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Abstract

Implanted biomedical devices are an important part of the diagnosis and treatment of
human illnesses. Such devices need electrical power for operation, transmission
systems for data communications and a high level of bio-compatibility to reduce the
possibility of inflammation. Powering by battery is widely used but requires removal of
the device from the body for battery renewal. Wireless electromagnetic (EM) systems
are also in common use but are subject to tissue absorption and potential tissue heating.
It would be preferable to use some form of energy-harvesting for power and a more
biocompatible method for data communications.
This Thesis proposes the use of ultrasound as a method of providing in-body energy
harvesting for an implanted device at a shallow depth of tissue. The medical use of
ultrasound for imaging is widespread, well understood and has recommended safety
levels. Arrays of devices containing piezoelectric nanowires can convert incident
ultrasound energy into electrical pulses. These pulses can stimulate a nerve to generate
a stream of modulated signals along the nerve and deliver data packets to a more deeply
embedded receiver. The maximum bit rate is 200 bit/s, limited by the rate at which
nerves can generate electrical signals. The proposed modulation is simple on-off
keying (OOK) to create a stream of logic “ones" and “zeroes". The send and receive
timing is asynchronous and the direction of transmission is one-way so no re-sending
of faulty packets can be supported.
We model a specific scenario of a stimulus system on the vagus nerve in the neck
sending modulated data pulses to an embedded, multi-reservoir drug-delivery system in
the brain. The drug-delivery system could use cerebrospinal glucose as a source for
energy harvesting. Forward error correction is analysed as a potential method to
improve transmission performance. The overall energy-harvesting and communications
system is simple, biocompatible and safe.
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Chapter 1

Introduction

Bioelectronic medicine is spearheading a new approach in the diagnosis and treatment
of human illnesses and injuries. The objective is to use implanted electronic devices to
detect and measure neural electrical activity and/or other metabolic indicators such as
temperature and hormone concentration. This collected information may then be
processed and used to provide new diagnostic and treatment options for patients. The
nervous system in particular can provide valuable diagnostic information since all
major organs and muscles of the body are naturally innervated, allowing the brain to
both monitor and regulate organ and muscle function. Nerve recording devices could
use neural activity detected from the brain or other organs to deliver an appropriate
response, modulate a change in organ function and restore health, without the side
effects of drug therapies. If a drug must be administered, then an implanted device
could be used to deliver the smallest possible dosage of a specific drug as close as
possible to the required area in response to detected metabolic changes or neural
activity patterns.
A major feature of bioelectronic solutions is the requirement for devices that can be
implanted long-term within patients and enable them to live a normal, mobile lifestyle.
The devices must be as compact as possible and minimise the possibility of
inflammation or rejection. If the implanted device is not wired to an external controller
and power supply, then two key issues that arise are (i) continued powering for a
self-contained system and (ii) communications for sending instructions and receiving
data. The power requirements may be intermittent, depending on the device, but the
power supply would have to deliver variable power levels over the longer term using
safe non-toxic components. The communications system should also provide sufficient
data-transmission capacity, depending on the function of the device, without any
medical side-effects. Ideally the device should (i) harvest energy from either the
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1.1 Research Hypothesis

immediate bio-environment or an external source, avoiding the need for batteries that
must be replaced and (ii) use a communications system that is as bio-compatible as
possible to minimise the effect, for example, of EM radiation on body tissue.
Energy harvesting from the bio-environment would include sources such as thermal
(body-heat), mechanical (muscle movement) or bio-chemical (glucose). External
energy-harvesting sources include electromagnetic radiation and ultrasound. All of
these sources must be capable of providing the power requirements of the implant
whenever the need arises. An implant should be able to maintain a low-power sleep
mode until called upon to perform a particular function, at which point there would be a
surge in demand for power. The external sources are more controllable than internal
sources and have the advantage of readily variable intensity. However, an internal
source may have more constant availability and be better placed to respond to a sudden
power demand. These considerations must be balanced when choosing a power source
for harvesting.
The main natural communications paths within the body are the nervous system and the
cardiovascular system. The nervous system carries electrical signals to and from the
brain in response to internal and external stimuli. These electrical signals can be
artificially generated by an implant, at a shallow depth, delivering electrical stimulus
pulses to the nerve. In this way, the nervous system could be used as a digital data
communications path, if stimulated neural signals were modulated to deliver data
packets to an implanted device at a deeper level. This would avoid the need for using
conventional wireless communications, although the data rate would be limited by
neural physiology. These two topics of energy harvesting for biomedical devices and
the use of the nervous system to convey digital data are the central themes of this
Thesis.

1.1 Research Hypothesis

Energy harvesting by implanted devices from an external source can be achieved in
different ways. The external energy must be able to safely penetrate human tissue and
then be converted into electrical energy. Ultrasound provides a safe and practical
energy source in relation to the human body and the mechanisms of absorption are well
understood. Communicating using the nervous system is also seen as a viable and
biocompatible method to deliver commands to an implanted medical device. A more
deeply implanted receiving device, shielded by muscle or bone, may not be accessible

2
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by ultrasound so an alternative method of energy-harvesting (e.g. glucose harvesting)
would be needed. The overall research hypothesis may be stated as follows:
An ultrasound beam directed into the human body can deliver power to
energy-harvesting implanted devices at a shallow tissue depth. The resulting
electrical pulses can be used to stimulate specific nerves and create an in-body
communications system. A modulated stimulus pattern can be transmitted along
a peripheral or cranial nerve and deliver simple activation commands to an
embedded drug-delivery system. The drug-delivery system, in turn, could be
powered by glucose harvesting.
The research hypothesis is subdivided into five Research Questions that form the basis
for the content of this Thesis.

1.1.1 First Research Question

How might ultrasound be used to power implanted devices and what frequencies are

preferable?

Ultrasound is used at present for imaging in the human body and there are specific
safe-level recommendations of intensity to avoid tissue damage. The ultrasound beam
is also a potential energy source that could be harvested by a medical implant once a
suitable transducer is identified. The beam intensity reduces with depth through
absorption and reflection, reducing the amount of energy that would reach an implanted
device. The absorption of the beam is also a function of frequency. This research
question analyses the specific use of piezoelectric nanowire devices (“nanodevices”),
implanted at a shallow depth, for harvesting ultrasound energy and the potential power
output of such devices over a range of ultrasound frequencies.

1.1.2 Second Research Question

How may ultrasound energy-harvesting devices be configured and placed to stimulate a

peripheral nerve?

A peripheral nerve in the human body contains bundles of neurons called fascicles.
Neurons need a minimum level of stimulus current and voltage to be applied in order to
create an electrical propagating action potential (AP). This research question seeks to
quantify the levels of current and voltage needed to stimulate neurons of different types
and diameters at different depths in a peripheral nerve. The question also addresses the
fact that an individual piezoelectric nanodevice may not produce sufficient voltage and
current to evoke the response. Consequently, multiple devices must then be configured

3



1.1 Research Hypothesis

to deliver the required stimulus voltage and current levels. This nanodevice array must
be placed in very close proximity to the nerve, with the minimum amount of tilt in
order to maximise the energy-harvesting potential. It must also be encased in a
bio-compatible material to minimise the risk of inflammation or rejection.

1.1.3 Third Research question

What is the magnitude and range of the stimulated neural pulse produced by a

nanodevice array?

Stimulating a nerve creates APs that propagate along each neuron within a fascicle.
The individual APs propagate without attenuation as they are regenerated at regular
intervals along the neuron. The collective voltage measured outside the nerve from all
the underlying APs is called a compound action potential (CAP). This research
question analyses the behaviour of individual and collective neurons when stimulated,
and quantifies the characteristics of the resulting CAP when measured at varying
distances from the stimulating point. The suitability of such pulses for data
transmission is then assessed.

1.1.4 Fourth Research Question

What is the digital data transmission capacity of a nerve and what forms of modulation

can be used ?

The CAP of a stimulated nerve could be viewed as a potential data pulse once the range
and magnitude for different ensembles of neurons has been determined. The system is
unidirectional and low speed, constrained to a limited rate of AP generation by the
underlying neural physiology. This research question applies communications theory to
determine the maximum bit-rate and transmission range of neural CAP pulses subject
to varying levels of background noise. The question also evaluates three different
methods of modulation that could be applied to a stream of CAPs to determine their
potential throughput.

1.1.5 Fifth Research Question

What form of receiver could be used and how might it be powered?

The neural communications system is limited in speed and capacity, but it could still
deliver simple single-byte instructions to a deeper implanted device such as a
drug-delivery system. A unidirectional neural transmission system would require some
form of forward error correction (FEC), since resending faulty packets is not possible.

4
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Fig. 1.1 Block diagram of end-to-end path from the ultrasound source to the receiver.

This research question uses a specific scenario of vagus nerve stimulation to answer
how a multi-reservoir drug-delivery system in the brain might be activated by short data
packets that could incorporate error control. The metabolic cost in terms of the use of
adenosine triphosphate (ATP) to carry APs is also calculated. Powering the
drug-delivery by glucose harvesting is examined as an alternative to battery powering.
An overview of the neural transmission system is shown in Fig. 1.1. Harvested
ultrasound energy is converted by piezoelectric nanodevice arrays and releases an
electronic pulse that stimulates a peripheral nerve through an electrode. The pulse then
is transmitted along the nerve and detected at the remote end by a receiver. The pulses
are decoded as packets delivering commands to a drug-delivery system.

1.2 Research Contributiom

The research work was based on the development of mathematical models for
ultrasound energy harvesting, nanodevice configuration, neural stimulation, neural data
capacity calculation, ATP consumption, forward error correction and glucose
harvesting. Coding of the models and plotting of results was done in Matlab. The
specific research contributions that were developed in order to answer the research
questions are listed below.

• Power Harvesting: The modelling of ultrasound in the human body for power
harvesting requires calculating the intensity of different ultrasound frequencies at
different tissue depths to determine the effects of tissue absorption and beam
frequency. These calculated intensities then provide input to a mathematical
model to determine the voltage and current generated when an ultrasound beam
bends a piezoelectric ZnO nanowire. The model is extended to plot the
relationship between the ultrasound beam intensity and the current/voltage output
of a 1000µm2 energy harvesting nanodevice with 20,000 nanowires.
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• Neural Stimulation: The minimum levels of voltage and current needed to
stimulate neurons of different diameters are used as input to calculate nerve
stimulation at different depths of penetration into the nerve. A novel array of
nanodevices, coupled in series and parallel, is then modelled to produce sufficient
levels of voltage and current to stimulate such peripheral nerves. The voltage and
current can be varied with the ultrasound intensity and the model shows how
higher levels of voltage and current penetrate deeper into a nerve and also
selectively stimulate smaller diameter neurons. The effect of tilt on the output of
the nanodevice array is also calculated.

• Neural Data Pulse: The stimulation of individual neurons is modelled to
calculate the extracellular voltage of an AP propagating along a neuron. The
relationship between the speed of an AP and neuron diameter is used derive a
dispersion model. A spread of modelled APs is generated and summed into a
CAP. An equivalent Gaussian pulse model for a simulated CAP captures both the
the attenuation of the CAP and the pulse spreading resulting from dispersion.
Transmission theory is applied to calculate the signal to noise ratio (SNR) and
the maximum possible data throughput of a stream of CAP pulses. Three
different modulation methods were analysed: on-off keying (OOK), pulse
position modulation (PPM) and digital pulse interval modulation (DPIM) using
the Gaussian pulse model.

• Drug-delivery: The specific scenario of CAP pulses along the vagus nerve is
simulated and the metabolic cost in terms of ATP is calculated. Different
methods of FEC are applied to the CAP bitstream to assess any performance
improvement and a data packet for a drug-delivery system is presented. The
coding gain for FEC is expressed in terms of bit error rate (BER) improvement at
a particular SNR and transmission range. The flux of glucose needed in
cerebrospinal fluid to produce levels of power for a brain implant is calculated
and analysed.

1.3 Thesis Organisation

This document is organised as follows:

• Chapter 2 provides an overview of current developments in medical implant
devices. The different methods of powering and communications are described
as well as functions such as neural stimulation, neural recording and
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drug-delivery. There is also background information on ultrasound, glucose
harvesting, the generation of neural APs and molecular communications. A
literature review describes research in powering, communications, neural
stimulation and recording, drug-delivery, neural data communications and
molecular communications.

• Chapter 3 address the first research question, setting out (i) the rationale for
using lower frequency 50 kHz ultrasound as an energy source, (ii) the
transmission of ultrasound through human tissue and (iii) the use of piezoelectric
nanowire devices as the basis for energy harvesting.

• Chapter 4 addresses the second research question, modelling how arrays of
energy harvesting nanodevices can be coupled together to provide the necessary
levels of voltage and current to stimulate a peripheral nerve to different depths.

• Chapter 5 addresses the third and fourth research questions, modelling the
generation of a neural data pulse and determining how the amplitude decreases
with transmission distance. Three forms of modulation are described and the
resulting capacity and transmission ranges are determined subject to the noise
levels that might exist.

• Chapter 6 addresses the fifth research question, describing a modelled scenario
for delivering commands to a multi-reservoir drug-delivery system in the brain
via the stimulation of the vagus nerve in the neck. The transmission path is
unidirectional and the use of FEC is explored as a method of improving
performance. Ultrasound will not penetrate the skull so the potential use of
glucose harvesting for powering the brain implant is analysed.

• Chapter 7 provides summary conclusions to the research work and also
proposals for future work.
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Chapter 2

Background

2.1 Introduction

The key elements of the research hypothesis are (i) the use of ultrasound to deliver
power to a neural stimulus system, (ii) the transmission of modulated neural pulses
along a nerve to communicate with a more deeply embedded device and (iii) the
delivery of drugs in the brain in response to neurally transmitted instructions. In this
chapter the current state of development and research into the types of medical implant
that can be deployed is outlined with particular emphasis on powering and
communications. Ultrasound generation and glucose energy-harvesting are described in
detail to illustrate powering options. The mechanisms of neural stimulation are also
described in some detail to illustrate a viable communications option. Research into
micro and nano level implants is then described with emerging challenges in
communications at a very small scale. Following that, a literature search on all these
topics is provided in §2.3..

2.2 Medical Implant Devices

Medical implants embedded in the human body are used for diagnostic, therapeutic or
assistive purposes (Andreu-Perez et al., 2015). Diagnostic devices are typically sensors
that monitor health conditions such as neural activity, glucose levels and
gastrointestinal functions. Therapeutic devices are currently used to treat a variety of
medical conditions such as heart arrythmia (cardiac pacemaker), diabetes (insulin
pump) and neurological conditions, such as Parkinson’s Disease (neurostimulator)
(Oluigbo et al., 2012). Assistive devices improve anatomical and physiological
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functions such as hearing (cochlear implants), vision (bionic visual implants) and
prosthetic limb control (brain-computer interface).
Stimulation of peripheral or cranial nerves is carried out by externally powered
electrodes placed on the skin surface (transcutaneous) or under the skin (subcutaneous)
in closer proximity to muscles or nerves (Mortimer and Bhadra, 2004). Electrodes can
be single points or multiple arrays with variable voltage and current control. Single
point subcutaneous electrodes may partially penetrate a peripheral nerve, or they may
be attached as a strip to the nerve surface. A strip electrode may also be configured as a
wrap-around cuff. The stimulus current levels for these electrodes can be minimised by
placing them as close as possible to the main nerve tissue that needs to be stimulated.
Subcutaneous systems require surgically implanted electrodes that are wired to a power
and control unit to deliver measured amounts of voltage and current. Therapeutic
stimulus implants such as heart pacemakers have been deployed for over 50 years.
Newer models are more compact and programmable for different stimulus patterns
(Seriwala et al., 2016). The implant is usually placed in a surgically created pocket
below the clavicle (collarbone) and the electrodes are on leads that are threaded to the
heart. At present most stimulus systems are open-loop, with the operating parameters
set by a clinician based on trial-and-error.
Neural activity in different parts of the body can be detected and recorded by single or
multiple electrodes. The recorded activity may be from natural processes or in response
to specific stimuli. The recorded signals usually represent activity by a collection of
neurons rather than single neurons. Recording of brain activity through internal or
external electrodes is an important part of neurotherapy. These recordings can help to
build up a picture of how different parts of the brain react to external stimuli and the
information may be used in the development of prosthesis control. Programmable
implanted devices make it easier to vary different input parameters but the goal is to
develop closed-loop systems that can record neural activity and use this as feedback to
adjust applied stimulus parameters automatically.
Therapeutic drugs are usually injected to the bloodstream or ingested in the form of a
tablet. Some degree of automation can be provided by systems such as an insulin pump,
a drug-delivery system that is worn externally and injects a measured amount of insulin
at timed intervals. A closed-loop system would supply insulin in response to a signal
from an attached glucose sensor (McAdams and Rizvi., 2016). Closed-loop diagnostic
and therapeutic functions of this type may be combined in a device that is termed
theranostic.
The methods used at present for powering and communicating with medical devices
will depend on the frequency of the required treatment (acute or chronic) and the
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preferred degree of portability that can be realistically implemented. The device can be
externally wired to a combined powering and communications system with the wires
penetrating the skin to access internal locations. This can be used for major
interventions of a one-off nature or for research into a specific neural response.
Alternatively, if continuous therapy is needed then a self-contained battery powered
implant can deliver stimulus pulses or a measured amount of a drug in response to
pre-set parameters.
There is a drive to develop miniature implants at the micro or nano scale that can be
distributed within specific organs or areas of the body for theranostic purposes. These
device clusters would communicate with each other and the external world to form the
internet of bio-nano things (Akyildiz et al., 2015). The small size creates additional
challenges in powering and communications. If microscopic batteries are not to be used
then some form of energy harvesting is the only alternative. The small physical size
would also restrict antenna size if EM communications is to be used. Consequently,
alternative forms of bio-communication are being investigated, similar to those used in
the nervous system, as viable methods for nanodevice communications.

2.2.1 Implant Powering

The majority of non-wired implants at present are powered by long-life batteries that
cannot be re-charged in situ. An implant battery has to be replaced at regular intervals,
requiring repeated surgical intervention. The alternative is to use some form of
energy-harvesting to power the implant directly or to recharge a battery. Current
research is directed at power provision through energy-harvesting from external sources
(electromagnetic, vibrational) or internal sources such as muscle movement or glucose
harvesting (see §2.2.3). Electromagnetic energy-harvesting can use near-field resonant
magnetic coupling using coiled antennas at frequencies up to 20 MHz (Kim et al.,
2017) but this is efficient only for short distances. The use of lower EM frequencies
also results in the need for larger receiving antennas that will increase the size of the
implanted device. Power may be delivered over a greater range using higher frequency
mid-field (900 MHz) or far-field (2.5 GHz) EM powering. The use of EM power
harvesting is subject to technical constraints to meet recommended safety levels
(Rabaey et al., 2011) and prevent tissue damage through excessive heating of the
implant. The specific absorption rate (SAR) describes the quantity of EM power that
can be absorbed by a tissue and is defined as:

SAR =
σE2

ρ
. (2.1)
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The conductivity of the tissue is σ , the density is ρ and the electric field strength is E.
The SAR value is expressed in Watts per kilogram and is averaged over 1 g or 10 g of
tissue. In the US the exposure limits for an unrestricted environment, set by the FCC,
are 4W/kg for 10g of tissue in the extremities (hands, wrists, feet, ankles) and 1.6 W/kg
for 1 g of head, neck and trunk tissue. In other jurisdictions the equivalent ICNIRP and
IEEE guidelines specify 2 W/kg for 10 g of head, neck and trunk tissue and 4 W/kg for
10 g of any other limbs (IEEE, 2019). The SAR limits can be converted to power
intensities at different frequency ranges and a typical value is 2 W/m2 for up to 200
MHz and 10 W/m2 for frequencies greater than 200 MHz (IEEE, 2019). It would also
require the wearing of an external powering source if true mobility was required.
There are two options proposed for powering embedded nanosensors with ultrasound:
(a) piezoelectric nanowires (Wang et al., 2007b) or (b) resonant piezoelectric crystals
(Ozeri and Shmilovitz, 2010). Piezoelectric nanowires can be bent by a range of
different ultrasound frequencies rather than responding to a specific resonant frequency.
Lower frequencies will deliver more energy per cycle and hence are more likely to
bend the nanowires. Lower frequencies will also be less subject to absorption in the
tissue, but the conversion efficiency of the nanowires is low (<5%) and a larger
transducer is needed to produce a lower frequency. Resonant crystals are more efficient
at converting ultrasound into electrical energy (>50%) but operate best at higher
frequencies where smaller crystals can be used. There are no commercially available
implant systems using either of these options at present.
Other power harvesting proposals include thermal (body heat), mechanical (muscle
movement) and glucose harvesting.

2.2.2 Ultrasound Generation

Ultrasound refers to frequencies above that of audible sound and nominally includes
anything over 20 kHz. In nature, ultrasounds in the range 20-100kHz are commonly
used for communication and navigation (sonar) by bats, dolphins and some other
species. The speed of ultrasound in air, 331.5 ms−1 at sea level and 0oC, is the same as
that of any other soundwaves (Hendee and Ritenour, 2003b).
An ultrasound wave is artifically generated when an electric field is applied to an array
of piezoelectric crystals, usually lead zirconate titanate (PZT), located on a transducer
surface. Electrical stimulation causes mechanical distortion of the crystals resulting in
vibration and production of sound waves (i.e. mechanical energy) at a desired
frequency (Hendee and Ritenour, 2003a). Efficiency in converting electrical energy to
mechanical energy is 90% to 95%. if the resonant frequency of the crystal is applied.
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Table 2.1 Rayleigh distance for different transducers and wavelengths.

Radius Frequency Wavelength Rd
(mm) (MHz) (mm) (mm)

5 0.5 30.8 0.8
5 1 1.54 16
10 0.5 30.8 3.25
10 1 1.54 65

A point source of ultrasound will radiate pressure waves in all directions (Hendee and
Ritenour, 2003b). The initial signal intensity, I0), will decrease over a distance,r, to a
value of Ir according to an inverse square law as follows:

Ir =
I0

4πr2 . (2.2)

Transducers can be designed to radiate sound in many different types of pattern, from
omnidirectional to very narrow beams. For a transducer with a circular radiating
surface, vibrating in phase, the beam can be shaped in order to narrow the area of
transmission although some spreading will occur. An unfocused beam can be divided
into a near-field (Fresnel zone) and a far-field (Fraunhofer zone). In the near-field, the
beam narrows from the width of the transducer down to a narrower focal area (Hendee
and Ritenour, 2003a). The distance at which this happens is called the Rayleigh
distance, Rd , and is is dependent on the transducer radius rt and the wavelength of the
ultrasound in the transmission medium λ as follows:

Rd =
rt

2

4λ
. (2.3)

The Rayleigh distance will increase at higher ultrasound frequencies (shorter
wavelengths) for a fixed transducer radius as shown in Table 2.1. The wavelength is
calculated from the frequency and the speed of sound in human tissue which is
approximately 1540 m/s. Complicated interference patterns arise in the Fresnel zone
and the intensity is highly variable. In the far-field the beam gradually spreads out and
the intensity is more uniform, though decreasing. These effects can be mitigated by
using an acoustic lens to focus the beam rather than operating in unfocused mode.
Medical diagnostic ultrasound scans use frequencies between 1MHz and 15 MHz. The
ultrasound is reflected from denser tissue and bone and detected by a receiver
transducer. An image is then built up from the reflected signals. Ultrasound is also used
for therapeutic purposes, especially by physiotherapists to promote injury healing.
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2.2.3 Glucose Energy Harvesting

The availability of glucose as an energy source in the human body has focused attention
on the harvesting of glucose to deliver power to medical implants (Cosnier et al., 2014).
The constant supply of glucose from body fluids means that the harvesting can be
continuous, as long as it does not seriously deplete the supply of glucose for other
purposes. A glucose fuel cell generates energy by electrochemical reactions (oxidation
and reduction) at two spatially separated electrodes (anode and cathode). Catalysts are
required at the electrodes to enable the reactions. Electrons are released by the
oxidation of the glucose at the anode and then flow through an external load to the
cathode where the reduction reaction happens. Hydrogen ions (protons) pass from the
anode to the cathode through an ion-selective membrane that provides two separate
chambers for the electrodes (Rapoport et al., 2012). The complete oxidising of glucose
to carbon dioxide (CO2) and water (H2O) would theoretically release 24 electrons per
molecule of glucose. The reaction would be as follows:
Anode C6H12O6 +6H2O −−→ 6CO2 +24H+ +24e–

Cathode 6O2 +24H+ +24e– −−→ 12H2O
Overall C6H12O6 +6O2 −−→ 6CO2 +6H2O
The change in the standard Gibbs free energy, ∆G, is −2.870×106J/mol. The
reaction potential, V 0, is 1.24 V.
Glucose fuel cells can be divided into three main types depending on the catalyst used:

• Enzymatic fuel cells use enzymes such as glucose oxidase and laccase;

• Microbial fuel cells use electroactive micro-organisms;

• Abiotically catalysed fuel cells use non-biological metals (e. g. platinum) or
carbon.

Microbial fuel cells are very efficient and are capable of completely oxidising glucose.
They are not considered suitable for implants as they carry the risk of infection from
the catalysing microorganism. Enzymatic fuel cells are the subject of research, but it is
difficult to guarantee the stability of enzymes over a long period of use. The most
favoured type is the abiotically catalysed cell, but this oxidises glucose to gluconic acid
and releases only two electrons per glucose molecule. This delivers a lower value of
−2.51×105J/mol for the change in Gibbs free energy. Both oxygen and glucose are
present in body fluids. The fuel cell construction has to ensure that the amount of
oxygen is minimised and the amount of glucose is maximised at the anode. The reverse
situation applies at the cathode. Separating the fuel and the oxidant reduces the risk of
electrical shorting at the electrodes and improves the overall efficiency.
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2.2.4 Implant Communications

If an implant has no wired communications connection then some form of wireless
communication is usually employed (Ritter et al., 2014). Short range, near-field,
inductive coupling at frequencies up to 20 MHz is used to transfer data from an
implanted system while also providing inductive powering (Kim et al., 2017). There
are power dissipation issues if the same frequency is used to power the implant (higher
transmit power) as well as to communicate with it. At present many implanted devices
communicate in the 402 - 405 MHz medical implant communications system (MICS)
band with a range of up to 2 m (Teshome et al., 2019). The emerging development of
body area network (BAN) provides for implants using the 2.5 GHz industrial scientific
medical (ISM) band. Some commercially available devices (e.g. pacemakers) use
Bluetooth technology in the ISM band for external communications. Higher EM
frequencies experience greater absorption in the human body but they do provide for
higher-capacity data links, especially for large-volume neural recordings. The antenna
size for a given frequency places a limitation on how small an implant can be. Implants
at the micro or nano scale would have to use even higher frequency radiation, like
terahertz or infra-red, but this is very strongly absorbed by body tissues and would only
be effective over extremely short ranges. An alternative would be to use the nervous
system, described below in §2.2.5 and/or biologically based molecular
communications, described in more detail in §2.2.6. It is likely that a future BAN will
have a combination of the previous technologies for internal and external
communications (Atakan et al., 2012) .

2.2.5 Neural Stimulation

The nervous system is one of the fundamental communications systems in the human
body. The human nervous system has two broad divisions: (i) the peripheral nervous

system providing sensing and muscle activation (motor) functions throughout the
human body and (ii) the central nervous system (the brain and spinal cord) for
processing sensory information and sending control signals to/from the peripheral
nervous system through the spinal cord (Malmivuo and Plonsey, 1995). There is a third
type of nerve, the cranial nerve, that connects the brain directly to certain organs (e.g.
eye and facial muscles) without going through the spinal cord. Sensory nerves are
described as efferent and motor nerves as afferent. The nervous system has two main
types of cells: neurons for communications and glial cells for support and nutrition.
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Fig. 2.1 Neuron structure

A neuron consists of dendrites, to receive messages from other neurons; a soma, or cell
body with a nucleus; an axon, to transmit neural signals and synapses to form junctions
with other neurons (Fig. 2.1). The resting potential of a neuron is based on an ionic
balance of sodium and potassium ions across the neural membrane and has a magnitude
of approximately -70 mV. A stimulus must raise this threshold to above -55 mV if a
neural signal is to propagate (Malmivuo and Plonsey, 1995). A sub-threshold stimulus

can also be applied to a neuron but it will not cause the neuron to activate.
The propagation of a sub-threshold pulse down a neuron can be modelled by cable
theory. The neuron is divided into compartments and each compartment has an internal
axial resistance, external axial resistance, membrane resistance and membrane
capacitance. The difference between the external potential, φo, and the internal
potential, φi at any given time is the membrane potential, Vm. If a neuron has a resting
potential of Vr and a sub-threshold stimulus raises the membrane potential to Vm then
the deviation in potential from the resting state, V ′, can be expressed as:

V ′ =Vm −Vr. (2.4)

The cable equation shows the change in membrane voltage for small currents flowing
through a neuron (Malmivuo and Plonsey, 1995). The simplest form is for the passive
case where the current is sub-threshold and no ion channels in the neuron membrane
are activated (Malmivuo and Plonsey, 1995). If a neuron experiences a change of V ′ in
membrane potential from the resting state then the neural cable equation for a signal
that has propagated a distance x along an axon may be expressed as follows:

∂ 2V ′

∂x2 = (ri + ro)im (2.5)
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where ri is the intracellular resistance of axoplasm per unit length of axon and ro is the
resistance of extracellular medium per unit length of axon. The membrane current im is
the sum of an ionic membrane current imI and a capacitive membrane current imC and
can be expressed as follows:

im = imI + imC

=
V ′

rm
+ cm

∂V ′

∂ t
(2.6)

where rm is the membrane resistance times unit length of axon and cm is the membrane
capacitance per unit length of axon. Substituting (2.6) into (2.5) we get:

1
(ri + ro)

∂ 2V ′

∂x2 =
V ′

rm
+ cm

∂V ′

∂ t
rm

(ri + ro)

∂ 2V ′

∂x2 =V ′+ rmcm
∂V ′

∂ t

−λ
2 ∂ 2V ′

∂x2 + τ
∂V ′

∂ t
+V ′ = 0.

(2.7)

The parameter τ is the membrane time constant while the parameter λ is defined as the
length constant. Under steady-state conditions ( ∂V ′/∂ t = 0) we get an ordinary
differential equation:

d2V ′

dx2 − V ′

λ 2 = 0. (2.8)

An infinite segment with V ′ =V0 at x = 0 will have a solution of the form:

V ′ =V0e−x/λ . (2.9)

This shows that an initial stimulus voltage will attenuate along the membrane. The rate
of attenuation with distance is determined by the length constant for that particular type
of neuron. Length constants for non-myelinated mammalian axons, with diameters
between 1 µm and 20 µm, range between 0.1 mm to 2 mm. It is possible to derive
solutions for a time dependent sub-threshold stimulus, but the complexity is such that it
is preferable to use a simulation programme to plot the resulting values of membrane
voltage and other variables. Because a sub-threshold stimulus decays over a relatively
short distance it is not capable of longer-distance stimulus transmission.
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Fig. 2.2 Neural action potential sequence.

If a stimulus raises the resting potential above -55 mV (e.g., by applying a pulse of
magnitude 15 mV or greater) then the neuron activates. Ion channels in the neural
membrane open and positively charged sodium ions flow across the membrane into the
neuron (depolarisation). The potential rapidly increases to about 40 mV (a total
increase of 110 mV from rest). At this point the sodium ion channels close, potassium
ion channels open and there’s a flow of positive potassium ions out of the neuron
(repolarisation), generating an AP.
The AP then propagates down the neuron’s axon and either transfers to another neuron
(via neurotransmitters) or a muscle cell, for example. The first neuron then returns to
the rest state. The whole cycle takes between 5 ms and 10 ms and this is defined as the
refractory period (Malmivuo and Plonsey, 1995). This can be divided into two periods.
The first period, the absolute refractory period, is the time interval from the initiation of
the action potential to just after the peak and it lasts between 1 ms and 2 ms. A stimulus
applied during this interval will not result in another action potential no matter how
intense the stimulus is. The second period, the relative refractory period, is the interval
between the end of the absolute refractory period and the return to the rest state and
lasts between 3 ms and 4 ms. A stimulus applied during this interval may result in an
action potential if the intensity is greater than that needed to provoke an action potential
from the rest state (suprathreshold). The action potential sequence of depolarisation
and repolarisation is shown in Fig. 2.2. The refractory period also ensures that an AP
can only travel in one direction as the neuron will be de-activated in the opposite
direction. Larger diameter axons have an insulating sheath of myelin that has regular
gaps at intervals of 2 mm, called nodes of Ranvier (typical width of 2 µm) where the
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AP is regenerated. The speed of propagation of an AP is greater in myelinated neurons
and will also depend on factors such as axon diameter (§4.2.1). An AP is sometimes
referred to as a neural spike, especially in the recording of brain activity.

2.2.6 Nanoscale Networks and Molecular Communications

The future development of miniature implantable devices at the micro and nanoscale
will create particular challenges in device communications both within the body and to
an external transceiver. Communication using radio frequency (RF) systems is
challenging as the small scale limits antenna size. This in turn will dictate shorter
wavelengths (higher frequencies) that are heavily absorbed by human tissue. Biological
molecular structures such as proteins, DNA, organelles and cell components all exist at
the nanoscale and use forms of chemical signalling, or molecular communications
(MC), that are now the subject of research and modelling (Farsad et al., 2016). In MC,
small information particles convey information from a transmission location to a
receiver point. Information particles are typically a few nanometres to a few
micrometres in size and could be either biological compounds, such as
neurotransmitters, or synthetic compounds, such as gold nano-particles. The
communications channel is a liquid or gaseous environment where the information
particles can propagate. The transmitter generates or stores the information particles
and releases them in a controlled and modulated manner. Some form of processing unit
is needed to encode the particles and control the operation of the transmitter. The
processing unit could operate chemically or electrically and would require a power
source. At the receiving end there is a receptor or detector to measure some property of
the received information particles. This property could be the presence or absence of
the information particles, the concentration of particles, the time of arrival, or any other
measurable parameter (Farsad et al., 2016). If the particles represent coded information
then there may also be a need for a central processing unit to decode the received signal.
The receiver will also require a power source. Decoding modulated chemical signals
may be complicated by the presence of channel noise and inter-symbol interference
(ISI) between the pulses of emitted particles.
A projected application for nanoscale devices in medicine is an artificial immune
system (Felicetti et al., 2016). Miniature artificial devices could be injected into the
body with each device having a specialized role in the location and destruction of
pathogens. This mirrors the operation of the immune system, but to function
collectively the devices need to communicate and collaborate with each other. Other
forms of communicating nanorobots are also proposed for the diagnosis and treatment
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of complex medical conditions through, for example, targeted drug delivery or
nanosurgery.
There is a broad distinction made between short-range microscale (nanometres to
millimetres) and long-range macroscale (millimetres to metres) MC (Parcerisa-Giné
and Akyildiz, 2009). For microscale MC, the particle propagation methods are :

• diffusion-based propagation, based on Brownian motion through a medium;

• flow-assisted propagation that could use, for example, the cardiovascular system;

• active transport using, for example, molecular motor proteins or cytoskeletal
filaments;

• bacterial assisted propagation using self-propelling flagellated bacteria.

The two main forms of propagation at macroscale are diffusion and flow-based
propagation. Diffusion can be a very slow process especially over longer distances and
the speeds can be at the scale of cm/hour. Flow-based propagation provides higher
speeds and can be realised by the following mechanisms:

• Advection, or transport with a bulk fluid flow such as an air current,

• Mechanical dispersion, caused by variations in flow pathways or variations in
fluid speed in different regions,

• Convection, generated by differences in temperature within a fluid,

• Turbulent flows in a fluid.

The rate of transmission in all these cases depends on the rate of flow.
Neuro-spike communications is a hybrid model that includes both the transmission of
APs along axons (as described in §2.2.5) and the follow-on molecular communication
of neurotransmitters across synapses (Balevi and Akan, 2013). It can contain elements
of both microscale and macroscale MC. The speed of MC is very low compared to RF
communication. The communications channel can also contain background neural and
chemical noise. Any data communications protocol will have to overcome these
challenges if it is to provide a viable alternative to RF at the nanoscale.

2.3 Literature Review

This section is a literature review of developments in implant devices, powering and
communications. The review also includes research into neural stimulation and the
modelling of neural activity.
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2.3.1 Medical Implant Devices

The evolution of medical devices from external (wearable) to internal (implant) is
described in detail by Andreu-Perez et al. (2015), and the authors analyse the
challenges in data management and machine learning if closed-loop systems are to
emerge. Existing neural stimulus and recording devices have embedded electrodes that
are wired to an embedded or external power and control unit to deliver measured
amounts of voltage and current. The materials used in fabricating electrodes, their
operating parameters and electrochemical properties are surveyed by Cogan (2008).
The wrap-around cuff electrode is one of the most popular, (Naples et al., 1988),
(Korivi and Ajmera, 2011). The tripolar nerve cuff electrode design is considered the
optimum for low-noise measurement of peripheral nerve activity. Design principles for
recording with tripolar cuff electrodes are given by Loeb and Peck (1996) The
electrical potentials are differentially measured between a single middle contact and
two electrically-shorted symmetrical side contacts. This eliminates any voltage drop
(i.e., external noise) that is generated along the inside of the nerve cuff. Small flexible
strip electrodes, as described by Lee et al. (2016), are proposed for recording from
small nerves where a cuff might cause damage. Newer flexible and biocompatible
polymer cuff electrode materials, such as paralyne, are recommended by Yu et al.
(2014) while Apollo et al. (2015) describe the fabrication of a graphene oxide
microfibre electrode. A survey of future developments in interfacing with the nervous
system is provided by Rivnay et al. (2017) including optical, magnetic and ultrasound
stimulation and recording.
Neural stimulation and recording is of particular importance for functions such as deep
brain stimulation (DBS), spinal cord stimulation, cardiac pacemakers, cochlear
implants and prosthesis activation. Cardiac pacemakers are one of the most widespread
implants currently in use but the leads that run from the embedded unit in the chest to
the electrodes in the heart are often a source of inflammation and infection.
Developments in leadless technology, pacemaker miniaturisation, improved
synchronisation and non-battery powering are described by Seriwala et al. (2016) and
Madhavan et al. (2017). These improved devices would simplify surgical placement
and minimise scarring as well as reducing the possibility of infection.
The use of DBS for the treatment of Parkinson’s Disease is also being more widely
used (Martinez-Ramirez et al., 2015). Like the pacemaker, the stimulus unit is placed
below the clavicle and the electrodes implanted in the brain. A typical DBS system is
described in detail by Oluigbo et al. (2012), who state that the exact mechanism by
which DBS works in unknown. There has been some study in defining safe stimulus
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levels for brain tissue based on stimulus waveforms, charge densities, electrode size and
shape (Shannon, 1992) and safe thresholds have been set for equipment manufacturers.
These are under constant review any may have to be modified for emerging types of
microelectrode (Cogan et al., 2016). The DBS parameters of pulse width, frequency,
amplitude and waveform are analysed by Kuncel and Grill (2004) while the technical
features of some products are described by Amon and Alesch (2017). A more advanced
closed-loop smart DBS system is proposed by Khan and Deng (2017). The system has
a wearable smart controller that can modify the stimulus parameters in response to
neural waveform information received from an implanted detection system.
A review of the applications of vagus nerve stimulation (VNS) is provided by Groves
and Brown (2005) who note that the exact mechanism of action is still not fully
understood. There is ongoing research into the use of VNS for the treatment of
epileptic seizures, depression (Browning et al., 2017), heart failure (Howland, 2014),
arthritis (Koopman et al., 2016) and Crohn’s disease. A closed-loop VNS system is
modeled by Ward et al. (2015) using autonomous neural control (ANC), a form of
artificial intelligence that adjusts stimulus parameters in real time to mediate both the
target therapeutic effects and the side effects. Computational modelling of VNS was
performed by Helmers et al. (2012) to study the effect of current and pulse width on
fibre activation. The modelled results showed good correlation with real medical
results.
Prosthesis development is centred on a brain-machine interface (BMI) that can record
neural activity, extract the intended action from that activity, generate the desired action
with a prosthetic effector and provide feedback, either through natural sensation or
generated and applied by the prosthetic device. The overall system requirements are
described by Schwartz et al. (2006) and some of the processing challenges , such as raw
data compression, are described by Zhang et al. (2012). The development of a BMI for
the hippocampus to assist in memory recall is a topic of research by Berger et al. (2012)
and Hampson et al. (2018). A system for detecting brain activity and then transmitting
locomotion signals wirelessly to the lower spinal cord is described by Capogrosso et al.
(2016). The objective is to bypass a damaged section of the spinal cord while retaining
lower limb functionality. Future developments in BMI, called enplants, are proposed by
Dambrot (2017) based on synthetic genomics, bionanotechnology and quantum
communications.
Drug delivery systems at present usually consist of an external pump and reservoir with
a subcutaneous needle for injecting the drug at timed intervals. Insulin pump
technologies and glucose sensors are described by McAdams and Rizvi. (2016) who
also predict the development of a closed-loop bionic pancreas. Other delivery
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technologies are still at the experimental stage. Targeted drug-delivery aims to improve
the delivery of smaller doses of a specific drug much closer to the area requiring
treatment. Drug-delivery to the brain is difficult as the protective blood brain barrier
(BBB) presents a challenge for the absorption of drugs (Dong, 2018) to treat, for
example, cancer tumours. A drug-delivery system for treating epilepsy is described by
Salam et al. (2012) with embedded electrodes to detect seizures and a micromechanical
pump to deliver the drug from a refillable reservoir located under the scalp.
Electrophoretic drug-delivery, as described by Proctor et al. (2018), applies a voltage
difference (typically 1 V) to pump ions from a reservoir across an ion exchange
membrane. The system uses a microfluidic ion pump (µFIP) of the type described by
Uguz et al. (2017). An alternative method, electrothermal membrane activation, was
first proposed by Santini Jr et al. (1999) for multiple drug-delivery and the first clinical
trial of a working prototype is described by Farra et al. (2012). A metallic membrane
covering each drug reservoir is heated by an applied electrical current, the membrane
ruptures and the drug reservoir then releases its contents. This release model is used by
Huang et al. (2012) and also by Maloney et al. (2005) in their proposed drug-delivery
devices.

2.3.2 Powering and Energy Harvesting

Implanted devices ideally operate at the minimum power level possible in order to
conserve, for example, battery life or to minimise heat dissipation. Guiding principles
for low-power devices are outlined by (Sarpeshkar, 2012) and these include analogue
pre-processing, efficient encoding, parallel architectures and minimising the amount of
information that must be processed. Power for implanted devices is usually delivered
by a long-life battery of the types described by Bock et al. (2012). The majority of
batteries have a lithium metal anode while the cathode could be iodine, manganese
oxide or silver-vanadium oxide depending on the power-output requirements. A high
power lithium ion microbattery architecture is proposed by Pikul et al. (2013) using
electrodes deposited on a nickel scaffold to improve power density. A single-use
battery would have to be removed once the charge had dropped to the minimum
recommended level. A rechargeable battery would be more durable provided it could
be recharged, for example, through energy harvesting. An overview of newer battery
technologies and potential harvesting methods is given by Kim et al. (2015).
Research into technologically based energy-harvesting systems centres at present on
wireless EM systems. Wireless powering can be delivered using near-field EM
inductive resonant coupling at frequencies up to 20 MHz as described by Kim et al.
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(2017) but this is efficient only for short distances. The use of lower EM frequencies
also results in the need for larger antennas that will increase the size of the implanted
device. Power may be delivered over a greater range using higher frequency mid-field
(900 MHz) (Ho et al., 2013) or far-field (2.5 GHz) EM powering (Xia and Aissa, 2015)
although the efficiency is reduced relative to near-field powering. The use of EM
energy harvesting is subject to technical constraints to meet recommended safety levels
(Rabaey et al., 2011) and prevent tissue damage through excessive heating of the
embedded device (Kodera et al., 2018), (Lazzi, 2005). It would also require the
wearing of an external powering source if true mobility was required.
A possible alternative to EM harvesting is the use of piezoelectric harvesters that can
convert mechanical deformations into electrical energy. The use of ultrasound, or
acoustic energy transfer (AET), as a power source is surveyed by (Roes et al., 2013)
who notes that the main losses derive from transducer, medium attenuation and
spreading. The powering of sensors embedded in tissue using resonant PZT crystals
was investigated experimentally by Ozeri and Shmilovitz (2010), using an ultrasound
frequency of 673 kHz. The authors describe the choice of ultrasound frequency as
trade-off between crystal thickness and focal distance. A similar system with a hybrid
data link is described by Charthad et al. (2015) with ultrasound used for both powering
and a data downlink while RF is used for an uplink. Another two-tier method of
inductive powering and ultrasound powering was modelled by Sanni et al. (2012). The
inductive power was delivered to a subcutaneous transponder that then transmitted
ultrasound energy to a deeply embedded implant. Ultrasound crystal powering has also
been proposed for neural stimulation (Charthad et al., 2018) and drug delivery
(Charthad et al., 2016). The use of micro-scale resonant crystals (“neural dust”) for
neural recording in the brain using ultrasound powering and backscatter was proposed
by Seo et al. (2015a). The challenges of developing and operating such devices are
outlined by Neely et al. (2018). Ultrasonic beamforming is described in more detail by
Bertrand et al. (2014) and Seo et al. (2015b). The recording and stimulating principle
has been demonstrated for peripheral nerves (Seo et al., 2016), (Johnson et al., 2018) as
these were easier to access than the interior of the brain and a conversion efficiency of
82% was reported. A cuff electrode powered by a PZT crystal, operating at 1 MHz was
also demonstrated by Larson and Towe (2011). Simple half-wave rectification of the
output AC voltage with a single diode provided a stimulus pulse to the sciatic nerve of
a rat. The output power and successful operation depend critically on the positioning
and alignment of the crystal, which could easily be changed in a live body. An
alternative method of harvesting using a piezoelectric diaphragm array is described by
Shi et al. (2016). They array has two resonant modes giving a wider bandwidth and a
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wider range of operating ultrasound frequencies. Energy harvesting using zinc oxide
(ZnO) nanowires was proposed by Wang and Song (2006) for delivering a periodic
direct current (DC) voltage and current. An ultrasound nanogenerator using ZnO
nanowires was demonstrated by Wang et al. (2007b), who immersed the device in water
and applied ultrasound excitation at 41 kHz. The output current and voltage values
were recorded as noisy square waves, but the input intensity of the ultrasound was not
recorded, making it difficult to assess the efficiency. The same group carried out
ultrasound energy-harvesting tests on fabricated nanowire devices in biofluids (Wang
et al., 2007a) that included coupling three devices, first in parallel and then in series to
demonstrate boosting current and voltage. Nanowires are not as efficient as resonant
piezoelectric crystals for energy conversion (Yang et al., 2017) but can operate at lower
ultrasound frequencies. Improvements to ZnO nanowire performance by surface
modification is described by Jalali et al. (2013). Their improved fabricated device
showed an almost five times greater power density than the original. Harvesting
ultrasound power for medical devices remains a topic of research and there are no
commercially available products as yet.
A review of different glucose fuel cell technologies suitable for implanted devices is
provided by Cosnier et al. (2014) who note the difficulty in comparing features over
different sizes and performance measures. An abiotically catalysed glucose fuel cell
suitable for implanted devices is described in detail by Kerzenmacher et al. (2008).
Glucose energy harvesting from cerebrospinal fluid circulating around the brain is
described by Rapoport et al. (2012) and the required flux of glucose is calculated for
different efficiencies and power levels. Improvements in glucose harvesting
performance have been demonstrated by Kwon et al. (2018) who developed a hybrid
biofuel cell that uses a metallic cotton fibre cathode and has a power density of 37 µW
per mm2. A dual source glucose and thermoelectric harvesting system is proposed by
Katic et al. (2018) to improve reliability. The system has a maximum output power of
66 µW. Much more work needs to be done before higher levels of power into the
milliwatt range can be reliably generated from glucose harvesting.

2.3.3 Device Communications

Wireless communications to and from embedded medical devices use a variety of
technologies and frequencies. An overview of media properties and standards is
provided by Ritter et al. (2014), while the capacity requirements for telemetry links is
discussed by Bihr et al. (2014). Short-range, inductively coupled data transfer is
currently used in some implanted systems (Kim et al., 2017), (Jegadeesan et al., 2015),
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(Xu et al., 2014) while also providing inductive powering. Higher frequency, higher
capacity wireless communications technologies in the MICS and ISM bands are
described by Teshome et al. (2019) who also analyse the future challenges of
communicating with microscale and nanoscale implants. Smaller devices at these
scales will require even higher frequencies in the terahertz, near-infrared or optical
bands. The challenges of communications in the terahertz band through human tissue
are described by Piro et al. (2015) who note the high level of absorption and the
resulting short range. The use of optical signals in the body is modelled by Johari and
Jornet (2018), who consider transmission through blood cells in plasma. Optical
transmission is also modelled by Wirdatmadja et al. (2019) who look at light
propagation in brain tissue. Ultrasound is proposed by Santagati et al. (2013) as an
alternative in-body communications with details on a suitable medium access control
(MAC) described in (Santagati et al., 2015) and experimental results reported in
(Santagati and Melodia, 2017). Research into other proposed non-wireless or optical
communications techniques is covered in §2.3.5.

2.3.4 Neural Stimulation

The original empirical model for describing AP generation was devised by Hodgkin
and Huxley (1952) based on the axon of the giant squid and, with some modifications,
is still in use today. The model has four fourth-order non-linear differential equations
that can only be solved by numerical methods. A simplified version, the
FitzHugh-Nagumo model, is widely used in computer simulation (Sherwood, 2013).
The basic principles of neural stimulation are detailed by Brocker and Grill (2013). The
parameters of stimulus pulse duration were modeled by Grill and Mortimer (1996)
while the effects of diameter were modeled by Altman and Plonsey (1990). The
potential at a point in a conducting extracellular medium from a travelling current
source can be calculated from volume conduction (Rutkove, 2007) and this forms the
basis for simulating APs. An empirical intracellular AP model for human muscle was
devised by Nandedkar and Stalberg (1983), based on an earlier version by Rosenfalck
(1969). The intracellular model provides the basis for calculating the extracellular AP
(Rattay, 1989), (Rattay, 1999). Extracellular AP propagation monopole models were
developed by Plonsey (1974) and Nandedkar and Stalberg (1983) and a dipole model
was developed by Dimitrova et al. (1999). These were analysed by Falces et al. (2005)
who noted that the dipole model gave better results at neural boundaries and was more
consistent with experimental data. Schoonhoven et al. (1986b) used a volume
conduction and convolution model to compute extracellular APs and then combined
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these mathematically into a CAP. Other CAP models were also developed by
Wijesinghe et al. (1991) and Stegeman and Weerd (1982) based on similar principles. A
review of models is presented by Schoonhoven et al. (1986a). These models were
mainly used to explore the underlying structure of a nerve fascicle based on the relative
intensity of different peaks in the CAP (Schoonhoven et al., 1988), (Stegeman et al.,
1988). Mapping the topography of fascicles through the median, radial and ulnar nerves
was originally undertaken by Sunderland (1945). Further research was done by Jabaley
et al. (1980),Stewart (2003), Delgado-Martínez et al. (2016) and Planitzer et al. (2014)
to determine improved fascicle maps especially for prosthesis research. These studies
showed how the position of a fascicle changed with branching and that key fascicles
contained neurons of one type only (either motor or sensory).
A nerve can also be seen as a communications path transporting information via
neurons from the body to the brain and vice versa. A whole-body communications
system using touch stimuli on a finger as transmitters and brain scan information as a
receiver is described by Hanisch and Pierobon (2017). The maximum modelled bitrate
is 40 bit/s though the detection system has a lot of background noise from other brain
functions. Other research is directed specifically at single neurons, modelling the
generation and propagation of individual action potentials (spikes) and examining how
such spikes can be modulated to convey information.

2.3.5 Neural and Molecular communications

The manipulation and control of devices at the microscale was originally proposed by
Richard Feynman in 1959 (Feynman, 1992), who particularly mentioned biological
structures as miniature computation and storage systems. The challenge of devising
nanomachines and the communications systems between them is described by Akyildiz
et al. (2008) and a survey of modelling research is provided by Farsad et al. (2016).
The potential uses of nanodevices and MC in medicine for disease detection, imaging,
drug-delivery and nanosurgery are surveyed by Felicetti et al. (2016). An overview of
molecular communications methods for clusters of embedded nanodevices is provided
by Atakan et al. (2012) who propose a body-area nanonetwork. These clusters could
communicate with external devices through gateways as described by Akyildiz et al.
(2015). Options for short-range molecular communications include calcium signalling
(Clapham, 2007), used extensively in the body and proposed by Taynnan Barros et al.
(2015) for use by nanomachines at the cellular level. Molecular motors based on
kinesin or dynein motor proteins are modelled by Chahibi et al. (2016) for the transport
of molecules against concentration gradients or flows. The capacity of a microfluidic
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channel for molecular communications is modelled by Bicen and Akyildiz (2015) in
order to quantify the interference experienced. Further modelling of the microfluidic
channel was done on end-to-end noise and memory analysis (Bicen and Akyildiz,
2014) and the summed broadcast capacity (Bicen et al., 2018). Using nanonetworks
and molecular communications for targeted drug-delivery is the subject of an extensive
survey by Chude-Okonkwo et al. (2017). The cardiovascular system has been modelled
as a molecular communications channel for the dispersion of drug nanoparticles
(Chahibi and Akyildiz, 2014), or engineered antibodies (Chahibi et al., 2015). Longer
range molecular communications options, such as pheromones or pollen, are described
in detail by Parcerisa-Giné and Akyildiz (2009). Channel models for single-spike
intra-neuron and inter-neuron communications, based mainly on experimental
knowledge of hippocampal neurons, have been developed by Malak and Akan (2013),
Balevi and Akan (2013), Ramezani and Akan (2018), Veletić et al. (2016) and
Cacciapuoti et al. (2016). The modelling of a multiple input, single output (MISO)
neural channel is examined in more detail by Ramezani et al. (2018) who also consider
the effects of a neural degenerative disease on the number of available
neurotransmitters. The interfacing of nanomachines with neurons is modelled by
Galluccio et al. (2012) and by Mesiti and Balasingham (2013) to facilitate functions
such as neural stimulation. A neuron channel model using a sub-threshold
(non-spiking) stimulus was proposed by Khodaei and Pierobon (2016a) (Khodaei and
Pierobon, 2016b), though sub-threshold impulses have a very short range along an axon
(Cartee and Plonsey, 1992), (Malmivuo and Plonsey, 1995) and could only be used on
the micrometere to millimetre scale.
Data communications through the single median giant axon of the earthworm was
modelled by Abbasi et al. (2018) who calculated a data throughput based on the
modulation technique of frequency shift keying (FSK). Other potential modulation
methods that could be applied to stimulated neural pulses include on-off keying (OOK)
and digital pulse-interval modulation (DPIM). DPIM was proposed as a coding system
for optical wireless (non-fibre based) communications by Ghassemlooy et al. (1998)
who compare the throughput, efficiency and error performance with both OOK and
PPM. Versions of DPIM for super-slow bacterial molecular communications have been
proposed by Krishnaswamy et al. (2013) (time elapse communication (TEC)) and
Barros et al. (2014) (Dynamic Time-Slot Configuration with Silent Communication).
MacKay and McCulloch (1952) explored the throughput that could be achieved in a
single neuron using OOK and DPIM.
Modelling a neural communications channel capacity requires not only input signals
but also some input noise. Neural background noise can be modelled as additive white
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Gaussian noise (AWGN) with root mean square (rms) values in the range 5 µV to 10
µV (Guillory and Normann, 1999; Harrison, 2003). A noisy and unidirectional neural
channel can use FEC to improve performance. One form of error correction, block

codes, add additional parity bits to a byte and are described in (MacWilliams and
Sloane, 1977). Block codes can be classed as linear or cyclical and include Hamming
linear codes (Wicker, 1995), Golay binary code, Bose-Chaudhuri-Hocquenghem
(BCH) cyclic codes (Bose and Ray-Chaudhuri, 1960), Reed-Solomon (RS) cyclic
codes (Reed and Solomon, 1960) and Turbo Product codes (Berrou et al., 1993). These
types of code are used not only in noisy communications channel but also used to
correct errors in digital storage systems. The use of block codes in molecular
communications is proposed by Leeson and Higgins (2012) and Lu et al. (2017) for
nanomachine communication in molecular networks.

2.4 Summary

Existing wireless implanted devices are usually powered with non-rechargeable
batteries that must be periodically changed. This requires repeated surgical intervention
with increased risk of infection and scarring. Communication with implants is through
short-range wireless and the power consumption of the transmission systems is in the
milliwatt range. There are systems under development for EM and ultrasound energy
harvesting, to avoid the battery bottleneck, but none are commercially available as yet.
Research into using the nervous system for artificial communications is centred at
present on analysing single neurons for nanomachine communications rather than
groups of neurons that could produce a larger signal amplitude. It is these research gaps
in ultrasound power harvesting and neural communications that we wish to address in
the following Chapters.
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Chapter 3

Ultrasound Energy Harvesting

3.1 Introduction

Medical diagnostic ultrasound scans use frequencies between 1MHz and 15 MHz to
build up an image from signals reflected from different tissue layers. The level of
penetration of the ultrasound into human tissue depends on the frequency of the
ultrasound and the absorption coefficient of the tissue. Higher frequencies experience
higher absorption but are sometimes used for better image resolution. The amount of
reflection that a beam experiences depends on the relative density of each layer of
tissue with the denser tissues showing greater reflectivity. Transmitted ultrasound that
has penetrated to a particular depth may be harvested, in turn, to generate electrical
pulses from embedded piezoelectric devices. In this chapter we model the
characteristics of ultrasound in human tissue and what power levels might be generated
by an embedded ultrasound-harvesting piezoelectric device.

3.2 Ultrasound Generation

Ultrasound transducers can be designed to radiate sound in many different types of
pattern, from omnidirectional to very narrow beams. For a transducer with a circular
radiating surface, vibrating in phase, the beam can be shaped in order to narrow the
area of transmission but some spreading will occur. It is possible to produce a beam
with a specific focal length by adding an acoustic lens to the transducer. Ideally a target
energy-harvesting device would be placed at the focal distance to maximise energy
absorption. If the target energy-harvesting device is small (less than 1 cm2) then the
transducer radius and area can also be small in order to reduce the transmitted power
while maintaining maximum intensity.
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Fig. 3.1 Plot of ultrasound frequency and PZT transducer thickness.

The thickness of a resonant crystal is half of the wavelength of ultrasound in the
transducer and can be calculated from the ultrasound frequency and the speed of sound
in a resonant crystal as follows:

d =
λt

2
=

vt

2 f
, (3.1)

where d is the thickness, λt is the wavelength, vt is the speed of sound in the transducer
and f is the ultrasound frequency. The speed of sound in a typical PZT resonant crystal
is 4000 m/s. A plot of the variation of transducer thickness (d) with frequency ( f ),
based on (3.1), is shown in Fig. 3.1. The plot shows that 1 MHz ultrasound frequency
would have a wavelength of 4 mm and require a transducer thickness of 2 mm.
Producing a lower frequency, for example 50 kHz, would require crystal thickness of
40 mm. Ultrasound is a non-ionising radiation but there are safety guidelines on using
it with human tissue to minimise heating and bubble formation (cavitation). The
ultrasound intensity used in our calculations is based on a maximum value of 720
mW/cm2, which is in line with medical recommendations (Hendee and Ritenour,
2003b).

3.2.1 Absorption and Reflection in Human Tissue

Externally applied ultrasound will penetrate initially through several layers of human
skin tissue. An ultrasonic beam of frequency f MHz with an initial intensity of Uo
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Table 3.1 Human tissue acoustic absorption and impedance values.

Tissue Absorption Impedance
(db/cm/MHz) (MRayl)

Blood 0.18 1.59
Fat 0.6 1.38
Muscle 3.3 1.7
Bone 20 6

penetrating to a depth of d cm will have a resultant intensity of Ud:

Ud =Uo10−(α f d/10) (3.2)

where the absorption coefficient, α , expresses the power loss in dB/cm/MHz.
Absorption coefficient values for some human tissues are shown in Table 3.1 (Hendee
and Ritenour, 2003b). A plot of ultrasound intensity (Ud) with respect to tissue depth
(d), based on (3.2) and absorption coefficient values for fat and muscle, is shown in
Figure 3.2. The ultrasound attenuation is calculated through 10mm skin/fat and then
10mm muscle for four different ultrasound frequencies (50 kHz, 200 kHz, 500 kHz, 1
MHz). The plot shows how higher ultrasound frequencies are more strongly absorbed
compared to lower frequencies, particularly in the denser muscle tissue.
Acoustic reflections at tissue interfaces (e.g., between fat and muscle) are caused by
differences in acoustic impedance (the density of the tissue multiplied by the speed of
sound); the unit of acoustic impedance is the Rayl (kg.s−1.m−2). If two materials have
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acoustic impedances Z1 and Z2 then the ratio between incident intensity Io and reflected
intensity Ir is represented as:

Ir

Io
=

(Z2 −Z1)
2

(Z2 +Z1)2 . (3.3)

Acoustic impedance values for some human tissues are also shown in Table 3.1. The
reflection at an air/human tissue interface would result in up to 99% of the ultrasound
being reflected because of a large difference in the acoustic impedance (429 Rayl for
air, 1.38 MRayl for skin/fat). Consequently there should be no air gap between an
ultrasound transducer and human tissue.

3.3 Energy Harvesting

An energy-harvesting nanodevice must convert incident ultrasound into mechanical
vibrations and then into piezoelectric energy. There are two main methods for
harvesting ultrasound: resonant piezoelectric crystals or vibrating piezoelectric

nanowires. The size of a resonant crystal depends on the frequency of the ultrasound:
the higher the frequency, the thinner the crystal. Thin crystals of 2 mm or less would
imply a resonant frequency in the 1 MHz or greater range. Such a frequency of
ultrasound would be more strongly absorbed by human tissue (see §3.2.1) so miniature
resonant crystal harvesters could only be deployed at very shallow skin depths (e.g., 2
mm). Therefore, for deeper penetration using lower ultrasound frequencies, we
consider piezoelectric ZnO nanowires that can vibrate in response to a range of lower
ultrasound frequencies and produce variable amounts of current and voltage.

3.3.1 Piezoelectric ZnO Nanowires

We use an analytical perturbation model for bending a ZnO nanowire developed by
Gao and Wang (2007). The nanowire is modelled as a thin cylindrical rod with a
specific modulus of elasticity (Young’s modulus).
Bending a nanowire requires the application of a force that is countered by the elasticity
of the nanowire. If a constant force F is applied until a bending before discharge of ym

(as depicted in Fig. 3.3) is achieved, then the balance of forces is as follows:

F =
3Y Iym

L3 (3.4)
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Table 3.2 Force, displacement, work and voltage for bending a nanowire.

Force Displacement Work Voltage
(nN) (nm) (fJ) (V)

60 109 3.274 ±0.212
80 146 5.821 ±0.284
90 164 7.36 ±0.319
100 182 9.09 ±0.354

where Y is the nanowire’s Young’s modulus, I is the area moment of inertia and L is the
nanowire length. The bending is directly proportional to the applied force. The energy
(work) ∆E required to bend the nanowire by an amount ym is:

∆E =
3Y Iy2

m
2L3 . (3.5)

The work is proportional to the square of the displacement. The voltage V is
approximately linear over the range of applied forces, as analysed by Hinchet et al.
(2012), and can be expressed as:

V = Gym (3.6)

where the parameter G has units of volts/nanometre and is a constant for specific values
of diameter and length. Values for force, displacement, work and voltage (from (3.4),
(3.5), (3.6)) for bending a nanowire that is 50 nm in diameter, 600 nm long and has a
Young’s Modulus of 129 GPa (Gao and Wang, 2007) are shown in Table 3.2. The value
of G is 1.9 x 10−3 V/nm. The work required for bending is of the order of femtojoules
and the magnitude of bending is sufficient to deliver a piezoelectric energy output.
The use of ZnO nanowires for energy harvesting was proposed by Wang and Song
(2006) for delivering a periodic DC voltage and current. The nanowires in this type of
DC nanodevice are fixed at one end to a substrate while the other end is free and can
bend to touch a specially engineered corrugated (zigzag) electrode. External vibrations
push the substrate and harvesting electrode together and hence bend the nanowires. The
bent nanowire then has a stretched side with a positive charge and a compressed side
with a negative charge. The negative charge is released when the compressed surface of
the bent nanowire touches the electrode. Systematically bending the nanowires
produces a unidirectional current and negative voltage that’s collected by the electrode,
as shown in Fig. 3.3. The zigzag electrode of the Wang device is made from
platinum-coated silicon with parallel etched trenches. The substrate is made from a
flexible polymer (preferably biosafe) coated with a thin film of gold. Aligned nanowire
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Fig. 3.3 Energy harvesting from bent nanowires using a corrugated top electrode and a
conducting substrate.

arrays can be grown on such a flexible substrate to match up with the trenches on the
electrode. Spacing between the substrate and the electrode is provided by polymer
strips that can be sealed if the device is to be immersed in liquid.
The maximum potential (voltage) at the nanowire’s surface is directly proportional to
the bending and inversely proportional to the length-to-diameter aspect ratio. The
bending creates a piezoelectric negative potential between the upper zigzag electrode
and the lower substrate.
The overall power harvesting capability depends on: (i) the amount of bending the
nanowires are subjected to; (ii) the bending events per second (frequency); and (iii) the
nanowires per unit area (density). Ultrasound is one source of external vibration that
can be used for bending the nanowires. The ultrasound vibrations effectively push the
electrode and substrate together at the frequency of the ultrasound. This dynamic
distortion of the device causes the nanowires to bend but they do not resonate at the
ultrasound frequency. The energy per cycle of the ultrasound will determine the amount
of bending while the ultrasound frequency will determine the quantity of bends per
second. In order to demonstrate vibrational activation, a 2 mm2 nanogenerator using
ZnO nanowires and powered by ultrasounds was developed by Wang et al. (2007b).
The device was immersed in water and subjected to ultrasound excitation at 41 kHz.
The output current and voltage values were recorded as noisy square waves but the
input intensity of the ultrasound was not recorded, making it difficult to assess the
efficiency. The same group carried out similar ultrasound energy-harvesting tests in
biofluids (Wang et al., 2007a) that included coupling three devices in parallel and then
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3.3 Energy Harvesting

in series to demonstrate boosting current and voltage. The square-wave output of these
devices was as a result of (i) an inbuilt diode characteristic that delivered current in one
direction only and (ii) capacitive effects in the contact between the nanowire and the
electrode that helped spread the discharge of piezoelectricity through the electrode. The
developers theorise that if all nanowires participated in current production, through
better alignment and more uniform length, the result would be a much improved square
wave DC output. Based on these considerations we model the output of a nanodevice as
a DC square wave with no requirement for rectification and hence no additional power
consumption or performance degradation.
We now compare the energy (work) levels for bending a nanowire (∆E) as shown in
Table 3.2 with the energy that can be delivered to a nanowire by ultrasound.

3.3.2 Cycle Energy

We need to compare the work levels for bending a nanowire in Table 3.2 with the
energy that can be delivered to a nanowire by ultrasound. Initially, we model a single
nanodevice that is perpendicular to the ultrasound vibrations (no tilt) and hence can
intercept the maximum amount of ultrasound energy. The input intensity is fixed at 720
mW/cm2, or 7.2 x 10−9W/ µm2, and the intensity at different depths is calculated using
(3.2). At a fixed density of m nanowires per µm2, the energy per nanowire per cycle,
Enw, at an ultrasound frequency of K cycles per second and intensity of Ud W/ µm2 is
calculated as follows:

Enw =
Ud

mK
. (3.7)

The total energy per cycle, Etot intercepted by a device of area Anw is as follows:

Etot =
AnwUd

K
= AnwmEnw. (3.8)

A plot of delivered energy per vibrational cycle ( Etot) at 50 kHz and 1 MHz, based on
(3.8), for a range of nanogenerator areas and different skin/fat depths is shown in
Figure 3.4. The nanowire density, m, is set at 20 per µm2, the initial input intensity is
fixed at 720 mW/cm2, and the intensity at different depths, Ud is calculated using (3.2).
At a fixed density, the energy per nanowire per cycle is independent of the area of the
nanogenerator. At 50 kHz the energy level is from 7.1 fJ to 6.7 fJ at 1 cm and 10 cm
depth, respectively. The energy per cycle per nanowire at 1 MHz is initially over 20
times lower than at 50 kHz (0.03 fJ) and decreases more rapidly with depth. A second
plot of energy per cycle per nanowire, also based on (3.8), for a fixed device area (1000
µm2), but with varying nanowire densities and skin/fat depths is shown in Fig. 3.5.
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(a) 50 kHz ultrasound wave.
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(b) 1 MHz ultrasound wave.

Fig. 3.4 Energy per cycle at 50 kHz (a) and 1 MHz (b) against skin/fat depth and varying
nanogenerator area.

Higher nanowire densities will reduce the energy absorbed per nanowire for a fixed
area. At 50 kHz the energy per nanowire per cycle drops below 6 fJ at these values
(Fig. 3.5: Density 20, Skin/Fat depth 10 cm). At 1 MHz the energy per nanowire is
lower than 1 fJ at all densities and depths. Both plots show that for a fixed input
intensity, an ultrasound frequency of 50 kHz will deliver more than 6 fJ per cycle to a
nanowire provided the density is equal to or lower than 20 nanowires per µm2. This
means that the magnitude of 50 kHz ultrasound cycle energies per nanowire are
comparable to the bending energies shown in Table 3.2, but the 1 MHz cycle energies
are too low to provide sufficient bending. We will therefore use an ultrasound
frequency of 50 kHz as it:

• is above the upper level of human hearing (20 kHz),

• has better penetration with lower absorption through human tissue,

• provides more energy per cycle to bend nanowires than higher frequencies.

By using a lower ultrasound frequency with lower tissue absorption and short-duration
(100 µs) infrequent pulses of ultrasound (See §4.2.1) we will minimise any possibility
of tissue or nanodevice heating.
Maximum ultrasound power will be transferred to a nanodevice if the incident beam is
perpendicular to the device substrate and hence strike the full nanodevice area. If a
nanodevice is tilted at an angle to the ultrasound source, then the incident intensity will
be reduced (Wang et al., 2009). A nanodevice tilted at an arbitrary angle can be
modelled as a combination of a horizontal tilt and a vertical tilt. If Ud is the intensity of
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(a) 50 kHz ultrasound wave.
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(b) 1MHz ultrasound wave.

Fig. 3.5 Energy per cycle at 50 kHz (a) and 1 MHz (b) against skin/fat depth and varying
nanowire density.

a beam at a depth of d cm and a nanodevice is tilted at an angle θ in the horizontal
plane and an angle φ in the vertical then the resulting intensity on the surface, Ur is:

Ur =Udcosθcosφ . (3.9)

A plot of the ultrasound intensity (Ur), based on (3.9), at a skin/fat depth of 5 mm
against varying horizontal and vertical tilt angles (0◦ to 90◦ ) is shown in Fig. 3.6. The
maximum intensity is 717 mW/cm2 and drops steeply even for relatively small
horizontal and vertical angles (e.g. 15◦). Consequently the level of tilt must be
minimised if a threshold intensity needs to be maintained to activate a nanodevice.

3.3.3 Power Output Analysis

The total output energy of a nanodevice depends on (i) the energy of the incident
ultrasonic wave; (ii) the harvesting area; (iii) piezoelectric efficiency of the nanowires;
(iv) absorption or reflection of ultrasound within the nanodevice; and (v) the fraction of
nanowires that contribute to the electrical output. The input energy levels range
between 5.82 fJ (bending force of 80 nN) and 9.09 fJ (bending force of 100 nN) per
nanowire as shown in Table 3.2. The DC ZnO nanodevice described in Wang and Song
(2006) had a measured average output energy per nanowire of approximately 0.05 fJ,
though this did not use ultrasound. A comparison with input energy levels suggests a
conversion efficiency of between 0.8% and 0.55%. The output power Po is computed
from the nanodevice area A, the incident ultrasound intensity Ur and the conversion
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Fig. 3.6 Plot of ultrasound intensity and angles of tilt for a frequency of 50kHz and a
skin/fat depth of 5 mm.

efficiency e, and is represented as follows:

Po = AUre. (3.10)

Thus, a 1000µm2 ultrasound harvesting nanodevice with 20 nanowires per µm2 at a
depth of 1 cm and incident ultrasound intensity of 710 mW/cm2 (input work per
nanowire of 7.1 fJ ) could have a power output of 39 nW when a conversion factor of
0.55% is used. We will standardise our modelling on a 1000µm2 device for simplicity,
giving us the flexibility to couple such devices together in order to increase output
current or voltage levels and deliver a range of output power levels.
The voltage output of a nanodevice depends on the magnitude of bending that the
nanowires experience. In order to drive any microelectronic circuitry, a voltage level of
between -0.2 V and -0.3 V would be necessary. As indicated in Table 3.2 the theoretical
output voltage of a nanowire bent by a force of 80 nN is -0.284 V, but experimental
results for the same bending force provide a voltage level of -25 mV (Wang, 2008).
This is less than 10% of the theoretical values, although the divergence is partly
because of the difficulty in measuring at the nanoscale. By conservatively reducing the
expected output voltage at 80 nN from -0.284 V to -0.025 V while retaining the same
magnitude of bending, we can use (3.11) to calculate a new constant G′ and derive new
values of output voltage (Vo) for each value of force and bending as follows:

Vo = G′ym. (3.11)
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This will give us the value of G′ as 1.712 x 10−4 V/nm. We then use this scaling to
calculate the output voltage and current of a 1000 µm2 nanodevice when subjected to
increasing intensity of incident ultrasound energy. From (3.5) we can derive the
relationship between the amount of bending in the wire (ym) and the energy needed for
bending (∆E) as follows:

ym =

√
∆E2L3

3Y I
. (3.12)

We also know from (3.7), the amount of energy per nanowire that a specific intensity of
ultrasound can deliver (Enw). By substituting for ∆E and also using (3.11), we can
derive the relationship between the output voltage (Vo) and incident ultrasound intensity
(Ur) for a nanowire as follows:

Vo = G′ym

= G′
√

∆E2L3

3Y I

= G′
√

2L3

3Y ImK
√

Ur.

(3.13)

The nanowire size, the density of nanowires (m) and the ultrasound frequency (K) are
all fixed so the only variables are the voltage level Vo and the incident ultrasound
intensity Ur. The maximum current output of a nanodevice depends on the total charge
generated from all the bent nanowires and how quickly the charge is released. In our
model we calculate the output current Io from the output power Po and voltage Vo as
follows:

Io =
Po

Vo
=

AUre
Vo

. (3.14)

The resulting plots of nanodevice output voltage (Vo) and current (Io) against
ultrasound intensity (Ur), based on (3.13) and (3.14), are shown in Fig. 3.7. The plots
are approximately linear except at lower levels of the ultrasound intensity.

3.4 Summary

Ultrasound can be safely transmitted into the human at recommended levels of intensity.
The beam can provide sufficient energy for the operation of implanted,
energy-harvesting piezoelectric nanodevices at shallow depths under the skin.
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Fig. 3.7 Plot of ultrasound intensity against output voltage and output current for a
1000µm2 nanodevice at an ultrasound frequency of 50kHz.

Lower-frequency ultrasound has greater tissue penetration and delivers more energy per
cycle to bend the nanowires. Other conditions that need to be considered are:

• The nanodevices should all be at the same depth.

• There should be no dense tissue or bone obstructing the path in order to minimise
absorption and reflections.

• The nanowires should bend in response to the cyclic vibrations induced by the
ultrasound enenrgy.

• The nanodevices should be inserted so as to minimise any tilt in order to collect
the maximum ultrasound intensity.

• The material encapsulating the nanodevice and the device substrate should match
the acoustic impedance of body tissue as closely as possible.

Having determined the output voltage and current levels for an ultrasound-harvesting
embedded nanodevice, we now examine the current and voltage levels needed to
stimulate nerves in the human body.
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Chapter 4

Stimulated Neural Activation

4.1 Introduction

In this Chapter we model the use of piezoelectric nanowire devices (nanodevices) that
can be safely implanted into patients for the longer-term stimulation of selected
peripheral nerves. The nanodevice harvests its energy from ultrasound waves that are
emitted by a portable external source. The use of wireless powering and biocompatible
materials will provide greater longevity of components, though there are no projections
for the ultimate longevity of such a device. The nanodevice will be encapsulated in a
casing that must be both bio-compatible (to resist rejection, inflammation and
bio-fouling) and non-degradable. Polymer-based bio-compatible materials specifically
for substrates, structures and packaging are surveyed by Qin et al. (2014). They show
how these materials can meet the requirements of implantable biosensors and describe
different packaging methods. Polymer based packaging will also have acoustic
impedance similar to human tissue (see §3.2.1) and will have a minimal impact on the
performance of the array. The overall scenario is illustrated in Fig. 4.1, where a
nanodevice array is embedded into a polymer-based patch of bio-compatible tissue, and
placed against a nerve’s outer layer (Epineurium). The harvested ultrasound energy is
converted by the devices and releases an electronic pulse that stimulates the nerve
through an electrode. However, the devices must harvest sufficient power for releasing
the required threshold amount of current to stimulate neuron bundles (fascicles) at
different depths in a nerve. We must determine the levels of current and voltage needed
to stimulate neurons, dimension arrays of nanodevices to effect the stimulation and then
model the generation of a neural action potential (AP).
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Fig. 4.1 Bio-compatible patch containing nanodevice array powered by externally
generated ultrasound waves. The array sends current pulses to stimulate specific
fascicles (nerve fibre bundles).

4.2 Neural Stimulation

Neurons have a resting potential, based on an ionic balance of sodium and potassium
ions across the neural membrane, of approximately -70 mV. If a stimulus raises this
potential above -55 mV (e.g., by applying a pulse of magnitude 15 mV or greater) then
the neuron activates, generating an AP. The AP cycle duration from activation to
completion (typically 5 ms) is called the refractory period (Tre f ). A stimulus applied
during this interval will not, in general, result in another action potential. The refractory
period also ensures that an AP can only travel in one direction as the neuron will be
de-activated in the opposite direction.
A stimulus can be supplied as part of the normal functioning of the nervous system or
as an externally induced electrical current. External pulses are usually supplied by
cathodic stimulation where a negative electrode is placed outside the cell membrane.
The negative potential outside the membrane induces a current that reduces the
trans-membrane voltage (depolarises) and will trigger an AP if the stimulus current and
the resulting change in membrane potential is large enough.
The level of current needed to stimulate a neuron will depend on the excitability of the
neuron, the electrode-neuron distance and the pulse duration. Larger diameter axons
are more excitable and require lower stimulus energy than smaller diameters. Such
larger axons have an insulating sheath of myelin and are classed as Aα , Aβ and Aδ .
The myelin sheath has regular gaps at intervals of 2 mm, called nodes of Ranvier

(typical width of 2 µm) where the AP is regenerated. These nodes are also the points at
which an external stimulus pulse will enter the neuron.
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Table 4.1 Axon Characteristics

Axon Type Myelin Diameter Speed Chronaxie
(µm) (m/s) (µs)

Aα Yes 13-20 80-120 50-100
Aβ Yes 6-12 35-75 120
Aδ Yes 1-5 10-35 170
B Yes 3 3-15 200
C No 0.2-1.5 0.5-2.0 400

The electrode voltage and the associated source current are important input values
needed in order to determine the resultant currents and voltages induced in the neuron.
Numerous research works have modeled the excitation of neurons using monopolar
electrodes (BeMent and Jr., 1969; McNeal, 1976; Rattay, 2008) and we assume that
such an electrode can be used in our model. In particular, we are interested in
determining (i) the magnitude of a stimulus current that triggers an action potential, (ii)
the electrode voltage needed to drive that current and (iii) the electrode position. This
will allow us to determine the appropriate current and voltage required from the
nanodevices to stimulate the neurons in the nerve. The calculation of stimulus current
values using experimentally derived empirical equations is described in the next section.

4.2.1 Activation Parameters

The effect of the stimulus can be varied by increasing or decreasing the pulse length,
and/or the intensity and hence influencing the activation of neurons of different size and
depth in the nerve bundle. The lowest possible stimulus current of an axon is called the
rheobase but this implies an infinitely long pulse (Brocker and Grill, 2013). The
rheobase is usually measured at the source electrode. Due to the tissue resistivity, the
rheobase will be higher when the electrode is placed at a certain distance (e.g., on the
skin). A more usual parameter is the chronaxie, the minimum time required for a
stimulus current that’s twice the value of the rheobase to stimulate a neuron (Brocker
and Grill, 2013). Factors affecting the accuracy of chronaxie measurements are
discussed by Geddes (2004) who notes that the most reliable values are obtained when
a square stimulus pulse is used. Axon characteristics, including their chronaxie value
for different types of neurons are summarised in Table 4.1.
The source current intensity for stimulation must be increased as the distance between
the electrode and the neuron increases. The increase in source current intensity with
distance is defined by the current-distance equation (Brocker and Grill, 2013), which is
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Fig. 4.2 Plot of current against pulse duration for two types of axon, one myelinated
(Aα axon) and one unmyelinated (C axon). The current intensity for a pulse duration
of 100µs is less than 0.2 mA.

represented as:
Id = Ith + kd2 (4.1)

where the minimum threshold current for neuron activation at zero distance is Ith, the
activation current intensity at a distance d, is Id and the current-distance constant is k

which is specific for different types of axon. Values of k were analysed by Ranck
(1975) for a wide range of axon types and measured by varying methods. A more
accurate method of determining the value for a peripheral motor neuron was devised by
Mahnam et al. (2009) who also calculated a value for the threshold current Ith. In our
modelling we use this calculated current-distance constant k of 27 µA/mm2.
The pulse duration and the corresponding threshold pulse current intensity, Ith, for
neural activation can be plotted using the Lapicque equation (Brocker and Grill, 2013),
which is represented as:

Ith = Ir(1+
C
t
). (4.2)

where the pulse duration is t, the rheobase current is Ir and the chronaxie is C. The
shorter the pulse duration, the higher the threshold intensity needed to activate a neuron.
The optimum pulse duration for a specific neuron is the chronaxie. A plot of pulse
duration (t) against current intensity (Ith), based on (4.2), using two values of chronaxie
for a myelinated (Aα) and unmyelinated (C) axon is shown in Fig. 4.2.
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Fig. 4.3 Plot of stimulus current and source voltage for a range of neuron distances and
a chronaxie of 100µs.

For an electrode in very close proximity to a nerve we model a rheobase current of 25
µA that’s derived from Mahman’s value of threshold current (50 µA) and a pulse
length of 100 µs. If we consider a pulse length of 100 µs then we can see from Fig. 4.2
that the different axon types could be activated by a stimulus current of less than 0.2
mA.
The magnitude of the stimulus current will also depend on the voltage at the electrode.
For a monopolar electrode, the electrical potential field Vu at a distance u is given by
the following equation (Brocker and Grill, 2013) :

Vu =
Id

4πρu
(4.3)

where the stimulus current intensity is Id and the conductivity of the extracellular tissue
is ρ . If we assume a homogenous tissue then we can assign a specific value to the
conductivity. A typical value for neuronal tissue conductivity is 0.3 S/m (Joucla and
Yvert, 2012). The potential at zero distance is infinite so we assign a radius of 0.1 mm
to the electrode in order to provide a minimum value of u and allow for a realistic
source voltage (Durand et al., 2005). The variation in stimulus current (Id) and source
electrode voltage (Vu) with neuron depth, based on (4.1) and (4.3), for a neuron with a
chronaxie of 100 µs stimulated by a 100 µs pulse is shown in Fig. 4.3. The further the
neuron is from the nanodevice array electrode the higher will be the required stimulus
voltage/current.
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Table 4.2 Electrode voltage and stimulus current for a range of neuron depths.

Neuron Depth Electrode Voltage Stimulus Current
(mm) (mV) (mA)

0.5 150.5 0.057
1 204 0.077
1.5 293 0.11
2 419 0.158
2.5 580 0.219
3 777 0.293

Values for electrode voltage and stimulus current, derived from (4.1) and (4.3), for a
range of neuron depths are shown in Table 4.2. These values are comparable to
experimental and modelling results for cuff electrode stimulation of peripheral nerves
(Polasek et al., 2007).
The optimum position for a stimulating electrode is at a node of Ranvier but it is
possible to trigger an action potential between nodes if the stimulus is strong enough.
The stimulus current and corresponding electrode voltage are the key parameters that
our energy-harvesting nanodevices must provide in order to stimulate neurons at
different depths. We now examine the properties of specific peripheral nerves that we
wish to stimulate.

4.2.2 Peripheral Nerve Fascicles

Peripheral nerves have neurons grouped in bundles (fascicles) within a nerve and so it
is difficult to trigger a specific neuron. The peripheral nerves of the wrist and forearm
that control arm and hand movements are the radial, median and ulnar. At the wrist
and elbow, these nerves are buried beneath a layer of skin/fat (between 1 cm and 1.5
cm) and hence are easily accessed (McCahon and Bedforth, 2007). The cross-sectional
areas of the nerves vary between 5 mm2 and 10 mm2 (Mani et al., 2011). Mapping the
topography of fascicles through the median, radial and ulnar nerves was originally
undertaken by Sunderland (1945). Further research was done by Jabaley et al. (1980)
and Stewart (2003) to determine improved fascicle maps. These studies showed (i) the
position of a fascicle could change within a nerve particularly after the nerve had
branched and (ii) that key fascicles contained neurons of one type only (either motor or
sensory). An accurate mapping of motor neurons to fascicles would provide valuable
information for the placement of the nanodevices and the calculation of the probability
of stimulating a particular neural response. A distribution of motor and sensory
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Fig. 4.4 Median nerve fascicles at the wrist (A) and the elbow (B), showing how elec-
trode placement can concentrate the stimulating current on groups of motor fascicles.

fascicles in the median nerve, based on (Jabaley et al., 1980) and (Stewart, 2003), is
shown in Fig. 4.4.
We model the median nerve as having an elliptical cross-section with a major diameter
of 6 mm, a minor diameter of 2 mm, a cross-sectional area of 9.5 mm2 and a perimeter
of 13.4 mm. If a stimulating electrode is placed at the mid-point on the top surface of
such a nerve then the radial distance from this point to the relevant fascicle will
determine the level of stimulating current needed. However, if the motor fascicles are
concentrated on one side of the nerve then the electrode should be placed on that side
of the nerve to avoid stimulating other sensory fascicles. Examples of electrode
placement on the median nerve at the wrist and elbow are shown in Fig. 4.4. In both
cases the electrodes are placed to maximise access to the motor neuron fascicles and
the stimulating current can be set to penetrate to the radial distances shown.

4.3 Nanodevice Neural Activation

A neuron’s axon can be stimulated at any point along its length by an electrical pulse of
sufficient magnitude. An activating nanodevice must (i) have sufficient voltage and
charge for stimulation and (ii) allow for an interval of of at least 5 ms (the refractory
period) between discharges. In theory, a neuron could be activated 200 times per
second but this would be considered a very high rate for normal neural activity.
Activation rates of 10 or less per second are more usual. Nerve stimulus currents are
usually in the mA range (see Fig. 4.3), though the closer the stimulating electrode can
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Fig. 4.5 Coupled nanodevices embedded in a patch of synthetic biocompatible tissue.

be placed to the nerve then the lower the requirement. Our modelled nanodevices have
a maximum voltage level of tens of mV and produce current in the µA range (see
Fig. 3.7). Therefore, based on these requirements, the nanodevices must be coupled
together in parallel to increase the current and in series to increase the voltage. The
coupling of individual ultrasound harvesting nanodevices in series to boost voltage
output and in series to boost current output is described by Wang (2008). The
experimental results show that the voltages and currents add as a linear superposition
when the ultrasound is activated. The nanodevices should be capable of delivering
square-wave pulses of varying duration across two electrodes, a cathode of coupled
zigzag electrodes and an anode of coupled substrates, that can in turn stimulate a nerve.
The minimum possible pulse length from a nanodevice driven by a 50 kHz ultrasound
signal is 20 µs. A longer stimulation time will contain a train of such pulses. The
in-built rectification and capacitive properties of the nanogenerator convert this train to
a single square-wave DC pulse. Neural stimulation systems usually provide some form
of charge balancing, delivering a biphasic pulse of cathodic current followed by anodic
current. The claimed benefit is to minimize the degrading effects of charge build-up on
the electrode and surrounding tissue. Our system is a passive device array and can only
provide monophasic cathodic pulses. It cannot switch to biphasic operation or produce
more complex stimulation patterns.
The method of inserting nanodevices in close proximity to neurons then becomes an
important factor. We propose encasing an array of coupled nanodevices within a sealed
patch of synthetic tissue, as illustrated in Fig. 4.5, and then inserting the patch of tissue
at the site. The use of coupled arrays and bio-compatible packaging ensures that the
individual nanodevices do not interact with the nerve or nerve fascicle but only act
through a single cathode/anode system. The bio-compatible material provides
insulation for the array in the surrounding conductive environment.
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4.3 Nanodevice Neural Activation

4.3.1 Array Dimensions

The nanodevice array must deliver a current intensity (Id) in accordance to (4.1). That
intensity in turn is also dependent on the pulse duration as shown in (4.2). If the output
current level of a nanodevice at a particular ultrasound intensity is Io, and the threshold
stimulus current for a particular neuron depth is Id , then the number of rows of coupled
nanodevices to generate the threshold current, Nr, is:

Nr =
Id

Io
. (4.4)

The voltage must also be in the range specified by (4.3) and calculated for an electrode
radius of 0.1 mm. If the output voltage of a nanodevice at particular ultrasound
intensity is Vo, and the electrode voltage for a particular threshold current is Ve, then the
number of columns of coupled nanodevices to generate the threshold voltage, Nc is:

Nc =
Ve

Vo
. (4.5)

The median and ulnar nerves are contained in a skin/fat depth between 1 cm and 1.5 cm.
The external ultrasound intensity will have dropped below its initial intensity of 720
mW/cm2 at these depths. Hence we use a maximum intensity of 710 mW/cm2 with a
maximum current and voltage per nanodevice of 1.42 µA and 27.5 mV. The minimum
possible area of a patch of nanodevices, Ap will be derived from the number of rows Nr,
the number of columns Nc and the area of one nanodevice an as follows:

Ap = NrNcan. (4.6)

The basic length and width of an array of nanodevices are set by the number of rows
and columns. Our nanodevices are 1000 µm2 and can be modelled as squares of side
32 µm. There will be a need to allow for small variations in dimension as well as a
space for coupling connections between the devices. We, therefore, increase the
effective size of a nanodevice to 40 µm per side, giving an effective area of 1600 µm2.
A plot of minimum array area (Ap) for a range of neuron depths, pulse durations and
two different ultrasound input intensities, based on (4.6), is shown in Fig. 4.6. The
plots show how the area increases for greater stimulus depth and shorter pulse lengths,
since both of these will result in higher current and voltage. The area decreases for
higher ultrasound intensity as each device can produce more current and voltage.
Nanodevice array dimensions of length and width are based on translating the number
of rows and columns into equivalent dimensions in millimetres. For example, at a
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Fig. 4.6 Nanodevice array area for a range of neuron depths, pulse lengths and two
ultrasound intensities.

skin/fat depth of between 1 cm and 1.5 cm there would be an ultrasound intensity of
710 mW/cm2 with a maximum individual nanodevice voltage of 27.5 mV and current
of 1.42 µA. It would require 73 nanodevices in series to deliver 2 V and 141
nanodevices in parallel to deliver 200 µA, giving an array of 3 mm by 5.64 mm or
16.92 mm2. It is possible to subdivide the rows and columns into coupled blocks in
order to increase the width and reduce the length of an array. The block coupling would
preserve nanodevice parallel and series wiring but would extend some connections to
allow the rearrangement of blocks in the array. The maximum possible width of the
array is half the circumference of the nerve or fascicle that the array will be placed on.

4.3.2 Selectivity of Activation

A fixed-size array of nanodevices can be designed to stimulate the deepest motor
neurons in a nerve but in doing so the current will also stimulate all closer motor
neurons. Some degree of depth selectivity can be engineered by (i) using a
variable-width ultrasound beam that can irradiate different parts of an array and (ii)
reducing the incident ultrasound intensity over the full array.
When the ultrasound beam is directed at smaller areas of an array, then lower intensity
stimulus pulses can be generated. We consider an array, for example, with sufficient
rows and columns to stimulate motor neurons at a maximum depth in a nerve of 3 mm
at maximum ultrasound intensity. The sub- area (length and width) that needs to
intercept ultrasound energy for different depths of neuron stimulation is shown in Table
4.3. The additional fascicles stimulated at each depth are also shown based on the
distribution in Fig. 4.4.
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4.3 Nanodevice Neural Activation

Table 4.3 Array dimensions for neuron activation at specific depths and a constant
ultrasound intensity of 710 mW/cm2.

Depth Length Width Fascicles
(mm) (mm) (mm)

1 2.16 0.28 5a, 5c ,4, B1
1.5 3.12 0.55 5b, 5d, 5e, 5f, 5g, 4, B2, B3, C
2 4.44 0.6 5h, 3, A1, A2, A3, A4, A5, F1, F2, E1, E2, E3, E4, E5,

E8, E9
2.5 6.16 0.84 1a,1b, 1c, 1d, 1f, A6, A7, A8, A9, F3, F4, F5, F6, E6, E7
3 8.24 1.12 1e, 1g, 1h, 1i, 1j, F7, A10, D

Reducing the intensity of an ultrasound beam on a fixed array size will also reduce the
resultant current and voltage and hence the stimulus depth. The stimulus depth d can be
expressed as a function of stimulus current Id by rearranging (4.1) as follows:

d =

√
Id − Ith

k
. (4.7)

The stimulus current (Id) in turn can be expressed as a function of ultrasound intensity
(Ur) by combining (4.4), (3.14) and substituting in (4.7) to give the following
expression for d:.

d =

√
(NrIo)− Ith

k

=

√
(NrAeUr)− IthVo

kVo

(4.8)

where the number of rows of nanodevices is Nr, the area of a nanodevice is A, the
output efficiency is e and the output voltage of a nanodevice is Vo. We will take the
example of an array dimensioned to stimulate neurons at a depth in the nerve of 3 mm
when subjected to an ultrasound intensity of 710 mW/cm2. A reduction in ultrasound
intensity Ur causes a reduction in stimulus current Id with a corresponding reduction in
stimulus depth d. A plot of the reduction of ultrasound intensity (Ur) on such a
fixed-size horizontal array and the effect on stimulus depth (d), based on (4.8), is
shown in Fig. 4.7.
In order to calculate the intensity of an ultrasound beam across an elliptical or circular
nerve we need to calculate the slope of a tangent at any point on the curved surface. An
ellipse with a semi-major axis a and a semi-minor axis b will have a slope s at any
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Fig. 4.7 Plot of Ultrasound Intensity vs. Stimulus Depth for a fixed-size array (8.24 mm
length, 1.12 mm width) of nanodevices.

point (x,y) as follows:

s =
dy
dx

=−x/a2

y/b2 . (4.9)

This slope value can be converted to an angle in radians using arctan. The ultrasound
intensity at a particular depth, Ur, will be reduced around the curved surface as follows:

Ue = cos(arctan(s))Ur (4.10)

where Ue is the reduced ultrasound intensity on the curved surface. Examples of how
an ultrasound intensity of 710 mW/cm2 decreases, based on (4.10), from the centre to
the edges of an elliptical nerve and a circular nerve are shown in Fig. 4.8. The
modelled surface segment of the elliptical nerve has a major axis of 6 mm, a minor axis
of 2 mm and a length of 5 mm. The circular nerve segement has a diameter of 6 mm.
The reduction in incident ultrasound intensity on a curved patch will cause a reduction
in stimulus current and stimulus depth. The actual reduction will depend on how much
of the patch rests on the curved edge of the nerve surface. In both cases the maximum
intensity occurs on the part of the nerve surface that is normal or near-normal to the
incident beam (e.g., the midpoint). As the angle of curvature increases, the intensity
decreases but the effect is more pronounced on a circular cross-section. This suggests
that the width of a nanodevice array, or the deployment of multiple arrays, must be
tailored to the type of nerve (elliptical or circular cross-section) in order to maximise
energy harvesting.
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Fig. 4.8 Ultrasound intensity across (a) an elliptical cross-section nerve (major axis
6mm) and (b) a circular cross-section nerve (diameter 6mm).

The maximum possible AP pulse rate is limited by the refractory period of the
stimulated fascicles. A higher aggregate pulse rate could be achieved through
selectively stimulating individual fascicles. Selective stimulation implies that one
fascicle can be activated without activating neighbouring fascicles (spatial selectivity).
Stimulating single fascicles would provide a method for increasing the number of
pulses per second that could be transmitted along a nerve. It is also possible to
selectively stimulate neurons of a particular diameter in a fascicle that contains
different types of neuron (diameter selectivity). A stimulus pulse from an electrode will
selectively stimulate fascicles based on the following parameters:

• The strength and duration of the stimulus current will determine how deep into
the nerve the stimulus will travel;

• The closest fascicles will be stimulated before more distant ones
(current-distance relationship);

• Among close fascicles, myelinated neurons will be stimulated before
non-myelinated (pulse duration);

The most difficult fascicle targeting to achieve is to stimulate a deep fascicle without
stimulating closer fascicles. The only method for achieving this in limited
circumstances is the generation of sub-threshold stimulus pre-pulses as described by
Grill and Mortimer (1995). These pre-pulses can temporarily raise the stimulus
threshold of the closest fascicle allowing a follow-on pulse to stimulate a deeper
fascicle. However pulse timing, pulse length and pulse interval are crucial in
implementing this.
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4.4 Summary

A further degree of selectivity can be achieved by deploying multiple electrodes at
different locations across a nerve surface. This would require either embedding
separate arrays or providing multiple arrays within a single patch. The stimulating
electrodes would be positioned as close as possible to the target fascicles and
engineered to deliver the stimulus current. The electrodes would be energised either
singly simultaneously by the ultrasound beam and the system could be modelled as a
multipole electrode with careful attention paid to interaction between the stimulus
currents (Sweeney et al., 1990; Tarler and Mortimer, 2004).

4.4 Summary

There are specific minimum levels of current, voltage and stimulus pulse-length needed
to stimulate APs in nerve fascicles. Energy harvesting nanodevices must be coupled in
series and parallel in order to provide the required stimulus energy levels. Higher levels
of voltage and current will penetrate to a greater depth into a nerve and stimulate more
fascicles. However the activation of a neuron by a stimulus depends not only on the
depth but also on the neuron diameter and whether or not the neuron has a coating of
myelin. Larger diameter myelinated neurons are more readily stimulated than smaller
diameter and unmyelinated neurons. A limited degree of selective activation of specific
fascicles is possible but greater selectivity would require multiple arrays and multiple
electrodes.
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Chapter 5

Neural Data Transmission System

5.1 Introduction

The previous chapter described the stimulation of nerves by energy-harvesting
nanodevice arrays. In this chapter we describe how a nerve can provide a digital
communications channel using multiple stimulated neurons in fascicles as data pulses.
In order to dimension such a transmission system we need to know: (i) the maximum
number of pulses per second that a nerve can support; (ii) the amplitude and attenuation
of the pulse to determine the pulse range and intensity; (iii) the level of noise or
distortion in the nerve and (iv) the modulation that is suited to the natural signaling
properties of the nerve.
These values and parameters allow us to calculate the resulting bit rate at different
distances from the stimulus point. The embedded transmission device would generate
modulated stimulus pulses along a nerve for interpretation by an embedded receiving
device. The information rate will depend on many factors such as: (i) the number and
type of neurons that are stimulated; (ii) the spread in velocities of the APs; and (iii) the
exact position of the detecting electrodes. The stimulus pulses should not interfere with
the normal working of the nervous system and should be applied in situations where the
muscle or organ at the nerve extremity was damaged and could not terminate normal
nerve impulses.

5.2 Single and Compound Action Potentials

The levels of single and multiple action potentials can be measured as follows:
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5.2 Single and Compound Action Potentials

• The intracellular action potential (IAP) is the trans-membrane voltage measured
from the inside of the neuron to the outside across the neural membrane and will
have a maximum value of approximately 30 mV.

• The extracellular action potential or single fibre action potential (SFAP) is
measured on the outside of the neuron with respect to the surrounding
extracellular medium and will be much smaller in magnitude (nanovolts) than the
IAP.

• The compound action potential (CAP) is the algebraic sum of multiple SFAPs
arising from the same external stimulus and measured on the outside of the
neuron. The magnitude will depend on how many neurons are simultaneously
activated.

5.2.1 Intracellular and Extracellular Action Potential

An empirical IAP model devised by Nandedkar and Stalberg (1983) was based on an
earlier version by Rosenfalck (1969). This model can be expressed in the space domain
and the time domain to generate the shape and magnitude of the IAP based on
experimental values. The space domain version is expressed across a distance z while
the time domain version uses the transform z = vt where v is the velocity of the IAP
and t is the time parameter. Three shaping parameters are used: α for the rising part of
the IAP, β for the exponential reduction and γ for the resting potential. The empirical
formula for the time domain IAP, φiap(t), may be written as:

φiap(t) = αt3e−β t − γ (5.1)

The time-based version produces an IAP that has a duration appropriate for a range of
cellular tissue including neurons of different types. This formula was originally devised
for muscle fibre with α= 49152 mV/ms3, β = 8/ms, γ = 90 mV and a velocity of 4
m.s−1. We modify the shape of the time-based version to match the experimental shape
of a myelinated neuron IAP by: i) changing the resting potential, γ , to -70 mV, ii)
setting the value of α= 36864 mV/ms3 to generate a peak voltage of 30 mV and iii)
retaining the value of β . Our modified empirical equation is:

φiap(t) = 36864t3e−8t −70. (5.2)

A plotted example of our modelled IAP (φiap(t)), based on (5.2), for a myelinated
neuron is shown in Fig. 5.1. We will use this time-based IAP model in our calculation
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Fig. 5.1 Time-based intracellular action potential (IAP) model for a myelinated neuron.

of the extracellular single fibre action potential (SFAP).
The calculation of potential at a point in a conducting extracellular medium arising
from a travelling current source is based on the principles of volume conduction
(Rutkove, 2007). The SFAP is computed from a convolution of (i) a source excitation
and (ii) a weighting function based on the exact position of the detecting electrode
along the fibre. If we model a single neuron as a long thin cylinder then we can define
the direction of propagation of an SFAP as along the z axis and the initial excitation
point as (0,0,0). The detection point for the SFAP is outside the fibre at location
(x0,y0,z0) in the extracellular domain as shown in Fig. 5.2. The extracellular potential
at this point will vary with the radial distance from the propagating source of excitation
(Malmivuo and Plonsey, 1995). The radial distance will vary specifically with the
longitudinal propagation distance and can be expressed as r(z) once the detection point
is a fixed perpendicular distance p (in the xy plane) from the fibre. The potential at a
specific time can be expressed as an integration of the contributions of all
transmembrane current sources of length dz. Two types of model have been developed
for SFAPs: monopole models based on transmembrane current (second derivative of
the IAP) and dipole models based on dipole moment (first derivative of the IAP).
Monopole models were developed by Plonsey (1974) and Nandedkar and Stalberg
(1983) and a dipole model was developed by Dimitrova et al. (1999). These were
analysed by Falces et al. (2005) who noted that the dipole model gave better results at
boundaries and was more consistent with experimental data. We will use a dipole
model in our derivation of the SFAP and our formulation is based on the equation

57



5.2 Single and Compound Action Potentials

Stimulus Point
x=0
y=0
z=0

Detection 
Point

x0, y0, z0

Perpendicular 
Distance (p)

Longitudinal Distance (z)

Neuron

Stimulus
electrode

Direction of PropagationFig. 5.2 Schematic view of the stimulating and detection of single fibre action potentials
(SFAPs) along a single neuron.

derived by Falces et al. (2005). The extracellular potential at time t, φe(t), for a neuron
of radius a can be modelled as the output signal of a linear system and computed as the
convolution of two time dependent functions as follows:

φe(t) =
a2σi

4σev
∂φiap(t)

∂ t
∗

∂
1

rv(t)

∂ t
(5.3)

where the intracellular conductivity is σi, the extracellular conductivity is σe and the
conduction velocity is v. The radial distance, rv(t), can be expressed as:

rv(t) =
√

(z0 − vt)2 + p2 (5.4)

where the longitudinal distance is (z0) and the perependicular distance is p. The radial
distance will be at minimum when the IAP reaches the longitudinal distance (z0) of the
electrode from the source. The SFAP conduction velocity, v, is also proportional to the
diameter of a neuron, d(= 2a), and can be expressed as:

v = hd (5.5)

where the constant of proportionality, h, is approximately 6 for myelinated neurons
when the velocity is expressed in m/s (or mm/ms) and the diameter is expressed in µm
(Struijk, 1997). We fix the value of extracellular conductivity, σe, at 0.3 S/m and the
intracellular conductivity, σi, at 1 S/m (Joucla and Yvert, 2012). Our modelled example
of SFAPs for myelinated neurons of two different diameters, based on (5.3), is shown
in Fig. 5.3a. The duration of the SFAP is the same in each case (approximately 2.55
ms) but the time taken to reach the detection point is longer for the lower diameter (and
lower velocity) neuron. The recorded SFAPs are tri-phasic with both positive and
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Fig. 5.3 Variation of SFAP amplitude with neuron diameter and two electrode perpen-
dicular distances at a fixed longitudinal distance of 100 mm.

negative peaks. The amplitudes of the SFAP peaks depend not only on the relative
positions of the source and detecting electrode but also on the conductivity ratio
between the intracellular medium and the extracellular medium, as shown in (5.3). The
relationship between SFAP amplitude (for positive/negative peaks) and neuron
diameter is approximately linear for the range of diameters that we are studying
(Struijk, 1997) and is shown for the larger positive peak, based on (5.3), in Fig. 5.3b.
The highest frequency for generating SFAPs is limited by the refractory period (up to 5
ms) and will be approximately 200 pulses/sec.
An SFAP for a single neuron is difficult to detect because of its low amplitude and the
possibility of interference from other neurons. However, a stimulus pulse of sufficient
strength will trigger multiple SFAPs in one or more fascicles. The SFAPs will sum
algebraically to give a compound action potential (CAP) which is easier to detect by an
extracellular receiver because of the higher summed voltage although the peak voltage
may still be of the order of microvolts or low millivolts.

5.2.2 CAP Simulation

We model CAP measurement over multiple neurons in a similar way to that shown for
a single neuron in Fig. 5.2. The peripheral nerves that we are considering (sural,
median, radial) are elliptical or circular in cross-section with average radii ranging from
1.7 mm (median) to 1.5 mm (sural). The minimum perpendicular detection distance
occurs when the detecting electrode is on, or very close to, the surface of the nerve. The
neurons are at varying distances from the detection point with corresponding
differences in SFAP amplitudes. Wijesinghe et al. (1991) show the average distance of
neurons from the centre of the nerve can bet set at a value of 0.66 of the nerve radius
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without loss of accuracy in CAP calculation. We adapt this model with the neurons
concentrated at the centre of the nerve and the detecting electrode set at slightly greater
than the typical peripheral nerve radius. A minimum perpendicular detection distance
of 2 mm ensures that the nerve dimensions and neuron distances are properly
accounted for in simulating multiple SFAPs without overestimating the magnitude of
the resulting CAP. The duration (width in time) of a CAP will depend on what fraction
of the neurons in the fascicles are stimulated and the velocity of propagation of the
SFAPs. Schoonhoven et al. (1986b) used a volume conduction and convolution model,
similar to the one we described in §5.2.1, to compute SFAPs and then combined these
mathematically into a CAP. Models for CAPs were also developed by Wijesinghe et al.
(1991) based on similar principles. The general formulation states that a CAP at a time
t and distance l from the stimulating electrode may be expressed as:

CAP(t, l) =
N

∑
j=1

φe j(t − τ j;v j) (5.6)

where there are N active fibres in total in the nerve, φe j is the SFAP of the jth neuron
and the conduction velocity is v j (constant for a given neuron). The arrival time of the
stimulus at the detection point, τ j, is derived from the distance l and the SFAP velocity
v j as follows :

τ j =
l
v j
. (5.7)

If the neurons are of different diameter then the SFAPs will have different velocities
and the CAP at distance l will show spreading from the variation in SFAP arrival times.
Substituting (5.5) in (5.7) we get the arrival time based on diameter:

τ j =
l

hd j
, (5.8)

where d j is the neuron diameter and the constant of proportionaliy, h, is set at 6 for
myelinated neurons. The CAP amplitude will reduce with longitudinal distance
because the underlying multi-speed SFAP bi-phasic peaks will progressively start to
cancel each other out (Wijesinghe et al., 1991) giving a reduced summation. We
compute the dispersion, D, as the rate of change of propagation time t with respect to
neuron diameter d and distance z at any given point as follows:

D =
1
z

dt
dd

(5.9)
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Fig. 5.4 Spread of arrival times of SFAPs in ms/mm for varying neuron diameters. The
dispersion in ms/µm/mm is also shown.

Dispersion is expressed per unit length as ms/µm/mm. Each neuron diameter has its
own value of dispersion but it is possible to use a single value of dispersion over a
narrow range of diameters to simplify calculation of pulse spread. This spreading in
time of a CAP is analogous to the dispersion that occurs in an optical fibre when a
propagating optical pulse contains a range of wavelengths (Snyder A.W., 1983) that
travel at slightly different velocities. A plot of propagation times for SFAPs over a
range of diameters (and hence velocities), based on (5.8), is shown in Fig. 5.4 for a
distance of one mm. The dispersion of the SFAPs, based on (5.9), is also shown in
Fig. 5.4. A nerve or fascicle with a greater proportion of smaller diameter neurons and
lower conduction velocities will generate a CAP with a lower amplitude and with
greater spreading over distance than a fascicle with a greater proportion of larger
diameter neurons. Axon densities and diameter distributions for the radial and sural
nerves were estimated by O’Sullivan and Swallow (1968). We model a nerve with a
total of 10,000 neurons, similar to the sural nerve model used by Stegeman et al.
(1988). A peripheral nerve of this type has multiple fascicles with a bimodal spread of
neural diameters around 4.5 µm and 9.5µm as shown in Fig. 5.5a.
We use this distribution to generate three different CAPs: (i) a bimodal CAP from all
the neuron diameters, (ii) a single mode CAP from the distribution of lower speed
neurons with smaller diameters and (iii) a single mode CAP from the higher speed
neurons with larger diameters. The resulting CAPs are generated by summing all the
calculated SFAPs, based on (5.6), and are shown in Fig. 5.5b. We fix the perpendicular
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(a) Histogram of sural nerve neurons.
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(b) Bimodal CAP and single-mode CAPs.

Fig. 5.5 Histogram and CAPs for sural nerve with 6000 neurons with a mean diameter
of 4.5 µm and 4000 neurons with a mean diameter of 9.5 µm.

distance of the detection electrode at 2 mm. A single mode CAP can be generated from
higher velocity SFAPs if the stimulus pulse intensity and duration are set to stimulate
larger diameter neurons in a fascicle. A more intense and longer duration stimulus
pulse will stimulate both larger and smaller diameter neurons creating a bimodal CAP
with higher velocity and lower velocity SFAPs. The bimodal CAP shows that the larger
diameter neurons dominate even though numerically there are more neurons of lower
diameter. The change in amplitude (positive and negative peaks) and duration (spread)
of a CAP will be important parameters in assessing the use of CAPs as pulses for data
transmission.

5.2.3 CAP Data Pulses

A data transmission system requires a data source, transmission channel and a receiver.
In our model an external source will convert data into coded ultrasound stimulus pulses
for transmission to an embedded nanodevice array. The array will stimulate fascicles in
a nerve and create a corresponding stream of coded CAPs. A receiver at the distant end
must detect these CAPs, record them and interpret them using some decoding
algorithm. We will use the positive peak of a single mode CAP as a measure of the
amplitude of a pulse. This peak will decline with distance and the CAP will broaden.
We now define an equivalent data pulse format primarily to simplify our computations
while retaining all the attributes of a CAP.

• We model the CAPs using Gaussian pulses to replicate the attributes of CAPs
(decreasing amplitude, increasing width) as they propagate along a nerve without
contravening the limit set by the refractory period.
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5.2 Single and Compound Action Potentials

• The amplitude is based on a mean neuron diameter d and a standard deviation in
diameter σd .

• The width of the Gaussian pulse in time is a standard deviation based on the
spread of propagation velocities of the constituent SFAPs.

• The symbol rate of the nerve can be calculated within the constraints of the
refractory period and the inter-symbol interference (ISI) caused by pulse
spreading.

• The maximum possible capacity (Shannon capacity) of the nerve is computed
from the symbol rate and the signal-to-noise ratio (SNR) of the nerve. The actual
capacity will depend on constraints like the refractory period and the modulation
method.

We evaluate our neural transmission system by modelling two single mode CAPs as
Gaussian pulses. The amplitude is based on the average of a number of summations of
SFAP positive peaks for (i) 6000 neurons with a mean diameter, of 4.5 µm and a
standard deviation in diameter of 1 µm and (ii) 4000 neurons with a mean diameter of
9.5 µm and a standard deviation in diameter of 1 µm. The equation for our Gaussian
pulse voltage with respect to time, V (t), is as follows:

V (t) = Amaxe
−(t−µcap)2

2σcap2 . (5.10)

The peak amplitude of the Gaussian pulse CAP (from the summed SFAPs) at the point
of measurement (z) is the positive peak Amax. The time (in ms) at which the peak
amplitude is detected at the fixed detection point provides the mean, µcap, of the
modelled pulse. The width of a CAP in time has a minimum value set by the width of
the underlying SFAPs (2.55 ms). Our equivalent Gaussian pulse replicates this
minimum value with a core standard deviation of one-sixth of this width (0.425 ms).
The total standard deviation in time of the modelled CAP, σcap, is calculated from two
components: (i) a core standard deviation of σ0 = 0.425ms added to (ii) the broadening
due to dispersion calculated from the standard deviation of the underlying diameters
(and hence velocities) at any time t. We can calculate the pulse broadening, ∆P, over a
length z due to dispersion as follows:

∆P = Ddσdz (5.11)
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Fig. 5.6 Gaussian pulses modelled on a CAP generated from 4000 neurons with a mean
diameter of 9.5µm and standard deviation of 1 µm

where the dispersion of the mean diameter is Dd (see §5.2) and the standard deviation
of the diameter range is σd . The modelled CAP Gaussian pulse will then have a total
standard deviation (in ms) as follows:

σcap = ∆P+σ0

= Ddσdz+σ0

= Ddσdz+0.425.

(5.12)

This ensures that the width of the modelled Gaussian pulse, a combination of the
underlying CAP width plus the broadening due to dispersion, is comparable to the
width of the corresponding simulated CAP. Examples of CAPs modelled as a Gaussian
pulses, based on (5.10) and (5.12), are shown in Fig 5.6. The peak amplitude for a
fascicle with k neurons at a measuring distance z is Ak(z) . This peak amplitude can be
averaged over a number of simulations and modelled by an empirical exponential
function as follows:

Ak(z) = Gke−αkz (5.13)

The empirical parameters Gk and αk will have values that depend on the mean neuron
diameter, the standard deviation of the diameters and the number of neurons in the
fascicle. The reduction in amplitude and the increase in spread of our modelled CAPs
as the detection distance increases, based on (5.13), is shown in Fig. 5.7. We now
examine how a stimulated stream of CAPs can be used for data communications.
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(a) CAP for 6000 neurons with a mean di-
ameter of 4.5µm.
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(b) CAP for 4000 neurons with a mean di-
ameter of 9.5µm.

Fig. 5.7 Gaussian pulse model of CAPs showing decrease in amplitude and increase in
pulse spread with distance and time.

5.3 Neural Data Channel

We model CAPs as symbols to convey information in bits. The capacity of the system
is determined by (i) the symbol rate (symbols per second), (ii) the number of different
symbols and (iii) the number of bits that each symbol represents. The maximum
possible symbol rate is limited to 200/s by the total refractory period, Tre f , if a normal
level of stimulus is used (see §4.2). Pulse spreading increases the probability of ISI and
is countered by reducing the symbol rate. The basic symbol rate for any Gaussian pulse
is calculated using a peak-to-peak time difference at the point of detection of
approximately four times the standard deviation (4σcap). If we compare Tre f with
4σcap we get the following expressions for symbol rate Scap:

Scap =
1

Tre f
,Tre f ≥

1
4σcap

Scap ≈
1

4σcap
,Tre f <

1
4σcap

. (5.14)

The symbol rate will be in symbols/s if σcap is expressed in seconds. By substituting
(5.12) we can calculate the effect of pulse spreading on the symbol rate:

Scap ≈
1

4(Ddσdz+σ0)
,Tre f <

1
4σcap

≈ 1
4(Ddσdz+0.425)

.

(5.15)
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Fig. 5.8 Symbol rates for a CAP of 6000 neurons with a mean diameter of 4.5 µm and
a CAP of 4000 neurons with a mean diameter of 9.6 µm. The symbol rate drops at the
point where the inter-pulse interval exceeds the refractory period.

The symbol rate crossover points from Tre f to 4σcap for our modelled CAPs, based on
(5.15), are shown in Fig. 5.8. The symbol rate itself does not define the channel
capacity as the presence of noise in a channel will dictate the number of symbols, M,
and the number of bits per symbol (log2M) that the channel can support.
We assume our multi-neuron path has additive white Gaussian noise AWGN with root
mean square (rms) values in the range 5 µV to 10 µV (Guillory and Normann, 1999;
Harrison, 2003). This is in accordance with models for neural noise based on
experimental microneurographic measurements of normal (as opposed to stimulated)
CAPs (Diedrich et al., 2003; Lewicki, 1993). Some models for single neuron AP
generation also assume Gaussian noise (Balevi and Akan, 2013) though others propose
the addition of some non-Gaussian frequency-dependent noise (Martinez et al., 2009)
to provide more accuracy in single-spike capacity and sorting models. Amplitude
reduction of the CAP with distance, z, will lower SNR and hence reduce maximum
channel capacity. The SNR is the ratio between CAP power and noise power and is
derived from the root mean square (rms) noise level, σn, and the rms amplitude of the
CAP, Akz/

√
2 (5.13) as follows:

SNR(z) =
Ak(z)

2

2σn
2

=
(Gke−αkz)2

2σn
2 .

(5.16)

66



5.3 Neural Data Channel

The SNR is a simple ratio but it can also be expressed in decibels (dB) as follows:

SNRdB(z) = 10log10

(
(Gke−αkz)2

2σn
2

)
. (5.17)

The SNR decreases with both distance, as a result of amplitude reduction, and with
increasing noise level. In order to compare different modulation methods a normalised
form of SNR is calculated to give a ratio of energy per bit, Eb and a noise per hertz, N0.
This is calculated as follows:

Eb

N0
=

(SNR)B
fb

, (5.18)

where B is the bandwidth in Hertz and fb is the channel data rate.

5.3.1 Channel Capacity

The maximum possible theoretical capacity, C bit/s, of a noisy channel with bandwidth
U is given by Shannon’s formula (Shannon, 1949):

C =Ulog2(1+SNR). (5.19)

In this case the bandwidth will be the symbol rate, Scap, divided by 2 (Freeman, 1998).
Substituting (5.14), (5.15) and (5.16) we get :

Ccap(z) =



1
2Tre f

log2

(
1+

(Gke−αkz)2

2σn
2

)
,

if Tre f ≥
1

4σcap

1
4(Ddσdz+0.425)

log2

(
1+

(Gke−αkz)2

2σn
2

)
,

if Tre f <
1

4σcap

(5.20)

The equations shows that the unrestricted channel capacity for a nerve or fascicle at any
given distance z from the stimulus point depends on:

• the refractory period of the neurons, Tre f ;

• the number of neurons k and the mean diameter (determining the CAP
amplitude);
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(a) Channel capacity CAP (4.5 µm) .
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(b) Channel capacity CAP (9.5 µm).

Fig. 5.9 Capacity plots for (a) CAP of 6000 neurons with a mean diameter of 4.5 µm
and (b) a CAP of 4000 neurons with a mean diameter of 9.5 µm.

• the background neural noise level (σn;)

• the spread of neuron diameters around the mean value (σd);

• the dispersion of the mean neuron diameter (Dd).

The Shannon calculation can be applied to our neural channel as it can be modelled as a
transmission system with bandwidth 100 Hz and AWGN. However the following
conditions will apply:

• The calculation does not define the type or types of modulation (symbols and bits
per symbol) that may be needed to achieve this theoretical bit rate.

• There is a ceiling symbol-rate of 200/s.

• The capacity will be greater than or equal to 200 bit/s as long as the SNR is
greater than or equal to 3 (4.77 dB).

The plots in Fig. 5.9 are based on (5.20) and show the maximum possible bit rates
without the refractory period limit. The number of symbols for a capacity C can be
calculated using the Nyquist formula:

C = 2Ulog2M (5.21)

where U is the bandwidth, M is the number of symbols and log2M represents the
number of bits per symbol. Symbols can be generated using different modulation
techniques (e.g. amplitude or frequency modulation) but the transmission system itself
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5.3 Neural Data Channel

may limit the options. By equating (5.19) with (5.21) we can show that the number of
symbols, M, will depend on the SNR as follows:

M =
√
(1+SNR)

=

√(
1+

(Gke−αkz)2

2σn
2

)
.

(5.22)

The higher the SNR, the greater the channel capacity but more symbols must be created
to achieve that capacity. The number of bits per symbol, bs, is:

bs = log2(M)

=
1
2

log2

(
1+

(Gke−αkz)2

2σn
2

)
.

(5.23)

If there is a limit on the number of symbols that can be employed, there will be a
consequent limit on the number of bits per symbol and the result will be a reduced
capacity.We now examine what data modulation methods can be applied to these
intermittent baseband CAP pulses to compute the attainable bit rate.

5.3.2 Modulation Methods

The amplitude of a CAP will depend on the number of neurons that are activated and is
subject to statistical variation. It would be difficult to encode information using stepped
amplitude levels so pulse amplitude modulation (PAM) is not considered. The width of
a CAP is also subject to some statistical variation and cannot be varied systematically
at source so we do not consider pulse width modulation (PWM). Although a CAP has
both positive and negative peaks, these are produced simultaneously and it is not
possible to use the positive peak to represent a logic “1" and a negative peak to
represent a logic “0" . Consequently the encoding will be unipolar using the presence
or absence of a pulse to encode information. Three different encoding methods are now
discussed.

• Digital Pulse Interval Modulation (DPIM) uses timed intervals between pulses
as symbols in order to transmit a data value. The inter-pulse interval is
sub-divided into timeslots and the value (in bits) is determined by the number of
timeslots. The detection point must correctly calculate the number of timeslots
between pulses in order to avoid data errors.
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5.3 Neural Data Channel

• Pulse Position Modulation (PPM) uses the position of a pulse within a fixed
time interval to convey symbols repesenting multiple bits. The timed interval
could allow, for example, a pulse to occupy one of two positions ( 1 bit per pulse)
or one of four positions (2 bits per pulse) with the interval increasing in length
for the greater number of positions.

• On-off Keying (OOK) would send a voltage pulse to represent a binary “1" and
no pulse (for the same time duration as one pulse) to represent a binary “0". This
represents two symbols (M = 2) with one bit per symbol. There are two variants:
(i) unipolar non-return to zero (NRZ) where 1 and 0 are of similar duration and
unipolar (ii) return to zero (RTZ) where each positive pulse (1) returns to a zero
level for part of the timed duration.

5.3.3 Digital Pulse Interval Modulation

DPIM has been proposed as a coding system for optical wireless (non-fibre based)
communications by Ghassemlooy et al. (1998) who compare DPIM throughput,
efficiency and error performance with both OOK and pulse position modulation (PPM).
Versions of DPIM for super-slow bacterial molecular communications have been
proposed by Krishnaswamy et al. (2013) (TEC) and Barros et al. (2014) (Dynamic

Time-Slot Configuration with Silent Communication). MacKay and McCulloch (1952)
explored the throughput that could be achieved in a single neuron using OOK and
DPIM and we base our CAP DPIM calculations on their work. In our variant of DPIM
coding, one information symbol is represented by a CAP pulse plus the time interval
until the next CAP (Ts). A maximum and minimum duration is set on this inter-pulse
interval (Tmax,Tmin) and it is then sub-divided into timeslots of a set length (∆t). The
number of symbols, M will be:

M =
Tmax −Tmin

∆t
. (5.24)

The symbol size n will vary with Ts and will range between 1 and M timeslots. The
mean value of Ts, if all M values are used equally frequently, will be 1

2(Tmax +Tmin)

and the average symbol rate, Savg, will be:

Savg =
2

Tmax +Tmin
. (5.25)

The number of bits per symbol will be log2(M). The minimum value, Tmin, is the total
refractory period, Tre f . We choose the timeslot length ∆t as the minimum time to
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Table 5.1 DPIM parameters.

Tre f ∆t Tmax Symbols Bits/symbol Bits/s Achievable
(ms) (ms) (ms)

5 5 30 4 2 133 Yes
5 2.5 25 6 2.58 206 No
5 1.66 21.66 7 2.8 258 No
5 1.25 20 8 3 300 No

distinguish between two consecutive modelled Gaussian pulses (4σcap). Substituting
from (5.12) and (5.24) we calculate the average bit rate, Bavg, in the absence of noise
using the average symbol rate and the number of bits per symbol:

Bavg =
2

Tmax +Tmin
log2

(
Tmax −Tmin

∆t

)
=

2
Tmax +Tre f

log2

(
Tmax −Tre f

4σcap

)
=

2
Tmax +Tre f

log2

(
Tmax −Tre f

4(Ddσdz+0.425)

) (5.26)

If we set Tmax = a∆t and Tmin = b∆t, partial differentiation with respect to Tmax shows
that the maximum value of a is when:

a+b
a−b

= ln(a−b). (5.27)

The optimum value of Tmax is found by iteration based on (5.27) once values are
assigned to Tre f and ∆t. The values are shown in Table 5.1. The parameter ∆t (ms)
increases in value with distance and the number of bits per symbol drops. If we assume
binary coding then the number of symbols must be a power of 2 and the number of bits
per symbol must be an integer. The only achievable value within the limits set by our
model is 4 symbols at 2 bits per symbol as shown in Table 5.1. This results in an
average bit rate of 133 bit/s, inferior even to the 200 bit/s refractory limit ceiling.
Consequently, we do not consider DPIM suitable for neural data transmission in our
model.

5.3.4 Pulse Position Modulation

PPM is used at present in optical communications systems (Ghassemlooy et al., 1998)
as an alternative to OOK. Each pulse is a symbol that can represent multiple bits. The
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pulse can take a different position in time within a timed symbol interval. In our neural
model we are constrained to a pulse-length of 5 ms and the symbol interval will be a
multiple of this. The capacity C can be expressed as follows:

C =
log2M

Mtp
, (5.28)

where M is the number of symbols, log2(M) is the number of bits per symbol and tp is
the length of a pulse. A pulse can take one of M positions within a symbol interval of
Mtp. The simplest form of PPM uses two possible pulse positions in a symbol interval
of 2tp duration and each pulse of length tp represents a one-bit symbol (a “1" or a “0") .
The advantages of PPM over OOK are in the area of greater power efficiency and easier
detection at the receiver (Ghassemlooy et al., 1998). However PPM is not suited to
asynchronous transmission as accurate timing has to be maintained over symbol
intervals that can be many multiples of pulse lengths (Ghassemlooy et al., 1998). The
bit rate is half that of OOK as only one bit of information is delivered for every
two-pulse interval. This bit-rate reduction also holds for higher order four-symbol (two
bits per pulse) or eight-symbol (three bits per pulse) PPM systems. We wish to
maximise the bit rate of our neural transmission system so we will not use PPM.

5.3.5 On-off Keying

The OOK bit rate is the same as the symbol rate and is a maximum of 200 bits/s. This
rate can be sustained until either (i) the SNR drops below 4.77 dB or (ii) pulse
broadening changes the symbol rate. The crossover point for pulse broadening has been
illustrated in Fig 5.8. The reduction in OOK bit rate caused by a falling SNR, based on
(5.20) and with a ceiling of 200 bit/s, is plotted in Fig. 5.10. Our results show that CAP
amplitude reduction and SNR have a much greater effect on reducing the OOK 200
bit/s transmission distance than pulse broadening (Fig. 5.10).

5.4 Summary

The neural serial communications channel, described in this chapter, uses CAPs as data
pulses to communicate with a receiver placed further along the nerve. The maximum
achievable range between transmitter and receiver depends critically on the on the
number and diameters of the activated neurons (contributing to the CAP amplitude and
width) and the level of background neural noise. These values and parameters allow us
to calculate the resulting bit rate at different distances from the stimulus point. It would
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(a) OOK bit rate for CAP of 4.5 µm.
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(b) OOK bit rate for CAP of 9.5 µm.

Fig. 5.10 OOK bit rates for (a) CAP of 6000 neurons with a mean diameter of 4.5 µm
and (b) a CAP of 4000 neurons with a mean diameter of 9.5 µm.

be possible to improve on the transmission range by increasing the intensity of the
applied stimulus and creating a CAP of higher amplitude, but only if not all available
neurons of larger diameter had been activated. If all larger diameter neurons have been
activated then any further increase in the applied stimulus intensity will trigger smaller
diameter, lower velocity neurons resulting in a greater broadening of the CAP without
necessarily increasing the amplitude (as shown previously in Fig 5.5b).
Of the three modulation methods analysed, OOK, PPM and DPIM, the only feasible
method is OOK given the lower bit-rate of PPM and the timing constraints imposed by
the neural channel on the DPIM inter-pulse interval. The OOK bit rate is limited by the
refractory period of the neurons and results in a maximum data rate of 200 bits/s.
Transmission ranges of over 100 mm at this rate can be achieved at higher levels of
SNR. Preliminary calibration of the transmission array would be necessary in order to
estimate the CAP width and intensity (amplitude) at different points along the nerve
before the placement of the receiving module. The calibration would provide the
operating parameters needed to determine the achievable range of the maximum bit
rate. The detection of the CAP pulse using a cuff electrode, signal amplification and
pulse thresholding is described in more detail in the next chapter (§6.4.1).
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Chapter 6

Drug-delivery to the Brain

6.1 Introduction

We now model a specific scenario: the use of neural data pulses transmitted along the
vagus nerve, to communicate with a programmable drug-delivery system in the brain as
shown in Fig. 6.1. Asynchronous data packets composed of neural pulses can deliver
instructions to an embedded device using a unidirectional neural transmission system.
Detecting neural data pulses requires lower power than receiving wireless EM signals.
Unidirectional transmission implies that no acknowledgement or resend messages can
be sent in the reverse direction. We, therefore, analyse the use of forward error

correction (FEC) in the receiver. We also assess the possibility of using glucose
harvesting for powering for the implant.

6.2 Vagus Nerve

The vagus nerve is a cranial nerve extending from the stem of the brain and branching
to different organs in the abdomen. It carries neuronal signals to moderate functions
such as heart rate, breathing and rate of digestion. Two main branches, the left and the
right, can be accessed either side of the neck. The left branch of the vagus nerve, where
vagus nerve stimulation (VNS) electrodes are normally placed in humans, does not
include cardiac branches with motor neurons and so does not cause cardiac side effects.
The main side effects are hoarseness, cough or shortness of breath (Krahl, 2012), with
no interference to normal brain function (Howland, 2014).
The neural stimulus system delivers current pulses (> 0.2mA) comparable to those
delivered by FDA-approved VNS systems (0.2 mA to 5 mA). The fascicles of the vagus
nerve contain both myelinated and unmyelinated axons (Pereyra et al., 1992) usually in
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Drug-delivery Implant
With Multiple Reservoirs

Nanodevice 
Stimulus Array

Neural 
Stimulus 
Pulses

Fig. 6.1 Vagus nerve transmission path delivering data pulses from the stimulus array to
the embedded drug-delivery system.

Table 6.1 Vagus Nerve Axons in Left Branch

Axon Type Diameter Average Number
(µm)

Aβ 9-12 825
Aβ , Aδ 3-9 2475
Aδ 1-3 13200

the proportion of 20% “efferent” fibers (sending signals from the brain to the body) and
80% “afferent” (sensory) fibers (carrying information from the body to the brain)
(Howland, 2014). The vast majority are small unmyelinated visceral sensory neurons
which carry information from the stomach, intestines, liver, pancreas, and spleen.
These are not activated by VNS and would not be activiated by our neural stimulus
system. In an adult there can be an average of 16,500 myelinated axons in the left
branch and 20,000 in the right branch (Schnitzlein et al., 1958). The diameter of the
myelinated axons varies with 80% less than 3 µm, 15% between 3 µm and 9 µm and
5% greater than 9 µm. The distribution of myelinated axons in the left branch of the
vagus nerve, derived in (Schnitzlein et al., 1958), is shown in Table 6.1. We use a
random distribution of 3300 larger diameter axons (3 µm to 12 µm) as input to (5.6) to
generate vagus nerve CAPs as shown in Fig. 6.2.
The left vagus nerve is located at a depth of 2-3 cm from the side of the neck. This
makes it surgically accessible for placing an ultrasound harvesting array and
stimulating electrode. A stimulus applied at the neck could travel either to the brain or
to the abdomen. If directed towards the abdomen, the stimulus would get distributed
over all subsequent branches of the nerve and it wouldn’t be possible to target a specific
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Fig. 6.2 Vagus nerve CAP showing amplitude reduction at two different measuring
distances.

organ like the heart. The nerve branches towards the abdomen also (i) have fewer
myelinated axons than the main nerve and (ii) traverse a greater distance from neck to
abdominal locations than from neck to brain stem. Consequently a CAP to any
abdominal location will have lower initial intensity (fewer axons) and experience
greater attenuation (longer distance) than a CAP to the brain. We therefore will
consider only the higher intensity CAPs that can be directed towards the brain stem
along the main vagus nerve. At present, electrodes used for VNS are placed at a point
on the neck that is equidistant between the clavicle (collar bone) and the base of the
skull. This is equivalent to a point half way along the cervical spinal section. In an
adult the cervical spinal sections have a total approximate length of 12 cm (Busscher
et al., 2010) so our stimulus array will be placed at least 60 mm from the base of the
skull and the brain stem (Fig. 6.1). A stimulus applied at the neck could travel to the
brain and be detected by a receiver. In our model we will use a maximum range of 100
mm to allow for physiological variation in the distance from the stimulus array in the
neck to the brain stem. Our modelled vagus nerve CAPs are similar in amplitude to
therapeutic stimulus CAPs (Evans et al., 2004). A typical epilepsy treatment stimulus
cycle is 30 s on and 5 minutes off (Krahl, 2012) applied continuously throughout the
day. The CAP data pulse stream will have a much shorter time span (ms) than VNS and
this should help minimise the possibility of side effects.
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6.2 Vagus Nerve

6.2.1 Channel Capacity

We computed the channel capacity of a typical peripheral nerve (sural nerve) in §5.3
taking into account (i) CAP attenuation with distance, (ii) the ceiling imposed by the
refractory period and (iii) the background normal neural activity. We now calculate the
channel capacity of our modelled vagus nerve and compute the transmission range,
subject to these constraints. The CAP attenuation is modelled as a reduction in mean
amplitude, A(z), using an empirical exponential function as follows:

A(z) = Gve−αvz. (6.1)

The empirical parameters Gv and αv have values that depend on the distribution of axon
diameters and the number of activated neurons in the vagus nerve. Normal background
neural activity is modelled as AWGN with root mean square (rms) values in the range 5
µV to 10 µV (Harrison, 2003). The maximum possible capacity, C bit/s, of a noisy
channel with bandwidth U is given by Shannon’s formula :

C =Ulog2(1+SNR). (6.2)

The SNR is the ratio between CAP power and noise power and is derived from the root

mean square (rms) noise level, σn, and the rms amplitude of the CAP, A(z)/
√

2 (6.1),
as follows:

SNR(z) =
A(z)2

2σn
2

=
(Gve−αvz)2

2σn
2 .

(6.3)

The SNR will decrease with distance, because of reduced CAP amplitude, and with
higher background noise levels as shown in Fig. 6.3. A capacity plot for the vagus
nerve, derived from (6.2) and (6.3) using a Nyquist bandwidth of 100 Hz (Freeman,
1998) is also shown in Fig. 6.3. The capacity ceiling of 200 bit/s can be achieved as
long as the SNR is greater than or equal to 3 (equivalent to 4.77 dB). The SNR values
at a range of 100 mm are 11 dB (5 µV ) and 5 dB (10 µV ) so a capacity of 200 bit/s is
possible over all noise levels at all ranges up to 100 mm. We can also calculate the
normalised SNR, Eb /N0, from (6.3) and (5.18) using a bandwidth, B, of 100 Hz and a
channel data rate, fb, of 200 bit/s :

Eb

N0
=

A(z)2B
2σn

2 fb
=

(Gve−αvz)2

4σn
2 . (6.4)
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6.2 Vagus Nerve

Fig. 6.3 SNR for vagus nerve CAP.

6.2.2 Metabolic Energy Requirements

A conventional EM wireless transmission system can increase the transmission range
by increasing the signal power and hence improving the SNR. A wired transmission
system can increase the range through the use of regenerators to re-shape and amplify
digital signals. Our neural transmission system has elements of both wireless and wired
behaviour in that APs are regenerated at each node of Ranvier but the overall CAP is
attenuated because of interaction between the APs. The CAP reaches maximum initial
amplitude when all larger diameter neurons are activated. A further increase in stimulus
energy will trigger lower diameter neurons with slower AP velocities and this will in
fact cause greater CAP spreading and a more rapid reduction in amplitude (as shown in
§5.2.2 ).
The metabolic energy needed to create the electrical energy of a CAP can be calculated
from the amount of ATP that must be hydrolised to support APs. During the
transmission of an AP, ATP molecules provide energy to sodium and potassium pumps
in the neuron membrane at every node of Ranvier to return the neuron to the resting
state. The total CAP transmission energy along a specific range in terms of ATP, ECAP,
can be calculated as follows:

ECAP =
Nl
g

mEAP, (6.5)

where the number of activated neurons is N, the length of the neural transmission path
is l, the distance between nodes of Ranvier is g (typically 2 mm), the number of ATP
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Fig. 6.4 Vagus nerve CAP increase in ATP energy level requirement and decrease in
electrical amplitude with distance.

molecules required per AP at each node of Ranvier is m and the energy released per
ATP molecule is EAP. The ATP hydrolysis energy is about 30.6 kJ/mol or 5 zJ per
molecule (Cole, 2016). The energy per molecule is often expressed as approximately
12kBT where kB is Boltzmann’s constant and T is the absolute operating temperature.
The number of ATP molecules per AP, per node of Ranvier, is estimated to be a
minimum of 106 (Aiello and y Rita, 2000). Other studies show ranges from 400 to
800×106 (Hallermann et al., 2012) and we will use an average of 600×106 molecules
of ATP.
A plot of ATP energy requirements for a vagus nerve CAP against transmission range is
shown in Fig. 6.4. The ATP energy requirement is linear and directly proportional to
the transmission range (46 nJ/mm). The plot also shows the decrease in CAP amplitude
(voltage) over the same range based on (6.1). The total number of ATP molecules
needed to support a CAP for a range of 100 mm is approximately 98×1012. This is a
small fraction of the estimated total daily use of 2×1026 transient molecules of ATP in
the human body (Cole, 2016).

6.3 Neural Data Link Protocol

The modelled neural CAP communications channel is serial, unidirectional, low
bit-rate and therefore suitable for asynchronous transmission, where the sender and
receiver have separate clocks. Asynchronous data link messages (packets) are of short
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duration to ensure that the clocks remain closely timed to each other. A packet usually
consists of a start-bit, a character coded as pulses (typically an 8-bit byte) and a stop-bit.
Such a packet would have a length of 10 bits and a transmission time of 50 ms with an
overhead-to-data ratio of 2/8 or 25%. The send and receive clocks are both based on the
expected bit rate and can differ by up to 5% without mis-interpreting the last bit of a
ten-bit sequence.
The data packet will deliver instructions to an embedded multi-reservoir drug-delivery
system. This can supply repeated doses of either same drug or a selection of different
drugs but is likely to be serially activated one reservoir at a time. In our model, a single
packet could contain, for example, a two-bit release command and up to six bits of
address information (maximum 64 reservoir locations). The number of reservoirs will
determine the actual number of addresses so the packet could be shorter than 8 bits if
there are fewer than 64 reservoirs. Alternatively a wide range of stored programmes
could be activated using an 8-bit command or smaller, though these would all be pre-set
with associated addresses and with no scope for customisation.

6.3.1 Forward Error Correction

A unidirectional system has no return path for requesting the re-sending of a faulty
packet. Error detection and correction, if required, must therefore be provided within
the packet and the receiver. An additional parity bit, or check bit, can be used to check
that the correct number of “1" values has been received but it can not specify the
location of, or change, a faulty data value. There are other methods for forward error
correction (FEC) that can locate and correct faulty bits.
Code repetition is a technique where each bit in a packet of length g bits is sent
n = 2t +1 times, t ≥ 1. The receiver decodes the group of n into the single value that
occurs most often. This will correct up to t errors and will extend the total packet
length to gn+2 bits (including the start/stop bits). The transmission time will increase
to (gn+2)5 ms, based on a refractory period of 5 ms. Code repetition is simple to
implement but the packet length would cause synchronisation challenges between
asynchronous transmitter and receiver. One low bit rate protocol in current use is the
unidirectional, asynchronous X10 protocol for addressing and sending commands to
simple electrical appliances (e.g. lights) over in-house power lines Cruzl et al. (2008).
The highest possible transmission rate is 50 bits/s. The protocol transmits a four bit
start-code (1 1 1 0), a four bit “house code" device address followed by a “unit code"
(five bits ending in “0") or a device command (five bits ending in “1" ). All messages in
X10 are transmitted twice to guarantee delivery as there is no acknowledgement
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possible from the receiver. Other types of code add fewer extra bits to the packet and
these are now discussed.
Block codes add additional parity bits to a byte using a particular algorithm to form a
codeword (MacWilliams and Sloane, 1977). Decoding and correction is carried out by
comparing the received codeword with stored standard generated codewords and
finding the closest match. Block codes can be classed as linear or cyclical and include
Hamming linear codes, Golay binary code, Bose-Chaudhuri-Hocquenghem (BCH)

cyclic codes, Reed-Solomon (RS) cyclic codes and Turbo Product codes. Convolutional
codes use more complex encoding and decoding methods on data streams rather than
blocks. They use previous bits to encode or decode following bits and hence have
memory, unlike block codes that are memoryless. We will model the use of Hamming,
Golay and BCH coding on our neural transmission system to study the effect of
multiple error detection and correction.
The block code parameters of BCH can be generated from integers m ≥ 3 and t < 2m−1

as follows:

• Codeword length is n = 2m −1.

• The number of data bits is k ≥ n−mt and the number of added parity bits is
n− k ≤ mt.

• The number of errors that can be corrected is t.

• Minimum Hamming distance, dmin ≥ 2t +1, is a measure of the difference
between a received codeword and the closest stored codeword.

• The number of errors that can be detected is dmin −1 .

Hamming codes are a subset of BCH codes with set values dmin = 3 and t = 1. They
can detect two errors and correct one error Ahmadpour et al. (2009). Block codes are
often expressed in the form (n,k) or (n,k,dmin). Table 6.2 shows examples of the
maximum data payload and correction potential in bits for particular Hamming, Golay
and BCH codes. Hamming (7 4 3) and BCH ( 15 5 7) codes are for the shortest packets
(4 and 5 bits respectively) and we will not use these. We are interested in modelling
those codes that can be used for a data payload of 7 or 8 bits and can correct 1, 2 or 3
errors. These are Hamming (15 11 3), BCH (15 7 5) and Golay (23 12 7).

6.3.2 Error Correction Overhead

The more errors an FEC can correct, the greater the cost in additional processing load,
longer packets and increased transmission time. With a Hamming (15 11 3) code the
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6.3 Neural Data Link Protocol

Table 6.2 Error Correction Codes

Code Data Bits Parity Bits Correction
(max.) Potential (bits)

Hamming(15 11 3) 11 4 1
BCH(15 7 5) 7 8 2
BCH(15 5 7) 5 10 3
BCH(31 21 5) 21 10 2
Golay(23 12 7) 12 11 3
BCH(31 16 7) 16 15 3

minimum number of additional error correction bits for an 8-bit data message is 4 bits
and the total packet length (including start and stop bits) is 14 bits. The overhead to
data ratio is 6/8 or 75% and the packet will have a transmission time of at least 70 ms.
The BCH (15 7 5) and Golay (23 12 7) have overhead to data ratios of 142% and
162.5% with transmission times of 85 ms and 105 ms. The larger overall packet size
could increase the probability of a loss of synchronisation between the sender and
receiver clocks.
The additional FEC overhead implies that an additional 46 nJ/mm of ATP is needed for
each parity bit. A Hamming (15 11 3) code would require an additional 184 nJ/mm of
ATP along the neural transmission path. The BCH (31 21 5) and Golay (23 12 7)
coding would require additional levels of 460 nJ/mm and 506 nJ/mm respectively. We
now examine the gain provided by the different FEC coding methods.

6.3.3 Coding Gain

The coding gain of an FEC is the effective improvement in bit error rate (BER)

resulting from the use of a particular code on a noisy communications channel. In order
to compute the gain we must first compute the uncoded BER for CAP transmission
along a vagus nerve that has AWGN. The BER measures the probability of
data-detection errors occurring as the SNR decreases and is based on the
complementary error function (erfc) (Ippolito, 2008), the probability that a “0" is
detected instead of a “1" or vice versa. The threshold of detection for unipolar OOK is
usually set at A(z)/2 for a detection distance z. The erfc is then defined as the
cumulative probability of detecting a particular value of noise, x, in the range A(z)/2 to
∞ as follows:

er f c
(

A(z)
2

)
=

∫
∞

A(z)/2

1√
2πσn

e−x2/2σndt. (6.6)
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Fig. 6.5 BER for vagus nerve CAP showing increase with noise level and SNR for a
data rate of 200 bits/s.

Making a change of variable, y = x/σn we get the integral:

er f c
(

A(z)
2σn

)
=

∫
∞

A(z)/2σn

1√
2π

e−y2/2dy. (6.7)

This can be further refined by making the following change:

A(z)
2σn

=

√
A(z)2

4σn
2 =

√
Eb

N0
. (6.8)

This allows the erfc to be expressed in terms of Eb/N0 as shown previously in (6.4).
The total probability of bit error for an uncoded OOK stream, BERuc, is calculated as
follows:

BERuc =
1
2

er f c

√
A(z)2

4σn
2

=
1
2

er f c

√
(Gve−αvz)2

4σn
2 .

(6.9)

The uncoded BER is shown as a surface plot in Fig. 6.5 across a range of noise levels.
The coded BER at the input of the decoder, BERid , is calculated as follows (Goldsmith,
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2005):

BERid =
1
2

er f c

√
k
n
(Gve−αvz)2

4σn
2 , (6.10)

where the codeword length is n, the number of data bits is k and the coding rate is k/n.
We then use the values of BERid to first calculate the output word error probability,
WEPod , as follows:

WEPod =

(
n

t +1

)
(BERid)

t+1(1−BERid)
n−(t+1), (6.11)

where the expression
( n

t+1

)
represents the binomial coefficient. The output coded BER,

BERod can then be expressed as:

BERod =
dmin

n
(WEPod). (6.12)

It should be noted that (6.12) is an approximation that becomes less reliable and
applicable at very low values of SNR. Higher noise levels can drive the error rate
beyond the capability of simple error correction. The coding gain is a measure of the
difference in SNR between uncoded and coded systems for the same BER. The BER is
normally plotted against SNR in dB but in our model it can also be plotted against
transmission range. The BER plot for our neural transmission system between uncoded
data, Hamming (15 11 3), BCH (15 7 5) and Golay (23 12 7) coded data, based on
(6.12), is shown in Fig. 6.6 for noise levels of 5 µV and 10 µV . The curves show that
with FEC (i) a fixed BER can be achieved at a greater range and (ii) a fixed range can
have a lower BER.
The plots show that at the lower noise level of 5 µV there is coding gain up to the
maximum range of 100 mm. At the higher noise level of 10 µV there is no coding gain
after 30 mm range because of the high BER. The coding curves cross over the uncoded
curve where the level of errors increases beyond the correction capability of the code
(Freeman, 1997). The Hamming (15 11 3) gain can also be expressed in terms of ATP,
calculated from the coding gain in mm. This ATP gain must be offset against the extra
ATP needed to carry the corresponding 4 parity bits. Levels of ATP Hamming (15 11 3)
gain and the corresponding ATP parity bit cost is shown in Table 6.3. In every case the
ATP cost is greater than the ATP gain, and the difference increases with range. FEC can
produce gains and improvements in performance in our neural transmission model but
the benefits are sharply reduced with increasing noise level.
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Fig. 6.6 BER plots against SNR and transmission range for three different types of FEC
and two levels of noise.

6.4 Drug-delivery System

The embedded drug-delivery system that receives the data packets will have (i) an
electrode attached to the nerve to detect the CAP pulse, (ii) an amplification and
conversion system to boost the signal power and create a digital bitstream, (iii) a
microcontroller unit (MCU) to collect and interpret the bitstream (iv) a drug-release
mechanism and (v) a power source sufficient to meet all energy demands.
CAP detection is through a front-end single-channel, single-electrode system similar to
those used at present for recording neural activity (Loeb and Peck, 1996). The detected
pulses will be in the microvolt range. This low voltage is insufficient to switch a
transistor directly with existing complementary metal-oxide-semiconductor (CMOS)
technology and must be amplified and analysed before it can be designated a logic “1".
The detection and amplification function alone places a minimum requirement on the
power needed to operate the receiving system, without considering the follow-on
drug-delivery functions.
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Table 6.3 ATP Code Gain and Parity Bit Cost

BER Uncoded Gain ATP Gain ATP Cost
mm mm nJ nJ

10−10 13 20 920 2392
10−8 31 19 874 5704
10−6 56 16 736 10304
10−4 90 13 598 16560
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Fig. 6.7 Vagus nerve CAP at a detection range of 100 mm showing the effect of noise.

6.4.1 Detection Electrode and Signal Amplification

The CAP detection electrode must be in close proximity to the transmitting nerve. It
may be wrapped around it as a cuff electrode (Yu et al., 2014) and have a tripolar
configuration for optimum low-noise measurement (Loeb and Peck, 1996). The length
of a tripolar electrode is typically from 15 mm to 30 mm (Andreasen and Struijk, 2002).
The low voltage level of the CAP requires that the cuff electrode must be connected to
a low-noise preamplifier. The amplified signal can then be sent through filters to a
comparator for conversion to logic “1" or “0" using an appropriate sampling rate, and
detection threshold set between the noise floor and the expected maximum amplitude.
The effect of noise on the CAP waveform at the receiver end is shown in Fig. 6.7.
Suitable filters can remove unwanted higher frequency components from the signal as
well as having a role in pulse shaping.
Single channel and multi-channel neural amplification and digitalisation is described by
Muller et al. (2012) and their system has a power consumption of 5 µW . Other
comparable neural amplifier systems are reviewed in (Muller et al., 2012) and the
power consumption is also in the low µW range.
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6.4.2 Microcontroller Unit and Drug-delivery Function

The MCU would decode the incoming raw bitstream from the comparator and perform
any error corrections. The architecture of a comparable MCU is described by Huang
et al. (2012) for a drug delivery system. This has a universal asynchronous
receiver/transmitter (UART) to convert serial bits into parallel, a clock input for timing
and a decoder to format and forward commands. The power consumption of the MCU
and clock generator is 10.68 µW .
Electrophoretic drug-delivery, as described by Proctor et al. (2018), applies a voltage
difference (typically 1 V) to pump ions from a reservoir across an ion exchange
membrane using a microfluidic ion pump (µFIP). The amount of drug delivered
depends on the length of time that the voltage is applied. A single type of drug was
delivered in trials and the system is being extended for multiple delivery channels that
can be singly activated. The operating voltage (1 V) is low and this would indicate a
low power requirement. An alternative method, electrothermal membrane activation,
was first proposed by Santini Jr et al. (1999) for multiple drug-delivery. A metallic
membrane covering each drug reservoir is heated by an applied electrical current, the
membrane ruptures and the drug reservoir then releases its contents. This release model
is used in (Huang et al., 2012) for a fabricated delivery system that has a total volume
of approximately 30 mm3.
A multi-reservoir delivery system can deliver repeated doses of the either same drug or
a selection of different drugs but is likely to be serially activated one reservoir at a time.
The power dissipated will depend on the specific materials used in the membrane and
the maximum values of current and voltage that can be applied. The activation current
in Maloney et al. (2005) has a nominal value of 1 A and is applied for 10 µs resulting
in an activation energy of 25 µJ. A lower activation current with a maximum value of
45 mA is used in Huang et al. (2012), applied for 100 ms, results in an activation
energy of 6.75 mJ. The power level in both cases would be in the milliwatt range. The
number of reservoirs will determine the number of addresses. The drug delivery system
in (Huang et al., 2012) has eight addressable reservoirs. Drug release is activated by a
ten-bit OOK command that consists of start and stop bits, a five bit activation key and a
three bit address. The authors state that a more robust forward error correction system
would be required in future models.
In our model, a single packet with Hamming (15 11 3) FEC could contain, for example,
a two-bit release command, four bits of error correction and six bits of address
information (up to 64 reservoir locations) as shown in Fig. 6.8. The addressable
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S1S2 H1C1 H2H3H4 C2A1A2A3A4A5A6

S2 = Stop Bit S1 = Start BitA1 – A6 = Address  Bits

H1 – H4 = Hamming Correction Bits

C1 – C2 = Command Bits

Fig. 6.8 Drug-delivery data packet with command and error correction.

reservoirs could be distributed to different parts of the brain, delivering targetted
brain-tumour therapy to locations identified by brain-scans.

6.4.3 Receiver Powering

The electrode, amplification and processor systems will require constant power as they
will have to be always-on. The drug delivery function of the implant will have an
intermittent and short duration power requirement. At present the power would be
delivered by a long-life battery. Biological energy harvesting could provide a
biocompatible and long-life method for delivering the necessary power, either directly
to the delivery unit or to provide a trickle charge to a rechargeable battery. A fuel cell
using glucose from cerebrospinal fluid circulating around the brain is described by
Rapoport et al. (2012). The fuel cell has a roughened platinum anode separated from a
carbon nanotube cathode by a cation-selective membrane. Glucose is oxidised at the
anode while oxygen is reduced to water at the cathode. The efficiency of different types
of glucose cells varies from a high of 80% to a low of 8%. The glucose flux Jg in
milligrams per second (based on 180 mg of glucose per mole) needed to produce a
particular power level P is as follows Rapoport et al. (2012):

Jg =
180P
η∆Gg

(6.13)

where the conversion efficiency is η and the energy released per mole is ∆Gg = 2880
kJ. The flux of glucose, in milligrams per second, needed to produce a range of power
levels at different conversion efficiencies based on (6.13) is shown in Fig. 6.9.
The amount of glucose per day needed to produce a continuous power level of 10 mW
ranges from 67.5 mg to 675 mg depending on the efficiency η . The daily flow of
glucose through the cerebral space is between 250 mg and 440 mg., so the production
of higher levels of power could have a major impact on the glucose levels of the
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Fig. 6.9 Glucose flux requirement with increase in efficiency and power demand.
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Drug-release
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Fig. 6.10 Distributed drug-delivery at multiple locations in the brain.

cerebrospinal fluid especially at low conversion efficiency levels. The Rapoport fuel
cell has power density of .034 µW per mm2 in a steady state and 1.8 µW per mm2 in a
transient state with an open-circuit voltage of 192 mV. A glucose powered
drug-delivery system with distributed reservoirs in the brain is shown in Fig. 6.10.
Improvements in performance have been demonstrated by Kwon et al. (2018) who
developed a hybrid biofuel cell that uses metallic cotton fibre cathode and has a power
density of 37 µW per mm2. Power levels in the microwatt range may be sufficient to
power the amplification and MCU components especially if lower-power and
lower-voltage electronic technologies emerge, like those described by Theis and
Solomon (2010). There would, however, need to be power density into the milliwatt
region if drug release using electrothermal membrane activation is to be achieved.
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Electrophoretic drug delivery might be a more achievable alternative if the voltage level
of a glucose powered system could be boosted to 1 V using a step-up converter of the
type described by Jayaweera et al. (2015). Either way, more efficient glucose
harvesting systems would be required if a fully self-powering system is to be realised.

6.5 Summary

Using the vagus nerve for the transmission of digital CAP pulses is a variation on
existing therapeutic VNS. The left branch of the vagus nerve can be accessed at the
neck and is at a shallow enough depth to allow ultrasound pulses to penetrate and
activate a neural stimulus array. The stimulus pulses travel towards the brain stem and
can be intercepted by a receiving electrode and a drug-delivery system. The maximum
OOK bit rate of 200 bit/s is constrained by the neural refractory period. The
transmission range is also constrained by CAP attenuation and noise level but would be
between 60 mm and 100 mm.
The unidirectional, asynchronous transmission system would use short packets to
maintain synchronisation at both ends. With no return path, there is a need to correct
data errors and we modelled the use of block codes for FEC to improve the effective
range. The addition of extra parity bits increases the total packet length,transmission
time and ATP consumption. There are measurable coding gains but these become less
significant at greater transmission ranges and lower SNRs. Simple one-byte (8-bit)
commands with additional FEC parity bits can activate an embedded drug-delivery
system near the brain. The packet transmission time of tens of milliseconds is an
acceptable timeframe in relation to the diffusion and absorption time of a drug in brain
tissue.
Existing drug delivery implants require power in the milliwatt region and voltage levels
of 1 V or greater. At present these requirements are met by long-life batteries. It may
also be the case that the drug reservoirs would be exhausted before the battery has
expired, depending on the frequency of drug release. The system would have to be
removed for replenishment. Alternatively a longer-term slower release programmable
system would be better powered by a rechargeable battery that could be trickle-charged
through energy harvesting. A slow-release system would be applicable in the
management of ongoing chronic conditions. We believe that biological energy
harvesting using, for example, glucose in the cerebrospinal fluid would be a preferable
biocompatible solution in the longer term for direct powering or trickle-charging.
Another potential application would be providing power to a therapeutic microstimulus
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system embedded in the brain. There would need to be major improvements in the
power density of the harvesting system and reductions in the power and voltage
requirement of the implanted device before systems would be feasible.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Powering and communicating with implanted biomedical devices will continue to be
important research topics, especially as the demand for such devices grows. At present,
electrical power is usually provided by batteries that may have to be replaced at regular
intervals. Communications is either through wired connections or wireless EM systems.
Energy harvesting could provide a safe and viable alternative to batteries for delivering
power, and some implanted devices already use near-field EM harvesting. A potential
harvesting option, ultrasound, is in wide use at present for medical imaging and could
also deliver power through human tissue. We have shown how an ultrasound beam
could deliver power to arrays of piezoelectric nanowire energy-harvesting devices,
stimulating peripheral or cranial nerves in response to modulated ultrasound pulses.
This, in turn, provides an alternative biologically-based data communications system
along the nerve. The OOK modulated neural pulses would convey short data packets to
a deeper embedded implant to trigger specific functions, such as drug-delivery. The
neural transmission system is biocompatible, with a maximum data rate of 200 bit/s,
and is also unidirectional. A transmission range of 100 mm can be achieved even with
higher background noise levels. The receiver detects these pulses through a simple
electrode rather than a more power-intensive radio receiver. The coding and decoding
process can incorporate forward error correction to improve performance.
A low-power, deeply implanted receiver might not be able to avail of ultrasound
harvesting as there would be too much absorption and reflection through the
intervening tissue. Ideally another form of energy harvesting, glucose energy
harvesting, could be used instead of battery powering to avoid repeated surgical
intervention. Energy harvesting and neural data communications are part of the wider
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development of bio-inspired solutions for closed-loop communications between
implanted miniature devices and external networked systems.

7.2 Future Work

The proposals for future research work are based on the two main topics of this thesis:
energy harvesting and neural data communications. The energy supplied to any device
is determined by the power requirement, which may be continuous (e.g. sensor) or
intermittent (e.g. command delivery). The harvesting method has to be able to supply
the power either directly, or through charging an energy storage system (battery or
capacitor). The physical size of the harvesting system must also be determined as it
may add considerable bulk to an otherwise small device and make implantation more
difficult. The harvesting system and the implanted device must be bio-compatible in
order to reduce the risk of rejection or inflammation. This would require that the
system components should be bio-compatible or encased in a bio-compatible container.
Unidirectional neural communications may be suitable for some simple applications
but in many cases a return path must be provided in order to provide diagnostic or
therapeutic feedback. There are options for realising bidirectional communications, but
again these must be modelled and tailored to the specific device application, the uplink
and downlink capacities and the physical constraints of the location. Additional
harvested power is needed to support a return path and this must be factored in when
modelling the harvesting system.

7.2.1 Power Harvesting

Ultrasound energy-harvesting piezoelectric nanowire devices could be used to power
other implanted devices such as chemical sensors or communications nodes. In every
case the trade-off between ultrasound frequency, device power requirement and
physical size must be modelled to test the viability of such solutions. Nanowire-based
devices should also be compared to resonant crystal-based alternatives in order to
determine the optimum harvesting solution at different tissue depths and in confined
physical locations (e.g. inside the skull).
Glucose energy harvesting should also be investigated as a power source, once the
function and power requirement of specific types of device have been modelled. The
potential flux of glucose at different points in the body needs to be determined as part
of this modelling. The physical size of a glucose harvesting system must also be
modelled as this would have implications for suitable implantation sites in the body.
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7.2.2 Neural Communications

The neural communications system described in this thesis generates one CAP data
pulse from all the stimulated fascicles. If individual fascicles in a nerve are stimulated,
then this could increase the number of transmitted pulses per second by interleaving
CAPs. The nanodevice stimulus array would require some local processing power and
multiple electrodes in order to transfer a pattern of ultrasound pulses across multiple
fascicles. The receiver would need to have a detection electrode for each fascicle in
order to detect the interleaved CAPs. A major challenge in the development of an
interleaved CAP model is the minimisation of interference (crosstalk) between adjacent
fascicles.
Ideally the neural communications system should be bidirectional, allowing the return
transmission of data out of the body to an external processing system. Creating a
bidirectional system could be done by (i) having an energy-harvesting stimulus array at
both ends of the neural path or (ii) using a different transmission method from the
distant node such as molecular communications. An energy harvesting stimulus array
at a deeper tissue level could not be powered by ultrasound (because of absorption and
reflection) so an alternative method, such as glucose harvesting, would be required. The
receiving device function, the power requirement and the projected data throughput
would all provide inputs for the modelling and simulation of a truly bidirectional neural
transmission system.
Energy harvesting and neural communications are part of the longer-term vision for
BANs. Networks of energy-harvesting nanodevices could be established in the skin or
in specific organs, such as the heart, in order to detect changes in key chemical
concentrations. These networks would then communicate this information to an
external monitoring system and receive other external information in return. Once this
communication sub-system of the nervous system is interconnected to the Internet this
will form part of the vision of a closed-loop, context-aware Internet of Bio-Nano
Things (Akyildiz et al., 2015).
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Appendix A

Examples of Matlab Coding used in
this Thesis

1. Simulation of a single fibre action potential (SFAP) propagating along a neuron.

1 %calculate the single fibre action potential (SFAP)

2 %with respect to time based on Nandedkers IAP model

3 %This requires a single differentiation of a modified

4 %Rosenfalck model convoluted with a weighting function

5 clear t;

6 clearvars;

7 %diameter of the axon in micrometres

8 dia=input('Diameter of the neuron in micrometres:');

9 %conduction velocity in metres per second or mm per ms

10 %v in m/s is 6 times the diameter in microm.

11 vel=dia*6;

12 %time range in milliseconds

13 trange= input('Time range in milliseconds:');

14 tstep=input('Time step in milliseconds:');

15 %set electrode position w.r.t excitation point

16 %longitudinal distance of electrode from excitation in mm

17 zed=input('Longitudinal distance in mm:');

18 %distance of electrode from fibre in mm

19 raddis=input('Perpendicular distance of electrode from fibre ...

in mm:');

20 %conductivity in siemens per millimetre from Plonsey and Joucla

21 coni=.001;

22 cone=.0003;

23 %radius is half the diameter expressed in millimetres

24 rad=(dia/2)*10^-3;
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25 %compute the constant for membrane current

26 %this may vary and include different parameters

27 Fac=(rad^2*coni)/(4*cone*vel);

28 %use the derivative based on the Nandedkar formula in time

29 alpha=36860;

30 beta=8;

31 gamma=70;

32 %set up variables

33 syms t iap1

34 %empirical formula for IAP

35 iap1=alpha*(t^3)*exp(-beta*t)-gamma;

36 %differentiate once as part of dimitrova process

37 iap2=diff(iap1,t,1);

38 %now assign values to get source model

39 %time range in milliseconds

40 t=0:tstep:trange;

41 %find the number of elements in t for later plotting

42 tsize=size(t,2);

43 %expand formulae to allow for correct computation by vectors

44 iap3=alpha.*(t.^3).*exp(-beta.*t)-gamma;

45 %first diff of iap1

46 iap4=110580.*(t.^2).*exp(-8.*t) - 294880.*(t.^3).*exp(-8.*t);

47 %correction factor

48 iap5=Fac.*iap4;

49 %next part is to calculate weighting function based on radial ...

distance

50 %calculate full distance, Pythagorean

51 Dis1=((zed-vel.*t).^2 +raddis^2).^1.5;

52 %first diff of Pythagorean, as part of DD formulation

53 Dis2=vel*(zed-vel.*t);

54 Dis3=Dis2./Dis1;

55 %next perform convolution

56 Sfapdim=tstep*conv(iap5,Dis3);

57 %Sfapdim is twice the length of the time steps.

58 %Plot data using t to reduce the range of Sfapdim

59 %and convert the millivolt output to microvolts

60 plot(t,Sfapdim(1,1:tsize)*10^3,'-.r', 'LineWidth',2)

61 axis([0 7 -0.05 0.05])

62 grid on

63 grid minor

64 ylabel('Voltage in {\mu}V ','FontSize',10)

65 xlabel('Time in mS','FontSize',10)
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2. BER plots for Hamming, BCH and Golay FEC methods.

1 %Calculate Compound Action Potentials (CAP)

2 %and SNR\BER for the same set of Vagus neurons over

3 %a range of distance and time. Calculate coding gain for

4 %Hamming, BCH and Golay coding.

5 clear

6 %maximum longitudinal distance of electrode from excitation ...

in mm

7 zedmax=input('Longitudinal max distance in mm:');

8 %set range of distances

9 zedrange=1:1:zedmax;

10 zedsize=size(zedrange,2);

11 noiselevel=input('Minimum Noise Level in {\mu}V:');

12 %calculate the range of amplitudes using a unique exp function

13 %for the vagus nerve derived from a range of CAPs

14 amprange=49.21*exp(-.0068.*zedrange);

15 %allow for rms of this value and square it for power

16 amppower1=(amprange.^2)./2;

17 noisepower1=noiselevel.^2;

18 %calculate snr and EbN0 as a ratio and then as dB

19 snr11=amppower1./(noisepower1);

20 EbN0=amppower1./(noisepower1*2);

21 snrdb11=10*log10(snr11);

22 %calculate OOK bit error rate (BER)

23 per11=EbN0.^.5;

24 ber11=.5.*erfc(per11);

25 %calculate Hamming 12 8 3 snr using 8/12 (.67)

26 snr15= .67*EbN0;

27 snrdb15=10*log10(snr15);

28 %calculate initial coded ber for Hamming 12 8 3

29 per15=snr15.^.5;

30 ber15=.5.*erfc(per15);

31 %calculate decoded word error for Hamming 12 8 3

32 %using binomial 12C2 for one error detected +1

33 wordec15=66.*(ber15).^2.*(1-ber15).^10;

34 %calculate decoded bit error for Hamming 12 8 3

35 %using dmin/n (.25)

36 berdec15=0.25.*wordec15;

37 %calculate BCH 15 7 5 snr using 7/15 (.47)

38 snrBCH= .47*EbN0;

39 snrdbBCH=10*log10(snrBCH);

40 %calculate initial coded ber for BCH 15 7 5
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41 perBCH=snrBCH.^.5;

42 berBCH=.5.*erfc(perBCH);

43 %calculate decoded word error for BCH 15 7 5

44 %using binomial 15C3 for two errors corrected plus 1

45 wordecBCH=455.*(berBCH).^3.*(1-berBCH).^12;

46 %calculate decoded bit error for BCH 15 7 5

47 %using dmin/n (.34)

48 berdecBCH=0.34.*wordecBCH;

49 %calculate Golay 19 8 7 snr using 8/19 (.42)

50 snrGOL= .42*EbN0;

51 snrdbGOL=10*log10(snrGOL);

52 %calculate initial coded ber for golay 19 8 7

53 perGOL=snrGOL.^.5;

54 berGOL=.5.*erfc(perGOL);

55 %calculate decoded word error for Golay 19 8 7

56 %using binomial 19C4 for three errors corrected plus 1

57 wordecGolay=3876.*(berGOL).^4.*(1-berGOL).^15;

58 %calculate decoded bit error for Golay 19 8 7

59 %using dmin/n (.37)

60 berdecGolay=0.37.*wordecGolay;

61 colormap jet

62 semilogy(zedrange,ber11,'-r', 'LineWidth',2)

63 hold on

64 semilogy(zedrange,berdec15,'--k', 'LineWidth',2)

65 semilogy(zedrange,berdecBCH,':b', 'LineWidth',2)

66 semilogy(zedrange,berdecGolay,'-.k', 'LineWidth',2)

67 xlim([0 100])

68 grid on

69 hold off

70 xlabel('Transmission Range in mm','FontSize',10)

71 ylabel('BER','FontSize',10)

72 legend('BER uncoded','BER Hamming {\cdot}','BER BCH','BER ...

Golay','Location','southeast' )

73 set(gca,'Fontsize',10)
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