSN. For a given signal, fusion
algorithms can also be used to remove any noise and outliers. In [1], for instance,
data fusion models are used to merge noisy measurements from multiple sensors
to explore the fundamental limits of sensing coverage. Through extensive analysis,
data fusion is shown to significantly improve the coverage of WSN by exploiting the
collaboration among sensor devices. In [61], the authors propose a multi-sensor fusion
technique for abnormal behaviour detection in elderly people with cognitive problems.
The technique forms a major component of a multi-modal scheme to increase life
autonomy of elderly people. Furthermore, data fusion algorithms have been shown
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to be particularly useful in multimedia applications that generate bulky data. In [62],
for instance, an information fusion-based mechanism is proposed for reducing the
volume of data being transferred from a Wireless Multimedia Sensor Network to
the cloud. Based on the granularity of data required by the end-users, two levels of
information fusion have been proposed - low-level (data-level or feature-level fusion)
and high-level (decision-level fusion). At first, larger granularity data is uploaded on
the cloud while raw values are stored temporarily within the network. If the end user
requirements are met satisfactorily, the raw values are deleted. Otherwise, sensors
repeatedly extract fine-grained information from raw data and upload it on cloud
till the end user is satisfied. In doing so, the system aims at optimizing the energy
efficiency of sensor operation. A similar approach has been suggested in [63] for the
design of energy-efficient Visual Sensor Networks. Merging of overlapping image data
on-board visual sensors is expected to improve the longevity of such networks while
improving the quality of information. Despite these advantages, however, data fusion
algorithms are not widely used. This is because of the signal-specific nature of these
algorithms, making it cumbersome to design specific techniques for the multitude of
signals generated everyday.

2. Edge mining: Edge Mining proposes the implementation of light-weight data mining
tasks on sensor devices [31]. Edge Mining has been realized using the Spanish
Inquisition Protocol (SIP) as presented in [33]. Instead of sending raw data to the
gateway, SIP converts the raw data into application relevant states that are transmitted
to the cloud gateway only if the new state value cannot be predicted using the past
estimates and an approximation model within a desired accuracy. Such changes are
considered significant and marked as the occurrence of an event. Similar to data fusion,
Edge Mining improves energy efficiency of the network by reducing the number of
packet transmissions to the gateway. Moreover, it caters to the drawback of data fusion
algorithms in that it is not signal-specific. So far, three Edge Mining algorithms have
been proposed (as described below) based on different instantiations of the general-SIP
approach.

• Linear SIP (L-SIP): L-SIP represents the application state as a point-in-time value
and rate of change. That is, it generates a linear model of the measured data. A
number of techniques such as Kalman Filter, Exponentially Weighted Moving
Average (EWMA) and Normalized Least Mean Squares (NLMS) can be used for
state estimation. Only the state values that cannot be predicted from the previous
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state, within user-specified error bounds, are considered significant. Such values
along with the rate-of-change are sent to the cloud to update the data model.
L-SIP is preferred in applications that may require reconstruction of the signal.

• ClassAct: ClassAct is a decision tree-based classifier that represents the appli-
cation state as a probability distribution over a given set of states [36]. Upon
simplification, the index of the most probable state is chosen, and identified as
an event if it differs from the last stored value. In [36], ClassAct is evaluated
for acceleration-based classification of low-level activity states such as walking,
standing and sitting. In comparison to L-SIP, ClassAct significantly reduces the
number of packet transmissions by discarding most of the raw data. However, the
signal transformation is destructive since the original signal cannot be reproduced
with a good accuracy.

• Bare Necessities (BN): BN further reduces the raw data by storing only the
summary of data over time. It estimates the application state as a distribution
across non-overlapping bins and provides the relative time spent in each bin
[64]. For any measurement, the change in state is considered eventful if the
distribution of any bin changes by more than the given threshold. In [64], BN has
been implemented for residential building monitoring to provide the proportion
of time for which a room was in cold, comfortable, warm or overheated state
based on temperature readings. The evaluation shows reduction in transmission
frequency of temperature readings of the order of 99% for an allowed error rate
of 10%. Owing to the drastic reduction in number of transmissions, an additional
heartbeat mechanism is used to update the state if the time since the last packet
transmission exceeds a given threshold. The periodic transmissions prevent large
approximations in signal and also enable detection of failed nodes.

The Edge Mining-based event detection on-board sensor devices has the potential to
improve the real-time responsiveness of WSN while optimizing the energy consump-
tion of the network. However, a major drawback of Edge Mining is that it assumes
WSN as a network of individual smart-sensing devices that perform mining tasks in
isolation, with the primary aim of reducing network traffic. This limits its use where
collaboration between sensor nodes is necessary for the design of application-specific
services.

3. Artificial Neural Networks (ANN): ANN are distributed networks that work similar to
the human nervous system. Every autonomous device imitates a neuron and performs
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analysis based on multiple inputs and pre-defined functions. If the output is eventful,
it is propagated to the next set of neurons/devices and further processed until relayed
to the output node. ANN are widely deployed in applications of pattern recognition
and classification. Owing to the distributed and parallel nature of WSN, researchers
are investigating the possibility of mapping ANN onto WSN topologies. Towards
this end, numerous parallels have been drawn between ANN and WSN [32]. The
sensor nodes can be envisaged to form the input layer of the ANN which sense data
and periodically transmit it to their neighbours (hidden nodes) for processing (using a
sigmoid function). The nodes in the hidden layer of the topology then work in parallel
to determine significant events to be relayed to the output node. Few neural network
algorithms have been proposed for implementation in a WSN. In [65], authors discuss
the implementation of a ‘Smart Table’ for identifying the presence of objects on a
furniture and classifying them based on their size. In [66], Fuzzy Adaptive Resonance
Theory (ART) and ARTMAP algorithms have been proposed for programming sensor
devices to form a wireless electronic nose network that can decipher the presence of
mal-odour gases and calculate their concentration. However, implementation of ANN
algorithms in WSN is very limited, to date. This is because modifying WSN topology
to map ANN algorithms is a complex task. Moreover, adjusting edge weights between
nodes in order to facilitate the learning process within the network is compute-intensive.
While some of the above applications (e.g. [65]) propose implementation an entire
ANN within a single device for ease of implementaion, it may adversely affect the
resource-efficiency of the sensor devices.

2.3 Localization in WSN

With increase in the number of WSN deployments, contextualization of sensor data is
key for the design of future WSN. Accordingly, localization of sensor devices has gained
significant importance to improve context-awareness of the system, as well as provide
Location Based Services (LBS). In this regard, we propose real-time localization using
sensor-based analytics as a proof-of-concept. The remainder of this section presents the
state-of-the-art for localization in WSN.

Over the past years, numerous LBS such as navigation [59] and target tracking [67]
have been proposed. In [59], for instance, design of LBS has been discussed for virtual
fence applications that enable automated navigation of animals through a farm, under the
umbrella of Precision Farming. In addition, LBS can be used to limit the use of pesticides
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to specific areas in farm to ensure efficient pest and waste management [52]. Similarly,
user-mobility is studied to provide location-based health-care and entertainment services.
In [68], outdoor and indoor localization of the elderly has been discussed to provide LBS
for AAL applications. Continuous monitoring of user location facilitates accurate real-
time responsiveness to behavioural anomalies in the elderly people, and thereby, enables
independent living. Furthermore, localization of sensor devices has been used in computing
applications such as routing that require details of the network traffic patterns for load
balancing.

To facilitate these applications, several localization techniques have been proposed, to
date. Traditionally, the use of GPS has been suggested for outdoor localization due to
high accuracy as well as ease of integration of GPS receivers with sensor devices. The
performance of these systems, however, often degrades in crowded or indoor environments
due to the absence of line of sight to GPS satellites. The use of local positioning techniques
in conjunction with GPS has accordingly been proposed to improve accuracy of localization.
In [69], for instance, the authors propose a cooperative positioning technique that uses a
local coordinate system to estimate relative position of mobile entities and, thereby, improve
accuracy of GPS-based localization. Despite the performance improvements, GPS receivers
are energy hungry units and negatively affect the lifetime of sensor devices. The use of WSN
itself has also been proposed for localization purposes using anchor-based and anchor-less
techniques. In the former, anchor nodes whose positions are pre-determined and fixed are
marked as reference points, and distances between the unknown (mobile) nodes and reference
points is calculated using range-based (e.g. received signal strength (RSS), angle of arrival
(AoA)) or range-free measures (e.g. hop count) for localization [70]. A light intensity-
based positioning system, for instance, has been discussed in [2]. The approach performs
predictions using RSS measures in indoor environments. The latter is usually used in indoor
applications where pre-determination of the co-ordinates of anchor nodes is not possible.
An anchor-less localization approach using factor graphs and sum product algorithms, for
instance, is discussed in [71]. An experimental evaluation of WSN-based indoor localization
is presented in [72]. While these approaches are shown to perform well, their performance
degrades in case of highly mobile targets wherein a large number of sensors have to remain
active to track targets in all potential directions or in case targets move into holes in the
deployment area. To solve these problems, authors in [67] propose the use of mobile sensors
to follow targets directly for tracking applications.

Alternatively, Pedestrian Dead Reckoning (PDR) systems that make use of built-in inertial
sensors in user wearable/smartphone have been proposed for localization. These systems
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rely on self-tracking, and estimate the user location based on past estimates and displacement
over short intervals of time. An instance of a PDR system has been discussed in [73]. The
system uses 8 IMU worn on the body, and a force sensor worn under the feet to capture
joint movements for user localization. Another study in [74] presents a blind localization
algorithm that combines data from built-in inertial and acoustic sensors in user smartphone
to gauge the location of the smartphone. While these systems operate well in both outdoor
and indoor environments, standalone PDR systems often accumulate error due to drift with
walking distance over time. Assisted-PDR systems have, accordingly, been proposed to
overcome these limitations. Certain examples make use of iBeacons [75] or ASMM [76]
to correct the drift, and improve accuracy of localization. Of these, the ASMM approach
presents a cost-effective solution as it requires minimum interaction with external third-party
components.

2.4 Resource management via in-network analysis

As discussed earlier, the Fog Computing paradigm proposes computation offloading on
nearby edge devices, instead of cloud-based servers. The offloading decision is taken so
as to maximize the computation gain subject to a given objective function that aims at
optimizing either the response time (i.e. minimize latency to meet application deadlines)
or the network energy consumption (i.e. maximize network lifetime) or both. In [77], for
instance, the authors design an optimization framework, namely MobiQoR, that minimizes
service response time and application energy consumption through joint optimization of
Quality of Result (QoR) and offloading strategy in a mobile edge computing environment.
The key idea behind the framework is motivated by the observation that a growing number of
edge applications allow a lower quality result. Thus, relaxing QoR in these applications can
alleviate the workload of edge devices and, in turn, enable a significant reduction in response
time and energy consumption. In another study [78], the authors propose mobile opportunistic
computing wherein mobile devices leverage the compute resources in nearby heterogeneous
devices including mobile devices, cloudlets, and cloud, in order to reduce the execution time
and energy consumption. A high-level architecture of the system that considers routing,
scheduling, discovery, securing and computation offloading has been presented. Alternatively,
the use of computational resources at peer devices has been proposed. In [79], for instance,
the authors present the design of a system, namely Serendipity, that allows computation
offloading from one mobile device only to other other mobile devices intermittently connected
with it, as opposed to remote cloud resources. The system incorporates a task allocation
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algorithm that decides how to apportion the computational task into sub-tasks and the
allocation of such tasks to nearby devices in order to minimize the job completion time. In
addition, a utility function that considers the energy consumption of all nodes participating
in computation tasks as well as residual energy available on these nodes is proposed to allow
energy-aware computing.

Given the constrained nature of sensor devices, recent studies have explored similar com-
putation offloading and cooperative analysis for resource optimization within WSN. In [28],
the authors present certain concepts that are relevant for the theory of distributed computation
within WSN. The study reviews two-party and multi-hop communication complexity theories
to address the computation of functions with distributed inputs between two or more nodes
respectively, with an objective to minimize the computation time. Furthermore, distributed
computation in networks subject to noise as well as randomized gossip-based approaches
to compute aggregate functions has been discussed. In another study [80], the authors
present a node cooperation-based scheme to ensure real-time processing of complicated tasks
within large scale WSN. The proposed approach performs task grouping (using profiling)
and task allocation (using node cooperation) to minimize processing delay as well as com-
munication overheads within WSN. An energy-efficient cooperative computing model for
battery-operated WSN has been proposed in [81]. The study models the application profile,
computation and communication energy of a sensor, and presents an optimal task partition
to minimize the total energy consumption (communication and computation) required for
processing the application at local and remote sensor nodes in cooperative computing, given
a target completion deadline. Moreover, an energy-aware cooperative node selection strategy
is discussed. The use of these models with node selection strategy is expected to achieve a
desirable trade-off between fairness and energy consumption at each node within the network.
Furthermore, joint optimization of sensing, computation and communication tasks has been
discussed for dynamic energy harvesting WSN in [82]. Based on realistic energy and network
models, the authors formulate a stochastic optimization problem to make sensing rate control,
communication and computation decisions, and propose a light-weight algorithm, namely
Recycling Wasted Energy, to solve it. While these approaches study computation offloading
for resource management in WSN, the use of distributed computing within WSN is still in
it’s infancy, and hasn’t yet been realized in any practical study to the best of our knowledge.
Moreover, the cooperative computation for executing functionality with distributed input
data within the network has not yet been discussed. We attempt to address these gaps through
the research presented in this thesis.
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Research Summary

In this work, we have addressed some of the key challenges in the design of future WSN as
depicted in fig. 3.1. These networks are characterized as ubiquitous, intelligent, flexible, user-
centric, cooperative, robust and energy efficient. In this regard, we have proposed the design
of smart sensor devices that are capable of operating autonomously to predict application-
relevant events in real-time despite lack of external resources and Internet connectivity [30].
We have considered sensor-based analytics using Edge Mining, a light-weight data mining
approach for real-time event detection, and validated its performance for intelligent data
collection in the context of Precision Farming [34]. We have also proposed IEM2.0, a
decision-tree based classification technique, to allow for on-board localization to ensure
context-awareness in future WSN applications [35]. Given the resource-constrained nature
of sensor devices, we have further proposed the design of cooperative WSN that would allow
distributed and parallel processing within WSN for improved predictive capabilities. We
have designed two cooperative frameworks - Collaborative Edge Mining [37] for horizontal
scaling of analysis across devices and Iterative Edge Mining [38] [39] for vertical scaling of
analysis within a device, and illustrated their use for Precision Farming and Ambient Assisted
Living applications. To ensure flexibility in analysis with changes in user requirements, we
have suggested sensor-cloud integration wherein cloud-based machine learning is used to
reconfigure sensor analytic models [40]. Finally, we have proposed energy management in
future WSN through cooperative analytics. We have considered coalition-based cooperative
analysis among devices for improved accuracy of event detection, which is, in turn, used
for event-driven communication to minimize energy consumption on sensor devices [35].
Energy-aware cooperative analysis via computation offloading has also been considered
for improved fairness in heterogeneous energy harvesting WSN of the future [42]. We
believe that our work lays a strong foundation for the design of future WSN that are robust,
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Fig. 3.1 Conceptual framework

intelligent, cooperative, flexible and energy-efficient, and suitable for deployment both in
urban and rural IoT applications. The conclusions from each of the three research questions
are discussed in further detail below, followed by certain future research trends in section 3.2.

3.1 Conclusions

The conclusions are presented as answers to the research questions that are also the objectives
of this work as discussed in section 1.2.2.

• RQ1. Sensor analytics: What pool of data analytics techniques are most suitable for
on-board execution on miniature IoT devices? How are these techniques relevant in
the context of Precision Farming?
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Conclusions: To support autonomous operation of WSN, the sensor devices should
incorporate intelligence that is light-weight, extensible and allows real-time detection
of events. This is particularly important in remote applications such as for Precision
Farming that have limited access to other powerful edge devices such as gateways,
and experience intermittent Internet connectivity [30]. The Edge Mining algorithms,
namely L-SIP, BN and ClassAct, present a good solution for on-board data analytics.
The algorithms perform light-weight data mining tasks on sensor devices and allow
real-time detection of application state changes. This is, especially, beneficial for delay-
critical applications related to animal health monitoring and mobility tracking. The
use of L-SIP on-board sensor devices, for instance, has been shown to allow intelligent
data collection within farms [34]. The approach generates linear models of data that
are stored only at the occurrence of events. The approach, thus, reduces redundancy in
data while improving real-time responsiveness of the system. Moreover, the approach
is data agnostic, thus, making it suitable for Precision Farming applications that
cater to large variety of data. Furthermore, since contextualization is key for the
design of future WSN, as a proof-of-concept, real-time localization of animals has
been proposed on-board sensor devices [35]. The approach implements decision-tree
based activity recognition, and further performs ASMM for localization. It allows
context-aware sensing as animals move around the farm, without relying on third-party
components such as GPS and cloud. The approach is shown to be resource-efficient for
implementation on sensor devices as well as extensible to other application domains.

• RQ2. Cooperative WSN: What algorithmic frameworks can be designed to represent
real-life services as a set of cooperative data analytic tasks deployed within WSN?

Conclusions: The algorithmic frameworks should allow scalability of analysis within
WSN to improve the computational capability of the network, while ensuring load
balancing and effective resource utilization for each device. Cognizant of this view, we
designed two cooperative frameworks - CEM and IEM. CEM considers the availability
of resources on devices, and allows horizontal scaling of computation by delegating
suitable tasks to neighboring sensor devices [37]. The integration of results on each
device generates application-specific information for delivering real-time services.
In the context of Precision Farming, as a proof-of-concept, CEM has been used for
energy-efficient (due to reduced packet transmissions) and timely detection of Heat
Stress in cows. Alternatively, IEM can be used to scale-up the analysis performed
by sensor devices through intelligent interaction between different tasks allocated to
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each device [38]. The framework allows sequential execution of co-related tasks on
the same device such that the frequency of performing subsequent task(s) is governed
by the output of previous process. The application-specific information is obtained
through serial processing of all tasks. The coordinated interaction between tasks
ensures that application requirements are met while not overwhelming the device. In
Precision Farming, IEM can be used to facilitate acceleration-based behaviour analysis
and mobility monitoring of animals. Furthermore, the framework has been shown
suitable to extend to other application domains, for instance, localization of the elderly
in behavioural-tracking AAL applications [39].

• RQ3. Flexibility and Energy Management in Cooperative WSN: How can the ser-
vices be re-configured on-the-go to meet the changes in application requirements while
ensuring resource efficiency of the sensor devices?

Conclusions: We have shown that cloud-based learning using ML algorithms such as
Genetic Algorithms (GA) can facilitate optimization of the sensor-analytic model based
on user-preferences [40]. Flexibility in device intelligence and, in turn, network-wide
services can be achieved by integrating WSN with cloud systems. A bi-directional
link between sensor-cloud would allow transfer of data to cloud as well as transfer of
the updated model to the devices. Based on application requirements, such flexibility
can be used to improve accuracy as well as energy efficiency of sensor-based predic-
tions. We demonstrate flexibility in IEM-based localization on-board sensor devices
using GA-based learning on cloud. The use of GA allows fast learning and ease of
adaptation to change in requirements by simply adjusting the weight of terms in the
fitness function. Furthermore, cooperation between devices has a tremendous potential
to improve network-wide resource management. Cooperative analysis through collec-
tive participation of devices in analytic tasks has been shown to improve accuracy of
individual sensor-predictions [35]. Given an objective function, the improved accuracy
of analysis can, in turn, be used for resource optimization. We illustrated its use for
context-aware sensing and communication to reduce unnecessary packet transmissions
to cloud and, in turn, minimize communication cost incurred by sensor devices. Al-
ternatively, for tasks with large datasets, cooperative analysis using data partitioning
and computation offloading has been discussed for joint optimization of computation
and communication costs [42]. Evaluation of the theoretical models for heterogeneous
energy harvesting WSN shows that the approach can significantly reduce the net energy
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consumption of the network while improving the energy balance across devices to
improve network longevity.

3.2 Future work

While our research lays foundation for the design of future WSN, further work is required to
improve the pool of analytics that can be deployed on sensor devices and improve scalability
of our algorithms for large-scale networks. The following topics may serve as possible
directions for continuation of this research.

• Using ML to model sensor functionality: Today, ML-based cloud learning is used
to model crop growth and disease management. Moreover, it has been shown useful
in optimizing performance of sensor-based analytics. In future, with design of more
powerful and energy-harvesting sensor devices, it may be suitable to implement ML
techniques within WSN. These models will facilitate real-time learning and enable
adaptation/control of sensor-based services such as sensing frequency, computation
complexity as well as communication framework to improve resource efficiency of
devices based on different objective functions. Moreover, localized computations
will improve the privacy of data. This, however, requires further work in identifying
suitable ML techniques as well as the learning approach for mobile WSN.

• Validation and verification: Currently, research is primarily focused on the design
of low-cost, energy-efficient sensor devices. In the context of Precision Farming, for
instance, multiple vendors are working towards design of sensors for animal health
monitoring such as SmartBow [83] and RumiWatch [84]. We have developed a suite
of analytic algorithms that have a low-memory and energy footprint to be incorporated
within such IoT devices. In future, there is a need to develop tools that would allow
seamless integration of these algorithms with the different devices. Standardization
of the suite of algorithms that operate on sensor devices would allow farmers to
benchmark performance and improve decision-making within the farms. Furthermore,
it would allow validation and verification of sensor-based analytics across different
applications.

• Self-organizing WSN: So far, we have discussed re-configuration of sensor analyt-
ics on a device with change in application requirements. In addition to this, WSN
themselves must be re-configurable and resilient to any disruption caused by energy
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depletion or physical damage to a certain device in order to ensure uninterrupted
services. As such, future WSN must ensure adaptability by re-organizing themselves
autonomously to allow lossless handover/migration of services between devices in
case of a node failure. Such decisions should be made in real-time while ensuring
minimum communication overhead between devices.
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WSN systems that will provide fi ne-grained moni-
toring and automation of the farming processes. 
In the future, multiple WSN systems deployed on 
every farm will form an integrated environment 
(see Figure 1) covering various aspects of farm 
management. Intelligent insight gained using the 
environments will help improve future farming.

Analytics in Precision Farming
Some agricultural sensor systems exist already. 
In this article, we describe how these systems’ 
 designs and intelligence levels vary depending on 
the application area. 

Monitoring
Kerry Taylor and colleagues describe a WSN sys-
tem deployed on Kirby Farm near Armidale, New 
South Wales.1 The network incorporates sev-
eral different sensors for soil moisture, air tem-
perature, humidity and pressure, rainfall, and 
hail. Monitoring data, provided by the sensors, is 
pushed to a centralized entity, where the data is 
enriched and analyzed. Results of the analysis are 
communicated back to farm personnel via their 
personal mobile devices. In this way, the system 
presents an exemplar decision-support solution for 
pasture management.

At the same time, C.J. Rutten and colleagues 
have conducted a comprehensive survey showing 
lack of analytics and intelligence in sensor systems 
for animal-health management on a dairy farm.2 
The survey presents a four-tier classifi cation of the 
existing sensor solutions. The fi rst tier is intended 
for systems that measure specifi c animal-health as-
pects. Readings obtained by such systems (for ex-
ample, milk composition) are presented as is to 
farm personnel, who draw their own  conclusions. 

Second-tier systems interpret the readings. For 
instance, the electrical conductivity of milk can 
be used to identify mastitis (infl ammation of the 
 udder tissue and mammary gland, which typically 
occurs due to bacterial infection), and 3D acceler-
ation can be used to detect locomotion problems. 
Third-tier systems integrate information coming 
from various sources, including other sensor sys-
tems and nonsensor data. Such a system would 
help farm  personnel comprehend potentially large 
amounts of data, which could become overwhelm-
ing. Rutten and colleagues have identifi ed a seri-
ous lack of such systems.2 The fourth tier is for 
decision support systems. Even though some of the 
sensor systems have been identifi ed as tier four, 
their functionality is based on alerting second-tier 
events, such as mastitis or estrus (a period of fer-
tility and sexual receptivity in female mammals).

Automation
Context and user awareness are common trends 
in modern farm-process automation systems. For 
example, Fernando Auat Cheein and Ricardo 
Carelli surveyed unmanned robotic systems pro-
posed for farming applications.3 Such a system 
typically attempts to replace manual labor in 
tasks, such as monitoring the farm environment, 
mapping monitoring results (such as yield map-
ping), and taking particular actions (for exam-
ple, blossom thinning). The system might include 
several different sensors (for example, for pollen 
or CO2 level) and operate within the deployment 
area of a static WSN. 

Virtual fence systems represent another type of 
context awareness.4 Traditionally, physical bar-
riers and fences are used to control animal move-
ment within a farm’s geographical limits. A virtual 
fence system aims to accomplish such control with-
out using physical barriers. The system attempts 
to identify an animal’s location (for example, via 
GPS) and if needed (for example, if the animal 
is outside a particular area), direct the  animal’s 

In agriculture, the use of wireless sensor net-

works (WSNs) is strongly advocated under the 

umbrella of precision farming. Today, a substantial 

amount of research focuses on developing  effi cient
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movement using a specific stimulus 
(such as electric or audio). Such sys-
tems must be aware of both their sur-
roundings and the context. Naviga-
tion within the farm’s limits requires 
specific landscape knowledge, which 
might need to incorporate weather in-
formation or the presence of specific 
farm objects and people.

Wireless Sensor  
Networks Today
In the future, the demand for intelli-
gent agricultural systems will become 
apparent. Accurate, timely analyses 
of vast amounts of data provided by 
integrated WSN environments will 
become paramount in increasing ef-
ficiency and sustainability of agricul-
ture. Conventionally, analyzing moni-
toring data is considered to be beyond 
WSN capabilities and carried out re-
motely. Meanwhile, in recent years, 
design and manufacturing of WSNs 
have improved dramatically. Mod-
ern wireless sensors possess compu-
tational capacity sufficient for certain 
data analytics functionality. In this 
section, we overview modern WSN 
functionality that already incorpo-
rates some level of intelligence.

Data Fusion
Often, data generated within a WSN 
has a degree of redundancy owing to 
overlapping in monitoring of individ-
ual sensors. In this case, merging data 
from different sensors reduces infor-
mation exchange within the WSN and 
therefore increases its efficiency, en-
ergy consumption, and reliability (see, 
for example, work by Rui Tan and col-
leagues5). Reaching the best possible 
traffic reduction is the main objective 
of data fusion (see Figure 2a). Data fu-
sion can also involve such network-
wide analytics tasks as noise suppres-
sion and outlier identification. Some 
later examples of sensor data fusion 
consider rather complex applications, 

such as multimedia streaming. Fusion 
of such data requires intelligence from 
the sensor nodes. Yet this intelligence 
is very specific and seldom can be ap-
plied outside a particular application 
range.

Edge Mining
Elena Gaura and colleagues have pro-
posed a novel approach called edge 
mining (see Figure 2b) to reduce net-
work traffic in a WSN.6 Each sensor 
reports (for example, to a cloud-based 
service via a gateway) occurrence of 
events within the environment rather 
than raw sensor readings. The sensor 
systematizes its historical readings us-
ing a simplistic internal representation 
model that is based on linear, decision-
tree, or histogram representation of 
the readings. The model is constantly 
updated with regards to the new read-
ings, and substantial changes of the 
model are attributed to events within 
the environment. This represents a 
new stage in sensor intelligence. The 
representation model is  indeed the 

view of the environment that the sen-
sor builds autonomously and uses to 
make decisions (detect events). The 
generic nature of the models used by 
the sensors makes edge mining suit-
able for a range of sensor readings. 
However, the approach is limited to 
analysis conducted by the sensors in 
isolation from each other, which is a 
substantial limitation.

Bioinspired Analytics
Bioinspired solutions are common for 
both distributed data analytics and 
WSNs. Thus, the recent appearance 
of seminal joint WSNs and data an-
alytics solutions on the fertile ground 
of bioinspired computing is not sur-
prising. Gursel Serpen and colleagues 
mapped operation of an artificial neu-
ral network (ANN; see Figure 2c) to 
an ad hoc WSN.7 Each sensor, apart 
from its own original monitoring 
task, hosts functionality of a neuron, 
whereas sensor-node communica-
tion is used for information exchange 
between the neurons. Although the 

Figure 1. Integrated farm management environment based on wireless sensor 
networks (WSNs). The environment incorporates several sensor systems, including 
those for on-body animal health monitoring, environmental surveillance, and 
automated farm machinery. The local gateway, part of the environment, is used for 
remote control of the environment and access to the sensor-based monitoring data.
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 proposed solution considers only one 
application, the overall approach can 
be extended for other analytics tasks. 
This comes together with the high ad-
aptation of an ANN, where changing 
the ANN’s topology modifies its an-
alytics. However, identification of a 
suitable ANN topology and network 
learning are typically computation-
ally complex tasks.

Location Awareness
Researchers have developed several 
methods to identify a sensor’s loca-
tion, representing a separate strain 
of sensor intelligence (see Figure 2d). 
Thus, particular nodes could be aware 

of their static location or equipped 
with specialized modules that can 
determine node positioning directly 
(such as GPS or GLONAS, the Global 
Navigation Satellite System). Nodes 
with known locations could serve as 
so-called anchor points to identify the 
rest of the network’s location (for ex-
ample, using received signal strength 
or delivery delay). Node accelera-
tion and speed (which may be avail-
able from the on-board accelerome-
ter of the node itself or its immediate 
neighbors) can be used for continuous 
location correction and update. En-
riching WSN data with the location 
information can increase its location 

awareness and therefore improve its 
services.8

User Awareness
The broadcast nature of wireless 
transmission requires devices operat-
ing within the same frequency range 
to cooperate to ensure their coexis-
tence. For instance, concurrent trans-
missions are typically scheduled at the 
media access control layer of the WSN 
architecture to reduce mutual interfer-
ence and avoid collisions. Such coop-
eration lets nodes learn about each 
other and their current and potential 
future use (Figure 2d). For example, 
the presence of a  particular type of 
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Figure 2. WSN intelligence. (a) Data fusion. (b) Edge mining. (c) Bioinspired analytics. (d) Location and user awareness. The 
figure depicts schematics of typical implementations of the four types of WSN intelligence.
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wireless device (such as a smart watch 
worn by the primary user) could in-
dicate the user’s presence. Enrich-
ing operation of the WSN with such 
knowledge increases awareness of its 
services, making them user aware. Yet, 
secondary WSN data is typically used 
exclusively to improve and support its 
ability to transport sensor reading.

Challenges and Benefits
In agriculture, the need for data ana-
lytics and the ongoing expansion of 
the WSNs (see Table 1) create an excit-
ing opportunity for a new technolog-
ical development on the brink of the 
two seemingly distant branches. Thus, 
the WSNs themselves can execute 
some of the data analytics’ functional-
ity. This development promises many 
benefits, including the following:

r�Accessibility of data insight. Re-
sults from analytics incorporated 
by a farm-based WSN (that is, farm 
insight) will become immediately 
available within the farming envi-
ronment, whereas additional delays 
due to external communication 
(such as an analytics engine hosted 
on a cloud) will be avoided. This is 
particularly important for farms 
situated in rural areas with poor 
Internet connectivity.

r� Sustainable computing. Originally 
used to increase the life of battery-
powered sensors, energy harvest-
ing has become an imminent part 
of modern WSN design. Opera-
tion of a WSN is typically powered 
(even partially) by various renew-
able sources, such as solar and wind 
energy. Therefore, analytical tasks 
completed within the network will 
also be powered by renewable en-
ergy, leading to a greener, more eco-
friendly way of computing.

r� Information security. Performing 
some of the data analytics directly 
within the farm also has a num-

ber of benefits from an informa-
tion security viewpoint. Thus, only 
a summary (such as an average of 
particular measurements across the 
farm) of the farm-monitoring data 
will need to be shared with a third 
party (cloud-based analytics). This 
will subsequently complicate ob-
taining specific sensitive informa-
tion from the data shared.

Meanwhile, building a viable agri-
cultural WSN system with elements 
of sensor analytics poses several chal-
lenges that must be addressed to not 
only increase robust operation of the 
system but also guarantee its value to 
the end user—the farmer:

r�Data analytics functionality. Par-
ticular attention must be dedicated 
to identifying the pool of data an-
alytics methods that will be dele-
gated to WSNs. The methods must 
not only be highly parallel, but 
their implementation must account 
for the potential instability of 
WSNs (such as low energy budget 
of specific nodes or impaired com-
munication due to interference). To 
ensure market uptake, the methods 
implemented by the WSN must be 
of potentially high practical value 
to the farmer. The methods must 
incorporate a degree of flexibility 
to reflect potential modifications in 
farm-management strategy. 

r�Resource tradeoff. Analytics will 
present WSN functionality addi-
tional to its original farm-monitor-
ing tasks. Hence, the WSN should 
perform an analytics task such that 
it does not significantly impact the 

farm monitoring itself. A tradeoff 
between analytics functionality im-
plemented by the WSN and resource 
expenditure must be considered.

r� Integrated cyber-physical systems. 
Systems deployed on a particular 
farm will form an integrated en-
vironment. The environment will 
need to be catered to various types 
of information, stretching from de-
lay tolerant (for example, milk fat/
protein content) to real time (heart-
rate of newborn cubs kept in a 
nursery). Communication of the 
environment needs to incorporate 
autonomy, robustness to harsh en-
vironmental conditions, high ef-
ficiency (such as low energy con-
sumption and high transmission 
quality), and flexibility (to reflect 
changes in analytics functionality).

Addressing these challenges and in-
troducing analytics into farm-based 
WSN systems has the potential to in-
crease these systems’ practical value 
and significantly extend their usage.

Multiple WSN systems deployed 
on a farm will form an integrated en-
vironment providing farm personnel 
with valuable farming insight rather 
than raw sensor readings. This will 
significantly simplify management of 
the farm and increase efficiency and 
sustainability of its operation. 
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ABSTRACT
This material is based on work in progress.
Over the last decade, precision agriculture has grown in im-
portance in order to meet the increasing food demand and
ensure sustainability of farming. Today, advances in the
Internet of Things (IoT) paradigm have promoted the use
of Wireless Sensor Networks (WSN) for precision farming.
However, recent technological developments suggest that use
of Nanotechnology has immense potential to further improve
the farming productivity. In this paper, we present some
use-cases for the application of Internet of Nano Things
(IoNT) in dairy farming. Although the use of IoNT involves
several challenges, we envisage a multitude of benefits asso-
ciated with its implementation.

1. INTRODUCTION
Precision agriculture is a recent trend that applies Infor-

mation and Communication Technologies (ICT) in farming
practices with a view to improve crop yield and ensure sus-
tainable growth. Due to recent advances in the Internet
of Things (IoT) paradigm along with mounting population,
market pressures and growing environmental concerns, the
use of Wireless Sensor Networks (WSN) has been proposed
for precision farming. A recent survey conducted in the
Netherlands by Steeneveld and Hogeveen [7] reveals that al-
most two fifths of the farms surveyed have adopted some
sensor-based farm monitoring. Rutten et al. have reviewed
various sensor systems recently proposed for animal health
management in dairy farming [6]. These sensor systems can
be used for monitoring animal fertility, mobility, metabolism
and Mastitis detection. In a dairy farming scenario, how-
ever, fine-grained monitoring may be required since most
of the crop and animal conditions ensue at molecular level.
This necessitates data collection at the nano-scale to achieve
significant improvements in the farm productivity.

Concurrent advances in Nanotechnology and IoT have
stimulated the evolution of a new networking paradigm, In-
ternet of Nano Things (IoNT). Developing suitable IoNT
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applications for dairy farming may be beneficial to moni-
tor activities at the nano-meter range. However, real-world
implementation of any IoNT solution requires addressing a
number of significant challenges as discussed in [1] and [2].
In this paper, we consider the use of the IoNT paradigm in
the scope of dairy farming.
The remainder of the paper is organized in the following

order. In Section 2, we briefly discuss some of the use-cases
for an IoNT solution in dairy farming. The challenges and
benefits associated with the implementation are discussed in
Section 3. We present the conclusions and future work in
Section 4.

2. DAIRY FARMING SCENARIO
The use of IoNT has the potential to usher the devel-

opment of several precision farming applications. Accord-
ingly, design of nano-devices (e.g nano-sensors and nano-
actuators) has been proposed in order to monitor environ-
ment variables, soil fertility, crop growth and animal health
at the nano-scale. We consider the implementation of Wire-
less Nano Sensor Networks (WNSN) in dairy farming and
discuss some of the key use-cases below.
1. Grass monitoring : P. Creighton et al. conducted

a survey to understand the various grassland management
practices that have been employed for dairy farming [4].
Their study advocates the use of ICT, although at macro-
scale, to enhance the farm productivity. The suitability of
using Nanotechnology solutions for agriculture has been dis-
cussed [3]. IoNT may have the ability to realize some of these
solutions. Nano-devices may be used to sense, compute
and communicate precise real-time farm data. For instance,
nano-devices may be used to closely monitor the dynamics
between plant cell organelles and pathogens to enable early
prediction and prevention of diseases. Nano-sensors may be
used to monitor the soil fertility while nano-scale actuators
may be designed to allow controlled delivery of fertilizers to
the soil, thereby, preventing soil depletion. Dynamic irriga-
tion can be practised by observing the soil moisture levels
in real-time, to avoid water-logging and wastage (see page
586 in [3]).
2. Animal health and feed management : Since run-

ning laboratory tests for disease diagnostics can be expen-
sive and cumbersome, alternate techniques for easy disease
detection are desirable. For instance, design of a breath
sampling device which can be fitted to the nostrils of cattle
has been proposed for disease detection [8]. However, owing
to the ability to monitor molecular processes, use of nano-
sensors for disease prediction is preferable. Nano-scale drug



delivery systems shall enable controlled release of medication
to specific sites in order to alleviate the spread of diseases.
Nano-sensors to monitor hormone levels in the cattle, for im-
proved fertility, may also be designed. Additionally, nano-
scale carriers may be used to improve the nutrient profile of
the feedstock. Feeding e�ciency may be further enhanced
by adding nano-scale digestive-aids.

3. Monitoring field conditions: Climate change ad-
versely a↵ects the food security and may cause pest and
disease invasion [5]. Weather monitoring and forecasting us-
ing nano-devices may be beneficial to alleviate these harmful
e↵ects. Moreover, nano-scale carriers may be used for drug
delivery to ensure timely prevention of pest attacks and dis-
eases. Nano-devices may also be used to monitor air and
water quality in dairy farms. Contaminants can be detected
at parts per billion and disinfectants may be discharged us-
ing nano-actuators for purification. Real-time monitoring
using nano-sensors may also assist in controlling weeds.

4. Reducing resistance to antibiotics: Excessive use
of fertilizers and drugs can result into tissues developing re-
sistance against them. The slow and controlled release of
chemicals and medication, facilitated by the use of nano-
carriers, may improve the ability of tissues to absorb them
for e�cient use. Reduced use of chemicals also decreases the
input costs and minimizes wastage.

3. BENEFITS AND CHALLENGES
The use of WNSN in dairy farming promises a multitude

of benefits, some of which are discussed below.
1. Agricultural sustainability : Nano-devices enable

fine-grained control over the farm processes. Real-time mon-
itoring of soil condition can help replenish soil nutrients, en-
suring good quality grass. Early diagnosis and treatment of
plant viruses and animal diseases is beneficial for their wel-
fare. These applications can, in turn, improve the quality of
the derived foods such as milk and eggs.

2. Self-powered nano-devices: Energy harvesting us-
ing background flows or bioconversion of animal wastes ap-
pears to be the most feasible solution for powering the nano-
devices. This promotes the idea of green computing.

3. Network reliability : Due to molecular dimensions,
a large number of nano-devices may be deployed to form a
WNSN in dairy farms. This improves the reliability of data
transmissions in-spite of the possible node failures due to
molecular absorption or interactions with farm environment.
Meanwhile, we envisage several challenges in the implemen-
tation of WNSN in dairy farms, as discussed below.

1. Design of nano-devices: Nano-sensors,nano-carriers,
nano-actuators and nano-chemicals are still at the research
and developmental stage. A number of design questions such
as composition of nano-devices, type of sensors for dairy
farming, computational capability of processors, data secu-
rity and farm friendliness of devices are yet to be resolved.

2. Communication : Nano-devices will be used for mon-
itoring activities at a nano-meter range. However, in order
to monitor farm conditions at micro or macro scale, collabo-
ration amongst a large number of nano-devices is necessary.
Molecular and electromagnetic networking protocols for in-
tra WNSN communication are, therefore, required. These
protocols must address the issues concerning the battery-
constrained low power and lossy nano-networks.

3. Interfacing WNSN and the Internet : WNSN in
the farms must be connected to the Internet in order to

exchange data with the cloud. Designing hardware and
middle-ware for connecting WNSN to the existing WSN
deployments in the farm may be beneficial in this regard.
Moreover, development and use of communication paradigms
to transfer data from WNSN to the Internet via WSN may
help improve the transmission reliability of the data and
control information between WNSN and the Internet.

4. CONCLUSIONS AND FUTURE WORK
Precision farming is the key for ensuring agriculture sus-

tainability. Growth in IoT paradigm has promoted the idea
of using WSN for e�cient farm monitoring. However, Nan-
otechnology solutions have the potential to enhance the pro-
ductivity of future agriculture. In this paper, we have dis-
cussed the application of IoNT in dairy farming. Currently,
we are working towards designing communication techniques
to optimize data transfer from various on-farmWSN systems
to the cloud. Although several design and communication
challenges are yet to be addressed, implementation of WNSN
may help realize the dream of precision dairy farming.
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Abstract—Despite the numerous advantages of using Wireless
Sensor Networks (WSN) in precision farming, the lack of infras-
tructure in the remote farm locations as well as the constraints
of WSN devices have limited its role, to date. In this paper,
we present the design and implementation of our WSN based
prototype system for intelligent data collection in the context of
precision dairy farming. Due to the poor Internet connectivity
in a typical farm environment, we adopt the delay-tolerant
networking paradigm. However, the data collection capability
of our system is restricted by the memory constraints of the
constituent WSN devices. To address this issue, we propose the
use of Edge Mining, a novel fog computing technique, to compress
farming data within the WSN. Opposed to the conventional
data compression techniques, Edge Mining not only optimizes
memory usage of the sensor device, but also builds a foundation
for future real-time responsiveness of the prototype system. In
particular, we use L-SIP, one of the Edge Mining techniques
that provides real-time event-driven feedbacks while allowing
accurate reconstruction of the original sensor data, for our data
compression tasks. We evaluate the performance of L-SIP in
terms of Root Mean Square Error (RMSE) and memory gain
using R analysis.

I. INTRODUCTION

Over the last decade, the use of Wireless Sensor Networks
(WSN) in precision farming has been widely advocated in or-
der to improve the agricultural productivity and sustainability.
WSN facilitate collection of farm data, using battery-powered
sensors, which is, in turn, used for better monitoring and
understanding of the farm processes such as weather changes,
soil composition and dynamics, crop growth, and animal
health and mobility patterns. A review of WSN applications
in precision farming has been presented in [1]. In spite of the
numerous advantages, however, very few WSN based systems
have been put into practice, to date. This is primarily due to
the constrained nature of the WSN devices along with the lack
of infrastructure in a typically remote farm environment.

In this paper, we address some of the practical issues related
to the deployment of WSN in the context of precision dairy
farming. We present our WSN based prototype system for
data collection in a dairy farm. Due to the intermittent or no
Internet connectivity over the large area of farms, the data
collected using the in-field sensors cannot be transmitted to
the cloud storage in a timely manner. We, therefore, adopt the
delay-tolerant networking paradigm for our system to facilitate
reliable data transfer to the cloud. We discuss the design of
our sensor node, referred to as the collar device, that is used to

implement the delay-tolerant communication and is so-named
as it will be worn around the neck by dairy cows. The collar
device is tailored to ensure animal welfare and comprises of a
variety of sensors to monitor cow health, activity and location.
The device also acts as a mobile node that collects data from
the different in-field sensors (e.g. grass monitoring) as the
cow moves across the farm. All data is stored locally on the
collar device itself until the cow is in the vicinity of the cloud
gateway, presumably housed in a milking station, and offloads
data onto it.

Given the wide variety of data that must be gathered
periodically from the farm, a major challenge in implementing
the delay-tolerant framework is the storage constraint of the
collar device. Although sensor motes, today, feature a non-
volatile flash memory, it is limited in capacity and is usually
insufficient to store the large amounts of data that is gath-
ered during the day. This, in turn, limits the data collection
capability and the operational time of our prototype system.
For instance, we collected temperature, humidity, acceleration,
gyroscope, magnetometer and GPS (latitude, longitude and
timestamp) data at a frequency of 1Hz and stored it on
our collar device. The device could only gather data for a
maximum of 4.5 hours before overwriting the least recent
values in the flash. To address this limitation, we propose
data compression on collar devices. We evaluate the feasibility
of using Edge Mining, a novel fog computing approach, as
opposed to the traditional compression techniques for reducing
the memory requirements. Edge Mining algorithms are light-
weight in nature and reduce the amount of data, rather than the
size of each data entry, by storing only those values that cannot
be predicted accurately using the past readings. Additionally,
localised reduction of data builds the foundation for future
real-time responsiveness of our system. This is key to the
timely detection of critical events in precision farming. For
instance, mobility pattern of cows must be monitored and
analysed in real-time for virtual fence and feed management
applications in order to facilitate corrective measures, if nec-
essary, and redirect the cows in the desired way [2]. Moreover,
real-time monitoring and evaluation of cow health is important
for the early detection of diseases to alleviate the spread of
any infection and ensure animal welfare.

In [3], authors implement Edge Mining using three instan-
tiations of the Spanish Inquisition Protocol (SIP): Linear SIP
(L-SIP), ClassAct and Bare Necessities (BN). SIP transforms
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raw data into an application-relevant state that is considered
significant only if the data value cannot be predicted using the
past estimates and an approximation model with the desired
accuracy [4]. Accordingly, we propose the implementation
of Edge Mining, using SIP, on the collar devices by storing
only those states where the approximation error in data value
exceeds a given threshold ε. We use the L-SIP algorithm
since it reduces data on the device while preserving sufficient
information to reconstruct the signal at the gateway, if needed.
The performance of L-SIP for data compression is primarily
governed by the user-specified ε values for each signal. A
higher value of ε allows larger approximations in the estimated
values, leading to higher values of memory gain as well
as the Root Mean Square Error (RMSE). We evaluate the
performance of L-SIP for the data collected using our collar
device based on the above two metrics. We study the changes
in quality of compression across different values of ε and
variations in the signal using R analysis. L-SIP provides a
significant memory gain of ∼70% for a given set of ε values in
our scenario. Implementation of L-SIP, thus, not only improves
data collection for delay-tolerant networking but also provides
real-time event-driven feedbacks.

The remainder of the paper is organized as follows. In sec-
tion II, we review some of the techniques for data compression
and sensor analytics. We discuss the implementation of our
testbed in section III. We evaluate the performance of L-SIP
for data compression in section IV followed by the conclusions
in section V.

II. RELATED WORK

In this section, we present some of the existing approaches
for data analysis in WSN. Since we are primarily concerned
with optimizing memory usage for sensor devices, we review
the proposed data compression algorithms for WSN along with
other sensor analytics and Edge Mining techniques that can be
used for localised data reduction.

A. Data Compression

Data compression techniques aim at storing data using the
minimum number of bits possible, without any significant
loss in information. An extensive survey on the compres-
sion techniques for WSN has been presented in [5]. While
distributed compression techniques such as Data Transform
Coding (DTC), Data Source Coding (DSC), and Compressive
Sensing (CS) are used in dense sensor networks, local com-
pression approaches such as Two-Modal Transmission (TMT)
scheme based on predictive coding, and Lightweight Temporal
Compression (LTC) scheme have been proposed for sparse
sensor networks. Another novel approach based on distributed
and adaptive signal processing has been proposed in [6]. The
approach exploits the existing correlations in sensor data by
adopting the principles of DSC and reaches a maximum energy
saving of 65%. While selecting the suitable compression
algorithm for a given application, the different techniques are
compared on the basis of their code size, net energy saving,
and compression performance i.e. the compression ratio vs the

information gain. Additionally, the accuracy of data required
and the nature of the WSN are considered. However, since
compression techniques only reduce the number of bits per
data value, they do not provide any insights into the data in
near real-time, thereby, introducing latency in event detection.

B. Sensor Analytics

Although several techniques have been implemented for
cloud-based data mining, the existing approaches cannot be
directly used for edge analytics owing to the computational
constraints of the sensor devices. Certain light-weight algo-
rithms have, therefore, been proposed to perform localized
data analysis in WSN applications. Data Fusion is one of
the most basic approach that performs data reduction in
WSN by merging the redundant data that emerges from the
neighbouring sensor nodes [7]. The study shows that Data
Fusion can be used to improve the sensing coverage and,
in turn, the monitoring of the field. However, Data Fusion
algorithms are signal specific and do not cater well to systems
with heterogeneous streams of data. Data reduction can also
be achieved through the implementation of Artificial Neural
Networks (ANN) on top of the existing hardware-software
platform of WSN [8]. These techniques improve the network
intelligence by performing classification, clustering and pre-
diction tasks on the sensor devices. However, the network
learning involved is compute-intensive and may significantly
reduce the battery lifetime of motes.

C. Edge Mining

Edge Mining is a novel fog computing approach that aims
at improving the energy efficiency of a device by reducing
the number of packet transmissions to a remote sink node.
For doing so, it performs localized data analysis through
implementation of light-weight data mining algorithms on the
sensor devices. Accordingly, in a delay-tolerant framework,
Edge Mining can be used to optimize the storage requirements
by reducing the number of readings that are stored on a
device as opposed to the number of bits per value as in case
of compression techniques. Furthermore, the localized data
mining facilitates real-time detection of events, thereby, im-
proving responsiveness of the system. Edge Mining has been
implemented using three different instantiations of general SIP
as shown in [3]. SIP encodes raw data into state estimates
that are considered significant/eventful only if the new data
value cannot be predicted using the past estimates and an
approximation model with a desired accuracy [4]. That is, a
state estimate must be stored only if the error in prediction
exceeds a user specified threshold ε. The three Edge Mining
techniques differ on the basis of encoding schemes used for
state estimation and are described in the context of our delay-
tolerant scenario as under.

1) Linear SIP (L-SIP): In L-SIP, the state vector is rep-
resented as point-in-time value and rate of change. A num-
ber of techniques such as Kalman Filter, Expoenentially
Weighted Moving Average (EWMA) and Normalised Least
Mean Squares (NLMS) can be used for state estimation. A
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change of state is considered eventful only if the difference
in the calculated point-in-time value and the estimated value
exceeds the threshold ε. L-SIP is data agnostic and provides
a significant reduction in the memory usage while storing
enough data to allow reconstruction of the signal, if required.

2) ClassAct: ClassAct is a decision tree based classification
technique. Given the application knowledge, the new state
estimates are represented as a probability distribution over a
set of activities that form the tree. The distribution is simplified
to index of the most likely activity and the state estimate is
stored only if the calculated index differs from the predicted
value. While the decision tree is built through network learning
at the sink node, classification of data can be performed using
only a few comparisons on the sensor devices. Although this
technique provides greater reduction of raw data compared to
L-SIP, it is a destructive approach since the original signal
cannot be reproduced in future.

3) Bare Necessities (BN): BN further reduces the memory
usage by storing only the summary of data over time. The state
vector is represented as a distribution over non-overlapping
bins. A new state is calculated by assigning the raw value
to a bin and updating the distribution for each bin. If the
distribution of any bin changes by more than a threshold, it is
considered eventful and the updated state is stored at the sensor
node. Unlike L-SIP, BN discards most of the raw data which,
in turn, affects the quality of future cloud-based analysis.

III. TESTBED IMPLEMENTATION

In this section, we present our WSN based prototype system
that is used for delay-tolerant data collection for precision
dairy farming. In a dairy farm environment, we envisage a
WSN comprising of three kinds of sensor nodes: in-field
sensor nodes, collar devices and gateway node as illustrated
in figure 1. The in-field sensors are static nodes that are
used to monitor farm conditions such as weather changes

Fig. 1. Delay-tolerant networking framework for precision dairy farming

and grass growth. The collar device is worn by dairy cows
and comprises of a number of sensors to monitor cow health
and mobility. Additionally, it acts as a mobile data carrier
that collects data from the in-field sensors as the cow moves
across the farm, stores it locally on the device, and brings
it back to the milking station that houses the cloud gateway.
Data from the collar device is transmitted to the gateway via
mote-to-mote communication and is further uploaded on the
cloud using Raspberry Pi connected to the gateway mote. The
raw data, thus, collected is used by farmers to gain further
insights into the farm conditions and take remedial actions,
if necessary. Moreover, this data can be used to identify
correlations between different farm processes and, in turn,
improve the overall productivity.

In this work, we implement a WSN testbed consisting of
the collar device and gateway node and consider the memory
collection capability of our system via data collection using
device sensors. We present the design of our collar device and
gateway node and address the challenges posed by the memory
constraints of the device. We also review the L-SIP algorithm
used for data compression.

A. Collar device

Collar device as shown in figure 2 forms the most integral
part of our prototype system. The primary component of
the collar device is the IEEE 802.15.4 compliant, low-power
CM5000 mote that is based on the design of TelosB motes
[9]. It consists of the MSP430F1611 processor and a CC2420
802.15.4, 2.4GHz wireless module for radio communication.
The mote also comprises of an on-board SHT11 sensor to
collect temperature and humidity readings, and supports three
serial interfaces, namely UART, I2C and SPI, to connect with
external sensors. In order to facilitate mobility tracking for
cows, we connect a 10 degrees of freedom (DOF) Inertial
Measurement Unit (IMU) to the mote via the I2C interface
[10]. The IMU consists of three ICs, MPU6050, HMC5883L
and BMP180, for measuring 3-axis acceleration and 3-axis
orientation (gyroscope), 3-axis magnetic field, and barometric
pressure respectively. The IMU features a user-programmable
full scale range to ensure accurate tracking for both slow and

Fig. 2. Collar device comprising of CM5000 mote connected externally to a
10 DOF IMU and ublox NEO6 GPS receiver
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fast motion [11], [12]. Data, thus, obtained can be used for
feed management and detection of mobility-related diseases
such as lameness [13]. Further, we connect a ublox NEO-
6M Global Positioning System (GPS) receiver to our collar
device via the UART interface [14]. The GPS unit enables
context awareness for node localization in applications like
virtual fences [2]. In our scenario, we primarily use GPS data
to identify whether a cow is in the milking station or a dairy
farm. Accordingly, we extract the values for latitude, longitude
and time of position fix from the Geographic Position -
Latitude/Longitude (GPGLL) factor of the National Marine
Electronics Association (NMEA) stream.

Since we are in the development phase, the three compo-
nents have been temporarily connected using breadboard, and
jumpers and pin headers. The VCC of the external sensors
is connected to VCC of the CM5000 mote which is itself
powered using 2xAA batteries (3V). Although CM5000 is
both TinyOS and ContikiOS compatible, we use TinyOS
programming owing to its small footprint of 400 bytes [15] in
the program memory. The programs are installed on the device
using a USB interface and stored in a program memory of size
48KB. A 10KB RAM is available for storing the variable states
along with an additional flash memory of 1MB that is used to
store data. The non-volatile nature of the flash prevents loss of
data owing to device failures. To examine the data collection
capability of our device, and, in turn, the prototype system,
we have designed a TinyOS application that runs on the collar
devices for collection of temperature, humidity, acceleration,
orientation, compass and GPS data at a given frequency from
the device sensors. The gathered data is periodically pushed
to the flash memory in fixed size heaps, using log appends,
and stored locally for a specified period of time after which
the device tries association with the gateway to offload its
data. To establish connection with the gateway, the device
temporarily joins the 802.15.4 Personal Area Network (PAN)
of the gateway. Once the device is connected to the gateway,
it sends its data packets over the radio until the flash is empty.
Since we have implemented the IEEE 802.15.4 MAC and PHY
layers, care must be taken that the payload size of each packet
does not exceed the maximum transmission unit of 127 bytes.
Once all packets have been transmitted from the device, it
sends a disassociation request to the gateway requesting to
leave the PAN.

B. Cloud gateway

The gateway node comprises of a CM5000 mote connected
to Raspberry Pi (model B2) [16] via the USB interface as
shown in figure 3. A TinyOS application runs on the CM5000
mote for data collection from the collar devices. At any given
time, the gateway can connect to a predefined number of collar
devices that is decided on the basis of the expected amount
of data that must be transmitted by each device. If the node
is currently connected to the predefined maximum number of
collar devices, it does not confirm association and a random
back-off mechanism is activated on the collar device to retry
association. Otherwise, an acknowledgement is sent from the

Fig. 3. Cloud gateway consisting of a CM5000 mote connected to a Raspberry
Pi (model 2B)

CM5000 mote on the gateway to the device confirming its
association. The node then starts listening to its radio for any
incoming packets on the specified channel. These packets are
transferred to the Raspberry Pi using the underlying UART
interface. A JAVA application is built for Raspberry Pi, using
TinyOS tools, to collect and store the incoming data. The data
files, thus, generated are periodically pushed to Gitlab (cloud)
using a WiFi module as shown in figure 1.

C. Data compression using L-SIP

Whereas the delay-tolerant approach provides a solution
for transferring data from the sensor nodes in a remote
farm environment to the cloud, the memory resources of the
device pose a major constraint in its realization. Although we
implement log storage using the device flash, the available
memory is insufficient considering the vast amount of data
collected during the day. For instance, at a sampling frequency
of 1Hz, we could store the above mentioned values over a
period of 4.5 hours only before the log storage was overwritten
by the new values. Since we use GPS data to obtain only
a broad idea of a cow’s location, we reduce the sampling
frequency of the GPS data to once per 15 minutes. This not
only improves the data collection capability of our system but
also increases the lifetime of our device since the energy cost
for the ublox unit is quite significant compared to the other
ICs. At a sampling rate of 1 second for the remaining sensors,
this increased the operational time by two-fold. While reducing
the sensing frequency for the other sensors is a plausible
solution for reducing the data volume, it may cause loss of
information.

Therefore, we propose localized compression of raw data
on the collar devices in order to further optimize storage and
improve the operational time of our system. The technique
used should be data agnostic to accommodate the variety of
farm data and must preserve the meaning of the signals after
decompression. As mentioned before, we use Edge Mining
rather than the conventional techniques for data compression
since it not only reduces the data volume on the device
but also builds the foundation for event-driven feedbacks for
our prototype. While issues related to soil dynamics and
weather changes may be treated at a later instance without
any significant consequences, most processes related to grass
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Algorithm 1 Linear SIP for improved data collection

1: procedure :
2: Calculate new state
3: Using dEWMA filtering
4: vx,t ← αx∗zx,t+(1−αx)∗(vx,t′+rx,t′ ∗(t−t′))
5: rx,t ← βx ∗(vx,t−vx,t′)/(t−t′)+(1−βx)∗rx,t′
6: Estimate new state
7: Using linear extrapolation

8: v′x,t ←

[

1 (t− t′)
0 1

]

vx,t′

9: Eventful?
10: yes, if (|v′x,t − vx,t| > εx)
11: then, store (vx,t, rx,t, t)

management such as pest and disease attacks, and animal
health and mobility issues demand real-time responsiveness. A
real-time fog service based on Collaborative Edge Mining, an
extension of the Edge Mining approach, in WSN for detection
of Heat Stress in dairy cattle is presented by the authors
in [17]. We adopt the L-SIP algorithm over ClassAct and
Bare Necessities for data compression as it allows accurate
reconstruction of the signal in future.

L-SIP is the linear instantiation of the SIP and encodes raw
data as a state vector containing smoothed point-in-time value
(vx,t) and rate of change (rx,t) at time t where x is the variable
for which the state estimation is performed. We use the
double EWMA (dEWMA) technique for state estimation due
to its fast calculation and ease of implementation. dEWMA
exponentially reduces the dependency of the current state on
the past estimates by calculating the data value and rate of
change as weighted averages of the current raw data value
(zt) and past estimates as shown in algorithm 1. Here, t′ is
the time associated with the previously stored state estimate,
and αx and βx are the data and trend smoothing factors
respectively and range between 0 and 1. Once the new state
estimate is calculated by the device, the expected value at time
t is calculated through the linear extrapolation of the previous
state. If the difference in the calculated and predicted value is
less than the given threshold εx for the variable, the new state
is discarded by the device. Otherwise, the change is considered
eventful and the new state vector is stored in the memory along
with the corresponding timer value to allow future predictions.
Resource efficiency is, thus, improved by reducing the number
of state estimates stored. Moreover, the rate of change value
improves the accuracy of the decompressed signal and prevents
the propagation of error in case of packet loss past the
subsequent packet during the reconstruction phase.

IV. EVALUATION

To evaluate the performance of L-SIP for data compression
in our scenario, we gathered temperature, humidity and IMU
data at a sampling rate of 1 second, and GPS data once
per 15 minutes and stored it against the timer values for 5
hour intervals. While the application is proposed for farming
practices, the data for this study was collected by us (human

TABLE I
CONFIGURATIONS USED FOR EVALUATION

ε C1 C2 C3 C4 C5

εT 14*βT 28*βT 42*βT 56*βT 70*βT

εH 6*βH 12*βH 18*βH 24*βH 30*βH

εAccx 2*βAccx 4*βAccx 6*βAccx 8*βAccx 10*βAccx

εAccy 1*βAccy 2*βAccy 3*βAccy 4*βAccy 5*βAccy

εAccz 2*βAccz 4*βAccz 6*βAccz 8*βAccz 10*βAccz

εGyrox 3*βGyrox 4*βGyrox 5*βGyrox 6*βGyrox 7*βGyrox

εGyroy 0.2*βGyroy 0.4*βGyroy 0.6*βGyroy 0.8*βGyroy 1*βGyroy

εGyroz 0.1*βGyroz 0.2*βGyroz 0.3*βGyroz 0.4*βGyroz 0.5*βGyroz

measurements) both inside and outside our laboratory. The
data collection was repeated 8 times for different levels of
activity (sit and walk) across 5 days. Since there was not much
variation in the magnetometer and GPS readings, we base
our analysis on 8 signal streams: temperature (◦C), humidity
(%RH), x,y and z-axis acceleration (g), and normalized x,y,
and z-axis orientation/gyroscope (Least Significant Bit (LSB)).
The α value for all variables is set to 0.94 following the best-
fit approach. The β value for all datasets is calculated as the
expectation value of the variable and represents the average
of difference between any two consecutive readings. Since
quality of compression varies with ε values, we evaluate L-SIP
for different ε based on the following two metrics:

1) Root Mean Square Error (RMSE): Accuracy of the
reconstructed signal with respect to the original sig-
nal is an important factor in evaluating the quality of
compression. We calculate the RMSE for each variable
by calculating the difference between the estimated and
calculated data value at each instance. RMSE depends
on the ε value for each variable. A higher threshold
permits larger approximations in the estimated values,
leading to higher values of RMSE. An upper bound on
ε values must, therefore, be set to ensure that RMSE
is within acceptable bounds. Conversely, we fix upper
bounds on the RMSE values as shown below and
calculate the corresponding upper bounds for thresholds.

a) Temperature: 0.5◦C
b) Humidity: 0.5%RH
c) Acceleration: 0.1g that corresponds to a positional

inaccuracy of ∼1m
d) Normalized Gyroscope: 0.05LSB that corresponds

to an inaccuracy of approximately ∼5◦/s

2) Memory gain (%): Edge Mining compresses data by
storing only those state vectors where the data value
changes significantly compared to the previous state es-
timate. Accordingly, we create a data frame to store only
those instances where the difference between calculated
smoothed data value and the estimated value exceeds
ε. Each entry of the data frame requires 6 Bytes to
store the current data value along with the corresponding
timer and rate of change. Memory used in Byte units per
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Fig. 4. Total memory gain averaged over 8 iterations for different configura-
tions

variable is shown in eq. 1, where N ′ is the number of
instances for which the error in approximation exceeds
ε. Total memory gain (%) across all 8 signals and timer
values can then be calculated as shown below, where N
is the total number of readings collected.

MemUsed = N ′ · 6

MemTotal =
8

∑

n=1

MemUsedn

MemGain =
(N · 9 · 2−MemTotal) · 100

N · 9 · 2

(1)

We calculate the RMSE and the memory gain for 5 different
configurations as shown in Table I. We assign ε as a multiple
of β value from the first dataset such that the largest ε for each
variable, as shown in C5, corresponds to the upper bounds in
the RMSE. The remaining ε are calculated as evenly spaced
values between 0 and the upper bounds (C5) in order to study
the compression quality at both comparatively small and large

thresholds. In figure 4, we illustrate the memory gain averaged
over the 8 iterations across the different configurations along
with the respective confidence intervals at a confidence level of
95%. A large ε permits larger approximations from the original
signal, resulting in fewer entries in the data frame and, in
turn, an increase in memory gain. For the given thresholds, we
achieve close to 47% reduction in the memory requirements
for smallest set of ε values. At higher thresholds, the memory
gain is as high as 70% and would considerably improve the
operational time of our system. Although we increase the ε
values in a fixed proportion, memory gain from C1 to C5 does
not increase by a fixed percentage. The different growth rate
of memory gain between C1 and C5 is attributed to the small
changes in actual ε values for some variables. For instance, the
increase in εAcci and εGyroi , where i can be x,y and z, values
between any two consecutive configurations is marginal for
most datasets and does not cause significant reduction in N ′

and, in turn, the memory gain. The average value of RMSE
over 8 iterations corresponding to the above memory gains
is shown in figure 5 for all data streams. We calculate the
confidence intervals at a level of 95%. As discussed above,
RMSE rises with an increase in the threshold value. However,
L-SIP ensures that RMSE stays within acceptable bounds by
storing the calculated data value each time the approximation
error crosses the threshold. Moreover, the rate of change value
prevents the indefinite propagation of reconstruction error due
to packet loss, thereby, ensuring small values of RMSE during
the decompression phase. Similar to memory gain, the RMSE
for each signal increases at different rates across different
configurations owing to the marginal changes in absolute
values of ε.

Further, we analyse the changes in the quality of compres-
sion with changes in the distribution of values, i.e. the change
in variation in raw signal. We study the compression for the
first dataset with respect to 3 variables: temperature, x-axis
acceleration and normalized x-axis gyroscope using ε values
from C3. Figures 6a, 6b and 6c show the reconstructed signal
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Fig. 6. Estimated signals superimposed onto the original signals along with the cumulative memory gain and RMSE for ε values from C3

superimposed on the original signal over the 5 hour period. As
is evident, L-SIP reconstructs an accurate signal while giving
an overall memory gain around 60-65% (figure 4). Next, we
calculate the cumulative gain in memory corresponding to each
variable. We assume that our system stores the timer and data
values for only one variable at a time and calculate the memory
used from start to time t in 10-minute windows. The individual
memory gains calculated for temperature, acceleration and
gyroscope data are as high as 95%, 98% and 99% respectively
as shown in figures 6d, 6e and 6f. While the value increases
for small variations with the time elapsed, a drop in memory
gain is observed corresponding to the larger fluctuations owing
to the more frequent entries in data frames. The drop in value
is more visible for accelerometer compared to gyroscope, and
is very slight in case of temperature. This is because the value
of εT is much larger compared to εAccx and εGyrox and,
therefore, accommodates larger approximations in the signal
with minor changes in the value of N ′. We also calculate the
average values of RMSE over 10-minute windows for the 5
hour period in order to understand the changes in error with
different variations in the signal. While RMSE is stable for
small changes in the data value, a drop in RMSE coincides

with the drop in memory gain. This is because the more
frequent entries in the data frame accurately capture the nature
of variation, thereby, avoiding large approximation errors. The
average RMSE in the three signals remains below the allowed
maximum at all times.

As shown above, L-SIP gives a significant increase in mem-
ory gain with relatively small values of RMSE for different
configurations of ε and different variations in the signal. The
key challenge is to balance the trade-off between the memory
gain and RMSE while meeting the application requirements
and attaining reasonable information gain. Although, we use
the same multiples of β for all iterations, the ϵ values for the
same configurations differ between datasets due to change in
β values in each iteration. As a result, the maximum RMSE
obtained for variables is much less than the allowed maximum
in some cases. Since ε values are user-programmable, the
compression results can be improved by changing the ε be-
tween different iterations, depending on the user requirements,
through cloud-based network learning. Further reduction in
storage requirements can be achieved through compression of
the key samples that are stored on the device after mining.

143



V. CONCLUSIONS

In this paper, we have addressed some practical issues
concerning the implementation of WSN technology in the
context of precision dairy farming. We present the design of
our prototype system and collar device that is used for data
collection in dairy farms. Due to the remote location of a typi-
cal farm, we implement the delay-tolerant framework for data
communication where data is stored on the collar device itself
until the cow is in vicinity of the cloud gateway. However,
the data collection capability of our application is limited due
to the memory constraints of the constituent devices. This, in
turn, reduces the operational time of our WSN system. To ad-
dress this issue, we propose the implementation of light-weight
Edge Mining algorithms on our collar device to perform
localized data compression. Edge Mining algorithms convert
the raw data into state vectors and reduce memory usage by
storing only those instances that cannot be predicted from the
past estimates using a given approximation model. Compared
to the traditional compression techniques, Edge Mining not
only optimizes the storage requirements but also provides a
foundation for future real-time responsiveness of the system.
This is of utmost importance for detecting critical issues such
as those related to animal health and mobility. We use the
L-SIP algorithm over other Edge Mining techniques since L-
SIP preserves sufficient information on the sensor device to
allow reconstruction of original signal at the gateway. The
performance of L-SIP for data compression is evaluated with
respect to 8 signals namely temperature, humidity, x,y,z-axis
acceleration, and x,y,z-axis gyroscope on the basis of RMSE
and memory gain, using R analysis. With an upper bound on ε
values corresponding to RMSE of 0.5◦C, 0.5%RH, 0.1g and
5◦/s for temperature, humidity, acceleration and orientation
respectively, L-SIP provides an overall memory gain of ∼70%.
This, in turn, would lead to a significant improvement in the
operational time of our prototype system. Since the quality
of compression varies with the user-programmable ε value,
the information gain using L-SIP can be further improved,
depending on the application requirements, using feedbacks
from cloud-based network learning. The compression perfor-
mance also changes with change in variation of the signal.
Even though larger fluctuations in signal result in an increase
in the number of readings that must be stored on the device,
the cumulative memory gain calculated for individual variables
was above 95% for most part of the experiment with RMSE
below the allowed maximum at all times.
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Abstract—Edge Mining (EM), a novel Fog Computing tech-
nique, has been proposed to perform data analysis on sensor
devices at the edge of Internet of Things (IoT). The approach,
however, is limited to analysis conducted by each sensor node in
isolation. In this paper, we propose Collaborative Edge Mining
(CEM), an extension of the EM technique, wherein multiple
sensor devices participate together in on-site data analysis and
prediction. Our model detects contextually relevant events by
integrating and analysing data arising from different sources and,
thereby, lays the foundation of a sensor-based implementation of
Apache Storm like framework. We have evaluated our approach
with respect to the Linear Spanish Inquisition Protocol for a pre-
cision farming application. We illustrate CEM for the estimation
of Temperature Humidity Index, an important metric to predict
Heat Stress in dairy cattle, and compare its performance to EM.
CEM performs well in most cases, especially, latency-sensitive
scenarios.

Index Terms—wireless sensor networks, edge mining, apache
storm, precision farming, heat stress.

I. INTRODUCTION

In the recent years, there has been widespread adoption of
the Internet of Things (IoT) paradigm owing to its ability to
provide localization and context awareness. Wireless Sensor
Networks (WSN) technology has been identified as one of the
key enablers in realizing the potential of IoT. With advances
in the IoT technology, there has been a constant improvement
in the design of these devices. Sensor nodes, today, have
become quite powerful due to tremendous growth in their
computational and storage capabilities. Originally limited to
data collection and packet forwarding, the tasks assigned to
these devices have become more diverse and computationally
complex. Moreover, sensor nodes have not only become en-
ergy efficient but are also capable of harvesting energy.

Use of WSN has been proposed for precision farming
with a view to improve the agriculture efficiency and sus-
tainability. One of the significant sectors in agriculture is
the pasture-based dairy industry. A Dairy Farm Management
System (DFMS) requires a wide variety of sensors to collect
environmental data such as temperature and humidity, soil
management data such as chemical composition and moisture
content, and livestock related data for managing animal health,
milk yield, feed quality and mobility tracking. Although some
of the DFM applications are low pace, on-site prediction
of latency-sensitive phenomenons, for instance, animal health
related issues is of significant importance. This would not only
minimize animal health hazards but also the economic losses,

otherwise incurred. However, a recent survey conducted to
review the sensor systems available for dairy health manage-
ment suggests a significant lack of analytics in the available
systems [1]. Currently deployed sensor devices are only used
to sense and send data to the sink which is then subjected to
cloud-based analysis. This approach is largely dependent on
the Internet connectivity which is often poor in dairy farms
and could cause delay in disease detection.

A new networking paradigm called Fog Computing has been
introduced in [2] to cater to the needs of latency-sensitive
applications by providing compute, storage and networking
resources between the network edges and Cloud Computing
data centres. The benefits of Fog Computing for IoT appli-
cations have been discussed in [3]. Furthermore, E.I. Gaura
et al. propose Edge Mining (EM), a novel Fog Computing
technique, where data analysis takes place at the network edges
itself i.e. at the wireless, battery-constrained sensor devices
[4]. The idea behind EM is to localize data analysis and
improve energy efficiency of the network by reducing the
number of transmissions to the sink. The paper presents a
generalized form of the Spanish Inquisition Protocol (SIP)
algorithm, general SIP (G-SIP), and examines the benefits of
EM with respect to three instantiations of G-SIP: Linear SIP
(L-SIP), ClassAct and Bare Necessities (BN). The algorithms
are lightweight and can be easily implemented in WSN.
However, the approach is limited to analysis conducted by
each sensor node in isolation and may not be suitable for real-
time applications where interaction between various nodes is
necessary for event detection.

In this paper, we propose Collaborative Edge Mining
(CEM), a novel data analysis approach for IoT. CEM facilitates
parallel and distributed processing for on-site prediction of
latency-sensitive phenomenons that require cooperation be-
tween sensors. The technique bases on EM and adapts the
main principles of operation from the Apache Storm frame-
work [5]. A Storm cluster consists of Spouts, data sources,
and Bolts, data processors, that follow a Storm topology
(application logic) to facilitate parallel and distributed analysis
for real-time applications. Likewise, CEM allows complex data
analysis within WSN by distributing a subset of application
logic or an EM task to each sensor and integrating the results
for further analysis and event detection. Distribution of tasks
between sensor devices ensures efficient use of the available
in-network compute resources. Moreover, the lightweight na-
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ture of the EM tasks prevents overburdening of the sensor
nodes. We illustrate our CEM model with respect to L-SIP
for a precision farming application. Heat Stress is a major
condition in dairy cattle that causes adverse effects on the
health and productivity of the animal. The severity of Heat
Stress is estimated using the Temperature Humidity Index
(THI) which can be calculated using CEM on temperature
and humidity sensors on farm. We compare the performance of
CEM and EM for L-SIP using R programming. CEM provides
localisation of analysis and performs well in most scenarios.

The remainder of the paper is organized in the following
order. In Section 2, we discuss the related work. Our proposed
solution is presented in Section 3. We evaluate and compare
our approach to EM with respect to L-SIP in Section 4
followed by the conclusions in Section 5.

II. RELATED WORK

Prior to discussing the CEM technique, we overview some
of the existent mechanisms for sensor analytics. We also
discuss the significance of Heat Stress in dairy cows.

A. Sensor Analytics

In the past few years, there has been a dramatic improve-
ment in the complexity of tasks that can be performed by the
sensor devices. Data analytics techniques such as Data Fusion,
Edge Mining and Artificial Neural Networks, as described
below, have already been implemented in WSN. The benefits
and challenges associated with the implementation of sensor
analytics for precision farming have been discussed in [6].

1) Data Fusion: Data Fusion is one of the most basic
analytics technique that has been implemented in WSN. It
minimizes data redundancy by merging the overlapping data
generated by different sensors and, in turn, reduces the network
traffic [7]. Consequently, it improves the energy efficiency of
the network and the quality of data exchange between the
devices. Additionally, Data Fusion can be used to perform
analytical tasks such as outlier detection and target tracking.
However, Data Fusion algorithms are signal specific and
cannot be easily extended to new applications.

2) Edge Mining: EM techniques improve network intelli-
gence by converting raw sensor data into contextually relevant
information (state) within the WSN. These state estimates are
stored locally on the sensor devices and are forwarded to the
sink only at the occurrence of unexpected events. In [4], the
benefits of EM are examined based on three algorithms viz.
L-SIP, ClassAct and Bare Necessities. Although EM improves
the network efficiency, it assumes WSN as a network of
individual smart-sensing devices that perform mining tasks
in isolation. This limits its use where collaboration between
sensor nodes is necessary for detecting events.

3) Artificial Neural Networks (ANN): A certain resem-
blance in the operation of an ANN and WSN has been
recently identified in [8]. The paper proposes use of the already
existing WSN technology as the hardware-software platform
for implementation of ANN algorithms to perform prediction,
classification and clustering tasks. As an example, a Hopfield

Neural Network has been mapped to a WSN to solve the
problem of minimum weakly connected dominating set. The
approach is generic and can potentially be extended for other
analytical tasks. However, identification of the correct ANN
topology and network learning are computationally intensive
tasks and may increase the complexity of the implementation.

B. THI

One of the potential applications of CEM is the estimation
of THI for the timely prediction of Heat Stress in dairy
cows. Dairy cows experience Heat Stress due to increase in
temperature beyond a thermo-neutral range of 12-21◦C and
a simultaneous change in humidity levels. Heat Stress causes
changes in their physiological status i.e. respiration rate, heart
rate, metabolism and fertility rate. Moreover, severe Heat
Stress conditions can cause huge economic losses of up to
$698 per dairy cow per year [9].

THI combines the effects of ambient temperature and rela-
tive humidity to evaluate the severity of Heat Stress (eq. 1)

THI = 1.8 ∗ Ta− (1−RH) ∗ (Ta− 14.3) + 32 (1)

where Ta is the measured ambient temperature (◦C) and RH
is the relative humidity as a fraction of the unit [10]. Recent
studies have shown that the incidence of Heat Stress in dairy
cows occurs at a THI value of 68 which corresponds to 22◦C
at 45 % RH, 23◦C at 35% RH and 24◦C at 20% RH [11].

The severity of Heat Stress increases proportionally with the
THI value and can ultimately lead to the death of an animal.
This necessitates continuous monitoring of THI variable to
maintain it within the acceptable bounds. Based on the THI
value, farmers can use appropriate cooling techniques such as
dietary management, water sprinklers on farm, and provision
of ventilation, cooling and shade for the cows. A timely cure
can significantly help in minimizing the adverse effects on
animal health and economic losses incurred due to Heat Stress.

III. PROPOSED SOLUTION

As stated above, in this paper, we consider the implementa-
tion of CEM using L-SIP in the context of THI state estimation
for predicting Heat Stress in dairy cows. Figures 1a and 1b
illustrate the variation in THI, with changes in temperature
and humidity, over time. THI values have been calculated
using temperature and humidity data gathered continuously
in one minute intervals. Time periods with THI greater than
68 signify Heat Stress conditions. In this section, we first
describe EM with respect to L-SIP, and subsequently, discuss
the implementation of CEM using L-SIP for THI prediction.

A. EM using L-SIP

EM has been proposed to improve energy efficiency of a
network through local data processing that, in turn, reduces
the network traffic. One of the techniques to realize EM in
WSN is by using the SIP [12]. SIP reduces the energy cost
of a network by sending only the unexpected information to
the sink. Instead of sending raw data, SIP encodes the data
into states using an approximate model of the phenomenon.
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Fig. 1: Variation in THI over time

This model is shared between the sensor nodes and the sink to
allow future state predictions. While a sensor node calculates
the state vector periodically, it also keeps a track of the
predicted value at sink using its local copy of the sink state
and the approximation model. Only if the difference in the
calculated and predicted value exceeds a permissible threshold
ε, it transmits the new state vector to the sink. Thereafter, the
sensor node updates its local copy of the sink state.

L-SIP is the linear model of SIP that encodes the state esti-
mate at time t (st) using the point-in-time value vt and rate of
change rt. The linear model contains sufficient information to
allow future predictions and also reconstruction of the signal,
if necessary. Furthermore, in case of packet loss, rt prevents
the propagation of reconstruction error beyond the subsequent
packet. Although different techniques can be used for state
estimation, the use of double Exponentially Weighted Moving
Average (dEWMA) is preferred due to ease of implementation
and good performance in WSN. Using dEWMA, vt and rt are
calculated as the weighted average of the current observation
and past estimates as shown in eq. 2 and 3.

vt = α ∗ xt + (1− α) ∗ (vt−1 + rt−1 ∗ δt) (2)

rt = β ∗ (vt − vt−1)/δt+ (1− β) ∗ rt−1 (3)

where xt is the most recent data value and δt is the time
difference between the current and previous observation. The
coefficients α and β are the data and trend smoothing factors
respectively such that 0 < α,β < 1.

Once the state estimate is calculated, the sensor node
predicts the current value at sink through linear extrapolation
of its local copy of the previous sink state. If the error
in prediction exceeds a given threshold ε, a new packet
containing (vt, rt) is sent to the sink. Upon receiving the
acknowledgement, it updates its local copy of the sink state.

B. CEM using L-SIP for THI state estimation

EM techniques are limited to analysis conducted by each
sensor independently. Hence, event detection for phenomenons
that require data from multiple sensors can only be carried
out later at the sink, thus, affecting the timeliness of predic-
tions. We, therefore, propose CEM, an extension of the EM
approach, where information from different sensors is gathered

and further analysed on farm to enable application-specific
event detection in latency-sensitive scenarios. The basis of
our CEM model is the Apache Storm framework for parallel
and distributed processing. The core abstraction in Storm is
Stream, an unbounded sequence of tuples, that is sourced
into the network by Spouts and processed by Bolts, that run
the worker processes, according to the given Storm topology
i.e. application logic. Similarly, CEM facilitates parallelization
and distribution of data analysis tasks among sensor nodes
in IoT. While the master node distributes the application
logic and approximation model to the network, each sensor
node first runs a basic EM algorithm to convert raw data
into intermediate states. Using the application logic and the
given model, a sensor node then integrates these states to
derive a contextually relevant state. The first state estimate
is transmitted to the sink and a copy of it is maintained at
the sensor node for future predictions. At any given time t,
if there is a significant update in the intermediate states, the
sensor node recalculates the final state estimate. Moreover,
it predicts the current sink value using the previous sink
state and the given model. An event is detected only if the
difference between the calculated and predicted value exceeds
a threshold. Accordingly, a packet containing the updated state
is sent to the sink. In the remainder of this section, we describe
the CEM approach for our scenario.

Our WSN comprises of static temperature and humidity sen-
sors, and mobile animal wearable devices (cow collars). Since
THI is a cow-related phenomenon, we adopt a new computing
framework called ‘cowputing’, where a cow is the center of
all data analysis, for the evaluation of THI. The role of the
cow collar is 2 fold: it acts as the master node and initiates
THI calculation in WSN by sending the application logic (eq.
1) and approximate model for state estimation to the network,
and a mobile sink node to collect THI updates from the sensor
nodes. In this paper, we consider the implementation of CEM
using L-SIP and dEWMA filtering. Each static temperature
and humidity sensor synchronously runs L-SIP to convert its
raw readings into state estimates per sensing cycle. If a static
node, for instance temperature sensor, receives a request for
THI value from the mobile cow collar, it gathers the current
humidity state from a neighbouring sensor and computes THI
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using the temperature and humidity state estimates in eq.
1. Next, dEWMA filtering is used to smooth data values
and calculate the rate of change. The first state estimate for
THI is forwarded to the sink and a local copy of the sink
state is maintained at the sensor node. While temperature
and humidity states are computed periodically, THI state is
recalculated only if an event is detected at either of the
static sensors. Using the local copy of the previous sink state,
temperature sensor predicts the current THI value at the sink.
If the difference between the calculated and predicted value is
significant, an event is detected and a new packet containing
the updated THI state is transmitted to the sink. Upon receiving
acknowledgement, the temperature sensor updates the local
copy of sink state. Fig 2 illustrates this process.

Fig. 2: Collaborative edge mining model for THI state esti-
mation at a temperature sensor

Algorithm 1 summarises the above approach. The basic
idea behind using L-SIP is that linear integration of two
or more linear functions generates another linear function.
Our approach is generic and can be used for diverse IoT
applications where input variables follow a linear model. The
state estimate for temperature (sT,t) and humidity (sH,t) is
calculated per sensing cycle using the raw data values tmpt,
humt and coefficients αT ,βT and αH ,βH respectively. The
two state estimates consist of the smoothed data value and
rate of change pair (vT,t, rT,t) and (vH,t, rH,t) respectively
where δt denotes the time difference between the current
and previous state. If a temperature sensor receives a request
from the mobile cow collar or an event is detected at the
humidity sensor, it obtains sH,t from the nearest static sensor
and calculates the THI value (thit) using eq.1. dEWMA
filtering is used over thit to estimate the smoothed THI state
sTHI,t using the coefficients αTHI and βTHI . If this is the
first THI estimate, it is transmitted to the sink and a copy
is maintained at the temperature sensor. Otherwise, the local
copy of previous sink state is linearly extrapolated to predict
the current sink state vector THIsink,t (vsink,t, rsink,t). If
the calculated and predicted value differs by more than the
threshold εTHI , an output tuple containing (sTHI,t, n, t) is
transmitted to the sink. The sequence number n is used to
account for any loss in packets. Alternatively, if time since the
last transmission exceeds a threshold theartbeat, a new packet

Algorithm 1 CEM using L-SIP for Heat Stress prediction

1: procedure :
2: t ← current time
3: At static humidity node
4: humt ← obtain vector of sensor readings
5: estimate new state for humidity - dEWMA filtering
6: vH,t ← αH ∗humt+(1−αH)∗(vH,t−1+rH,t−1 ∗δt)
7: rH,t ← βH ∗ (vH,t − vH,t−1)/δt+ (1− βH) ∗ rH,t−1

8: At static temperature node
9: tmpt ← obtain vector of sensor readings

10: estimate new state for temperature - dEWMA filtering
11: vT,t ← αT ∗ tmpt + (1−αT ) ∗ (vT,t−1 + rT,t−1 ∗ δt)
12: rT,t ← βT ∗ (vT,t − vT,t−1)/δt+ (1− βT ) ∗ rT,t−1

13: if request for new THI state estimate received or
14: temperature or humidity event occurred, then
15: Obtain humidity state (vH,t, rH,t) and calculate
16: thit ← 1.8 ∗ vT,t − (1− vH,t)(vT,t − 14.3) + 32
17: estimate new state for THI - dEWMA filtering
18: vTHI,t ← αTHI ∗thit+(1−αTHI)∗(vTHI,t−1+

rTHI,t−1 ∗ δt)
19: rTHI,t ← βTHI ∗ (vTHI,t−vTHI,t−1)/δt+(1−

βTHI) ∗ rTHI,t−1

20: predict sink value using linear extrapolation

21: THIsink,t ←

[

1 t− tsink
0 1

]

THIsink,tsink

22: if eventful (|vsink,t − vTHI,t| > εTHI)
23: or t− tsink ≥ theartbeat then
24: a. Transmit((vTHI,t, rTHI,t), n, t)
25: b. n ← n+ 1 (increment sequence number)
26: c. when acknowledgement received
27: i. THIsink,t ← sTHI,t

28: ii. tsink ← t
29: iii. theartbeat reinitialized

containing the updated state is sent to the sink. theartbeat
checks, using periodic packet transmissions, if the system
is running correctly and avoids large approximations in THI
values when higher values of thresholds are used. On receiving
the acknowledgement, the local variables are updated at the
static sensor. A similar approach shall be used in case the
initial request is received by a humidity sensor. This process
continues unless the cow collar disconnects from the static
sensor. In case a failure occurs at the static sensor, it must
hand over its current state to the neighbouring sensors. Each
cow collar must maintain a connection with at least one static
sensor at all times. CEM, thus, allows continuous monitoring
of THI as experienced by cows moving across different farms.

IV. EVALUATION

In this section, we present our evaluation of EM and
CEM for the estimation of THI values. In accordance with
the EM technique, temperature and humidity readings are
transmitted to the sink only at the occurrence of events at
the respective sensors. THI values are then calculated at
the sink node. Contrary to this approach, THI values are
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Fig. 4: Mean error for EM and CEM for different thresholds and fixed theartbeat = 60

locally computed at the static sensors within the network using
CEM. Packets are sent only when a THI event is detected or
t − tsink ≥ theartbeat. Both EM and CEM do not add any
overhead to WSN functionality nor do they increase packet
transmissions within WSN. They only affect the quality of data
at sink since drop in the number of packet transmissions might
reduce the accuracy of readings sent. We, therefore, evaluate
the performance of EM and CEM based on the following two
metrics using R programming:

1) Packet reduction (%): An obvious advantage of the two
approaches is the reduction in the number of messages
that are forwarded to the sink node. The extent by
which transmissions can be minimized is dependent
on the input parameters, namely, temperature threshold
(eT), humidity threshold (eH), εTHI and theartbeat. We
evaluate the average value of packet reduction over a
five day period for different values of input parameters.

2) Mean error (minutes): Since the severity of Heat Stress
increases directly with increase in THI levels, it is impor-
tant that we maintain the THI value within permissible
bounds. However, the two approaches of EM and CEM
approximate the THI values until an event is detected.
This leads to premature or delayed detection, depending
on the nature of the curve, of the changes in THI levels
during signal reconstruction. We have calculated the
average time difference incurred using EM and CEM
while estimating THI levels from 64 to 73.5 with a step

of 0.01 over a five day period and termed it as the mean
error. Its value varies with the input parameters.

While we have assigned β values for temperature, hu-
midity and THI by calculating the E [|tmpt − tmpt−1|],
E [|humt − humt−1|] and E [|thit − thit−1|] respectively, the
preferred value of α′s for evaluation is 0.94, based on the best
fit approach. We approximate THI values based on EM and
CEM for different values of eT, eH, εTHI (set as multiples of
β values) and theartbeat and analyse the performance based on
the above two metrics. Small values of these parameters imply
high frequency of packet transmissions and, in turn, small
mean error which is crucial in latency-sensitive applications.
We limit threshold values such that the error rate for all
three variables is less than 3%. Fig. 3 illustrates the packet
reduction for EM and CEM for different values of thresholds
and constant theartbeat. Packet reduction increases with the
increase in threshold values for both EM and CEM till it
reaches a plateau. This occurs as packet forwarding at large
thresholds is primarily governed by theartbeat. We have fixed
theartbeat equal to one hour since it is considered as a
reasonable frequency to update variable states in our scenario.

Figure 4 depicts the mean error caused by EM and CEM for
different values of thresholds and fixed theartbeat. Mean error,
in case of EM, increases continuously with the rising thresh-
olds. For CEM, however, mean error increases with increase in
threshold values and approaches a plateau at larger eT, eH and
εTHI values. This is explained by the dominance of theartbeat
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Fig. 5: Performance comparison for EM and CEM for different heartbeat values

over threshold values in determining packet transmissions. In
some cases, mean error in CEM is greater than EM since
packet transmissions in CEM not only depend on eT and
eH but also εTHI . Further, we study the performance of EM
and CEM across different values of theartbeat and at fixed
thresholds eT, eH and εTHI (fig. 5). While message transfer at
small values of input parameters is primarily controlled by the
thresholds, theartbeat plays an important role in improving the
performance at higher threshold values. Increase in heartbeat
implies lower frequency of packet transfer, thereby, increasing
both the packet reduction and mean error.

As is evident, CEM performs well in most scenarios,
especially, in latency-sensitive applications where small values
of input parameters are used. In comparison to EM, CEM
significantly reduces the number of packets sent. This, in turn,
improves the energy efficiency of the network since switching
the radio on/off and packet transmission is more resource
intensive than simple computing. Additionally, CEM mini-
mizes storage requirements at the sink by improving network
intelligence through on-site data analysis and interpretation.
One of the challenges of CEM, however, is resolving the trade-
off between packet reduction and mean error by fixing the
threshold and heartbeat values.

V. CONCLUSION

In this paper, we have discussed the shortcomings of the
currently used sensor analytics techniques and proposed an
extension of the EM model. Based on the Apache Storm
framework, we have described a novel data analysis technique,
CEM, for latency-sensitive applications in IoT. It exercises
parallel and distributed computing and facilitates the collective
participation of different sensors for event detection. We have
presented our CEM model and its L-SIP-based implementation
in the scope of a precision farming application. We have eval-
uated our approach for the estimation of THI values based on
temperature and humidity states using R programming. While
CEM is preferred over EM for latency-sensitive applications
where small values of eT, eH and εTHI are required, mean
error in case of CEM is slightly higher than EM for larger
ε values until theartbeat dominates packet forwarding. A key
decision in implementing CEM in sensor networks, therefore,

is assigning values to the input parameters such that optimal
performance is achieved while also realizing the application
requirements and timeliness. The approach is generic and can
be applied to a wide range of IoT applications.
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Abstract—Monitoring and analysis of animal behavior are
two of the prominent applications of Wireless Sensor Networks
(WSN) in modern Dairy Farming. Behavioral information col-
lected by sensor devices worn by the animals is expected to
provide early detection of stress and onset of specific diseases.
Animal mobility coupled with farm-based contextual information
is expected to automate and increase efficiency of the pasture.
Though some WSN solutions have been proposed for these appli-
cations, their realizations commonly depend on high availability
of third-party components (e.g. cloud-environment for behavior
analysis). This reduces suitability of these solutions for pasture-
based dairy farms, where large scale and remote locations
significantly restrict accessibility to external components (e.g.
poor or no internet connectivity). Meanwhile, continuous design
improvement of WSN devices has significantly increased their
computational capacity. To take advantage of this, a novel Edge
Mining (EM) concept has been proposed under the umbrella
of Fog Computing, where to increase availability, data analysis
is partially hosted by WSN. In this article, we propose an Edge
Mining implementation of our WSN system for analyzing animal
mobility and behavior. We develop a novel EM method that could
be used for a range of animal activity and behavior analysis.
Performance of the method is evaluated regarding the accuracy
and suitability for WSN-based execution.

Index Terms—wireless sensor networks, behavior analysis,
virtual fence, fog computing, edge mining.

I. INTRODUCTION

Real-time monitoring and analysis of animal behavior is of
utmost importance for early detection of diseases in order to
promote animal welfare. Wireless Sensor Networks (WSN)
have been widely proposed to monitor animal health and
mobility, owing to their ability to collect real-time data, under
the umbrella of Precision Dairy Farming. Mobility patterns
give an understanding of the cattle behavior and can be
used to detect health stress. Irregularities in the behavior, for
instance, may be indicative of the onset of Lameness, a major
heath issue for dairy cattle that adversely affects animal well-
being as well as milk production [1]. Additionally, mobility
tracking is used to improve feeding efficiency and prevent
overgrazing within the farms. Virtual Fence (VF) technology
has been implemented to restrict the movement of cows within
a given boundary. VF replace the physical barriers and redirect
the cows based on acoustic and electric stimuli. The initial
implementations of VF use electromagnetic coupling between
sensor devices carried by collared cows and an insulated
wire unrolled in the farm to detect when a cow reaches
the boundary [2]. This approach relies on the installation of

additional infrastructure which is often cumbersome in remote
farm locations. Alternative techniques use GPS receivers fitted
to the collar devices to determine the location of the animal
and estimate its distance with respect to the VF [3]. The role
of sensor devices in all of the above techniques, however, is
limited to data collection and transmission while the analysis
takes place on the cloud. This introduces latency in analysis
and poses a major constraint in WSN implementation in large-
scale, rural farm environments that suffer from intermittent
or no Internet connectivity. Furthermore, GPS modules are
energy intensive and their use for VF applications adversely
affects the network longevity.

Meanwhile, with the recent advances in technology, there
has been a tremendous improvement in the design of sensor
devices that constitute the WSN. Traditionally limited to
sense and send, these devices are now capable of performing
more complex tasks. Accordingly, a new computing paradigm,
called Fog Computing [4] has been proposed to bring down
certain computations away from the cloud and closer to the
network. Fog Computing aims at optimizing the in-network
resource utilization while providing faster insights into the data
which is crucial, especially, for latency-sensitive applications.
The suitability of Fog Computing over Cloud Computing for
Internet of Things (IoT) applications has been analyzed in
[5]. Edge Mining [6] is a novel Fog Computing approach
wherein light-weight data mining algorithms are offloaded on
the sensor devices in order to facilitate near real-time data
analysis. The reduction in data is based on the assumption that
prior knowledge of the application requirements is available.
Edge Mining facilitates event detection within the network
through identification of significant changes in the application
state from the previous values. Moreover, it improves the
quality of data exchange within the network by sending only
the significant state estimates to the sink. The reduction in
number of packet transmissions, in turn, improves the overall
energy efficiency of the network.

In this paper, we present our WSN system for behavior
analysis in dairy cows. We discuss the design of our sensor
nodes that are worn by the dairy cows (collar devices) and
are used to collect acceleration data. Real-time analysis of
this data for mobility monitoring is performed on the collar
devices itself as a cow moves along the farm. Thus, animal
health assessment and VF boundary enforcement is performed
autonomously. However, given the limited computational capa-
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bility of the collar devices, we perform the compute-intensive
network learning on the cloud. We adopt a delay-tolerant
communication framework wherein the results of mobility
monitoring are stored locally on the collar devices until the
cows are in vicinity of a cloud gateway. The monitoring
data is then uploaded to the cloud where it is carefully
analysed. Results of the analysis are sent back to the collar
devices in a delay-tolerant manner via the gateway nodes.
Each collar will use these results to fine-tune its own animal
health and mobility analysis. For the collar-based analysis,
we propose Iterative Edge Mining (IEM), a data agnostic
technique for classification in WSN. IEM is realized by super
imposing two Edge Mining approaches: Bare Necessities (BN)
and ClassAct, and performs decision tree based classification
on the distribution of signal over time. We consider the
implementation of IEM on the collar devices to identify the
activity state of a cow based on the acceleration data. The
histograms for each state over time can be used to understand
the mobility pattern of dairy cattle which is, in turn, indicative
of animal stress and other issues. Moreover, given the farm-
based topology information, real-time analysis of the mobility
gives an estimate of the relative position of cattle with respect
to the VF, without the need of any external infrastructure.
We evaluate the performance of IEM in terms of classification
accuracy and study the changes in performance across different
values of the input parameters.

II. RELATED WORK

Although a number of WSN systems have been proposed
for animal health management in dairy farms, a survey in
[7] shows the need for these systems to become intelligent.
Accordingly, the quality of collar-based analysis is one of the
key factors impacting the efficiency of the overall system. In
this section, we present an overview of the existing approaches
for sensor analytics that could be used by collar devices.

Owing to the increase in computational power of sensor
devices, a number of data analysis techniques have been
implemented within WSN. Data fusion, for instance, is one of
the most basic approaches that has been proposed to reduce
data redundancy within WSN by merging the overlapping
data that emerges from the neighboring sensor nodes [8].
This, in turn, reduces the number of packet transmissions
within WSN and improves the overall energy efficiency of
the network. Fusion algorithms, however, are signal specific
and cannot be easily extended to heterogeneous data streams.
The implementation of Artificial Neural Networks (ANN) on
top of the existing WSN topology has also been proposed
to perform localized classification, clustering and prediction
tasks in [9]. Although ANN algorithms are data agnostic, the
network learning involved is computationally intensive and
may adversely affect the lifetime of the network.

In the recent years, Edge Mining techniques have been
proposed to perform light-weight data mining tasks at the
network edges with an aim to reduce packet transmissions
in the network. Edge Mining has been implemented using
the Spanish Inquisition Protocol (SIP) [10] that suggests

transmission of only the unexpected information from the
sensor nodes to the sink. SIP first encodes the data into an
application relevant state. It then uses a local copy of the
previous sink state along with a shared approximation model
to predict the expected state at the sink node. Only if the
difference between the predicted and calculated value exceeds
the given threshold ε, the new state is considered eventful
and is sent to the sink. Edge Mining has been implemented
using three instantiations of the SIP - Linear SIP (L-SIP),
ClassAct and BN. L-SIP uses a linear model to encode the
data as a point-in-time value and rate of change. Whereas, L-
SIP allows the reconstruction of signal within a given error
bound, ClassAct and BN, on the other hand, are relatively
destructive approaches that are used for activity classification
and data summarization respectively. Edge Mining algorithms
have been shown to significantly reduce the number of packet
transmissions and, thereby, the energy consumption within the
network. In the remainder of this section, we describe the
ClassAct and BN approaches that form the basis of IEM.

A. ClassAct

ClassAct is a decision tree based activity classifier that
encodes the state estimate as a probability distribution over
a given set of activities. The distribution is simplified to the
index of the most likely activity using Exponentially Weighted
Voting and a packet containing the new state is generated only
if there is a change from the previous estimate. While building
the decision tree is computationally intensive and is carried
out on a remote server, the evaluation of the decision tree
can be performed in a few instructions at the sensor node. In
[11], ClassAct has been implemented for posture recognition
in an enclosed bomb disposal unit using accelerometer data
from a Body Sensor Network. A decision tree constructed
using the C4.5 algorithm has been used to classify the states
into nine given postures based on the data collected from
a set of eleven sensors at a frequency of 10Hz. ClassAct
provides a significant packet reduction of the order of 98-
99% and an accuracy of 88%. The performance is shown
to further improve upto 97% through classification based on
time domain features such as windowed mean and windowed
variance. A major drawback of ClassAct, however, is that the
classification is based on a small set of probabilistic moments
represented by the feature values. Therefore, it may not be
able to distinguish between signals that may follow different
distributions but exhibit the same feature values. For instance,
the algorithm may not differentiate between two signals that
follow normal and uniform distribution respectively but exhibit
the same value of mean and variance, thereby, increasing the
misclassification rate.

B. Bare Necessities (BN)

BN significantly reduces packet transmissions by storing
only the summary of data over time at the sink node. It
estimates the application state as a distribution across non-
overlapping bins and provides the relative time spent in
each bin. For each reading z, BN updates the count x and
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Fig. 1: WSN architecture for precision dairy farming

distribution y for every bin i belonging to a set of bins B as
shown in eq. 1.

xi ← γ · xi + b(i, z)

yi ← xi/Σi∈Bxi

}

(1)

The function b yields 1 if the value z belongs to the band i
and 0 otherwise. Here, γ is a smoothing parameter, called the
decay factor, that is applied to the previous estimate and is
calculated as shown in eq. 2 where t1/2 is the decay half-life
and T is the sensing period such that 0 < γ < 1.

t1/2 =
T · ln2

1− γ
(2)

The change in state is considered eventful if the distribution
of any bin changes by more than the given threshold ε.
In [12], the performance of BN has been evaluated in the
context of a residential building monitoring. BN is used to
provide the proportion of time for which a room was in
cold, comfortable, warm or overheated state based on the
temperature readings and is shown to reduce the transmission
frequency of temperature data from once every 5 minutes to
once in 38 days for an allowed error of 10%. Furthermore,
the average transmission of temperature, humidity and CO2 is
reduced to once per 13 days for the same threshold, thereby,
improving the network lifetime. Given that BN reduces packet
transmissions to the order of 99%, an additional heartbeat
mechanism is used to update the state if the time since
last packet transmission exceeds a threshold theartbeat. The
periodic transmissions also enable detection of failed nodes.

III. PROPOSED SOLUTION

In this section, we present an overview of our WSN proto-
type system for behavior analysis in dairy cows. Our proposed
architecture comprises of two kinds of sensor nodes: mobile
sensor devices (cow collars) and a cloud gateway as shown in
fig. 1. Each cow is equipped with a collar device that is used to

monitor its acceleration as it moves along the farm. The IEM
algorithm runs locally on each device, per sensing cycle, to
analyze the acceleration values and identify the activity state
of the cow. Due to lack of Internet connectivity in a farm
environment, the results of this analysis are stored locally on
the device until the cow is in the vicinity of the gateway node,
hosted inside the milking station. Once a cow reaches the
milking station, data from the collar devices is transmitted
to the gateway node over the radio and is further uploaded on
the cloud through WiFi connectivity of the Raspberry Pi of
the gateway node. Although the execution of IEM takes place
on the device without the use of any external infrastructure,
the network learning is performed on the cloud. Cloud-based
analysis uses the past estimates and provides depper insights
into the data to allow revision of the IEM configuration and,
thereby, improve the quality of collar-based behavior analysis.
Configuration revisions are delivered to each animal-collar
individually via the gateway node.

The relative time spent in each state as obtained from
the IEM algorithm gives us the mobility pattern of the cow.
Specific irregularities in behavior indicate the onset of animal
health-related issues. As IEM is continuously executed by the
collar device, results of the IEM analysis of cow-mobility
(since previous milking) are available before a cow reaches
the milking station. This facilitates immediate identification
of sick cows from the healthy ones. The identification does
not require a stable Internet connectivity between the gateway
node and the cloud which is particularly important for remote
farms. Real-time analysis of the mobility can be further used
to calculate the distance traveled by each cow, over time.
Given the topology information of the farm, this value gives
an estimate of the location of the cow inside the farm. Each
time a change in activity is recorded, a behavior algorithm
provides real-time navigation instructions to the cow based on
its relative position with respect to the VF. As illustrated in
fig. 1, when a cow approaches/stops at a T-point, its location
is estimated relative to the VF and appropriate instructions are
given by the collar to turn left.

Fig. 2 illustrates the design of our collar devices and the
gateway node. The basic unit of the collar device is CM5000
mote [13] that consists of a MSP430 family processor and
a CC2420 802.15.4, 2.4GHz wireless module for radio com-
munication. A 10 degrees of freedom Inertial Measurement
Unit (IMU) is externally connected to the mote via the I2C
interface. The IMU comprises of a MPU6050 IC [14], for
measuring the acceleration and orientation (gyroscope) on X,Y
and Z-axis, along with a magnetometer and pressure sensor.
We design a TinyOS application that runs on the collar device
to collect acceleration readings at a frequency of 1Hz. The
data is analyzed and stored locally in the device flash. The
gateway node comprises of a CM5000 mote connected to a
Raspberry Pi (model B2) [15] as shown in fig. 2b. Once the
cow reaches the milking station, it requests to join the Personal
Area Network (PAN) of the gateway in order to initiate
the data transfer. If the association request is confirmed, the
device sends data packets to the CM5000 mote of the gateway
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(a) (b)

Fig. 2: (a) Cow collar device (b) Cloud gateway node

node via mote-to-mote communication. A TinyOS application
running on the gateway mote transfers these packets to the
Raspberry Pi, using the underlying UART interface, from
where they are forwarded to the cloud for further analysis.
Upon completion of the data transfer, the device disassociates
from the gateway node. In the remainder of this section, we
describe the IEM algorithm that runs on the collar devices for
mobility tracking in dairy cows.

A. Iterative Edge Mining

As stated previously, IEM is based on the interaction
between two Edge Mining algorithms: BN and ClassAct. BN
takes the raw acceleration reading and converts it into an
intermediate state that represents the distribution of signal
across different bins. The sequence of distributions generated
by BN over time acts as the input for the ClassAct algorithm
and is fed into a decision tree classifier that identifies the
application state from the given library for each distribution.
An event is generated if the state value corresponding to any
distribution differs from the previous estimate.

The distribution of signal is calculated using the bin counts
and is characterized by the decay factor γ. The parameter γ
smooths the distribution of signal over time on the assumption
that a signal does not change its value abruptly and stays in
the same state for a certain period of time. Since BN detects
events based on changes in the smoothed signal distribution,
higher values of γ will reduce the number of classification
events generated by BN. While this reduces the number of
computations required, it leads to misclassification of activity
around the actual state transitions, referred to as cross-state
misclassification, causing a delay in detecting change in ap-
plication state. Moreover, if an event is misclassified without
an actual change in the application state, the effect of this
event lasts longer for higher values of γ, thereby, increasing
the number of misclassifications. For a fixed γ, the number
of classification events also vary with the values of ε and
theartbeat. The value of ε decides the percentage of error
allowed in the distribution of each bin and is determined by
the application requirements. Higher values of ε allow larger
approximations from the original signal, leading to fewer
classification events. Here, theartbeat value ensures periodicity
of events generated by BN and, in turn, the classification

Algorithm 1 Iterative Edge Mining for classification

1: procedure :
2: Update bin count ∀i ∈ B
3: xi,t ← γ · xi,t−1 + b(i, zt)
4: Update bin distribution (simplify) ∀i ∈ B
5: yi,t ← xi,t / Σi∈Bxi,t

6: y′ ← previous significant distribution at time t′

7: If ∃i ∈ B : |yi,t − y′i| > ε or t− t′ ≥ theartbeat
8: Update y′ ← yt and t′ ← t
9: Estimate new state

10: st ← f(DT, yt)
11: Eventful?
12: Yes, if state differs from last update
13: Store in Flash state st and time t

checks, by fixing the maximal duration for which any two
consecutive BN events can be apart. That is, it injects an
artificial BN event if no change in distribution is detected
for the duration of theartbeat. Once an intermediate event
is detected by BN, ClassAct is performed on the current
distribution of signal to identify the application state and detect
events. The overall performance of classification also depends
on the user-specified number and sizes of each bin. The values
of input parameters must, therefore, be chosen carefully to
balance the trade-off between the classification accuracy and
number of computations in order to optimally utilize network
resources as well as meet the application requirements.

IEM realization: Since network learning is computationally
intensive and may reduce the network longevity, we use cloud-
based analysis to determine an optimal set of non-overlapping
and jointly exhaustive bins B and calculate the values of
input parameters namely γ, ε, theartbeat. Once the learning
is complete, classification is performed using IEM in a few
simple steps on the sensor nodes. Algorithm 1 summarizes
our approach. For every reading z at time t, we update the
bin count x by the decay factor γ and increment the currently
active bin using the predicate function b(i, zt). The count
is updated for each bin i belonging to the set B where i
represents a subset of values that a given signal can take.
The bin distribution y for all bins in B is then calculated
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Fig. 3: Acceleration data over time

by normalizing the bin counts. The distribution suggests the
proportion of time spent in each bin and reflects the variation
in values. Next, we calculate the change in distribution with
respect to the previous significant distribution y′ at time
t′. The distribution y is considered significant if one of its
components differs from y′ by greater than the allowed error
threshold ε or the time since y′ was last updated exceeds
a threshold theartbeat. If y is significant, y′ is updated and
the application relevant state is estimated using decision tree
classification based on y. The calculated state st is compared
to the previously stored application state and an event is
detected if the two states differ from each other. If so, the
new state st is stored in the flash along with the current
timestamp t. Whereas the ClassAct approach in Edge Mining
traverses the decision tree to identify the application state per
sensing cycle, IEM performs classification only if the change
in distribution of signal exceeds the given threshold ε. This
significantly reduces the number of computations, especially,
where the decision tree is of a large size.

IV. EVALUATION

To validate the proposed method, human acceleration data
is used in this article. We implement IEM to classify stand and
walk activities using data collected from a single MPU6050
accelerometer. MPU6050 measures 0g on the X and Y, and
+1g along the Z-axis when placed horizontally on a flat
surface. We collect acceleration data along the three axes at a
sampling frequency of 1Hz by alternating between walk and
stand activities in approximately 2 min intervals. We repeat
the experiment 4 times for a stretch of 10 min each. The
total acceleration atotal is calculated as shown in eq. 3, where
aX , aY and aZ represent acceleration along X,Y and Z axis
respectively.

atotal =
√

a2X + a2Y + a2Z (3)

The resulting data for one dataset is as shown in fig. 3. Small
variations from 1g are representation of stand periods while
slightly larger variations correspond to the walking intervals.
Since stabilization period does not reflect the performance of

the system, we ignore the data values for the first 2-minute
interval and evaluate the performance of IEM for stretches of
8-minutes of activity on the basis of classification accuracy.
Of the four data sets, we leave one out for training the
classifier using C5.0 decision tree algorithm in R and evaluate
the performance of IEM for the remaining three sets. To
improve the reliability of results, we perform a 4-fold cross-
validation by rotating the training set between the four files.
We consider the distribution of signal across three equal-sized
bins representing the range of accelerometer data and fix the
value of theartbeat to 15 seconds.

A. Effect of γ on performance

Since IEM should achieve high classification accuracy re-
gardless of the number of events generated by BN, we first
consider the effect of decay factor γ on the performance
of IEM by assigning ε to zero. This selection for the ε
value corresponds to the highest sensitivity of BN to changes
between distributions. This, in turn, allows us to evaluate clas-
sification quality for all possible distributions for a particular
γ. For each training set, we generate five models for five
different values of γ and evaluate their performance against
the corresponding test data using R analysis. Using cross-
validation, we get results from 12 test files for each value of γ.
For each file, we calculate the average delay in detecting the
state transitions by calculating the average number of cross-
state misclassifications. We calculate the mean value for the
same across all 12 files and estimate the percentage error
with respect to the total number of acceleration readings over
8 minutes for each γ. A higher value of γ increases the
smoothing in distribution, thereby, increasing the effect of the
previous estimates on the current distribution. This makes the
detection of state transitions more difficult leading to higher
percentage errors in cross-state misclassifications as depicted
in fig. 4a. While the error for smaller values of γ is as low as
3%, it increases to approximately 8% for a γ value of 0.96.

Furthermore, as seen in fig. 3, there is an overlap between
walk and stand acceleration values which causes an inaccuracy
in classifying the activity states, at certain points, without an
actual change in application state. We refer to these inaccu-
racies as within-the-state misclassification. We calculate the
average number of these misclassifications within and across
all files for each value of γ. Within-the-state misclassifications
as a percentage of total number of readings per file is as shown
in fig. 4b. A higher value of γ smooths the distribution of
signal and, therefore, ignores the small fluctuations in the ac-
celeration values. However, if a state is misclassified, its effect
lasts longer on the future distributions leading to an increase
in the number of misclassifications. Due to this combined
effect, the overall number of within-the-state misclassifications
remains in the same range across different values of γ. We
then calculate the total number of misclassifications across the
entire length of activity monitoring. As expected, an increase
in the percentage value is observed with the increase in γ
values (fig. 4c). While the classification accuracy is as high as
90% for smaller γ, it decreases upto 83% for large γ.
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Fig. 4: (a) cross state, (b) within-the-state and (c) total misclassifications for ε = 0

To understand the performance of IEM across different
mobility patterns, we use ranking statistics to transform our
data sets to generate files for two other movements: jerky
motion with 1 min activity intervals and smooth motion with
4 min activity intervals for the same duration of 8 min. Owing
to a large number of state transitions, the average number of
cross-state misclassifications increases for the jerky motion
while a drop in value is observed in case of smooth motion.
Moreover, in case of jerky motion, the previous activity state
has a significant impact on the current distribution owing to the
small window size of 1 min for each activity, further increasing
the stretch of cross-state misclassifications. This effect is less
for the smooth changes due to the larger activity intervals. Ac-
cordingly, the total percentage of misclassifications is higher
than the original data for the jerky motion as shown in fig.
4c. On the contrary, the classification accuracy increases upto
95% for the smooth motion. To ensure misclassification within
the allowed error rate, frequent classifications are, therefore,
required in case of jerky motion i.e. a small ε or theratbeat
value, while the number of calculations can be significantly
reduced for smooth motion.

B. Effect of γ and ε on performance

Next, we consider the combined effect of γ and ε on
the performance of IEM for the original data files. For the
same set of training models as above, we generate test files
corresponding to the five values of γ for three different ε
values. While ε has no impact on the distribution of signal,
it determines the interaction between BN and ClassAct by
varying the number of classification events generated. The
number of classification events as a percentage of total read-
ings across different values of γ is shown in fig. 5. For a fixed
value of γ, a reduction in number of checks is observed with
increase in ε value as the model allows greater approximations
in the signal. The value further decreases with increase in the
value of γ as smoothing of the distribution generates fewer
events. The reduced frequency of checks, however, adds to
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Fig. 5: Classification events for 2 min activity intervals at
theartbeat=15 sec

the delay in detecting state changes and leads to an increase
in the number of cross-state misclassifications. As shown
in fig. 6a, the percentage error increases from 3% to 5%
compared to fig. 4a for an increase in ε value from 0 to
0.02 (2% error). This value further increases with the value
of ε due to lower probability of classification checks, thereby,
increasing the stretch of misclassified values. Heartbeat value
(theartbeat) plays an important role here to ensure periodicity
of checks and avoid large number of misclassifications. On
the contrary, larger ε ignores the small fluctuations within
the state resulting in fewer number of checks and, in turn,
within-the-state misclassifications as shown in fig. 6b. As a
result, while the total percentage of misclassifications increases
compared to the values in fig. 4c, the change is comparable
across different values of ε for a fixed γ (fig. 6c). This implies
that a similar classification accuracy can be achieved for large
ε while permitting fewer calculations. However, care must be
taken in deciding the ε value since large ε results in a larger
delay in detecting state changes.
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Fig. 6: (a) cross-state, (b) within-the-state (c) total misclassifications for 2 min activity intervals at theartbeat=15 sec

V. CONCLUSION

In this paper, we present the design and proposed imple-
mentation of our WSN system for behavior analysis in dairy
cows. We have built a fog service for real-time monitoring
and analysis of mobility patterns of a cow that can be used
to determine animal well being as well as provide location-
based services such as Virtual Fence applications. Unlike the
existing techniques that rely on third party components such as
a cloud environment, we build an autonomous system wherein
the analysis is performed locally on the collar devices worn by
dairy cows as they move along the farm. We propose IEM, a
data agnostic, decision tree based classification technique that
identifies application specific states based on the distribution
of signal over time. IEM is implemented on the collar devices
to identify the activity state of a cow from a fixed library
and understand the mobility pattern using the histogram of
activity states over time. We evaluate the performance of IEM,
based on human acceleration data, in terms of classification
accuracy for stand and walk activities for different mobility
patterns. Although the performance of IEM varies with the
input parameters, an accuracy of the order of 95% is achieved
for small values of decay factor γ and error threshold ε.
Furthermore, a significant drop is seen in the number of
classification events and, in turn, the number of computations
required with increase in the parameter values. In future, we
may consider the use of collaborative sensing to understand
the herd behavior. The underlying approach is generic and can
be applied to a wide variety of WSN applications.

ACKNOWLEDGMENT

This work has received support from the Science Foundation
Ireland (SFI) and the Agriculture and Food Development
Authority, Ireland (TEAGASC) as part of the SFI TEAGASC
Future Agri-Food Partnership, in a project (13/IA/1977) titled
“Using precision technologies, technology platforms and com-
putational biology to increase the economic and environmental
sustainability of pasture based production systems”.

REFERENCES

[1] M. Alsaaod, C. Rmer, J. Kleinmanns, K. Hendriksen, S.R. Meierhfer,
L. Plmer, W. Bscher, “Electronic detection of lameness in dairy cows
through measuring pedometric activity and lying behavior,” Applied
Animal Behaviour Science, ELSEVIER, vol. 142, no. 3-4, pp. 134-141,
Oct. 2012.

[2] M.O. Monod, P. Faure, L. Moiroux, P. Rameau, “A virtual fence for
animals management in rangelands,” The 14th IEEE Mediterranean
Electrotechnical Conference, Ajaccio, pp. 337-342, May 2008.

[3] T. Wark, D. Swain, C. Crossman, P. Valencia, G. Bishop-Hurley, R.
Handcock, “Sensor and Actuator Networks: Protecting Environmentally
Sensitive Areas,” IEEE Pervasive Computing, vol. 8, no. 1, pp. 30-36,
Jan.-Mar. 2009.

[4] F. Bonomi , R. Milito , J. Zhu, S. Addepalli, “Fog computing and its role
in the internet of things,” Proceedings of the first edition of the MCC
workshop on Mobile cloud computing, Aug. 2012.

[5] S. Sarkar, S. Chatterjee, S. Misra, “Assessment of the Suitability of Fog
Computing in the Context of Internet of Things,” IEEE Transactions on
Cloud Computing, vol.PP, no.99, pp.1-1, Oct. 2015.

[6] E.I. Gaura, J. Brusey, M. Allen, R. Wilkins, D. Goldsmith, R. Rednic,
“Edge Mining the Internet of Things,” IEEE Sensors Journal, vol. 13, no
.10, pp. 3816-3825, Oct. 2013.

[7] C.J. Rutten, A.G.J. Velthuis, W. Steeneveld, H. Hogeveen, “Invited
Review: Sensors to Support Health Management on Dairy Farms,” J.
Dairy Science, vol. 96, no. 4, pp. 19281952, Feb. 2013.

[8] T. Rui, X. Guoliang, L. Benyuan, W. Jianping, J. Xiaohua, “Exploiting
Data Fusion to Improve the Coverage of Wireless Sensor Networks,”
IEEE/ACM Transactions on Networking, vol. 20, no. 2, pp. 450-462,
Apr. 2012.

[9] G. Serpen, J. Li, L. Liu, Z. Gao, “WSN-ANN: Parallel and Distributed
Neurocomputing with Wireless Sensor Networks,” The 2013 International
Joint Conference on Neural Networks (IJCNN), pp. 1-8, Aug. 2013.

[10] D. Goldsmith, J. Brusey, “The spanish inquisition protocol: Model based
transmission reduction for wireless sensor networks,” Proceedings of
IEEE Sensors 2010, pp. 2043-2048, Nov. 2010.

[11] R. Rednic, E. Gaura, J. Brusey, “Classact: Accelerometer-based real time
activity classifier,” Proceedings of 2nd WiSIG Showcase, Teddington, UK:
Sensors KTN, pp. 2125, Jul. 2009.

[12] E. I. Gaura, J. Brusey, R. Wilkins, “Bare necessities-knowledge driven
WSN design,” Proceedings of 10th IEEE Sensors, pp. 6670, Oct. 2011.

[13] Advanticsys, MTM-CM5000-MSP, Available at
http://www.advanticsys.com/shop/mtmcm5000msp-p-14.html, Last
accessed in May 2016.

[14] Invensense, MPU-6000 and MPU-6050 Product Specification Revision
3.4, InvenSense Inc., Aug. 2013.

[15] Raspberry Pi Foundation, RASPBERRY PI 2 MODEL B,
www.raspberrypi.org, Last accessed in May 2016.

2017 International Conference on Computing, Networking and Communications (ICNC): Wireless Ad hoc and Sensor
Networks



Appendix F

Fog-centric Localization for Ambient
Assisted Living

Conference Title: 23rd ICE/IEEE International Technology Management Conference
Article Type Regular Paper

Complete Author List Kriti Bhargava, Gary McManus and Stepan Ivanov
Status Published: Jun. 2017



Fog-centric Localization for Ambient Assisted Living 
 

Kriti Bhargava, Gary McManus, Stepan Ivanov 
Telecommunications Software &Systems Group  

Waterford Institute of Technology  
Waterford, Ireland 

(kbhargava, gmcmanus, sivanov) @tssg.org 
 
 

Abstract—Ambient Assisted Living (AAL) is a novel discipline 
that aims at improving the quality of life for all generations, 
especially the elderly, with the help of information and 
communication technologies. Behavioral tracking AAL systems 
necessitate the monitoring and understanding of daily activities 
and preferences of the user for design of customized, context-
aware services and detection of behavior anomalies. Localization 
of the user is, therefore, key to facilitate real-time activity 
monitoring in AAL applications. Although several localization 
techniques have been proposed to date, majority of them incur a 
high operational cost owing to dependency on dense sensor 
deployments for ambient intelligence or use of expensive hardware 
such as GPS receivers. In this paper, we propose a low-cost 
Wireless Sensor Networks (WSN) system, comprising of a single 
wearable device and a cloud gateway, for outdoor localization in 
the context of AAL. With the inception of the Fog Computing 
paradigm, we consider the implementation of a light-weight data 
mining technique, Iterative Edge Mining (IEM), on the wearable 
device for on-board activity recognition. IEM is based on the 
classification of signal distributions to enable real-time mobility 
tracking as the user moves around an environment. Given the 
topology information and the activity sequence generated by the 
algorithm, we estimate the user location by associating the distance 
covered over time with the orientation values. Alerts are signaled 
locally upon detection of behavior anomalies and transmitted to 
the gateway node using a delay-tolerant communication 
framework. As such, IEM runs autonomously on the sensor node 
without interaction with external objects, thereby, improving the 
responsiveness as well as the operational cost of our system. We 
evaluate the performance of IEM in terms of localization accuracy 
in an outdoor environment. 

Keywords—ambient assisted living; localization; fog computing; 
edge mining; wireless sensor network 

 

I.�  INTRODUCTION 
With advancing age, the elderly often experience physical 

disabilities and require support with mobility and the activities 
of daily living. Moreover, they may develop some form of 
Dementia, a chronic syndrome that causes deterioration in the 
cognitive function beyond what might be otherwise expected 
with ageing. This, in turn, leads to challenging behavioral and 
psychological changes such as repetition, aggression, agitation 
and psychosis. Alzheimer's is the most prevailing form of 
Dementia that affects the short-term memory, orientation and 
intellectual capacity of an individual [1]. It may result in loss of 
identity, thereby, increasing distress for the patient as well as the 

caregivers. Wandering is a common symptom for Alzheimer 
patients that poses serious threat to their safety and may lead to 
traumatic experiences.  Personalized monitoring and care of the 
elderly is, therefore, important to assist them with daily activities 
and ensure their well-being. Ambient Assisted Living (AAL) is 
a recent trend that combines Information and Communication 
Technologies (ICT) with the social environment with a view to 
improve the quality of life for all generations, primarily the 
ageing population with cognitive disabilities [2]. An important 
aspect of AAL is localization of the user to enable activity 
monitoring for safe and independent living and minimize the 
risk of wandering [3]. AAL solutions have the potential to not 
only allow patients to restore their usual routine but also to 
reduce the burden on caregivers. Although a few activity 
tracking systems have been proposed for AAL, their 
implementation is constrained due to the high operational cost 
incurred by use of expensive hardware such as GPS modules or 
dense sensor deployments and cloud infrastructure required for 
ambient sensing, communication and data analysis. 

Meanwhile, owing to the growth in ICT, there has been a 
tremendous improvement in the design and computational 
capabilities of small devices that constitute edge of the network 
in the Internet of Things (IoT). A new networking paradigm, Fog 
Computing, proposes a partial migration of intelligence away 
from the cloud towards the network edges [4]. That is, Fog 
Computing aims at facilitating localized data processing and 
event detection at the end-user terminals. The concept has 
gained importance owing to its ability to efficiently utilize the 
in-network resources while minimizing dependency on the 
cloud infrastructure. It not only reduces the operational cost but 
also improves the responsiveness of the system for alert 
generation. Over the past few years, numerous interpretations of 
fog nodes within IoT have been discussed. While some 
approaches propose the use of computational resources at edge 
devices such as network switches [5], others suggest the use of 
free computation slots on user mobile phones [6]. Recent studies 
have further brought down the concept of Fog Computing to 
wireless, battery-operated sensor devices that sit at the edge of 
Wireless Sensor Networks (WSN). Edge Mining is a novel 
approach that suggests the implementation of light-weight data 
mining tasks on the sensor devices [7]. While resource-intensive 
network learning is performed on the cloud, minor computations 
carried out at the sensor nodes enable real-time event detection. 
Furthermore, Edge Mining algorithms improve the energy 
efficiency of WSN by reducing packet transmissions to the 
cloud gateway via localized data reduction and, in turn, increase 
operational time of the system. 
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In this paper, we implement fog-enabled mobility tracking 
within WSN for user localization in the context of AAL. Our 
WSN system consists of a low-cost wearable activity tracker and 
a cloud-gateway, and assumes prior knowledge of the 
application environment and user-specific information. The 
wearable device consists of an Inertial Motion Unit (IMU) that 
gathers accelerometer and gyroscope data as the user moves 
around the application environment. Real-time analysis of the 
data is carried out on the device itself using a Fog Computing 
approach called Iterative Edge Mining (IEM), proposed by the 
authors in [8]. IEM is based on the Edge Mining algorithms and 
performs activity state recognition using a decision-tree 
classifier on signal distributions. Given the topology information 
of the environment, the mobility pattern produced by IEM is 
used along with the gyroscope data to determine user location. 
Alerts are generated locally at the occurrence of unexpected 
events and transmitted to a cloud gateway using delay-tolerant 
communication. While our device performs localization 
autonomously, the resource-intensive network learning for IEM 
is performed on the cloud to modify the parameters for on-board 
analytics, if necessary, and tune the results according to changes 
in application environment and requirements. Results of the 
learning are sent back to sensor device, in a delay-tolerant 
manner, to adjust the analytic model. The performance of our 
system has been evaluated for outdoor localization using 
analysis in R. 

The remainder of the paper is organized as follows. In 
section II, we discuss the related work. The application scenario 
proposed solution is presented in section III. The evaluation of 
our system is discussed in section IV followed by the 
conclusions in section V. 

 

II.�RELATED WORK 
In this section, we present an overview of some of the 

localization techniques and AAL solutions, proposed to date. 
We also discuss the state-of-the-art in sensor analytics with 
emphasis on the Edge Mining approach that forms the basis of 
IEM. 

A.� Localization Techniques 
So far, numerous approaches have been proposed for 

localization in both outdoor and indoor applications. The use of 
Global Positioning Systems (GPS) based systems is well-known 
for outdoor positioning owing to the high availability of GPS 
modules in current IoT devices and the positioning accuracy. 
However, GPS units are expensive as well as energy exhaustive, 
thereby, affecting the lifetime of a system. Additionally, their 
performance deteriorates significantly in crowded and indoor 
areas due to the absence of line of sight to GPS satellites. 
Consequently, cooperative techniques have been proposed that 
use hybrid positioning systems to improve the performance of 
GPS systems [9]. Alternatively, radio frequency based solutions 
have been proposed for localization in indoor environments such 
as smart buildings as discussed in [10]. The role of WSN for 
node localization has also been explored. The techniques 
proposed are either anchor-based where fixed nodes with known 
GPS coordinates are used to estimate the coordinates of mobile 
nodes using different ranging techniques [11] or anchorless that 

aim at determining only the relative distance between two nodes. 
Majority of the solutions, however, rely on dense sensor 
networks for accurate sensing and communication making the 
network installation a tedious task. In recent years, Pedestrian 
Dead Reckoning (PDR) systems, comprising of wearable 
inertial sensors for self-tracking, have been designed to calculate 
user position based on the past estimates and displacement over 
short intervals of time. Personalized monitoring with PDR 
systems allows better understanding of the user behavior and 
mobility patterns for customization of services. A 3D 
localization technique using multiple wearable sensors has been 
presented in [12]. The system monitors the spatial location of 
users based on the orientation of body segments and lower limb 
movements. Although, the experimental results show an 
accuracy of up to 99%, the suitability of the approach is arguable 
due to use of multiple sensors that may cause discomfort. 
Moreover, standalone PDR systems often accumulate error over 
time due to sensor drift. Their use is, therefore, combined with 
contextual information or low-cost beacons that facilitate 
recalibration as shown in [13]. 

B.� Ambient Assisted Living 
With improvements in the average life-expectancy of people 

worldwide, there has been a simultaneous increase in the number 
of people suffering from cognitive disabilities, such as 
Dementia, that appear with age. Dementia is a progressive 
disorder that deteriorates the memory, comprehension and 
behavior of an individual. The most common cause of Dementia 
is the Alzheimer’s disease that occurs owing to the death of 
nerve cells and loss of brain tissue. It has a severe impact on the 
short-term memory, orientation and mobility of the patient, 
increasing the risks associated with wandering [14]. This urges 
the development of smart solutions to monitor the health and 
activities of the patients, and provide timely care. AAL proposes 
the use of ICT to assist people, especially the elderly, with daily 
activities and mobility to allow independent living and ensure 
their well-being. An activity recognition and assessment 
technique using the smart home technology has been discussed 
in [15]. The system proposes dense sensor deployment inside the 
apartment to monitor user interaction with objects of interest. 
Machine learning is performed on the sequence of sensor events 
to classify the daily activities such as cooking, cleaning, eating 
and telephone use. Furthermore, the authors propose a method 
to develop generalized models corresponding to each activity 
that abstract over different application scenarios and residents 
[16]. More recently, activity trackers have replaced the use of 
static sensors to personalize care and improve behavior analysis 
for the individuals. In [17], wearable devices consisting of 
environmental and inertial sensors have been designed to 
continuously monitor health status and mobility of the elderly. 
The system combines GPS and BLE technologies to assist in 
outdoor and indoor mobility respectively. An outdoor navigation 
system that facilitates independent visits to the exhibition for the 
cognitively impaired has been discussed in [18]. The approach 
aims at social inclusion of the individuals under the umbrella of 
AAL. Although, the solutions perform reasonably well, their 
implementation is challenging due to the high operational costs. 
To ensure validity and usability of AAL solutions, five 
evaluation metrics including accuracy, availability, installation 
complexity and user acceptance have been outlined in [19]. 
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C.� Sensor Analytics 
With advances in the IoT, there has been an immense 

improvement in the design and computational capability of 
sensor devices that constitute WSN. Traditionally constrained to 
sense and send, the tasks assigned to these devices nowadays 
incorporate an analytic component. WSN-based localization, for 
instance, is a form of sensor analytics that has been implemented 
to improve the context of sensor data. Other approaches such as 
Data Fusion [20] and Edge Mining [7] utilize the on-board 
sensor resources for reducing data redundancy within the 
network with an aim to improve the quality of data exchange. 
Reduced packet transmissions to the cloud gateway, in turn, 
improves the energy profile of the network. Furthermore, 
mapping of Artificial Neural Networks (ANN) on top of the 
existing WSN hardware has been proposed to facilitate 
classification and prediction tasks within the network [21]. We 
base our localization approach on the Edge Mining algorithms 
that inherent a certain degree of intelligence and allow real-time 
event detection on the sensor devices as discussed below. 

1)�Edge Mining 
 

The aim of Edge Mining is to improve the energy efficiency 
of WSN by reducing data communication to the cloud gateway 
or sink node. Accordingly, it suggests the implementation of 
light-weight data mining tasks on the sensor devices for 
localized data reduction. Edge Mining has been realized using 
the Spanish Inquisition Protocol (SIP), described in [22]. SIP 
proposes the use of a shared approximation model between the 
sensor devices and sink node to locally predict the expected 
application state at sink based on the past estimates. A packet 
containing the new state value is transmitted only if the new state 
differs from the estimated value by more than a threshold. Three 
instantiations of general-SIP have been used for the design of 
Edge Mining algorithms, namely Linear-SIP (L-SIP), ClassAct 
and Bare Necessities (BN), as presented in [7]. The algorithms 
differ based on the representation of application states. L-SIP 
encodes the state as a point-in-time value and rate of change. The 
state value is calculated at the sensor node per sensing cycle and 
compared to the estimated value at sink node. An event is 
generated if the difference between the two exceeds a user-
specified threshold. ClassAct is a decision tree-based activity 
classifier that models the state value as a smoothed probability 
distribution over a given set of activities [23]. The state is 
simplified to the index of the most probable activity and 
transmitted to the sink node if it varies from the previous 
estimate. The state recognition, however, relies on a fixed set of 
probabilistic moments and may not distinguish signals with 
different distributions but same feature values. The BN approach 
is primarily designed for applications that only require the 
summary of data over time [24]. It represents the state as a 
distribution across non-overlapping bins, where each bin 
corresponds to a range of value the variable can take, and 
generates events based on changes in the bin distributions. The 
ClassAct and BN algorithms discard majority of the raw data 
and significantly reduce packet transmissions to sink. The two 
approaches are, therefore, preferred over L-SIP for applications 
that do not require the reconstruction of the original signal. 

 

III.�PROPOSED SOLUTION 
 In this work, we consider the challenge of mobility 

monitoring and outdoor positioning for the elderly suffering 
from Alzheimer's to detect behavioral anomalies and alleviate 
the risk of wandering. Although numerous solutions have 
addressed the issue of outdoor localization in the past, the 
technologies proposed present several implementation 
challenges. For instance, use of expensive GPS modules for each 
user is impractical due to significant operational costs. 
Alternatively, installation of distributed systems for pervasive 
computing is cumbersome and labor intensive. Considering the 
evaluation metrics discussed in [19], we propose a low-cost 
WSN-based solution for mobility tracking and user localization. 
Our system comprises of only two nodes - a wearable device and 
cloud gateway, and relies on self-measurements rather than the 
range-based techniques, thereby, ensuring ease of deployment. 
The wearable device is designed to gather IMU data and 
performs on-board data processing using IEM for real-time 
activity recognition as the user moves around the environment. 
Given the topology information, the user location is estimated 
using the mobility model generated by the algorithm after short 
intervals of time. The above analysis is performed autonomously 
on the sensor device without interaction with external objects. 
Alerts are signaled at the occurrence of unexpected events such 
as detection of mobility patterns corresponding to wandering 
behavior. Furthermore, a delay-tolerant communication 
framework is used to transmit results of the analysis to the cloud 
gateway. Cloud-based analysis facilitates the implementation of 
complex learning techniques to modify input parameters, 
performance metrics and user information for on-board analysis, 
if necessary, to tune the performance according to the 
application requirements. For instance, while some applications 
may only require coarser information such as user presence in 
specific zones, others may require a more precise location as in 
case of fall detection to facilitate immediate care. The updated 
model is, in turn, transmitted to the user device in a delay-
tolerant manner, thereby, eliminating the need for continuous 
Internet connectivity. 

 Fig. 1 illustrates the design of our prototype devices - 
wearable activity tracker and cloud gateway node. The main 
component of the wearable is CM5000 [25] mote that consists 
of a MSP430 processor and CC2420 radio module. A 10 degrees 
of freedom IMU consisting of the MPU6050 IC [26], is 
connected externally to the CM5000 board to measure 
acceleration and orientation of the user. The components are 
soldered together on a PCB and placed inside a pelican casing. 
The device is powered up using 2 AA batteries. A light-weight 
TinyOS [27] program runs on the device for periodic data 
collection and analysis using IEM. While our system runs 
autonomously, it assumes prior knowledge of user-specific 
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information, such as the average pace and normal activity levels, 
and topology of the application environment using initial 
supervised learning. The distance travelled by the person is 
accordingly calculated using the time series data generated by 
IEM and the average speed of the person. Given the topology 
and gyro data, user can then be localized within the environment 
using the displacement measure. Alerts are signaled upon 
identification of significant deviations from the normal 
behavior. The results of analysis are stored locally in the flash 
memory of the device as the user moves around and transmitted 
to the cloud gateway, hosted indoors, once the user is in its 
vicinity. The gateway node (fig. 1(b)) consists of a CM5000 
mote connected to a Raspberry Pi 2B [28] module. The data is, 
in turn, uploaded on the cloud for further learning using a Wi-Fi 
module connected to the Pi. Once the learning is complete, the 
updated parameters are transmitted back to the wearable device 
in a similar manner. Our system design, thus, ensures the 
autonomy of user mobility while providing timely interventions 
when required. 

A.� Iterative Edge Mining 
A key component of our device based analytics is activity 

state recognition that is performed by the IEM [8] algorithm. 
IEM is a fog-centric, sensor analytics approach that is 
implemented by superimposing two Edge Mining algorithms - 
BN and ClassAct, on a single node. IEM reads the raw 
acceleration values from the IMU and converts it into a smooth 
signal distribution using BN, per sensing cycle. An intermediate 
event is detected if the change in any bin distribution is 
significant. The sequence of BN events is fed as input to the 
ClassAct algorithm that determines the user activity state. The 
interaction between the two algorithms is controlled by the value 
of three input parameters - decay factor (�), error threshold (�) 
and heartbeat (theartbeat) that are determined using cloud-based 
analysis. The � parameter ranges between 0-1 and is introduced 
to smooth the signal distributions on the assumption that the 
application state does not change abruptly. A higher value of �, 
increases the weight of past estimates and reduces the 
fluctuations in the distribution. The resultant smoothing leads to 
fewer BN events and classification checks. This improves the 
energy efficiency and, in turn, the lifetime of the device. The 
reduced frequency of classification, however, also results in an 
increase in misclassifications and latency in detecting activity 
changes. The value of � is determined based on the user-
specified accuracy requirements. While the � value does not 

affect the nature of signal, it sets the percentage change in bin 
distributions from previous estimates that is considered 
significant for classification. A higher value of � ignores the 
small fluctuations in the bin distributions, leading to reduced BN 
events. Accordingly, higher values of both � and � are preferred 
to optimize the resource utilization on sensor nodes when the 
accuracy requirements are not rigid. A heartbeat mechanism 
using a parameter theartbeat can be used to set the maximum time 
difference between two consecutive BN events and ensure 
periodicity of classification checks, especially in case of large 
decay and threshold values, if required. In [8], IEM has been 
proposed for activity monitoring and behavior analysis in the 
context of Precision Dairy Farming. The performance evaluation 
shows the effect of input parameters on classification accuracy 
and number of BN events for different mobility patterns. Once 
the activity state for a BN event is determined, the distance 
traveled since the previous event is calculated for walking 
activities using the average pace of the person. The user 
displacement is estimated with the help of gyroscope data, and 
the updated state and location is recorded in the flash memory 
of the device. Fig. 2 shows the state diagram for the on-based 
analytics on the wearable devices.  

 
 

 

Fig. 1. (a) Cloud gateway node (b) Wearable activity tracker 

    (a)                    (b) 

 

Fig. 2. State diagram for on-board analysis on wearable devices 
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IV.�EVALUATION 
We evaluate the performance of IEM in terms of accuracy of 

classification, cumulative error in distance calculation and 
reduction in classification frequency (BN events) using 
acceleration data collected outside our laboratory using the 
wearable device shown in fig 1(a). The device was hand-held in 
front of the body and data was collected at a frequency of 10Hz 
by a single user for a duration of 16 minutes by alternating 
between walk and stand activities every four minutes. The 
experiment was repeated for a total of 12 times and the distance 
covered in each run was 600m (300m*2). We correct the raw 
data collected during the experiments by removing the offset 
along each axis and calculate the net acceleration (square root of 
the sum of squares of each component) to use as input for our 
algorithm. Of the 12 data sets collected, we reserve 6 files for 
training the classifier and the other 6 files for testing the model 
using analysis in R. The mobility traces in training sets are used 
to calculate the average pace of the user through supervised 
learning. Moreover, the training data is used to understand the 
distribution of acceleration values to define bins for the BN 
algorithm. Fig 3. shows the density distribution of walk and 
stand activities for one training set. As is evident, there is a 
significant overlap between walk and stand data that may lead to 
inaccuracies in the classifier. It is, therefore, imperative to 
carefully define the bins such that the classification errors and 
latency in detecting activity state changes is minimized. Since 
the distribution of stand values is narrow, we use the 68-95-99.7 
rule for normal curves and define three bins based on the mean 
and standard deviation over stand data.  

As discussed in section III, while the error threshold � only 
regulates the interaction between BN and ClassAct, the decay 
factor � also influences the nature of signal distribution. Fig 4. 
illustrates the smoothing phenomenon, for the same training set 
as above, across different values of �. Although the parameter 
value depends on decay half-life [24], we have chosen three 
random values to show the change in distributions for a wider 
range of �. As expected, the effect of the previous distributions 
on the current estimate is negligible for very small value of � 
(fig. 4(a)), resulting into coarse bin distributions. The 
smoothness of the distributions increases for higher � values (fig. 
4(b) and 4(c)) due to small changes in bin distributions per 
sensing cycle. The extent of smoothing affects the frequency of 
BN events and, in turn, the localization accuracy. We consider 
the performance of IEM for different � and � pairs. We build 
C5.0 decision-tree classifiers using all data instances from the 6 
training files (i.e. �=0) for five different values of �. The 
performance of each classifier is tested with the remaining 6 files 
using the respective � values paired with three different � values. 
The mean classification accuracy of IEM for walk and stand 
activities across all test files, for different parameter values, is 
presented in table I. IEM achieves high accuracy for all � and � 
pairs. The values illustrate the expected drop in accuracy with 
increased smoothing in the signal distributions. Moreover, while 
the accuracy is same across all � values for small �, it decreases 
slightly with increase in � for higher values of �. This is because 
the frequency of classification for the former is primarily 
governed by � as even the slightest changes in the bin 
distributions are detected as BN events. An increase in � value, 
however, increases the smoothness of the curve and relies on the 

� value to capture the significant changes. The effect of � and � 
on the accuracy of distance calculation and classification 
frequency is shown in fig 5. Instead of calculating the distance 
travelled for short intervals of walk, we estimate the total 
distance covered over 8 minutes (4+4mins) using the average 
pace. The cumulative error over a stretch 600m is shown in fig. 
5(a). Our approach performs reasonably well for all different 
parameter values with the error ranging from 0.4-1%. The error 
in estimate increases with increase in � due to latency in 
detecting state changes and reduced periodicity of distance 
calculation. Although, the classification accuracy decreases with 
increasing � value, a consequent increase in the cumulative error 
is not recorded. This is because the error is calculated based on 
the relative time spent in each state which may be identical to 
the raw data despite the misclassifications. Fig. 5(b) displays the 
reduction in BN events across different � and � values. While the 
reduction is insignificant for small parameter values, it increases 
considerably for higher values of both � and � as expected. A 
reduction of 95% is achieved for a � and � value of (0.95, 0.7). 
The values of input parameters can, thus, be chosen to balance 
the trade-off between accuracy and energy utilization on the 
sensor nodes according to the user-specified requirements. A 
heartbeat mechanism can be implemented to ensure periodicity 
of updates at large � and � values, if required.       

 
 

TABLE I. � CLASSIFICATION ACCURACY (%) 

Error 
Threshold 

(��) 

Decay Factor (��) 

0.15 0.35 0.55 0.75 0.95 

0.1 99.36 99.31 99.17 99.12 99.01 

0.4 99.36 99.31 99.17 98.77 98.75 

0.7 99.36 99.19 98.75 98.59 97.95 

Fig. 3. Density distribution for walk and stand acceleration values 
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V.�CONCLUSIONS 
In this paper, we present the design of our low-cost WSN 

system for mobility monitoring and outdoor localization of 
Alzheimer’s patients. Our system consists of an activity tracker 
and gateway node, and relies on self-tracking and sensor based 
analytics to perform autonomous, real-time localization as the 
user moves around an application environment. We discuss our 
on-board analytics approach along with the IEM algorithm that 
is used for on-board activity recognition. The mobility traces 
generated by IEM are used to calculate the distance traveled over 
short intervals of time to localize the user within the given 
topology. Moreover, the activity sequence helps in 
understanding the mobility pattern of the user and enables 
detection of behavior anomalies to mitigate the risk of 
wandering. The performance of IEM has been evaluated in terms 
of accuracy of classification of stand and walk activities, 
cumulative error in distance calculations and reduction in 

localization frequency. The results show a classification 
accuracy above 97.9% and cumulative error percent between 
0.4-1 across different values of the input parameters. Although 
the reduction in localization frequency is negligible for small 
values of input parameters, reduction up to 95% has been 
recorded. Fewer calculations can significantly improve the 
energy profile of sensor devices, especially for a large set of 
application states. In future, we plan to evaluate the performance 
of IEM for different mobility patterns and indoor applications. 
We will also look at how the alerts can be generated and 
transmitted to the caregivers in case the patients diverge from 
their normal routes or wander too far. 
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Abstract—The Fog Computing paradigm proposes an
extension of the cloud-based computing to the network
edges in the Internet of Things. It facilitates localized
analysis closer to the data sources for improved respon-
siveness of the system as well as cloud-based learning
for historical analysis. In this paper, we present our fog-
enabled Wireless Sensor Network (WSN) system for activity
monitoring and localization in the context of Ambient
Assisted Living. Our WSN architecture consists of two
types of devices - a wearable sensor device and a cloud
gateway node. We discuss our Edge Mining approach for
real-time activity classification on the sensor device as well
as the Genetic Algorithm used for cloud-based analysis.
The design of our analytical framework together with the
communication model addresses the challenge of sensor-
cloud integration. We evaluate the performance of our
system for outdoor localization of the elderly. The analysis
is based on acceleration data collected using our wearable
device across different activity sequences obtained from the
Kasteren dataset.

I. INTRODUCTION

In the past few years, there has been a dramatic
improvement in the design of devices that sit at the
edge of the Internet of Things (IoT). The devices, today,
are equipped with sensor, actuator and communication
modules, and posses sufficient computational capabilities
to perform certain data analytics apart from the routine
data collection and transmission tasks. A new networking
paradigm called Fog Computing [1] considers the selec-
tive migration of intelligence from the cloud to the edge
devices with a view to locally reduce data at the sources.
Unlike Edge Computing, the fog works in conjunction
with the cloud and addresses the distribution of compute,
storage and networking tasks along the thing-cloud con-
tinuum. It allows better utilization of the scarce sensor
resources by reducing packet transmissions to the cloud,
along with a reduction in the cloud storage requirements.
Fog nodes have been realized using network components
such as switches, gateways or end-user terminals that
can lend free computation slots [2][3]. More recently, the
role of sensor devices, that constitute the Wireless Sensor
Networks (WSN), has been explored for the implemen-
tation of data analytic tasks (or sensor analytics). WSN-
based localization is a form of sensor analytics that has

been proposed to improve the relevance of sensor data.
Associating the WSN data with its location facilitates the
design of customised context-aware services for better
user experience. Localization of the sensor nodes has
proven beneficial for various applications in navigation,
inventory management, emergency search and rescue,
healthcare and Ambient Assisted Living (AAL). AAL
suggests the use of Information and Communication
Technologies (ICT) solutions to assist people, especially
the elderly, with mobility and activities of daily living,
and has gained importance over the years in order to
improve the quality of life [4]. Activity monitoring and
localization of the user are two important factors of
AAL systems to understand the individual behaviour
and preferences. While numerous approaches have been
proposed to locate an individual in a given environment,
the deployment of these systems is constrained by the
high operational cost incurred due to dependency on
expensive hardware such as Global Positioning System
(GPS) units or use of dense sensor networks and cloud
infrastructure for data sensing and analysis.

Edge Mining [5] is another dimension of sensor in-
telligence that suggests the transformation of raw data
into contextually relevant information by performing
light-weight data mining tasks at the sensor nodes.
The localized data processing not only improves the
energy efficiency of the network through reduced packet
transmissions but also realizes real-time event detection.
In this paper, we implement node localization in WSN
using our Edge Mining based approach, Iterative Edge
Mining (IEM) [6], in the context of AAL for the elderly.
We present the design of our WSN system that is
based on the Fog Computing architecture and discuss
the analytical framework used for localization along
with the communication paradigm adopted for sensor-
cloud integration. Our system comprises of two nodes
- a wearable sensor device and a cloud gateway. IEM
is implemented on the wearable device for real-time
activity recognition using a decision-tree classifier as a
user moves around a given environment. An event is
detected if the activity state differs from the previous
estimate, and is stored locally in the flash memory of
the device. The mobility trace generated by IEM is, in978-1-5386-3531-5/17/$31.00 c� 2017 IEEE



turn, used along with the gyroscope data to estimate the
user location in a given topology. Alerts can be generated
locally in case the user deviates from normal behaviour
or at the occurrence of unexpected events such as a fall.
While the data processing is performed autonomously on
the sensor device, the results of analysis are transmitted
to a cloud gateway, for resource-intensive network learn-
ing, in a delay tolerant manner. Cloud-based learning is
performed using a Genetic Algorithm (GA) to find the
optimal set of values for the input parameters of IEM
in order to regulate the on-board analysis according to
the application requirements. For instance, while certain
applications may demand a high localization frequency
to achieve sub-meter position accuracy, the performance
requirements of the others may be met with fewer cal-
culations. The GA based learning, accordingly, adjusts
the parameter values to manage the localization accuracy
as well as the frequency of activity classification on the
sensor device. Such flexibility in the system intelligence
is an attempt to balance the trade-off between accuracy
and resource utilization. The results of cloud-based anal-
ysis are, in turn, sent to the device via the gateway node
in a delay-tolerant manner. The delay-tolerant commu-
nication ensures minimal dependency on the external
infrastructure, thereby, reducing the operational cost of
the system. We evaluate the performance of our WSN
system for outdoor localization using data collected by
our wearable device across different mobility patterns
extracted from the Kasteren dataset [7].

II. RELATED WORK

Several localization approaches have been proposed,
to date. The choice of technology is primarily governed
by the application environment and the performance
requirements. In this section, we present an overview of
some of these techniques and discuss the Edge Mining
approach that forms the basis of the IEM algorithm.

A. Localization techniques
GPS based systems are well-known for outdoor lo-

calization owing to their high-accuracy positioning and
easy integrability of GPS modules with the current IoT
devices. The performance of these systems, however,
degrades rapidly in unfavorable weather conditions, and
crowded and indoor areas due to the absence of GPS
signal. Local positioning techniques have been used in
conjunction with the GPS systems to improve the pre-
diction accuracy by enabling interaction between mobile
nodes in the vicinity of each other [8]. However, the GPS
units are energy-intensive and may significantly reduce
the lifetime of the IoT devices that are typically battery-
powered. WSN systems have also been proposed for lo-
calization as mentioned above. Anchor-based techniques
that rely on static sensors equipped with GPS modules or
previously known locations have been used to estimate
the location of mobile nodes with unknown locations.

The distance between the anchor and mobile nodes is
calculated using either range-based measures such as
received signal strength, angle of arrival, time of arrival
and time difference of arrival or range-free methods such
as hop count and, in turn, converted into global posi-
tion coordinates. The performance evaluation of these
approaches is presented in [9]. Although the time based
approaches perform better, they pose the challenge of
clock synchronization among all nodes. Additionally, the
physical measurements suffer from time-varying errors
arising from environment noise and interference. Node
localization using inertial sensors embedded in modern
smartphones and wearable activity monitors has also
been proposed in Pedestrian Dead Reckoning (PDR)
systems. The approach is based on self-measurements
and estimates the location of mobile nodes using past
location and displacement measure. Personalized moni-
toring with PDR systems allows better understanding of
user behaviour and preferences. A few implementations
of PDR systems have been proposed to date. In [10],
authors propose a blind localization approach to estimate
position of user smartphones using acoustic signals and
in-built inertial sensors in indoor environments. While
PDR systems can operate independently with reasonable
accuracy, they often accumulate error over time due to
sensor drift. Therefore, their use is often combined with
topology information or low-cost beacons that facilitate
recalibration as discussed in [11] and [12] respectively.

B. Edge Mining
Edge Mining [5] is defined as the data mining that

takes place at the network edges or the data sources
(sensor nodes) itself in order to convert the raw signal
into contextually relevant information. The approach
aims at the efficient utilization of scarce energy resources
available at the sensor devices through reduced packet
transmissions to the cloud. Furthermore, it facilitates
timely response to unexpected changes in the sensor
data through real-time event detection. Edge Mining
algorithms are based on the Spanish Inquisition Protocol
(SIP), discussed in [13]. SIP suggests the transformation
of raw data into application specific states that are
transmitted to a cloud gateway or sink node only if
the current state value cannot be predicted at the sink
using an approximation model and past estimates. Three
instances of the general-SIP model, namely Linear SIP
(L-SIP), ClassAct and Bare Necessities (BN), have been
considered for the implementation of Edge Mining. The
algorithms differ on the basis of the encoding scheme
used for state representation. The application state in L-
SIP is defined as a pair of current state value and rate of
change. The state is smoothed over the past readings and
calculated periodically at the sensor node. Additionally,
the expected state value at sink is predicted using the
local copy of a shared approximation model and previous
state estimate. If the difference between the calculated



and predicted value differs by more than a specified
threshold, a packet containing the new state is transmit-
ted to the sink. ClassAct is a decision-tree based activity
classifier. It reads acceleration data from wearable sensor
devices and converts it into a probability distribution over
a given set of activities. The state is reduced to the index
of the most likely activity and an event is generated if
the new state differs from the previously stored estimate.
ClassAct significantly reduces the data by storing only
the activity states. The BN approach further discards
the raw data by maintaining only the summary of data
over time. It represents the state as a distribution across
non-overlapping bins, where each bin corresponds to a
possible application state. An event is detected if the
distribution of any bin changes by more than a user-
specified threshold. As such, BN estimates the relative
time spent in each state. Unlike L-SIP, ClassAct and BN
are destructive approaches and, therefore, preferred in
applications that do not require signal reconstruction.

III. PROPOSED SOLUTION

In this work, we propose a WSN-based system for lo-
calization of the elderly in order to facilitate autonomous
mobilization in a given environment, under the umbrella
of AAL. The authors in [14], outline five benchmarks,
including accuracy, availability, installation complexity
and user acceptance, to assess the usability and validity
of AAL solutions. Considering the above metrics, we
propose a fog-enabled system for mobility tracking and
localization. The solution is based on self-tracking and
comprises of two kinds of nodes - a wearable sensor
device and a cloud gateway node as shown in Fig. 1. Our
system relies on an initial learning phase to understand
the user behaviour and preferences to facilitate anomaly
detection. It also assumes prior knowledge of the user
speed that is considered constant for the duration of
the experiment (as expected in the older population).
The wearable device can either be worn around the
wrist or on the waist and consists of MPU-9255 [15],
a 9 degrees of freedom (DOF) Inertial Motion Unit
(IMU) that includes a 3-DOF accelerometer, gyroscope
and magnetometer, connected to a CM5000 mote [16].
On-board analysis of the acceleration data is performed
using IEM to identify the activity state as the user
moves around an outdoor environment. If a change
in the activity state is detected by IEM, the mobility
trace is used along with the user speed to calculate the
distance travelled over time. Furthermore, the displace-
ment measure is estimated by associating the distance
value with gyroscope readings to localize the user in
the given topology. Alerts are generated at the detection
of behaviour anomalies such as wandering or fall as
illustrated. The results of analysis are stored locally
on the device until the user comes in vicinity of the
gateway node hosted indoors. The gateway node includes
a CM5000 mote connected to a Raspberry Pi. Data from

Fig. 1. WSN architecture for user localization

the device is transmitted to the gateway using mote-mote
communication and further uploaded on the cloud using
Wi-Fi signals. Cloud-based learning is performed using
a GA in order to optimize the input parameters for IEM,
based on the performance requirements. The analysis
considers performance in terms of accuracy of activity
classification and distance calculation, as well as the
reduction in resource utilization. The modified analytical
model is sent back to the device via the gateway node
in a delay-tolerant manner to improve the on-board
prediction. Our system design, thereby, facilitates the in-
tegration of sensors with the cloud along the thing-cloud
continuum. Moreover, the delay tolerant communication
framework eliminates the need for continuous Internet
connectivity and ensures the minimal dependency of our
system on external infrastructure.

A. Analytical framework
Our localization technique depends on device-based

activity recognition using IEM as well as the cloud-based
network learning via GA. The two algorithms together
constitute our analytical framework and are discussed in
further detail below.

1) Iterative Edge Mining: IEM forms the fundamen-
tal component of our device-based analysis. It is realized
by superimposing two Edge Mining algorithms - BN and
ClassAct as proposed in [6]. At first, the BN approach
is used to convert the raw signal into intermediate states
by calculating the distribution of data across different
bins. BN events are generated based on the detection
of unexpected changes in the signal. Next, the sequence
of BN events is fed as input to the ClassAct algorithm
for activity recognition. IEM events are generated if the
activity state differs from the previous estimate. Unlike
ClassAct, the classification in IEM is based on the signal
distributions as opposed to a finite set of probabilistic
moments represented by feature values. This facilitates
the distinction between signals that may follow different



distributions but exhibit same feature values. The inter-
action between BN and ClassAct is governed by three
input parameters - decay factor (�), error threshold (")
and theartbeat. The decay factor is used for smoothing
the bin distributions in BN on the assumption that no
sudden changes will occur in the activity state. The
value of � ranges between 0 and 1. A higher value
increases the smoothing in the distribution, suggesting
a greater impact of the past readings on current values.
This reduces the frequency of BN events and, in turn, the
classification. While the reduced number of classification
improves the resource utilization, it introduces latency
in detection of state changes. Unlike �, the " parameter
does not affect the nature of distribution. It defines the
percentage change in bin distributions that is considered
significant for the generation of a BN event. A small
value of " results in a higher sensitivity of the algorithm
to fluctuations in the bin distributions and causes an
increase in the number of classifications. The theartbeat
parameter fixes the maximum time duration between two
consecutive BN events and is used to ensure periodicity
of classification. The heartbeat mechanism is primarily
useful in case of large values of � and ". While we
propose the implementation of IEM on our prototype
device, the algorithm is generic in nature and can be
implemented in off-the-shelf activity monitors.

2) Genetic Algorithm: While localization is per-
formed autonomously on the wearable device, GA based
network learning is proposed in order to find the op-
timal set of (�, ", theartbeat) values to improve the
performance of IEM based localization. GA is the most
frequently used class of evolutionary algorithms and
is based on the Darwinian theory of survival of the
fittest. We prefer the use of GA owing to its ability to
generate high quality solutions for a large search space
in polynomial time. We consider the implementation of
GA on labeled acceleration data and define a fitness
function that minimizes the error in distance calculation
along with possible reduction in the classification events.
Accordingly, our fitness function incorporates the IEM
algorithm to build an activity classifier and estimates the
values for the above metrics corresponding to each set of
(�, ", theartbeat). The algorithm randomly generates an
initial population of (�, ", theartbeat) using the given
set of possible values for each parameter. A fitness
value is assigned to each member of the population
using eq. 1 where differ denotes the difference between
actual and estimated value of distance travelled, events
is the number of BN events, nR is the total number of
raw readings, and error is the percent misclassification.
A separate component is used for the misclassification
since a poor classification accuracy may still result
in accurate localization as our distance calculation is
based on the relative time spent in each activity state.
A constant of 1 is used for each term to ensure a

Fig. 2. Summary of GA

greater weight is given to the distance term while
allowing sufficient impact of the event and accuracy
values. Upon calculation of the fitness values, crossover
and mutation operators are used on randomly chosen
pairs of individuals from the population to generate
off-springs that represent different combinations of the
parameter values. Fitness values are calculated for the
off-springs and a new generation of (�, ", theartbeat)
is assembled using a selection technique. Fitness based
selection allows reduction of the search space in order
to converge towards an optimal solution. Moreover, the
crossover and mutation probabilities ensure diversity in
the population such that the GA traverses the entire
search space to reach the global optima. This process
is repeated for a specified number of iterations. Once
the result from GA is obtained, it is transmitted to the
wearable device via the gateway. The performance of the
GA is governed by the choice of operators as well as the
quality of fitness function. Accordingly, the results of the
GA can be modified by adjusting the weights of different
components in eq. 1 based on the system requirements.

fit = �(differ + (events/nR) + error) (1)

IV. EVALUATION

We evaluate the performance of our system in terms
of accuracy of classification and calculated distance, and
reduction in events using analysis in R. The evaluation
is carried out in two phases - firstly to determine the
suitability of GA for historical analysis and secondly
to estimate the efficiency of GA-based classifier for the
above metrics. We assess the performance of our GA
approach using labeled training data. GA is implemented
over acceleration data gathered using our wearable de-
vice. The device was hand-held in front of the body
and data was collected at a frequency of 10Hz for a
duration of 16 minutes in an outdoor environment. A
single mobility pattern was maintained by the user by
alternating between stand and walk activities every four
minutes. The experiment was repeated 12 times and a
total distance of 600m (2*300m) was covered in each



(a) (b)
Fig. 3. Performance of GA (a) Evolution of fitness values (b) Image plot for fitness values at constant theartbeat = 66.77

(a) (b) (c)
Fig. 4. Performance metrics (a) Reduction in events - BN (b) Classification accuracy of BN events (c) Ratio of BN events

Fig. 5. Ratio of IEM events

iteration by roughly maintaining a constant speed. The
data was corrected to remove the offset along each axis
and the distribution of the data was analyzed to define
bins for the BN algorithm. We use the Linear Rank
Selection, Whole Arithmetic Crossover and Random
Mutation operators for the implementation of the GA in
R. A summary of the GA settings and results is shown

in Fig. 2. An elitism value of 0.02 allows us to keep the
best solution across the different generations while the
crossover and mutation probabilities ensure diversity in
the population. The evolution of fitness value through the
generations is illustrated in Fig. 3a. The plot shows the
best, mean and median fitness values per generation. It
exhibits the speedy convergence of the GA to an optimal
value, thereby, suggesting a fast-learning process. Fig.
3b displays the fitness values across different values of
� and " at constant theartbeat derived from the GA.
The plot confirms that the convergence of the fitness
function is not premature and reaches its global maxima.
A similar behaviour is observed at constant � or " while
varying the other 2 parameters.

Whereas the GA is trained using data with planned in-
teractions between walk and stand activities, the mobility
pattern of the user could vary each day. Accordingly, we
evaluate the performance of localization across different
mobility patterns using our GA classifier. For the same,
we generate mobility traces by mapping our acceleration
data to the activity sequences provided by the Kasteren
dataset [7]. The dataset includes the time spent on differ-



(a) (b) (c)
Fig. 6. (a) Latency in state change detection (b) Error in cumulative distance (c) Percent error in cumulative distance

(a) (b) (c)
Fig. 7. Image plots for error in cumulative distance at (a) constant theartbeat = 66.77 (b) constant " = 0.78 (c) constant � = 0.49

ent activities of daily living such as preparing breakfast
and dinner, taking a shower, going to bed, getting a
drink and leaving the house for work. We consider the
sequence of activities as distributions of walk and stand
periods, and develop 56 mobility traces with varying
intervals of the two modes. We assume the same user
speed as training data and calculate the distance covered
in each trace. The datasets are then categorized into 5
sets based on the total distance - less than 200m, 200-
400m, 400-600m, 600-1000m and greater than 1000m, to
evaluate the localization performance for short, medium
and long range mobility traces. Fig. 4a and 4b show the
average percentage reduction in events achieved by the
BN algorithm for all 56 traces and the corresponding
classification accuracy respectively. The box plots show
the range of values across the files in each set along with
the median value. The algorithm achieves >98% accu-
racy while reducing the number of data points by half.
Moreover, the performance is similar across different sets
since the metrics are primarily dependent on the values
of the input parameters. Although the BN algorithm
reduces the memory requirements on-board, it detects
events based on small changes in the bin distributions.

As a result, the ratio of BN events to actual state changes
in the data is rather high as shown in Fig 4c. While
the ratio ranges around 200 per state change for smaller
data files, it increases up to 900 for Set 5. Given the
high classification accuracy of BN events, IEM proposes
further reduction in the memory requirements by storing
only those instances that correspond to a change in the
activity state as opposed to storing all the BN events. The
resultant ratio of IEM events to state changes is shown
in Fig. 5. As evident, the IEM algorithm significantly
reduces the total number of events generated across all
five sets. While the median is close to 1 event per state
change for smaller files, it increases up to 4 events for Set
5 owing to an increase in the number of misclassification.

Fig. 6a shows the latency incurred by IEM in detecting
state changes owing to the smoothing of bin distribu-
tions. As the smoothing is controlled by the � value,
the average latency is comparable across the different
sets and ranges from 0.3 to 0.5 seconds. This latency,
in turn, causes error in the distance calculation and
affects the localization accuracy. Fig. 6b illustrates the
average value of cumulative error in distance calculation
i.e. the error accumulated over the entire trace, across



different files. The error is characterized by the speed
of the user and averages at 1.33m across all the 56
files. Furthermore, the value increases with an increase
in the total distance covered. This is driven by the rise
in number of average state changes from 3.77 in Set 1
to 11 in Set 5. The ratio of cumulative error to total
distance, however, is similar for both shorter and longer
distances as shown in Fig. 6c. The percent error in
distance calculation floats between 0-2% for all sets. The
results validate the performance of IEM and on-board
localization based on our GA classifier across all data
files. This suggests that our system performs reasonably
well for all mobility patterns despite training the GA
using a single activity sequence. The performance of
the on-board analysis can be further improved by train-
ing the GA classifier using different mobility patterns.
The average error in cumulative distance obtained by
training and testing the classifier across all the 56 files
for different values of input parameters is shown in
Fig. 7. The error values in Fig. 7a are calculated for
varying � and " at constant theartbeat obtained from our
GA. Similarly, the error values in Fig. 7b and 7c are
calculated at constant " and � respectively, along with
the variation in other two parameters. As evident, the
error value of our GA classifier is comparable to the
values obtained in all three instances. The performance,
however, can be improved to reach the optimal value
using iterative cloud-based learning for applications that
have fairly rigid performance requirements.

V. CONCLUSION

In this paper, we propose a fog-enabled WSN system
to address the localization problem in the context of AAL
for the elderly. We present the design of our system
and discuss the sensor analytics approach that is used
for real-time activity monitoring based localization of
the user in a given environment. The localization is
performed autonomously on the sensor devices without
interaction with any third party components and the
results of analysis are communicated to a gateway node
in a delay tolerant manner, for cloud-based learning. We
describe our GA based learning model that performs the
optimization of input parameters used in device-based
analysis in order to meet the performance requirements.
The reduced dependency of our system on external
infrastructure ensures ease of implementation in both
indoor and outdoor environments along with a low
operational cost. We evaluate our system for outdoor
localization using acceleration data gathered by our
wearable device. We assess the suitability of our GA for
the optimization problem and analyze the performance
of the on-board analytics in terms of classification and
localization accuracy over different mobility patterns.
The results confirm that our system can achieve a high
positional accuracy despite a short initial training period

and low frequency of data computations on the resource-
constrained sensor devices.
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1 INTRODUCTION
With increase in the number of Internet of Things (IoT) applications, localization of IoT devices—
such as routers, smartphones, and various wearable technology—has gained signi�cant importance
for improving context-awareness and providing Location Based Services (LBS), such as navigation
and target tracking [1]. Traditionally, use of Global Positioning Systems (GPS) has been proposed
for realization of outdoor LBS. GPS-enabled Ceres tags [2], for instance, have been designed for
livestock and farmland management in pursuit of Precision Farming. Besides detecting feeding
rates and rumination for individual cows, these ear tags are used for mobility tracking to detect
boundary breakouts and alert farmers in case of theft or an ambitious animal. Location awareness
can, in turn, be used to control navigation of animals within farms for implementation of virtual
fence [3]. While GPS technology is preferred due to ease of integration with IoT devices, majority of
modern-day IoT solutions are replacing its use, owing to poor accuracy in bad weather conditions
and crowded environments, as well as the energy-hungry nature of GPS receivers that negatively
a�ects the battery-life of the IoT devices. Alternatively, use of Wireless Sensor Networks (WSN)
has been proposed for localization [4]. The WSN-based techniques perform triangulation using
range-based measures, such as Received Signal Strength (RSS) [5], to estimate the relative dis-
tance of mobile nodes from static, anchor nodes for localization. SmartBow [6], for instance, is an
ear tag that has been designed to monitor mobility and rumination of dairy cows. The system uses
a triangulation algorithm to calculate the x/y/z coordinates of cows with respect to a �xed access
point (wallpoint). Although WSN-based techniques are low power when compared to GPS, they re-
quire the use of either additional infrastructure deployed on the farm or external cloud resources
for data analysis. While the former increases the cost of system deployment and maintenance,
the latter requires accessibility to cloud resources, which is typically limited in remote applica-
tions, such as in dairy farms. Furthermore, the performance and e�ciency of these approaches
is often a�ected by outdoor noise and the need for frequent time synchronization between
devices.

Meanwhile, with advances in the design and computational capabilities of IoT edge devices
(e.g., smartphones and sensors), localization on-board these devices (using data from built-in in-
ertial sensors) has been suggested under the umbrella of Fog Computing [7]. Fog Computing is
a novel paradigm that extends Cloud Computing to the edge of the network and proposes the
use of existing compute and networking resources available at the IoT edge devices for real-time
data analytics. In doing so, it aims at optimizing resource e�ciency of the system while improv-
ing responsiveness to alerts through reduced cloud dependency. As such, fog-enabled localization
on edge devices can potentially overcome limitations of the WSN-based approaches discussed
above. Indoor localization on-board user smartphones, for instance, has been discussed in Ref-
erence [8]. The proposed technique detects activity states using inertial data obtained from user
smartphones and performs activity-sequence-based map matching (ASMM) using Hidden Markov
Model (HMM) to identify special points on the map as the user walks around the given topology.
While quite a few smartphone-based localization techniques have been proposed to date (discussed
in detail in Section 2), certain IoT applications designed using the WSN technology lack such
relatively powerful edge devices. Current animal health monitoring systems in dairy farms, for
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instance, consist only of low-power animal-wearable sensor devices, such as Moomonitor [9] and
HerdInsights [10]. These devices borrow principles of Fog Computing and operate autonomously
(without continuous interaction with third-party components, such as gateways/PC or the cloud)
to detect small-scale health or behaviour anomalies. These events are stored locally on the collar
devices and transmitted to end-users in a delay-tolerant manner. Such devices, however, lack loca-
tion awareness, owing to inadequate infrastructure in remote farms. To ensure real-time contextu-
alization of sensor data in similar mobility tracking WSN that are deployed in remote applications,
there is a need to design novel light-weight localization algorithms suitable for implementation
on-board the low-power, resource-constrained sensor devices.

Edge Mining [11] is a Fog Computing approach that proposes implementation of light-weight
data mining tasks on sensor devices. The approach aims at improving real-time responsiveness of
these devices through on-board detection of application-related events. Furthermore, it improves
the energy e�ciency of devices through reduced packet transmissions to the cloud. ClassAct, an
instance of Edge Mining, has been proposed for sensor-based activity classi�cation. It is a decision-
tree-based technique that uses acceleration data from wearable inertial sensors to estimate the
user activity state. The activity states can, in turn, be analyzed to determine the location. How-
ever, ClassAct bases its prediction on low-order moments, such as windowed mean and variance
at �xed time intervals. This limits its use in applications where the acceleration signal comprises
of activity states with signi�cant overlap in measurements. As such, while the values may come
from di�erent distributions, they exhibit the same feature values and cannot be distinguished from
each other. To address this limitation, the authors have previously proposed Iterative Edge Mining
(IEM) in Reference [12]. Unlike ClassAct, IEM classi�es the activity states based on the histograms
of acceleration measurements across multiple bins. It, thus, captures the distribution of signal and
is particularly useful in scenarios where the overlap in states is signi�cant and the mixture is im-
balanced, i.e., the likelihood of occurrence for a certain activity is signi�cantly higher, compared
to the others. The histogram approach, however, incurs additional costs in calculating and main-
taining the bins and may a�ect resource e�ciency of the approach.

To overcome this limitation, in this article, we present an extension of the IEM approach, namely
IEM2.0. The IEM2.0 algorithm replaces the histograms with Moving Windowed Minimum and
Maximum features for analyzing the signal distribution and classi�cation. The adaptation aims at
reducing the program size and number of computations for activity classi�cation, while capturing
changes in the distribution. In addition, we propose a novel localization technique based on IEM2.0
that is suitable for execution on low-power wearable sensor devices. The technique makes joint
use of two light-weight analytic methods—IEM2.0 and Cooperative Activity Sequence-based Map
Matching (CASMM). First, the approach performs acceleration-based activity recognition using
IEM2.0. The sequence of activities generated by IEM2.0 is then analyzed by the CASMM method
to detect the location. CASMM exploits the spatial-temporal coherence of neighboring sensor de-
vices for Cooperative activity-state detection by facilitating exchange of location updates between
devices and extends the ASMM approach proposed in Reference [8] to map the resultant sequence
of activities to a given topology and determine the location. Furthermore, we exploit the location
information of devices and present a context-aware, event-driven communication framework for
data transmission to the cloud. The framework is proposed to improve the energy e�ciency of
the devices by reducing unnecessary periodic transmissions. We illustrate the use of our IEM2.0-
CASMM approach for activity recognition and localization of animals in a pasture-based dairy
farm. While IEM2.0 is used for classi�cation of high-level activity states of animals, CASMM is
used to map the sequence of activities to an outdoor road network and estimate the location. The
main contributions of the article can be summarized in the following:
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• Adaptation of the IEM approach proposed in Reference [12], namely IEM2.0, for activity
classi�cation. IEM2.0 is proposed to reduce the number of on-board computations and
improve resource e�ciency of devices. It replaces the histogram-based approach with
windowed feature analysis to capture the signal distribution while removing unnecessary
calculations. The mathematical formulation of IEM2.0 is discussed, and its suitability over
ClassAct is demonstrated for naturally occurring mixed Gaussian signals with di�erent
mixture proportions.

• Design of an end-to-end WSN system for IEM2.0-CASMM-based context-aware sensing
and communication. The system performs activity recognition using IEM2.0 and adapts
the existing ASMM technique for cooperative activity sequence-based map matching to
allow on-board localization in outdoor environments. We also present theoretical models
for calculating communication energy cost incurred by the devices and discuss an event-
driven communication framework for optimizing energy consumption of the network.

• An application of our IEM2.0-CASMM approach for high-level activity recognition and lo-
calization of animals in a pasture-based dairy farm. An extensive evaluation has been car-
ried out to analyze the accuracy and energy e�ciency of our localization approach using
real-world animal-mobility data collected during a pilot study in Kilworth, Co. Cork, Ire-
land. Moreover, a dedicated memory analysis has been carried out to assess the resource
requirements of IEM-2.0 to verify its suitability for sensor-based execution.

The remainder of this article is structured as follows: In Section 2, we present the related work. In
Section 3, we present our system architecture and discuss the IEM2.0-CASMM-based localization
approach. We also describe our context-aware communication framework. In Section 4, we present
our case study and the implementation of IEM2.0-CASMM in the context of dairy farming. We also
discuss our experimental setup and �eld study. In Section 5, we present an extensive evaluation
of our approach using real animal-mobility data, followed by a resource assessment of IEM-2.0 in
Section 6. In Section 7, we conclude the article.

2 RELATED WORK
In this section, we review state-of-the-art IoT-based localization and discuss the recent advances
in sensor-based analytics.

2.1 Localization Techniques
Several localization techniques have been proposed, to date, for IoT applications. Traditional IoT-
based systems make use of GPS for outdoor localization due to their high accuracy as well as ease
of integration of GPS receivers with IoT devices. For instance, GPS units have been used for lo-
calization of the elderly for assisted living in Reference [13]. While the approach achieves high
accuracy, the system relies on a remote reasoning system for data analysis and may incur delay in
getting insights due to the intermittent Internet connectivity. Moreover, the use of GPS receivers
coupled with the frequent data transmissions may negatively impact the lifetime of the devices.
Alternatively, the use of cellular systems has been proposed for trajectory tracking. In Reference
[14], for instance, the system uses cellular technology to estimate the coarse location of mobile
devices through signal trilateration. This information is combined with stationary state detection
and HMM-based algorithms to decipher the most probable path. The performance of such a sys-
tem, however, is a�ected by low sampling frequency and may result in errors ranging to a few
kilometers. A digital map-matching system called SnapNet [15] has been proposed to improve the
location accuracy of cellular-based systems. The system implements an incremental HMM algo-
rithm to account for the noise in the input data and uses digital map hints to enhance the accuracy
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of the estimated road segments. The use of such systems, however, is limited to scenarios with reli-
able cellular networks. In Reference [16], a Wi-Fi-based localization approach has been discussed.
The approach uses commodity Wi-Fi (Intel 5300) to estimate the doppler velocity and angle of
arrival measures for localization purposes and incurs an error as low as 35cm. The performance
of Wi-Fi-based localization systems, however, is usually a�ected by radio signal noise, making it
unsuitable for outdoor environments.

Alternatively, the use of WSN for localization has also been proposed. In Reference [17], for in-
stance, the authors present a light intensity-based indoor positioning system that performs predic-
tions using RSS measures within WSN. Another study in Reference [5] investigates the feasibility
of RSS-based sensor node localization in well-de�ned outdoor topology. Such range-based mea-
sures, however, often exhibit a low signal-to-noise ratio, thus a�ecting the quality of prediction.
An experimental evaluation of WSN-based localization has been carried out in Reference [4]. Al-
ternatively, with advances in embedded sensor technology, the use of Pedestrian Dead Reckoning
(PDR) systems has been proposed for localization purposes. PDR systems use mobility data (e.g.,
acceleration,velocity) from built-in inertial sensors in user wearables/smartphones and calculate
displacement to get the current location. The authors in Reference [18] present a PDR system that
uses 8 Inertial Motion Units (IMU) worn on the body and a force sensor worn under the feet to
capture joint movements for user localization. Another instance of a PDR system has been dis-
cussed in Reference [19]. The system presents a blind localization algorithm that combines data
from built-in inertial and acoustic sensors in user smartphones using a maximum likelihood es-
timator to gauge the location of the smartphone. Standalone PDR systems, however, often accu-
mulate errors due to drift with walking distance over time. To overcome this issue, assisted-PDR
approaches have been proposed. In Reference [20], a PDR system is accompanied by iBeacons and
the Kalman-Filter-based calibration algorithm is used to correct the drift. A PDR-based ASMM
technique has been proposed for indoor localization in Reference [8]. The system performs low-
level activity recognition, such as turning or walking up and down di�erent �oors, using built-in
inertial sensors in user smartphones as a user walks to special points, such as corners, elevators,
escalators, and stairs. The sequence of activities is then used to establish the user’s trajectory and,
in turn, mapped to an indoor road network for accurate positioning. The ASMM approach presents
a cost-e�ective solution for indoor localization, as it requires minimum interaction with external
third-party components.

In this work, we present our IEM2.0-CASMM-based PDR system for real-time localization. The
approach takes as input acceleration data from built-in inertial sensors in wearable devices and
performs decision-tree-based activity recognition using the IEM2.0 algorithm. As compared to
the existing techniques, IEM2.0 is light-weight and suitable for implementation on-board low-cost
sensor devices. The sequence of activities generated using IEM2.0 is then analyzed by the CASMM
module for localization. CASMM is a cooperative extension of the ASMM approach discussed in
Reference [8]. At �rst, the approach implements cooperative computing via collective participation
between co-located devices to improve accuracy of classi�cation on individual devices. Next, if a
change in activity state is observed for any device, then ASMM is performed to map the sequence
of activities to a given outdoor topology for localization. While HMM is used to implement ASMM
in Reference [8], we replace this approach with a light-weight window analysis using a threshold
T to ensure suitability for sensor-based execution. The two techniques are discussed in detail in
Section 3.

2.2 Sensor Analytics
With increase in the number of IoT devices, huge amounts of data is periodically created and
uploaded on the cloud for analysis. Such data abundance (typically referred to as “big data”),
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however, burdens the existing cloud resources and causes latency in getting insights into the data.
Subsequently, the Fog Computing paradigm has been proposed to shift certain intelligence from
the cloud towards the data sources, i.e., the network edge devices [21]. The use of compute and
network capabilities available at these devices would allow localized reduction of data within the
network to not only optimize the use of existing resources but also improve the responsiveness of
the IoT system by reducing dependency on the cloud [22]. As mentioned earlier, while the use of
IoT edge devices (e.g., network switches, smartphones) as fog agents has widely been proposed,
recent studies have further brought down the computations to sensor devices. Owing to improve-
ments in the computational capabilities of sensor devices conventionally limited to sense and send,
the tasks designed for these devices today incorporate certain sophisticated data analytics. For in-
stance, Data Fusion within WSN has been proposed in Reference [23] to reduce redundancy in
overlapping data and improve coverage. Another study in Reference [24] suggests the mapping of
an Arti�cial Neural Network (ANN) onto WSN for the design of “Smart Furniture.” The authors in
Reference [11] propose Edge Mining techniques to perform data mining on-board sensor devices.
Edge Mining forms the basis of our activity classi�cation approach, IEM2.0, and is discussed in
greater detail below.

Edge Mining [11] is a Fog Computing technique that suggests the implementation of light-
weight data mining tasks on sensor devices. It adopts the principles of the Spanish Inquisition
Protocol (SIP) [25] that proposes transmission of only the unexpected information from the net-
work to a sink (gateway). SIP converts the raw data from sensors into an application relevant state
that is considered signi�cant and reported by the sensor only if it cannot be predicted using the
past estimates. Three instances of Edge Mining have been discussed based on generalized SIP—
Linear SIP (L-SIP), Bare Necessities (BN), and ClassAct. L-SIP de�nes the application state as the
point-in-time value and the rate of change. BN represents the state as a distribution of data across
non-overlapping bins where each bin de�nes a possible outcome [26]. ClassAct is a decision-tree-
based classi�er. It takes as input raw sensor data and encodes the application state as a probability
distribution over a given set of states. The use of ClassAct has been shown for identi�cation of
low-level activities, such as sitting, standing, and walking, in Reference [27]. While the system
achieves a high classi�cation accuracy, the classi�cation is performed using low-order moments,
such as windowed mean and variance at �xed points in time. This approach inevitably leads to
classi�cation errors while separating signals (time-variant data re�ecting a particular behaviour,
such as acceleration while walking and standing) for which measurements have similar mean and
variance though come from di�erent distributions. While the use of higher moments (e.g., skew-
ness and kurtosis) may help in identifying the di�erent states, their calculation is computationally
complex for the sensor devices.

IEM has been previously proposed by the authors in Reference [12] to overcome the limitation of
ClassAct approach. IEM is a decision-tree classi�er that is designed as the superimposition of two
Edge Mining algorithms—BN and ClassAct. First, IEM runs the BN algorithm to convert raw sensor
measurements into a distribution across a set of non-overlapping and exhaustive bins, where each
bin represents a range of values that the variable can take. The distribution is smoothed over the
past readings using a decay factor � on account that no sudden changes occur in the activity state.
Next, the percentage change in distribution is estimated. If the change exceeds a threshold � , where
0 < � < 1, the distribution for all bins is fed as input to the ClassAct algorithm for activity-state
recognition. By considering the signal distribution as input to the classi�er (as opposed to win-
dowed mean and variance), IEM captures the nature of the signal over time and thereby addresses
the limitation of ClassAct. The performance of IEM has been evaluated for classifying low-level
activities, such as walk and stand in Reference [12]. While IEM is shown to achieve an accuracy
of 95% with very low frequency of computations, the histogram-based implementation (inspired
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Fig. 1. (a) System architecture (b) ClassAct-, IEM-, and IEM-2.0-based classification.

by the BN algorithm) requires multiple �oating-point operations to maintain the bin counts and
distribution. Based on the selection of bins, this may negatively a�ect the resource e�ciency of
the algorithm for sensor-based execution. In this work, we discuss an adaptation of IEM that is
more suited for implementation on sensor devices (Section 3.1) and evaluate its performance for
high-level activity recognition for dairy cows. An array-based implementation of the algorithm is
also discussed in Section 6 to evaluate the resource requirements.

3 IEM2.0-CASMM FOR ON-BOARD LOCALIZATION
Figure 1(a) illustrates the architecture of our IEM2.0-CASMM-based localization system. As can be
seen, the system operates in two phases—o�ine training phase on the cloud and online localization
phase at the edge. While the IEM2.0-CASMM model is light-weight and suitable for sensor-based
localization, training the model is a compute-intensive task and is, therefore, carried out o�ine on
the cloud. In the training phase, at �rst, historical data is collected from in-built inertial sensors in
wearable devices and analyzed to extract suitable feature(s) for classi�cation. Then, (un)supervised
learning is performed to train and test the IEM2.0 and CASMM models for the given application
scenario. IEM-based classi�er (DT ) is generated for di�erent values of input parameters. The DT
is used to analyze the acceleration data and identify the activity state. The sequence of activities
generated by IEM is then analyzed by the CASMM method for map-matching-based localization.
CASMM performs cooperative analysis between neighboring devices (considered as a coalition) by
allowing exchange of location updates to improve accuracy of individual predictions and maps the
updated sequence of activities to a given topology for identifying the location. The performance of
CASMM is evaluated for di�erent coalition sizes. Based on the performance evaluation and a given
optimization function (e.g., maximizing location accuracy or minimizing energy consumption) that
is derived from application requirements, the values for input parameters for IEM2.0-CASMM are
�xed (i.e., windowSize , � , and coalition size). The optimal performing model is then transferred
onto the sensor devices for on-board analysis. In the online phase, IEM2.0-CASMM is executed
to analyze the periodically sensed acceleration data for real-time activity recognition and local-
ization. The estimated location is combined with data from other sensors (such as temperature,
humidity) to facilitate context-aware sensing and communication. An instance of this architecture
is discussed for localization of dairy cows in Section 4 (depicted in Figure 6). The IEM2.0-CASMM
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model is suitable for implementation on-board animal-wearable devices and allows for real-time
context-aware sensing as the cows move around the farm. We assume prior knowledge of the farm
topology for the CASMM module. Furthermore, as CASMM assumes presence of co-located or co-
herently moving devices for coalition-based cooperation, we consider conventionally milked dairy
cows that move together in a herd between parlour and paddocks. Note, however, the CASMM ap-
proach extends easily to scenarios where devices move independently: for instance, in case of
automatic milking wherein dairy cows may follow di�erent milking cycles, by forming dynamic
coalitions on the move (as discussed in Section 3.2). The calculation of overhead while setting up
coalitions is beyond the scope of this work. In the remainder of this section, we present a detailed
description of the two analytic approaches and our context-aware, event-driven communication
framework.

3.1 Iterative Edge Mining (IEM)
IEM2.0 is an adaptation of the IEM approach, which replaces the histogram-based analysis with
Windowed Minimum and Maximum (winMin,winMax ) features for activity-state classi�cation.
The moving window analysis examines the temporal patterns present within the signal and cap-
tures the variability in distribution of values over time. The use of these features ensures sensi-
tivity to minute changes in distribution of sensor measurements while reducing the unnecessary
�oating-point operations. This, in turn, improves the e�ciency of the algorithm, making it suit-
able for increased range of IoT devices and applications. Here, the window size is an input pa-
rameter that accounts for smoothing over the historical data similar to the decay factor � used in
histogram-based IEM (discussed in Section 2.2). Classi�cation is performed only if the percentage
change in either of the feature values exceeds the threshold � , where 0 < � < 1. When it comes to
�oating-point operations, IEM-2.0 requires only � and <, as opposed to the �oating-point division
and multiplication (e.g., histogram estimation, smoothing) that are additional requirements of the
previously proposed IEM technique. The di�erence between ClassAct-, IEM-, and IEM-2.0-based
classi�cation is depicted in Figure 1(b). We present the mathematical formulation of IEM2.0 and
illustrate its suitability over ClassAct for normal and mixed Gaussian distributions in the next sec-
tion. We consider these signals owing to the nature of real-world acceleration data collected for
di�erent activity states as seen in this study (see Figure 15).

3.1.1 Gaussian Mixtures and Their Impact on ClassAct Classification. Consider signals Snorm
and Smix for which values are i.i.d. and come from a normal Gaussian distribution pnorm (x ) =
N (x , µ1,� 2) and a two-component Mixed Gaussian distribution, respectively, where x represents
sensor measurements. The �rst component of the mixture follows the same normal distribution
as Snorm , while the second component follows a normal distribution with the same variance � 2

but larger expectation µ2 > µ1. The samples x are drawn from the �rst and second components
with probabilities 1 � � and � , respectively, where � < 0.5 (i.e., dominance of the �rst component).
Accordingly, the distribution of Smix values has the probability density function (PDF) expressed
here:

pmix (x ,� ) = (1 � � ) · N (x , µ1,� 2) + � · N (x , µ2,� 2). (1)

Naturally, both Snorm and Smix can be treated as representatives of the same parametric familyF of
signals, where values come from distributions with PDF speci�ed by the Equation (1) for di�erent
�-values. In a way, � describes the impact of minor component on the overall value distribution.
Figure 2(a) illustrates the e�ect of � on the signal values and their distribution (generated using
Equation (1)) for µ1 = 0, µ2 = 3, and � = 1. As expected, F (0.00) produces the normal signal Snorm .
As � increases, the impact becomes more apparent (e.g., F (0.05)) and eventually makes the signal
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Fig. 2. Gaussian Mixture E�ect and its impact on (a) Signal distribution (b) Win mean (c) Win variance.

bi-modal (e.g., F (0.40)).1 This directly impacts the precision with which samples of F (0.00) (i.e.,
normal distribution) can be separated (e.g., using windowed mean and variance as in ClassAct)
from samples of other, truly Mixed Gaussian elements of F (i.e., � > 0.00). For a �xed � 2 (0, 0.5),
an arbitrary window Fn (� ) of n consecutive samples from F (� ) will include exactly n � i and i
values from the major and minor components with probability

P (I (Fn (� )) = i ) = Ci
n · � i · (1 � � )n�i , (2)

where I is an indicator function that shows the number of values from the minor component of
Fn (� ) window. Under the condition I (Fn (� )) = i , the window can be analyzed as if it consisted
of n independent normal variables. Therefore, conditional PDFs for windowed mean and variance
of these variables equates to

P (E (Fn (� )) = x | I (Fn (� )) = i ) = n · N (n · x , (n � i ) · µ1 + i · µ2, n · � 2),

P (Var (Fn (� )) = x | I (Fn (� )) = i ) = n · X2 (n · x ,n, (n � i ) · µ2
1 + i · µ2

2 ),
(3)

whereX2 is a non-central chi-squared distribution. Here, to simplify the formulae, we deliberately
make use of the fact that all of the normal variables are uni-variate with � 2 = 1 (see Figure 2).
Subsequently, using Equations (2) and (3), the overall probability function of windowed mean and
variance can be calculated as

P (E (Fn (� )) = x ) =

i=nX

i=0
P (E (Fn (� )) = x | I (Fn (� )) = i ) · P (I (Fn (� )) = i ),

P (Var (Fn (� )) = x ) =

i=nX

i=0
P (Var (Fn (� )) = x | I (Fn (� )) = i ) · P (I (Fn (� )) = i ).

(4)

Note, the above equations (Equation (4)) also hold for windowed mean and variance of normal
signals represented by the �-value equal 0.00. These equations particularly help us evaluate the
impact of � on the distributions of windowed mean and variance of various signals from F family.
Figures 2(b) and 2(c) show exemplar distributions (generated using Equation (4)) for various win-
dow sizes (i.e., 10 and 20) and �-values (i.e., 0.00, 0.05, 0.40). The histograms for mean and variance
are generated using simulated data. As shown, signals with � = 0.00 and � = 0.05 share majority
of their windowed mean and variance values, which signi�cantly a�ects separability of the two
cases using traditional ClassAct method. As alpha increases, typical windowed mean and variance
values move further away from those of � = 0.00 and, hence, increase separability. An increase

1Figure 2(a) demonstrates that a mixture of multiple components that follow normal distributions may not always follow
a normal distribution. The distribution is, in fact, governed by the � factor.
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Fig. 3. Gaussian Mixture E�ect on joint windowed mean and variance distribution. (a) No e�ect (� = 0.0)
(b) Low e�ect (� = 0.05) (c) Medium e�ect (� = 0.4).

in window size compresses the distributions along the value axis and also aids the separation. A
similar behaviour is observed if the windowed mean and variance are used jointly, as shown in
Figure 3.

As seen in Figure 2, while � = 0.05 increases the ratio of higher values (i.e., above x = 2), the
increase is not su�cient to warrant a noticeable impact on windowed mean and variance and,
therefore, classi�cation of signals. To overcome this, Iterative Edge Mining [12] is based on his-
togram representation of signal and, therefore, has higher sensitivity to minute changes of signal
distributions. Subject to bin selection, the increase in ratio of higher values will be re�ected by the
histograms, thereby improving the classi�cation. This method, however, comes at a cost where
multiple bins need to be continuously maintained and analyzed on-board IoT devices. Accord-
ingly, we discuss an adaptation of IEM that is more suitable for IoT-based execution.

3.1.2 IEM-2.0 for Classification of Mixed-Gaussian Signals. To analyze the predictive capabili-
ties of IEM-2.0, we �rst evaluate distribution of values for the winMax feature for F (� ) Mixed-
Gaussian Signals. For brevity, we omit thewinMin feature, since the analysis for it is a mere adapta-
tion of the analysis presented here. Consider the maximum of an arbitrary window Fn (� ). Similar
to Equation (3), under conditions I (Fn (� )) = i , the Cumulative Distribution Function (CDF) for
winMax equals to:

P (Max (Fn (� )) <= x | I (Fn (� )) = i ) = N ⇤ (x , µ1,� 2)n�i · N ⇤ (x , µ2,� 2)i
, (5)

where N ⇤ denotes a CDF of normal distribution. Accordingly, the overall CDF of Fn (� ) is:

P (Max (Fn (� ))  x ) =

i=nX

i=0
P (Max (Fn (� ))  x | I (Fn (� )) = i ) · P (I (Fn (� )) = i ). (6)

Now, let us assume that for a particular n � 1 and � > 0, a decision tree is used to separate se-
quences Fn (� ) from Fn (0.00), based on a particular m-dimensional feature f that is a function
from Rn onto Rm . While m = 1 implies Window Mean, Variance, Maximum, and Minimum are
used independently,m = 2 implies they are used jointly. Assume that CDF for the possible feature
values of Fn (0.00) and Fn (� ) sequences are known and denoted as PFn (0.00) and PFn (� ), respec-
tively. During the decision-tree analysis, feature values are �rst derived from the given n signal
values and then subjected to a number of threshold assessments, as speci�ed by the decision tree.
Going back to the example considered in Figure 2, it is fair to assume that the optimal decision
tree will consist of only one node. Sequences for which features exceed the threshold will be clas-
si�ed as Fn (� ), whereas the sequences for which the features are below the threshold will be
classed as Fn (0.00). Subsequently, for a threshold xtr , probabilities of type I and I I errors (PI , PI I )
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Fig. 4. Gaussian Mixture E�ect on single-feature classification for low (� = 0.05 (a)) and low-to-medium
mixture e�ects (� = 0.15 (b)); Joint windowed mean & variance classification for low and medium mixture
e�ects (� 2 {0.05, 0.4} (c)).

are equal to:

PI (xtr ) = PFn (� ) (xtr ),
PI I (xtr ) = 1 � PFn (0.00) (xtr ).

(7)

Therefore, the optimal threshold minimizing the error of both types can be calculated as:

XOPT = Ar�minx 2Rn (Max (PFn (� ) (x ), 1 � PFn (0.00) (x ))). (8)

As all CDF are continuous, monotonously increasing functions with range between [0,1], it can
be shown that XOPT always exists and that PI (XOPT ) = PI I (XOPT ). Thus, where 1-dimensional
features (m=1) are concerned, the solution for the problem in Equation (8) can be calculated thusly:

PFn (� ) (x ) = 1 � PFn (0.00) (x )). (9)

For m � 2, solving Equation (9) will generate a subset HX of the original feature space Rm . Subse-
quently, the optimization problem can be re-formulated as:

XOPT = Ar�minHX PFn (� ) (x ). (10)

Knowing XOPT allows us to further numerically evaluate probabilities of PI and PI I errors for
selected features. Figures 4(a) and 4(b) demonstrate results of such evaluation that have been per-
formed using CDF functions for windowed mean, variance, and maximum obtained above (note
that for the �rst two metrics, we derive PDFs that can be easily transformed into CDFs). The
evaluation was made for the same set of µ and � 2 parameters and shows that for windows of
low and moderate sizes winMax and, therefore, IEM-2.0 has a lower error rate (i.e., better predic-
tion capability) than ClassAct. The advantage of the IEM-2.0 is more apparent for lower �-values
(Figure 4(a)) and diminishes as� and/or window-size increase (Figure 4(b)). And, �nally, Figure 4(c)
demonstrates this e�ect when Window Mean and Variance are used jointly. While in this work, we
do not present analytic formulae for joint CDF for Window Mean and Variance; during the analysis,
we interpolate these functions based on results of numeric simulations. As evident, it is particularly
bene�cial to use IEM-2.0 for classi�cation of signals whose behaviour closely resembles that of F�
with lower � values. Note that while thewinMax feature of IEM-2.0 has been deliberately used in
this example due to the positive nature of histogram shift (as demonstrated in Section 3.1.1), the
shift in histogram is typically non-stationary and may be positive or negative in nature. Therefore,
in IEM-2.0, we perform classi�cation based on the joint use of (winMin,winMax ) features.
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Fig. 5. (a) E�ect of cooperation (b) Implementation of ASMM.

3.2 Cooperative Activity Sequence-Based Map Matching (CASMM)
Once the activity state is identi�ed, the sequence of activities generated by IEM2 is analyzed by the
CASMM method for localization. The CASMM method consists of two light-weight computational
tasks—Cooperative activity-state detection and ASMM.

Despite the improved classi�cation accuracy of IEM over ClassAct, certain (PI , PI I ) errors may
persist, owing to strong overlap between signals, especially, for lower � values. These errors may
further increase in the presence of >2 signals (i.e., more than two activity states). Now, let us
assume that at any given time t , a set of devices N (|N |), where each device n 2 N runs the
IEM algorithm for on-board localization, are located within the same physical area denoted by Li
(Figure 5(a)). The area Li is de�ned such that all IoT devices within this area exhibit a common
high-level activity state. Therefore, while each node n analyzes individual activity state, it can
be argued that analysis on a single node (referred to as the initializing node (IN)) would su�ce
the activity recognition for all N in Li . However, we suggest analysis on all n 2 N or a subset of
N devices as well as cooperation between the neighboring participating devices for exchange of
activity-state updates to improve accuracy of individual predictions.

We envisage a set of participating devices N 0 (|N 0 |  |N |) nearest to node n (at any given time)
as a coalition that exhibits a common activity state based on the location. Besides the individual
predictions, we propose that each participating device maintains a local copy of the shared network
state. If a change in activity is predicted by any device n 2 N 0 such that the predicted state di�ers
from the shared network state, then it initiates cooperation with the remaining nodes in N 0. We
use an equal-weight majority-voting scheme wherein the shared network state is calculated as
the mode of the predicted state at each device n 2 N 0. If the majority of devices in N 0 agree with
change in state, then it implies that device has departed from Li and moved to another area Lj , i ,
j and, therefore, exhibits a di�erent activity state. Otherwise, it is assumed that the device has
predicted an untimely change in activity state, and the last updated activity state is maintained.
Such cooperation between devices would not only allow detection of misclassi�ed states but also
facilitate the timely detection of state transitions. For instance, as shown in Figure 5(a), cooperation
between devices facilitates correction of within-the-state errors (in L3) and timely detection of

2All mentions of IEM hereafter refer to IEM-2.0 unless speci�ed otherwise.

ACM Transactions on Sensor Networks, Vol. 15, No. 2, Article 23. Publication date: March 2019.



Leveraging Fog Analytics for Context-Aware Sensing in Cooperative WSN 23:13

change in state as a node moves from L1! L2. Depending on the vicinity of the node, however,
cooperation may lead to certain errors. As shown in Figure 5(a), a node in L1 may assume the
activity state in L4, owing to its closeness to the sensor devices. The ASMM module is used to
identify such errors and improve accuracy of state detection and, thereby, localization.

Once the cooperation is performed, the sequence of activity states is interpreted by the ASMM
module. As mentioned earlier, ASMM is primarily proposed for indoor pedestrian localization [8].
The approach uses activity-related locations (e.g., staircase and corners) within a building as virtual
landmarks to determine user trajectory and location. While a large outdoor environment may lack
such characteristic landmarks, the ASMM approach can be extended to outdoor IoT-based local-
ization, since the high-level activity and mobility of a user are essentially bounded by the outdoor
topology. We, therefore, propose to determine the location of a node by mapping the sequence
of activities along with their corresponding duration to a given outdoor map. Such mapping is
light-weight and suitable for sensor-based implementation. If a change in state is recorded after
cooperation, then the sequence of previously stored activities along with the corresponding dura-
tion is fed as input to the ASMM module. The ASMM module accepts the change in state only if it
is consistent with the topology (i.e., physically feasible) and has been predicted for a continuous
period higher than a given threshold T . The trajectory of motion and location is then determined.
Otherwise, the change in state is regarded as a classi�cation error, and the user activity state and
location is considered unchanged. For instance, consider that a user (sensor device) in Figure 5(a)
can only move in a clockwise direction from L1 ! L2 ! L3 ! L4 ! L1, as shown in Figure 5(b).
Given the initial reference point (L1), a node can either remain in the same activity state (and lo-
cation) or move to L2. Therefore, any changes in state corresponding to locations L3 and L4 are
discarded by the ASMM module. Moreover, location is updated to L2 only if the corresponding
state is predicted for a duration of T . Similar behavior is implemented for all state transitions.
While such an approach may increase the delay in detecting state transitions (depending on the
value of T ), it reduces the incoherent and untimely changes in activity that may be predicted after
cooperation (e.g., error in L1 in Figure 5(a)).

Our IEM2.0-CASMM-based localization approach is summarized in Algorithm 1. The algorithm
takes as input acceleration data at time t (acct ), parameters windowSize, �, and decision-tree DT
for IEM-based classi�cation, set of nodes N , coalition N 0t at time t , threshold T and roadMap
for CASMM, and returns two vectors containing the sequence of activities (actVector ) and lo-
cations (locVector ). First o�, the distribution of acc values is estimated using DIST function that
calculates the winMin,winMax features. If the percentage change in either of the features ex-
ceeds the threshold � , then DT is used to classify the activity state (state). If the predicted state
di�ers from the last updated device state (lastUpdatedState) as well as the last stored network
state (lastNetworkState), then the change in activity may suggest a change in the device location.
Subsequently, cooperation between N 0t neighboring devices is performed to obtain the majority
voted activity state. If the networkState is not in harmony with the state value, then the change
in activity is considered as a classi�cation error and discarded. Otherwise, if the change in state
persists for a period T , then ASMM is performed to validate the change in activity and estimate lo-
cation of the device. If the change in state is inconsistent with the given topology map (roadMap),
then the prediction is discarded and a NULL value is returned. Else, the location of the device is
returned and the activity and location vectors are updated.

3.3 Context-Aware Event-Driven Communication
As mentioned above, the optimal IEM2.0-CASMM model is determined based on the localiza-
tion accuracy as well as an optimization function. The function is designed to meet the appli-
cation requirements of the WSN-system and sets the criterion for selecting values of the input
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ALGORITHM 1: IEM2.0-CASMM-based localization
Input: acct ,windowSize, �,DT ,N ,N 0t ,T , roadMap
Output: actVector , locVector
repeat

Read sensor for acct
accVector  APPEND(accVector ,acct )
(winMin,winMax ) DIST(accVector ,windowSize) #Evaluating distribution
if (( |winMin � lastUpdatedMin | � � ⇤ lastUpdatedMin) _ ( |winMax � lastUpdatedMax | �
� ⇤ lastUpdatedMax ))
then

lastUpdatedMin  winMin

lastUpdatedMax  winMax
state  PREDICT(DT ,winMin,winMax ) #Classi�cation
if ((state , lastUpdatedState ) ^ (state , lastNetworkState ))
then

networkState  MODE(lastUpdatedState[1 : N 0t � 1]) #Cooperation
if (networkState[T � t + 1 : t] == state[T � t + 1 : t])
then

location  ASMM(roadMap,actVector , state ) #ASMM
if (location , NULL)
then

lastUpdatedState  state

lastNetworkState  state
actVector  APPEND(actVector , state )
locVector  APPEND(locVector , location)

end
end

end
end

until O�oad data to gateway

Function DIST(accVector ,windowSize)
return (min(accVector [(t �windowSize + 1) : t]),max (accVector [(t �windowSize + 1) : t]))

parameters. In this work, we consider minimization of the device energy consumption and deter-
mine the appropriate IEM2.0-CASMM model for sensor-based execution.

A vast majority of WSN-based systems are deployed to monitor remote areas that stretch over
several kilometers. As such, communication of data packets from sensor devices to a cloud gateway
is the most energy-intensive task performed by these devices. Continuous packet transmissions
to the gateway can signi�cantly reduce the operational time of these battery-operated devices.
However, most sensor data is not time sensitive enough to maintain continuous real-time Internet
connectivity. Accordingly, we propose a context-aware event-driven communication approach to
transfer data from WSN to the gateway. We exploit the location information of devices obtained
from IEM2.0-CASMM-based analysis and transmit data to the gateway only at the occurrence of a
change in location. The delay-tolerant approach would not only improve energy e�ciency of the
devices through reduced packet transmissions but also reduce the operational cost of the system
by eliminating the need for continuous Internet connectivity. As such, accuracy of localization has
a direct impact on the energy consumption of the devices. The energy cost incurred in sending a
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data packet to the cloud can be calculated as shown below [28]:

ECL = (e + � · d2) · bits . (11)

ECL is the energy consumed by a node for sending a packet containing bits number of bits to the
gateway over a distance d . The variable e denotes the energy cost of transceiver for receiving and
transmitting unit data (hardware dependent) and � is a constant [�/bit .m2].

As discussed previously, the CASMM method can help improve accuracy of classi�cation of
IEM (via cooperation between devices) and, in turn, the accuracy of localization. The cooperation
itself, however, incurs a communication overhead in sending and receiving cooperation requests
and location updates. These costs can be estimated using the following equations:

ECO = qn · ((2e + � · d
02) · bits 0 · (N 0 � 1) + Ea�� ) + (1 � qn ) · ((2e + � · d 02) · bits 0 ),

ELO = pn · (e + � · d
02) · bits 0 · (N � 1) + (1 � pn ) · (e · bits 0 ),

EC =

�X

t=1
(rt ·

NX

n=1
(ECL + ELO ) + st ·

NX

n=1
ECO ).

(12)

ECO is the energy consumed by node n per cooperation between N 0 nodes, d 0 is the distance
between the participating devices N 0, bits 0 represents the number of bits per packet, and Ea�� is
the energy cost for aggregating the location data of N 0 nodes. The decision variable qn takes a
value of 1 if the cooperation is initiated by node n and 0 if it receives a request from another node.
ELO is the energy consumed by node n per distribution of location updates among N devices.
The decision variable pn assumes 1 if node n predicts the change in location and disseminates
packets to other nodes and 0 if it receives a packet from another node. Note that the value of
bits 0 < bits , as the packet sent to the gateway contains accumulated sensor data over time while
the packet sent locally among devices contains just the state information. Moreover, d 0 < d , as the
packet sent to gateway is over a longer distance than device-to-device communication. The overall
communication energy consumed by N devices over a planning time horizon � then equates to
EC . The variable rt takes a value 1 if a change in location is predicted at time t and 0 otherwise.
Similarly, the variable st takes a value of 1 if a cooperation is initiated at time t and 0 otherwise.
We study the e�ect of windowSize , �, and coalition size |N 0 | on the energy consumption of the
network in Section 5.

4 EXPERIMENTAL DESIGN
In this section, we present an application of our IEM2.0-CASMM system for animal localization
in dairy farms. We describe our application scenario and discuss the implementation of IEM2.0-
CASMM on-board animal-wearable sensor devices, followed by the design of our WSN-based pro-
totype and the pilot study.

4.1 Animal Activity Monitoring and Localization
Real-time activity monitoring and localization of livestock is strongly advocated for on-farm LBS,
such as behavior analysis, virtual fencing, and feed management under the umbrella of Precision
Dairy Farming. Today, animal-wearable sensors are widely used to facilitate continuous moni-
toring of the physiological state of the cows for early diagnosis and treatment of diseases [29].
Enriching the results of health monitoring with animal-mobility data will allow for better under-
standing of animal behavior and well-being [30]. Combined analysis of both physiological and
behavioral data with respect to location of the animal has been shown to provide vital insights
into the farm processes and help improve their overall e�ciency [31].
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Fig. 6. IEM2.0-CASMM-based animal localization in dairy farms.

4.1.1 Application Scenario. Figure 6 depicts our application scenario. Our WSN system consists
of animal-wearable sensor devices and a cloud gateway and allows for location-aware data collec-
tion for livestock management. The animal wearable is an extensible sensor device that consists
of sensors to monitor the physiological state as well as the mobility of cows. We propose the im-
plementation of IEM on-board the collar devices to predict the activity state of cows as they move
around a farm. Furthermore, device-to-device communication is proposed to allow cooperation
between the cows and perform ASMM to estimate the location as they predict changes in activity
state. A gateway node is installed within the farm (hosted inside the parlour in Figure 6) to collect
location-enriched data from sensor devices and upload it onto the cloud for future analysis. Since a
typical farm spans across a large area and the majority of the data relating to the farm processes is
delay-tolerant, we adopt the event-driven communication approach discussed in Section 3.3. Ac-
cordingly, sensor data combined with location information is stored locally on the collar devices as
cows move around the farm, and the data is transmitted to the gateway once a change in location
is predicted. This eliminates the need for continuous Internet connectivity within a farm, which
is particularly important in rural deployments. Whereas the existing animal-wearable technolo-
gies such as RumiWatch [32] also follow a delay-tolerant communication approach, sensor data is
transmitted to the cloud every 15 minutes, as the devices incorporate very little intelligence and
rely on external (e.g., cloud-based) analysis for localization and behavior modelling. Implementa-
tion of IEM2.0-CASMM is expected to reduce the frequency of packet transmissions and improve
the energy e�ciency of the device operation. Moreover, real-time localization on-board collar de-
vices could potentially allow timely detection of behavior anomalies in cows that may be indicative
of stress and other health-related issues. Our WSN-based approach, thus, lays the foundation for
future smart livestock farming.

4.1.2 IEM2.0-CASMM Approach for Animal Localization. In Reference [12], we evaluate the
performance of IEM (histogram-based approach) for classi�cation of low-level activities, such as
standing and walking. Since the mobility of a cow is random, identi�cation of such low-level ac-
tivities is unnecessary and irrelevant for localization. Rather, we model our IEM (v. 2.0) classi�er
to predict the coarse location of cows—parlour (M), paddock (P ), and transit between parlour and
paddocks (T ) within a farm, as shown in Figure 6. These locations span the entire farm topology
and correspond to the three primary activities performed by a cow—milking, grazing, strolling
around a farm, respectively.3 The IEM-based classi�cation, thus, helps identify the high-level ac-
tivity state and location of cows.

3Note, we identify the entire yard as parlour, since the primary activity associated with cows within a yard is milking.
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Fig. 7. Behavioural state transitions using ASMM.

Furthermore, as cows move in a herd, we exploit their spatial-temporal coherence for CASMM.
Consider a herd of size N such that all cows n 2 N are equipped with a collar device and move
together from one state to another. As such, a single cow or subset ofN cows can su�ce localization
for the entire herd. We envisage the set of participating devices N 0 ✓ N within a herd to form a
coalition that exhibits a common high-level activity based on location of the herd at any given
time. If any device n 2 N 0 predicts a change in the activity state that di�ers from the network
state, then it initiates cooperation between the participating devices to allow exchange of state
information. Based on majority voting, the device updates its prediction and performs ASMM if
required. Any change in location is disseminated to all N devices. The cooperation, thus, ensures
a consistent activity state across the herd and is expected to reduce classi�cation errors as cows
replicate low-level mobility patterns from one activity state to another. For instance, CASMM may
help �x errors in prediction when the classi�er identi�es a transit state while cows walk to a water
trough within a paddock, owing to the similarity in behavior.

In Reference [8], while the route chosen by a user is unknown, the ASMM approach is used to
establish the user’s trajectory based on low-level activities, as the user follows a �xed mobility
pattern on each route. On the contrary, in a dairy-farming scenario, the cows follow designated
routes between the parlour and the paddocks due to the restricted topology of the farm. However,
as mentioned above, they perform random low-level activities (e.g., walking, standing, and sitting)
while moving along these routes and grazing within the paddocks. However, the cows follow a
�xed sequence of the high-level activities (e.g., milking, transit, and grazing). The cows are brought
into the parlour for milking. Once milked, they transit through the pathways to a paddock. After
grazing, the cows leave the paddock and transit back through the same path to the parlour, and so
on. Accordingly, we propose an adaptation of the ASMM approach to estimate the animal location
based on the sequence of these high-level activities generated by IEM, as shown in Figure 7. The
monitoring of cows commences at the milking parlour, location M0, on day 1. At M0, the cows can
either remain within the parlour or enter into the pathways, i.e., transit state T0. Therefore, any
state changes to paddock predicted after cooperation can be ignored. If a change in state to transit
is predicted for a continuous period of T (denoted as T , ..Tt in Figure 7), then it is considered
feasible and the location is changed to T0. At T0, the cows can either remain in transit state (i.e.,
stroll along the pathways) or enter into the paddocks. Any state changes to parlour can, therefore,
be ignored. Moreover, continuous change in state to paddock denoted by P , ..Pp is accepted and
location is changed to P0. Similar logic is followed to change location from P0 toT1 as cows return to
the parlour (M1) for milking and so on. Since the farmers follow a speci�c sequence of paddocks to
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Fig. 8. (a) and (b) Animal-wearable collar devices (c) Cloud gateway.

Table 1. Implementation Details

Device type Characteristic

Collar device

Components CM5000 mote [33], MPU9255 Inertial Motion Unit (IMU) [34]
Memory 48KB program �ash and 1MB non-volatile �ash for data storage
Battery 2xAA batteries

Operating system TinyOS [35]
Gateway device Components CM5000 mote, Raspberry Pi (v. 2B) [36], Wi-Fi dongle

be grazed, the state transitions along with the sequence numbers 1..n detected by IEM2.0-CASMM
can be used to determine which paddock the cows must be headed to after milking. Based on the
selection of paddock, the pathway can be determined and the time elapsed in transit state can be
used to estimate the exact location along the pathway.

4.2 Field Experiment
As mentioned earlier, our WSN prototype consists of two types of devices—wearable collar devices
and a cloud gateway, as shown in Figure 8. The design details of the two devices are given in Table 1.
While collar devices are responsible for data collection and on-board analysis of animal health and
mobility, the role of gateway is to collect sensor data from the collar devices (via mote-to-mote
communication) and upload it onto the cloud for future analysis. We deployed our prototype in a
Dairygold-sponsored farm located in Kilworth, Co. Cork, Ireland (Latitude: 52.168096, Longitude:
-8.24206) (Figure 9(a)). The farm is operated by TEAGASC, the Agriculture and Food Development
Authority of Ireland. The experiment was conducted on 5 Holstein Friesian cows (using �ve collar
devices) selected randomly from a herd of 46 cows over a period of �ve days in June 2017. For the
purpose of this study, we programmed the collar devices for collecting raw acceleration data of
cows at a frequency of 1Hz for a 10h duration per day (in accordance with the daytime milking
cycle). The data was used to examine the behaviour of cows within the milking parlour, transit, and
paddock and build the IEM2.0-CASMM model to evaluate its performance in a real-life scenario.

A LELY collar is used to place the device around a cow’s neck, as shown in Figure 8(b). An
additional weight is attached to the collars to keep the device stable. The ideal orientation of the
accelerometer axes is as follows: y-axis towards the front of the cow, z-axis was out on the side,
and x-axis was downwards. The cows follow a �xed milking cycle, as shown in Figure 9(b). They
are brought into the yard for milking in the morning. Once the milking is complete, cows exit
the parlour and proceed to the waiting area, as shown in Figure 10(a). Once the entire herd is
milked, the cows are released towards the paddocks (Figure 10(b)). Figure 10(c) shows two of the
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Fig. 9. (a) Map of the Dairygold farm in Kilworth, Co. Cork, Ireland (b) Milking cycle followed by the cows.

Fig. 10. Dairy cows during the pilot study (a) In yard (b) In transit (c) In paddock.

experimental cows inside a paddock. A single paddock is assigned to the herd per day. During the
experiment, the herd was taken to paddock NA7 on days 1 and 2, NA5 on day 3, and NA3 on days 4
and 5 (earmarked in Figure 9(a)). In the evening, the cows are brought back into the yard for
milking. For this study, the gateway node was hosted inside the milking parlour, and data from
the devices was transmitted to the gateway once the cows enter the parlour in the evening. The
time corresponding to changes in location (parlour ! transit ! paddock ! transit ! parlour)
is recorded using manual observations for annotating the data with ground-truth locations, i.e.,
parlour, transit, and paddock. These observations are made by quali�ed TEAGASC technicians
who handle the herd for ensuring animal safety. Since we study high-level localization of animals,
the use of these timestamps along with start and end time of experiment su�ce the labelling
of raw acceleration data. In addition, the system time corresponding to the receipt of the �rst
data packet from each node is maintained at the gateway. The recorded time is compared with
clock on collar device to assess drift in clock speed, as discussed in Section 5.1. For the purpose
of CASMM, a simple topology map is required that illustrates the relative position of parlour and
di�erent paddocks with respect to each other. In this study, we obtained an existing map of the
Dairygold farm depicting the various paddocks (designed by Grasstec, as shown in Figure 9(a))
from TEAGASC.
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Fig. 11. Clock dri� incurred by a collar device over time.

5 EVALUATION
In this section, we evaluate the performance of our IEM2.0-CASMM approach using the animal-
mobility data collected during our pilot study described in Section 4.2. We discuss our data
exploration and feature selection approaches used for IEM-based classi�cation, followed by the
supervised learning and performance analysis of IEM2.0-CASMM for di�erent values of input
parameters. All analysis is performed using R programming.

5.1 Data Exploration and Feature Selection
Prior to training the IEM classi�er, we analyze the acceleration data for necessary pre-processing
and feature extraction. First o�, we annotate the raw data with location (i.e., parlour, transit, and
paddock) using the recorded timestamps. A positive clock skew is observed on comparing time of
transmission of the �rst packet on the sensor devices with the corresponding system time (recorded
by the Raspberry Pi). That is, the devices associate with the gateway node prior to expiration of
the 10h duration. This is because a skew of 24ms per second has been noted for TelosB devices
[37], owing to the software implementation of device clock in TinyOS. Furthermore, this value is
a�ected by environmental factors, such as temperature, humidity, and vibration. The theoretical
and observed drift is illustrated in Figure 11. As can be seen, the observed drift maps closely to
the theory but is slightly less than the expected values. A skew of roughly 14min is incurred over
the 10h period and must be accounted for to correctly annotate the acceleration readings. We also
calculate the per-second drift for di�erent time duration, as shown in Figure 11. Whereas the value
increases initially, it stabilizes for longer duration. We model the linear dependency between the
drift and the time duration using the lm function in R, as shown below. We then calculate the value
of drift until each state transition and label the data accordingly:

drift (min) = �0.158 + 0.023 ⇤ duration (min).

Next, we examine the raw data for outliers. Figure 12(a) shows the acceleration of a cow in the
plane of movement after removal of the outliers. As can be seen, distribution of values in each
state (i.e., parlour, paddock, and transit) varies across the �ve days. This is due to environmental
factors, such as weather conditions and the quality of grass in the paddocks that a�ect behavior
of the cow. We recalibrate the acceleration data to reduce the e�ect of the environment on the
performance of the classi�er. As evident from Figure 12(a), there is a signi�cant overlap in the ac-
celeration measurements of the three states. Figures 12(b) and 12(c) illustrate the windowed mean
and variance of z-axis acceleration for all states. We use the Spearman’s Correlation Coe�cient
to measure the correlation between the mean and standard deviation of parlour and transit, and
parlour and paddock data along the y and z axis, i.e., plane of movement. The test suggests a
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Fig. 12. (a) Acceleration of a cow during di�erent activity states in the y-z plane (b) Windowed mean of accz
(c) Windowed variance of accz at windowSize = 60.

Fig. 13. Linear dependence between mean & std dev. of (a) parlour & transit (b) parlour & paddock values.

moderate correlation between the states. Accordingly, we derive the linear dependency between
mean and standard deviation of y and z-axis acceleration in the parlour and transit and paddock
data across the entire dataset, as shown in Figure 13. The mean of parlour is then set to zero, and
the linear models are used to recalibrate the data for all three states.

Thereafter, we direct our attention to feature selection for classi�cation. We use the Receiver
Operating Characteristic (ROC) criterion to test the diagnostic ability of x-axis acceleration (accx ),
y-axis acceleration (acc� ), z-axis acceleration (accz ), and net acceleration (

q
acc2

x + acc
2
� + acc

2
z ) for

di�erent cut-o� values. Since we have a multiclass problem, we carry out a pairwise comparison
(one state vs. all other states). While the accx and net acceleration do not capture clear distinction
between the three states, acc� and accz achieve a reasonable quality of separation for all nodes,
as shown in Figure 14. The area under curve for the z-axis is greater than the y-axis for all nodes,
thereby suggesting a better classi�cation performance. Accordingly, we base our IEM implemen-
tation on feature values derived from accz measurements. The z-axis re�ects horizontal movement
of a cow’s neck. The di�erence in behaviour between the states is potentially caused by the move-
ment of cows as they graze within the paddocks and eat fodder during milking. Figure 15 provides
further insights into the acceleration data from paddock and transit states across the entire dataset.
While Figure 15(a) shows prevalence of two-component Gaussian mixtures with lower � values
for windowed measurements in the paddock state, Figure 15(b) illustrates the similarity between
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Fig. 14. ROC curves to evaluate the performance of acc� and accz for classifying (a) Paddock (b) Parlour (c)
Transit states.

Fig. 15. Mixture e�ect in animal-mobility data at windowSize = 60 (a) Ratio of two-component mixtures
within paddock state (b) Mixture fi�ing of transit and two-component paddock values.

parameters of major components of those two mixtures and one-component mixtures (� = 0.00)
prevalent during transit. The dominance of major component in the mixture and the signi�cant
overlap between the measurements highlights the need to use IEM-2.0 rather than ClassAct for
animal-activity classi�cation. Accordingly, we usewinMin,winMax features for classi�cation and
study the performance of the IEM2.0-CASMM approach for di�erent values of input parameters.

5.2 Supervised Learning
Once the classi�cation features are selected, we train and test the IEM2.0-CASMM model for dif-
ferent sets of parameter values. We start by analyzing the e�ect of windowSize and � on the per-
formance of IEM, followed by the e�ect of coalition size on the performance of CASMM.

The accuracy of IEM is primarily governed by the input parameters windowSize and � . The
window size a�ects the calculation of min and max values and, thus, characterizes the signal dis-
tribution. While a small window may not capture the local min and max in close vicinity, a large
window will increase the impact of historical data and may miss the small �uctuations that re-
�ect actual state changes. As a result, increase in window size may cause a reduction in within-
the-state classi�cation errors at the expense of increasing cross-state errors around state transi-
tions. To analyze the e�ect of windowSize , we train the IEM classi�er DT for each device across
three window sizes: 10s, 30s, 60s. First, we calculate the winMin and winMax pairs for each trace
per window size. Next, we combine the data �les from all �ve days per device and windowSize ,
and generate training sets using strati�ed sampling. Each training set consists of 10% of the total
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samples with an equal number of parlour, paddock, and transit measurements. This is done to en-
sure that the classi�ers are fairly trained for all three states and the dominance of paddock data
does not conceal the behavior in other states. Thus, we generate three training sets corresponding
to the three window sizes for each of the �ve nodes. The sampled data is then fed to the C5.0
classi�er to build the decision trees. We assign � = 0 and study the e�ect of window size on the
classi�cation accuracy. The performance is evaluated per data trace (�le) for all �ve days using
appropriate DT (per device andwindowSize). A value of 0 for � allows us to evaluate the classi�er
for all possible distributions for a givenwindowSize . The training process is iterated ten times, i.e.,
10 DT are generated for each node and window size, for performance validation.

Next, we introduce the � parameter and study its e�ect on the performance of IEM. The value
of � controls the frequency of classi�cation. Whereas a small � will feed even the slightest changes
in distribution to the classi�er, a large � value will accommodate signi�cant changes in the distri-
bution without presuming change in the activity state. Accordingly, while a large � may improve
the energy pro�le of the system through reduced classi�cations, it may increase the errors due
to delay in detecting state transitions. Moreover, an error within the state persists longer due to
infrequent classi�cations. We evaluate the impact of � on the number of classi�cations as well
as the classi�cation accuracy across three values: 0.2, 0.4, 0.6, which correspond to 20%, 40%, and
60% change in distribution of the signal, using the DT trained above. While winMin and winMax
are calculated per accz reading, classi�cation is performed only if the di�erence between the up-
dated values and the previous estimates exceeds � . The cows are considered to be in the same
activity state as the last identi�ed state until the next classi�cation. Furthermore, as we adopt an
event-driven communication approach, we study the e�ect of windowSize and � on total number
of packet transmissions to the cloud by the network (PCL) and resultant EC prior to applying the
CASMM.

Finally, we evaluate the performance of CASMM for localization. As discussed in Section 3.2, we
use an equal-weight majority voting scheme for cooperative activity-state detection. Accordingly,
we estimate the shared activity state per day and per � for window size 60s for di�erent coalitions.
The performance of cooperation varies with the coalition size, i.e., the number of participating
devices. Since we have a total of �ve nodes, we analyze the e�ect of cooperation on accuracy
of state detection for four di�erent coalition sizes—N 0 = 2/3/4/5. Moreover, we study its impact
on PCL , total number of packet transmissions within the network for collaboration (PCO ) and
dissemination of updates (PLO ), and the resultant communication energies (ECL , ECO , ELO , and
EC ). Once the appropriate coalition size is selected, we evaluate the performance of ASMM for
localization. The e�ect of ASMM is governed by the threshold parameter T . To set the value of
T , we evaluate the distribution of the errors within each state. We use the eighth decile value as
the threshold for each state. We then implement ASMM (as shown in Figure 7) each time a change
in state is observed after cooperation. We assess the e�ect of ASMM on accuracy of localization,
PCL , and EC for di�erent � .

5.2.1 E�ect of Window Size. To test the performance of IEM for di�erent window sizes, we
predict the activity state for each (winMin, winMax ) pair across the entire dataset using the ap-
propriate DT . The error in classi�cation is calculated by comparing the predicted states against
the observed states for each activity as well as net trace per data �le for all days. This evaluation
is repeated over ten iterations using the 10 DT models generated above. Figure 16 illustrates the
classi�cation errors for all traces over the ten iterations. The errors per activity state are shown in
Figure 16(a). An overall reduction in error of each state is observed with an increase in the window
size from 10s to 60s. While a median error of 11% is incurred for transit states atwindowSize = 10,
the value reduces to 3% and 1.5% atwindowSize = 30 andwindowSize = 60, respectively. Similarly,
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Fig. 16. E�ect of windowSize on (a) Classification error per activity state (b) Net classification error.

the median errors for paddock and parlour states reduce from 32% and 24.3% at windowSize = 10
to 16.8% and 5.9% at windowSize = 30, and 8.6% and 3.1% at windowSize = 60, respectively. This
is because a small time window is too narrow to correctly capture the local min and max values.
As such, the calculated distribution of the signal misses the short-lived �uctuations in the vicinity
and, in turn, a�ects the classi�cation accuracy. While the median errors are low for transit and
parlour at windowSize = 60, the median error for paddock states is slightly high with error for
certain traces as high as 31.7%. On examining the traces, we observe that most of these errors are
caused by misclassi�cations within an activity state, as opposed to misclassi�cations due to delay
in detecting state transitions. This is because the classi�er is unable to separate certain instances
of stationary behavior and long walks within the paddocks (e.g., if a cow walks to and from a water
trough located in one corner of the paddock) with the mobility patterns that are mainly observed
in parlour and transit activity states, respectively. Figure 16(b) depicts the net error (all three states)
for all traces. A median error of 30.2% is incurred at windowSize = 10, and the value decreases to
15.5% and 8.1% with increase in the window size to 30s and 60s, respectively. Furthermore, as is
seen, the net error closely resembles the error in paddock as they constitute majority of the data
points in any trace. The results suggest that while awindowSize = 10 is too narrow to capture the
activity state of animals, a windowSize = 60 (i.e., 60 sensor readings) is capable of identifying the
behavior with an accuracy over 90%. A window of 60s implies a set of 60 readings, as we collect
data with a very low frequency of 1Hz. However, a window size of 10s presents the lower boundary
of our analysis wherein classi�cation is performed based on ten readings. It represents an extreme
case and has been included in the analysis to illustrate the scope of our technique. The analysis
shows that, despite a small set of readings, our technique can correctly classify 70% of the obser-
vations. However, the use of larger window sizes (i.e., 30s and 60s) is preferred for further analysis
and CASMM-based localization. Since typical activity classi�ers use high-frequency inertial data
(usually 10Hz), we believe that our approach would work well with the commercially available
activity trackers for the di�erent window sizes.

5.2.2 E�ect of Epsilon. As mentioned above, the value of � controls the frequency of classi�ca-
tion. It sets the threshold for change that is acceptable in the distribution of signal assuming the
same activity state. We study the e�ect of � on the frequency and accuracy of classi�cation for
all three window sizes. A summary of the analysis results is shown in Table 2. As expected, the
number of classi�cations (computations) as percentage of the total number of readings per trace
reduce with increase in the � value for a constant window size. The median value of reduction
percent increases from 77.5% at � = 0.2 to 89% at � = 0.6 for windowSize = 10; that is, only 11%
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Table 2. Performance Summary of IEM (without Collaboration) for � , 0

Window = 10s Window = 30s Window = 60s
Metric � = 0.2 � = 0.4 � = 0.6 � = 0.2 � = 0.4 � = 0.6 � = 0.2 � = 0.4 � = 0.6
Comp reduction (%) 77.5 85.0 89.0 92.1 95.0 96.2 96.2 97.5 98.2

Error (%)
T 11.9 12.0 12.0 4.4 6.1 7.0 2.5 3.4 7.5
P 31.9 32.5 32.5 17.2 18.6 19.1 9.7 11.5 12.4
M 27.1 27.6 28.9 9.0 12.6 13 7.6 11.3 14.1

PCL - P1 8,438 6,350 4,963 2,693 1,835 1,355 998 643 450
Net ECL (J) - P1 1.31 0.98 0.77 0.42 0.28 0.21 0.15 0.10 0.07
Net ELO (J) - P1 0.70e�3 0.53e�3 0.41e�3 0.22e�3 0.15e�3 0.11e�3 0.08e�3 0.05e�3 0.04e�3

PCL - P5 7,577 5,715 4,503 2,451 1,701 1,244 957 619 432
Net EC (J) - P5 1.17 0.89 0.70 0.38 0.26 0.19 0.15 0.09 0.07

Fig. 17. E�ect of � on reduction of IEM classifications for windowSize (a) 10s (b) 30s (c) 60s.

of the data traces are classi�ed if a change in signal distribution �60% is considered signi�cant
for classi�cation. A similar trend in reduction percentage is observed for window sizes 30s and
60s. Moreover, the value of reduction is higher for larger window sizes, as the smoothing in data is
increased such that the small �uctuations in the signal are concealed, resulting in fewer changes in
the distribution that exceed the threshold. Figure 17 illustrates the trend in computation reduction
for di�erent values of � and windowSize . The reduction in classi�cation not only improves the
memory usage by storing fewer readings in the �ash but can also improve energy pro�le of the
devices. This could, in turn, result in an increase in the operational time of the wearable devices.

Next, we examine the e�ect of � on the classi�cation accuracy of the three activity states: transit
(T), paddock (P), and parlour (M), for the three window sizes. We calculate error as the percentage
of misclassi�ed states per trace across all ten iterations, as shown in Figure 18. For a small window
of 10s, the value of � has very little impact on the classi�cation accuracy. The median error of
transit, for instance, increases from 11.9% at � = 0.2 to 12% at � = 0.4 and � = 0.6, as shown in
Figure 18(a); that is, an approximate increase of 1%, compared to the resultant error at � = 0 (see
Figure 16(a)). We associate the small changes in the median errors with the nature of smoothing
in the data. For a small window, the smoothing is very low, such that the slightest change in the
distribution exceeds the threshold value. As such, a small � �lters out the redundant data (see
Figure 17) and maintains the quality of the results. The e�ect of � is more prominent for larger
window sizes (30s and 60s) due to increased smoothing, as shown in Figures 18(b) and 18(c). An
increase in error is observed with increase in the value of � . Moreover, the change in error with
� value is greater, compared to the change in errors for windowSize = 10. However, an overall

ACM Transactions on Sensor Networks, Vol. 15, No. 2, Article 23. Publication date: March 2019.



23:26 K. Bhargava et al.

Fig. 18. E�ect of � on classification error of IEM for windowSize (a) 10s (b) 30s (c) 60s.

Fig. 19. E�ect of windowSize and � on (a) PCL (b) Net ECL (c) Net ELO for scenario P1.

reduction in the error values is observed for all states with increase in the windowSize as local
min and max in the signals are accurately captured.

As mentioned earlier, the accuracy of IEM a�ects the frequency of packet transmissions to the
cloud and, in turn, the communication cost incurred by the sensor nodes. We assume that each
node sends a single packet to the cloud per state change. The energy cost incurred by each node
in sending one packet to the cloud (ECL) is calculated in Equation (11). For our analysis, we set the
constants e = 50x10�9 � and � = 10�11 �/bit ·m2 [28], d = 120m (maximum radio range of CM5000
motes for outdoor), andbits = 800 (maximum payload of 802.15.4 packets). Ideally, it su�ces to run
the IEM algorithm on one node (IN) to localize a given herd within the farm (denoted as scenario
P1 in Table 2). Each time the IN predicts a change in its activity state, it assumes the same change
in state across the entire herd and forwards the location update to the remaining nodes within
the herd. All nodes then transmit their sensor data along with the location information to the
cloud gateway. The energy cost incurred by each node due to the local communication between
nodes (ELO ) is calculated in Equation (12). We set d 0 = 20m (usual maximum distance between
neighboring cows within a herd) and bits 0 = 1 (payload required for sending location update). We
calculate the total number of packets sent by all nodes to the cloud (PCL) per day and resultant
net ECL and ELO values for the network by considering each node as IN for di�erent values of
windowSize and � . Since each node has a di�erent prediction accuracy, the value of PCL , and net
energies also varies. The median values for all nodes over ten iterations are listed in Table 2.

Despite the increase in classi�cation error, the value of PCL reduces with increase in the
value of � for a �xed window size (Figure 19(a)). This is attributed to the signi�cant drop in the
number of classi�cations at higher � values that results in fewer predictions and, in turn, a lesser
number of state changes. Note, however, the error in classi�cation is higher, owing to the prolonged
e�ect of a misclassi�ed state and delay in detecting state changes. The value of PCL further reduces
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Fig. 20. E�ect of windowSize and � on (a) PCL (b) EC for scenario P5.

with increase in windowSize, owing to better smoothing in the signal that reduces within-the-
state misclassi�cations and thereby prevents untimely state-change predictions. A similar trend is
observed in the values of resultant communication energies ECL and ELO with changes in the input
parameters, as shown in Figures 19(b) and 19(c). Whereas ECL = 1.31� for windowSize = 10 and
� = 0.2, it reduces to 0.77J with increase in � to 0.6, and further reduces to 0.07J with increase in the
value ofwindowSize to 60s. Similarly, ELO = 0.70e�3 forwindowSize = 10 and � = 0.2, and reduces
to 0.41e�3 with increase in � to 0.6, and further to 0.04e�3 for windowSize = 60 and � = 0.6. As is
evident, the energy cost incurred by the local communications is signi�cantly lower, compared to
energy spent in the long-range communication to the cloud gateway. The network communication
energy, in this case, is calculated as the summation of net ECL and ELO . Furthermore, we consider
the scenario where each node runs the IEM algorithm and predicts its activity state in isolation
(denoted as scenario P5 in Table 2). That is, the nodes do not communicate locally with each other
and directly send data packets to the cloud at the occurrence of individual state changes. We cal-
culate the total packets sent by all �ve nodes to the cloud per day (PCL) and resultant energy cost
ECL for di�erent values of windowSize and � over ten iterations (as illustrated in Figure 20). The
value of PCL and, thereby, ECL , follows the same trend with increasing windowSize and � values
as P1. Moreover, the median values for PCL and net ECL in P5 are lower than the corresponding
values in P1, as shown in Table 2. This is because, whereas in P5 the packet transmissions are
governed by a node’s own accuracy, transmissions in P1 are guided by the accuracy of one node.
As a result, the number of packets increase across all nodes if the IN has poor accuracy.

5.2.3 E�ect of Coalition Size. As discussed above, the performance of CASMM is primarily
governed by the coalition size. Given that our pilot study includes �ve nodes, we consider four
possible scenarios based on the coalition sizes 2,3,4, and 5 and evaluate the performance for each
coalition group shown in Table 3 for a �xedwindowSize = 60. N 0 = 2, for instance, represents the
scenario where two of the �ve nodes form a coalition and participate in the analysis. We study
the e�ect of coalition size on classi�cation accuracy, net packet transmissions for cooperation
(PCO ), local communication (PLO ) and cloud communication (PCL), and the resultant energy EC
that comprises of ECL , ELO, and ECO . The median values for the above metrics across traces for all
ten iterations are summarized in Table 4.

We calculate the classi�cation error for each state, considering the network as a whole by com-
paring the shared network state with the observed states. The error values are a�ected by both
coalition size and selection of nodes (as participating nodes have di�erent accuracy), as depicted
in Figure 21. As can be seen, the error varies for a particular value of N 0 (owing to the selection
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Table 3. Coalition Groups

N 0 = 2 N 0 = 3 N 0 = 4 N 0 = 5
{N2,N3} {N2,N3,N4} {N2,N3,N4,N5} {N2,N3,N4,N5,N6}
{N2,N4} {N2,N3,N5} {N2,N3,N4,N6}
{N2,N5} {N2,N3,N6} {N2,N3,N5,N6}
{N2,N6} {N2,N4,N5} {N2,N4,N5,N6}
{N3,N4} {N2,N4,N6} {N3,N4,N5,N6}
{N3,N5} {N2,N5,N6}
{N3,N6} {N3,N4,N5}
{N4,N5} {N3,N4,N6}
{N4,N6} {N3,N5,N6}
{N5,N6} {N4,N5,N6}

Table 4. Performance Summary of IEM (with Collaboration) for windowSize = 60

N 0 = 2 N 0 = 3 N 0 = 4 N 0 = 5
Metric � = 0.2 � = 0.4 � = 0.6 � = 0.2 � = 0.4 � = 0.6 � = 0.2 � = 0.4 � = 0.6 � = 0.2 � = 0.4 � = 0.6

Error(%)

T 8.1 11.0 19.8 1.7 2.6 6.1 1.7 2.7 7.3 1.0 1.2 5.0
P 12.0 13.9 14.1 3.1 3.8 4.3 2.4 3.1 3.6 1.0 1.5 1.6
M 2.2 3.4 4.7 2.9 4.3 6.1 1.5 1.7 2.9 1.3 1.8 4.1

Packets

PCO 325 211 149 728 486 342 1,361 900 636 2,118 1,386 974
PLO 966 620 432 392 288 212 364 276 196 176 164 118
PCL 1,240 795 553 510 385 280 463 350 255 235 220 150

Energy (J)

ELO +ECO 0.17e�3 0.11e�3 0.08e�3 0.19e�3 0.13e�3 0.10e�3 0.33e�3 0.22e�3 0.15e�3 0.46e�3 0.31e�3 0.21e�3

ECL 0.19 0.12 0.09 0.08 0.06 0.04 0.07 0.05 0.04 0.04 0.03 0.02
EC 0.19 0.12 0.09 0.08 0.06 0.04 0.07 0.05 0.04 0.04 0.03 0.02

Fig. 21. E�ect of coalition size on classification error for (a) Transit (b) Paddock (c) Parlour states at
windowSize = 60.

of nodes) and decreases with increase in N 0 from 2 to 5. This decrease in error is achieved, as
classi�cation errors of a node with low accuracy are masked by the accurate classi�cation of other
nodes via majority voting. Moreover, the error values are lower when compared to Table 2, with
the exception of N 0 = 2, wherein majority implies the vote of one node against the other. As ex-
pected, the errors increase with increase in the � value due to reduced frequency of classi�cation.
For N 0 = 5, the cooperation achieves an accuracy >98% for all three states at � = 0.2 and �95%
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Fig. 22. E�ect of coalition size on (a) PCO (b) PLO (c) PCL at windowSize = 60.

Fig. 23. E�ect of coalition size on (a) Net local energy (ECO + ELO ) (b) Net ECL (c) EC atwinsdowSize = 60.

at � = 0.6, with a corresponding reduction in classi�cations by 96.2% and 98.2%, respectively (see
Table 2). Although it is feasible to further reduce the number of computations by increasing the
� value, it will adversely a�ect the system accuracy. The values of the input parameters should,
therefore, be chosen such that they balance the trade-o� between the number of classi�cations
and accuracy to meet the application requirements.

Next, we consider the impact of N 0 on PCO , PLO , and PCL . The values depict net packet trans-
missions for the network of �ve nodes, as shown in Figure 22. We observe an increase in the value
of PCO with an increase in the value of N 0 (Figure 22(a)). This is due to an increase in the number
of participating nodes that are polled during cooperation. On the contrary, a decrease in the values
of PLO and PCL is observed with increase in N 0 (Figures 22(b) and 22(c)), owing to the improved
accuracy. For a �xed N 0, the values of PCO , PLO , and PCL decrease with increase in the � value,
due to reduced number of classi�cations on each node. Moreover, the packet transmissions are
lower, compared to P1 and P5 scenarios discussed earlier, with the exception of N 0 = 2, which has
lower accuracy. Similar trends are observed in the resultant communication energies, as shown in
Figure 23. Figure 23(a) illustrates the net energy cost for local communication between devices,
i.e., net ECO + ELO . While an increase in ECO and decrease in ELO is expected with increase in
N 0, we observe a net increase in the local communication energy due to higher impact of ECO (as
PCO > PLO ). On the contrary, a drop in ECL is observed with increase in N 0, owing to improved
accuracy and fewer packet transmissions to the cloud (Figure 23(b)). The net communication en-
ergy (EC ) is then calculated using Equation (11) and depicted in Figure 23(c). Since the magnitude
of local communication cost is signi�cantly lower when compared to the cost for cloud communi-
cation, the value of EC mimics the value of ECL . Moreover, the value decreases with increase in the
coalition size N 0, thereby improving the network e�ciency. Similar to the packet transmissions,
the energy costs further decrease with increase in the � value.
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Fig. 24. E�ect of ASMM on (a) Localization error (b) PCL (c) Net ECl for windowSize = 60 and N 0 = 5.

While the cooperation signi�cantly improves the classi�cation accuracy, the number of state
transitions detected by the system (resulting into PCL) is quite high. As such, our pilot study incor-
porates four state changes (M0 ! T0 ! P0 ! T1 ! M1) and should result into exactly four packet
transmissions to the cloud. This implies that our system detects untimely state changes (within-
the-state errors) that are short-lived (suggested by high accuracy) but occur frequently (suggested
by value of PCL). We expect the ASMM approach to address such errors by mapping the sequence
of activities to the farm topology and reducing the within-the-state errors. We consider the coali-
tion groups for N 0 = 5 for the analysis, as they allow highest accuracy of classi�cation along with
minimum EC . As mentioned above, we use the eight decile value based on the distribution of errors
to calculate threshold T for each state (depicted as Tt , Pp , and Mm in Figure 7). ASMM accepts a
change in state detected by the cooperation only if it is consistent with the topology (follows the
state transition diagram) and continues for a period assigned by T . Figure 24 shows the e�ect of
ASMM on the location accuracy, PCL, and ECL .4 As can be seen, the accuracy for all three states
does not alter signi�cantly (Figure 24(a)) and closely resembles the values achieved after coopera-
tion (see Figure 21). Note that the localization accuracy is calculated in terms of percentage, as we
consider high-level localization of cows in three discrete regions. On the contrary, the median of
number of packets transmitted to the cloud reduces remarkably to 20, i.e., 4 packets per node as
desired (Figure 24(b)). That is, ASMM eliminates all the untimely state transitions. Resultantly, it
leads to a signi�cant drop in the value of ECL . As shown in Figure 24(c), the value of ECL drops to
less than 10%, compared to Figure 23(b), i.e., a reduction of 90%. The error in classi�cation can be
explained by early or delayed detection of state changes, owing to the use of T parameter.

6 DISCUSSION AND FUTURE WORK
In the previous section, we evaluated the performance of the IEM2.0-CASMM model for di�erent
values of the input parameter. The analysis shows that while the stand-alone IEM classi�er can
achieve a reasonable level of accuracy (>90% forwindowSize = 60 and � = 0.2) for all three activity
states along with very low frequency of classi�cations (a reduction of >96% for windowSize = 60
and � = 0.2), it results in a considerable number of unnecessary and expensive packet transmis-
sions to the cloud. The CASMM method improves the accuracy of IEM-based classi�cation (⇠99%
for N 0 = 5, windowSize = 60, and � = 0.2) through cooperation between devices with very low
overhead energy costs of the order of 10�4 and facilitates accurate localization via ASMM. The
ASMM eliminates the unnecessary packet transmissions to the cloud, thereby improving the over-
all energy e�ciency of the WSN operation by 90%. The analysis, thus, con�rms the suitability of

4ASMM has no e�ect on the local communication between the devices.
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Fig. 25. (a) E�ect of windowSize on the size of DT (b) Array-based implementation of DT.

using the IEM2.0-CASMM approach for activity recognition and localization of the cows. In this
section, we assess the feasibility of implementing the IEM classi�er DT on-board the sensor de-
vices. We discuss an array-based implementation of the IEM algorithm and present a memory
analysis for the same. In comparison to DT , implementation of CASMM only requires a few vari-
ables, such as N 0, state vector, and T to be maintained by the device. In addition, we evaluate
the energy cost associated with the DT -based classi�cation (EDT ) for di�erent values of the input
parameters. Last, we present the proposed future work.

6.1 Memory Analysis
Figure 25(a) shows the e�ect ofwindowSize on the size of DT in terms of number of leaf nodes. As
can be seen, the number of nodes increase as we move from windowSize 10 to 20s and follows a
downward trend thereafter with further increase in thewindowSize . Accordingly, while a median
value of ⇠700 is obtained forwindowSize = 30, it decreases to 580 forwindowSize = 60. However,
the number of leaf nodes is as high as 850 nodes for certain cases with windowSize = 20/30. We
use this upper case to calculate the memory requirements for IEM-based DT and verify its feasibil-
ity for sensor-based execution. We present an array-based implementation of a DT with 850 leaf
nodes, as shown in Figure 25(b). We require four arrays of length 850 each. The �rst array holds
the cut-o� values used at the decision nodes in DT to split the data into two subsets. As mentioned
in Section 4.2, the range of the acceleration values of cows is �2g to +2g. We scale down the mea-
surements such that they range between �1g and +1g. The cut-o� values can then be represented
as 0.int and would require 2 bytes per reading; that is, a total of 850 ⇤ 2 bytes is required for the
�rst array. The second array is used to store �ags that indicate whether the cut-o� value sets a
constraint on the windowed min or max. Each �ag requires 1 bit, adding up to 850 ⇤ 1/8 bytes. The
third and the fourth arrays provide link to the child nodes—left child and right child. If the child
is a leaf, a label “P” for paddock, “T” for transit, or “M” for parlour is assigned to the appropriate
index variable. Otherwise, the variable contains an o�set value for the pointer to the �rst array for
subsequent decisions along the DT . Each entry in both arrays requires 1 byte to store the value
and totals to 850 ⇤ 1 ⇤ 2 bytes for both arrays. The net memory required for the IEM implementa-
tion, thus, equals 3.4KB (1KB = 1024b�tes). The CM5000 mote used in our prototype, for instance,
features a program �ash memory of 48KB. This analysis, thus, validates the suitability of IEM for
on-board implementation on the resource-constrained sensor devices. Furthermore, the generic
nature of the implementation suggests that IEM can also be incorporated in the commercially
available wearable sensor devices such as RumiWatch [32] and SmartBow [6].
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Fig. 26. (a) Energy consumption per operation [41] (b) E�ect of windowSize and � on EDT .

6.2 Computation Energy Cost
While we discuss the optimization of network communication cost in Section 5, it is important to
evaluate the energy consumed by on-board analysis to ensure that it does not signi�cantly impact
the sensing and communication tasks. The conventional approach to evaluate the power consump-
tion involves periodic measurement of remaining battery level on physical hardware, as presented
in Reference [38]. Although this approach provides accurate analysis, it has several limitations,
including potential hardware and human failures, complexity and size of WSN, as well as inherent
dynamism of the environment. Alternatively, the use of modelling has been proposed to evaluate
the power consumption of WSN applications. In Reference [39], for instance, the authors use Col-
ored Petri Nets (CPN) tools to automatically generate consumption models for given NesC [40]
(programming language used in TinyOS) operators, structures and functions to, in turn, estimate
the energy cost of an entire application. While this approach may have slightly less accuracy, it
provides �exibility and agility to evaluate energy consumption in complex application scenarios
in a timely and cost-e�ective manner. We, therefore, adopt the approach presented in Reference
[39] for calculating the energy cost associated with DT -based classi�cation.

Using the CPN tools, DT -based classi�cation can be modelled as a sequence of relational oper-
ations, i.e., � comparisons. The power consumption for each classi�cation can, thus, be calculated
as the product of the total number of operations to traverse theDT (Nop ) and energy consumed per
operation (Eop ). The value of Nop is governed by the tree size and is typically calculated as the log
base 2 of the total number of nodes in a tree (see Figure 25(a)). To estimate Eop , the CPN models dis-
cussed for NesC operators in Reference [39] make use of an auxiliary function, namely addEner��.
The function is assumed to follow a normal distribution and generates a random value for each
instruction’s power consumption using given energy mean and variance values. The values of
mean and variance are speci�c to each operator and have been estimated using measurements.
We obtain these values for relational and assignment operations from a Github repository [41], as
shown in Figure 26(a). The net energy for classi�cation (EDT ) per node is then calculated using
the following equation:

EDT = (Nop · Eop ) · Nclass ,

where Nclass is total number of classi�cations on a given node. The value of Nclass can be calcu-
lated as the percent readings that are classi�ed from each trace (see Figure 17). Figure 26(b) illus-
trates the e�ect ofwindowSize and � on EDT . As expected, the energy consumption decreases with
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increase in values of both window size and �, owing to fewer classi�cations. Furthermore, the value
of EDT is of the order of 10�3 � for di�erent values of the input parameters. For awindowSize = 60,
the median value of EDT is below 0.0005, thus, validating the suitability of IEM (v. 2.0) for sensor-
based execution.

6.3 Future Work
In this work, we present proof-of-concept for our WSN-based localization approach. In the future,
we intend to deploy the trained IEM2.0-CASMM model on wearable sensor devices to test the
approach in real time. Moreover, we wish to address the scalability of our approach across a larger
set of devices. We also plan to assess the impact of CASMM on the response time of the system.
Since the initiating node in a coalition waits for a response from all the participating devices before
making a decision, a large coalition size may lead to an increase in response time. In this case, a
deadline by which all responses must be received may be used to meet the application response
time requirements. A trade-o� between the quality of result and application deadline should, thus,
be considered. Furthermore, since accuracy of individual nodes a�ects the combined performance
of a coalition, we wish to study the e�ect of selection of nodes for forming a coalition. In addition,
we wish to design handover of the analysis to other nodes in the vicinity as the energy level of
participating nodes depletes below a given threshold.

7 CONCLUSION
In this article, we show the suitability of using the IEM-2.0 approach for classifying Mixed Gauss-
ian signals (especially with unequal distributions) and analyze the performance of our IEM2.0-
CASMM-based localization approach for animal-activity recognition and localization in dairy
farms. The performance evaluation is based on real-world mobility data of cows and shows that
the IEM2.0-CASMM approach can achieve a localization accuracy of 99% with very low frequency
of classi�cations. With such high accuracy of localization, a location-aware event-driven com-
munication approach is used to transfer sensor data to the cloud. Such an approach consumes
energy of the order 10�4 and signi�cantly improves the energy e�ciency of the WSN operation.
Furthermore, memory analysis for the approach shows that it requires only 3.4KB of the program
�ash and is suitable for implementation on wearable sensor devices. On-board implementation of
IEM2.0-CASMM on animal wearables would allow uninterrupted context-aware sensing in Coop-
erative WSN, as cows move around a farm despite the lack of continuous Internet connectivity.
This, in turn, would facilitate real-time LBS within the farm as well as early detection of behavior
anomalies that may indicate health-related issues. As IEM is applicable for classi�cation of generic
Mixed Gaussian signals, our approach can be extended to di�erent WSN applications.
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a  b  s  t  r  a  c  t

The  Internet  of Things  paradigm  is  creating  an  environment  where  the big  data  originators  will  be  located
at  the  edge  of  the  Internet.  Accordingly,  data  analytic  infrastructure  is  also  being  relocated  to the  net-
work  edges,  to  fulfill  the philosophy  of  data  gravity,  under  the  umbrella  of  Fog computing.  The extreme
edge  of  the hierarchical  infrastructure  consists  of  sensor  devices  that  constitute  the wireless  sensor  net-
works.  The  role  of  these  devices  has  evolved  tremendously  over  the  past  few years  owing  to  significant
improvements  in  their  design  and computational  capabilities.  Sensor  devices,  today,  are  not  only  capa-
ble  of  performing  sense  and  send  tasks  but also  certain  kinds  of in-network  processing.  As such,  triple
optimization  of  sensing,  computing  and  communication  tasks is  required  to facilitate  the  implementa-
tion  of  data  analytics  on  the  sensor  devices.  A  sensor  node  may  optimally  partition  a  computation  task,
for  instance,  and  offload  sub-tasks  to cooperative  neighbouring  nodes  for parallel  execution  to,  in  turn,
optimize  the  network  resources.  This  approach  is crucial,  especially,  for energy  harvesting  sensor  devices
where the  energy  profile  and,  therefore,  the  computation  capability  of each  device  differs  depending  on
the node  location  and  time  of  day. Accordingly,  future  in-network  computing  must  capture  the energy
harvesting  information  of  sensor  nodes  to jointly  optimize  the  computation  and  communication  within
the  network.  In this  paper,  we present  a  theoretical  model  for computation  offloading  in micro-solar
powered  energy  harvesting  sensor  devices.  Optimum  data  partitioning  to minimize  the  total  energy
consumption  has  been  discussed  based on the energy  harvesting  status  of  sensor  nodes  for  different  sce-
narios.  The  simulation  results  show  that  our  model  reduced  both  energy  losses  and  waste  due  to energy
conversion  and  overflows  respectively  compared  to  a  data  partitioning  algorithm  that  offloads  compu-
tation  tasks  without  taking  the  energy  harvesting  status  of nodes  into  consideration.  Our  approach  also
improves  energy  balance  of  a  WSN  which  is  an  important  factor  for  its  long-term  autonomous  operation.

©  2017  Elsevier  Inc.  All  rights  reserved.

1. Introduction

With a growing number of devices in the Internet of Things (IoT)
and high adopt-ability of cloud-based Big Data analytic platforms,
the centralized cloud computing architecture has been recently
challenged within the Internet community. Conventional cloud
computing had been designed for monolithic applications assum-
ing high availability of resources at large data centres. It saved CPEX
for SMEs, particularly, the overall energy consumption of main-
taining an Information and Communication Technologies (ICT)
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(K. Bhargava), dvimalajeewa@tssg.org (D. Vimalajeewa), sivanov@tssg.org
(S. Ivanov).

infrastructure. Furthermore, centralized clouds optimized resource
utilization by statistically multiplexing peak-loads to avoid over-
provisioning. This architecture functioned well until IoT devices
generated some large datasets in remotely connected application
domains such as smart agriculture [9] and Industry 4.0 [1]. Fog
computing [26], is a new computing paradigm, that proposes the
analysis of data (before aggregating it into big data sets) in a hier-
archical and scalable way closer to the data sources. Although the
term was  coined by Cisco in 2012, the philosophy of data gravity
where computation moves towards the data sources as far as they
can, had been presented by Dave McCrory in 2010. Harnessing the
computational power of the network devices for data processing
has the potential to not only reduce the data in the backhaul net-
work and, in turn, the latency experienced by the end users but also
improve the overall energy consumption of the IoT platforms [10].

https://doi.org/10.1016/j.suscom.2017.10.006
2210-5379/© 2017 Elsevier Inc. All rights reserved.



C. Kulatunga et al. / Sustainable Computing: Informatics and Systems 16 (2017) 106–116 107

This is particularly useful for applications in rural agriculture and
Industry 4.0 where backhaul connectivity is limited between the
remote rural farms/factories and the cloud [7].

A number of interpretations of Fog nodes have been proposed, to
date. Authors in [2], for instance, discusses Mobile Edge Computing
where mobile operators leverage resources of the edge devices in
5G rather than the centralized servers used in cloud computing for
data processing. Several forms of ad-hoc cloudlets (micro-clouds)
have been proposed in [4,18]. Certain studies have also extended
the concept of Fog computing towards the extreme edge of the IoT
in the private, enterprise, and community domains. This is primar-
ily due to the design of pervasive low-power wireless technologies
like ULP-PAN and LP-WAN as well as the tremendous improvement
in computation capabilities of small devices (as mini-servers) such
as CCTV cameras, mobile phones, and more recently, sensor devices
that constitute Wireless Sensor Networks (WSN) [8]. In-network
processing within WSN  (referred here as in-network analytics) has
been performed using different techniques such as data fusion,
aggregation, compression and feature extraction [25,21].

It is of particular importance in latency-sensitive applications
such as object tracking, intrusion detection, monitoring structural
and machine failures, where the result of the processing may not
be useful at all times, the response time at event detection is of
the order of fraction of a second. As a result, while numerous stud-
ies in the past have focused on optimizing sensing and networking
tasks to improve the energy efficiency of WSN, attention is being
drawn towards triple optimization that includes on-board compu-
tation given the increased capabilities of sensor nodes. Maximizing
computation within WSN  through resource optimization is more
desirable as future sensor nodes will be powered via energy har-
vesting, for continuous use, from background sources such as solar,
wind, vibration and radio frequency [15].

Cooperative computing via computation offloading has been
suggested for maximizing the use of in-network computational
resources. In computation offloading, a device can select (some-
times in an opportunistic way [5,16]) a proximate infrastructure
edge device (gateway) or another stationary or mobile device
as an offloadee for parallel execution of tasks at different par-
ticipating nodes [19]. Collaborative computing within WSN  can
enhance the capabilities of the resource constrained environment
towards effective cyber-foraging approaches as shown in [20].
Multi-objective intelligent decisions can be made to optimize Fog
computing resources and their application performance. The deci-
sion of how to optimally partition a task and where to offload given
a completion time is an important research question which has not
been much investigated in the literature. An analytical model for
application partitioning in battery-powered WSN  environment has
been presented in [20]. An initiating node (IN) that is responsible
for sensing data is designed that offloads partial computation to a
neighbouring node known as the cooperating node (CN) such that
the given task completion deadline is met  while optimizing the
energy resources of the network.

In this work, we consider in-network computation in WSN  [14]
and extend the cooperative computing approach discussed in [20]
for different scenarios in an energy harvesting WSN. While in con-
ventional WSN, the IN offloads less computation to CN owing to
high communication energy, in case of energy-harvested nodes,
the partitioning must be based on the level of stored energy as well
as the current state of the device that determines the level of har-
vested energy. This is important to avoid over-flow of harvested
energy (hence an energy waste) when battery is fully charged or
energy conversion efficiency (75–65%) incurred by storing har-
vested energy into battery. Accordingly, we develop models for task
partitioning to reduce the overall energy consumption of the net-
work under different scenarios for latency-sensitive applications.
Furthermore, we aim at improving the fairness within the network

to ensure energy balancing. Our model and the simulation results
show that our approach enables optimization of computation and
communication for future energy harvested WSN  and ensures sus-
tainable operation.

2. Computational policies for clean energy

A node in a conventional sensor network forwards data with-
out changing the payload. Instead, in-network processing allows a
Fog node to not only function as a data source or merely relay a
data chunk but also perform some computation on the data. In the
early days of in-network processing, researchers were limited to a
particular application within a sensor network such as calculation
of average humidity or identifying a location of an event based on
statistically correlated data aggregation. However, this is changing
to embed more generic computational functionalities in WSN.

2.1. In-network cooperative computing in wireless sensor
networks

In-network processing has been applied for data aggregation,
fusion, compression and feature abstraction in WSN  to save energy
by reducing the number of bits and, in turn, data packets transmit-
ted to a centralized server. Computations are performed at specific
aggregation nodes (cluster heads) along the path to the destination
node (gateway or server). Offloading decisions are, therefore, sim-
ple and based on the forwarding algorithm used such as LEACH to
answer the question of where rather than what. This has progressed
recently to use a swarm of heterogeneous nodes (such as sensors,
actuators, robots, smart phones, drones, cameras) that collectively
form an in-network analytic platform and requires specification of
where as well as what to send. Authors in [11] propose for instance
a new in-network computation algorithm based on channel fad-
ing to improve the reliability of aggregation function compared to
simultaneously sending all or only one sensor reading.

Computation offloading is a useful distributed computing
paradigm at different levels of network resources from large data
centres to implanted nano-sensors. Highly available cloud comput-
ing provides VM/container level computing resources to the users
to perform computation tasks in geographically distributed data
centres. Mobile edge computing brings cloud resources into the
edge of the operator-managed network to reduce core network
traffic of the operator and provide low-latency for the users. Enter-
prise and community-cloud allow the installation of micro data
centres that execute micro-services at the proximity of a company
office or a community. The concept of cloudlets proposes the use
of a set of mobile devices (different users) that collectively form
an ad-hoc cloud [13]. Mobile computation offloading, for instance,
can facilitate the execution of compute intensive tasks either on
a nearby mobile (in terms of annotations) or on an infrastructure
node (e.g. Androidx86).

Computation offloading in WSN  is becoming increasingly
important as the sensor devices exhibit improved capabilities in
terms of computation power and reduced communication energy
consumption. In conventional networks, sensor nodes transmit raw
data to the sink node where some processing is performed and the
results are communicated to the remote cloud. As a result, sensor
nodes have prior knowledge of where and what to communicate.
Moreover, the energy optimization is included in the algorithms.
In modern-day WSN, sensor nodes can make on-the-fly decisions
of where and what to compute under a subjected application com-
pletion deadline and, in turn, optimize energy usage. Therefore, the
pre-designed computation offloading algorithms must be modified
to make on-the-fly decisions. Accordingly, energy harvesting and
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in-network processing can be combined to develop a sustainable
and autonomous network operation.

2.2. Heterogeneity in energy harvesting sensor nodes

Computational sensor nodes, in future, will be powered using
diverse natural energy harvesting sources such as solar, wind,
radio-frequency, thermal, vibration or piezoelectric [22]. Such
energy sources demonstrate random spatial–temporal generation
patterns leading to heterogeneity in stored energy between sensor
nodes in both outdoor and indoor environments. Changes in the
temporal patterns might be significant only on a macro time scale.
For instance, while weather may  differ from one city to another on
a single day at a given time, a sensor network on a smart farm will
experience the same effect at the same time. On the contrary, spatial
variations among co-located mobile sensor nodes may  be obtained
due to different orientations and obstacles, for e.g., presence of
IMU  and GPS modules [3] for animal mobility and location track-
ing under direct sunlight vs shadows. This heterogeneity will be
higher, particularly, in outdoor WSN  such as those used in agricul-
tural practices for pasture-based dairy farming (e.g. laying animals
with solar-covered tags), site-specific irrigation in cultivation (e.g.
leaves may  grow into or fall onto the senor nodes) and soil mon-
itoring (e.g. shadows of the plants may  cover the soil monitoring
sensors).

Optimal energy management in such environments has been
proposed using adaptive duty cycling, adaptive communication
strategies, routing decision making and application policy man-
agement. Authors in [27], for instance, propose optimization of the
duty cycle to maximize the common active time based on unpre-
dictable heterogeneity of energy harvesting nodes. The authors
propose both online and offline algorithms based on the proba-
bility of the harvested energy obtained using a real deployment
environment.

We consider cooperation between such sensor nodes to collec-
tively perform computation tasks under a heterogeneous energy
harvesting environment. For example, each sensor node in such
a scenario could partially perform some pre-processing or basic
functional tasks such as averaging or compressing data. Balancing
energy usage with computation offloading is important in such a
Fog resource pooling environment due to three perspectives.

(a) Energy harvesting incurs a significant conversion loss while
storing energy into a storage device like a battery or a capacitor.
It accounts for about 25–35% of the total energy in battery storage
and even higher for capacitors [27]. It is, therefore, preferable to
use harvested energy directly whenever possible so as to minimize
the conversion losses. Accordingly, any computation offloading to
a node which is currently on solar power has a safe margin to use
some energy to compensate for the communication overheads.

(b) If the amount of harvested energy is low, the system can-
not perform both the charging and direct energy use operations
together. That is, when the amount of harvested energy (E) is below
a threshold (!) a node must decide to either store the energy or
use it directly but not both. Usually, in such situations, the most
appropriate action is to store the harvested energy and consume
the required energy from the battery. Therefore balancing stored
energy within the nodes of a WSN  is highly advantageous.

(c) Rechargeable batteries are a costly unit for energy harvest-
ing sensor nodes. Therefore, they may  have some limited capacity.
Cooperative computing between the sensors is critical in such net-
works to optimize the energy usage via load balancing and avoid
overflow of energy on nodes that are fully-charged with no compu-
tation task or energy deficit for others. Therefore, balancing energy
consumption without using high capacity batteries is a positive
trend in future WSN  using energy harvesting.

2.3. Related work

Mobile computation offloading has been widely researched in
the recent years with varied objectives such as energy saving,
transparent code migration and scalability. An optimal technique
for application partitioning and fair node selection between two
homogeneous nodes has been discussed in [24]. Computation
offloading in WSN, however, did not gain much attention until
Sheng et al. [20] proposed optimal application partition and cooper-
ation between two  nodes to minimize overall energy consumption.
Their work is based on cooperation between battery-powered
homogeneous sensor nodes and assumes no selfish node behaviour.
A cooperating node selection strategy that balances trade-off
between fairness and energy consumption has been discussed.

Meanwhile, energy harvesting sensor nodes are becoming
widely deployed and several studies discuss the heterogeneity in
harvesting energy [15]. Dang et al. [6] presents predictive solar
energy models for spatial–temporal weather conditions. Authors in
[27] propose a stochastic duty cycling approach to minimize energy
consumption by taking into account the heterogeneous energy har-
vesting sensor networks. In [25], authors discuss the importance
of triple optimization of sensing, networking and in-network data
processing based on energy harvesting. The authors have imple-
mented an optimization algorithm to recycle wasted energy due to
battery overflow in an energy harvesting WSN. In this paper, we
extend the work done by [20] and propose an approach to balance
the energy in computational sensor network using cooperative
computing in energy harvesting networks. We  apply this approach
for the scenario where certain solar powered sensor nodes are
under sunlight while others are obstructed by shadows for a certain
duration within a day.

3. Modelling for cooperative computation

In this section, we  present our application model, computation
and communication energy consumption models, and the micro-
solar based energy harvesting model.

3.1. Application model

In this work, we  consider a lightweight analytic application that
consists of a set of independent processing tasks to be computed
cooperatively between two  peer sensor nodes. We  use the canon-
ical model used in [28] to capture the essential characteristics of
such a task-oriented application. Such tasks are normally arranged
in a computational work-flow using a Dynamic Acyclic Graph (DAG)
to be scheduled for execution in a distributed computing environ-
ment. A single processing task (A) is modelled with input data size
(D) and a deadline for application completion (T). The Initiating
Node (IN), which may  be responsible for sensing the data, divides
a single task into two  sub-tasks for partial offloading to a target
remote peer, referred to as the Cooperating Node (CN). The amount
of processing data at the local node is denoted by L and the amount
of data that is offloaded to the CN is denoted as R, where D = L + R.
We assume there are no dependencies between the sub-tasks. For
instance, in case of calculating average for a sensing variable, L and
R may  consist of nL and nR samples respectively. Note that, only R
amount of input data is offloaded to the CN with no extra amount
of code. We  also assume that the response or the outcome of the
processing sub-task at each node is negligible or locally consumed
by another process. In the mentioned average calculation example,
the local node will transmit only two  values, which is the local aver-
age (AL) and nL, while CN will transmit its own local average (AR)
and nR. An aggregation or the destination node will then calculate
the overall average using the two responses from IN and CN.
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3.2. Computation energy model

The energy consumption in embedded processors is dominated
by dynamic power and can be regulated by the clock frequency
using dynamic voltage and frequency scaling (DVFS) technique.
Several attempts have been made to develop a simple and general
computation energy estimation model for mobile and embedded
processors. According to the literature, the computational energy
consumption is proportional to the CPU load of a processor i.e. the
number of CPU cycles required. Most of the work, therefore, consid-
ers the trade-off between energy (E) and task completion time (T)
such that E. T˛ is a constant for some values of ˛. In [24], the energy
consumption for computing a task locally is calculated using Eq.
(1), where K (in the order of 10− 11 starting from ARM to Intel) is
called the computation coefficient. The value of K depends on the
effective switched capacity (determined by the chip architecture
and the clock-frequency), the processing capability of the node,
and the application completion probability used in the model in
[28]. As evident in Eq. (1), a node consumes more energy for short
completion deadlines T. A sensor node may, therefore, prefer more
delay-tolerant tasks for local computation and offload tasks with
large L and small T to a peer sensor node.

EC = KL3

T2 (1)

3.3. Communication energy model

When a task is offloaded to another node, the energy used for
communication depends on the number of bits transmitted [17].
This is energy consumed by the electronics in the physical layer and
depends on the state of nodes – idle, transmit and receive. Accord-
ing to IEEE 802.15.4, energy consumption in the idle state can be
neglected and, therefore, total energy consumption depends on the
transmission of the number of bits at the sender and the reception
of the same bits at the receiver which are equal in value but belong
to two different nodes. A task can be scheduled for transmission to
another node within one or more time-slots. This scheduling has
been modelled using the Markov process based on whether the
Additive White Gaussian Model (AWGN) channel state is good or
bad. The energy used to communicate b bits within a time-slot t
to another computational node depends on the path condition and
the distance between the two nodes (represented as channel gain
g) and is given by the following equation.

e = (2b −  1)
g

According to one-shot channel allocation policy to transmit data
task within a single time-slot, the scheduler must send L bits within
one time-slot T. This is the simplest case in which all the data is sent
within a single time-slot of communication window and the energy
consumed is represented by a convex-monomial function as shown
in Eq. (2).

Et = "
Ln

g
(2)

Here " is the communication coefficient of the link between the
offloader and the offloaded and g[0 · · · 1] is the channel gain of the
link that is calculated proportional to 1/d2 according to AWGN in
free-space propagation where d is the distance between the two
nodes. According to [20], transmission in one-shot policy (n = 1)
only depends on the channel state and it is the most optimal
approach for latency-sensitive applications. It also minimizes the
time shift between local and remote computation since it assumes
a negligible delay in over-the-air transmission. Moreover, it saves
energy that is otherwise incurred by overhead scheduling due to
data split across multiple time-slots.

3.4. Total energy requirement calculation per task

The total energy consumption owing to computation and com-
munication during processing a task between two  nodes can be
calculated as the summation of four components as shown in Eq.
(3). In [20], authors present the energy consumption for different
input data sizes from 512 to 2048 bits. Here the job completion
deadline is set to 20 ms,  K = 5 ×10− 11 and " = 0.05. For large data
sizes, the gain in energy consumption is much better in case of
using cooperative computing and varies with the values of the com-
putation and communication coefficients. After a distance of 5 m,
however, cooperative computing is not effective and localized com-
putation becomes the preferred mode for the entire task according
to their analysis.

Total Energy(E) = IN{Computation L + Transmission R}

+CN{Reception R + Computation R} (3)

In this paper we  extend this approach by taking into account the
energy harvesting state of the IN and CN nodes and also the energy
conversion efficiency. We  estimate the required equivalent energy
(E) (i.e. before the conversion) from the energy harvesting source
within the optimization algorithms.

3.5. Micro-solar energy harvesting model

We selected a latitude of 52◦ and longitude of − 8◦ where the
experimental smart farm for the project is located in Moorepark,
Co. Cork, Ireland. We chose April 1st as the representative date of
neither a winter day nor a summer day for the solar energy har-
vesting model. We  model the solar energy harvesting pattern as
a Gaussian curve (Fig. 2) with 8 h (T) clear sunlight from 8.00 am
to 4.00 pm according to astronomical model developed by [23,12].
We consider a discrete time model with a time-slot of 1 min. A
solar energy density of 15 mW cm− 3 is assumed for 5 cm × 3 cm
area on a micro-solar panel associated with a sensor node. This
implies 735 !J energy can be generated by a sensor node on a day
without any clouds and obstacles shadowing it. We  also modeled a
shadow of 4 h which will randomly cover sensor nodes within the
field. Micro-solar panel inclination was set to 90◦ and orientation
to 45◦ in our model.

4. Energy-aware task partitioning

The aim of this work is to find the optimal data size for a task
that is suitable for local computation (L) and remote computation
(R) based on the state of harvested energy (under shadow, under
sunlight with energy stored being under-flown and under sunlight
with energy stored being over-flown) on both IN and CN. While
we discuss the energy-aware application partitioning by IN and CN
selection (in the following section), the energy state interchanges
among the nodes using a distributed or a centralized approach is
beyond the scope of this paper. The Lagrange Multiplier is used to
solve the equal constrained optimization problem with an objec-
tive to minimize total required energy (E) from the solar panel at
both nodes. When a task is to be processed at any given time, IN and
CN may  be in different states as shown in Table 1, resulting into dif-
ferent EL and ER values compared to non-energy harvesting-aware
partitioning approach proposed by [20]. We  calculate E accordingly
as the summation of EL and ER values. We  consider an energy gain
factor # as the reciprocal of the energy conversion efficiency in the
equations for simplicity of deriving equations. For instance, # = 1.54
represents 65% efficiency (Fig. 1) and implies that if a task consumes
10 !J stored energy from the battery when the node is under a
shadow, the value of E will be 20 !J.
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Table  1
Different energy harvesting states at IN and CN and the amount of total required energy in !J using our energy-harvesting-aware task partitioning at T = 20ms.  Local computing
respectively consumes and computes 41.3 !J (1024 bit).

Fig. 1. Heterogeneity of energy harvested will be captured by an appropriate data
partitioning and in-network computation offloading.

Fig. 2. The set of used energy harvesting astronomical modelling equations.

In the following sub-sections, we discuss the optimal task par-
titioning in terms of number of bits and the total energy required
at both IN and CN to execute the task in !J under the different IN
and CN states (Table 1). The data size (D) is set to 1024 bits and the
task completion deadline is changed from 5 to 100 ms.  The channel
gain between IN and CN is set to 0.9 and the values of K and " are
10− 11 and 10− 3 respectively. Energy gain factor # = 1.54.

4.1. Shadow–shadow

When IN and CN are under shadow, both nodes consume energy
from the stored battery power for task processing. Such a scenario
does not incur any waste from the harvested energy. In this case, E
can be calculated as the sum of local energy requirement EL at IN
(for computation of local task L and transmission of data R to CN)
and remote energy requirement ER at CN (for reception of data R
from IN and computation of data R).

E = EL + ER = {˛L3 + ˇR}# + {ˇR + ˛R3}# (4)

On solving Eq. (4) using Lagrange constraint optimization in
order to minimize E subjected to the constraint L + R = D, we obtain
the values for L and R.

L = D
2

+ ˇ
3˛D

and R = D
2

− ˇ
3˛D

Even though the amount of task partition is the same as in the
non-energy harvesting case, the energy requirement is multiplied
by the energy gain factor # when we  calculate the amount of surplus
energy to be stored at each node. Fig. 3 shows that cooperative
computing gains with low energy and the amount of the locally
computed data increase with the task completion deadline. After a
certain time of completion deadline, however, IN processes all the
data locally and does not achieve any advantage by cooperating
with a CN.

4.2. Shadow–light

In this case, the CN is under sunlight while energy is being har-
vested during the task processing. Therefore, remote computation R
tends to be larger than in the previous case since energy required at
the CN can be consumed directly from the energy harvesting source
without incurring any conversion loss, if the battery is underflow
(not charged up to the full capacity). Furthermore, it can use abun-
dant energy if the battery overflows (battery fully charged and
harvesting energy being wasted). Accordingly, we analyze this case
separately for the two scenarios as the amount of L and R will be
different.

Energy under-flowing: In this scenario, the energy is directly
used from the solar panel at CN through the input regulator
without incurring battery conversion loss. However, any surplus
harvested energy can be stored in the CN battery without contribut-
ing towards energy waste as the battery is not charged to the full
capacity. Therefore, E can be calculated as follows.

E = EL + ER = {˛L3 + ˇR}# + {ˇR + ˛R3} (5)

On solving Eq. (5) to minimize E, we obtain the values for L and
R as given below, where the value of A is obtained by solving the
quadratic equation aA2 + bA + c = 0 (see Appendix A) such that L < D.

L =

r
A

3˛#)
and R =

r
A −  (1 + #)ˇ

3˛)

Furthermore, values of a, b and c are calculated as follows.

a = (1 −  #)2

b = 2#(1 + #){(1 −  #)  ̌ −  3˛D2}

c = #2[9˛2D4 + ˇ(1 + #){6˛D2 + (1 + #)ˇ}]
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Fig. 3. Cooperative computing gains with low energy when both nodes are under shadows. However, it does not gain any energy saving when completion deadline is larger
than  100 ms.

Energy over-flowing: If the battery at CN is fully charged, the
energy required at CN is not considered for the total energy require-
ment calculation since CN in this case is wasting the harvested
energy. However, transmission energy used for offloading data R
to CN should be considered in the energy consumed at IN, which
prevents offloading all the data D to CN.

E = EL + ER = {˛L3 + ˇR}# + {0} (6)

On solving Eq. (6), we obtain L =
p

(ˇ/3˛) which is a trade-off
between the required computation and communication energy at
IN, and R = D −  L. This shows that even though harvested energy
at CN is wasted, IN cannot offload all the task to CN unless the
completion deadline is very low.

As illustrated in Fig. 4, IN offloads more data to the CN when CN
is under sunlight. We  can see that if CN is overflowing, more com-
putation can be offloaded than in the case of CN under-flowing. In
case of the former, significant energy gain is observed for lower task
completion deadlines when compared to the local computation
only.

4.3. Light–shadow

When IN is under sunlight, the size of local computation L tends
to be larger than in the previous case. This is because energy con-
sumed at the IN can be used directly from the energy harvesting
source without incurring conversion loss or from the energy being
wasted according to the level of charge of the battery (similar to
the previous case). Therefore, this case is also investigated under
two scenarios where the amount of L and R is different.

Energy under-flowing: In this scenario, energy is directly used
without conversion loss but harvested energy can be stored in the
IN battery rather than being wasted. Therefore, E can be calculated
as follows.

E = EL + ER = {˛L3 + ˇR}  + {ˇR + ˛R3}# (7)

On solving the optimization problem, we obtain the values for
L and R as under.

L =

r
A

3˛
and R =

r
A −  (1 + #)ˇ

3˛#

The value of A can be obtained by solving the quadratic equation
aA2 + bA + c = 0 such that L < D using the following values of a, b and
c.

a = (1 −  #)2

b = (1 + #){(# −  1)2  ̌ −  6˛#D2}

c = 9˛2#2D4 + (1 + #)ˇ{6˛#D2 + (1 + #)ˇ}

Energy over-flowing: In this scenario, the energy required at
IN is not considered for the total required energy calculation since
the node is wasting the harvested energy. Furthermore, all the
computation is done locally at IN rather than offloading partial com-
putation to CN. Accordingly, E = EL + ER = 0 +0 and we obtain L = D
and R = 0. Fig. 5 shows that cooperative computing gains when IN
is under sunlight.

4.4. Light–light

This case results in three possibilities for deciding the values of L
and R. The calculation of the total required energy for each scenario
is explained below.

Both nodes energy under-flowing: When both IN and CN are
under sunlight without energy over-flowing, nodes can consume
energy directly from the energy source and store surplus energy in
the battery without any waste. In this case, E can be calculated as
shown in Eq. (8), and the values of L and R can be calculated as in
the shadow-shadow scenario in Section 4.1 (however the energy
required at each node will be differed by a factor of #).

E = EL + ER = {˛L3 + ˇR}  + {ˇR + ˛R3} (8)

On solving Eq. (8) to minimize E subject to the condition L + R = D,
we can obtain the values for L and R as under.

L = D
2

+ ˇ
3˛D

and R = D
2

− ˇ
3˛D

IN energy over-flowing: In this scenario, all the processing
takes place locally at the IN irrespective of the CN state and the
energy required at IN is not considered for the total energy calcu-



112 C. Kulatunga et al. / Sustainable Computing: Informatics and Systems 16 (2017) 106–116

Fig. 4. IN offloads more data to CN when it is under sunlight. CN overflowing can achieve much lesser total energy consumption than underflowing scenario.

Fig. 5. Overflowing IN does not offload any data to a CN. However, underflowing IN offloads data in cooperative computing.

lation. Therefore, total energy is calculated as E = EL + ER = 0 +0 and
we obtain the L = D and R = 0.

IN under-flowing and CN over-flowing: If the battery at CN is
fully charged, the energy required at the CN is not considered for
the total energy (E) calculation since CN, in this scenario, will waste
the harvested energy. However, energy used for offloading data R to
CN must be considered as the energy consumed at IN. Accordingly,
total energy is calculated as given in Eq. (9).

E = EL + ER = {˛L3 + ˇR} + {!} (9)

We then obtain the value of L =
p

ˇ/3  ̨ which is a trade-off
between the required computation and communication energy at
IN, and R = D −  L. This shows that again even though harvested
energy at CN is wasted, IN cannot offload all the data to CN. Also,
the energy required by IN does not incur any conversion loss. Fig. 6
shows the gain in cooperative computing in these scenarios. As in
the previous case, IN does not offload any data to CN in case of
energy over-flowing whereas it offloads a considerable amount of
data to CN when CN is over-flowing.

5. Energy-aware node selection strategy

The CN selection strategy must also be modified to make it
suitable for our application model compared to non-energy har-
vesting scenario. In case of a non-energy harvesting environment,
the minimum total energy strategy (MES), where the CN with min-
imum total cooperative energy cost is selected among the set of
neighbouring nodes. This strategy does not consider past energy
consumption (i.e. utilization). The drawback of it is that some
nodes are overused due to cooperation and may  lead to reduced
battery lifetimes or many dead batteries, which affect the long-
term autonomous functioning of the WSN. For example, a node in
close proximity to a computationally-intensive node may  cooper-
ate heavily and may, therefore, be overused unfairly than what they
save from cooperative computing.

In this work, CN selection is performed based on utility func-
tion as in [20], where authors define a utility function (U) based
on the energy saved from cooperative computing compared to
executing the complete data task locally at an IN. Our simplified
utility function incorporating with the energy gain factor is given as
follows.
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Fig. 6. IN does not offload any data when it is overflowing. However, IN does not offload all the data when CN is overflowing due to communication energy used at the IN.

U =

(
ELO −  EL if IN

− $ER if CN

Here ELO = KD3

T2 and $ = 1 if the CN is under sunlight and $ = # if CN
is under shadow and under-flowing. The value of $ = 0 if the CN
is over-flowing energy. Utility of IN will not change as the impact
of the sunlight is already calculated in the required energy opti-
mization. A Cooperation Index (CI) is then defined based on the
cumulative utility as given below for t = 0 to t −  1 same as in [20].
A node can be used as a CN at time t if and only if the value of CI is
positive.

CI =
⇢

1 if U(0 : t −  1) ≥ 0
0 if U(0 : t −  1) < 0

This strategy is called positive utility strategy (PUS) [20]. Larger
utility will have a higher chance to be selected as a CN. Designing an
algorithm for this process based on the harvested energy (either in
the past or predicted) is beyond the scope of this paper and remains
as our future work.

6. Performance evaluation

We  simulated our energy harvesting-aware computation
offloading algorithm (e-COFF) with 30 energy harvesting sensor
nodes using the SimGrid simulator.1 Nodes were randomly located
within a 10 m × 10 m geographical space. We  selected latitude of
53◦, where the project site is located and day of the year as 91 (01st
April) in the micro-solar energy harvesting model, which harvested
energy in a sinusoidal pattern within a day. We  used randomly dis-
tributed obstacles for shadowing for a duration of 4 h. The size of the
solar panel at a node was selected as 5 cm × 3 cm,  which determined
the multiplication factor of the sinusoidal harvesting pattern. We
update the stored and wasted energy at each node per minute based
on the harvested and the consumed energy during that period.
We  compared our results with non-energy harvesting-aware data
offloading algorithm (COFF).

A computational task was created every 2 s randomly by a
selected senor node in the WSN  with a size (D) of 1024 bits. We

1 http://simgrid.gforge.inria.fr.

Fig. 7. The amounts of measured energy performance parameters at two
different energy harvesting sensor nodes for duration of 24 h. Full battery capac-
ity  = 2000 mAh.

used a maximum capacity for a battery storage of a sensor node as
2000 mAh  and set it to its half at the start of the day. Harvested (EH),
required to consume (EC), stored (ES) and wasted (EW) energy at the
end of 24 h duration from 6.00 am were measured. Task completion
time (T), harvesting energy gain factor (#), K and " were set respec-
tively as 20 ms,  1.54, 10− 11 and 0.001 unless otherwise changed
in some sections. We calculated channel gain (g) according to the
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Fig. 8. Top: CDF of the sizes of data chunks being offloaded to a remote CN (R).
Bottom: CDF of the stored energy (ES) at the end of the day. K = 10− 11, " = 0.001,
D  = 1024 bits, T = 20 ms.

free-space wave propagation of AWGN as,

g = 1
%

√
2&

exp− d2/2%2

where we selected % as 8 in our simulations and d was  calculated
in the units of m.

As shown in Fig. 7, the harvested energy (EH) of Node B does
not experience any shadow while Node A experiences shadow dur-
ing the day. Moreover, Node A demands slightly more energy (i.e.
required energy (EC) for task executions either as an IN or CN before
being converted) than Node B. As we can see in the bottom graph,
Node B saturated with stored energy (ES) from 6.00 pm to 8.00 pm
resulting in a waste of energy (EW). Node A’s battery capacity does
not overflow at any given time and therefore does not experience
any waste of energy. This validates our chosen relative values of
energy performance parameters in order to fulfill a requirement of
self-sustainability of the wireless sensor network.

We then observe the probability distribution of the offloaded
task sizes to a CN (R) and the end of the day stored energy (ES)
for the two algorithms; e-COFF and COFF. The top and the bottom
graphs of Fig. 8 shows the cumulative probability densities of R and
(ES) respectively with 30 different seed values set in the simulator.
As we can see e-COFF offloads more data to a CN than the COFF
algorithm does. The second figure shows COFF leaves with more
sensor nodes towards lower energy levels at the end of the day
while e-COFF leaves more stored energy towards higher energy
levels.

Fig. 9 shows the difference between the consumed energy of
COFF and e-COFF (EC of COFF −  EC of e-COFF). We  have changed

Fig. 9. The difference of consumed energy (EC) in mJ between the energy-unaware
(COFF) and our energy-aware (e-COFF) data partitioning and computation offloading
algorithms (task completion deadlines = 20 ms). Both used Positive Utility Strategy
(PUS) in selecting a CN.

Fig. 10. Consumed and stored energy of the two algorithms for different energy gain
factors (#) when t = 20 ms  (top) and for different task completion deadlines when
#  = 1.54 (bottom).

the computation coefficients (K) in the range of 10− 11–10− 10 and
the communication coefficient (") in the range of 0.01 and 0.001
both with a step size of 0.1. According to the figure, the perfor-
mance improvements of the e-COFF is apparent for all the values of
computation and communication coefficients since all the values in
figure are positive. When both K and " are higher (top-left corner),
performance improvement is significant.
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Fig. 11. The standard deviation (STD) of the stored energy (ES), where a smaller STD
indicates a better energy balance, of 30 micro-solar energy harvesting sensor nodes
at  the end of the day (completion deadline = 20 ms  and # = 1.54).

Next, we change (top graph in 10 ) the energy gain factor (#)
from 2.5 to 1.0 (i.e. energy conversion efficiency from 0.4 to 1.0)
with a step of 0.5 while keeping T at 20 ms.  In another experiment
we also change task completion deadline (bottom graph in 10) from
5 ms  to 30 ms  with a step size of 5 ms  while keeping # at 1.54.
Figures show the consumed energy during the day and the stored
energy at the end of the day. According to the figure at the top,
e-COFF shows lesser (EC) than the COFF. Our algorithm also shows
that stored energy performance is also higher compared to COFF.
Performance improvement of e-COFF is much better when energy
gain factor # is low. However, the performance improvement is not
very apparent for the changing range of task completion deadline
(T).

We then localize the task generations only to a subset of sensor
nodes to investigate the adverse impact of the overuse of energy at
a CN. In this case, we reduced the number of task originating nodes
from 30 (all, which is the same as before) to 5 with a step size of
5. We  used two CN selection strategies; MES  and PUS, with our e-
COFF algorithm. Fig. 11 shows the standard deviation of the end of
the day stored energy ES, which is lower with the PUS strategy. It
shows that the impact using the utilization factor in micro-energy
harvesting where, if energy level of a node is low, becoming a
CN persistently is critical. According to the figure use of CI solves
the problem of overuse of CNs by INs in a computation intensive
hotspots.

7. Conclusions

Energy-aware cooperative computing is a key technology that
will benefit from energy harvesting in Fog computing applications.
It is particularly important when the energy harvesting patterns
and obstructions are dynamic, thereby, creating spatially hetero-
geneous energy sources. In this paper, we extend the optimal data
partitioning algorithms developed for computation offloading by
taking into account the state of the energy being harvested at the
heterogeneous nodes. We  evaluate our e-COFF algorithm under
different scenarios and compare with COFF algorithm. Our results
illustrate that overall energy consumption can be improved in a
WSN  by minimizing energy losses due to a poor energy conversion
efficiency and waste due to energy overflows under constrained
energy storage capacities. Our algorithm preformed the optimized
data portioning with a positive utility cooperating node selection
strategy, which balances the stored energy of the sensor nodes at
the end of a day, which is useful concern for the sustainability of a
WSN  using micro-scale energy harvesting sources.
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Appendix A

In this appendix, we discuss the optimal data partitioning for
a scenario where the Initiating Node (IN) is under shadow while
the Cooperating Node (CN) is under sunlight. The energy required
by IN is obtained directly from the harvested energy whereas the
energy required by CN is obtained from the battery. The total energy
consumed is calculated as follows.

E = EL + ER = {˛L3 + ˇR}  + {ˇR + ˛R3} + A{D −  L −  R}

Using gradient optimization with partial derivatives, we get

∂E

∂L
= 3˛L2 −  A → L2 = A

3˛

∂E

∂R
=  ̌ + #  ̌ + 3˛R2 −  A → R2 = A −  (1 + #)ˇ

3˛

After solving the equation (L + R)2 = D2, we get a quadratic equation
aA2 + bA + c = 0 to find the roots for A.
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