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Abstract for thesis titled “Herd and animal-level management tools 

generated from national databases and national genetic evaluations”  

by Fíona Dunne 

Irish cattle-based decision support tools (DSTs) currently focus on breeding and 

identifying genetically superior parents for future generations and the appropriate bull 

teams to use; however, one exception being a dairy management DST which ranks dairy 

cows on their remaining lifetime profitability for voluntary culling. The animal’s 

additive genetic merit forms the basis of all genetic-based DSTs and is estimated by 

disentangling an observed phenotype into the additive genetic effects from the 

environmental effects (i.e., BLUEs) and, in doing so, estimates are generated for both. 

Yet, to date only the additive genetic contribution to an animal performance has been 

exploited. Moreover, there are clear voids in beef management genetic-based DSTs. The 

objectives of this thesis were therefore to: 1) characterise best linear unbiased estimated 

(BLUEs) and quantify the response to selection for additive and non-additive genetic 

merit by herd BLUEs, 2) construct the framework for a DST for predicting the expected 

carcass revenue for growing cattle, and 3) develop the framework for a DST to predict 

the expected remaining lifetime profitability of beef females to identify candidates for 

culling. Data used within this thesis originated from the national cattle database and the 

national genetic evaluations. This thesis demonstrated that the response to genetic 

selection varied depending on the herd BLUE and therefore potential exists for herd 

BLUEs to be used when tailoring breeding values and DSTs for each individual. Results 

also substantiate that although the carcass value of an animal is commonly predicted 

from their recorded breed composition, using the transaction index framework 

developed, the accuracy of the carcass revenue prediction doubled. This thesis also 

validated that when beef females were ranked on their expected lifetime profitability, 

the females identified for voluntary culling contributed €32 less per calving to the herd’s 

profitability relative to the highest ranked females. 
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1.1 Introduction 

Decision support systems have revolutionised domesticated animal breeding by 

means of providing a pathway of scientific knowledge to the end user (Rose et al., 2018) 

with the objective of supporting the decision-making process. Despite this, voids remain 

whereby databases are not fully utilised or entire sectors of an industry have been 

ignored. Dairy cattle genetic evaluations are routinely run in numerous developed 

countries (Cole and VanRaden, 2018) and, simultaneous to the estimation of breeding 

values, herd management and environmental effects are disentangled and they 

themselves estimated. Despite these estimates being readily available, they are largely 

ignored and discarded. Estimates of herd contemporary group effects have the potential 

to provide data-driven indications of an individual animal’s response to selection when 

performing in a given herd environment. Therefore, an opportunity exists to enhance the 

current decision support tools (DSTs) available by providing complementary 

information to what currently exists when predicting an animal’s phenotypic 

performance. The range of DSTs within the Irish beef industry has solely focused on 

breeding and, despite the existence of a culling DST available in the dairy sector; no 

such DST has been developed in the beef sector. Furthermore, within the beef industry, 

there are many different production systems such as finishing systems whereby animals 

are traded to be finished and therefore the producer does not actually breed these 

animals. Currently there are no DSTs that support the decision making process when 

trading growing animals and assist in the identification of superior animals based on 

their predicted carcass revenue. 

The objectives of the present thesis were to investigate novel approaches of utilising 

existing data originating from the Irish national cattle databases or data which is 

routinely generated from national cattle genetic evaluations. This tactic was taken to 

minimise the requirement for collecting data to undertake the research but more 

importantly to enable rapid and relatively seamless deployment of the knowledge 

generated within. The application of such data into DSTs was investigated within both 

the dairy and beef sectors. Within the dairy sector, herd-level best linear unbiased 

estimates (BLUEs) were characterised and the response to selection for additive and 

non-additive genetic merit by herd BLUEs quantified. In addition, the framework of two 

DSTs were developed for the beef sector: firstly, predicting the potential carcass revenue 

of a beef animal destined for slaughter exploiting both genetic and non-genetic effects; 
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and secondly, predicting the expected remaining lifetime profitability of candidate 

breeding beef females to assist in more informed culling decisions. 

Chapter 1 summarises the existing literature which documents the developments, as 

well as the pitfalls, of decision support systems as a whole, the challenges to user-

engagement, goal-setting theory and the evolution as well as application of DSTs in 

animal breeding; the voids in data utilisation and DSTs for both the dairy and beef sector 

are also reported. The associations between a number of herd-level characteristics and 

herd BLUEs are quantified and reported in Chapter 2. Chapter 3 quantifies the response 

to selection on additive and non-additive genetic merit conditional on the herd’s BLUE 

metrics for a given trait. Results suggest that the response to selection on additive and 

non-additive genetic merit for a given trait do in fact differ by herd BLUE. Therefore, 

an opportunity exists for herd BLUEs to be utilised in the decision support process of 

selecting parents of the next generation but also potentially on putting a value on 

individual animals using the frameworks developed in Chapter 4 and 5. A framework 

was developed in Chapter 4 to predict the carcass revenue potential of beef animals that 

will never become parents by exploiting both genetic and non-genetic effects; such 

results can be used to provide transparency when purchasing animals, especially at a 

young age when phenotypic differences are yet to be realised.  In Chapter 5, an index 

was developed to enable the ranking of candidate breeding beef females based on their 

remaining lifetime production; the results from the study can be used to facilitate the 

decision making process of which cows to cull by providing data-driven decision 

support. Together with Chapter 4, the breeding beef ranking index can be used to decide, 

at a young age, whether a heifer should enter a feeding regime for slaughter or a feeding 

and breeding regime to become a replacement heifer. The thesis is summarised in 

Chapter 6, alongside the implications and conclusions of the presented body of work. 

 

1.2 Decision Support Systems 

The development and incorporation of decision support systems (DSS), especially 

in the agricultural sector, has intensified globally in the past 20 years. A survey carried 

out by Rose et al. (2016) suggested that, at that time of carrying out the survey, there 

were approximately 395 DSTs available to UK farmers, clearly demonstrating the vast 

choice of DSTs available. The general definition of DSS tends to be software-based 



Chapter 1: Introduction and Review of the Literature 

4 
 

technology that facilitates and provides support in the decision-making process 

(Matthews et al., 2008; Jakku and Thorburn, 2010; Rose et al., 2016; Oxford University 

Press, 2019); both Cox (1996) and Rose et al. (2016), however, suggested that the 

definition of DSTs should be broadened and can, in fact, be presented in many forms 

including: 1) human-based (i.e., farm advisors), 2) paper-based (i.e., maps), 3) SMS and 

email alerts and 4) mobile-phone apps. Matthews et al. (2008) described the distinction 

between a DST and a DSS as a DSS is “not only a standalone software tool but also data, 

encapsulated knowledge and facilitates to communication or interpret”; throughout the 

literature, however, both DSS and DST tend to be used alternatingly. The fundamental 

purpose of agriculturally-focused DSTs is to provide a pathway of scientific knowledge 

to the end-user (i.e., the farmer or farm advisor), thereby providing a solution to a 

problem (Lindblom et al., 2017; Rose et al., 2018).  In doing so, DSSs interpret data and 

apply the appropriate analyses and, in turn, assist in the identification of evidence-based 

solutions that aid the decision making process (Dicks et al., 2014; Rossi et al., 2014; 

Rodela et al., 2017). A crucial component to the success of DSTs is that they are easy to 

understand and although perhaps sometimes be taken for granted, most importantly they 

must provide a solution to an actual problem. 

The Irish agricultural industry was actually the forerunner industry in the adoption 

of computer technology when the first computer in Ireland was purchased by The Irish 

Sugar Company in 1958 (Óriain, 1997) to calculate payment statements for beet 

growers. A range of specialist DSTs currently exist for both Irish farmers and farm 

advisors, providing support in the decision-making process regarding questions around 

land, nutrition and animal breeding. The Nutrient Management Planning (NMP) online 

tool, for example, is a DST available to farm advisors to assist in quantifying the nutrient 

status of land and, by extension, fertiliser management strategies are also generated to 

assist in nutrient management. PastureBase Ireland is an online DST available to Irish 

farmers facilitating the recording of various performance indicators such as grass cover 

and fertiliser applications; the dual-purpose DST then generates reports such as grazing 

rotation planners (i.e., the grass wedge) that aids in the decision-making process whilst 

simultaneously capturing data that can be used for research purposes (Hanrahan et al., 

2017). DSTs in the form of breeding objectives are routinely used by Irish dairy, beef 

and sheep farmers when making breeding decisions. These DSTs are constantly 

evolving in line with industry demands. For instance, an extension of the national dairy 
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breeding index, the ‘Cow’s Own Worth’ (Kelleher et al., 2015) index, was developed to 

rank dairy females based on their remaining lifetime profit thereby assisting in culling 

decisions. 

1.2.1 Decision support tool engagement 

Despite the obvious abundant availability of DSTs to producers, user engagement 

continues to be an obstacle to their uptake. Rose et al. (2016) reported that of 244 

individuals surveyed in the UK, 49% were using DSTs, 28% of which were software-

based, 22% were paper-based, and 10% were apps. On one hand the behaviour of the 

end-user towards the DST is an obstacle to overcome; on the other hand, the objective, 

application and delivery of the DST can in itself, lead to the demise of the DST. Within 

the field of social science, there is a generalisation that an individual’s behaviour tends 

to be dictated by their goals (Custers and Aarts, 2005). Furthermore these goals may not 

necessarily be consciously pursued (Bargh et al., 2001); therefore if an individual does 

not see the usefulness of a particular DST as a method of achieving their goal, then there 

is no obvious reason to engage with the DST.  

Within the theory of planned behaviour, Ajzen (1991) suggests that a person’s 

intention contributes to performance and a person’s intention is influenced by three 

independent factors: 1) attitude towards behaviour i.e., a person may evaluate how 

favourable or unfavourable the adoption of a new DST is to their business; 2) subjective 

norm i.e., the social and peer pressure a person may experience to adopt or perhaps, not 

adopt a new DST; and, 3) perceived behavioural control i.e., the ease or difficulty 

experienced when using a DST. Rose et al. (2016) agreed with the suggestions made by 

Ajzen (1991), also stating that core factors that influence the use of DSTs include 

performance expectancy, peer recommendation, and ease of use. Trust in the DST, the 

cost of the DST and the age of user are also known factors influencing the uptake of 

DSTs (Rose et al., 2016).  

Interestingly, the age of the user was a big factor in the integration of software-based 

DSTs on-farm and was closely linked to IT education as some of the older generation 

were reported to not own a computer or be “half afraid of computers” (Rose et al., 2016). 

Research by Morris and Venkatesh (2000) into the link between age and technology 

adoption using Ajzen (1985) theory of planned behaviour reported that, in the short term, 

subjective norm is more important in the adoption of new technology for older workers; 
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in contrast, the younger workers’ attitude towards the new technology was more 

important than subjective norm. It was hypothesised that younger workers may have had 

more exposure to technology and therefore are more likely to make independent 

decisions towards its adoption. Older workers on the other hand, are more comfortable 

in the application of traditional methods for job completion and therefore seek the 

opinions of co-workers before adopting new technology (Morris and Venkatesh, 2000).  

In Ireland, currently less than 45% of the farming demographic are under the age of 

55, with the average age of Irish farmers being 57.5 years (DAFM, 2018b), therefore 

subjective norm may be a huge contributing factor in DST user-engagement in Ireland. 

Results from an investigation carried out by the Irish Farmers Association on the usage 

of farm technology in Ireland whereby 710 agri-stakeholders were questioned, suggest 

that agricultural media had a larger influence on the adoption of technologies relative to 

farm advisors, peers, and even discussion groups (IFA Farm Business Skillnet Research 

Study, 2019). Nevertheless, discussion group participation in the farming community is 

still a potential method of establishing positive peer behaviour towards the adoption of 

new DSTs as well as providing an opportunity to train individuals on a new DST. The 

importance of facilitating training was highlighted in the IFA Farm Business Skillnet 

Research Study (2019) which reported that over 50% of the participants stated that they 

not only did not feel confident in using technology, but over 60% said that access to 

training was in the top three barriers to the adoption of technology. Figure 1.1 illustrates 

a force field analysis adapted from the key factors that Rose et al. (2016) suggests 

influence the use of DSTs.  
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Figure 1.1: Force field analysis of decision support tool user engagement. 

 

 The behaviour of the end-user is, however, only partially responsible for the poor 

uptake in DSTs; Rossi et al. (2014) attributes the remaining proportion of responsibility 

to the technical limitations of the DSS. The lack of DST engagement is unfortunately 

not a new phenomenon and was reported by McCown (2002) almost two decades ago. 

One such limitation of the DSSs available is that they are often focused on providing 

solutions for one particular problem (e.g. breeding for genetically superior animals for 

fertility), whereas the problem may only be one element in a multicomponent production 

system (e.g. poor heat-detection or nutrient deficiencies post-partum). Therefore, the 

end-user must have a holistic view of all production systems as issues tend to be 

interconnected (Rossi et al., 2014). Bridging the gap between the researchers that 

develop DSTs and the end-users is becoming increasingly important and crucial to the 

on-going engagement with the DST. Lindblom et al. (2017) reported that the level of 

stakeholder involvement in the DSS development has a major bearing on the success or 

failure of the DSS. One method of addressing the lack of user involvement would be to 

adopt user-centred design (UCD), an approach which involves the end-user throughout 

the development process in order to gain access to the decision-making environment 

(Lindblom et al., 2017; Rose et al., 2018).  
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1.2.2 Goal-Setting Theory 

As the data pool available for analyses continues to grow in today’s age of “big data”, 

with it expands the potential scope of research as well as the obstacles of complete data 

utilisation. With such a vast amount of data available from DSTs, the end-user may find 

it increasingly difficult to identify and set achievable goals. Moreover, depending on the 

type of goal set, the results may be bidirectional in performance outcomes (i.e., the set 

goal may have positive or negative implications on performance). For instance, learning 

goals require the individual to acquire knowledge in order to complete the goal which, 

in turn, facilitates metacognition (Locke and Latham, 2006). When the outcome of a 

goal is too specific, the individual may be too focused on reaching the set-goal and 

disregard the learning opportunity attainable in the process of reaching the goal (Locke 

and Latham, 2006). An example of where the outcome of the goal was prioritised over 

the method of achieving the goal would be if the goal was to artificially inseminate 90% 

of the dairy herd within the first 3 weeks of the breeding season; one may become fixated 

on the number of cows inseminated rather than inseminating the cows effectively to 

ensure the highest pregnancy rate is achieved. Conversely, as the specificity of goals 

reduces, the variability in performance widens (Linderman et al., 2003). Therefore a 

decision by the goal setter must be made as to what the individual should achieve when 

reaching the goal, be it a learning opportunity or task completion. Furthermore, how 

people interpret goals can be detrimental to their achievement due to the ‘framing effect’ 

in psychology whereby, depending on how a goal is presented, some goals can be viewed 

as threatening or motivating. Locke and Latham (2006) reviewed approximately 400 

studies during the development of goal-setting theory and concluded that, in order to 

achieve a higher level of performance, goals set out must be specific and difficult rather 

than easy and vague. At the same time, if a goal is thought to be too difficult and 

unattainable due to the goal’s framing effect, individuals may tend to apply little effort 

and therefore their performance is compromised (Locke and Latham, 2006).  

As suggested by Shim et al. (2002), the three traditional fundamental characteristics 

of DSS are: 1) a well-developed database that has access to various forms of information, 

2) mathematical modelling functions, and 3) a simple user-friendly interface. These 

characteristics are intrinsic to the success of the Irish dairy Economic Breeding Index 

(EBI) DST and its growth in usership over the past two decades, which in turn has led 

to the accumulation of information resulting in an internationally unrivalled database. 



Chapter 1: Introduction and Review of the Literature 

9 
 

Through the provision of evidence-based information, presented in a simple manner, 

users of the EBI have been able to utilise the information available, set achievable goals, 

and make more informed decisions when breeding their animals in order to increase the 

profit achievable from future progeny. Production and fertility are the two largest sub-

indexes within the EBI, both of which each represent 34% of the overall emphasis. The 

average EBI figure for Irish dairy cattle in the past decade from just over €17 in 2010 to 

just under €96 in 2018 (ICBF, 2019d). The success of the EBI as a DST is reflected in 

the year on year improvement in the genetic merit of Irish dairy animals since its 

introduction (Figure 1.2). Furthermore, the fertility sub-index has continued to improve 

which has materialised in an ever-improving phenotypic calving interval (Figure 1.2). 

 

Figure 1.2: Genetic trends between the years 2010 to 2018 (inclusive) for the Economic 

Breeding Index (orange), milk sub-index (blue), fertility sub-index (grey), calving sub-

index (black) (figures derived from ICBF (2019d)) and, the average phenotypic calving 

interval (CIV; pink) (figures derived from ICBF (2019c)).  

 

1.3 Animal Breeding Decision Support Tools 

Since the domestication of animals, breeders have practiced selective breeding, 

although the initial emphasis may have been on the aesthetics of the animal rather than 

actual producing ability (Cole and VanRaden, 2018). In the late 1940s to early 1950s, 
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C.R. Henderson revolutionised animal breeding programs with the development of 

various statistical models (Henderson, 1949; Henderson, 1953; Henderson et al., 1959). 

Henderson recognised that one could not identify the causes of changes in phenotypic 

performance by merely comparing changes in herd averages from one year to the next. 

He suggested that the environmental and genetic factors that contribute to phenotypic 

performance must be separated in order to effectively assess a breeding program. In 

doing so, by partitioning the causative factors one was able to establish whether changes 

were due to improvements in environmental factors (e.g., nutrition and management) or 

the genetic factors of the herd, or perhaps a combination of both. Visscher et al. (2008) 

stated that the observable phenotype (P) is the sum of both the unobservable genotype 

(G) and unobservable environment (E), their interaction (G*E) and their joint variability 

(G,E) where: 

𝑃 = 𝐺 + 𝐸 + 𝐺 ∗ 𝐸 + 𝐺, 𝐸 

Furthermore, the variance of the observed phenotypic performance (𝜎𝑝
2) is the sum 

of the unobservable genetic (𝜎𝑔
2) and environmental (𝜎𝑒

2) variances as well as both the 

genotype by environment covariance (𝜎𝑔,𝑒) and the interaction between the genotype 

and environment (𝜎𝑔∗𝑒
2 ) (Visscher et al., 2008): 

𝜎𝑝
2 = 𝜎𝑔

2 + 𝜎𝑒
2 +  2𝜎𝑔,𝑒 + 𝜎𝑔∗𝑒

2  

Despite this widely accepted partitioning of phenotypic variance into its respective 

contributing factors, both the genotype by environment (G × E) interaction and the 

associated covariance are often ignored and omitted from phenotypic modelling due to 

the difficulty in estimating them (Visscher et al., 2008). In general, genetic evaluations 

tend to strive towards the identification of animals that will achieve superior 

performance in the average environment (Haile-Mariam et al., 2008); consequently, 

recommendations from genetic evaluations are applicable to the average population. 

Nonetheless, G × E interactions can result in reranking or scaling effects, the former 

causing more issues in breeding programs. Reranking occurs when animals rank 

differently in different environments whereas scaling effects occur when animals 

perform at different levels in different environments, but their ranking remains 

consistent (van der Laak et al., 2016) (Figure 1.3).  
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Figure 1.3: Genotype by Environment interactions resulting in (a) scaling effects and 

(b) re-ranking effects due to the performance of animal 1 (purple line) and animal 2 

(orange line) in two different environments. 
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A slight scaling effect, though not significant, was reported in Coleman et al. (2010), 

whereby the performance of three strains of Holstein-Friesians were investigated on two 

different feed system environments which differed by stocking rate and concentrate 

input. The high genetic merit animals (i.e., high EBI figure) tended to perform better 

than the low EBI animals, regardless of the environment. Yet when comparing the same 

genetic merit cohort across the two different environments their performance was not 

consistent (Coleman et al., 2010). Therefore even though the level of performance of 

animals with the same genetic merit can vary in different environments, animals with 

superior genetic merit tend to outperform animals of inferior genetic merit when 

comparing them in the same environment.  

A similar study which investigated the presence of a G × E interaction was carried 

out by McCarthy et al. (2007) whereby the performance of three different genetic strains 

of Holstein-Friesian animals were compared in three different feed systems 

environments. Irrespective of the environment, there tended to be a significant difference 

between the performances of the three different strains of Holstein-Friesians (Table 1.1) 

which were characterised as either: 1) high milk producers (HP; high production), 2) 

robust for many traits (HD; high durability) or, 3) of New Zealand genetic merit (NZ; 

New Zealand). Both re-ranking and rescaling events were reported in McCarthy et al. 

(2007), although not always significant. For instance, the HP stain was reported to have 

significantly superior nadir body weight in the high grass allowance diet than the HD 

strain, yet no differences existed in the remaining two environments (Figure 1.4; a). 

Moreover, a significant G × E interaction was reported to exist for body weight gain in 

the breeding season which resulted in scaling effects whereby animals within the same 

genetic stain cohort performed significantly different in each environment (McCarthy et 

al. 2007; Figure 1.4; b). 
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Figure 1.4: Re-ranking and re-scaling effects of three genetic strains of Holstein-

Friesian, namely high production, high durability and New Zealand, performing in three 

different feed system environments (i.e., high grass allowance (Moorepark), high 

stocking rates, and high concentrate allowance) on nadir body weight (kg; a) and body 

weight gain during breeding (kg; b) (McCarthy et al., 2007). 
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Table 1.1: Effect of genetic stain of Holstein-Friesian and feed system (MP, HS, and HC)1 on body weight parameters (McCarthy et al., 2007). 

 Holstein-Friesian strain and feed system   

 High Production  High Durability  New Zealand  Significance2 

Variable MP HS HC  MP HS HC  MP HS HC SE S F S × F 

Calving (kg) 615.7 616.8 607.6  597.6 597.8 606.6  583.4 573.4 579.2 7.43 0.001 0.77 0.56 

Dry off (kg) 606.4 607.8 633.1  621.6 614.2 641.6  592.7 581.5 608.2 6.95 0.001 0.001 0.79 

Average (kg) 563.0 552.6 569.4  566.8 565.6 573.5  529.6 534.3 539.1 5.58 0.001 0.01 0.35 

Nadir (kg) 537.1 519.6 522.6  519.6 525.1 525.2  506.8 497.1 497.9 5.67 0.001 0.78 0.05 

DIM to nadir (kg) 58.6 55.7 52.1  53.0 53.1 51.3  51.8 56.8 52.3 1.78 0.16 0.05 0.13 

Loss to nadir (kg) 83.3 91.3 81.5  79.0 72.2 78..1  84.0 78.0 80.0 3.91 0.05 0.64 0.18 

Gain postnadir (kg) 77.3 89.6 99.8  92.9 85.3 108.1  96.8 81.9 108.3 4.37 0.10 0.001 0.05 

Gain during breeding (kg) 24.1 28.0 32.1  29.8 27.2 34.5  31.4 25.7 34.8 1.58 0.07 0.001 0.02 

1MP = Moorepark feed system; HS = high stocking rate feed system; HC = high concentrate feed system. 

2S = effect of strain of Holstein-Friesian; F = effect of feed system; S × F = effects of interaction between strain of Holstain-Friesian and feed system. 
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Mulder et al. (2006) suggested that if genetic correlations between environments are 

< 0.61 then specific breeding programs may be worth consideration. For this reason, 

whilst investigating dairy cattle, Haile-Mariam et al. (2008), van der Laak et al. (2016) 

and Craig et al. (2018) suggested that little G × E interactions were occurring as the 

genetic correlations between environments tended to be stronger than 0.81 for traits 

associated with fertility (Haile-Mariam et al., 2008; Craig et al., 2018) and production 

(Haile-Mariam et al., 2008; van der Laak et al., 2016). However, herd environments 

ranked based on fertility performance by Craig et al. (2018) were reported to have 

greater genetic variance in the lower-fertility dairy herds as well as a greater response to 

selection relative to high-fertility herds; this suggests that when selecting for 

improvements in genetic merit for fertility traits, larger gains are possible in low-fertility 

dairy herd environments (Craig et al., 2018). 

 

1.3.1 Best Linear Unbiased Predictions (BLUPs) and Estimates (BLUEs) 

Henderson et al. (1959) proposed a method of analysing animal records that would 

simultaneously disentangle environmental effects from genetic effects and, in doing so, 

generate estimates for both. This method involved the use of linear mixed models to 

estimate the maximum likelihood of fixed effects within the linear mixed model 

(Henderson et al., 1959). Fixed effects are variables in which the individual levels are 

specific and constant, such as sex which is either male or female (Kirkwood and Sterne, 

2003). Random effects represent a sample of the levels from a population and therefore 

represent the variation within that population (Kirkwood and Sterne, 2003). Linear 

regression models are used to estimate the relationship between an explanatory variable 

and a dependent variable using the best-fitted straight line (i.e., the regression line); this 

relationship does not necessarily imply a ‘cause and effect’ relationship but can reveal 

an ‘associated’ effect.  

The linear mixed model equation Henderson proposed was: 

𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝒆 

where y = the observable vector of phenotypic performance, β = the vector of fixed 

effect parameters, u = the vector of random animal effects, e = the vector of random 

residual effects, X and Z = incidence matrices which relate to records of fixed and 
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random animal effects, respectively (Mrode, 2014). Years later this method of 

estimating environmental factors (Best Linear Unbiased Estimations; BLUE) and 

predicting breeding values (Best Linear Unbiased Predictions; BLUP) would be 

internationally referred to as the BLUP method and has become the most widely used 

method of genetic evaluation (Mrode, 2014). BLUP-type approaches are still used today 

in many species that exploit genomic information in their genetic evaluations 

(Meuwissen et al., 2001; VanRaden, 2008). The BLUP method utilises information from 

various sources in order to estimate breeding values; animals, therefore, do not 

necessarily require their own phenotypic information to acquire an EBV. As detailed in 

Simm (1998), data sources include: 1) the animal’s ancestors (i.e., pedigree 

information), 2) the individual animal, 3) the animal’s siblings (both full and half 

siblings) and, 4) the animal’s own progeny. The characteristics of BLUP and BLUE are, 

as stated by Robinson (1991), as follows: 

Best – Calculates the best estimate i.e. resulting in the strongest correlation between 

the true and estimated breeding value and the smallest mean square error, 

Linear – The estimate is a linear function of the observation, 

Unbiased – The average of the estimate is equal to the average of the quantity being 

estimated, 

Prediction – Predicts the random effects, 

or, 

Estimates – Estimates of the fixed effects.  

Through disentangling the genetic component from the environmental component as 

well as other systematic effects (e.g. the animal’s sex) responsible for the phenotypic 

performance, the BLUP method generates estimates of the additive genetic component 

of each animal (i.e., the animal’s estimated breeding value; EBV). Thus, selection on 

EBVs is more sensible than raw phenotype as it estimates the animal’s genetic merit for 

a given trait in the average environment as nuisance variables within the model are 

adjusted for. Within genetic evaluations, contemporary group effects such as herd-year-

season (HYS) tend to be the main environmental effect captured (Visscher and Goddard, 

1993). Traditionally, it has been BLUPs that have always been used in DSTs and BLUE 
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solutions have largely been discarded. Despite this, a small number of studies in dairy 

(Bastin et al., 2009) and beef (Englishby et al., 2017) cattle proposed that contemporary 

group effects could form an integral part of a DST. Bastin et al. (2009) suggested that 

dairy cow nutritional advice could be provided at the herd level using retrospective data 

consisting of herd × test-day (HTD) contemporary group effects from milk urea models. 

The integration of such information into a milk recording report could facilitate more 

informed decisions regarding nutrition by herd managers. Within the beef industry, 

Englishby et al. (2017) reported that finishing herd-year contemporary group effects 

accounted for between 31% to 71% of the total phenotypic variance for carcass weight. 

As contemporary group BLUEs are calculated independently of the animal’s genetic 

merit, the use of BLUEs as a descriptor of the herd environment in genotype-by-

environment studies could also prove to be extremely informative. 

1.3.2 Selection Indexes 

Prior to the development of Henderson’s BLUP method, both Hazel and Lush 

developed selection index methodology and what was proposed in 1942 still remains the 

fundamental basis of selection index DSTs in animal breeding today. Hazel and Lush 

(1942) proposed three factors that must be known and included in a selection index in 

order to achieve maximum genetic improvement; 1) the relative (economic) value of 

each individual trait, 2) the heritability of each individual trait and, 3) both the 

environmental and genetic correlations among the traits. DSTs in animal breeding have 

married both Henderson’s and Hazel’s proposals by adapting the method of predicting 

additive genetic effects of individual animals and multiplying the (estimated) breeding 

values for an individual trait by the respective (economic) weight. Selection indexes are 

calculated as follows:  

𝐼 = 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 +⋯+ 𝑏𝑛𝑋𝑛 

where I = the selection index; bi = the partial regression coefficient for trait i; Xi = 

the phenotypic observation of trait i used in the calculation of EBVs. The selection index 

is used to maximise the response in the selection objective which is calculated as: 

𝐻 = 𝑎1𝑌1 + 𝑎2𝑌2 + 𝑎3𝑌3 +⋯+ 𝑎𝑚𝑌𝑚 

where H = the selection objective; 𝑎i = the economic value for trait i; Yi = the traits 

that have been chosen to improve. Economic values have been defined by Hazel (1943) 
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as “the amount by which profit may be expected to increase for each unit of 

improvement in that trait”. Economic weights can be subsequently calculated as the 

product of the economic value and the discounted genetic expression (Amer et al., 2001). 

In the past, single trait selection was commonly practiced, especially in the dairy 

industry, and although the level of milk produced per cow increased, reproductive 

efficiency was eroded (Lucy, 2001). This erosion in reproductive performance was 

concluded to be partially due to the antagonistic genetic correlation between milk 

production and reproduction (Lucy, 2001), which appears to be a common problem in 

single-trait selection (Cole and VanRaden, 2018). Multiple-trait selection indexes 

became the industry standard in animal breeding and, in turn, led to the establishment of 

a more holistic approach to animal breeding thus counteracting the antagonistic 

relationships among traits. Cole and VanRaden (2018) documented the individual trait 

components that are included in the breeding objectives of 21 dairy indexes across the 

world in Figure 1.5. 

When developing multiple-trait indexes, it is important to consider the usability of 

such a DST and how the end-user will interact with the index. Selection indexes are used 

to simplify the identification of superior animals by comparing individuals based on 

their EBVs for individual traits all summed up into a single value per animal (Amer et 

al., 2001). Splitting selection indexes into smaller sub-indexes also ensures ease-of-use 

(Cole and VanRaden, 2018). Provided the function of each sub-index is understood, 

users can make more targeted progress in accordance with their own breeding goal 

without necessarily understanding each individual trait within the sub-index. In spite of 

this, the user also has the option to scrutinise an animal’s genetic merit for any given 

trait underpinning the index if so desired. The Irish dairy economic breeding index 

comprises 7 sub-indexes and 19 breeding objective traits.  
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Figure 1.5: Traits included in the breeding objectives of 21 total merit indices of the United States and 16 other countries as reported by Cole and 

VanRaden (2018). 
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1.3.2.1 Heritability 

Since the formal introduction of the term ‘heritability’ into the scientific community 

by J. L. Lush in 1940 (Visscher et al., 2008), it has become a fundamental statistic within 

the field of quantitative genetics and was quickly referred to as one of the main factors 

to be included in a selection index (Hazel and Lush, 1942). Heritability can be sub-

divided into either the broad-sense (H2) or narrow-sense heritability (h2), where the 

proportion of total variance for a particular trait is attributable to either the total genetic 

variation or the additive genetic variation, respectively (Visscher et al., 2008). Narrow-

sense heritability tends to be the statistic commonly referred to in the animal breeding 

literature unless otherwise stated (Berry et al., 2019b). This is because additive genetic 

variance is a fundamental element in the application of breeding programs given that, 

when estimating breeding values, only the contribution of additive allele effects are 

considered since alleles, and not allelic combinations, are transmitted to the offspring 

(Aliloo et al., 2017; Rutkoski, 2019). In other words, heritability is a reflection of the 

relationship shared between the phenotype and the breeding value. Byers (2008) also 

defined additive genetic variance as “the deviation from the mean phenotype due to 

inheritance of a particular allele and this allele’s relative (to the mean phenotype of the 

population) effect on the phenotype”. Narrow-sense heritability has been reported to be 

the fraction of phenotypic variation within a population which is determined by the 

genes transmitted directly or inherited from the parents, without taking the mate of the 

animal into account (Falconer and Mackay, 1996; Berry et al., 2019b). Narrow-sense 

heritability is estimated as follows: 

ℎ2 = 
𝜎𝐴
2

𝜎𝑃
2 

where ℎ2 = the narrow-sense heritability estimate; 𝜎𝐴
2 = the additive genetic variance 

and 𝜎𝑃
2 = the total phenotypic variance within a population. Whilst the broad-sense 

heritability statistic is not commonly discussed in the animal breeding literature, the total 

genetic variance component within the statistic consists of dominance and epistatic 

variance in addition to additive genetic variance in the numerator. The non-additive 

genetic variance referred to as dominance variance is the interaction between alleles at 

the same locus, whereas epistatic variance is the interaction between alleles at different 

loci (Su et al., 2012). Arguably the most exploited form of non-additive genetic variance 
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in animal breeding protocols has been heterosis, i.e., the effects of crossbreeding 

whereby individuals of different breeds are mated resulting in a progeny with an 

expected increase in heterozygosity (Swan and Kinghorn, 1992). Results of 

crossbreeding tend to be favourable, as the progeny’s performance surpasses the mid-

parent mean. Heterotic effects, however, are not transmitted directly from parents to the 

progeny and therefore are not included in the estimation of EBVs. 

Importantly, heritability is population specific and therefore, although heritability 

estimates for a particular trait may be similar, a heritability estimate in one population 

should not be used as the heritability of the same trait in a different population (Visscher 

et al., 2008). Due to the fact that heritability is a ratio, both the numerator and 

denominator are important. When the heritability of a trait is reported to be high, relative 

to a lowly heritable trait, it does not necessarily mean that the additive genetic variance 

is larger (Visscher et al., 2008). For instance the total phenotypic variance (denominator) 

could possibly be smaller and therefore, of the observed variation, a larger proportion of 

the variation is caused by genotypes. When predicting breeding values, highly heritable 

traits (e.g. growth traits) require fewer recorded phenotypes for accurate predictions; 

lowly heritable traits can overcome this obstacle by having a larger number of recorded 

phenotypes from many progeny in order to accurately predict breeding values. Thus, 

irrespective of whether a trait highly or lowly heritable, genetic improvement is possible. 

1.3.3 Evolution of Genetic Evaluation Modelling 

The basic linear mixed model proposed by Henderson et al. (1959) has evolved since 

its introduction to account for an increasing amount of data as it becomes available; with 

each adaptation, however, the fundamental framework proposed by Henderson et al. 

(1959) remains intact. Models are now capable of incorporating more complicated 

effects to account for factors such as different breeds, maternal effects and correlated 

traits (Van der Werf, 2002).  

1.3.3.1 Sire model 

Sire models were commonly used in the early adoption of the BLUP method (Mrode, 

2014). This was primarily due to limitations of computational power at the time and the 

fact that sire models have fewer equations to solve in comparison to the animal model 

as only the sire effects are fitted to progeny records (Van der Werf, 2002; Mrode, 2014). 

However, the EBVs derived from a sire model tend to be less accurate and potentially 
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biased. Potential bias can arise as the model assumes that genetic differences between 

the dams (i.e., the sires mate) do not exist, despite the fact that over time, a sire’s mate 

may not only be a different breed but also have a superior genetic merit (Van der Werf, 

2002). Furthermore, EBVs for females cannot be generated from sire models. 

1.3.3.2 Reduced animal model 

Within a reduced animal model, equations are only set up for parents that have 

progeny records; therefore the process of estimation requires less computational power 

than the standard animal model as fewer equations have to be solved (Van der Werf, 

2002). Subsequently, by back-solving from the predicted parental breeding values, the 

estimated breeding values for the remaining animals within the dataset can be calculated 

(Mrode, 2014).   

1.3.3.3 Single trait animal model 

For an animal model, a breeding value is fitted for each animal within the dataset; 

therefore there are an equal number of equations to solve as the number of animals 

within the dataset (Mrode, 2014). The single trait animal model only consists of one trait 

of interest, hence named ‘single trait’, fixed effects (e.g. contemporary group effects) 

and a single random effect (i.e., the breeding value) are also included (Van der Werf, 

2002). The mixed model equation for a single trait model is: 

[𝑿′𝑿 𝑿′𝒁
𝒁′𝑿 𝒁′𝒁 + 𝑨−𝟏𝛼

] [�̂�
�̂�
] =  [

𝑿′𝒚

𝒁′𝒚
] 

where X is the matrix relating to the fixed effects (e.g. sex, contemporary group and 

twin effects); Z is the matrix that relates records to the animals; y is the vector of 

observations; 𝑨−𝟏 is the inverse of the numerator relationship matrix (i.e., thus 

accounting for the additive genetic relationship between animals); 𝛼 is the ratio or error 

variance (i.e., the ratio of residual variance to additive genetic variance); �̂� is the solution 

for the fixed effects; and �̂� is the random effect solution (Mrode, 2014). 

1.3.3.4 Repeated records model 

Mixed models evolved to the repeated animal model in order to account for incidents 

whereby an individual has more than one record available (i.e., repeated records) for a 

single trait, such as milk yield records or litter sizes for multiple lactations or 

pregnancies. Within the model, both temporary (common environmental effects) and 
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permanent (between the records for the individual) environmental effects are accounted 

for (Mrode, 2014). Therefore, if a dairy cow was to lose the function of a teat due to an 

accident, it would not impact her predicted transmitting ability value as this would not 

impact her progeny’s performance; losing the function of a teat would, however, impact 

her permanent environment. The model typically applies some assumptions to the 

calculations such as the genetic correlation between an individual’s records is assumed 

to be 1 (Mrode, 2014). The linear model equation for a repeated records model is: 

𝒚 = 𝑿𝒃 + 𝒁𝒂 +𝑾𝒑𝒆 + 𝒆 

where y is the vector of the observation; b is the vector of fixed effects; a is the vector 

of additive genetic random effects; pe is the vector of permanent environmental effects; 

e is the vector of residual effects; X, Z and W are the incidence matrices relating to 

records of fixed, random, and permanent environmental effects, respectively (Mrode, 

2014). 

1.3.3.5 Maternal effects model 

Maternal effects models encompass both the prenatal and postnatal influences that a 

mother will have on her young (Falconer and Mackay, 1996). This influence extends 

beyond her direct additive genetic effects (Van der Werf, 2002), and can cause the 

offspring of the same mother to resemble each other (Falconer and Mackay, 1996). 

When beef producers are choosing a maternal dam line as replacements, it is important 

to choose an animal that possesses both a good direct additive genetic merit for growth 

traits as well as maternal effects for milk so she can wean a heavier calf. The linear 

model pertaining to a maternal effects model is: 

𝒚 = 𝑿𝒃 + 𝒁𝟏𝒂 + 𝒁𝟐𝒎+ 𝒆 

where y is the vector of observations; b is the vector of fixed effects; a is the vector 

of additive genetic random effects; m is the vector of maternal genetic effects; e is the 

vector of residual effects; X, 𝒁𝟏 and 𝒁𝟐 are the incidence matrices relating to records of 

fixed, random effects of the animal (additive genetic) and dam (maternal genetic), 

respectively (Van der Werf, 2002; Mrode, 2014). 
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1.3.3.6 Multi-trait model 

Traits of interest can be genetically and phenotypically correlated and therefore, to 

account for such a phenomenon, multiple trait evaluations can be used. By utilising the 

correlation structure among traits, each trait provides information about all other traits, 

thus increasing the accuracy of the EBV (Van der Werf, 2002); however, the 

computational requirements also increases for multi-trait evaluations (Mrode, 2014). 

Another advantage of multi-trait evaluations is that they are less biased as the models 

can account for culling selection bias (i.e., when animals are selected to be culled based 

on the values of a correlated trait) (Mrode, 2014); for instance, the evaluation of second 

parity dairy cows when culling or selection was based on the first lactation yields (Van 

der Werf, 2002). Irrespective of whether the animal has an observation for the trait, 

breeding values will be estimated for each animal and each trait within the analysis (Van 

der Werf, 2002). The general structure of the multi-trait linear model is:  

𝒚𝒊 = 𝑿𝒊𝒃𝒊 + 𝒁𝒊𝒂𝒊 + 𝒆𝒊 

where 𝒚𝒊 is the vector of observations for the ith trait; 𝒃𝒊 is the vector of fixed effects 

for the ith trait; 𝒂𝒊 is the vector of additive genetic random effects for the ith trait; 𝒆𝒊 is 

the vector of residual effects for the ith trait; 𝑿𝒊 and 𝒁𝒊 are the incidence matrices relating 

to records of fixed, and random effects of the animal (additive genetic) for the ith trait, 

respectively (Van der Werf, 2002; Mrode, 2014). 

 

1.4 Irish Animal Breeding Decision Support Tools 

1.4.1 Dairy Decision Support Tools 

Two main indexes exist for dairy animals in Ireland, namely the Economic Breeding 

Index (EBI) for breeding decisions (Berry et al., 2007) and the Cow’s Own Worth index 

(C.O.W.) for culling decisions (Kelleher et al., 2015). Both indexes are routinely 

published by the Irish Cattle Breeding Federation (ICBF), a non-profit organisation 

which focuses on providing Irish beef and dairy farmers with DSTs for breeding and 

selection (ICBF, 2019b). 
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1.4.1.1 Economic Breeding Index 

The EBI is a single-figure profit index decision support tool that aids in the 

identification of the most profitable bulls and females (based on their additive genetic 

component) to breed for dairy herd replacements. Prior to the introduction of the EBI in 

February 2001, the Relative Breeding Index was the selection index available to Irish 

dairy farmers and was based solely on production traits including milk yield, fat and 

protein (Berry et al., 2007). Despite the year-on-year improvement in genetic merit for 

milk yield, fertility merit in the Irish dairy cattle population deteriorated due to the 

existence of an antagonistic relationship between production and functional traits (Pryce 

and Veerkamp, 2001). The EBI was established to include both functional and 

production traits of economic importance within the selection index and was launched 

in 2001 (Figure 1.6).  

 

Figure 1.6: The development of the Economic Breeding Index between the years 2000 

and 2019. 

 

Genetic evaluations in Ireland are run six times annually and the EBI of each animal 

is subsequently updated to provide the most up-to-date estimates of genetic merit for 

farmers when making breeding decisions. Ramsbottom et al. (2006) investigated the 

validity of the EBI on farm profit using 1,131 dairy herds and reported that there was, 

in fact, a positive linear relationship between farm net profit and the EBI. Furthermore, 

it was reported that there was a €1.94 increase in net margin per cow per unit increase 
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in EBI (Ramsbottom et al., 2006). Moreover, the EBI was also positively associated with 

both the production and fertility sub-indexes, whereby it was reported that for every one 

unit increase in the corresponding index, the net profit per cow was €3.43 and €1.72, 

respectively (Ramsbottom et al., 2006). The performance of the Irish national dairy herd 

has unquestionably improved since the introduction of the EBI and continues to 

improve. Since 2008, not only has the national calving interval shortened by 9 days, but 

the percentage of the herd calved in the first 6 weeks of the calving season has also 

increased by 11%; the number of calves per cow born per year has increased from 0.84 

to 0.9 (ICBF, 2019c). The overall change in the profit per lactation for each of the sub-

indexes within the EBI over the past 20 years is reported in Figure 1.7. 

 

Figure 1.7: Change in profit per lactation over a 20 year period of the (a) Economic 

Breeding Index value (EBI), milk and fertility sub-indexes (SI) and (b) the five 

remaining SI within the economic breeding index, namely calving, beef, maintenance, 

and management SI. 
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The EBI has been continuously re-evaluated and expanded upon since its 

introduction and currently comprises of 7 sub-indexes encompassing 19 traits of 

economic importance (ICBF, 2019g) (Table 1.2). 

 

Table 1.2: Breakdown of sub-indexes, traits, economic weights and overall emphasis of 

traits within the Economic Breeding Index (ICBF, 2019g). 

Sub-Index Trait 
Economic 

Weight 

Overall 

Emphasis 

Production 

Milk (kg) -€0.09 

34% Fat (kg) €2.08 

Protein (kg) €5.58 

Fertility 
Calving interval (d) -€12.59 

34% 
Survival (%) €12.43 

Calving 

Direct calving difficulty (%) -€4.19 

10% 
Maternal calving difficulty (%) -€2.31 

Gestation (d) -€7.93 

Calf mortality (%) -€2.58 

Beef 

Cow (kg) €0.15 

8% 

Carcass weight (kg) €1.38 

Carcass conformation 

(EUROP) 
€10.32 

Carcass fat (1 to 15 scale) -€11.71 

Maintenance Cull cow (kg) -€1.65 6% 

Management 
Milking duration (seconds) -€0.31 

5% 
Temperament (units) €35.86 

Health 

Lameness (%) -€72.47 

3% Mastitis (%) -€82.65 

SCC (Loge) -€43.49 
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1.4.1.2 Cow’s Own Worth 

The C.O.W. index is a performance ranking tool for dairy females ranking them 

based on their predicted profit for the remainder of their lifetime (Kelleher et al., 2015). 

The C.O.W. index is currently only provided to spring-calving dairy herds as spring-

calving systems predominate in Ireland (Berry et al., 2013). Unlike the EBI, the C.O.W. 

includes not only an estimate of the additive genetic component but also includes the 

non-additive genetic components as well as environmental effects such as calving date 

and the age of the cow. The objective of the C.O.W. index is to facilitate the 

identification of candidate females for culling. Kelleher et al. (2015) developed the 

C.O.W. model which takes cognisance of the predicted profit from an animal’s current 

lactation and future lactations, as well as the net replacement cost of the animal (Figure 

1.8); importantly, by using transition matrices, the expected profit of future lactations 

includes probability estimates of the dairy cow surviving to subsequent lactations. 

 

Figure 1.8: Illustration of the sub-components included in the three factors that are used 

to calculate the Cow’s Own Worth value (ICBF, 2019e).  

  

A close relationship exists between the C.O.W. and the EBI with them being viewed 

as complementary DSTs; because the C.O.W. also incorporates the additive genetic 

merit of the animal, Kelleher et al. (2015) reported a correlation of 0.65 between the 

C.O.W. and EBI index. The general objective of all animal breeding programmes tends 

to be to shift the mean performance of the population in a desired direction. For example, 

the EBI recommends breeding from the top performing animals on the desirable side of 

the normal distribution, thus shifting the mean performance in the desirable direction. In 
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contrast, the C.O.W. index recommends culling less profitable animals from the 

undesirable side of the normal distribution thus shifting the mean performance of the 

herd further in the desirable direction (Figure 1.9). 

 

Figure 1.9: Shifting the mean performance of a herd using both the Cow’s Own Worth 

culling decision support tool and Economic Breeding Index decision support tool. 

 

1.4.2 Beef Decision Support Tools 

Two beef breeding indexes exist: 1) the Terminal Beef Index, and 2) the 

Replacement Index. For ease of identification, animals are reported to have a value of 

between 1 and 5 stars, representing the bottom performing 20% of animals to the animals 

performing within the top 20 percentile for a trait, respectively. Both indexes are 

breeding DSTs and are published 6 times annually by the ICBF. 

1.4.2.1 Replacement Beef Index 

The Replacement Beef Index is targeted at farmers who wish to select animals that 

will produce high-profit replacement female progeny. Additive EBVs for both maternal 

and terminal traits of interest are included in the index (weighted by the economic 
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weights) as the resulting progeny may be kept for breeding or slaughtered (McHugh and 

McGee, 2016) (Table 1.3). 

Table 1.3: A breakdown of the individual components included in the beef replacement 

index (ICBF, 2017b). 

Trait 

Type 
Trait 

Economic 

Weight 

Trait 

Emphasis 

Cow 

Traits 

(71%) 

Maternal calving difficulty (%) -€4.98 6% 

Age at first calving (d) -€0.99 6% 

Calving interval (d) -€5.07 9% 

Survival (%) €8.86 8% 

Milk (kg) €5.58 18% 

Heifer intake (kg / DMI) -€0.76 8% 

Cow intake (kg / DMI) -€0.55 6% 

Cow docility (1 to 5 score) €77.27 4% 

Cull cow weight (kg) €0.91 7% 

Calf 

Traits 

(29%) 

Calving difficulty (%) -€5.12 7% 

Gestation length (d) -€2.48 2% 

Mortality (%) -€5.87 1% 

Docility (1 to 5 score) €14.72 1% 

Feed intake (kg / DMI) -€0.07 4% 

Carcass weight (kg) €2.10 10% 

Carcass conformation (EUROP) €10.22 3% 

Carcass fat (1 to 15 scale) -€5.44 1% 

 

1.4.2.2 Terminal Beef Index 

The Terminal Beef Index is a breeding DST with the objective of identifying animals 

that produce the most profitable progeny for slaughter (McHugh and McGee, 2016). The 

index is comprised of 8 traits including three calving traits (i.e., calving difficulty, 

gestation length and calf mortality), feed intake, docility and three carcass traits (i.e., 

carcass weight, carcass conformation and carcass fat) (Table 1.4). Similar to the 
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replacement index, the value given to each animal is estimated based on their additive 

genetic effect for each trait weighted by the economic importance of the trait.  

Table 1.4: A breakdown of the individual components included in the euro-star beef 

terminal index (ICBF, 2017b). 

Trait Economic Weight Trait Emphasis 

Calving difficulty (%) -€4.65 18% 

Gestation length (d) -€2.25 4% 

Mortality (%) -€5.34 3% 

Docility (1 to 5 scale) €17.02 2% 

Feed intake (kg / DMI) -€38.63 16% 

Carcass weight (kg) €3.14 41% 

Carcass conformation (EUROP) €14.77 11% 

Carcass fat (1 to 15 scale) -€7.86 5% 

 

 

1.4.3 The Dairy Beef Index (DBI) 

The DBI is a breeding DST that ranks beef bulls on their additive genetic merit for 

calving traits as well as carcass performance traits, feed intake and docility for their use 

on dairy females (Berry et al., 2019a). Since the abolition of milk quotas in Ireland in 

2015, both dairy herd size and herd numbers have been increasing (Kelly et al., 2017). 

With this expansion comes the opportunity to use beef bulls on the proportion of dairy 

cows that are not deemed to have sufficient elite genetic merit and therefore will not be 

kept as replacements (Berry et al., 2019a). Nevertheless, given the correlated response 

to selection due to the positive genetic correlation between traits such as calf birth-

weight and calving difficulty (Eriksson et al., 2004), there is a necessity to take 

cognisance of the potential ramifications when mating a beef sire to a dairy dam.  

Especially given that already the number of beef-sired calves born in dairy herds has 

been increasing  (ICBF, 2017a) (Figure 1.10). 



Chapter 1: Introduction and Review of the Literature 

32 
 

 

 

Figure 1.10: Number of calves born from the beef and dairy herd in the years 2010, 

2014 and 2018. 

 

Berry et al. (2019a) reported the necessity for developing an index that would rank 

the suitability of beef bulls being used on dairy dams to ensure two main outcomes: 1) 

the resulting calf would have a good carcass sales value and, 2) there would be minimal 

repercussions on the dairy dam with reference to her subsequent fertility and production 

performance; especially given the positive genetic correlation (r = 0.54) between birth-

weight and calving difficulty (Berry et al., 2019a). The overall objective of the DBI is 

to improve the carcass quality of calves born in the dairy herd thereby increasing the 

profitability of the calves sold for slaughter (ICBF, 2019f). Similar to the EBI, a single-

figure monetary value is calculated for each beef bull which predicts the expected profit 

from the progeny born to a dairy cow relative to progeny born from a dairy bull. The 

goal traits within the index vary in relative importance (Figure 1.11). As the index is 

based on breeding beef sires with dairy dams, calving difficulty is a major factor, and 

therefore has a 53% trait emphasis within the DBI (ICBF, 2019f). 
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Figure 1.11: A breakdown of the trait emphasis within the dairy beef index (ICBF, 

2019f). 

 

A validation study of the DBI was undertaken by Berry and Ring (2020a) whereby 

the progeny performance of just over 100,000 dairy cows who were mated to either beef 

or dairy sires were analysed. Progeny born from high DBI beef sires, relative to dairy 

sires, had superior carcass performance for traits such as weight, conformation as well 

as a greater proportion of the progeny achieving the overall carcass specifications (Berry 

and Ring, 2020a). When reporting on the calving performance of the top 20 % of DBI 

sires, there were increases in perinatal mortality and gestation length relative to dairy 

sires (Berry and Ring, 2020a); however, dairy sires did have a greater incident of calving 

difficulty (Berry and Ring, 2020a). Despite this, the expected overall profit from using 

a high DBI beef sire, relative to a dairy sire, was an additional €44.97 when both calving 

and carcass performance parameters are accounted for (Berry and Ring, 2020a).  
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1.5 Gaps in Knowledge 

The success of breeding selection indexes around the world has been well 

documented in the literature (Berry et al., 2007; McHugh et al., 2014; Cole and 

VanRaden, 2018). The incorporation of best linear unbiased predictions within the 

decision-support tools has been the foundation of such success. Best linear unbiased 

estimations (BLUEs) have, however, been largely ignored. BLUEs have a huge potential 

role in DSS as they can scientifically quantify the management and environmental 

effects of each herd independent of the herd’s mean genetic merit. Furthermore, a 

fundamental assumption of genetic evaluations is that a one unit change in breeding 

value equates to a one unit change in phenotypic performance in the average herd; 

however the phenotypic change in response to changes in EBVs in a well-managed herd 

or in a poorly managed herd, may differ from this expectation. As BLUEs can be used 

to categorise the status of the management a herd is operated under, BLUEs have the 

potential to serve as an indicator of the expected response to selection, especially at key 

decision points (e.g. purple boxes indicated in Figure 1.12.) prior to bull selection. This 

would enable advisors to adapt and tailor breeding strategies for each individual farm 

based on the expected future performance.  

Irish selection indexes for beef animals have primarily focused on supporting 

breeding decisions which assist in the identification of genetically superior parents who 

will produce the next generation. Furthermore, beef selection indexes only take 

cognisance of additive genetic effects and therefore ignore non-additive and non-genetic 

effects which can impact the performance potential of an animal. Voids do exist in the 

beef DST repertoire. Currently there is no form of guidance available to producers who 

wish trade growing cattle for a monetary value reflective of their eventual harvest value. 

Nor is there an index available which is capable of ranking beef females based on their 

expected lifetime performance potential, to assist in the selection of candidate females 

both either retention or culling from the herd. Coupled with the fact that neither of the 

proposed DSTs are for breeding purposes, the opportunity to include both non-additive 

and non-genetic effects into the estimation of such indexes also exists. Figure 1.12 

portrays both the Irish dairy and beef DSTs available, identifies voids in decision support 

within both sectors, and illustrates where DSTs could be shared between both sectors. 
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Figure 1.12: An integrated decision tree for both Irish dairy and beef enterprises indicating which decision support tools (pink boxes) are useful at 

various production time-points (light blue boxes). The voids in decision support tools are also identified by the navy blue boxes. The assumption that 

there is no genotype by environment interaction (G × E) at the decision points when bulls are chosen for breeding the future progeny within the dairy 

and beef cow system, as well as within the non-breeding beef system whereby animals are assumed to perform equally across environments. 
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2.1 Abstract 

Genetic evaluations decompose an observed phenotype into its genetic and non-

genetic components; the former are termed best linear unbiased predictions (BLUPs) 

with the solutions for the systematic environmental effects in the statistical model 

termed best linear unbiased estimates (BLUEs). Geneticists predominantly focus on the 

BLUPs and rarely consider the BLUEs. The objective of this study, however, was to 

define and quantify the association between eight herd-level characteristics and BLUEs 

for six traits in dairy herds namely 1) age at first calving, 2) calving to first service 

interval (CFS), 3) number of services, 4) calving interval (CIV), 5) survival, and 6) milk 

yield. Phenotypic data along with the fixed and random effects solutions were generated 

from the Irish national multi-breed dairy cow fertility genetic evaluations on 3,445,557 

cows; BLUEs for individual contemporary groups were collapsed into mean herd-year 

estimates. Data from 5,707 spring-calving herds between the years 2007 and 2016 

inclusive were retained; association analyses were undertaken using linear mixed 

multiple regression models. Pearson coefficient correlations were used to quantify the 

relationships among individual trait herd-year BLUEs and transition matrices were used 

to understand the dynamics of mean herd BLUE estimates over years. Based on the mean 

annual trends in raw, BLUPs, and BLUEs, it was estimated that BLUEs were associated 

with at least two thirds of the improvement in CIV and milk production over the past ten 

years. Milk recording herds calved heifers for the first time on average 15 d younger, 

had an almost 2 d longer CFS but 2.3 d shorter CIV than non-milk recording herds. 

Larger herd sizes were associated with worse BLUEs for both CFS and CIV. Expanding 

herds and herds that had the highest proportion of cows born on the farm itself, on 

average, calved heifers younger and had shorter CIV. By separating the raw performance 

of a selection of herds into their respective BLUEs and BLUPs, it was possible to 

identify herds with inferior management practices that were being compensated by 

superior genetics; similarly, herds were identified with superior BLUEs, but because of 

their inferior genetic merit, were not reaching their full potential. This suggests that 

BLUEs could have a pivotal role in a tailored decision support tool that would enable 

producers to focus on the most limiting factor hindering them achieving their maximum 

performance. 
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2.2 Introduction 

Animal breeders have traditionally focused on improving the mean genetic merit of 

a population in the pursuit of enhanced performance. Animal performance, however, is 

a function of both the genotype of the animal and the environment it is (and was) exposed 

to. Failure to improve animal management concomitant with the requirements of the 

genetically elite germplasm, hampers the actual realisation of the benefit in genetic gain. 

Genetic evaluations apportion the phenotype of an individual into its estimated additive 

genetic merit (i.e., Best Linear Unbiased Predictions; BLUPs) and the contributing 

environmental or management influences (i.e., Best Linear Unbiased Estimates; 

BLUEs). While the BLUPs have been extensively used in animal breeding programs 

(Meuwissen et al., 2001; Muir, 2007; Patry and Ducrocq, 2011), BLUEs have received 

considerably less attention. Most genetic evaluations consider as fixed effects some 

measure of temporal herd groupings such as the contemporary group of herd-year-

season (van Bebber et al., 1997; Calus et al., 2005) or just herd-year (Englishby et al., 

2017). Bastin et al. (2009) proposed using such herd-year BLUEs to provide dairy 

producers with retrospective advice on feeding and management strategies. Bastin et al. 

(2009) found that by analysing the BLUEs associated with the milk urea concentration 

of milk samples, an association could be made between dietary crude protein and the 

dietary management of the animals. This information could then be used to provide 

farmers with on-going feed management advice (Bastin et al., 2009). Similarly, 

Caccamo et al. (2008) included a herd-test-day effect in the statistical analyses of dairy 

cow milk performance data to account for short term management changes such as 

changes in feed ration. Englishby et al. (2017) used BLUEs to independently quantify 

the association between management environments and the variability in beef carcass 

characteristics after accounting for differences in additive genetic merit; Englishby et al. 

(2017) achieved this by including the random effects of both animal genetic merit and 

the contemporary group of finishing herd-year in the statistical model. Studies are 

however lacking, in dairy cattle at least, on the macro-environmental and management 

characteristics describing the BLUEs. The objective of the present study was to describe 

herd-level related factors contributing to herd-year BLUEs and to understand the inter-

relationships among herd-year BLUEs for fertility, milk and survival in dairy cows. The 

information generated has the potential to be used within a management decision support 

tool to enable producers make more informed value-creating decisions. 
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2.3 Materials and Methods 

All data used in the present study originated from the Irish Cattle Breeding 

Federation (ICBF) database, Bandon, Co. Cork, Ireland. 

2.3.1 Genetic Evaluation 

The edited phenotypes and associated fixed effects used in the Irish national multi-

breed dairy cow fertility genetic evaluations were available; data on a total of 3,445,557 

cows were available which consisted of predominantly Holstein-Friesian (91%) with the 

remainder being mainly crossbred animals. A national genetic evaluation was 

subsequently run in MiX99 (MiX99 Development Team, 2015) and the fixed effects 

(and random effects) solutions generated. The national dairy cow fertility genetic 

evaluation used in Ireland is a 23 × 23 multi-trait evaluation which includes age at first 

calving, calving to first service interval from parity 1 to 3 as separate traits, number of 

services from parity 1 to 3 as separate traits, calving interval from parity 1 to 5 as 

separate traits, 305-day milk yield from parity 1 to 5 as separate traits, survival from 

parity 1 to 5 as separate traits, and lifespan; lifespan was not considered further. Details 

of the editing procedures, statistical models and variance components for each trait are 

described in Berry et al. (2013). Fixed effects common to all traits were the 

contemporary group of herd-year-season of calving (or birth when the dependent 

variable was age at first calving), age at calving (except when the dependent variable 

was age at first calving), heterosis and recombination loss coefficients. Contemporary 

groups are created for each trait using the procedure outlined in Berry et al. (2013) based 

on algorithms proposed by Crump et al. (1997) and Schmitz et al. (1991). 

2.3.2 Definition of Herd-Year BLUE effects 

Contemporary group BLUEs from the national genetic evaluations were available. 

Contemporary group effect estimates were not necessarily available for all traits; for 

example herds that do not participate in milk recording would not have a contemporary 

group effect estimate for 305-d milk yield but could have a contemporary group effect 

estimate for any of the fertility traits. A given herd-year could have several contemporary 

groups because clusters of animals may calve at different periods of the year within a 

herd and therefore would be in different contemporary groups; therefore the average 

contemporary group effect estimate within each herd-year, weighted by the respective 

number of records in each contemporary group, was calculated. Only data from herds 
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with information for each year in the 10-yr period from 2007 to 2016 inclusive were 

retained; annual herd-year BLUEs for each of the 10 yrs were available from 8,873 herds 

(i.e., 88,730 herd-years).  

2.3.3 Herd-Year level characteristics 

Herd-year characteristics of interest included: 1) geographical location, 2) whether 

or not the herd was milk recording, 3) herd size, 4) herd expansion rate, 5) herd-level 

use of AI, 6) the proportion of cows in the herd that were born in that herd (i.e., not 

purchased), 7) the proportion of cows in the herd that were registered with a breed 

society, and 8) the proportion of cows in the herd that calved in the first 42 days of the 

calving season (Calv42). Geographical location was available for all herds in the 

Republic of Ireland on a county basis; herds originated from a total of 26 counties with 

the three largest counties in the country further subdivided into north and south. A herd 

was defined as a milk recording herd in a given year based on the presence of milk 

recording data for that herd in the national database for that year; all data from milk 

recorded herds are stored in the central database.  

Herd size for a given herd-year was based on the number of calving events in that 

year. The trend in annual herd size was used to calculate the rate of expansion using an 

approach similar to that described in detail by Jago and Berry (2011); a linear robust 

regression was used to calculate the expansion rate of each herd-year from 2007 to 2016 

inclusive. To calculate the rate of expansion for a given year, the herd size of that year 

as well as the two flanking years were used in the robust regression; the exception were 

the years 2007 and 2008 as well as 2015 and 2016 but in these cases, 5 years’ data were 

always included. The resulting linear coefficient was used to categorise the rate of herd 

expansion as outlined in Jago and Berry (2011); herds deemed not to be expanding were 

those with a negative linear regression coefficient or a linear regression coefficient not 

different (i.e., P > 0.05) from zero. 

The extent of AI usage in a given herd-year was calculated as the proportion of cows 

that calved in that herd-year that had received at least one AI in that year. In Ireland it is 

a legal requirement to register all bovine birth events including the herd of birth; the 

proportion of cows calving in a herd in a given year that were actually born in that herd 

was therefore available. Similarly, the proportion of cows calving in a given herd-year 

that were registered with a breed society was also generated.  
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 Irish dairy herds are typically seasonal calving with the majority of cows calving in 

a short number of months in the spring (Berry et al., 2013); the start of the spring calving 

season in a given herd was characterised by a minimum of five cows calving within a 

14-d period (Berry et al., 2013). Similar to Berry et al. (2013), the proportion of calving 

events within the first 42 d of the calving season relative to the number of cows that 

calved that year was calculated per herd-year. 

2.3.4 Data editing and categorisation of herd characteristic variables 

Only herds that had ≥30 calving events in all 10 yrs (5,707 herds) were retained. 

Furthermore, only spring-calving herds, which predominate in Ireland (Berry et al., 

2013); were retained; in 2016, 86 % of calves born to a dairy sire were born during the 

months January to April, inclusive (DAFM, 2016). A spring-calving herd was defined 

as a herd where at least 80% of calving events occurred between January and June, 

inclusive. For the analysis of herd characteristics, a single herd-year BLUE for each of 

the five traits that contained multiple parities (i.e., calving to first service interval, 

calving interval, number of services, milk yield, and survival) was calculated as the 

weighted (by number of records per parity) average across all three (i.e., calving to first 

service interval and number of services) or five (i.e., calving interval, milk yield, and 

survival) parities. Only average herd-year BLUEs for calving interval, milk yield and 

survival were retained if a herd-year BLUE was available for at least 4 of the parities 

each containing a minimum of five records; average BLUEs for calving to first service 

interval and number of services required herd-year BLUEs to be available for at least 2 

parities with a minimum of five records per parity. The mean herd-year BLUE of each 

collapsed trait was subsequently recoded to be relative to the mean of the entire 

population.  

Each of the herd-level characteristics, with the exception of geographical location 

and milk recording, were stratified into five categories; as contemporary group effects 

were not available for all traits, in order to accurately represent the population 

distribution for herd size and the proportion of AI used on farm, the threshold values 

categorising each characteristic varied per BLUE (Supplementary Table S2.1). 

Transition matrices were generated to investigate the dynamics of herd BLUEs between 

adjacent years. Herd-year BLUEs for each trait were stratified separately into five strata 

of equal size based on the annual herd performance for each individual trait and 



Chapter 2: Characterisation of best linear unbiased estimates 

42 
 

subsequently averaged across years; the first strata represented the top performing herd-

year BLUEs for each trait and the fifth strata represented the worst performing herd-year 

BLUEs. For example, the highest milk yielding herd-year BLUEs were represented in 

stratum 1, whereas stratum 5 represented the lowest milk yielding herd-year BLUEs; 

similarly the shortest BLUE for calving interval was represented in stratum 1 and the 

longest BLUE for calving interval was in stratum 5. Transition matrices between 

adjacent years were generated and averaged. 

2.3.5 Statistical analyses 

Pearson coefficient correlations were used to estimate the inter- and intra-

relationships between parity-specific BLUEs for all traits. Correlations among all traits 

at an individual parity level were estimated for each year separately, and subsequently 

averaged across years; similarly, correlations between the single herd-year BLUEs were 

estimated for each year separately and then averaged across years. The association 

between each herd-level characteristic and each of the six averaged BLUEs (i.e., age at 

first calving, calving to first service interval, calving interval, number of services, 

survival, and milk yield) was quantified using a linear mixed multiple regression model 

in SAS 9.4 software (SAS Institute Inc., Cary, NC), where the dependent variable was 

the herd-year average BLUE. The fixed effects in the model were those describing the 

herd characteristics; year was forced into all models. Herd was included as a repeated 

effect with the appropriate covariance structures assumed among repeated records; the 

most appropriate covariance structure was based on the Akaike’s information criterion 

(Bozdogan, 2000). The repeatability for each BLUE was also estimated from the mixed 

model. The transition matrices were used to quantify the probability of a herd remaining 

or changing BLUE category between adjacent years for each of the six traits 

investigated. 

 

2.4 Results 

2.4.1 Correlations 

Calving to first service interval BLUEs between parities one to three were weakly 

correlated with each other (0.31 to 0.39; SE = 0.006; P < 0.001). The correlation between 

number of services BLUEs across the first three parities ranged from 0.46 (between 
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parity one and three) to 0.49 (between parity one and two) (SE = 0.006; P < 0.001). 

Calving interval BLUEs between the first five parities were weakly correlated (0.13 to 

0.26; SE = 0.005 to 0.006; P < 0.001) with each other. Survival BLUEs were weakly 

correlated (0.11 to 0.21; SE = 0.005 to 0.006; P < 0.001) among parities one to five. 

Strong correlations existed between milk yield BLUEs in each of the five parities 

varying from 0.81 (between parity one and five) to 0.90 (between parity two and three) 

(SE = 0.006 to 0.007; P < 0.001). Weak correlations existed between BLUEs of different 

traits, within the same parity, ranging from -0.17 (between CFS and NS, in parity 2; SE 

=0.006; P < 0.001) to 0.34 (between NS and CIV, in parity 1; SE = 0.006; P < 0.001) 

(Table 2.1). The single parity BLUEs that were collapsed into individual mean BLUEs 

were weakly correlated with each other ranging from -0.18 (between CFS and NS; SE 

= 0.006; P < 0.001) to 0.31 (between NS and CIV; SE = 0.008; P < 0.001) (Table 2.2). 

2.4.2 Annual best linear unbiased estimate trends 

Mean annual BLUE for age at first calving spiked in length twice (i.e., in 2008 and 

2012) to approximately 13 d on both occasions and then fell to -6.7 d in 2014 (Figure 

2.1). The mean annual BLUE for calving to first service interval lengthened between the 

years 2007 to 2009 and peaked in the year 2013 (2.9 d); after a sharp fall to -1.1 d in 

2014, the mean annual BLUE for calving to first service interval began to lengthen again 

(Figure 2.1). Mean annual BLUE for number of services reduced between the years 2007 

and 2015 resulting in a difference of 0.13 services (from 0.05 to -0.07 serves); during 

the same period of time, calving interval BLUE shortened by 6.9 d (Figure 2.1). Mean 

annual BLUE for survival reduced from 2007 to 2013 (Figure 2.1), after which it began 

to improve. After a reduction in mean annual BLUE for milk yield from 126 kg in 2007 

to -391 kg in 2009, mean annual BLUE for milk yield increased to 207 kg in 2015 

(Figure 2.1). 
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Table 2.1: Within parity correlations (standard errors in parentheses) between annual herd-year best linear unbiased estimates for calving to first 

service interval (CFS), number of services (NS), calving interval (CIV), survival (SU) and milk, averaged across the years 2007 to 2016; with the 

exception of age at first calving (AFC), which were averaged across the years 2007 to 2014. 
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Table 2.2: Average correlations (standard errors in parentheses) across years (above diagonal) as well as the minimum and maximum correlations for 

any given year (below diagonal) between individual herd-year BLUEs. 
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Figure 2.1: Annual least squares means (one standard error each side represented as 

error bars) of the best linear unbiased estimates for a) survival (SU; ···), calving to first 

service (CFS; ─ · ─), and number of services (NS ;───), and b) calving interval (CIV; 

···), age at first calving (AFC; ─ · ─) and milk yield (Milk ;───). 
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2.4.3 Repeatability and Transition Matrices 

The repeatability of herd-year BLUE for both age at first calving (0.49) and number 

of services (0.35) across years was moderate; the mean BLUEs for calving to first 

service interval, calving interval and survival across years were, however, lowly 

repeatable, ranging from 0.20 to 0.28. The mean BLUE for milk yield across years was 

highly repeatable at 0.74. Based on the transition matrices between consecutive years 

(Table2.3; SE ranged from 0.11 to 2.08), there was generally a greater probability for 

herds to remain within the same stratum from one year to the next. The probability of 

transitioning to an alternative stratum reduced as the distance between strata compared 

increased. For example, herds in the stratum representing the highest yielding mean 

BLUE for milk had a 74% probability of remaining in that stratum the following year 

but only a 0.42% probability of transitioning to the lowest yielding stratum; herds in the 

lowest milk yielding stratum had a 69% probability of remaining in that stratum the 

following year and a 0.43% probability of transitioning to the highest yielding stratum 

the subsequent year (Supplementary Figure S9.1). A sensitivity analysis was conducted 

by increasing the number of strata used to characterise the herd-year BLUEs. However, 

the same phenomenon reoccurred whereby the probability of transitioning into an 

alternative stratum decreased as the distance between the strata increased. 
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Table 2.3: Transition matrices between consecutive years for herd-level best linear 

unbiased estimate strata for each trait (standard errors in parentheses). 

 Transition state 

Initial state 1 2 3 4 5 

Age at first calving 

1 36.97 (0.43) 25.43 (0.49) 18.06 (0.53) 12.51 (0.49) 07.03 (0.34) 

2 23.74 (0.70) 28.87 (0.53) 23.99 (0.37) 16.08 (0.76) 07.32 (0.59) 

3 18.64 (0.29) 22.82 (0.40) 25.58 (0.54) 22.64 (0.34) 10.32 (0.84) 

4 14.15 (0.34) 15.62 (0.50) 21.63 (0.76) 28.77 (0.81) 19.82 (1.09) 

5 07.40 (0.98) 07.53 (0.70) 11.17 (0.60) 19.75 (0.35) 54.15 (2.08) 

Calving to first service interval 

1 36.39 (1.16) 22.85 (0.68) 17.34 (0.68) 13.24 (0.98) 10.19 (0.49) 

2 19.90 (0.61) 24.24 (0.61) 22.29 (0.48) 19.47 (0.27) 14.10 (0.31) 

3 13.24 (0.49) 21.00 (0.63) 21.98 (0.52) 24.22 (0.49) 19.56 (0.49) 

4 11.56 (0.70) 17.12 (0.70) 23.41 (0.78) 25.61 (0.26) 22.30 (0.56) 

5 10.85 (0.57) 14.29 (0.49) 19.61 (0.65) 22.87 (0.45) 32.38 (1.04) 

Number of services 

1 46.68 (1.04) 26.05 (0.80) 13.63 (1.06) 07.95 (0.56) 05.69 (0.41) 

2 21.44 (0.67) 29.45 (0.53) 24.45 (0.63) 16.10 (0.74) 08.56 (0.51) 

3 10.85 (0.48) 22.17 (0.50) 27.03 (0.48) 24.69 (0.27) 15.25 (0.36) 

4 06.73 (0.29) 14.48 (0.64) 23.37 (0.79) 28.99 (0.76) 26.44 (0.68) 

5 03.14 (0.23) 07.54 (0.46) 14.37 (0.63) 26.73 (0.62) 48.22 (0.51) 

Calving interval 

1 26.07 (0.82) 25.16 (0.81) 21.83 (0.73) 17.33 (0.70) 09.62 (0.37) 

2 22.33 (0.87) 25.47 (0.63) 22.10 (0.78) 18.83 (0.65) 11.28 (0.33) 

3 20.60 (0.35) 22.15 (0.92) 22.55 (0.67) 20.02 (0.65) 14.68 (0.37) 

4 16.86 (0.83) 16.97 (0.33) 21.14 (0.51) 23.57 (0.26) 21.47 (0.53) 

5 11.30 (0.71) 11.83 (0.69) 15.81 (0.62) 21.43 (1.04) 39.64 (0.86) 

Survival 

1 37.27 (0.71) 22.72 (0.63) 16.81 (0.45) 13.95 (0.39) 09.26 (0.53) 

2 21.31 (0.57) 23.83 (0.67) 22.00 (0.30) 18.28 (1.02) 14.57 (0.42) 

3 15.49 (0.41) 21.62 (0.46) 22.06 (0.50) 22.18 (0.57) 18.65 (0.42) 

4 12.12 (0.31) 19.25 (0.42) 21.58 (0.53) 24.34 (0.35) 22.72 (0.47) 

5 07.74 (0.46) 13.34 (0.45) 19.13 (0.76) 24.48 (0.47) 35.30 (0.60) 

Milk yield 

1 73.95 (0.47) 19.94 (0.75) 04.62 (0.56) 01.08 (0.13) 00.42 (0.14) 

2 21.15 (0.90) 46.12 (0.81) 24.21 (0.69) 07.36 (0.42) 01.15 (0.11) 

3 04.50 (0.33) 25.35 (0.53) 40.34 (0.51) 25.15 (0.59) 04.66 (0.37) 

4 00.71 (0.14) 08.18 (0.51) 25.14 (0.99) 42.60 (0.83) 23.37 (0.71) 

5 00.43 (0.11) 01.28 (0.19) 06.21 (0.46) 22.71 (0.61) 69.38 (0.86) 
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2.4.1 Herd Level Characteristics 

Least square means for age at first calving BLUE varied from -12.5 d to 46 d 

depending on geographical location while mean BLUE for calving to first service 

interval differed across geographical location by 5.2 d. Least square means for number 

of services BLUEs ranged from -0.06 to 0.13 depending on geographical location. A 

difference of 12.8 d for mean calving interval BLUE, 7.3% for mean BLUE for survival 

and, 2,280 kg for mean BLUE for milk yield existed when comparing the respective 

extreme geographical locations. Milk recording herds calved heifers for the first time on 

average 15 d younger, had a calving to first service interval that was almost 2 d longer 

and a calving interval that was 2.3 d shorter compared to herds that did not milk record; 

however minimal difference in number of services (0.01 serves) and survival (0.4%) 

existed depending on whether or not the herd milk recorded.
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A younger mean BLUE for age at first calving was associated with larger herds and 

herds that expanded at a faster rate. A similar trend was found in herds that used a greater 

proportion of AI and had a greater proportion of calves born on the farm. There was a 

tendency for herds that had a greater proportion of cows calving in the first 42 days of 

the calving season as well as an increased proportion of cows that were registered with 

a breed society to also be associated with a younger mean BLUE for age at first calving 

(Figure 2.2). 

 

Figure 2.2: Mean (one standard error each side represented as error bars) best linear 

unbiased estimate for age at first calving for each category of six herd-level 

characteristics.



Chapter 2: Characterisation of best linear unbiased estimates 

51 
 

A longer mean BLUE for calving to first service interval was associated with larger 

herd size and a faster expansion rate, as well as being associated with a greater 

proportion of animals born on the farm, a greater proportion of cows registered with a 

breed society and a greater proportion of cows that calved in the first 42 d of the calving 

season. A reduction in the proportion of AI used on farm was associated with a longer 

mean BLUE for calving to first service interval (Figure 2.3).  

 

Figure 2.3: Mean (one standard error each side represented as error bars) best linear 

unbiased estimate for calving to first service interval for each category of six herd-level 

characteristics. 
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Very little variability existed in the mean BLUE for number of services across 

different herd sizes, expansion rates and the proportion of animals born onto the farm. 

There was a tendency for mean BLUE for number of services to increase in association 

with increases in the proportion of AI used on farm and the proportion of animals 

registered with a breed society as well as a decrease in the proportion of cows calved 

within the first 42 d of the calving season (Figure 2.4).  

 

Figure 2.4: Mean (one standard error each side represented as error bars) best linear 

unbiased estimate for number of services for each category of six herd-level 

characteristics.  
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Longer mean BLUEs for calving interval were associated with larger herds, herds 

that were not expanding, herds that purchased a greater proportion of dairy cows and 

herds that had a greater proportion of animals registered with a breed society; a reduction 

in the proportion of cows that calved within the first 42 d of the calving season as well 

as the proportion of AI used were both associated with a longer mean BLUE for calving 

interval (Figure 2.5).  

 

Figure 2.5: Mean (one standard error each side represented as error bars) best linear 

unbiased estimate for calving interval for each category of six herd-level characteristics. 
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Inferior mean BLUE for survival was associated with an increase in herd size, a static 

expansion rate and an increase in the number of animals purchased in. An increase in 

the proportion of animals registered with a breed society and a decrease in the proportion 

of AI used were both associated with poorer mean BLUE for survival. The proportion 

of cows that calved within the first 42 d of the calving season had no obvious association 

with mean BLUE for survival (Figure 2.6).  

 

Figure 2.6: Mean (one standard error each side represented as error bars) best linear 

unbiased estimate for survival for each category of six herd-level characteristics. 
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There was a tendency for mean BLUE for milk yield to increase in association with 

both a reduction in herd size and a slower rate of expansion; an increase in mean BLUE 

for milk yield was associated with a greater proportion of cows born on-farm, a greater 

proportion of AI used, as well as a greater proportion of cows that calved within the first 

42 days of the calving season. A large increase in mean BLUE for milk yield was 

associated with an increased proportion of animals registered with a breed society 

(Figure 2.7). 

 

Figure 2.7: Mean (one standard error each side represented as error bars) best linear 

unbiased estimate for milk yield for each category of six herd-level characteristics. 
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2.5 Discussion 

The motivation for the present study was to quantify the inter-herd variability in 

performance in a given year after accounting for differences in genetic merit but also 

elucidate the factors associated with the herd-year phenotypic performance independent 

of genetic merit. The overall goal was to establish the usefulness of BLUEs in herd 

management decision support tools and what factors would need to be considered when 

attempting to explain differences in herd solutions to producers. For example, what was 

quite clear from the present study was that the mean herd performance for a range of 

traits differed substantially across geographical locations which could, of course, be 

attributable to a multitude of factors, not least the climatic conditions pertinent to each 

geographical location. Hence, when benchmarking herds on performance, firstly 

differences in the mean genetic merit of the herd should be accounted for, and then 

consideration should be taken of geographical location as well as the other factors 

reported in the present study to be associated with herd-year BLUE solutions. Moreover, 

the expected impact on performance of a herd transitioning between different states of 

the herd-level factors (e.g., a rapidly expanding herd slowing down to eventually become 

a static herd) can be predicted and relayed to the producer as well as being used to 

explain why a herd’s performance may differ from expectation.  

2.5.1 Mean annual best linear unbiased estimates versus best linear unbiased 

predictors 

Although the annual least square means herd-year BLUE for calving interval tended 

to fluctuate by year, a linear regression line fitted through all 9 years’ BLUEs revealed 

a mean annual reduction of 1 d (SE = 0.30, R2 = 0.63). The linear regression coefficient 

fitted through all years’ BLUPs for calving interval was -0.33 (SE = 0.01, R2 = 0.99), 

whilst the regression coefficient fitted to the raw annual calving interval values was -

1.54 (SE = 0.29, R2 = 0.81). This indicates that the observed additive genetic 

improvement contributed to 21.75% of the improvement in the raw phenotype for 

calving interval, with BLUEs contributing to a further 67.89%. Similarly, the annual 

least square means herd-year BLUE for milk yield also fluctuated by year; after a linear 

regression was fitted through the 10 years’ data for milk yield, it revealed that from the 

sum of the BLUE and BLUP regression coefficients, BLUEs contributed to 69% 

(regression coefficient = 17.69, SE = 17.99, R2 = 0.11) of the improvement in milk yield. 

Although it has previously been suggested, that between the years 1980 and 2004, 
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additive genetic merit was the main contributor (63%) to the deterioration in calving 

interval of Irish dairy cow (Berry et al., 2014), the present study suggested the change 

in genetic merit is only contributing 21.75% to the improvement. Whilst the current 

relative contribution of additive genetic merit to the raw phenotype may be considered 

low in comparison to previously described, breeding programs still offer an opportunity 

for cumulative and permanent gains to be achieved with the performance of the current 

generation being a function of the genetic improvement in previous generations. 

Moreover, it should be noted that the approximate replacement rate on dairy farms is 

20%; therefore only 20% of the herd being replaced annually will benefit from the 

change in genetic merit.  

The repeatability of herd-year BLUEs may be of particular interest for, not only the 

individual producer, but the dairy processors, and the wider dairy sector as a whole, 

owing to the predictability of the herd performance. The high repeatability of herd-year 

BLUE for milk yield implies that the herd performance of future years can be predicted 

with reasonable accuracy despite the likely contributions of external factors such as 

weather conditions, milk price volatility and feed input costs. In the present study, 74% 

of the top 20% yielding dairy herds are predicted to remain in this category in the 

subsequent year (Table 2.3). The benefit of forecasting production would be to enable 

milk processors predict the quantities of milk in the following production year, leading 

to more secure production contracts and manufacturing planning. The fact that the 

fertility traits in the present study (i.e., calving interval, calving to first service interval 

and number of services) were lowly repeatable over years implies that extension service 

providers must continually emphasize the importance of consistently achieving key 

performance indicators as well-performing herds in any year may not necessarily 

perform well in subsequent years.  

2.5.2 Tailored decision support 

Extension services and the associated advice provided to producers on how to 

achieve key performance indicators have traditionally been relatively generic. In 

general, such advice has been to use the best germplasm available and adopt the 

associated best management practices. Anecdotally, in fact, poor breeding choices are 

often blamed for poor phenotypic herd performance, despite the choice of herd 

management practices in place on farm having a critical role in the realisation of the 
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genetic potential of the animals. There is clearly a gap in the market for tailored decision 

support tools to more distinctly differentiate between the contributing factors to the 

observed performance and thus where the resources should be exerted to achieve gains 

in performance.  Bastin et al. (2009) recognised this necessity and proposed that milk 

urea concentrations in dairy cow milk could potentially be used as a tool to provide 

producers with feed management decision support owing to the relationship between 

milk urea and protein metabolism. Similarly Caccamo et al. (2008) proposed that by 

identifying sources of herd-level variation in milk components and somatic cell count, 

management decision support tools could be developed that would quantify how 

different levels of management contribute to the identified sources of variation. In fact, 

the benefit of using BLUEs to disentangle the contribution of both genetic merit and 

management to the observed performance has the potential to be applicable to a whole 

range of different performance characteristics and species; Englishby et al. (2017), for 

example, proposed using BLUEs from random regression models on carcass weight as 

a tool to quantify herd-level effects on carcass growth rates and other beef carcass trait 

profiles.  

The usefulness and applicability of BLUEs in the context of the data explored in the 

present study is illustrated, by means of an example, in Figure 2.8 for calving interval, 

just for the 2015 calendar year. Despite the herd-year raw mean phenotypic calving 

interval for two herds only differing by 0.42 d (i.e., herds 1 and 6 in Figure 2.8), clear 

differences in the BLUEs for these herds existed after adjusting for the fixed and random 

effects in the genetic evaluation model; the fixed effects in the national genetic 

evaluations are age at calving, heterosis and recombination loss. Based on the herds in 

Figure 2.8, the BLUE calving interval for herd 1 lengthened, whilst the BLUE calving 

interval for herd 6 shortened; the mean calving interval EBV of the cows in herds 1 and 

6 in the year 2015, was -5.57 d (very good) and 0.00 d (average), respectively. Therefore, 

the producers in herd 6 should focus more on breeding for superior fertility whilst herd 

1 may consider focusing on improving management to reap the benefit of its superior 

genetic merit; in this case, the farm advisor could attribute the suboptimal performance 

to some of the factors identified in the present study, for instance, expansion rate as well 

as other herd-level factors, such as level of heat detection monitoring. Using another 

example of two herds from Figure 8, herd 5 had the longest raw mean phenotypic calving 

interval (13.23 d) whilst herd 3 had the shortest raw mean phenotypic calving interval (-
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4.42 d); the respective BLUEs for these herds ranked opposite (+0.80 d and +7.39 d, 

respectively) after adjusting for the genetic merit of the herds (and other fixed effects in 

the genetic evaluation model). 

When analysing a sample set of herds in the year 2015 for milk yield, a similar 

phenomenon also existed when comparing raw herd means for milk yield and the 

respective BLUEs (Figure 2.9). Unlike calving interval, the difference between the 

individual raw phenotypic performance and the corresponding herd BLUE was 

predominantly explained by the herds’ EBV; this suggests that, depending on the trait, 

and therefore its heritability, the contribution of differences in EBVs to the disparity 

between raw and BLUEs differs. If the trait was highly heritable (e.g., milk yield), the 

herd’s mean EBV explained the majority of the difference between the raw and BLUE; 

however, if the trait was lowly heritable (e.g., fertility (Berry et al., 2013), the difference 

between the raw and BLUE is only partially explained by herd mean EBV. 

Two herd-level factors that were noticeably associated with herd BLUEs for all traits 

investigated in the present study were expansion rate and herd size, both of which have 

also been previously reported to be associated with various performance traits in spring-

calving dairy cow herds (Jago and Berry, 2011). Jago and Berry (2011) stated that faster 

expanding herds had a shorter raw calving interval than static herds, and these findings 

were similar to the present study which stated that slow, average and fast rates of 

expansion were associated with shorter caving intervals in comparison to static herds. 

However, in direct contrast to Jago and Berry (2011), smaller herd sizes in the present 

study had, on average, shorter calving intervals.  
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Figure 2.8: The cumulative change in raw phenotypic performance of calving interval for six individual herds (1 (─ ─), 2 (─ ··), 3 (···), 4 (---), 5 

(──), 6 (─ ·)) after adjusting for each herd-level characteristic separately; the initial change from Raw Phenotype to BLUE adjusts for fixed effects, 

followed by if the herd milk recorded  or not (M), the herds geographical location on county level (M,C), the size of herd (M,C,H), the expansion rate 

of the herd (M,C,H, E), the proportion of animals home-born (M,C,H, E, HB), the proportion of animals registered with breed society (M,C,H, E, HB, 

Ped), the proportion of AI use on farm (M,C,H, E, HB, Ped, AI) and finally, the proportion of cows that calved within the first 42 days of the calving 

season (M,C,H, E, HB, Ped, AI, 42).
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Figure 2.9: Change in raw phenotypic performance of milk yield for six individual herds (1 (----), 2 (─ ··), 3 (···),4 (──), 5 (─ ─), 6 (─ ·)) after 

adjusting for each herd-level characteristic separately; the initial change from Raw Phenotype to BLUE adjusts for fixed effects, followed by if the 

herd milk recorded  or not (M), the herds geographical location on county level (M,C), the size of herd (M,C,H), the expansion rate of the herd (M,C,H, 

E), the proportion of animals home-born (M,C,H, E, HB), the proportion of animals registered with breed society (M,C,H, E, HB, Ped), the proportion 

of AI use on farm (M,C,H, E, HB, Ped, AI) and finally, the proportion of cows that calved within the first 42 days of the calving season (M,C,H, E, 

HB, Ped, AI,42). 
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The impact of geographical location on the mean BLUEs for milk yield ranged from 

-365 kg to 1,915 kg; the highest yielding county surrounded the country’s capital and 

the majority of dairy producers in this location produce liquid milk achieved through the 

feeding of more concentrates; the lowest yielding region was predominantly a 

mountainous region. The impact of accounting for geographical location when 

explaining differences in BLUEs was clearly evident when comparing the example herds 

in Figure 9 for milk yield. Changing farm location is not, of course, possible, but when 

producers are benchmarking key performance indicators, it is important that they are 

being compared to contemporaries, which in that case would imply altering the herd 

BLUEs based on the model solutions for geographical location estimated in the present 

study. The remaining herd-level characteristics had minimal impact on the BLUE for 

milk yield.  

 

2.6 Conclusion 

Increased efficiency of production and optimising the use of available resources 

should be based on pertinent advice tailored to each farm with a strategy on where to 

focus resources to achieve the greatest gains. At a macro-level, animal genetic merit and 

herd management are the two factors dictating the observed performance and, at the very 

least, a differentiation should be made between these as to which is the most likely 

limiting factor. At a management level, some factors (e.g., geographical location) are 

unavoidable and benchmarking of performance should take this into consideration; 

similarly, some factors may be transient such as herd expansion rate. BLUEs, and the 

appropriate analysis of such, can provide useful information to tailor decision support 

tools for individual herd managers. As BLUEs are already routinely generated from 

(national) genetic evaluations, no extra resources are required other than to develop the 

decision support infrastructure. What is not yet known however, is whether the extent 

of the association between the (estimated) genetic merit for a trait and its respective 

phenotypic performance differs depending on the herd BLUE; such information would 

further the precision of breeding specific support tools (i.e. matching the recommended 

germplasam to herd-specific conditions). 
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3.1 Abstract 

  Sustainable dairy cow performance relies on the coevolution in the development of 

breeding and management strategies. Tailoring breeding programs to herd performance 

metrics facilitates improved responses to breeding decisions. While herd-level raw 

metrics on performance are useful, implicitly included within such statistics is the mean 

herd genetic merit. The objective of the present study was to quantify the expected 

response from selection decisions on additive and non-additive merit by herd 

performance metrics independent of herd mean genetic merit. Performance traits 

considered in the present study were age at first calving, milk yield, calving to first 

service, number of services, calving interval and survival. Herd-level best linear 

unbiased estimates (BLUEs) for each performance trait were available on a maximum 

of 1,059 herds, stratified as best, average and worst for each performance trait separately. 

The analyses performed included 1) the estimation of (co)variance for each trait in the 

three BLUE environments and 2) the regression of cow-level phenotypic performance 

on either the respective estimated breeding value (EBV) or the heterosis coefficient of 

the cow. A fundamental assumption of genetic evaluations is that one unit change in 

EBV equates to a one unit change in the respective phenotype; results from the present 

study, however, suggest that the realisation of the change in phenotypic performance is 

largely dependent on the herd BLUE for that trait. Herds achieving more yield, on 

average, than expected from their mean genetic merit, had a 20% greater response to 

changes in EBV as well as 43% greater genetic standard deviation relative to herds 

within the worst BLUE for milk yield. Conversely, phenotypic performance in fertility 

traits (with the exception of calving to first service) tended to have a greater response to 

selection as well as a greater additive genetic standard deviation within the respective 

worst herd BLUE environments; this is suggested to be due to animals performing under 

more challenging environments leading to larger achievable gains. The attempts to 

exploit non-additive genetic effects such as heterosis are often the basis of promoting 

cross-breeding, yet the results from the present study suggest that improvements in 

phenotypic performance is largely dependent on the environment. The largest gains due 

to heterotic effects tended to be within the most stressful (i.e., worst) BLUE environment 

for all traits, thus suggesting the heterosis effects can be beneficial in mitigating against 

poorer environments.  
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3.2 Introduction 

Genetic effects (i.e., additive and non-additive) and environmental effects (i.e., 

permanent and temporary) as well as their interaction and, where relevant, their 

covariance, determine an animal’s phenotypic performance (Visscher et al., 2008). 

Dairy cow breeding programs have focused almost exclusively on exploiting the 

additive genetic portion of the phenotype; crossbreeding strategies attempt to also 

exploit non-additive genetic effects. Dairy cow genetic evaluations calculate the 

estimated breeding values (EBVs) of traits independent of measurable management 

effects, through a process called best linear unbiased prediction (BLUP). It is the EBVs, 

generally within the framework of an overall breeding objective, that are used to rank 

animals as candidate parents of the next generation. Such ranking on EBV is undertaken 

irrespective of the environment/management system their progeny are likely to be 

exposed to. Moreover, the expectation is that a one unit difference in EBV should equate 

to a one-unit difference in performance (in the average environment). The existence of 

genotype-by-environment interactions contribute to a deviation from the expectation and 

such deviations have been documented in dairy cattle (Craig et al., 2018), beef cattle 

(Ferreira et al., 2015) and sheep (Pollott and Greeff, 2004). Previous studies, however, 

stratified herds based on performance which implicitly encapsulates the total genetic 

merit of the contributing animals. In the process of genetic evaluations, both fixed effects 

solutions (best linear unbiased estimates; BLUE) and random effects solutions (BLUP) 

are generated, each being independent of the other. Therefore, arguably, a more logical 

strategy to quantify the extent of genotype-by-environment interactions (G × E) would 

be to compare the expected response to selection across herds divergent on BLUE. To 

our knowledge, there is a void in the scientific literature on such an approach. 

Furthermore, interest in dairying is intensifying in crossbreeding strategies as a means 

to introduce added benefit from the resulting heterosis; while the presence of heterosis-

by-environment interactions have been cited in dairy cows populations (Bryant et al., 

2007; Penasa et al., 2010; Kargo et al., 2012), there is a paucity of information on such 

interactions where the environments investigated are based on herd-level BLUEs. The 

objective of the present study was firstly to investigate the existence of G × E 

interactions across fertility, production and survival traits by stratifying herds based on 

BLUE performance rather than phenotypic performances thus excluding genetic effects. 

Secondly, the results from the present study aim to estimate the gains achievable when 



Chapter 3: The effect of BLUEs on the response to genetic selection 

66 
 

improving animal-level breeding values within three environments stratified on BLUEs. 

Finally, the third objective of the present study was to identify the type of environment 

(e.g. superior versus poor) stratified on BLUEs that expressed non-additive genetic 

effects such as heterosis and estimate gains attainable within each environment from 

heterotic effects.  

 

3.3 Materials and Methods 

Data used in the present study were obtained from the Irish Cattle Breeding 

Federation national database, Bandon, Co. Cork, Ireland (http://www.icbf.com). 

3.3.1 Quantifying Best Linear Unbiased Estimates 

The Irish national fertility genetic evaluation for dairy cows is a 23 × 23 multi-trait 

and multi-breed evaluation operated using the MiX99 software suite (MiX99 

Development Team, 2015) in which each parity is treated as a separate trait. Traits 

evaluated in the multi-trait evaluation include age at first calving (AFC; i.e. the number 

of days from birth to first calving), milk yield (kg; based on a 305-d lactation yield) for 

parity 1 to 5 inclusive, calving to first service interval parity 1 to 3 inclusive (CFS; i.e. 

the number of days from calving to the cow receiving her first service), number of 

services (NS) parity 1 to 3 inclusive and calving interval from parity 1 to 5 inclusive 

(CIV; i.e. the number of days between subsequent calving events). Survival is evaluated 

as a binary trait based on parity 1 to 5 (inclusive) and is recorded as 1 for lactation x-1 

where a recorded calving date existed for lactation x, otherwise as 0 (Berry et al., 2013). 

Fixed effects included in all models are age at calving (unless age at first calving was 

the dependent variable), heterosis and recombination loss coefficients; heterosis 

coefficients were split into separate Holstein × Friesian (HO × FR), Holstein × Jersey 

(HO × JE), Holstein × Montbelliarde (HO × MO), Holstein × Meuse Rhine Yssel (HO 

× MY), and Shorthorn × Holstein-Friesian (SR × HF) coefficients. Contemporary group 

of herd-year-season of calving or birth (AFC) is also included as a fixed effect. Within 

the genetic evaluation, contemporary group (HYS) effects are defined using 

methodology outlined in Berry et al. (2013) formed based on algorithms proposed by 

Crump et al. (1997) and Schmitz et al. (1991); animals within the same herd are grouped 

based on their calving dates or birth dates (in the case of AFC). The fixed effects and 
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random effects solutions of 3,445,158 dairy cows were obtained from the August 2017 

national genetic evaluation for use in the present study.  

3.3.2 Data editing for herd-level best linear unbiased estimations 

Contemporary group BLUEs for the years 2012 to 2014 (inclusive) and individual 

animal EBVs were extracted from the national genetic evaluation, for actively milk 

recording, spring-calving herds. Spring-calving herds, predominate in Ireland (Berry et 

al., 2013), were defined as herds calving at least 80% of their cows between January and 

June (inclusive). Data from 4,129 herds were available for analysis. Parity-level BLUE 

solutions for each trait were initially base adjusted to a common base population; the 

base population comprised of 152 milk recording herds that had a minimum of 3 records 

for AFC as well as a minimum of 4 records available for parity 1 to 3 inclusive for NS, 

CFS and parity 1 to 5 for CIV, survival and milk yield between the years 2012 to 2014 

inclusive. A single collapsed herd-year BLUE for each trait was calculated as the 

average of each HYS estimate in the herd, weighted by the number of animal records 

within each HYS (Chapter 2). Subsequently, the single collapsed herd-year BLUE was 

calculated to be relative to the mean of the sample population.  

Herds were removed from the study if they did not meet the following criteria during 

the study period: 1) herds were required to have a BLUE available for all 6 investigated 

traits; 2,185 herds remained, 2) a minimum of 5 records within each contemporary group 

were required for at least two of three parities for CFS or NS, and four of five parities 

for CIV, SU and milk yield (Chapter 2); 1,911 herds remained, 3) herds were required 

to have phenotypic data available on a minimum of 45 animals and 30 calving events 

per year; where AFC was the trait analysed, herds were required to have at least 10 

heifers calving for the first time each year. The final dataset comprised 1,764 herds with 

124,352 animals available for AFC analysis and 216,270 animals available for the 

analysis of the other performance traits.  

3.3.3 Stratifying Herd BLUEs for validation population 

A single weighted herd BLUE was calculated by averaging the respective herd-year 

BLUEs across the three years of data. Herds were ranked on each trait separately. After 

stratifying the herd-BLUEs into five strata, only the first, third and fifth stratum which 

represented the top, average and bottom performing twenty percentiles, respectively 

were retained. As herd BLUEs were stratified based on each trait individually, herds 
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could rank differently for each trait. The final data set analysed for AFC, CFS, NS, CIV, 

survival, and milk yield contained 1,059 herds (71,721 animals), 1,058 herds (125,736 

animals), 1,058 herds (130,607 animals), 1,059 herds (125,035 animals), 1,058 herds 

(125,934 animals) and 1,058 herds (131,695 animals), respectively. The phenotypic 

records of animals within the retained herds were masked and the genetic evaluation re-

run with the remaining 3,234,629 animals; this was done to generate EBVs for animals 

within the retained herds without their own performance data contributing to their EBVs. 

The EBVs generated from the subsequent genetic evaluation were then base adjusted to 

a base population of 414 Holstein-Friesian AI sires that were born between 2000 and 

2005, inclusive. 

3.3.4 Statistical analyses 

Two separate approaches were used to quantify the extent of genotype-by-

environment interactions. Firstly (co)variance component analyses were undertaken 

using a series of within-trait bivariate sire linear mixed models in ASReml (Gilmour et 

al., 2009) where the phenotypic performance in each herd BLUE stratum was considered 

a different trait. The linear mixed model applied to each trait was 

𝑌𝑖𝑗𝑘𝑙𝑚𝑛𝑥 = 𝐻𝑌𝑆𝑗 + 𝑃𝑎𝑟𝑖𝑡𝑦𝑘 + 𝐻𝑒𝑡𝑒𝑟𝑜𝑠𝑖𝑠𝑙 + 𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑚 +∑𝑎𝑔𝑒𝑛
2

𝑛=1

+ 𝑠𝑥

+ 𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜 

in which 𝑌𝑖𝑗𝑘𝑙𝑚𝑛𝑥 = the observed phenotypic performance for AFC, CFS, NS, CIV, 

survival or milk yield of animal i in a given BLUE stratum; 𝐻𝑌𝑆𝑗 = the fixed effect of 

contemporary group; 𝑃𝑎𝑟𝑖𝑡𝑦𝑘 = the fixed effect of the kth parity (i.e., 1, 2, 3, 4, 5) of the 

animal i (not included in AFC); 𝑎𝑔𝑒𝑛 = the covariate of age (linear and quadratic) of 

animal i (not included in AFC); 𝐻𝑒𝑡𝑒𝑟𝑜𝑠𝑖𝑠𝑙 = the covariate representing the total 

heterosis coefficient l of animal i; 𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑚 = the covariate representing the 

recombination coefficient m of animal i; 𝑠𝑥 = the random effect of the sire additive 

genetic component of animal i where s ~ 𝑁(0, 𝐀σ s
2 ) with σ  s

2  representing the additive 

genetic variance of the sire and A the additive genetic relationship matrix among sires; 

𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑥 = random residual effect, where e ~ 𝑁(0, 𝐈σe
2) with σ𝑒

2
 representing the residual 

variance with a separate residual variance fitted for each BLUE stratum; while a separate 

residual variance was estimated in each environment, no residual covariance was 
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assumed between records in the different environments. Therefore, the detailed 

(co)variance structure for a two-trait bivariate analysis between trait x and y was: 

[
𝒔𝒙
𝒔𝒚
] = 𝑁 ([

𝟎
𝟎
] , [

𝑨𝒙𝒙𝜎𝑠𝑥
2 𝑨𝒙𝒚𝜎𝑠𝑥𝑦

𝑨𝒚𝒙𝜎𝑠𝑦𝑥 𝑨𝒚𝒚𝜎𝑠𝑦
2 ]) 

[
𝒆𝒙
𝒆𝒚
] = 𝑁 ([

𝟎
𝟎
] , [
𝑰𝝈𝒆𝒙

𝟐 𝟎

𝟎 𝑰𝝈𝒆𝒚
𝟐 ]) 

where A is the numerator relationship matrix; 𝜎𝑠𝑥
2 , 𝜎𝑠𝑦

2  𝜎𝑠𝑥𝑦 and 𝜎𝑠𝑦𝑥 represent the 

sire genetic (co)variance parameters of the sires in BLUE stratum x and y, respectively 

and 𝜎𝑒𝑥
2  and 𝜎𝑒𝑦

2  are the residual variance in BLUE stratum x and y, respectively. The 

estimated genetic variance in each stratum was obtained as four times the estimated sire 

variance. Whether the variance components in each herd BLUE stratum differed from 

each other was determined using a likelihood ratio test of nested models comparing an 

unconstrained model to a model where the genetic variance in each stratum of the 

bivariate analysis were constrained to be equal. Heritability estimates were calculated 

using ASReml (Gilmour et al., 2009) by dividing the genetic variance (i.e., 4 times the 

sire genetic variance) by the phenotypic variance (i.e., the sum of the residual and 

genetic variance). In the second analysis strategy, multivariate linear regression models 

were used to regress each phenotypic performance trait on its respective EBV in each of 

the three BLUE strata for all performance traits using PROC MIXED in SAS 9.4 

software (SAS Institute Inc., Cary, NC). The linear regression model fitted for all traits 

was: 

𝑌𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 = 𝐻𝑌𝑆𝑗 + 𝑃𝑎𝑟𝑖𝑡𝑦𝑘 + 𝐵𝐿𝑈𝐸𝑙  | ∑ 𝐻𝑒𝑡𝑒𝑟𝑜𝑠𝑖𝑠𝑚

6

𝑚=1

 +∑𝑎𝑔𝑒𝑛
2

𝑛=1

+ 𝐵𝐿𝑈𝐸𝑙| 𝐸𝐵𝑉𝑜 + 𝐵𝐿𝑈𝐸𝑙| 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑝 + 𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 

where 𝑌𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝 = the observed phenotypic performance for AFC, CFS, NS, CIV, 

survival or milk yield of animal i in BLUE stratum l; 𝐻𝑌𝑆𝑗 = the fixed contemporary 

group effect; 𝑃𝑎𝑟𝑖𝑡𝑦𝑘 = the fixed effect of the kth parity (i.e., 1, 2, 3, 4, 5) of animal i 

(not included when the dependent variable was AFC); 𝐵𝐿𝑈𝐸𝑙 = the fixed effects of lth 

BLUE stratum (n = 3);  𝐻𝑒𝑡𝑒𝑟𝑜𝑠𝑖𝑠𝑚 = the covariate representing the heterosis 

coefficient m of animal i for the breed crosses HO × FR, HO × JE, HO × MO, HO × 

MY, SR × HF and “other”; 𝑎𝑔𝑒𝑛 = the covariate of age (linear and quadratic) of animal 
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i (not included when the dependent variable was AFC); 𝐸𝐵𝑉𝑜 = the estimated breeding 

value o for animal i; 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑝 = the covariate representing the total 

recombination coefficient value p of animal i; 𝑒𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝  = the residual error effect. 

 

3.4 Results 

Mean phenotypic performance for all traits improved as the respective herd mean 

BLUE stratum improved (Table 3.1). Similarly, the mean EBV for 305-d milk yield 

improved as herd stratum for mean milk BLUE improved, differing by 163 kg between 

the best and worst strata. Herds with the shortest EBV for AFC and CIV were within the 

respective average stratum, the longest (i.e., worst) EBV for AFC was within the best 

stratum whereas the longest (i.e., worst) EBV for CIV was within the worst stratum 

(Table 3.1). The mean EBV for CFS was longest (i.e., worst) in the best stratum for CFS, 

whilst no differences existed between the average and worst strata for CFS (P = 0.535). 

The mean EBV for NS differed (P < 0.05) between the three BLUE strata for NS whilst 

the EBV for survival only differed (P < 0.001) between the best and worst herd BLUE 

strata for survival (Table 3.1). 

3.4.1 Genotype-by-environment interactions 

The largest genetic standard deviation for AFC was within the worst stratum for 

AFC, being 2.5 times greater (P = 0.001) than the genetic standard deviation of AFC in 

the average stratum. As the BLUE for milk yield improved, the genetic standard 

deviation of milk yield increased by a factor of 1.43 (P < 0.001) between the worst and 

best strata for milk yield (Table 3.2). The genetic standard deviation for NS was 3.25 

times larger (P < 0.001) in the worst NS BLUE stratum than the best stratum for NS 

BLUEs. No differences existed in the genetic standard deviation of survival between the 

three BLUE strata for survival (Table 3.2). With the exception of AFC, the genetic 

correlations between strata for the remaining traits were all ≥0.827, thus indicating that 

re-ranking effects are absent across the different BLUE strata (Table 3.2). Genetic 

correlations for AFC ranged from -0.504 (between the best and worst stratum) to 0.514 

(between the average and worst stratum) (Table 3.2). There was a tendency for the 

largest residual standard deviation to be within the worst BLUE environment and 

smallest residual variance to be within the best environment for all traits with the 
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exception of milk yield and CFS (Table 3.3). The heritability of milk yield increased as 

the herd environment BLUE improved ranging from 33% to 50% (Table 3.3). With the 

exception of CIV, the heritability estimates for the remaining fertility traits tended to 

increase as the respective environment worsened, ranging from 0.01 to 0.02 (Table 3.3).  

 

Table 3.1: Mean (standard deviation in parenthesis) phenotypic performance, herd best 

linear unbiased estimate (BLUE) and estimated breeding value (EBV) of animals within 

herds stratified as best, average and worst for the BLUE of the respective performance 

trait. 
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Table 3.2: Additive genetic standard deviation for each performance trait within herds stratified as best (top 20%), average (middle 20%) and worst 

(bottom 20%) based on the best linear unbiased estimates for the respective performance trait as well as the genetic correlations (standard error in 

parenthesis) between the strata. 

  Genetic standard deviation  Correlation 

BLUE Trait Best Average Worst  Best – Average Best – Worst Average – Worst 

Age at First Calving 14.05ab 12.64a 31.67b  0.275 (0.163) -0.504 (0.132) 0.514 (0.167) 

Milk yield 607.65a 519.96b 423.84c  0.953 (0.014) 0.881 (0.024) 0.936 (0.016) 

Calving to First Service 2.39 2.23 2.83  0.869 (0.465) 0.983 (0.142) 0.827 (0.161) 

Number of Services 0.04a 0.09a 0.13b  0.912 (0.226) 0.960 (0.216) 0.898 (0.137) 

Calving Interval 3.07 5.08 6.81  0.932 (0.276) 0.961 (0.206) 0.905 (0.291) 

Survival 0.03 0.04 0.05  0.982 (0.154) 0.882 (0.167) 0.887 (0.151) 

Using the chi-square test with 1 degree of freedom to compare likelihood ratio test, different superscripts indicate significance at P < 0.05. 
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Table 3.3: Residual standard deviation for each performance trait within herds stratified as best (top 20%), average (middle 20%) and worst (bottom 

20%) based on the best linear unbiased estimates for the respective performance trait as well as the heritability estimates of each trait within the best, 

average and worst strata. 

  Residual standard deviation  Heritability 

BLUE Trait Best Average Worst  Best Average Worst 

Age at first calving 31.59a 52.63b 111.71c  0.189 (0.028) 0.057 (0.014) 0.079 (0.018) 

Milk yield 802.85a 729.98b 710.48c  0.501 (0.029) 0.450 (0.027) 0.327 (0.021) 

Calving to first service 18.18a 17.28b 19.44c  0.017 (0.006) 0.017 (0.005) 0.021 (0.006) 

Number of services 0.36a 0.68b 0.95c  0.010 (0.005) 0.016 (0.005) 0.018 (0.005) 

Calving interval 32.59a 46.66b 80.49c  0.009 (0.005) 0.012 (0.004) 0.007 (0.003) 

Survival 0.26a 0.33b 0.39c  0.011 (0.004) 0.013 (0.004) 0.018 (0.004) 

Using the chi-square test with 1 degree of freedom to compare likelihood ratio test, different superscripts indicate significance at P < 0.05. 
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3.4.2 Estimated Breeding Value Regression Analyses 

The regression of phenotypic survival on the EBV for survival did not differ by herd 

BLUE strata for either milk yield, CIV or CFS (Table 3.4). Similarly, the relationship 

between CFS phenotype and the EBV for CFS did not differ by BLUE strata for either 

CFS or survival (Table 3.4). The regression coefficient of phenotypic AFC on the EBV 

for AFC within the worst BLUE stratum for AFC was 4 times that in the best BLUE 

stratum for AFC. 

The response in phenotypic milk yield per kg increase in milk EBV in the best milk 

BLUE stratum was 20% greater than observed in the worst milk BLUE stratum (P < 

0.001). The regression of phenotypic CIV on the EBV for CIV in the best milk yield 

BLUE stratum was 1.63 times (P < 0.001) that of the regression coefficient in the worst 

milk BLUE stratum; the corresponding factor for NS was 2.52 (P < 0.001). The 

improvement in phenotypic CFS regressed on the EBV for CFS within the worst milk 

yield BLUE stratum was 1.67 (P < 0.01) times than in the average stratum for milk yield 

(Table 3.4). 

As the BLUE for CIV worsened, the regression coefficient of phenotypic CIV on the 

EBV for CIV became greater, differing by a factor of 1.62 (between the best and average 

strata; P < 0.05) to 2.63 (between the average and worst strata; P < 0.001) compared to 

the more superior BLUE (Table 3.4). Phenotypic milk yield, CFS and NS regressed on 

the respective EBV ranged between 1.27 (milk yield; P < 0.001) to 1.92 (NS; P < 0.001) 

times greater within the worst stratum BLUE for CIV than the best BLUE stratum for 

CIV (Table 3.4). 

Although no differences existed between the regression coefficients of phenotypic 

CFS on the EBV for CFS within the three BLUE strata for CFS, the regression 

coefficient of milk yield on the EBV for milk yield was 1.10 times greater (P < 0.001) 

within the best BLUE stratum for CFS compared to the average BLUE stratum for CFS 

(Table 3.4). Within the best stratum for CFS, the regression coefficients of CIV and NS 

on the respective EBVs were 1.28 (CIV; P = 0.002) and 1.78 (NS; P = 0.001) times 

greater than that of the respective regression coefficients within the worst BLUE stratum 

for CFS (Table 3.4). 
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Phenotypic NS regressed on the EBV for NS was 3.52 times greater (P < 0.001) 

within the worst BLUE stratum for NS relative to the best stratum for NS, whereas the 

regression coefficient of phenotypic milk yield and CIV regressed on the respective 

EBVs was 1.21 (P < 0.001) and 2.66 (P < 0.001) times greater within the worst BLUE 

stratum for NS than the average stratum for NS (Table 3.4). Within the best stratum for 

NS, the regression coefficient of CFS on the EBV for CFS was 1.91 (P < 0.001) times 

greater than in the average stratum for NS. Conversely, within the average stratum for 

NS, the regression coefficient of survival on the EBV for survival was 1.29 (P = 0.01) 

times greater than that best BLUE stratum for NS (Table 3.4). 

The response in phenotypic survival per unit increase in the EBV for survival was 

1.30 times (P = 0.006) greater within the worst stratum for survival relative to the best 

BLUE stratum. Within the average stratum for survival, the regression coefficients of 

phenotypic milk yield and NS were 1.13 (P < 0.001) and 1.62 (P = 0.004) times greater, 

respectively, than in the best stratum for survival. Although the regression coefficient of 

CIV regressed on the EBV for CIV was 1.57 times greater (P < 0.001) within the average 

stratum for survival in comparison to the worst stratum, no differences existed between 

the best and average stratum for survival (Table 3.4). 
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Table 3.4: Regression coefficients (standard errors within parenthesis) of phenotypic 

values of each trait regressed on estimated breeding values for each respective trait 

across the best (top 20 %), average (middle 20 %) and worst (bottom 20 %) strata of best 

linear unbiased estimates. 

*P < 0.05, **P < 0.01, ***P < 0.001 

Different superscripts within a row where P < 0.05 

 

 

 

 

 

  Herd Rank  

BLUEs trait Trait phenotype Best Average Worst P- value 

      

Age at first 

calving (d) 
Age at first calving (d) 0.22 (0.12)a 0.46 (0.11)a 0.88 (0.11)b *** 

      

Milk yield  (kg) Milk production (kg) 1.16 (0.01)a 1.01 (0.01)b 0.97 (0.01)c *** 

Calving interval (d) 1.24 (0.06)a 0.82 (0.06)b 0.76 (0.06)b *** 

Calving to first service (d) 0.45 (0.06)ab 0.36 (0.06)a 0.61 (0.06)b * 

Number of services (unit) 0.83 (0.06)a 0.64 (0.07)b 0.33 (0.06)c *** 

Survival 1.15 (0.07) 0.99 (0.07) 1.10 (0.07)  

      

Calving to first 

service (d) 

Calving to first service (d) 0.64 (0.07) 0.53 (0.06) 0.59 (0.06)  

Milk production (kg) 1.28 (0.02)a 1.16 (0.02)b 1.24 (0.02)a *** 

Calving interval (d) 1.20 (0.06)a 0.78 (0.06)b 0.93 (0.06)b *** 

Number of services (u) 0.73 (0.07)a 0.47 (0.06)b 0.41 (0.06)b ** 

Survival 1.05 (0.07) 1.10 (0.07) 1.17 (0.07)  

      

Number of 

services (u) 

Number of services (u) 0.27 (0.08)a 0.49 (0.06)b 0.95 (0.06)c *** 

Milk production (kg) 1.15 (0.02)a 1.11 (0.02)a 1.34 (0.01)b *** 

Calving interval (d) 0.79 (0.06)a 0.48 (0.06)b 1.28 (0.06)c *** 

Calving to first service (d) 0.69 (0.08)a 0.36 (0.06)b 0.59 (0.05)a ** 

Survival 0.89 (0.07)a 1.14 (0.07)b 1.11 (0.06)b * 

      

Calving interval 

(d) 

Calving interval (d) 0.35 (0.07)a 0.57 (0.06)b 1.50 (0.06)c *** 

Milk production (kg) 1.19 (0.02)a 1.24 (0.02)a 1.51 (0.02)b *** 

Calving to first service (d) 0.38 (0.07)a 0.35 (0.06)a 0.65 (0.06)b ** 

Number of services (u) 0.42 (0.08)a 0.60 (0.06)a 0.81 (0.08)b ** 

Survival 1.07 (0.08) 1.07 (0.07) 0.92 (0.07)  

      

Survival Survival 0.94 (0.08)a 1.07 (0.06)ab 1.22 (0.07)b * 

Milk production (kg) 1.20 (0.02)a 1.36 (0.01)b 1.24 (0.01)a ** 

Calving interval (d) 1.02 (0.07)a 1.12 (0.05)a 0.71 (0.06)b *** 

Calving to first service (d) 0.57 (0.08) 0.42 (0.06) 0.52 (0.06)  

Number of services (u) 0.46 (0.08)a 0.74 (0.06)b 0.59 (0.06)ab * 
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3.4.3 Heterosis Coefficient Regression Analysis within BLUE stratum 

The regression of phenotypic AFC on the HO × JE heterosis coefficient was 3.65 

times greater (P = 0.04) within the worst BLUE stratum for AFC than within the best 

BLUE stratum for AFC (Table 3.5). Phenotypic milk yield regressed on the HO × JE 

heterosis coefficient was greatest in the average milk BLUE stratum, being 4.37 times 

greater than in the best milk BLUE stratum (P < 0.001) and 1.40 times greater (P < 0.05) 

than in the worst milk BLUE stratum. The regression coefficient of phenotypic milk 

yield on the HO × FR heterosis coefficient was 1.86 times greater (P < 0.001) in the 

worst milk BLUE stratum relative to the best stratum (Table 3.5). The regression of 

phenotypic CFS, NS and CIV on the HO × JE heterosis coefficient was 1.86 (CIV) to 

2.24 (NS) times greater within the respective worst BLUE stratum than the best BLUE 

stratum. Within the worst BLUE stratum for CIV, the regression coefficient of 

phenotypic CIV on the HO × FR heterosis coefficient was almost 12 times (P < 0.001) 

that in the best BLUE stratum for CIV. Phenotypic survival regressed on the HO × FR 

heterosis coefficient was 3.33 times greater (P < 0.001) within the worst stratum for 

survival in comparison to the best BLUE stratum (Table 3.5). The regression coefficients 

of phenotypic performance on each of the heterosis coefficients stemming from the 

breed combinations HO × MO, HO × MY and SR × HF are in Supplementary Table 

S9.2; while a similar trend existed for all traits (with the exception of CIV), the 

associated standard errors were large owing to the small representation of these breed 

crosses in the dataset. 
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Table 3.5: Linear regression coefficients of phenotypic performance for each trait on 

Holstein × Friesian heterosis coefficient (HO × FR), Holstein × Jersey heterosis 

coefficient (HO × JE) and recombination coefficient within each herd best linear 

unbiased estimate stratum including the significance of the interaction. 

 Herd rank  

BLUEs trait Best Average Worst P-value 

Age at first calving (d)     

HO × FR -3.08 (2.88) -2.70 (2.65) 4.54 (2.74)  

HO × JE -3.98 (2.58)a -7.12 (3.13)ab -14.53 (4.34)b * 

Recombination -10.70 (3.66)a -11.93 (3.6)a -47.83 (4.28)b *** 

     

Milk yield (kg)    

HO × FR 180.34 (15.96)a 224.09 (16.08)a 336.06 (16.12)b *** 

HO × JE 48.62 (30.34)a 212.60 (21.87)b 151.36 (14.89)c * 

Recombination 
-357.52 

(30.34)a 
-78.35 (28.15)b -127.3 (22.94)b *** 

     

Survival    

HO × FR 0.01 (0.01)a 0.02 (0.01)a 0.04 (0.01)b *** 

HO × JE 0.03 (0.01) 0.04 (0.01) 0.04 (0.01)  

Recombination -0.043 (0.01)a 0.00 (0.01)b -0.02 (0.01)b ** 

     

Number of services (units)    

HO × FR -0.03 (0.02) -0.04 (0.02) -0.09 (0.02)  

HO × JE -0.05 (0.03)a -0.05 (0.02)a -0.12 (0.02)b *** 

Recombination 0.05 (0.03)a 0.05 (0.03)a -0.01 (0.03)b * 

     

Calving to first service interval (d)   

HO × FR -0.60 (0.56) -0.31 (0.49) 0.65 (0.52)  

HO × JE 2.75 (0.92)a 0.13 (0.56)b -2.40 (0.51)c *** 

Recombination -1.88 (1.03) -2.10 (0.82) -2.79 (0.77)  

     

Calving interval (d)    

HO × FR -0.82 (1.26)a -2.64 (1.09)a -9.77 (1.22)b * 

HO × JE -3.26 (1.91)a -3.31 (1.41)a -6.04 (1.42)a * 

Recombination 1.07 (2.30) -0.47 (1.82) -6.42 (1.95)  

*P < 0.05, **P < 0.01, ***P < 0.001  

Different superscripts within a row where P < 0.05 
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3.4.4 Recombination Coefficient Regression Analysis within BLUE stratum 

The regression of phenotypic AFC on the recombination coefficient was 4.47 times 

greater (P < 0.001) in the worst stratum than in the best stratum for AFC (Table 3.5). 

Phenotypic milk yield regressed on the recombination coefficient was 4.56 times greater 

(P < 0.001) in the best BLUE stratum for milk yield than the respective average stratum 

(Table 3.5). The regression of phenotypic NS on the recombination coefficient was 2.2 

times greater (P < 0.001) within the best BLUE stratum than the worst BLUE stratum 

for NS (Table 3.5). Phenotypic survival regressed on the recombination coefficient 

ranged from 0.00 (in the average stratum) to -0.043 (in the best stratum) (Table 3.5). 

 

3.5 Discussion 

 Breeding programs tailored to the requirements of individual dairy producers are 

increasingly sought after. The expected performance of the progeny from a given mating 

is traditionally predicted from the EBV of the progeny converted to a deviation from the 

mean phenotypic performance of the base animal; such an approach assumes that a one 

unit difference in EBV equates to a one unit phenotypic difference for that trait. 

Similarly, if the progeny is crossbred, then a predetermined heterosis effect is added to 

the respective predicted phenotypic performance to generate an estimate of expected 

performance (Kelleher et al., 2016). Results from the present study reveal that such 

simple mathematics are not always valid and, not only does the association between 

EBV and phenotype differ by environment, but also the association between the 

heterosis coefficient and phenotype differ by environment; the former phenomenon, 

commonly known as G × E has been well publicised (Fikse et al., 2003; Haile-Mariam 

et al., 2008; Craig et al., 2018) while the latter, known as heterosis-by-environment (H 

× E) interaction, is less well documented in dairy cows (Penasa et al., 2010; Kargo et al., 

2012). To our knowledge no study has attempted to quantify the extent of either G × E 

or H × E where the environment (i.e., E) was represented by a BLUE from a genetic 

evaluation.  

 Using a subset of the data used in the present study, in Chapter 2 it was proposed 

that herd-level BLUEs could be used to categorise dairy herds based on performance 

independent of genetic effects and systematic environmental effects. The motivation for 

using the BLUEs was to provide informed decision support systems especially for the 
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identification of herds performing below their genetic potential and, by using the fixed 

effects solutions from the underlying statistical model, attempt to explain some of the 

apparent inconsistencies (Chapter 2). Once diagnosed, the next step in a decision support 

system is to provide solutions to help improve herd performance. While management 

strategies such as improved animal nutrition, vaccination, or greater attention to 

reproductive performance could help bridge some of the gap in the difference between 

expectation and realisation, breeding strategies could also form part of the solution. 

Results from the present study clearly showed that the realisation of breeding decisions 

is associated with the environment the animal is/was exposed to, and therefore 

incorporating such information in a mating advice tool may be beneficial in the 

prediction of realistic offspring performance. Being able to derive expected performance 

of offspring for alternative scenarios may also be useful in the evaluation of alternative 

breeding strategies such as, for example, evaluating the benefit of a cross breeding 

program. 

3.5.1 Genetic variability differs by environment 

The observation of a larger genetic standard deviation for milk yield in the high milk 

BLUE environment (1.43 times than that of the worst milk BLUE; Table 3.2) was 

consistent with the greater regression coefficient of phenotypic milk yield on the milk 

yield EBV (1.2 times greater) in the high BLUE than the worst milk BLUE (Table 3.4); 

this indicates that the mean response to selection for milk yield is greater in the best 

BLUE for milk yield. The converse was true, however, for the remaining traits 

representing fertility (with the exception of CFS), AFC and survival, in that the 

regression coefficient of the phenotypic performance on the respective EBVs ranged 

from 1.30 (survival) to 4.28 (CIV; d) times larger in the respective worst BLUE 

environment relative to the best BLUE environment. Similarly, the genetic standard 

deviation of each trait (except milk yield) was 1.18 (CFS; d) to 3.63 (NS; serves) times 

larger in the respective worst BLUE environment relative to the respective best BLUE 

environment. Craig et al. (2018) reported a similar range (1.2 to 3.6 times greater) when 

estimating the genetic standard deviations of fertility traits (i.e., calving rate within the 

first 42d of the calving season, calving season day and the percentage mated in the first 

21d of the calving season) within low-fertility herd environments relative to high-

fertility environments. Low genetic standard deviations for survival within the best 

respective stratum relative to the worst stratum may be an indication of more stringent 
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voluntary culling decisions, and may explain why the mean EBV for survival was 

greatest in the worst stratum for survival.  

The differential in genetic standard deviations and the regression coefficients of the 

phenotypic performance on the respective EBV by environment is not novel and has 

been reported elsewhere in dairy cattle (Craig et al., 2018), beef cattle (Ferreira et al., 

2015) and sheep (Pollott and Greeff, 2004). The novelty here, however, was that no 

study to date has stratified environments based on BLUEs and therefore there was an 

implicit link between the herd stratum for the performance trait and genetic merit since 

the mean genetic merit of the herds would have contributed to their eventual phenotypic 

performance; this is especially true for highly heritable traits such as milk yield. In 

Chapter 2 BLUEs were analysed in the form of HYS effects and it was reported that 

from the sum of the regression coefficient of BLUEs and BLUPs fitted through 10 years 

of data, 69% of the improvement in phenotypic milk yield  was as a result of BLUE 

effects. The greater genetic standard deviation of milk yield in the best BLUE milk yield 

environment therefore clearly suggests that it is largely a function of the superior 

management employed in these environments, which in Ireland, could include superior 

grassland management but also could be due to increased concentrate input. From a 

controlled experimental study on grazing dairy cows, Coleman et al. (2010) documented 

a greater response in milk solids to feed intake in higher genetic merit animals (based 

on a total merit index) from either a greater inclusion of concentrate or grass allowance 

in the diet.  

Greater regression coefficients of fertility phenotypic performances on the respective 

EBV within the respective worst BLUE stratum are indicative of a greater response to 

selection for fertility traits in such environments. Yet, unlike milk yield, where poor 

response to selection is reflective of sub-optimum management, the poor response to 

selection within the best BLUE fertility trait stratum is reflective of superior 

management under optimal environmental conditions leading to animals approaching 

their biological limit or the limit of the production system (i.e., calving intervals of less 

than 365 are generally not sought at a herd level). Management practice obviously have 

an impact on reproductive performance as evidenced by a mean phenotypic difference 

of 27.61 d between the best and worse CIV BLUE despite a mean difference of less than 

1 d in EBV for CIV (Table 3.1). 
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With the exception of AFC, genetic correlations for the same trait in different strata 

were in the range of 0.827 (between average and worst strata for CFS BLUEs; SE = 

0.161) to 0.983 (between best and worst strata for CFS BLUEs; SE = 0.142) (Table 3.2). 

Mulder et al. (2006) suggested that only genetic correlations between environments of 

< 0.61 justified consideration of a separate breeding program to optimise genetic gain in 

the different environments. Although the correlations between BLUE strata for AFC 

were less than 0.61, AFC is a trait that may reflect largely upon the breeding decisions 

of the manager and not necessarily the animal’s genetic capability; the mating of heifers 

may be suspended in order to have the animals calving at a particular time of the year, 

especially in seasonal calving programs (Berry et al., 2013). 

3.5.2 Benefits of heterosis differ by environment 

Heterosis is a non-additive genetic phenomenon whereby the performance of 

crossbred progeny, on average, surpasses the mid-parent mean (Simm, 1998). Interest 

in crossbreeding strategies is increasing in dairy cow production systems as a means to 

rapidly improve performance, especially for traits associated with viability and fertility 

(McAllister, 2002; Wall et al., 2005; Sørensen et al., 2008). In some populations, 

however, the additive genetic merit of one dairy breed may actually be substantially 

inferior to that of the best available dairy breed. A decision is therefore required as to 

whether the direct progeny performance would be expected to be superior if 

crossbreeding was embarked upon (taking cognisance of expected heterosis) versus if 

straight-breeding with the genetically superior breed was undertaken. An estimate of the 

mean heterosis effect for different breed combination can be derived from published 

studies (Dezetter et al., 2015; Coffey et al., 2016) or simply as the fixed effects solutions 

from routine genetic evaluations.  

Results from the present study clearly demonstrate that the benefit of heterosis 

differs by environment which is consistent with reports elsewhere on production traits 

in dairy cows (Penasa et al., 2010; Kargo et al., 2012); however, there is a lack of 

heterosis by environment studies for fertility traits. Based on the results from the present 

study a) genetic evaluations should take cognisance of this heterosis by environment 

interaction and b) mating-based decision support systems need to apply the correct 

heterosis effects, based on herd BLUE, when comparing the mating of parents of the 

same or different breeds.  
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Animals within the best BLUE herds for production, fertility and survival tended to 

experience the least benefit from heterosis, suggesting that heterotic effects are 

expressed more as the environment becomes increasingly stressful. The extent of 

heterosis expression, however, seems to be dependent on the breed composition of the 

F1 crosses when analysing production traits. Based on Friesian crosses, Penasa et al. 

(2010) reported a similar trend to the present study whereby the greatest heterosis benefit 

was within the worst environment for milk yield. Nonetheless, the greatest benefit in 

milk yield from heterosis when Jersey formed a component of the cross in the present 

study was within the average herd BLUE for milk yield, which is consistent with Bryant 

et al. (2007) and Kargo et al. (2012). The heterosis coefficients of the fertility and 

survival traits were consistently larger in the respective worst BLUE strata (i.e., more 

stressful environment) relative to the best BLUE strata. This suggests that not only can 

performance (and profit) be increased in herds with poor BLUEs for fertility and 

survivability with the exploitation of heterosis effects, but such effects may also promote 

robustness and resilience amongst animals within challenging environments. Within the 

Irish national economic breeding index, calving interval has a negative economic value 

of €12.59 per day (ICBF, 2019g). Therefore, the economic benefit of heterosis in an F1 

HO × FR cross is expected, on average, to be €123 in herds within the poorest BLUE 

for calving interval but only €10.32 in the herds that are best for calving interval.  

 

3.6 Conclusion 

Phenotypic performance is inherently influenced by both the environment and 

genetic effects as well as how both effects interact with each other. Thus, predicting the 

additive genetic merit of a progeny from a given mating is suggested to be too simplistic 

and does not take cognisance of the environmental factors that are likely to have 

influence the realisation of the genetic merit. By stratifying herds on BLUEs for each 

trait, the phenotypic response to changes in EBVs differed for milk yield, CIV, NS and 

AFC between at least two of the three environments investigated. Additive genetic 

variance for milk yield, AFC and NS was greatest within the environment that had the 

largest scope for improvement, e.g. the best herd BLUE environment for milk yield and 

the worst herd BLUE environment for AFC and NS. Hence accounting for the 

heterogeneity of variances in the genetic evaluation process is important. With the 
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exception of the HO × JE heterosis for milk yield, the benefits of non-additive heterotic 

effects were greatest in the most stressful environment for each respective trait. 

Ultimately, the results from the present study reiterate that heterosis is an effect that 

promotes robustness and resilience and is emphasised when conditions deteriorate. Clear 

benefits from incorporating BLUEs into a breeding-specific decision support tool can 

facilitate more precise breeding decisions specific to individual herds. 
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4.1 Abstract 

While breeding indexes exist globally to identify candidate parents of the next 

generation, fewer tools exist that provide guidance on the expected monetary value of 

young animals. The objective of the present study was therefore to develop the 

framework for a cattle decision-support tool, which incorporates both the genetic and 

non-genetic information of an animal and, in doing so, better informs the potential 

market value of an animal, whatever the age. Two novel monetary indexes were 

constructed and their predictive ability of carcass value was compared to that of the Irish 

national Terminal breeding index, typical of other terminal indexes used globally. A 

constructed Harvest index was comprised of three carcass-related traits (i.e., weight, 

conformation and fat each weighted by their respective economic value) and aimed at 

purchasers of animals close to harvest; the second index, termed the Calf index, also 

included docility and feed intake (weighted by their respective economic value), thus 

targeting purchasers of younger calves for growing (and eventually harvesting). Genetic 

and non-genetic fixed and random effect model solutions from the Irish national genetic 

evaluations underpinned all indexes. The two novel indexes were formulated using three 

alternative estimates of an animal’s total merit for comparative purposes: 1) an index 

based solely on the animal’s breed solutions, 2) an index which also included within-

breed animal differences and, 3) an index which, as well as considering additive and 

non-additive genetic effects, also included non-genetic effects (referred to as production 

values [PV]). As more information (i.e., within breed effects and subsequently non-

genetic effects) was included in the total merit estimate, the correlations strengthened 

between the two proposed indexes and the animal’s calculated carcass market value; the 

correlation coefficients almost doubled in strength when total merit was based on PV-

based estimates as compared to the breed solutions alone. Including phenotypic live-

weight data, collected during the animal’s life, strengthened the predictive ability of the 

indexes further. Based on the results presented, the proposed indexes may fill the void 

in decision support when purchasing or selling cattle. In addition, given the dynamic 

nature of indexes, they have the potential to be updated in real-time as information 

becomes available. 
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4.2 Introduction 

 Individual animal ranking on beef breeding indexes are widely used to support 

decisions for selecting candidate parents of the next generation (Berry et al., 2019a); in 

the absence of genotype-by-environment interactions, the progeny of genetically 

superior animals are, on average, expected to perform better than the progeny of 

genetically inferior animals if exposed to the same management conditions. Breeding 

index values are available in some countries for all cattle from birth irrespective of 

whether they can even become parents (e.g., steers); these index values, if economic-

based, still provide an indication of the expected profit of that animal. The applicability 

of such breeding indices for live animals destined for slaughter are, however, limited in 

that: 1) they are constructed solely from an animal’s additive genetic merit without 

cognisance of either the non-additive genetic effects (e.g., heterosis), or the non-genetic 

effects (e.g. dam parity), and 2) the indexes often include traits which become redundant 

to the expected profit of a growing animal itself once born (e.g. genetic merit for 

stillbirth). 

 Both non-additive genetic effects and non-genetic effects are known to impact 

the performance of growing cattle. Gregory et al. (1978) carried out extensive research 

into heterosis values in beef cattle and reported that crossbred calves were weaned 7.4 

% heavier than purebred calves. Connolly et al. (2016) documented that third parity 

cows produced progeny carcasses 1.1 kg heavier than progeny from second parity cows; 

furthermore, progeny from second parity cows had, on average, 2.04 kg heavier 

carcasses than progeny from primiparous cows. McHugh et al. (2014) reported that up 

to the point of weaning, males calves grew 0.17 kg per day faster than female calves. 

Given that such heterosis and environmental effects exist, then these effects should be 

incorporated into tools to rank animals on expected profit. 

The objective of the present study was to formulate a decision support index which 

is capable of predicting the lifetime revenue of animal for harvest taking cognisance of 

both additive and non-additive genetic effects as well as contributing non-genetic 

effects. Such an index has the potential to be targeted towards beef-finishing systems to 

aid in the purchase of animals destined for slaughter but also for better aligning animals 

to different production and finishing systems; with modifications, the index could also 

be used by beef processors when agreeing flat prices for cattle prior to slaughter. 
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4.3 Materials and Methods 

Data used in the present study were collected prior to October 2018 and originated 

from the Irish Cattle Breeding Federation (ICBF) national database, Bandon, Co. Cork, 

Ireland (http://www.icbf.com). 

4.3.1 Data 

Three separate phenotypic datasets used in the Irish national genetic evaluations 

were obtained from the ICBF. The first dataset contained calving performance 

phenotypes on 20,847,261 individual animals for calf mortality, gestation length and 

calving difficulty; the associated pedigree file included 25,504,740 animals. The second 

dataset contained docility performance phenotypes on 3,012,970 individual animals, 

which were either scored subjectively by the farmer or by a trained professional; the 

associated pedigree file included 6,163,517 animals. The third dataset contained data on 

24 traits, namely those related to feed intake, live-weight and carcass-related related 

traits on 13,126,903 individual animals; the associated pedigree file included 18,078,810 

animals. The phenotypes in the performance data included live-weight measurements 

taken at three life-stage points, namely between the ages 150 d and 250 d old 

(weanlings), between 251 d and 350 d old (adolescent), between 351 d and 450 d old 

(adult), and between 451 d and 550 d old (finisher). The three datasets represent the three 

suites of multi-breed multi-trait genetic evaluations undertaken in Ireland to derive 

estimated breeding values (EBVs) for calving performance, docility and carcass merit. 

Heterosis and recombination coefficients were available for all animals, estimated using 

the methodology reported by VanRaden and Sanders (2003). Depending on the genetic 

evaluation, either a general heterosis coefficient per animal was available or a heterosis 

coefficient to represent beef × beef and beef × dairy parents. Heterosis coefficients were 

available for the animal itself and its dam. 

4.3.2 Genetic Evaluations 

Genetic evaluations were run for the three suites of traits using the MiX99 software 

suite (MiX99 Development Team, 2015) to generate both fixed and random effect 

solutions for all traits included in the Irish beef cattle Terminal index. The carcass 

genetic evaluation was a 24 × 24 multi-trait evaluation. Fixed and random effect 

solutions for carcass weight, carcass conformation (i.e., the muscularity score of the 

carcass; Englishby et al., 2016) , carcass fat (i.e., subcutaneous fat cover and fat in the 

http://www.icbf.com/
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thoracic cavity; Englishby et al., 2016), feed intake as well as all live-weight age 

categories were generated for use in the present study. The docility genetic evaluation 

was a 3 × 3 multi-trait evaluation which included the traits weanling docility assessed 

by producers or trained professionals, separately, and producer-scored docility of the 

dam; only the producer-scored weanling docility fixed and random effects solutions 

were retained for use in the present study as this is the trait included in the national 

terminal index. Although the calving genetic evaluation was a 9 × 9 multi-trait 

evaluation, only random effect solutions were retained for a subset of the three relevant 

traits, namely calving mortality, calving difficulty and gestation length.  The statistical 

models used in the respective genetic evaluations are summarised in Supplementary 

Material S9.1. 

4.3.3 Production value estimation 

Genetic evaluations in Ireland use genetic groups (stratified by breed) for the 

estimation of breed effects. In the present study, however, breeds were fitted as separate 

covariates. This facilitated the estimation of animal total merit for a given trait using 

three alternative formulations as follows: 1) using just the breed effect solutions, 2) using 

the animal’s additive genetic merit combined with the breed effect solutions (EBV) and, 

3) to estimate an animal’s production value (PV) using the fixed and random solution 

coefficients from the respective genetic evaluations. The PVs were calculated as: 

𝐶𝑎𝑟𝑐𝑎𝑠𝑠 𝑡𝑟𝑎𝑖𝑡𝑠 𝑃𝑉𝑐𝑑𝑒𝑓𝑔ℎ𝑧

= ∑𝑏1𝐻𝑒𝑡𝑧

4

𝑎=1

 +  ∑𝑏2𝐵𝑟𝑒𝑒𝑑𝑧

16

𝑏=1

+ 𝐸𝐵𝑉𝑐𝑧 + 𝑏3𝑇𝑤𝑖𝑛𝑑𝑧

+ 𝑏4𝐷𝑎𝑚𝐷𝑓𝑟𝑎𝑐𝑡𝑒𝑧 + 𝑏5𝐷𝑎𝑚 𝑎𝑔𝑒𝑓𝑧|𝐷𝑎𝑚 𝑝𝑎𝑟𝑖𝑡𝑦𝑔𝑧 + 𝐷𝑎𝑚𝑃𝑒ℎ𝑧   

𝐹𝑒𝑒𝑑 𝐼𝑛𝑡𝑎𝑘𝑒 𝑃𝑉𝑐𝑑𝑒𝑓𝑔

=  ∑𝑏1𝐻𝑒𝑡

4

𝑎=1

 +  ∑𝑏2𝐵𝑟𝑒𝑒𝑑

16

𝑏=1

+ 𝐸𝐵𝑉𝑐 + 𝑏3𝑇𝑤𝑖𝑛𝑑 + 𝑏4𝐷𝑎𝑚𝐷𝑓𝑟𝑎𝑐𝑡𝑒

+ 𝑏5𝐷𝑎𝑚 𝑎𝑔𝑒𝑓|𝐷𝑎𝑚 𝑝𝑎𝑟𝑖𝑡𝑦𝑔 
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𝐷𝑜𝑐𝑖𝑙𝑖𝑡𝑦 𝑃𝑉𝑎𝑐𝑔𝑖𝑗

= 𝑏1𝐻𝑒𝑡𝑎  +  ∑𝑏2𝐵𝑟𝑒𝑒𝑑

16

𝑏=1

+ 𝐸𝐵𝑉𝑐 + 𝑏3𝐷𝑎𝑚 𝑝𝑎𝑟𝑖𝑡𝑦𝑔 + 𝑏4𝑆𝑒𝑥𝑖  

+ 𝑏5𝑅𝑒𝑐𝑜𝑚𝑏𝑗  

where 𝐶𝑎𝑟𝑐𝑎𝑠𝑠 𝑡𝑟𝑎𝑖𝑡𝑠 𝑃𝑉 = the production values pertaining to carcass traits 

(subscript z) for weight, conformation and fat; 𝐹𝑒𝑒𝑑 𝐼𝑛𝑡𝑎𝑘𝑒 𝑃𝑉 = the production value 

for feed intake; 𝐷𝑜𝑐𝑖𝑙𝑖𝑡𝑦 𝑃𝑉 = the production value for docility; 𝐻𝑒𝑡 = the heterosis 

coefficient which is fitted as four separate heterosis coefficients to represent different 

breed crosses within the carcass trait and feed intake genetic evaluation and is fitted as 

a single coefficient a in the docility genetic evaluation; 𝐵𝑟𝑒𝑒𝑑 = covariate representing 

the proportion of 16 breeds (i.e., Aberdeen Angus (AA), Aubrac (AU), Blonde 

D’Aquitaine (BA), Belgian Blue (BB), Charolais (CH), Friesian (FR), Hereford (HE), 

Holstein (HO), Jersey (JE), Limousin (LM), Piemontese (PI), Montbelliarde (MO), 

Parthenais (PT), Salers (SA), Shorthorn (SH) and Simmental (SI); 𝐸𝐵𝑉𝑐 = the estimated 

breeding value; 𝑡𝑤𝑖𝑛𝑑 = whether or not the animal was a twin (coefficient d); 

𝐷𝑎𝑚𝐷𝑓𝑟𝑎𝑐𝑡𝑒 = dam dairy-breed proportion coefficient e; 𝐷𝑎𝑚 𝑎𝑔𝑒𝑓|𝐷𝑎𝑚 𝑝𝑎𝑟𝑖𝑡𝑦𝑔= 

the interaction between dam age f and the dam’s gth parity (i.e., parity 1 to 7, inclusive) 

for the carcass traits and feed intake or just the dams gth parity for docility; 𝐷𝑎𝑚𝑃𝑒ℎ= 

the maternal permanent environment effect of h; 𝑆𝑒𝑥𝑖 = whether the animal was male or 

female, coefficient i; 𝑅𝑒𝑐𝑜𝑚𝑏𝑗 = recombination coefficient j; b1-b5 = the associated 

regression coefficients from the respective national genetic evaluation.  

4.3.4 Index development 

The Irish national beef terminal index comprises 8 traits including three calving traits 

(i.e., difficulty, gestation length and mortality), feed intake, docility and three carcass 

traits (i.e., carcass weight, carcass conformation and carcass fat) (Table 4.1); this index, 

populated with the relevant EBVs, was used as the base scenario from which two 

additional variants of the index were compared. The economic weights applied (Table 

4.1) were the same for all three indexes evaluated in the present study. The two novel 

indexes proposed in the present study were: 

1. The Calf index - developed to provide support in purchasing young animals to be 

reared and eventually harvested. The Calf index comprised 5 traits namely docility, 
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feed intake, carcass weight, carcass conformation and carcass fat (Table 4.1); 

therefore the index did not incorporate calving-related traits.  

2. The Harvest index was an adaption of the Calf index in that feed intake and docility 

were omitted leaving only the three carcass-related traits, namely carcass weight, 

carcass conformation, carcass fat (Table 4.1). 

 

Table 4.1: Component traits of the different indexes evaluated, including the traits units 

of measurement, genetic standard deviation (SD) and economic weighting. 

  Index     

Component trait 
National 

Terminal 
Calf Harvest Units 

Genetic 

SD 

Economic 

weight 

Calving difficulty  - - % 0.158 -€4.65 

Calving mortality  - - 0 to 1 0.038 -€5.34 

Gestation length  - - Days 3.020 -€2.25 

Docility1   - 1 to 5 0.365 €17.03 

Feed intake   - 
kg DM per 

day 
0.667 -€38.63 

Carcass weight    Kg 15.419 €3.14 

Carcass 

Conformation2 
   

EUROP 

scale 
0.644 €14.77 

Carcass Fat3    1  to 15 0.679 -€7.86 

1Where 1 = very quiet and 5 = very difficult, 
2Where E (best) to P (worst), 
3Where 1 = leanest and 15 = fattest 

 

4.3.5 Index Validation 

A subset of animals from the national beef bull performance test centre at Tully, Co. 

Kildare, Ireland, were identified to validate each of the constructed indexes. The 

validation population consisted of 374 steers and 500 young bulls that were slaughtered 

between the years 2016 to 2018, inclusive; therefore, phenotypic data for carcass weight, 

carcass conformation, and carcass fat as well as feed intake were available. Details on 

the test protocols (e.g., diet) and the feed intake phenotypes have been described in detail 

by Crowley et al. (2010) and Kelly et al. (2019). 
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 Price (€) per kg of carcass weight was determined using the EUROP beef 

classification grid scores (Englishby et al., 2016) to reflect the current pricing structure 

used by abattoirs throughout Ireland; the price per kg for different carcass conformation 

score by fat score credentials are summarised in Supplementary Table S9.4. To generate 

the animal’s carcass value, price per kg was multiplied by their carcass weight. The 

carcass genetic evaluations were rerun seven times while the docility genetic evaluation 

was rerun twice to reflect the scenario where additional information (e.g. live-weight 

phenotypes) becomes available as the animal grows; all phenotypic records belonging 

to all other animals not pertaining to the validation population were also included in each 

genetic evaluation iteration. The first iteration of the carcass and docility national genetic 

evaluations contained all phenotypes of the validation animals to determine the upper 

threshold of predictive ability. In the next iteration, all phenotypic data of the validation 

animals were masked in both the carcass and docility national genetic evaluations and 

the fixed and random effects model solutions re-estimated. For the third, fourth, fifth 

and sixth iteration of the carcass national genetic evaluations, a single live-weight record 

of the validation animals was included separately for the age category 150 d up to 250 d 

(n = 168), 250 d up to 350 d (n = 459), 350 d up to 450 d up (n = 459) or 450 d up to 

550 days (n = 459), respectively (Supplementary Table S9.5). For the final iteration of 

the national carcass genetic evaluation, the phenotypes of animals within the validation 

population who had a live-weight record for each of the three age categories that spanned 

from 250 d to 550 d were included (n = 459). 

4.3.6 Statistical analyses 

 Animals were ranked into four strata of equal sizes separately based on their 

national Terminal, Calf or Harvest index value. The mean Irish national Terminal, Calf 

and Harvest index values of the animals within the top and bottom 25 % strata were 

calculated. Least square means (LSM) were calculated for the three carcass traits (i.e., 

weight, conformation and fat), feed intake, carcass revenue, price per kg and age at 

slaughter whilst adjusting for the following: 1) gender (i.e., steer or young bull), 2) age 

at slaughter (with exception to age at slaughter), 3) heterosis, 4) dam heterosis, 5) dam 

parity and, 6) carcass weight (only included when estimating the least squares means for 

age at slaughter). Spearman correlations were used to estimate within-gender 

correlations but also partial correlations adjusted for gender. Spearman correlations 

between each phenotypic value as well as carcass revenue and price per kg with the 



Chapter 4: Transaction index for growing cattle 

93 
 

whole range of different indexes and scenarios evaluated were estimated. The statistical 

test proposed by Steiger (1980) was used to test the difference between the correlation 

coefficients. The statistical test proposed by Steiger (1980) was used to test the 

difference between the correlation coefficients. Multiple linear regression models in the 

validation animals were used to regress the phenotypes for carcass weight, carcass 

conformation, carcass fat score, feed intake, and docility on the three alternative 

definitions of an individual animal’s total merit for a given trait using the models: 

𝐶𝑎𝑟𝑐𝑎𝑠𝑠 𝑡𝑟𝑎𝑖𝑡𝑠𝑎𝑏𝑐𝑑 =∑𝐻𝑌𝑎

2

𝑎=1

+ 𝑔𝑒𝑛𝑑𝑒𝑟𝑏 +∑age𝑐 

3

c=1

+ 𝑇𝑀𝑑 + 𝑒 

𝐹𝑒𝑒𝑑 𝑖𝑛𝑡𝑎𝑘𝑒𝑒𝑏𝑐𝑑 = 𝐻𝑌𝑆𝑓𝑖𝑒 + 𝑔𝑒𝑛𝑑𝑒𝑟𝑏 +∑age𝑐  

3

c=1

+ 𝑇𝑀𝑑 + 𝑒 

𝐷𝑜𝑐𝑖𝑙𝑖𝑡𝑦𝑓𝑏𝑐𝑑 = 𝐻𝑌𝑆𝑑𝑜𝑐𝑓 + 𝑔𝑒𝑛𝑑𝑒𝑟𝑏 +∑age𝑐
2

c=1

+ 𝑇𝑀𝑑 + 𝑒 

where 𝐻𝑌𝑎 = the class effect of herd-year contemporary group of slaughter and the 

previous herd in which the animal spent the longest time in; 𝐻𝑌𝑆𝑓𝑖𝑒=  the class effect 

of herd-year-season contemporary group of the feed intake; 𝐻𝑌𝑆𝑑𝑜𝑐𝑓 = the class effect 

of herd-year-season contemporary group of docility; 𝑔𝑒𝑛𝑑𝑒𝑟𝑏 = fitted as a class effect 

whether the animal a steer or a young bull; age𝑐 = the age of the animal (linear, cubic 

and quadratic for the three carcass traits and feed intake and linear and cubic for 

docility); 𝑇𝑀𝑑 = the total merit estimate; e = residual. 

 

4.4 Results 

The mean performance of animals ranked on their national beef terminal, Calf, and 

Harvest index values is in Table 4.2. Although not always significant (i.e., P > 0.05), the 

mean performance of the bottom 25 % of animals tended to get progressively worse 

shifting from ranking on the terminal index to ranking on the Calf index and from the 

Calf index to the Harvest index; similarly, the mean performance of the top 25 % of 

animals tended to get better shifting from using the terminal index to rank animals versus 

using the Calf index and from using the Calf index to using the Harvest index. The 
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carcass value of the top 25% of animals ranked on the Harvest index was superior (P < 

0.05) to that of the top 25 % ranked on the terminal index. This was predominantly due 

to the heavier (P < 0.05) carcass weight of the top 25 % of animal ranked on the Harvest 

index relative to the top 25 % ranked on the terminal index.  

 

Table 4.2: The mean index value, least square means and standard error (within 

parenthesis) of animals within the top and bottom 25% when ranked on their Irish 

national Terminal (Terminal), Calf and Harvest index values, separately. 

  Means (SE) 

Trait Rank  Terminal Calf Harvest 

Index Value (€) 
Bottom 25 %  103.24 (2.47)a 232.30 (2.92)b 254.16 (2.93)c 

Top 25 %  246.92 (1.32)a 406.70 (1.67)b 408.76 (1.66)b 

            
Carcass revenue 

(€) 

Bottom 25 %  1497 (13.35)a 1483 (12.81)a 1463 (12.48)a 

Top 25 %  1688 (13.20)a 1716 (12.87)a 1723 (12.26)a 

            

Price per kg (kg) 
Bottom 25 %  4.07 (0.01)a 4.07 (0.01)a 4.07 (0.01)a 

Top 25 %  4.19 (0.01)a 4.19 (0.01)a 4.18 (0.01)a       
      

Carcass weight 

(kg) 

Bottom 25 %  366.95 (2.94)a 363.73 (2.83)ab 358.63 (2.75)b 

Top 25 %  401.75 (2.91)a 408.62 (2.85)ab 411.15 (2.70)b 

      

Carcass 

conformation 

(EUROP scale) 

Bottom 25 %  9.28 (0.09)a 9.24 (0.09)a 9.27 (0.09)a 

Top 25 %  11.21 (0.09)a 11.19 (0.09)a 11.04 (0.09)a 

            
Carcass fat 

(1 leanest to 15 

fattest) 

Bottom 25 %  7.39 (0.09)a 7.34 (0.09)a 7.25 (0.09)a 

Top 25 %  6.00 (0.08)a 6.00 (0.09)a 6.14 (0.09)a 

            
Feed intake 

(kg DM) 

Bottom 25 %  13.31 (0.11)a 13.37 (0.11)a 13.21 (0.11)a 

Top 25 %  12.57 (0.11)a 12.55 (0.11)a 12.89 (0.11)b 

            
Age at slaughter 

(d) 

Bottom 25 %  572.61 (4.18)a 576.34 (4.16)ab 586.90 (4.04)b 

Top 25 %  545.71 (4.14)a 541.09 (4.22)a 534.86 (4.09)a 
Different superscripts across the indexes for each trait indicate a difference (p < 0.05) 
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4.4.1 Relationships with phenotypic performance 

The correlations between the alternative formulations of total merit of an individual 

animal for a given trait and the corresponding phenotypic values for that trait are in 

Table 4.3. As more information was included in the calculation of the total merit (i.e., 

from just breed effects to inter- and intra-breed effects, to then also include non-genetic 

effects), the partial correlations between the estimate of total merit for a given trait and 

the respective phenotypic value typically strengthened. The correlations between the 

estimate of total merit for a given trait using just breed solutions and the corresponding 

phenotypic values were consistently weaker (P < 0.05) relative to when the total merit 

estimate included inter- and intra-breed effects, as well as when including non-genetic 

effects (with exception to feed intake and the within steer group for carcass fat). 

Furthermore, the correlations between the phenotypic values for both carcass fat and 

carcass weight (with the exception of the young bull group) and the relative total merit 

formulated using PVs were stronger (P < 0.05) compared to when formulating the total 

merit using just EBVs.  

The regression coefficients of the phenotypic value for all five traits on the three 

formulations defining an individual’s total merit for that trait after accounting for age, 

sex and contemporary group effects are in Table 4.3. With the exception of carcass 

weight and feed intake, the regression coefficient was always closer to 1 for the total 

merit derived using PVs relative to the total merit estimated using just breed, although 

it not always different to when the total merit was estimated from just EBVs. With the 

exception of feed intake, the least amount of variation explained by the multiple linear 

regression model was when total merit was defined solely on breed effects (ranging from 

49% (docility) to 72% (carcass conformation)) relative to EBV or PV estimates; 

irrespective of whether the total merit for feed intake was based on just breed or PV, the 

regression models explained 53% of the variation. 
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Table 4.3: Partial and within-sex correlations between the three formulations of an 

individual’s total merit (i.e., just breed effects (Breed), inter- and intra-breed effects 

(EBV) or production value estimates (PV)) for a given trait and the corresponding 

realised phenotypic values for the trait. Regression coefficients, standard errors (within 

parenthesis), and coefficient of determination of each trait’s phenotype regressed on the 

respective three variant estimates. 

    Correlations   

Trait 
Total 

merit 

Partial 

(n=874) 

Steer 

(n=374) 

Young bull 

(n=500) 

Regression 

(n=874) 
R2 

Carcass weight 

Breed  0.16a 0.03a 0.26a 0.94 (0.24) 0.64 

EBV 0.36b 0.33b 0.40b 1.27 (0.09) 0.7 

PV 0.40c 0.40c 0.42b 1.26 (0.09) 0.72 
       

Carcass 

conformation 

Breed  0.51a 0.55a 0.49a 1.20 (0.09) 0.72 

EBV 0.64b 0.65b 0.66b 1.09 (0.05) 0.78 

PV 0.64b 0.66b 0.66b 1.09 (0.05) 0.78 
       

Carcass fat 

Breed  0.40a 0.46ab 0.37a 1.14 (0.12) 0.61 

EBV 0.42a 0.44b 0.44b 1.10 (0.09) 0.64 

PV 0.47b 0.47a 0.49c 1.03 (0.08) 0.65 
       

Feed Intake 

Breed  0.35a 0.38a 0.35a 1.08 (0.10) 0.53 

EBV 0.37a 0.40a 0.35a 0.84 (0.08) 0.52 

PV 0.38a 0.42a 0.36a 0.83 (0.08) 0.53 
       

  Partial 

(n=438) 

Steer 

(n=122) 

Young bull 

(n=316) 

Regression 

(n=438) 
 

Docility 

Breed  -0.01a 0.00a -0.01a 1.61 (0.73) 0.49 

EBV 0.14b 0.15b 0.14b 0.67 (0.16) 0.51 

PV 0.14b 0.14b 0.15b 0.67 (0.16) 0.51 

Different superscripts across the indexes for each trait indicate a difference (p < 0.05) 

 

The partial correlations between the three indexes and their different constructions 

with each of the phenotypic values for the component traits are in Table 4.4. Regardless 

of the index, or how it was formulated (i.e., breed effects only, EBV, or PV), there was 

little to no relationship between either of the indexes and docility, with correlations 

ranging from -0.04 (the Calf index calculated using only breed solutions) to 0.05 (the 

Harvest index calculated using the EBV solutions). Irrespective of the formulation of 

the three indexes, phenotypic carcass fat and feed intake were both negatively correlated 

(i.e., the desired direction) with each of the three indexes (from -0.45 to -0.35 and from 



Chapter 4: Transaction index for growing cattle 

97 
 

-0.39 to -0.09 for carcass fat and feed intake, respectively; Table 4.4). Of all the traits, 

carcass conformation was the most strongly correlated with each of the indexes 

evaluated.  

 

Table 4.4: Partial correlations between three indexes calculated using formulations of 

an individual’s total merit (i.e., calculated using just breed effects (Breed), inter- and 

intra-breed effects (EBV) or production value estimates (PV)) and the realised 

phenotypic values for the three carcass traits (weight, conformation and fat), feed intake 

and docility. 

Indexes 
Sub-

components 

Carcass 

weight  

(n = 874) 

Carcass 

conformation 

(n = 874) 

Carcass 

fat 

 (n = 874) 

Feed 

intake  

 (n = 874) 

Docility 

 (n = 438) 

Terminal EBV 0.21 0.53 -0.43 -0.24 0.01 

       

Calf Breed 0.12a 0.49a -0.44ab -0.39a -0.04a 
 EBV 0.29b 0.57b -0.44a -0.25b 0.02b 
 PV 0.33c 0.56b -0.40b -0.22c 0.00ab 
       

Harvest Breed 0.15a 0.49ab -0.45a -0.35a -0.01ab 

 EBV 0.35b 0.53a -0.39b -0.12b 0.05a 

 PV 0.39c 0.50b -0.35c -0.09c 0.02b 
1n = number of animals included in analysis 

Different superscripts between the three different formulations of the indexes for each trait separately 

indicate a difference (p < 0.05) 

 

4.4.2 Correlations with revenue metrics 

The correlations between each of the three indexes with both the total carcass value 

and price per kg are in Table 4.5. The national terminal (breeding) index, which is the 

Irish industry standard for beef breeding, was moderately correlated with carcass value 

and price per kg. For the Calf index, the correlations with carcass value strengthened as 

more information was included in the calculation of the index (P < 0.05); the same was 

true for the Harvest index (P < 0.05; with the exception of in young bulls). In fact, the 

strength of the correlations almost doubled (P < 0.05) when either index was formulated 
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using PVs compared to when it was formulated using just breed effects. The strongest 

correlations were between price per kg and the Calf index when formulated on either 

EBVs or PVs relative to using just breed solutions (P < 0.05). The correlations were 

strongest between price/kg and the Harvest index formulated using EBVs relative to the 

index calculated using PVs (P < 0.05).  

4.4.3 Including live-weight data in the genetic evaluations 

The partial correlations between the three indexes with the carcass revenue as the 

number of live-weight records available for each individual included in the genetic 

evaluation changed are in Table 4.6. Where no live-weight records were included in the 

genetic evaluations, partial correlations between the indexes and carcass value followed 

the same trend (i.e., strengthened as more information was included in the calculation of 

the index; P < 0.05) as described in Table 4.5, albeit with a small number of animals 

included. The correlations between the national terminal index and carcass value 

strengthened (P < 0.05) from 0.30 to 0.36 with the inclusion of one live-weight 

phenotype recorded between 250 to 450 d of age; the correlation further strengthened (P 

< 0.05) to 0.39 if the live-weight included in the genetic evaluation was recorded 

between 450 to 550 d of age. Partial correlations were either 0.18 between carcass value 

and Calf index or 0.23 between the Harvest index and carcass value regardless of the 

number of live-weight records included in the genetic evaluation, provided the indexes 

were formulated using just breed solutions. In comparison to when no live-weight 

phenotypic data on the validation animals were included in the genetic evaluation, the 

inclusion of one live-weight record strengthened (P < 0.05) the correlations between 

carcass value and both the Calf and Harvest index formulated using PVs or EBVs; 

between the ages of 250 to 450 d, the correlations did not differ (i.e., P > 0.05) regardless 

of when the live-weights were recorded or indeed the number of live-weight phenotypes 

included in the genetic evaluation (with exception to the Harvest index). When only 

including one live-weight record in the genetic evaluation, the strongest correlations (P 

< 0.05) existed between the Calf index formulated using PVs and the carcass value when 

the live-weight of an older animal was included (450 to 550 d of age); the same was true 

for the Harvest index (P < 0.05). Provided there was an older animal’s live-weight record 

included in the genetic evaluation, there was no further benefit to the inclusion of 

multiple live-weight records.   
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Table 4.5: Partial and within-sex correlations between the three indexes calculated using formulations of an individual’s total merit (i.e., just breed 

effects (Breed), inter- and intra-breed effects (EBV) or production value estimates (PV)) and the realised quality pricing carcass value as well as the 

price/kg based on the quality pricing grid payment structure common to Ireland where n = number of animals. 

  Quality Pricing Carcass Value  Price/kg 

Indexes 
Sub-

components 

Partial 

(n=874) 

Steer  

(n=374) 

Young bull 

 (n=500) 
 Partial  

(n=874) 

Steer  

(n=374) 

Young bull 

(n=500) 

Terminal EBV 0.29 0.29 0.32  0.54 0.63 0.51 
         

Calf 

Breed 0.20a 0.18a 0.22a  0.50a 0.58a 0.46a 

EBV 0.36b 0.35b 0.42b  0.58b 0.65b 0.57b 

PV 0.40c 0.38c 0.45c  0.57b 0.64b 0.55b 
         

Harvest 

Breed 0.22a 0.15a 0.29a  0.50ab 0.58ab 0.48ab 

EBV 0.41b 0.40b 0.48b  0.53a 0.62a 0.51a 

PV 0.44c 0.44c 0.49b  0.50b 0.60b 0.48b 

Different superscripts between the three different formulations of the indexes for each trait separately indicate a difference (p < 0.05) 
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Table 4.6: Partial correlations across a sub-set of 459 validation animals between the three indexes constructed using formulations of an individual’s 

total merit (i.e., just breed effects (Breed), inter- and intra-breed effects (EBV) or production value estimates (PV)) and the realised quality pricing 

carcass value; n = number of live-weight phenotype records taken at each specific time points included in each genetic evaluation iteration. 

   250-349 d 350-449 d 450-549 d 250-449 d 250-549 d 

Indexes Sub-components (n = 0) (n = 1) (n = 1) (n = 1) (n = 2) (n = 3) 

Terminal EBV 0.30a 0.36b 0.36bc 0.39d 0.37c 0.39d         
        

Calf 

 

Breed 0.18a 0.18a 0.18a 0.18a 0.18a 0.18a 

EBV 0.38a 0.44b 0.43bc 0.46de 0.44cd 0.46e 

PV 0.41a 0.46b 0.46bc 0.49d 0.47c 0.49e         
        

Harvest 

Breed 0.23a 0.23a 0.23a 0.23a 0.23a 0.23a 

EBV 0.47a 0.54b 0.55b 0.58c 0.56d 0.59c 

PV 0.51a 0.57b 0.58b 0.61c 0.59d 0.62c 
Different superscripts, within row, indicate a difference (p < 0.05) between the correlation coefficients within that row  
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4.1 Discussion 

The main revenue source for beef producers is carcass value, which is a function of 

both carcass price and carcass weight; carcass price itself is a function of the carcass 

conformation and fat grade. Almost a quarter of a million calves are sold younger than 

6 weeks of age at Irish livestock auctions annually, with a further quarter million sold 

younger than 12 months of age (DAFM, 2018a); combined this represents almost 40% 

of the prime animals that are eventually harvested. Thus the ability of producers to 

predict the future carcass value of an animal at sale can be extremely difficult due to 

many of the animals being sold at such a young age relative to their age at harvest 

(approximately 730 days old; Berry et al. 2017). Hence, the motivation for the present 

study was to develop a tool that could predict an animal’s potential carcass value and 

therefore aid in the decision-making process when purchasing animals; this was 

particularly true where the animal was young and thus the visible expression of genetic 

differences in weight and conformation is expected to be poor.  

In doing so, the aim of the present study was also to determine whether there was a 

benefit from taking cognisance of not only the within-breed additive genetic merit of an 

individual, but also the non-additive genetic and non-genetic effects, both of which are 

known to contribute to the eventual carcass phenotype (Connolly et al., 2016). 

Nonetheless, a caveat in estimating an animal’s future carcass value using a priori 

predictions, especially at such a young age, is that such predictions will never be 

extremely accurate due to the number of factors that are associated with differences in 

carcass value, some of which will not be known at the time of prediction. For instance, 

not only does age at harvest have a big impact of carcass performance (Judge et al., 

2019), but also whether the animal will be finished as a bull or steer (Connolly et al., 

2016). Thus, the carcass value predictions from the two proposed indexes are simply to 

assist in comparing candidate animals for purchase rather than an absolute prediction of 

carcass value per se. 

4.1.1 Why not just use a breeding index in the transaction of animals? 

Subjective evaluation of an animal’s visible characteristics, and their likely 

association with animal value, has been fundamental to livestock improvement since the 

beginning of livestock domestication (Cole and VanRaden, 2018). A general feeling 

among some is that knowledge of the breed (combinations) of an animal is sufficient to 
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predict its future carcass merit. In fact, whilst investigating the between-breed 

differences of 15 European cattle breeds, Albertí et al. (2008) suggested that, within 

reason, carcass weight and dressing percentage is largely reflected by breed type. For 

this reason, the present study investigated the relationship between the 5 performance 

phenotypes and just the breed solutions of an animal. Although positive correlations did 

exist between the trait phenotypes and the respective total merit based on just breed 

solutions (with the exception of docility; Table 4.3), exploiting the known within-breed 

variability in EBVs and non-genetic effects (i.e., the PVs) improved the partial 

correlation prediction accuracy by 0.09 (feed intake) to 14 (docility) times that of using 

the breed solutions alone. It is currently a legal requirement to record the breed of all 

animals in Ireland. Thus, it is possible to estimate the within-breed genetic potential of 

an animal over and above the breed effects. This is especially true given the growing 

uptake of genotyping in cattle (Wiggans et al., 2017) which improves the ability to not 

only predict animal breed composition more accurately (Judge et al., 2017), but can also 

(in)validate parentage (Purfield et al., 2015) on a greater number of (commercial) 

animals, thus improving the precision of prediction.  

Animals excelling in the terminal index have been documented to produce, on 

average, heavier, more conformed carcasses when compared to their lower genetic merit 

contemporaries (Connolly et al., 2016). Despite this, as calving performance-related 

traits (i.e., dystocia, gestation length and calf mortality) represent approximately 25 % 

to 50 % of the relative emphasis within the terminal indexes, it is possible that animals 

of potentially superior carcass merit will be penalised owing to their expected poorer 

calving performance. This is because of the known positive genetic correlations between 

calving difficulty and carcass weight in cattle (Berry et al., 2019a), as well as between 

calf birth weight and calving difficulty (Eriksson et al., 2004). However, when 

purchasing calves or weanlings solely for eventual harvest, it is not logical to consider 

an individual’s merit for calving traits (since the animal is already born). This prompted 

the development of both the Calf and Harvest indexes in the present study to satisfy the 

void in decision support tools for the transaction of animals for harvest, or in other 

words, those that will never become parents.  

The Irish national terminal breeding indexes, like all other cattle indexes globally 

are solely based on the individual animal’s additive genetic merit for the component 
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traits. This in part is not only due to the difficulty in estimating non-additive genetic 

effects (Bolormaa et al., 2015), but also that the expression of non-additive genetic 

effects of a bull is a function of (the genotype of) its mate. Nevertheless, using genotypic 

and phenotypic data from beef cattle, Bolormaa et al. (2015) estimated that 10 % and 18 

% of phenotypic variance for intra-muscular fat (i.e., marbling) and carcass retail beef 

yield (i.e., saleable beef yield; kg), respectively, was explained by dominance variance. 

As the non-additive genetic merit of an animal can be theoretically estimated once born 

(Bolormaa et al. (2015); dominance variance), it makes sense to consider this influence 

in the prediction of performance. This is especially true given that the prediction of 

carcass value improved once the non-additive and non-genetic effects were considered 

in the total merit estimation (i.e., PVs; Table 4.5). 

4.1.2 Index deployment 

 In its simplest form, the index published for an animal could graduate from being 

the terminal index value (includes calving performance) at the national genetic 

evaluation immediately post conception, to the Calf index coinciding with the first 

national genetic evaluation after the birth of the animal. As the Harvest index is targeted 

towards older animals, to avoid confusion it would be more beneficial for it to be 

published as the animal nears the expected harvest date. A shortcoming of the proposed 

indexes within the present study is the number of traits considered is limited, which here 

is simply a function of the data available for genetic evaluations. The economic weights 

applied to each trait used in the present study were the same for all indexes and were 

those from the Irish breeding indexes which are based on current day costs and prices. 

Greater certainty on carcass value may exist when purchasing an animal to be harvested 

in the very near future. In such a case, for deployment, the economic values used in the 

decision support tool could be more dynamic, linked to projected costs and values; the 

economic values used could even differ by index or the time horizon until projected 

slaughter date which could also be used to account for known seasonal variability in 

prices and costs.  

Given the accelerating developments in the internet of things, animal level sensors 

for measuring different characteristics (Johnsen et al., 2019; colostrum immunoglobulin 

(IgG) in saliva), biomarkers for growth (Ibeagha-Awemu and Zhao, 2015; epigenetics), 

as well as the associated systems for traceability like blockchain (Makhdoom et al., 
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2018), there is massive potential to improve, not only the dynamic nature of the indexes, 

but also the completeness and validity of the data contributing to the index values. While 

one of the current limitations of the present study is the incorporation of only a few traits 

in the overall index, there is also a reliance on producers to accurately record the data 

(e.g. calving difficulty score) in order to provide reliable estimates. Blockchain 

technology offers the potential to include considerably more traits (e.g., animal health 

and remedies administered) and, in doing so, offers a system to ensure data integrity, 

thus improving the credibility of the data used in the evaluations. Such data could 

include information on the animal that spans from their healthcare history to movements, 

thus providing a full traceability report that can be verified by the different peers. The 

two proposed indexes have the capability of utilising more information and being 

integrated into IoT systems to provide updated predictions of carcass value and details 

of provenance as the uptake in the technology intensifies.  

The benefit of including a single live-weight phenotype in the genetic evaluation for 

improving the accuracy of predicting carcass value was clear (Table 4.6), although the 

benefit of additional live-weight records was minimal; the relatively low return in 

prediction accuracy with additional live-weight records is most likely due to the high 

heritability of live-weight in cattle coupled with the strong genetic correlation that exists 

among live-weight records at different life-stages (McHugh et al., 2011). Live-weight 

phenotypes are often recorded at livestock auctions in Ireland immediately prior to 

slaughter. These information sources could be integrated via selection index 

methodology into the final index estimate of an animal, much like the ad hoc blending 

approach used in two-step genomic evaluations (e.g., VanRaden et al., 2019).  

Linking IoT with application programming interfaces (APIs) could provide an 

excellent route to market for such an index. Several hundred animals can be traded in 

livestock marts on a given day. These animals are usually booked in the day before. 

Prospective purchasers of cattle could download all registered animal details the day 

before the sale onto their mobile devices. Animals could be filtered for personal 

preferences such as breed type, genotype status or age. Using the animal RFID tags, 

those on the filtered list could then be visually inspected the following day and their 

respective transaction index studied. Another possibility entirely could be the 

introduction of a brokerage system, whereby an intermediate party could link potential 
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sellers to buyers and vice versa based on their criteria, without the animals needing to 

visit an intermediary location. This direct farm-to-farm movement would minimise the 

stress on animals with obvious welfare and biosecurity benefits as well as potential cost 

savings for both parties in the transaction. 

 

4.2 Conclusions 

The Calf and Harvest indexes proposed in the present study are a simple evolution 

of existing selection indexes by 1) focusing on just the traits pertinent to the live animals, 

2) including non-additive genetic effects in the prediction of total genetic merit and 3) 

including also relevant (and available) non-genetic effects in the prediction of eventual 

carcass value. A simplistic approach to incorporate inter-animal differences in the cost 

of production was also demonstrated. The end result of such developments is a more 

accurate prediction of eventual carcass value. Inclusion of live-weight data on the animal 

itself also improves the accuracy of prediction thus providing an incentive for recording 

data.
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5.1 Abstract 

Meticulous culling decisions, coupled with careful breeding decisions, are 

fundamental to shifting the distribution in the favourable direction and improving the 

profit per cow. While cattle breeding indexes are ubiquitous, there is a paucity of easy-

to-use dynamic tools to aid in culling decisions in beef cattle. Building such a culling 

tool on the framework of breeding indexes can expedite their uptake given the familiarity 

of the end user with the approach. The motivation for the present study was to develop 

a culling tool, complementary to a currently available breeding index, to identify females 

for culling. The monetary-based culling index, here referred to as the Beef Female’s 

Profit Potential (BFPP),  reflects the expected lifetime profitability of every individual 

female in a herd for the expected remainder of her lifetime; this profit included that of 

the cow herself as well as her progeny destined as both replacement females or for 

harvesting. The framework of the culling index was composed of four sub-indexes 

reflecting the value of an animal 1) as a nulliparae (this was voided if the cow had already 

calved), 2) for the remainder of her current parity, 3) summed across each of her 

expected remaining parities, and 4) when she is retained within the herd and not 

voluntarily culled. Each sub-index was comprised of different components reflecting 

both additive genetic, non-additive genetic and non-genetic effects associated with each 

female. Many of these effects were generated from readily available fixed and random 

effect solutions from routine genetic evaluations. Transition matrices depicting the 

expected longevity of each female and their expected month of calving were also utilised 

in calculating the expected remaining lifetime profitability of each female. The BFPP 

index was validated by stratifying, within herd, cows into four strata on their BFPP; the 

validation population consisted of 21,102 beef cows as well as their harvested progeny 

from 875 herds. On average, the future parity sub-index of the BFPP had the strongest 

correlation with the overall BFPP index (r = 0.86). The within-herd correlation between 

the BFPP and national maternal breeding index was, on average, 0.47 indicating the 

shortcomings of the breeding index as a culling tool. Cows within the top BFPP stratum 

had a genetic expectation of accruing an additional €37.46 profit per calving, relative to 

cows within the worst stratum; when validated on the cows own calving interval and 

survival performance as well as their progeny’s carcass performance, the actual 

phenotypic value was estimated to be an additional €32.31 profit per calving. A 

proportion of this additional profit was due to the harvested progeny of the high BFPP 
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cows having, on average, heavier more conformed carcasses with fat scores relative to 

their poor BFPP contemporaries. This BFPP framework is a useful and easy-to-

understand tool to aid in producer decision making on the choice of females to 

voluntarily cull but also on which replacement heifers to enter the herd. 
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5.2 Introduction 

Culling decisions in cattle are complex and multifactorial (Bascom and Young, 

1998); an inefficient culling strategy will impact the overall profitability of the enterprise 

(Orpin and Esslemont, 2010). Despite this, the majority of research on culling decisions 

and implications, as well as the development of decision support tools that support 

culling decision-making, are almost exclusively for dairy herds (Stewart et al., 1977; 

Bascom and Young, 1998; Kelleher et al., 2015). Many of the factors impacting 

voluntary culling decisions are likely to overlap between the dairy and beef sectors such 

as animal age, health status, and reproductive performance. Nonetheless, not all risk 

factors for culling in dairy cows are pertinent to beef cows and additional risk factors 

unique to beef production systems also exist. Crosson et al. (2015) reported that animal 

performance, in the form of the value of animals sold per beef cow, is one of the main 

factors contributing to profitability in beef herds. Given the high heritability of carcass 

weight (Pabiou et al., 2009), conformation (Coyne et al., 2018) and animal value 

(McHugh et al., 2011) in beef cattle, the cow herself has a large impact on the value of 

her progeny; hence, the future predicted value of offspring will have a large bearing on 

whether or not a given beef cow is a candidate for culling. An opportunity therefore 

exists to develop the framework for a novel decision support tool tailored specifically to 

the beef sector; this should incorporate chief performance metrics relevant to a beef 

female reflecting her (future) relative economic worth to the herd. For instance, the 

ability for a beef female to produce a calf per year at the desired time of year, and her 

probability of continuing to produce several more quality offspring, are both important 

key performance indicators. Indicators of milk production reflected in the expected 

relative weaning weight of her future progeny will impact her contribution to herd profit; 

maternal weaning weight in cattle is known to be both heritable and repeatable (McHugh 

et al., 2014). The objective of the present study was to develop the framework for a 

decision support tool which ranks beef females based on their expected remaining 

lifetime profit potential. The proposed Beef Female Profit Potential (BFPP) index was 

developed to be applicable to both heifers and beef cows and therefore incorporates: 1) 

the animal’s potential as a heifer (if she is nulliparous), 2) the remaining profit potential 

of the cow (provided she has calved at least once) for the current parity, 3) the projected 

profit potential up to a further 10 parities, and 4) the value of the animal if she was to be 

retained within the herd and not voluntarily culled. The BFPP was designed to, not only 
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take cognisance of the beef female’s additive genetic merit, but also her non-additive 

genetic and environmental effects associated with her performance; the outcome is a 

data-driven support mechanism for producers when making culling decisions. 

 

5.3 Materials and Methods 

5.3.1 Model development 

 The BFPP is intended to be economically-driven decision-support tool 

developed to rank beef females based on their expected remaining lifetime profit 

potential. The BFPP framework encompasses four main components of a beef female’s 

production life: 1) the animal’s heifer profit potential (HP) until she first calves, 2) the 

cow’s profit potential for the remainder of her current parity (CP), 3) the cow’s future 

profit potential for her remaining parities (FP) and, 4) the value of the beef female if she 

is retained within the herd and therefore does not require replacement (RV). The BFPP 

was therefore calculated as: 

 𝐵𝐹𝑃𝑃 = 𝐻𝑃 + 𝐶𝑃 + 𝐹𝑃 + 𝑅𝑉 [1] 

The BFPP represents the beef female’s own performance throughout the (expected) 

remainder of her lifetime comprised of not only the value she transmits directly to her 

progeny but also the maternal effects she has on her progeny’s performance and her 

value herself. Therefore, the beef female’s total merit for each trait was calculated using 

production values (PVs) in order to accurately reflect her total contribution to each trait; 

both genetic and non-genetic effects were used in the calculation of PVs. For traits 

pertaining to the female’s own performance, PVs were calculated using the animal’s 

estimated breeding value (EBV) for a given trait, her own heterosis value and, where 

available, the contribution of her permanent environment to her performance; these 

female traits were: age at first calving (AFC), maintenance (i.e., live-weight), docility, 

calving interval (CIV), survival and cull cow carcass weight (Table 5.1). For traits 

pertaining to the beef female’s progeny performance, PVs were calculated using the beef 

female’s predicted transmitting ability (PTAs, i.e., half the EBV) for the trait of interest, 

her corresponding maternal heterosis value and, where available, the female’s maternal 

permanent environmental effect as well as the effect the beef female’s dairy breed 

fraction has on her progeny’s performance (as per the national genetic evaluation models 
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discussed later); these traits were: progeny carcass traits (i.e., weight, conformation and 

fat), feed intake, docility and calving related traits (i.e., calving difficulty, mortality and 

gestation length) (Table 5.1). The statistical models pertaining to the calculation of a 

beef female’s PV for each given trait are described in Supplementary material S1. All 

fixed and random effect solutions were those estimated for the national genetic 

evaluations as discussed later. The economic parameters incorporated into the BFPP 

were obtained from the Grange Beef Model, a mathematical model used to simulate the 

Irish beef production system (Crosson et al., 2006). As described by Crosson et al. 

(2006), the model assumes that the beef enterprise is a beef spring-calving (i.e., early 

March) herd operating on 40 ha and maintaining a predominantly grass-based diet (i.e., 

grazed grass and grass silage) but extends to concentrates and maize silage, if available. 

Factors accounted for within the Grange Beef Model include: 1) animal and feeding 

activities, 2) labour, and 3) environmental considerations. 

5.3.1.1 Heifer potential 

The heifer potential (HP) component of the BFPP was calculated as the estimated 

profit potential of a beef heifer based on the expected duration until her projected first 

calving. If the beef female had already had at least one calf when the BFPP was 

generated, then the HP component of the BFPP was set to 0; otherwise if the female is 

nulliparous, then the HP component was calculated as: 

 

𝐻𝑃 = (𝐸𝑉ℎ𝑎𝑓𝑐 ∙  𝑃𝑉ℎ𝑎𝑓𝑐) ∙ (
1

1 + 𝑟
)
𝑦

+ 
𝑦

2

∙ ((𝐸𝑉ℎ𝑙𝑤𝑡 ∙  𝑃𝑉ℎ𝑙𝑤𝑡) ∙ (
1

1 + 𝑟
)
𝑦

) +  𝜋  

[2] 

where HP is the heifer profit potential component. The economic values (EV) 

relating to heifer traits were calculated based on the time taken from birth to when the 

trait is expected to be expressed and included heifer age at first calving (hafc) and heifer 

maintenance (hlwt) (Table 5.1). The production values (PV) relevant to both heifer traits 

(i.e., PVhafc and PVhlwt) are described in Table 5.1. A discount factor, (
1

1+𝑟
)
𝑦

, with an 

annual discount rate of 7% (Berry et al., 2006), accounts for the time delay to the 

expression of the trait where y is the estimated number of years (i.e., y = 1 or 2) until a 

heifer is predicted to express the trait under consideration. For instance, if a heifer is 1 

year old and is expected to express the trait in 1 year’s time, then the cost of that trait is 
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halved. A profit differential (𝜋) was added to the HP component to reflect the heifer’s 

predicted month of first calving group (MOCG) which was estimated based on her birth 

date plus the national average age at first calving for beef heifers which was 950 d 

(McHugh et al., 2014), and subsequently adjusted based on the heifer’s PV for AFC. 

The profit differential by MOCG was relative to a base female calving in March as 

described in Table 5.2. 

5.3.1.2 Current parity 

  The current parity (CP) component was calculated as the estimated profit 

potential accruing from the remainder of the current parity, given the cow’s month of 

calving for that parity. If the beef female for which the BFPP was being generated for 

was nulliparous, then the CP component was set to 0. The CP component for cows that 

had at least one calving was calculated as: 

 𝐶𝑃 =∑𝐸𝑉𝑐

2

𝑐=1

 ∙  𝑃𝑉𝑐 + ((1 − 𝑅) ∙∑𝐸𝑉𝑡

5

𝑡=1

 ∙  𝑃𝑉𝑡) + 𝑅 ∙ (𝑅𝐼𝑛𝑑𝑒𝑥) +  𝜋 [3] 

where the economic values (EV) are described in Table 5.1 and refer to: 1) cow traits 

(subscript c) represented by the traits cow maintenance and docility, 2) traits relevant to 

terminal progeny destined for harvesting (subscript t) represented by the carcass traits 

weight, conformation and fat as well as feed intake and calf docility. The associated 

production values (i.e., PVc and PVt) for the cow and terminal progeny traits are 

described in Table 5.1. The term R represents the proportion of females that were 

assumed to be retained as replacements, which was assumed to be 20%; thus, the 

remaining proportion of progeny (i.e., 1 - R) was assumed to be harvested. The 

replacement index value (Rindex) of the beef female’s progeny that will be retained 

within the herd as replacement heifers was expressed as a PTA, in Euros, of profit due 

to the additive genetic merit of the beef female. The RIndex was estimated in line with 

the current Irish national beef replacement index using PTAs for the 17 traits listed in 

Table 5.1. Similar to the HP component already described, a profit differential (𝜋), 

relative to a base female calving in March, was added to the CP component which 

represented the cow’s most recent MOCG (Table 5.2). 
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Table 5.1: Traits included within the three animal categories (i.e., heifer, cow and terminal progeny) when calculating the heifer potential (HP), current 

parity (CP), future parities (FP), retention value (RV) and, Replacement index (RIndex) when estimating the Beef Female’s Profit Potential index as 

well as the traits associated economic values (EV). 

                  Production Value estimation1 

            Direct effect2  Maternal effect3    

Animal 

category 
Trait HP CP FP RC RIndex EV 

 
BV Het PE 

 
Het PE DFract 

 

Age 

adj4 

Heifer 
Age at first calving 

 

    

-€1.61  EBV 
  

 
   

 
 

Maintenance 
     

-€1.24  EBV 
  

 
   

 
 

        
 

   
 

   
 

 

Cow 

Maintenance      

-€0.25  EBV 
  

 
   

 
 

Cow docility      

€35.06  EBV 
  

 
   

 
 

Maternal calving difficulty   
 

  

-€2.26  EBV   
 

   
 

 

Maternal Weaning weight      

€2.53  EBV   
 

   
 

 

Cull cow weight      

€3.15  EBV 
  

 
   

 
 

Calving interval      

-€2.30  EBV 
  

 
   

 
 

Survival      

€4.02  EBV 
  

      
  

     
           

Terminal 

progeny 

Calf docility      

€18.40  PTA   
 

   
 

 

Feed intake      

-€0.13  PTA   
 

   

 
 

Direct calving difficulty      

-€4.65  PTA   
 

   
 

 

Direct mortality      

-€5.34  PTA   
 

   
 

 

Direct gestation length      

-€2.25  PTA   
 

   
 

 

Carcass weight      

€3.89  PTA   
 

   

 
 

Carcass conformation      

€18.93  PTA   
 

   

 
 

Carcass fat      

-€10.08   PTA       
   

    
1Effects included in the estimation of production values  
2Direct effects included BV= breeding value where EBV = estimated breeding value and PTA = predicted transmitting ability; Het = Beef cow’s own heterosis effect, PE = Beef 

cow’s own permanent environmental effect 
3Maternal effects included: Het = Beef cow’s maternal heterosis effect on progeny, PE = Beef cow’s maternal permanent environmental effect on progeny, DFract = dam dairy 

fraction 
4Age adj = a -17 kg weaning weight EBV adjustment applied to dams who were parity 2 and older so that positive bias did not exist towards older females.
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Table 5.2: Net profit margin differential, adjusted to the base month of March, for each 

month of calving group (MOCG), including the additional dry cow penalty cost (€). 

  Additional Dry Cow Penalty (€)1 

Predicted and current MOCG  Transition state MOCG 

Group Name 
Net profit differential  

(€/cow calving) 
 Jan 

Feb and 

March 

April to 

Aug 

1 January 0  - - - 

2 February 80  - - - 

3 March 0  - - - 

4 April -120  - - - 

5 May -210  -399 -474 -649 

6 June -210  -349 -424 -599 

7 July and August -210  -275 -349 -524 

8 September 74  -200 -275 -449 

9 
October to 

December 
-116  -100 -175 -349 

1Additional dry cow penalty was applied to the transition state month of calving groups 10, 11 and 12 in 

the fertility transition matrix within the future parity component of the beef female’s profit potential index 

as these capture animals that re-calve two calendar years after their most recent calving 

 

5.3.1.3 Future parity 

The future parity (FP) component of the BFPP reflects the estimated profit potential 

culminated across future projected parities (up to a maximum of 10 additional parities) 

based on two fundamental transition matrices. Firstly, a survival transition matrix was 

used to estimate the beef female’s probability of surviving and completing her next full 

parity (i.e., i*) and surviving each potential future parity (i.e., 𝑖); this was the same 

approach as used by Kelleher et al. (2015) for dairy cows but populated in the present 

study with beef cow statistics estimated from the national data (described later). The 

survival matrix was dependent on the beef female’s current MOCG within her current 

or predicted parity (i.e., x; which was assumed to be parity 1 if she is a nulliparous 

female) as well her percentile group for survival generated from her PV for survival (i.e., 

𝑃𝐺(𝑃𝑉𝑆𝑈)). Secondly, a fertility transition matrix was used to estimate the probability 

of a beef female calving in the qth MOCG in the subsequent parity (𝑀𝑂𝐶𝐺𝑛𝑒𝑥𝑡𝑞), given 

her most recent pth MOCG (or predicted MOCG in the case of nulliparae) (𝑀𝑂𝐶𝐺𝑝), 

and her percentile group for CIV generated from her PV for CIV (i.e.,𝑃𝐺(𝑃𝑉𝐶𝐼𝑉)). The 

FP was therefore calculated as: 
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𝐹𝑃 = ( ∑ ( ∏ 𝑃(𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑖|𝑀𝑂𝐶𝐺, 𝑃𝑎𝑟𝑖𝑡𝑦,  𝑃𝐺(𝑃𝑉𝑆𝑈))

𝑗−1

𝑖=𝑖∗−1

𝑖∗+10

𝑗=𝑖∗

∙ (
1

1 + 𝑟
)
((𝑗−𝑖∗)+1)∙

𝑐𝑖𝑣
365
))

∙ (∑𝐸𝑉𝑐

4

𝑐=1

 ∙  𝑃𝑉𝑐 + ((1 − 𝑅) ∙∑𝐸𝑉𝑡

8

𝑡=1

 ∙  𝑃𝑉𝑡)

+∑𝑃(𝑀𝑂𝐶𝐺𝑛𝑒𝑥𝑡𝑞|𝑀𝑂𝐶𝐺𝑝,  𝑃𝐺(𝑃𝑉𝐶𝐼𝑉))

11

𝑞=1

∙ 𝜌 + 𝑅

∙ (𝑅𝐼𝑛𝑑𝑒𝑥)) 

 

[4] 

where FP is the future parity component. The term  

∑ (∏ 𝑃(𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑖|𝑀𝑂𝐶𝐺, 𝑃𝑎𝑟𝑖𝑡𝑦,  𝑃𝐺(𝑃𝑉𝑆𝑈))
𝑗−1
𝑖=𝑖∗−1

𝑖∗+10
𝑗=𝑖∗  is the sum of the probabilities 

of the cow surviving to each of the next 10 parities; this would equate to the expected 

total number of remaining parities to be achieved by the female. A discounting factor, 

(
1

1+𝑟
)
((𝑗−𝑖∗)+1)∙𝑐𝑖𝑣/365

, penalises each counted parity for the delay between reaching 

parity j and the time of the next full parity plus an additional calving interval (i.e., the 

average CIV in Ireland in 2019 of 401 days; ICBF (2019a)) assumed to be the time from 

present until the start of the next full parity in years. The economic values (EV) are 

described in Table 5.1 and are associated with: 1) cow traits (subscript c) represented by 

cow maintenance, docility as well as the maternal traits of calving difficulty and 

maternal weaning weight), 2) traits relevant to future terminal progeny destined for 

harvest (subscript t) represented by carcass traits including weight, conformation and fat 

as well as feed intake, calf docility and direct calving performance traits including 

calving difficulty, mortality and gestation length. The calculation of the production 

values (PV) for the cow and terminal traits are described in Table 5.1.  
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The term  ∑ 𝑃 (𝑀𝑂𝐶𝐺𝑛𝑒𝑥𝑡𝑞|𝑀𝑂𝐶𝐺𝑝,  𝑃𝐺(𝑃𝑉𝐶𝐼𝑉))
11
𝑗=1 ∙ 𝜌 is the summed expected 

profit associated with the probability of a cow calving in the next MOCG (𝑀𝑂𝐶𝐺𝑛𝑒𝑥𝑡𝑞), 

given the beef female’s current or predicted (i.e., for a nulliparous female) MOCG 

(𝑀𝑂𝐶𝐺𝑝) and her PV for CIV percentile group (𝑃𝐺(𝑃𝑉𝐶𝐼𝑉)), where 𝜌 is the profit 

differential for each current MOCG (𝑀𝑂𝐶𝐺𝑝) plus an additional monetary penalty 

applied to MOCGs 5 to 9 (i.e., which span from May to December), inclusive, which 

captured the small probability of animals re-calving two calendar years after their last 

observed calving event (Table 5.2). This penalty was imposed to reflect the additional 

cost incurred from retaining a dry cow in the herd and incorporates the costs of additional 

feed, land and machinery (Supplementary Table S9.6). The terms R and Rindex are as 

described previously. 

5.3.1.4 Retention Value 

The retention value (𝑅𝑉𝑥) captures the total euro value that is saved if a beef female, 

who is currently in parity x, is not voluntarily culled and is therefore retained within the 

herd. The 𝑅𝑉𝑥 was calculated as: 

 𝑅𝑉𝑥 = 𝑅𝑅𝑥(𝐻𝑅𝑐𝑜𝑠𝑡 − 𝑓(𝐶𝑢𝑙𝑙𝑤𝑡𝑥)) [5] 

where 𝑅𝑅𝑥 is the remaining proportion of the production life of the beef female that 

would be required to be replaced if she were to be culled at the end of parity x (Table 

5.3) and therefore accounts for the high replacement cost of voluntarily culling a younger 

beef female. The 𝑅𝑅𝑥was calculated as:  

 𝑅𝑅𝑥 = 

{
 
 

 
 

1 + ∑ ∏ 𝑃𝑛𝑒𝑥𝑡𝑗
𝑘
𝑗=𝑥+2

10
𝑘=𝑥+2

𝐸𝑁𝑃
  𝑤ℎ𝑒𝑛 0 ≤ 𝑥 ≤ 8

 
 

                   
1

𝐸𝑁𝑃
                                 𝑤ℎ𝑒𝑛 𝑥 ≥ 9       }

 
 

 
 

 [6] 

where it is assumed that if the beef female was not culled at the end of parity x, her 

probability of starting her next full parity (i.e., i*) would be one (i.e., where 1 is the 

guaranteed probability of starting parity i* in the numerator of Eq. 6). It is therefore 

assumed that a nulliparous heifer will start her first parity; however, if the heifer is 

voluntarily culled prior to her first parity, then 𝑅𝑅𝑥 equals 1. The average probability of 

a beef female surviving her current parity, and therefore starting a subsequent parity, up 

to parity 10, was captured in the term 𝑃𝑛𝑒𝑥𝑡𝑗; in the present study, the cow was not 
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assumed to have survived if she did not have a subsequent calving within 600d of her 

previous calving (taking cognisance of the date of last calving relative to the date of data 

extraction). The 𝑃𝑛𝑒𝑥𝑡𝑗 proportions are described in Table 5.3.   

Table 5.3: The proportion of animals estimated to survive their current parity and 

therefore start their next parity (Pnext), the proportion of animals expected to survive 

their current parity, given their chance of surviving each pervious parity (Psurv) and, the 

proportion of an animal’s productive life required to be replaced if they were to be culled 

at the end of their current parity (RR), as well as a beef females total expected number 

of parities (ENP) to complete, given her probability of surviving each parity. Parity 0 

represents heifers. 

Parity PNext Psurv RR 

0 1.000 1.000 0.838 

1 0.773 1.000 0.806 

2 0.812 0.773 0.752 

3 0.828 0.628 0.689 

4 0.825 0.520 0.624 

5 0.812 0.429 0.553 

6 0.796 0.349 0.478 

7 0.774 0.278 0.398 

8 0.742 0.215 0.304 

9 0.707 0.159 0.183 

10 0.660 0.113 0.183 

    

ENP 
 

5.464 
 

 

The total expected number of parities (ENP) that a beef female was estimated to 

complete if not culled (Eq. 7), given her probability of surviving each parity x (𝑃𝑠𝑢𝑟𝑣𝑥) 

is described in Table 5.3. For cows under consideration for culling that have already 

survived beyond the 9th parity limit, it was assumed that she had the same replacement 

requirements as if she were to be culled at the end of parity 9 (i.e., 𝑅𝑅9) with an expected 

maximum survival for only one additional parity. A beef female’s ENP was calculated 

as: 

 𝐸𝑁𝑃 =  ∑𝑃𝑠𝑢𝑟𝑣𝑥

10

𝑥=0

 [7] 
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where 𝑃𝑠𝑢𝑟𝑣𝑥 is the probability of surviving beyond parity x so that the next parity 

(i.e., i*) is started and is calculated as: 

 𝑃𝑠𝑢𝑟𝑣𝑥 = 

{
 
 

 
 
1,                       𝑤ℎ𝑒𝑛 𝑥 = 0          

 

∏𝑃𝑛𝑒𝑥𝑡𝑗−1

𝑥

𝑗=1

  𝑤ℎ𝑒𝑛 0 < 𝑥 ≤ 10

}
 
 

 
 

 [8] 

where 𝑃𝑛𝑒𝑥𝑡𝑗 is as described previously in Eq.6. It was assumed that all heifers 

chosen as replacements will start their first parity. 

The cost of buying in a replacement heifer was captured in the term Hrcost and was 

estimated to be €1790 (Supplementary Table 9.7). The estimate of the salvage value of 

the cull cow in parity x (𝑓(𝐶𝑢𝑙𝑙𝑤𝑡𝑥)) was calculated from a function of average 

predicted cull cow carcass weight for an Irish beef cow (described later) completing 

parity x and combines intersecting linear and quadratic equations as follows: 

 𝑓(𝐶𝑢𝑙𝑙𝑤𝑡𝑥) = {
𝑎 +  𝑏(𝐶𝑢𝑙𝑙𝑤𝑡𝑥) +  𝑐(𝐶𝑢𝑙𝑙𝑤𝑡𝑥

2)    𝑖𝑓 𝐶𝑢𝑙𝑙𝑤𝑡𝑥 <  𝑇
 

𝑑(𝐶𝑢𝑙𝑙𝑤𝑡𝑥) ,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} [9] 

where a to d and T were estimated using the price data described in detail below; this 

shape is based on the pricing model adopted in Irish abattoirs. The predicted cull carcass 

weight (𝐶𝑢𝑙𝑙𝑤𝑡𝑥) was calculated as: 

 𝐶𝑢𝑙𝑙𝑤𝑡𝑥 =  𝑃𝑉𝑐𝑢𝑙𝑙𝑤𝑡 + 𝐿𝑆𝑀𝐶𝑢𝑙𝑙𝑤𝑡𝑥 [10] 

where  𝑃𝑉𝑐𝑢𝑙𝑙𝑤𝑡 is the production value for a beef female’s cull cow carcass weight. 

Least squares means of the cull cow carcass weight for parity x (𝐿𝑆𝑀𝐶𝑢𝑙𝑙𝑤𝑡𝑥) was 

estimated from an Irish dataset of 86,949 cull cows with a linear fixed effects model 

fitted to cull cow carcass weight adjusting for parity, carcass fat, conformation and EBV 

for cull cow weight (described in detail below); the LSMCullwt estimates for parity x 

are detailed in Supplementary Table S9.8. 
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5.3.2 Transition matrices 

The probability of an animal transitioning from one state to another, over a period of 

time, was calculated using Markov transition matrices similar to the methodology 

described by Kelleher et al. (2015) for dairy cows.  

1) Month of calving group fertility transition matrix 

A three dimensional (i.e., a 9 × 11 × 5 matrix array) fertility transition matrix was 

constructed. The transition matrix dimensions were calculated as follows: firstly, 

animals were classified into 9 groups based on their most recent MOCG, namely: (1) 

January, (2) February, (3) March, (4) April, (5) May, (6) June, (7) July and August, (8) 

September, and (9) October to December, inclusive (Table 5.4); secondly, animals were 

partitioned into 12 transition states based on their MOCG in the next lactation and the 

duration of time between consecutive calvings as described in Table 5.4; finally, animals 

were stratified into 5 percentile groups of equal size based on their PV for CIV (i.e., 

𝑃𝐺(𝑃𝑉𝐶𝐼𝑉); Eq. 4). Solely for the construction of the transition matrices, and to avoid 

the potential of biasing the matrices with the animal’s own records, PVs for the transition 

matrices were calculated using the female’s parental average EBV for CIV plus their 

own heterosis effect on calving interval estimated from the national genetic evaluation 

where it exists as a fixed effect. 

2) Survival transition matrix 

A three dimensional (i.e., a 9 × 8 × 5 matrix array) survival transition matrix was 

constructed as follows: firstly, animals were classified into 9 groups based on their most 

recent MOCG (Table 5.4); secondly, animals were stratified based on their current parity 

number group as 1, 2, 3, 4, 5, 6, 7, 8 to 10, inclusive; finally, animals were stratified into 

5 strata of equal size based on their survival PV (i.e., PG(PVsu) Eq. 4). The survival PV 

used within the survival transition matrix was calculated using the animal’s parental 

average EBV for survival plus the beef female’s own heterosis effect on survival 

estimated from the national genetic evaluation where it exists as a fixed effect.  
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Table 5.4: Month of calving groups (MOCG) defined to describe the current state and 

transition state beef female’s month of calving groups as well as the time period between 

the consecutive calving used in the estimation of the calving interval and survival 

transition matrices. 

MOCG Current state Transition state 

Calendar years 

between successive 

calving 

1 January January 1 

2 February February 1 

3 March March 1 

4 April April 1 

5 May May 1 

6 June June 1 

7 July and August July and August 0 or 1 

8 September September 0 or 1 

9 October to December October to December 0 or 1 

10 - January 2 

11 - February and March 2 

12 - April to August 2 

 

5.3.3 Data used in the construction of the index 

Genetic and non-genetic effects, as well as the associated raw phenotypic data, were 

available from the Irish Cattle Breeding Federation (ICBF) national database, Bandon, 

Co. Cork, Ireland (http://www.icbf.com). The data used in the construction of the BFPP 

were calving records pertaining to the Irish national herd which were available on 

3,850,256 beef females. Cows were classified as beef provided they had less than or 

equal to 50 % dairy breed composition (i.e., Friesian, Holstein and Jersey). To ensure 

the data analysed were representative of the Irish national commercial beef herd, animals 

were removed if they were registered to a breed society or were recorded to have given 

birth to a calf from embryo transfer; these edits resulted in 3,377,598 cows remaining. 

Only animals that calved between the years 2012 and 2017, inclusive, for parities 1 to 

11, inclusive were retained. Erroneous data and calving events with calving intervals 

(i.e., the number of days between two consecutive calvings) that were below 300 d or 

exceeded 600 d were removed and if the calving interval was removed, the animal was 

recorded to have not survived; these edits resulted in 1,598,271 cows with 4,281,355 

calving events remaining. When calculating the transition matrices, parental average 

http://www.icbf.com/
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EBVs were used; therefore the beef female’s sire and dam as well as their respective 

PTA for CIV and survival were required to be known; a total of 2,218,278 records from 

786,487 cows remained. Herds were also required to have a minimum of 5 calving 

events each year which resulted in 1,789,373 records from 689,438 animals used in the 

development of the CP and FP components of the BFPP index.  

Further edits were applied to the dataset for the estimation of the function values 

within Eq. 9 and the 𝐿𝑆𝑀𝐶𝑢𝑙𝑙𝑤𝑡𝑥 (Eq. 10) within the RV component. Animals were 

required to have cull cow carcass phenotypes including carcass weight, conformation 

and fat, as described in Englishby et al. (2016), as well as price per kg of carcass weight; 

270,745 beef females remained. Animals were also required to have not gone through a 

fattening period, therefore if cows were harvested over 300 d from their last calving they 

were removed, resulting in 86,949 beef cows remaining. Using SAS 9.4 software (SAS 

Institute Inc., Cary, NC), the function values embedded within Eq. 9 were estimated 

using a linear and non-linear regression model in PROC NLIN. The carcass weight 

break-point (T) was calculated as: −0.5 (
𝑏

𝑐
); the upper limit euro / kg of carcass weight 

(d) was calculated as: 𝑎 +  𝑏(−0.5 (
𝑏

𝑐
) +  𝑐 (−0.5 (

𝑏

𝑐
))

2

. 

5.3.4 Index validation 

The validation population was based on all beef cows that had a recorded calving 

event in the year 2017 within the edited dataset; the following additional edits were 

applied: 1) beef cows were required to have EBVs for each trait within the Replacement 

index (RIndex) available, resulting in 150,370 cows, 2) beef cows were retained if their 

resulting progeny from the 2017 calving were harvested prior to data extract between 12 

and 36 months of age for heifers and steers and between 12 and 24 months of age for 

young bulls; 124,992 beef females remained; 3) the sires of the beef cow’s progeny were 

required to have been known and the progeny must have resided in the herd prior to 

slaughter for at least 100 days; 94,944 beef cows remained; 4) at least three animals must 

have been present in the progeny’s slaughter contemporary group, resulting in 72,059 

beef cows remaining and finally, 6) there had to be at least 15 calving events in the herd 

in 2017 for the beef females to be retained; this resulted in 21,102 beef cows from 875 

herds remaining in the validation population as well as 21,102 of their harvested 

progeny. 
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5.3.5 Genetic evaluations 

Five suites of multi-trait multi-breed genetic evaluations were run to generate both 

random and fixed effects solutions for all traits included in the Irish national replacement 

beef index using the Mix99 software (MiX99 Development Team, 2015). The 

phenotypic data pertaining to the five genetic evaluations were truncated on the 

31/12/2017 and therefore only included records pertaining to the beef females for, and 

prior to, the year 2017. The national fertility evaluation is a 6 × 6 multi-trait evaluation. 

The fertility phenotypic data used in the present study consisted of 11,186,677 individual 

lactations with a pedigree file of 15,321,093 animals; fixed effect solutions and random 

effects pertaining to age at first calving (AFC; days), calving interval (CIV; days) and 

survival (surv; %) were retained. The national calving performance evaluation is a 9 × 

9 multi-trait evaluation and included 19,555,773 birth records with 23,719,121 animals 

in the pedigree file; fixed effect solutions as well as random direct and maternal effects 

were available for the traits calving difficulty (scale 1 to 4), mortality and gestation 

length (days). The docility genetic evaluation is a 3 × 3 multi-trait genetic evaluation; 

the phenotypic data used in the present study consisted of 2,761,478 individual animals, 

with a pedigree file of 4,172,537 animals; fixed effect solutions and random effects 

pertaining to the farmer recorded calf and cow docility traits were retained. The national 

beef carcass evaluation is a 29 × 29 multi-trait carcass genetic evaluation; the phenotypic 

dataset consisted of 13,347,345 individual animal’s records and the pedigree file 

contained 18,918,306 animals; fixed and random effect solutions pertaining to cow live-

weight, feed intake, carcass traits (i.e., weight, conformation and fat) and, cull cow 

carcass weight were used in the present study. The national milk (i.e., maternal weaning 

weight) genetic evaluation is a 7 × 7 multi-trait evaluation; fixed effect solutions as well 

as maternal and direct random effects were retained for weaning weight; the phenotypic 

data used in the evaluation consisted of 8,802,215 individual animals and the pedigree 

file contained 13,428,159 animals. 

5.3.6 Statistical analyses 

Within each herd, Pearson correlations were used to estimate the relationship 

between the BFPP index itself, three of its sub-indexes (as there were no heifers in the 

validation population, the HP component was omitted from the validation), the Irish 

national maternal replacement (Rindex), the calf (comprised of terminal traits) and cow 

(comprised of maternal traits) sub-indexes of the Rindex, and the Irish national terminal 
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index. The pairwise correlations were subsequently averaged across herds. Within each 

herd, animals were stratified into four groups of equal size based on their BFPP index 

value. A range of descriptive statistics were estimated for each stratum as well as the 

CP, FP and RV sub-indexes. The association between cow calving interval with each 

stratum was estimated by adjusting for contemporary group of calving. The log of the 

odds of surviving was estimated using logistic regression in PROC GENMOD (SAS 

Institute Inc., Cary, NC) as follows: 

𝐿𝑜𝑔𝑖𝑡{𝑃(𝑆𝑢𝑟𝑣 = 1|𝑋)} = 𝐵𝐹𝑃𝑃𝑆𝑡𝑟𝑎𝑡𝑎 +  𝐻𝑌𝑆𝑐𝑎𝑙𝑣 

where 𝐿𝑜𝑔𝑖𝑡{𝑃(𝑆𝑢𝑟𝑣 = 1|𝑋)} was the log of the odds of a positive outcome (i.e., 

the animals survived); BFPPstrata represented the fixed effect of the beef cow’s stratum 

for BFPP (i.e., 1 to 4, inclusive); HYScalv was the random effect of the cow’s herd-year-

season contemporary group of calving. Odds ratios were calculated as the exponent of 

the model estimate solutions. 

  Linear mixed models were used to estimate the least squares means of each stratum 

for the progeny traits as: 

𝐶𝑎𝑟𝑐𝑎𝑠𝑠 𝑡𝑟𝑎𝑖𝑡𝑠𝑎

=  𝐵𝐹𝑃𝑃𝑆𝑡𝑟𝑎𝑡𝑎 +∑𝐻𝑒𝑡

2

𝑏=1

+  𝐻𝑌𝑆𝑠𝑙𝑎𝑢 +  𝐶𝑎𝑟𝑐𝑇𝑦𝑝𝑒 + 𝐴𝑔𝑒𝑆𝑙𝑎𝑢

+ 𝑆𝑖𝑟𝑒𝑃𝑇𝐴𝑎 +  𝐶𝑎𝑟𝑐𝑇𝑦𝑝𝑒|𝐴𝑔𝑒𝑆𝑙𝑎𝑢 +  𝐶𝑎𝑟𝑐𝑇𝑦𝑝𝑒|𝑆𝑖𝑟𝑒𝑃𝑇𝐴𝑎  + 𝑒 

𝐴𝑔𝑒𝑆𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟

= 𝐵𝐹𝑃𝑃𝑆𝑡𝑟𝑎𝑡𝑎 +∑𝐻𝑒𝑡

2

𝑏=1

+  𝐻𝑌𝑆𝑐𝑎𝑙𝑣 +  𝐶𝑎𝑟𝑐𝑇𝑦𝑝𝑒

+ 𝐶𝑎𝑟𝑐𝑎𝑠𝑠𝑊𝑒𝑖𝑔ℎ𝑡 + 𝐶𝑎𝑟𝑐𝑎𝑠𝑠𝐹𝑎𝑡 +  𝐶𝑎𝑟𝑐𝑇𝑦𝑝𝑒|𝐶𝑎𝑟𝑐𝑎𝑠𝑠𝑊𝑒𝑖𝑔ℎ𝑡

+  𝐶𝑎𝑟𝑐𝑇𝑦𝑝𝑒|𝐶𝑎𝑟𝑐𝑎𝑠𝑠𝐹𝑎𝑡 + 𝑒 

 

where Carcass traits was the trait a pertaining to carcass weight (kg), conformation 

(EUROP scale) and fat (15 point score); AgeSlaughter was the age of the progeny when 

harvested (in days); BFPPstrata represented the fixed effect of the beef cow’s stratum 

for BFPP (i.e., 1 to 4, inclusive); Het was the heterosis coefficient which is fitted as two 

separate fixed effect heterosis coefficients to represent the progeny of the beef cows 

different breed crosses; HYSslau and HYScalv were the progeny of the beef cows herd 
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year season contemporary group for slaughter and birth, respectively, fitted as a random 

effect; CarcType was the fixed effect of whether the progeny was a heifer, steer or young 

bull; AgeSlau was the fixed effect of the progeny’s phenotypic age at slaughter in 

months; SirePTA was the progeny’s sire PTA for trait a, fitted as a fixed effect; 

CarcType| AgeSlau was the fixed effect interaction between the progeny’s carcass type 

and age at slaughter;  CarcType|SirePTA was the fixed effect interaction between the 

progeny’s carcass type and sire’s PTA for trait a; CarcassWeight was the fixed effect of 

phenotypic carcass weight (kg) of the progeny; CarcassFat was the phenotypic carcass 

fat score of the progeny, fitted as a fixed effect; CarcType|CarcassWeight was the fixed 

effect interaction between the progeny’s carcass type and phenotypic carcass weight; 

CarcType|CarcassFat was the fixed effect interaction between the progeny’s carcass 

type and phenotypic carcass fat; e is the residual. 

 

5.4 Results 

5.4.1 Characterisation of components within the BFPP index 

Irrespective of parity or MOCG, the probability of surviving from one parity to the 

next progressively improved as the percentile group for survival PV improved, (Figure 

5.1). The difference in survival between the best and worst PV percentile groups ranged 

from 9.65 % for third parity cows calving in February to 20.95 % for parity one cows 

calving in June. Cows that calved in either January or February tended to have the 

greatest probability of surviving to next parity across all PV percentile groups. 

Irrespective of PV percentile group or MOCG, parity 2 to 6 cows, inclusive, had a greater 

probability of survival to the next parity than parity one animals. The lowest probability 

of surviving to the next parity was for cows that calved in July and August (Figure 5.1); 

the survival transition matrix data are in Supplementary Table 9.9. 

Cows that calved between January and April, inclusive, had a greater probability of 

re-calving in the same MOCG the following year (ranging from 0.29 in the lowest PV 

group for January to 0.45 in the best PV group for March) relative to transitioning into 

a different MOCG (Figure 5.2). Irrespective of the MOCG, the cows with the highest 

PV percentile group for CIV had a greater probability of re-calving in the same MOCG 

relative to the lowest PV percentile group. Cows in the best PV stratum for CIV also had 
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a greater probability of re-calving earlier relative to cows in the worst CIV stratum; 

whereas cows in the lowest PV stratum for CIV had a greater probability of re-calving 

later relative to cows in the best PV stratum (Figure 5.2). The fertility transition matrix 

values are available in Supplementary Table S9.10. 

Within the RV component of the BFPP index, the beef female’s salvage value was 

determined by: 1) the constant value a equal to -3.309, 2) the linear coefficient of 

0.037111 and, 3) the quadratic coefficient -0.0000506. Thus, the cull cow carcass weight 

break-point value (T) was estimated to be 366.71 kg (i.e., 𝑇 = −0.5 (
0.037111

−0.0000506
)). The 

upper limit Euro per kg of cull cow carcass weight, d, was estimated to be €3.50 per kg 

(i.e., 𝑑 =  𝑎 +  𝑏(𝑇) +  𝑐(𝑇2)). Therefore, the formula used in the estimation of the beef 

females cull cow carcass value was:  

 

𝑓(𝐶𝑢𝑙𝑙𝑤𝑡𝑥)

= {
−3.309 + 0.037111(𝐶𝑢𝑙𝑙𝑤𝑡𝑥) +  − 0.0000506(𝐶𝑢𝑙𝑙𝑤𝑡𝑥

2)   𝑖𝑓 𝐶𝑢𝑙𝑙𝑤𝑡𝑥 <  𝑇
 

3.50(𝐶𝑢𝑙𝑙𝑤𝑡𝑥) ,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

[11

] 
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Figure 5.1: The probability of beef females, stratified into 5 strata based on their parental average estimated breeding value for survival (i.e., top 20% 

(••••), 60 % to 80 %  (        • • ), 40 % to 60 % (          ), 20 % to 40 % (                 ), and bottom 20 % (        •        )), surviving to start a subsequent parity given their 

current month of calving group (i.e., 1= January, 2 = February, 3 = March, 4 = April, 5 =May, 6= June, 7 = July and August, 8 = September and 9 = 

October to December, inclusive).  
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Figure 5.2: The probability of beef females within the top (grey) and bottom (black) 20% strata for their parental average estimated breeding value 

for calving interval and heterosis effect transitioning to a next month of calving group (i.e., a = January, b = February, c = March, d = April, e =May, 

f = June, g = July and August, h = September, i = October to December, j = January, k = February and l = April to August, inclusive, where groups j 

to l are in two calendar years’ time), given their current month of calving group (MOCG; i.e., 1= January, 2 = February, 3 = March, 4 = April, 5 = 

May, 6= June, 7 = July and August, 8 = September and 9 = October to December, inclusive).
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5.4.2 Descriptive summary of the BFPP index 

The correlations between all the (sub-) indexes are in Table 5.5. Of the three sub-

indexes in the BFPP, the FP was the most strongly correlated with BFPP (r = 0.84) 

whereas the RV was the most weakly correlated (r=0.49). The BFPP was moderately 

positively correlated with the Irish national replacement index within herd (i.e., Rindex; 

r = 0.45) as well as with both the calf (r = 0.29) and cow (r = 0.31) sub-indexes of the 

Rindex. The correlation between the BFPP and the Irish national beef terminal index 

was much weaker at 0.27. Of the three sub-indexes of the BFPP, the FP sub-index was 

most strongly correlated with the Rindex (0.63) with correlations of 0.40 and 0.47 with 

the cow and calf sub-indexes of the Rindex, respectively. Although the correlation 

between the CP sub-index and the Rindex was only 0.17, the correlation between the CP 

and the calf sub-index (r = 0.28) was stronger than the correlation of 0.03 between the 

CP and the cow sub-index. While the correlations reported above are for 875 herds with 

at least 15 calving’s, the correlations were very similar when the dataset was limited to 

the 256 herds with at least 25 calving’s. 

 

Table 5.5: Correlations between the Beef Female’s Profit Potential index (BFPP) and 

the current parity (CP), future parity (FP), retention value (RV) components within the 

BFPP index, as well as the Irish national Replacement index (Rindex), the calf (Calf 

Rindex) and cow (Cow Rindex) sub-indexes within the Rindex and the Irish national 

Terminal index. 

 CP FP RV Rindex 
Calf 

Rindex 

Cow 

Rindex 
Terminal 

BFPP 0.68 0.84 0.49 0.45 0.29 0.31 0.27 

CP  0.55 -0.07 0.17 0.28 0.03 0.29 

FP   0.14 0.63 0.47 0.40 0.45 

RV    0.06 -0.15 0.14 -0.16 

Rindex     0.29 0.86 0.22 

Calf Rindex      -0.18 0.98 

Cow Rindex       -0.24 
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5.5 Validation of the BFPP index 

The average within-herd BFPP index and BFPP sub-index values by quartiles are in 

Figure 5.3. As BFPP stratum improved, the mean BFPP index and sub-index values also 

increased. The smallest mean difference between the best and worst strata was within 

the RV sub-index (i.e., €121.64), whereas the greatest difference was within the FP sub-

index (i.e., €246.92). Cows within the top 25 % BFPP stratum had the largest range of 

(sub-) index values relative to the remaining strata (Figure 5.3). The mean Irish national 

replacement index (breeding index for maternal beef traits; Rindex) and Terminal index 

(breeding index for terminal beef traits) for each BFPP stratum is in Table 5.6. As the 

BFPP stratum improved, the Rindex and terminal index values also improved. The mean 

Rindex of cows in the best BFPP stratum was €35.73, therefore the additional profit 

expected from each of the cow’s calving’s was expected to be worth €35.73 more than 

cow’s within the worst stratum. The mean terminal index value of the cows within the 

best stratum was almost €16, thus the harvested progeny of the high BFPP beef cows 

were, on average, expected to be almost €16 more profitable than the progeny of the 

beef cows within the worst BFPP stratum. 

The mean phenotypic performance of both the beef cows and their progeny for each 

within-herd BFPP stratum are also in Table 5.6. Cows within the top 25 % for the BFPP 

had the longest calving interval, 8 days, on average, longer than the bottom 25% of cows 

on BFPP. The top 25 % BFPP ranked cows, however, were 1.63 times more likely to 

survive to the next lactation than the lowest ranking contemporaries. When the progeny 

of the high BFPP cows were harvested, they had, on average, heavier more conformed 

carcasses with lower fat scores relative to the worst BFPP stratum. When adjusted to the 

same carcass weight, the progeny of the high BFPP cows were, however, harvested 

almost 8 days later than the progeny of the beef cows within the worst BFPP stratum 

(Table 5.6). 
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Figure 5.3: Summary statistics of the Beef female profit potential (BFPP) index as well as the individual component used to calculate the BFPP, 

including the  current parity, future parity and retention value components within the four strata based on the within herd ranking of animals using the 

BFPP index. 
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Table 5.6: Mean Irish national Replacement and Terminal index values for animals stratified based on their Beef Female’s Profit Potential (BFPP) 

index value, as well as the least square means performance of BFPP female’s progeny for carcass traits (i.e., weight, conformation and fat) and age 

at slaughter; standard error within parenthesis. 

  Beef Female Profit Potential stratum 

Animal Component Top 25% 50% to 75% 25% to 50% Bottom 25% 

Cows traits 

Replacement (€) 32.76 (30.05) 22.35 (30.16) 12.75 (30.73) -2.93 (32.60) 

Terminal (€) 31.97 (28.45) 27.61 (28.26) 23.27 (28.97) 16.07 (29.96) 

CIV (days) 377.21 (39.03)a 372.33 (39.32)b  371.26 (39.71)b 368.87 (40.98)c 

Survival1 (0 to 1) 1.63 (1.52,1.73)a 1.48 (1.39,1.58)a 1.34 (1.25,1.43)a 1.00 (1.00,1.00)b 

      

Progeny 

traits 

Carcass weight (kg)2 398.46 (59.76)a 398.48 (59.76)a 396.61 (59.76)ab 394.29 (59.76)b 

Carcass Conformation (EUROP scale)3 7.19 (1.74)a 7.14 (1.74)ab 7.07 (1.74)b 6.94 (1.74)c 

Carcass fat (1 to 15 scale)4 7.94 (1.65)a 7.99 (1.65)ab 8.04 (1.65)b 8.04 (1.65)b 

Age at slaughter (days)5 659.28 (129.28)a 653.90 (129.28)b 652.42 (129.28)b 650.45 (129.28)b 

Different superscripts within row indicate significance difference P < 0.05  
1The bottom 25 % BFPP stratum was the reference stratum. 
2Reference animal was a steer with 100% heterosis, slaughtered at 24 months old and sires carcass weight PTA was 20kg. 
3Reference animal was a steer with 100% heterosis, slaughtered at 24 months old and sires carcass conformation PTA score was 1.6 units. 
4Reference animal was a steer with 100% heterosis, slaughtered at 24 months old and sires carcass fat PTA score was -0.06. 
5Reference animal was a steer with 100% heterosis, slaughtered at 24 months old with a carcass weight of 380 kg and carcass fat score of 6.8.  
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5.6 Discussion 

Culling decisions have been reported to be multifarious (Bascom and Young, 1998) 

and can be influenced by a range of factors such as age (Adamczyk et al., 2017), 

performance relative to contemporaries (Berry et al., 2005), infertility and production 

(Seegers et al., 1998). Hence, actually deciding on which animal to cull given all the 

underlying contributing factors can become unwieldy, especially in large herds. A 

fundamental element to the successful deployment and adoption of any decision-support 

tool (DST), such as the BFPP, is providing an actual solution to a problem. Therefore, 

being able to collate the multifarious risk factors into a single rank per animal could be 

hugely beneficial in achieving more optimal culling decisions. Several tools have 

previously been developed to help identify animals for culling (Stewart et al., 1977; 

Lopez-Villalobos et al., 2010), yet to our knowledge, all are specific to the dairy sector. 

To date, the quality and availability of data pertaining to genetic-based beef management 

DST may have been a limiting factor in the ability to develop and implement a culling 

tool, such as the BFPP; therefore the international applicability of the BFPP framework 

may be data resource-limited and would require data integrity systems in place which 

ensure sire verification.  

Key drivers of the successful adoption and on-going engagement with a DST are 

multitudinous and include factors such as the DSTs ease-of-use, potential to improve 

efficiency as well as the trustworthiness of the provider (Rose et al., 2016). Hence, 

incorporating components within the DSTs which are already familiar and trusted by the 

producer (e.g., breeding indexes) can stimulate an accelerated rate of adoption. 

Furthermore, being able to demonstrate the construction of the final index value by 

decomposing it into its individual sub-components can facilitate a greater understanding, 

and thus acceptance, of the ranking tool. This was the basis of the approach adopted by 

Kelleher et al. (2015) in their construction of a relatively simply tool to rank dairy cows 

on future lifetime profitability. The motivation for the present study was to tailor, and 

where appropriate, modify the framework proposed by Kelleher et al. (2015) for 

deployment in beef females; a noteworthy addition in the present study to the tool 

proposed by Kelleher et al. (2015) was its expansion to also consider nulliparous females 

in the ranking against cows. This important addition can be beneficial in deciding 

whether a virgin heifer should be retained as a replacement or finished for harvesting. 
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Similarly, the ability to compare the BFPP of a virgin heifer to that of the cows in the 

herd can help determine the level of voluntary culling for that herd. The end outcome is 

that the BFPP proposed within should be used to first and foremost identify cows for 

culling (and the heifers to replace them), but can also be used to identify superior females 

with the greatest lifetime potential within the herd. When utilised in tandem with a 

maternal breeding index (Twomey et al., 2020), females who are not only genetically 

superior, but also have a high BFPP value, and therefore a high lifetime profitability 

potential, can be identified and mated to suitable bulls to produce exceptional 

replacement females and in doing so, increase the genetic gain achievable; the end 

outcome being a year-on-year improvement in performance. The BFPP can also 

facilitate the decision-making process when trading beef females as the buyer can assess 

the future lifetime potential of the female. Moreover, although the research was carried 

out on dairy cattle, Dunne et al. (2019) reported that  an animal’s performance can differ 

depending on the herd’s best linear unbiased estimates; therefore, there is potential for 

the BFPP to be tailored to each individual herd so that producers have an indication of 

how a female may perform specific to their own herd environment. 

5.6.1 Framework of the culling tool 

Selection indexes were first proposed in the early 1940’s (Hazel and Lush, 1942) 

and are now ubiquitous in animal breeding globally. Ireland operates both a terminal 

(Connolly et al., 2016) and maternal (Amer et al., 2001; Twomey et al., 2020) national 

breeding index, both of which are routinely used by producers and breeders. The Irish 

maternal index forms the foundations of the proposed BFPP in the present study. 

Inclusion of both non-additive genetic effects and non-genetic effects is a key extension 

for implementation of this DST. The contribution of non-additive genetic effects 

(Gregory et al., 1978; McHugh et al., 2019) as well as non-genetic effects (Coyne et al., 

2019; Judge et al., 2019; McHugh et al., 2019) to animal performance in beef cattle has 

been documented elsewhere; hence, these factors will influence the decision to cull a 

female (as well as which heifer to retain for breeding) and thus should be considered 

within a decision support tool for culling and identifying profitable heifers. 

 The underlying principle of the BFPP was that of the simple culling index 

developed for dairy cows by Kelleher et al. (2015) but modified to be applicable for beef 

females. Consistent with the BFPP developed in the present study, Kelleher et al. (2015) 
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considered the sub-indexes of the current lactation (CP in the present study), future 

lactations (FP in the present study) and what they called net replacement cost differential 

(RV in the present study). While most dairy breed females born are destined to become 

replacements (Kelleher et al., 2016), this is not necessarily the case in most beef 

enterprises with a proportion of females being grown for harvesting at, on average, 21 

months of age (Berry et al., 2020). A decision therefore needs to be made relatively early 

in the life of the heifer, as to whether she is suitable to become a cow or would she be 

more profitable if harvested directly. To facilitate this decision point, the BFPP was 

expanded beyond that of the dairy index proposed by Kelleher et al. (2015) to also 

consider nulliparae. The end-purpose of the beef female is generally decided upon after 

weaning (approximately 8 months of age in Ireland; McHugh et al. 2014). Given that 

McHugh et al. (2014) also reported that the average AFC for a beef female was 

approximately 31 months, a time delay of almost 2 years between deciding to keep the 

female as a replacement and her calving for the first time would be expected to lapse. 

To reflect this time-delay, the HP sub-index of the BFPP was developed to be adaptable 

to specific decision-time points, with the addition of y (i.e., the estimated number of 

years until a heifer is predicted to express the trait under consideration), thus ensuring 

that producers are provided with BFPP index values that are representative of their 

nulliparous females at important time-points when decisions are being made. 

The transition matrices developed in the present study are instrumental in modelling 

the lifetime efficiency potential of the beef female and are intrinsic to the FP sub-index. 

The fertility transition matrix was formulated to ultimately estimate the expected profit 

resulting from the beef female’s next parity given her probability of calving in each 

MOCG. In a cross-sectional analysis of the Irish national database, McHugh et al. (2014) 

demonstrated how 38,619 Irish cows excelling in genetic merit for calving interval had 

shorter calving intervals. This observation corroborates the results from the fertility 

transition matrices in the present study (Figure 5.2 and Supplementary Table S9.10) 

where cows of superior genetic merit for calving interval had the highest probability of 

re-calving in the same or earlier MOCG relative to the contemporaries of poorer genetic 

merit for calving interval. This is despite the low heritability estimated for calving 

interval in the Irish beef cow population (h2 = 0.02; Berry and Evans, 2014). Cows within 

the best BPFF stratum did, however, have an average phenotypic calving interval of 8 

days longer than the cows within the worst BFPP stratum, even though their mean PV 
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for CIV only differed by 0.78 of a day. Given that the genetic standard deviation for CIV 

from the genetic evaluation was estimated to be 5.43 days, very little difference existed 

in the genetic merit for CIV between the strata. 

Animal survival can have a huge impact on herd profit since not only are calves from 

older cows more valuable (McHugh et al., 2010), owing to their superior carcass weight 

(Judge et al., 2019) but also because of the reduced requirement for replacement heifers 

who, in turn, can then be harvested. In their analysis of 5,582 Irish beef cows from the 

national database, McHugh et al. (2014) reported that the logit of the probability of 

survival to next lactation increased linearly as PTA for survival improved again 

consistent with the results from the survival transition matrices in the present study; the 

heritability of survival in Irish beef cows is 0.02 (Berry and Evans, 2014). Cows in the 

top stratum for PV for survival in the present study had between a 9.65 to 20.95 

percentage unit greater probability of surviving to next lactation across the different 

MOCG, relative to the lowest PV stratum. A similar trend was corroborated in the 

validation whereby the odds of animals within the best BFPP stratum surviving was 1.63 

times more likely than the worst stratum. Nevertheless, as Irish beef production is 

predominantly a spring-calving based system (Berry and Evans, 2014), animals had the 

highest probability of surviving if they calved within the first three months of the year, 

regardless of their PV stratum for survival.  

 One of the main objectives of the present study was to develop a tool that can 

easily be used by producers since this is a key criteria for successful adoption (Rose et 

al., 2016). This ease-of-use means that all the traits and underlying data are collapsed 

into a single value (i.e., the BFPP is provided from which to rank animals) and the data 

which populates the index is generally readily available and thus the marginal cost of 

generating the index is low. Most of the data underlying the developed BFPP in the form 

of fixed and random effects solutions are already routinely generated from genetic 

evaluations; therefore, the solutions should be relatively easy to obtain. Moreover, the 

potential users of the proposed BFPP are more than likely already engaging with the 

maternal breeding index and, therefore trust the information generated from the genetic 

evaluations; having this trust in a DST is a key factor potential users consider when 

deciding whether or not to adopt a new DST (Rose et al., 2016). Other components 

driving the BFPP of an animal such as the transition matrices or the cull cow prices do 
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not need to be regularly updated. Of course, the index itself can be modified to, for 

example, incorporate a dynamism for costs and prices reflective of the seasonal 

variability. Notwithstanding this, the objective of the present study was to develop the 

framework and any such modifications would be easy to implement in the future. 

5.6.2 Breeding versus management indexes and their applications 

The BFPP is not designed to replace a maternal breeding index but instead to be 

complementary to such a breeding tool. The goal of most cow-calf producers is to shift 

the herd distribution of profit per cow in the favourable direction. A shift in the 

distribution can be achieved by breeding the females on the favourable side with 

genetically elite sires or by culling the females on the unfavourable side of the 

distribution. Fastest gain, of course, is achieved when both are applied together. In fact, 

the within herd correlation between the BFPP and the Irish national maternal index was 

0.47 (Table 5.5) indicating that while both indexes are profit based, animals do indeed 

rank differently, albeit there is some similarities. This less than unity correlation is 

expected, partly because the breeding index trait predictions only includes additive 

genetic effects whereas the BFPP trait prediction also includes non-additive effects. 

Furthermore, the relative weightings on trait predictions is changed, and additional 

phenotypic attributes of the beef female are taken into consideration, such as her age, 

and most recent or expected month of calving . While a breeding index is generally used 

just prior to the start of the breeding season, the BFPP can be used at several points in 

the calendar year. Furthermore, breeding indexes are generally updated only a few times 

per year, synchronised with the relevant genetic evaluations. The BFPP, on the other 

hand, is developed to be dynamic and thus can be updated on the fly as new phenotypic 

information becomes available. This dynamic nature of the BFPP ensures that it is useful 

at multiple decision points during the calendar year. 

Firstly a decision can be made, using the BFPP as to whether a cow should be mated 

that breeding season, or just culled. When deciding what females to breed replacements 

from, using the BFPP in conjunction with a breeding index ensures females with not 

only the greatest lifetime profit potential but, also the highest maternal genetic merit can 

be identified; thus shifting the distribution even further in a favourable direction. When 

the BFPP was validated, the complementary nature of both the BFPP and the maternal 

replacement indexes was reflected in the cow’s mean replacement index value. On 
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average, the additional profit accruing from each cow’s calving within the best BFPP 

stratum was expected to be worth almost €36 greater than the cows within the worst 

stratum; this was considered her genetic expectation. It was possible to estimate the 

actual monetary value arising from the differences in phenotypic performance between 

the best and worst BFPP stratum by multiplying the differences in performance (Table 

5.6) by the respective economic value (Table 5.1). The difference in phenotypic 

performance of the cows in the best BFPP stratum relative to the worst, for survival and 

CIV was estimated to be worth an additional €10.20 and the phenotypic performance of 

their harvested progeny for the three carcass traits (weight, conformation and fat) was 

estimated to be worth an extra €21.92. Therefore, although not all traits were considered, 

it was estimated that the cows within the best BFPP stratum, on average, contributed an 

additional €32.31 per calving to the herd’s profitability than cows within the worst 

stratum. Furthermore, the harvested progeny of the cows within the best BFPP stratum 

had a genetic expectation of being worth almost €16 more than the progeny of the worst 

BFPP cows, which is very close to the phenotypic difference of €21.92 estimated.  

The dynamic nature of the BFPP means that when the cow calves, the most recent 

calving date can be used to update both the profit from the CP but also the likelihood of 

calving in different months of the following year (including not calving again) and thus 

the FP and overall BFPP. Following the breeding season, the BFPP can also be used 

once pregnancy diagnoses are recorded which generally occurs in the autumn time; if 

the cow is deemed not to be pregnant then she will not be calving the following calving 

season and should incur a large monetary penalty within the BFPP, similar to the dry 

cow penalty already incorporated. The decision can then be made to sell the cow for 

fattening or fatten the cow prior to slaughtering. Although both dairy and beef cows 

were included, McHugh et al. (2010) documented a bimodal distribution of when Irish 

cows were sold in livestock auctions, which were reported to coincide with prior to and 

post the breeding season; thus, there is huge potential for the BFPP index to provide 

data-driven culling decision-support during these times.  

Once the subsequent calf is born, then the BFPP of the female calves can be used to 

identify the females most suitable for retention. Little additional information will 

become available on a nulliparae post birth other than through changes in her EBV either 

from genotyping or through changes in the EBV of her parents. One of the advantages 
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of the reliance of the BFPP on data is that producers who want to optimally use the BFPP 

to their advantage must ensure the integrity and completeness of the data. These data 

can subsequently be used in the genetic evaluations to improve their accuracy of not 

only the female herself but her relatives and contemporaries. This in turn improves the 

accuracy of the BFPP, but also of the maternal breeding index. Therefore, the objectives 

of both indexes, while different, are very complementary.  

 

5.7 Conclusions 

Voluntary culling decisions are multifactorial and can be difficult to address, 

therefore the ability to collate the risk factors into a single BFPP value per animal could 

be hugely beneficial for users when making necessary culling decisions. The BFPP has 

the potential to be implemented complementary to a maternal breeding index and when 

used in combination, has the potential to add substantial value to the breeding index by 

facilitating decisions based on heifer replacements as well as cow culling decisions. 

Cows that ranked highly on the BFPP index had greater odds of survival, were more 

likely to calve in the same month the following year and produced calves of superior 

carcass metrics. The framework is ready for deployment in Ireland, but could also be 

considered for other industries where there is a reasonable level of sire verification and 

commercial cow and calf performance records captured in a central database system 

which are subsequently used in genetic evaluations.  
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6.1 Thesis Summary 

The overall objective of the thesis was to explore opportunities of making better use 

of already existing data for both dairy and beef producers; the approaches and pipelines 

developed could, however, be applicable to other species (e.g., sheep). The thesis 

objective was achieved by: 1) investigating the potential information contained within 

best linear unbiased estimates (BLUEs) and the characterisation of such (Chapter 2), 2) 

quantifying the response to selection for additive and non-additive genetic merit by herd-

level BLUE (Chapter 3), 3) developing a framework for a decision-support tool to rank 

growing cattle based on their genetic and non-genetic effects for carcass revenue to aid 

in more informed purchasing decisions (Chapter 4), and 4) developing an economic-

based index to estimate a beef female’s expected remaining lifetime productivity, thus 

facilitating the ranking and identification of females that should be retained or culled 

within the herd (Chapter 5).  

All data used in this thesis originated from the ICBF national database; this included 

raw phenotypic data but also the outputs (i.e., BLUPs and BLUEs) from the national 

genetic evaluations operated by the ICBF as well as the associated pedigree data. All 

genetic evaluations were undertaken using linear mixed models in the MiX99 software 

suite (MiX99 Development Team, 2015). Multiple genetic evaluations were undertaken 

and the suites of traits included were: 1) dairy cow fertility (i.e., age at first calving 

(AFC), milk production, calving interval (CIV), calving to first service (CFS), number 

of services (NS) and survival (SU)), 2) beef calving (i.e., calving difficulty, mortality 

and gestation length), 3) beef cow milk yield (i.e., direct and maternal effects for 

weaning weight), 4) beef cow fertility (i.e., direct and maternal effects for AFC, CIV 

and SU), 5) beef docility (i.e., docility score) and, 6) beef carcass (i.e., carcass weight, 

carcass conformation and carcass fat), feed intake, cow live-weight and cull cow 

weight).  
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6.1.1 Chapter 1: Introduction and Review of the Literature 

Objective: Review the existing literature pertaining to decision-support systems and 

tools, how they are applied in agriculture, and the decision-support tools that are 

currently available in the Irish cattle sector. 

 Decision-support tools (DSTs) and systems (DSSs) are defined as software-based 

technologies that facilitate the decision-making process (Matthews et al., 2008; Rose 

et al., 2016) by means of interpreting data, applying the necessary analyses, and 

identifying evidence-based solutions (Dicks et al., 2014). 

 The majority of animal breeding DSTs available worldwide have maximised genetic 

gain by applying statistical methods such as BLUP methodology developed by 

Henderson et al. (1959) and selection index theory developed by Hazel and Lush 

(1942). 

 Irish animal-based DSTs were mostly breeding-based DSTs until 2017 when the 

Cow’s Own Worth was launched for dairy females.  

 Gaps in Knowledge: 

 Few studies have recognised the benefits of utilising BLUEs in herd 

management. To our knowledge, no study has quantified the response to 

selection of additive and non-additive genetic merit across a trajectory of 

herd BLUEs. 

 There is a void in management DSTs in the cattle sector to aid the transaction 

of growing animals destined for slaughter.  

 A DST that aids in the identification of females for culling purposes by 

ranking them based on their expected remaining lifetime profit is currently 

only available to dairy producers; no such DST exists for the beef sector. 



Chapter 6: Thesis summary, conclusions and implications 

142 
 

6.1.2 Chapter 2: Characterisation of best linear unbiased estimates generated 

from national genetic evaluations of reproductive performance, 

survival, and milk yield in dairy cows 

Objective: Describe herd-level factors associated with dairy herd-year BLUEs and 

understand the inter-relationship among herd-year BLUEs for milk, fertility, and 

survival traits. 

 Raw phenotypes and herd BLUEs were available for: 1) age at first calving, 2) 

calving to first service (CFS), 3) calving interval (CIV), 4) number of services, 5) 

milk production and, 6) survival.  

 The explanatory herd-level factors considered were: 1) geographical location, 2) 

whether or not the herd was milk recording, 3) herd size, 4) herd expansion rate, 5) 

herd-level use of AI, 6) the proportion of animals in the herd that calved within the 

first 42 days of the breeding season, 7) the proportion of animals that were registered 

to a breed society, and 8) the proportion of home-born and therefore not purchased 

in. 

 Information was available on 88,730 herd-years from 8,873 herds over a 10-year 

period. 

 Multiple regression linear mixed models were used to quantify the association 

between each herd-level characteristic (independent variable) and herd-year BLUEs 

for the 6 different traits (dependent variable). 

 BLUEs were associated with two-thirds of the improvement in CIV and milk 

production in the 10 years prior to the study. Milk recording herds, on average, 

calved heifers 15 days younger than non-milk recording herds. 

 Larger herds had, on average, worse BLUEs for both CIV and CFS. Expanding 

herds, on average, calved heifers younger and had the largest proportion of home-

born animals.  

 Results can be used to identify inferior herd management which may be compensated 

by superior genetics and vice versa; thus, BLUEs have a role in bespoke decision 

support.  
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6.1.3 Chapter 3: How herd best linear unbiased estimates affect the progress 

achievable from gains in additive and non-additive genetic merit 

Objective: Investigate the existence of G × E interactions for fertility, production and 

survival traits across herds differing in BLUEs  

 A subset of the data from Chapter 1 were used; the data originated from 1,764 herds 

with data for age at first calving (AFC) on 124,352 animals and data for milk yield, 

calving interval, number of services, calving to first service and survival on 216,270 

animals. 

 Genetic and residual (co)variances were estimated for each trait within 3 BLUE 

environments. Multiple linear regression mixed models were used to regress each 

trait’s phenotypic value on its respective additive and non-additive genetic merit 

and how this interacted with herd BLUE. 

 Within trait genetic correlations between the three BLUE environments were all 

stronger than 0.61 (except for AFC) suggesting no need for separate breeding 

programs.  

 Genetic and residual SD tended to be largest in the best BLUE stratum for 

production traits whereas, for the remaining fertility and survival traits, the genetic 

and residual SD tended to be largest within the worst BLUE stratum. 

 The response in phenotypic milk yield per kg increase in milk EBV in the best BLUE 

stratum was 20% greater than in the worst milk BLUE; the regression coefficient of 

phenotypic calving interval (CIV) on CIV EBV was 4.28 times larger in the worst 

BLUE environment relative to the best BLUE.  

 Genetic evaluations assume a 1-unit change in EBV equates to a 1-unit phenotypic 

change, yet results from this study suggest that the response to selection differs by 

herd BLUE; therefore, the integration of herd-level BLUEs in a DST may contribute 

to more informed breeding decisions. 
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6.1.4 Chapter 4: Formulation of a decision support tool incorporating both 

genetic and non-genetic effects to rank young growing cattle on 

expected market value 

Objective: Develop a framework for two decision support indexes capable of predicting 

the relative lifetime revenue of an animal for harvest taking cognisance of both additive 

and non-additive genetic effects as well as contributing non-genetic effects. 

 The constructed Harvest index, which comprised of carcass weight, conformation 

and fat, was aimed at purchasers of animals close to harvest; the constructed Calf 

index, also included docility and feed intake and was aimed at purchasers of young 

calves for growing. All traits were weighted by their respective economic weight. 

 The constructed indexes were calculated using three alternative estimates of an 

animal’s total merit: firstly, based solely on the animal’s breed solutions; secondly, 

based on the animal’s EBVs; and finally, based on the animal’s additive plus non-

additive genetic effects, as well as its non-genetic contributing effects (production 

values [PV]). 

 Indexes were validated on 874 bulls and steers with feed intake, carcass and live-

weight phenotypes. 

 Correlations between carcass revenue and both the Harvest and Calf index doubled 

in strength when the index was estimated using PVs relative to just the breed effects 

(i.e., from 0.22 to 0.44 and 0.20 to 0.40, respectively). 

 Predictive ability of the indexes strengthened as live-weight phenotypes were 

incorporated within the indexes. 

 Results from the present study suggest that greater predictive ability relative to 

carcass revenue can be achieved through the development of bespoke DSTs targeted 

towards cattle of all ages provided they will not become parents.  
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6.1.5 Chapter 5: An index framework founded on the future profit potential of 

beef female cattle to aid the identification of candidates for culling 

Objective: Formulate the framework for a decision support tool that ranks beef females 

based on their expected remaining lifetime production potential, derived from their 

additive and non-additive genetics effects as well as environmental factors. 

 The Beef Female’s profit potential (BFPP) comprised of four sub-indexes including: 

1) the animal’s heifer potential (HP) until she first calves, 2) the remaining profit 

potential of the cow’s current parity (CP), provided she has calved at least once, 3) 

the profit potential of the cow’s future parities (FP) and finally, 4) the retention value 

(RV) of the beef female if she was to be retained within the herd. 

 Each sub-index was estimated using production values (PVs) which comprised of 

genetic and non-genetic effects, thus capturing the beef female’s total merit for a 

given trait.  

 The female’s future fertility and longevity potential was modelled using transition 

matrices. 

 The BFPP was validated using 21,102 beef cows as well as 21,102 of their progeny. 

 Beef cows were ranked, within herd, into four strata based on their BFPP value. 

Despite the beef cows in the best stratum having an average CIV almost 8 days 

longer than animals within the worst stratum, they had a 1.61 times greater odds of 

surviving and starting their next parity. 

 The harvested progeny of the high BFPP cows had, on average, heavier more 

conformed carcasses with fat scores relative to their poor BFPP contemporaries. 

 The cows identified for voluntary culling using the BFPP contributed, on average, 

€32 less per calving to the herd’s profitability relative to the highest ranked females; 

therefore, it can be deduced that the BFPP can be used to identify inferior females 

for culling. 
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6.2 Thesis Conclusions and Implications 

This thesis has identified, developed and demonstrated novel frameworks that aim 

to fill the voids that currently exist within both the dairy and beef animal-based DST 

repertoire. Results from the thesis described the various herd-level factors associated 

with BLUEs (Chapter 2) as well as revealed the additional value that can be acquired 

through the integration of such BLUEs in a DST (Chapter 3). Furthermore, the thesis 

also filled a void in the demand by the Irish cattle industry for a DST which better 

informs the value of both growing cattle (Chapter 4) and beef females (Chapter 5). 

Therefore, the implications of the thesis are: 1) identified uses of data and information 

for DSTs which heretofore have often been disregarded, 2) developed the background 

framework for DSTs to inform the transaction of growing cattle which are more accurate 

and dynamic than the tools and information (e.g., breed composition) available 

heretofore and, 3) formulated a framework to rank beef females based on their predicted 

remaining lifetime performance, similar to what was developed by Kelleher et al. (2015) 

for dairy females; this dairy-based DTS was deployed by the ICBF in 2017 and has a 

usership of approximately 30 % of the eligible national dairy herd (i.e., milk recording 

herds that are at least 80% spring calving) thus signifying the demand which may also 

exist in the beef industry. The DST proposed in Chapter 4 has already sparked interest 

from ICBF, the national body responsible for generating national genetic evaluations, 

and the index is currently being integrated into the ICT infrastructure at ICBF for future 

deployment; as two variants of a transaction index were developed in Chapter 4, the Calf 

and Harvest index, from hereon in both indexes will be generally referred to as a 

transaction index. 

 

6.2.1.1 Decision support throughout the production cycle 

Currently in Ireland the cattle genetic-based DSTs are either: 1) primarily focused 

on breeding and identifying genetically superior parents for future generations 

(assuming the animals will be managed in the average environment) e.g., EBI, DBI, 

Replacement and Terminal index or, 2) completely void in some sectors, i.e., the lack of 

a beef female C.O.W. DST. Whereas the DSTs proposed in this thesis have the potential 

to be deployed and not only fill the existing voids in decision support, but also act as 

complementary DSTs alongside the DSTs that are currently available. This is especially 
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important given that when problems arise on-farm they tend to be interrelated (Rossi et 

al., 2014) and, if not doing so already, can have ramifications on production efficiency 

later on in the system. By applying the DSTs proposed in this thesis, the dairy sector 

will not only become more integrated with the beef sector (Chapter 4) but the Irish beef 

producer will also be provided with support throughout the whole production cycle 

(Chapter 4 and 5). The potential applications of BLUEs and the proposed DSTs 

developed within this thesis are illustrated in Figure 6.1. By defining the stages of the 

production cycle, it is possible to identify the key time points in the production cycle 

where BLUEs and the developed DSTs could be applicable. The chosen decision time 

points within the production cycle were: 1) prior to mating, 2) BLUPs versus BLUEs, 3) 

Breeding, and finally, 4) Birth of calf; indicated by the dark blue boxes in Figure 6.1. 

6.2.1.2 Decision support time-point: prior to mating 

The decision on whether or not to breed or cull a dairy or beef female in Ireland is 

generally undertaken either prior to the breeding season or close to drying off after 

pregnancy diagnosis. This decision itself is multifactorial with factors such as animal 

genetic merit, pregnancy status, expected calving date, and cow age being just some of 

the factors to consider when making the decision. Kelleher et al. (2015) collapsed all 

such information into a decision support tool for dairy females that they later termed 

C.O.W. index. The objective of C.O.W. is to rank individual dairy females based on 

their expected remaining lifetime profit potential. However, no such tool was available 

for beef females. Such a framework was developed in Chapter 5 and can be used for the 

same purpose, to rank females based on their expected remaining lifetime performance 

potential, albeit for beef females. Whilst the dairy C.O.W. was specifically tailored 

towards cows (i.e., animals that have had at least one calving), the Beef Female Profit 

Potential (BFPP; Chapter 5) is applicable to both heifers and cows. Thus, the BFPP can 

be utilised when choosing the most profitable beef heifers to retain within the herd as 

replacements as well as identifying animals that are candidates for culling. This is 

particularly useful when used in combination with the Transaction index (Chapter 5). 
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Figure 6.1: Description of the decision making process within the dairy and beef sector 

and how decision support tools (DSTs; pink boxes), both existing and novel DST 

developed in this thesis, can be utilised during main decision time-points (dark blue 

boxes) in the respective sector. 
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While the dairy C.O.W. and the BFPP indexes consider the animal’s additive genetic 

merit, they also include estimates of non-additive genetic merit (i.e., heterosis and 

recombination) and non-genetic effects such as the cow parity effects, her age and 

permanent environmental effects. Furthermore, the framework developed facilitates the 

future potential inclusion of both additional traits (e.g., environmental footprint, animal 

health) but also more complex measures of the underlying components (i.e., better 

predictive analytical approaches such as machine learning based on more granular 

longitudinal data from sensing systems). For example, the heterosis coefficient estimates 

of animals included in both the dairy and beef  C.O.W. indexes are solely based on 

expectations as defined by VanRaden and Sanders (2003), i.e., one less the sum of the 

breed proportion in the sire and dam for a particular breed; however, with the advent of 

genomic best linear unbiased prediction (GBLUP), it is possible to estimate individual 

dominance variance. Genomic heterozygosity can also be calculated per individual and 

fitted as a covariate in the genetic evaluation model replacing the expected heterozgosity 

in the model. Although heterotic effects have been relatively ignored in the past as they 

are not cumulative or persistent over generations, the inclusion of such estimates can 

improve the accuracy of animal merit predictions. Genomic estimations of dominance 

variance have been reported to account for between 3.8 to 7.1 % of the total phenotypic 

variance for production traits and 1.2 % of the total phenotypic variance for calving 

interval in dairy Holstein cows (Aliloo et al., 2016). Such estimates could potentially be 

extremely beneficial if incorporated into indexes such as the dairy C.O.W. and BFPP 

indexes as they can reward animals that are estimated to have additional heterotic effects 

more accurately which will impact their expected remaining lifetime profitability. In 

addition to this, given that maternal heterosis coefficients were included in the BFPP, 

the substitution of such effects with genomic estimates could provide more accurate 

estimations of the additional benefit a particular beef dam may have on her progeny, 

which will also ultimately impact her ranking on the BFPP index. 

The incorporation of BLUEs into the dairy C.O.W. and BFPP DSTs also creates a 

unique opportunity for the natural progression of the current DSTs to become more 

precise DSTs, bespoke for individual herds based on their BLUEs. Firstly, when EBVs 

are estimated, it is assumed that a one-unit change in EBV will equate to a one-unit 

change in the respective trait; this assumption, however, generally only comes to fruition 

when animals are managed in an average environment. As demonstrated in Chapter 3, 
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deviations from this expectation exist conditional on the BLUE of the herd. For instance, 

results from Chapter 3 demonstrated the response to selection on genetic merit for 

calving interval in a herd with a good BLUE for calving interval is over four times less 

relative to a herd with a poor BLUE for calving interval. Hence, it would be logical that 

BLUEs would be utilised within the available DSTs, largely because the necessary 

information and data actually already exists. In turn, such bespoke indexes would be 

more applicable and accurate or precise for a given herd. Lindblom et al. (2017) defined 

precision agriculture, relative to crop production, as a management concept that includes 

observing, measuring and responding to variability that occurs within the field. Thus, 

rather than treating the national herd environment as a homozygous entity, it makes 

sense to exploit herd BLUEs as a readily-available indicator of variability within the 

national herd thus facilitating herd managers to respond to such variability with tailored 

herd-specific decisions. The use of both the dairy C.O.W. and the BFPP DSTs in the 

respective sectors facilitate the identification of cows that are: 1) the least profitable in 

the herd that should be culled (Figure 6.1; red box) and, 2) the most profitable in the 

herd and therefore should be considered for breeding (Figure 6.1; green box). As the 

BFPP (Chapter 5) also estimates a heifer’s expected lifetime profit potential, it is 

possible to identify the most profitable heifers to retain as replacements. Candidate 

breeding females can then be assessed using either the EBI (for dairy) or the 

Replacement index (for beef) in order to determine whether the females should be bred 

to produce replacements (i.e., if they have a high index value, Figure 6.1; green box) or 

progeny destined for slaughter (i.e., if they have a low index value, Figure 6.1; red box).  

 

6.2.1.3 Decision support time-point: BLUPs versus BLUEs 

As herd BLUEs already quantify the herd’s management metrics independent of the 

its genetic merit, it is possible to use such information as a stand-alone tool for 

identifying traits that producers may be excelling in or performing sub-optimally. Thus, 

BLUEs have the potential to become the front line metric used in deciphering whether 

the herd’s management system or genetic merit is negatively affecting performance 

(Figure 6.1). Farm extension services could exploit such information and use BLUEs as 

a tool to quickly identify key areas in which the client’s production system should be 

improved. Furthermore, the associations between BLUEs and particular management 
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characteristics discussed in Chapter 2 offer the opportunity to diagnose why a herd may 

be performing the way it is. For instance, if a herd has a poor calving interval, it may not 

necessarily mean the reproductive management in the herd is poor. Results from Chapter 

2 suggest that longer calving intervals were associated with rapidly expanding herds 

relative to herds undergoing slow expansion as well as herds that purchase more animals 

rather than breed replacements. These results suggest that if a herd environment is 

undergoing a transient period of rapid expansion, and is purchasing in a lot of stock, 

calving interval may shorten once this growth phase is over and expansion rate slows; 

therefore in such herds, the longer calving interval performance is not a cause for 

concern in the long-term, rather a reflection of the current temporary situation. On the 

other hand if the herd has an excellent BLUE for calving interval, and has average 

calving interval phenotypic performance, then the herd may have a poor overall genetic 

merit for calving interval, which could suggest that the excellent management of the 

animals is compensating for poor genetic merit. 

 

6.2.1.4 Decision support time-point: Breeding 

At breeding, subscription services such as HerdPlus operated by ICBF provides 

access to breeding index data on individual animals within the herd, offering an 

opportunity for producers to select the most suitable dairy and beef bulls from an active 

list. The active bull list presents all available artificial insemination (AI) bulls from the 

various AI companies and displays the index value for each bull. Again, it is not 

unreasonable to consider an additional option that offers access to a bespoke active bull 

list whereby the relative herd BLUE regression coefficients (Chapter 3) are applied to 

the index values (e.g., the EBI or Terminal index), and subsequently personalised 

breeding goals are displayed. The application of the herd BLUE regression coefficients 

should be relatively simple as it involves only applying a multiplication factor to the 

already estimated EBVs and then summing the factors up; this can easily be 

disseminated via the HerdPlus web service since each HerdPlus account is unique to 

each farmer. Further customisation of the breeding goal could be possible by altering 

the economic weights on the traits so that they are specific to the production system; for 

example, full-time farmers with bigger cows may opt to reduce the weighting on calving 

difficulty genetic merit of the bull compared to part-time farmers with smaller cows. 
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Despite the abundance of information contained within the currently available 

breeding indexes as well as their capacity to assist in the identification of superior 

parents of the next generation, decisions about which female to mate to which male can 

become extremely complex and unwieldy. One DST to aid in the mating decisions is a 

mating advice tool. A Sire Advice web service was recently deployed by the ICBF 

within Herdplus (Carthy et al., 2019). A sire advice system currently only exists for 

dairy-dairy matings and therefore there is a void in a sire advice system for mating beef 

bulls to both dairy cows and beef cows. Given that it is common practice to mate a 

proportion of the dairy herd to beef bulls in Ireland, and as this practice is anticipated to 

increase, the demand for such a DST is only increasing (Berry and Ring, 2020). For 

example, based on an analysis of 6,358 Irish spring-calving dairy herds, older cows have 

a greater probability of being mated to beef bulls relative to younger cows (Berry and 

Ring, 2020). Despite this common practice in Ireland, no such DST currently exists that 

would aid in the mating of beef bulls to individual dairy females under the constraints 

(e.g. calving difficulty) imposed by the farmer. There is also scope for additional 

information to be included in such DST such as incorporating estimates of dominance. 

Aliloo et al. (2016) reported that as a result of including non-additive genetic effects 

within mating programs, the progeny of Holstein dairy cows were, on average, $8.42 

(based on an index which incorporated both fertility and production traits) more 

profitable, relative to the progeny arising from a model that was based only on additive 

genetic merit. Benefits from the inclusion of non-genetic effects within mating programs 

are not justifiably confined to animals that will be retained as replacements in the dairy 

herd. Dominance genetic variance for traits such as intra-muscular fat and carcass retail 

beef yield have been reported to be 10 % and 18 % of the total phenotypic variance, 

respectively (Bolormaa et al., 2015). Therefore, this suggests that with the incorporation 

of dominance effects in a mating program, the combining ability of mating pairs can be 

exploited when breeding the proportion of the herd that will be finished for beef 

production. For such animals, the persistence of the heterosis effects over generations is 

irrelevant as the progeny never become parents. Nevertheless, as the transaction index 

(Chapter 4) incorporates heterosis effects, the increased benefit due to heterosis will be 

reflected in the index value and producers can command higher prices for their growing 

animals. 
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6.2.1.5 Decision support time-point: birth of calf 

Once the calf is born, a decision needs to be made whether to retain the calf as a 

replacement (Figure 6.1; green box), to finish the calf on the farm (Figure 6.1; light blue 

box) or sell the calf for beef production (Figure 6.1; purple and yellow box). For males, 

the latter two options are often the choice but the decision must be made for the females. 

Given the multi-functional nature of the developed transaction index in Chapter 4, the 

information is not only pertinent in facilitating the transaction of animals, but can also 

give producers who have young females the opportunity to assess the calf’s relative 

predicted carcass revenue. In addition to this, producers can also utilise the BFPP 

(Chapter 6) at this point to consider the female calf’s expected predicted lifetime profit 

potential if she was retained in the herd as a replacement. Thus, producers have the 

opportunity to make an informed decision based on whether to keep the calf as a 

replacement or finish her for beef production. For example, a female calf may have high 

BFPP value (Chapter 6) combined with a low transaction index value (Chapter 5) and 

therefore should be retained as a replacement. There is potential for producers who wish 

to buy and sell replacements, to then utilise the BFPP as an indicator of the beef female’s 

worth. Whereas if the calf has a high transaction index value and is therefore destined 

for beef production, the transaction indexes can be utilised when trading the animals. 

In the past, the value placed on calves in livestock auctions has predominantly been 

based on their estimated breed composition; however with the availability of crossbred 

animals increasing, it may no longer be possible to accurately predict the breed of an 

animal based on their observed coat colour. Because of mendelian sampling during 

gametogenesis, it is not possible to know the breed composition of an animal from a 

crossbred parent without exploiting genomic information. Since 2016, calf registrations 

originating from the dairy herd have increased year-on-year; a major consequence of 

which is the increasing number of calves for sale originating from the dairy herd (Figure 

6.2) with a growing proportion being dairy × beef calves.  
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Figure 6.2: A representation of sire breeds by year of birth to Irish Holstein-Friesian 

dams in Ireland as reported in Berry and Ring (2020b). 

 

The proposed transaction indexes (Chapter 4) offer the unique opportunity for 

increased transparency when trading cattle and for the end-user to rely on scientifically-

backed predictions of carcass revenue rather than looks when valuating an animal. There 

is also an opportunity for the transaction indexes to be further tailored to the finishing 

herd’s production system using BLUEs (Chapter 3). Although this thesis focused on 

BLUEs for fertility and milk production traits, the same concept of modifying the EBVs 

underlying the indexes depending on the herd’s BLUE for carcass traits could also be 

applicable to the beef DSTs; if the same phenomena existed for carcass traits, then there 

may also be a justifiable case to incorporate such sensitivity in the expression of genetic 

merit to environment within the transaction indexes developed in Chapter 4. One such 

way of doing this would be at the livestock auction, the transaction index value of the 

calf within the average environment could be displayed on the livestock auction board, 

and a bespoke transaction index value could be adapted and displayed via a HerdPlus 

app for each farmer individually. Furthermore, the development of the internet of things 

(IoT) has opened up avenues for data collection at every possible point along the 

production system. In the future by utilising new technologies as they come available, it 
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may be possible to: 1) weigh (or predict the weight) the animals on their arrival to the 

auction, 2) input the animal’s sex (i.e., female, bull, steer), 2) upload Blockchain verified 

weight phenotypes to the service provider such as ICBF and, 3) provide updated, more 

accurate real-time estimates of the transaction index values to the potential buyers on 

the day of the auction. It may also be possible to adjust the transaction value for costs 

such as feed that will be incurred for the estimated duration of the animal’s lifetime. The 

Calf index is directed towards producers who specialise in purchasing young calves for 

the purpose of growing and either finishing the calves themselves, or will sell them on 

to a specialised finisher facility. In such an index, consideration must also be given to 

both docility and feed intake especially given that feed costs are the largest variable input 

costs in cattle production (Montano-Bermudez et al., 1990). The phenotypic SD for feed 

intake among the validation animals in the Chapter 4 was 1.76 kg DM/day while the SD 

for the Calf transaction index (i.e., calculated using PVs) was €69.14; given the 

correlation of -0.22 between the two, animals in the top 20% of the population for the 

Calf transaction index were expected to eat, on average, 0.54 kg DM/d less than the 

average animal who was eating 13.09 kg DM/d; this represents a difference of 0.31 SD 

units. Assuming a constant differential of 0.31 SD over a 120-d finishing period, this 

saving would be expected to accumulate to a reduction in feed intake of 65.20 kg DM 

and, based on a cost of €0.29 / kg DM, this equates to a saving of almost €20 per animal 

(just over the finishing period). The SD for feed intake, however, does not remain 

consistent across the animal’s lifetime. From a meta-analysis review of the literature in 

cattle, as well as from data used in Chapter 4, the published SD for DMI of growing 

cattle was plotted against age in Figure 6.3 (Myers et al., 1999; Wang et al., 2006; Kelly 

et al., 2010a; Kelly et al., 2010b; Kelly et al., 2011; Khan et al., 2012; Durunna et al., 

2013). A linear regression line was subsequently fitted (R2 = 0.62) to the data regressing 

the SD of DMI on age with regression model being: 

SD𝐷𝑀𝐼  =  0.6975 +  0.0018 × age 

Assuming the calculated relative difference of 0.31 SD units in DMI between the top 

20% of animals on PV versus the those average on PV remains the same throughout life, 

it was possible to estimate the expected kg DM difference in DMI per day from the linear 

regression model solutions for each day of age (Figure 6.4). The validation population 

in Chapter 4 were, on average, 548 days of age at harvest (at the end of their test). 
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Therefore, if purchased at 248 days of age (i.e., 300 days of feeding), it is estimated that 

animals in the top 20 % stratum would eat just under 132 kg DM less than the average, 

equating to a saving of €38; assuming a price of €0.29 per kg of DM. If the animals 

were, however, only purchased 100 d prior to harvest, the saving would only be €14.41. 

Therefore, given the variation in feed cost, there is potential for such savings to be 

represented within the transaction index. Furthermore, feed intake has been reported to 

be a factor with a strong association with enteric methane in dairy cows (Lassen and 

Løvendahl, 2016). Although traits pertaining to greenhouse gas emissions are not 

explicitly included in any cattle breeding program as they are currently not of economic 

importance (de Haas et al., 2017), given the growing awareness surrounding 

agriculture’s environmental ‘hoofprint’, it is possible that this may change with carbon 

costs of €80 / tonne being touted; this change could be reflected in an increase in the 

value of the top 20 % of animals on PV versus the those average on PV as they ate less, 

and therefore could potentially produce less enteric methane.  

An opportunity also exists for growing animals to be traded under a brokerage 

system using the transaction index as an indicator of the value the animal is worth. This 

would mean that traders or the animals themselves would not need to enter livestock 

auctions, which would in turn place less stress on the animal as well as reduce 

biosecurity risks. Moreover, the transaction index can also be utilised in situations such 

as Covid-19, whereby the movement and gathering of individuals may be restricted. The 

index itself has been developed to be dynamic and adaptable to the inclusion of even 

more informative data metrics such as regional genomic estimates of heterozygosity and 

novel IoT phenotypes. 

Once animals have been traded and finished using the transaction index, or have 

been identified for retention within the herd using the BFPP index, the process begins 

again within the breeding herds. And once again both dairy and beef females must be 

partitioned into the females that will be used to breed future replacements, animals for 

beef production, or those themselves that will be culled and removed from the herd. 

Ultimately, the information gathered and the DSTs developed within this thesis provide 

the opportunity to improve upon the decision process currently available and provide a 

greater level of tailored support to producers at key decision time points along the 

production chain. 
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Figure 6.3: Standard deviation of dry matter intake (kg/d) corresponding to the reported age of animals in Khan et al. (2012) (orange diamond), Myers 

et al. (1999) (purple triangle), Wang et al. (2006) (orange square), Durunna et al. (2013) (purple square), Kelly et al. (2010a) (light blue diamond), 

Kelly et al. (2011) (blue diamond), (Kelly et al., 2010b)(navy diamond), average feed intake SD using Tully feed intake performance data when ranked 

on age (pink circle) and, the present study (green diamond) as well as equation of the line. 
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Figure 6.4: The accumulating difference in the standard deviation of dry matter intake (kg of DMI) between animal in the top 20% for the Calf index 

and the average as the animal ages. 
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6.3 Further Research 

Irrespective of the species, genetic evaluations simultaneously generate both BLUEs 

and BLUPs. Therefore, not only is there global potential to incorporate BLUEs into 

DSTs, but the actual traits considered can be expanded from those used in this thesis and 

also can be applied to other domesticated species (e.g., sheep, pigs). For example, strict 

beef carcass specifications are enforced in Ireland through the use of the EUROP grading 

system in order to meet consumer demand for optimally sized primal carcass cuts. 

BLUEs have the potential to be used as an identifier of herds that are consistently failing 

to meet the required grades specified by the processors. Moreover, as the availability of 

health data becomes accessible, and as health traits get included in genetic evaluations, 

BLUEs could be calculated for herds which, in turn, could be used to identify herds that 

are more predisposed to disease and this information could provide indications of 

disease hot-spots around the country. The opportunity also exists to quickly identify 

herds that are having difficulties with important animal welfare related traits, such as 

calving difficulty or perinatal mortality, using BLUEs. Herd BLUEs can be exploited as 

an alert indicator of systematic sub-optimal performance which could potentially link to 

an extension service that can provide tailored management advice to each farmer.  

As the availability of technology continues to grow under the umbrella of the internet 

of things, there will be endless possibilities as to how novel phenotypes can be measured 

as well as how such information can feed back into DSS. Distributed ledgers such as 

Blockchain also offers a unique method to achieve transparency and provenance across 

the entire production system whereby any authorised stakeholder could trace back 

through the entire production system and obtain (verified) information on each 

individual animal. This information could potentially include the genomic estimates of 

breed composition, the quality of colostrum received as a calf (which can now be 

measured with saliva sample; Johnsen et al., 2019), vaccination statuses and movement 

reports. The inclusion of health-related data within the transaction index developed 

(Chapter 4) could provide the added benefit of identifying trends relative to calf vigour 

and vitality, as well as provide an opportunity to identify potential reasons as to why 

some calves fail to sell. Furthermore, as the transaction index is tailored towards animals 

that are destined for beef production, and will ultimately end up on the shelves of retail 

outlets, simplified versions of such information could also be made available to 

customers. For instance, customers may have more confidence in the quality of the 



Chapter 6: Thesis summary, conclusions and implications 

160 
 

product and may be willing to pay a premium from knowing the primary diet of the 

animal (e.g., 75% grass-fed) and the county in which the animal was finished in. 

Moreover, there is scope for further investigation into the potential benefits of 

incorporating genomic information to better estimate not only parentage, but also breed 

composition and non-additive genetic effects (dominance, heterozygosity and 

inbreeding coefficients); all of which can ultimately feed into the DSTs proposed in this 

thesis and, in turn, provide more information and assist further in the decision making 

process.  
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9.1 Supplementary Material 

Supplementary Material S9.1: Statistical models used in the carcass, docility and calving 

genetic evaluations were as follows: 

𝐶𝑎𝑟𝑐𝑎𝑠𝑠 𝑡𝑟𝑎𝑖𝑡𝑑𝑒𝑔ℎ𝑖𝑗𝑘𝑙𝑚𝑧

=  ∑𝐻𝑒𝑡𝑧

4

𝑎=1

+ ∑𝐵𝑟𝑒𝑒𝑑𝑧

16

𝑏=1

+ ∑𝑎𝑔𝑒𝑧
𝑐

3

𝑐=1

+ 𝑡𝑤𝑖𝑛𝑧𝑑 + 𝑏𝑦𝑟𝑧𝑒

+ 𝐴𝑏𝑎𝑡𝑡𝑜𝑖𝑟𝐶𝐺𝑧𝑓 + ∑𝐻𝑌𝑧

2

𝑔=1

+ 𝑑𝑎𝑚 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑧ℎ

+ 𝑑𝑎𝑚 𝑎𝑔𝑒𝑧𝑖|𝑑𝑎𝑚 𝑝𝑎𝑟𝑖𝑡𝑦𝑧𝑗 + 𝑑𝑎𝑚 𝑝𝑒𝑧𝑘 + 𝑎𝑛𝑖𝑚𝑎𝑙𝑧𝑙 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑧𝑚 

 

𝐹𝑒𝑒𝑑 𝑖𝑛𝑡𝑎𝑘𝑒𝑑𝑒ℎ𝑛ℎ𝑖𝑗𝑙𝑚

= ∑𝐻𝑒𝑡

4

𝑎=1

+ ∑𝐵𝑟𝑒𝑒𝑑

16

𝑏=1

+ ∑𝑎𝑔𝑒𝑐
3

𝑐=1

+ 𝑡𝑤𝑖𝑛𝑑 + 𝑏𝑦𝑟𝑒 +𝐻𝑌𝑆𝑛

+ 𝑑𝑎𝑚 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛ℎ + 𝑑𝑎𝑚 𝑎𝑔𝑒𝑖|𝑑𝑎𝑚 𝑝𝑎𝑟𝑖𝑡𝑦𝑗 + 𝑎𝑛𝑖𝑚𝑎𝑙𝑙

+ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑚 

𝐿𝑖𝑣𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑝ℎ𝑖𝑗𝑘𝑜𝑙𝑚𝑥

= ∑𝐻𝑒𝑡𝑥

4

𝑎=1

+ ∑𝐵𝑟𝑒𝑒𝑑𝑥

16

𝑏=1

+ ∑𝑎𝑔𝑒𝑥
𝑐

3

𝑐=1

+ 𝑡𝑤𝑖𝑛𝑥𝑑 + 𝑏𝑦𝑟𝑥𝑒 + ∑𝐻𝑌𝑥

2

𝑔=1

 

+ 𝑑𝑎𝑚 𝑑𝑎𝑖𝑟𝑦 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑥ℎ + 𝑑𝑎𝑚 𝑎𝑔𝑒𝑥𝑖|𝑑𝑎𝑚 𝑝𝑎𝑟𝑖𝑡𝑦𝑥𝑗 + 𝑑𝑎𝑚 𝑝𝑒𝑥𝑘

+ 𝑠𝑒𝑥𝑥𝑜 + 𝑎𝑛𝑖𝑚𝑎𝑙𝑥𝑙 +  𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑥𝑚 

𝐷𝑜𝑐𝑖𝑙𝑖𝑡𝑦𝑎𝑞𝑛𝑗𝑜𝑙𝑚

=  𝐻𝑒𝑡𝑎 +∑𝐵𝑟𝑒𝑒𝑑

16

𝑏=1

+∑𝑎𝑔𝑒𝑐
2

𝑐=1

+ 𝑅𝑒𝑐𝑜𝑚𝑏𝑞 + 𝐻𝑌𝑆𝑛 + 𝑑𝑎𝑚 𝑝𝑎𝑟𝑖𝑡𝑦𝑗

+ 𝑠𝑒𝑥𝑜 + 𝑎𝑛𝑖𝑚𝑎𝑙𝑙 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑚  



Chapter 9: Supplementary Material 

187 
 

𝐶𝑎𝑙𝑣𝑖𝑛𝑔 𝑡𝑟𝑎𝑖𝑡𝑠𝑒𝑛𝑖𝑗𝑘𝑜𝑦𝑚𝑙𝑦

= ∑𝐻𝑒𝑡𝑦

4

𝑎=1

+ 𝑏𝑦𝑟𝑦𝑒 + 𝐻𝑌𝑆𝑦𝑛 + 𝑑𝑎𝑚 𝑎𝑔𝑒𝑦𝑖|𝑑𝑎𝑚 𝑝𝑎𝑟𝑖𝑡𝑦𝑦𝑗

+ 𝑑𝑎𝑚 𝑝𝑒𝑦𝑘 + 𝑠𝑒𝑥𝑦𝑜 + 𝑎𝑛𝑖𝑚𝑎𝑙𝑦𝑙  +  𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑦𝑚 

𝐶𝑎𝑟𝑐𝑎𝑠𝑠 𝑡𝑟𝑎𝑖𝑡𝑑𝑒𝑔ℎ𝑖𝑗𝑘𝑙𝑚𝑧 = carcass trait z (i.e., weight [kg], conformation and fat 

[scale of 1 to 15]); 𝐹𝑒𝑒𝑑 𝑖𝑛𝑡𝑎𝑘𝑒𝑑𝑒ℎ𝑛ℎ𝑖𝑗𝑙𝑚 = feed intake (kg DM/day); 

𝐿𝑖𝑣𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑝ℎ𝑖𝑗𝑘𝑜𝑙𝑚𝑥 = live-weight (kg) trait x (recorded between the ages 150 d and 

250 d old (weanlings), between 251 d and 350 d old (adolescent), between 351 d and 

450 d old (adult), and between 451 d and 550 d old (finisher)); 𝐷𝑜𝑐𝑖𝑙𝑖𝑡𝑦𝑎𝑞𝑛𝑗𝑜𝑙𝑚 = 

docility (scale 1 (docile) to 5 (difficult)); 𝐶𝑎𝑙𝑣𝑖𝑛𝑔 𝑡𝑟𝑎𝑖𝑡𝑠𝑒𝑛𝑖𝑗𝑘𝑜𝑦𝑚𝑙 = calving trait y (i.e., 

calving difficulty (scale 1 to 4), mortality (%) and gestation length (days); 𝐻𝑒𝑡 = 

heterosis coefficient which is fitted as four separate heterosis coefficients to represent 

different breed crosses within the carcass trait and feed intake genetic evaluation and is 

fitted as a single coefficient a in the docility genetic evaluation; 𝐵𝑟𝑒𝑒𝑑 = covariate 

representing the proportion of 16 breeds (i.e., Aberdeen Angus (AA), Aubrac (AU), 

Blonde D’Aquitaine (BA), Belgian Blue (BB), Charolais (CH), Friesian (FR), Hereford 

(HE), Holstein (HO), Jersey (JE), Limousin (LM), Piemontese (PI), Montbelliarde 

(MO), Parthenais (PT), Salers (SA), Shorthorn (SH) and Simmental (SI); 𝑎𝑔𝑒𝑐 = age of 

the animal (linear, quadratic and cubic for all traits except for docility which included 

linear and quadratic age) at the time of slaughter for carcass traits (i.e., weight, 

conformation, fat, feed intake recording for feed intake trait, or docility scoring for 

docility trait; 𝑡𝑤𝑖𝑛𝑑 = whether or not the animal was a twin; 𝑏𝑦𝑟𝑒 = birth year of the 

animal l; 𝐴𝑏𝑎𝑡𝑡𝑜𝑖𝑟𝐶𝐺𝑧𝑓 = the covariate representing the abattoir contemporary group f 

coefficient pertaining to trait z; 𝐻𝑌𝑔 = herd year contemporary group coefficient g of: 1) 

carcass traits z (includes contemporary group coefficient for herd that animal l was 

harvested in and the previous herd that animal l spent the most time in) and, 2) live-

weight x (includes contemporary group coefficient for herd that animal l’s live-weight 

was recorded in and the previous herd that animal l spent the most time in); and 𝐻𝑌𝑆𝑛 

= herd year season contemporary group coefficient n of: 1) feed intake recording, 2) 

docility recording, 3) calving traits y; 𝑑𝑎𝑚 𝑑𝑎𝑖𝑟𝑦 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛ℎ = dam dairy breed fraction 

coefficient h; 𝑑𝑎𝑚 𝑎𝑔𝑒𝑖|𝑑𝑎𝑚 𝑝𝑎𝑟𝑖𝑡𝑦𝑗 = the interaction between dam age i and the dams 
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jth parity (i.e., 1 to 7, inclusive) for all traits with exception to docility whereby just the 

dams jth parity is modelled; dam pek= permanent environment effect k of animal l’s 

dam; 𝑠𝑒𝑥𝑜 = whether animal l was male or female for docility evaluation, otherwise, 

bull, steer or heifer; 𝑅𝑒𝑐𝑜𝑚𝑏𝑞 = recombination coefficient, 𝑎𝑛𝑖𝑚𝑎𝑙𝑙  = direct genetic 

effect of animal l, and 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑚= residual term. 
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9.2 Supplementary Tables 

Supplementary Table S9.1: Classification of the five strata describing the six herd-

level characteristics, including population breakdown of sub-categories for herd size and 

herd-level use of AI corresponding to the specific herd-year best linear unbiased 

estimates for age at first calving (AFC), calving to first service interval (CFS), number 

of services (NS), calving interval (CIV), survival (SU) and milk. 

 Category 

Herd-level characteristics 1 2 3 4 5 

Herd size (no. of animals) 
very 

small 
small average large 

very 

large 

CFS, SU, NS, AFC < 50 50-64 65-79 80-109 ≥ 110 

CIV, Milk yield < 65 65-74 75-89 90-109 ≥ 110 

      

Rate of expansion (no. of 

animals) 
0 1-3 4-6 7-8 ≥ 9 

      

Proportion of home-born 

animals (%) 
< 70 70-79 80-94 95-99 100 

      

Herd-level use of AI (%)      

NS < 75 75-79 80-84 85-94 ≥ 95 

CFS, SU < 55 55-69 70-79 80-89 ≥ 90 

AFC, CIV, Milk yield < 45 45-69 70-79 80-89 ≥ 90 

      

Proportion of breed society 

registered animals (%) 
0 1-4 5-34 35-95 > 95 

      

Calv 42 (%) < 50 50-59 60-69 70-80 > 80 
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Supplementary Table S9.2: Linear regression coefficients of phenotypic performance 

for each trait on the heterosis coefficients pertaining to various crosses including 

Holstein Friesian (HO × FR), Holstein × Jersey (HO × JE), Holstein × Montbelliarde 

(HO × MO), Holstein × Meuse Rhine Yssel (HO × MY) and Swedish Red × Holstein-

Friesian (SR × HF) within each herd best linear unbiased estimate stratum including the 

significance of the interaction. 

  Herd Rank   

BLUEs trait Best Average Worst P-value 

Age at first calving (d)   

HO × FR -3.08 (2.88) -2.70 (2.65) 4.54 (2.74)  

HO × JE -3.98 (2.58)a -7.12 (3.13)ab -14.53 (4.34)b * 

HO × MO -2.72 (17.16) -4.36 (9.50) -30.54 (10.96)  

HO × MY -17.52 (19.54) -15.69 (14.22) -31.06 (9.38)  

SR × HF -4.25 (4.17) -4.67 (3.78) -21.40 (5.40)  
     

Milk yield (kg)   

HO × FR 180.34 (15.96)a 224.09 (16.08)a 336.06 (16.12)b *** 

HO × JE 48.62 (30.34)a 212.60 (21.87)b 151.36 (14.89)c * 

HO × MO 422.08 (65.22) 471.48 (63.76) 442.13 (47.41)  

HO × MY -51.93 (77.22)a 527.29 (83.28)b 264.69 (60.66)c *** 

SR × HF 33.84 (38.32)a 222.08 (27.32)b 55.81 (26.55)a *** 
     

Survival   

HO × FR 0.01 (0.01)a 0.02 (0.01)a 0.04 (0.01)b *** 

HO × JE 0.03 (0.01) 0.04 (0.01) 0.04 (0.01)  

HO × MO 0.02 (0.03) 0.04 (0.02) 0.00 (0.02)  

HO × MY 0.05 (0.03) 0.01 (0.02) 0.02 (0.03)  

SR × HF -0.01 (0.01) 0.02 (0.01) 0.03 (0.01) * 

     

Number of services (units)  

HO × FR -0.03 (0.02) -0.04 (0.02) -0.09 (0.02)  

HO × JE -0.05 (0.03)a -0.05 (0.02)a -0.12 (0.02)b *** 

HO × MO -0.84 (0.07) 0.04 (0.06) -0.12 (0.06)  

HO × MY -0.02 (0.08) -0.02 (0.06) 0.04 (0.08)  

SR × HF -0.02 (0.04) -0.05 (0.03) -0.07 (0.02)  
     

Calving to first service interval (d)    

HO × FR -0.60 (0.56) -0.31 (0.49) 0.65 (0.52)  

HO × JE 2.75 (0.92)a 0.13 (0.56)b -2.40 (0.51)c *** 

HO × MO 0.98 (2.0) -0.56 (1.97) -2.10 (1.70)  

HO × MY 0.83 (2.62) -1.35 (2.44) -0.41 (2.49)  

SR × HF 0.58 (1.29) 1.05 (0.80) -0.27 (0.73)  
     

Calving interval (d)    

HO × FR -0.82 (1.26)a -2.64 (1.09)a -9.77 (1.22)b *** 

HO × JE -3.26 (1.91)a -3.31 (1.41)a -6.04 (1.42)a * 

HO × MO -4.93 (4.0)ab 0.31 (4.35)a -15.04 (3.92)b * 

HO × MY -2.38 (4.32) -3.76 (4.56) -3.83 (4.90)  

SR × HF -1.06 (2.41) -3.71 (1.94) -5.84 (2.77)  
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Supplementary Table S9.3: Component traits of the different indexes evaluated, 

including the traits units of measurement, genetic standard deviation (SD) and economic 

weighting. 

 

  Index     

Component trait 
National 

Terminal 
Calf Harvest Units 

Genetic 

SD 

Economic 

weight 

Calving 

difficulty 
 - - % 0.158 -€4.65 

Calving 

mortality 
 - - 0 to 1 0.038 -€5.34 

Gestation length  - - Days 3.020 -€2.25 

Docility   - 
1 (very quiet) to 5 

(very difficult) 
0.365 €17.03 

Feed intake   - kg DM per day 0.667 -€38.63 

Carcass weight    Kg 15.419 €3.14 

Carcass 

Conformation 
   

EUROP scale 

E (best) to P (worst) 
0.644 €14.77 

Carcass Fat    
1 (leanest) to 15 

(fattest) 
0.679 -€7.86 
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Supplementary Table S9.4: Quality based pricing grid displaying cent (€) per kg 

corresponding to the EUROP carcass classifications and fat grade awarded to the 

carcass. 

  EUROP Classification 

Fat 

grade 
E+ E= E- U+ U= U- R+ R= R- O+ O= O- P+ P= P- 

1- 442 436 430 424 418 412 406 400 400 382 376 370 364 358 352 

1= 442 436 430 424 418 412 406 400 400 382 376 370 364 358 352 

1+ 442 436 430 424 418 412 406 400 400 382 376 370 364 358 352 

2- 442 436 430 424 418 412 406 400 400 382 376 370 364 358 352 

2= 442 436 430 424 418 412 406 400 400 382 376 370 364 358 352 

2+ 442 436 430 424 418 412 406 400 400 382 376 370 364 358 352 

3- 442 436 430 424 418 412 406 400 400 388 382 376 370 364 358 

3= 442 436 430 424 418 412 406 400 400 388 382 376 370 364 358 

3+ 442 436 430 424 418 412 406 400 400 388 382 376 370 364 358 

4- 442 436 430 424 418 412 406 400 400 388 382 376 370 364 358 

4= 442 436 430 424 418 412 406 400 400 388 376 370 364 358 352 

4+ 436 430 424 418 412 406 400 394 394 382 376 370 364 358 352 

5- 418 412 406 400 394 388 382 376 376 364 358 352 346 340 334 

5= 418 412 406 400 394 388 382 376 376 364 358 352 346 340 334 

5+ 418 412 406 400 394 388 382 376 376 364 358 352 346 340 334 
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Supplementary Table S9.5: The phenotypic records belonging to the validation 

population which were included amongst the remaining population in each individual 

carcass genetic evaluation iteration, whereby phenotypes encompass the traits carcass 

weight, carcass conformation, carcass fat and, feed intake phenotypic records. Live-

weight phenotypes were recorded at 4 different age-points of the animals. 

Genetic evaluation 

iteration 
Phenotypes 

Live-weight (d) 

150-250 250-350 350-450 450-550 

1      

2 - - - - - 

3 -  - - - 

4 - -  - - 

5 - - -  - 

6 - - - -  

7 - -    
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Supplementary Table S9.6: Annual cost associated with retaining a dry cow in the 

herd. 

Cost type Cost source Cost of dry cow (€) 

   

Cash costs 

Concentrates 20 

Grassland (fertilizer, lime, reseeding) 52 

Machinery hire 14 

Silage making 156 

Replacement heifer 32 

Overheads1 111 
   

Non-cash costs2 

Depreciation on buildings and 

machinery 
82 

Land charge for owned land 132 
   

  Total costs 599 
1Overheads costs refer to general operational costs pertaining to a car, phone, electricity, insurance, 

interest on loans, etc. 
2Non-cash costs don’t require cash payment every year 
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Supplementary Table S9.7: Components included in the cost estimation of rearing a 

heifer up to point of calving at 24 months old. 

Heifer replacement cost to calving at 24 months 

Year Cost source Euro 

Year 1 

  

Grazed grass 40 

Grass silage 113 

Concentrates 32 

Vaccinations 12 

Vet/medicine 8 

Dosing 11 

Labour 131 

Fixed cost contribution 80 

Sub total (year 1) 427 
   

Year 2 

  

Grazed grass 141 

Grass silage 158 

Concentrates 48 

Vaccinations 12 

Vet/medicine 85 

AI/breeding 36 

Dosing 8 

Labour 61 

Fixed cost contribution 140 

Sub total (year 2) 688 
   

 Total from calf-hood to calving 1116 
   

 Mortality Rate 5% 
 Cost including mortality 1174 
   

 Plus cost of suckler cow 616 
   

Total Total cost of homebred replacement 1790 
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Supplementary Table S9.8: Least squares means for cull cow carcass weight after 

adjusting for carcass fat, carcass conformation, estimated breeding value for cull cow 

carcass weight and parity. 

Parity LSM Standard Error 

1 335.05 0.95 

2 352.59 0.95 

3 363.34 0.96 

4 369.64 0.96 

5 373.33 0.97 

6 374.51 0.98 

7 374.80 1.00 

8 373.83 1.03 

9 372.67 1.06 

10 369.62 1.10 
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Supplementary Table S9.9: Survival transition matrix between consecutive parities given the animal’s rank for survival and current parity month of 

calving group (MOCG) which are 1 (January), 2 (February), 3 (March), 4 (April), 5 (May), 6 (June), 7 (July and August), 8 (September), 9 (October 

to December). 

Current parity 
 Probability of transitioning to next parity 
 Current parity month of calving group 

Parity Rank for survival 1 2 3 4 5 6 7 8 9 

1 

Top 20% 0.884 0.895 0.889 0.865 0.834 0.778 0.796 0.829 0.840 

60 to 80% 0.863 0.860 0.859 0.830 0.783 0.736 0.739 0.786 0.805 

40 to 60% 0.832 0.831 0.818 0.789 0.741 0.709 0.696 0.756 0.773 

20 to 40% 0.806 0.809 0.793 0.762 0.706 0.662 0.653 0.718 0.748 

Bottom 20% 0.755 0.749 0.731 0.691 0.644 0.585 0.586 0.663 0.702 
           

2 

Top 20% 0.891 0.909 0.901 0.888 0.858 0.827 0.822 0.855 0.855 

60 to 80% 0.873 0.875 0.874 0.868 0.831 0.789 0.783 0.810 0.823 

40 to 60% 0.849 0.861 0.854 0.833 0.791 0.767 0.748 0.785 0.799 

20 to 40% 0.823 0.833 0.831 0.813 0.767 0.730 0.725 0.745 0.770 

Bottom 20% 0.791 0.786 0.782 0.760 0.720 0.667 0.659 0.712 0.727 
           

3 

Top 20% 0.902 0.909 0.909 0.901 0.870 0.837 0.828 0.844 0.868 

60 to 80% 0.876 0.889 0.884 0.870 0.843 0.815 0.781 0.831 0.826 

40 to 60% 0.861 0.870 0.862 0.850 0.821 0.774 0.747 0.797 0.815 

20 to 40% 0.834 0.842 0.840 0.825 0.801 0.744 0.731 0.761 0.783 

Bottom 20% 0.785 0.813 0.800 0.791 0.754 0.723 0.690 0.724 0.750 
           

4 
Top 20% 0.904 0.907 0.907 0.891 0.862 0.828 0.819 0.842 0.848 

60 to 80% 0.878 0.880 0.879 0.869 0.843 0.817 0.783 0.804 0.820 
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40 to 60% 0.863 0.861 0.859 0.848 0.814 0.779 0.754 0.780 0.799 

20 to 40% 0.827 0.836 0.830 0.820 0.792 0.749 0.723 0.745 0.780 

Bottom 20% 0.795 0.797 0.801 0.783 0.747 0.714 0.681 0.729 0.734 
           

5 

Top 20% 0.890 0.896 0.885 0.883 0.847 0.831 0.811 0.814 0.842 

60 to 80% 0.870 0.875 0.872 0.855 0.823 0.783 0.767 0.785 0.800 

40 to 60% 0.844 0.850 0.848 0.828 0.801 0.772 0.724 0.780 0.779 

20 to 40% 0.823 0.828 0.821 0.811 0.772 0.733 0.693 0.727 0.764 

Bottom 20% 0.771 0.787 0.787 0.758 0.719 0.679 0.673 0.687 0.703 
           

6 

Top 20% 0.890 0.879 0.887 0.863 0.841 0.814 0.796 0.821 0.826 

60 to 80% 0.867 0.865 0.856 0.831 0.802 0.765 0.740 0.777 0.806 

40 to 60% 0.826 0.835 0.830 0.810 0.762 0.728 0.710 0.737 0.777 

20 to 40% 0.799 0.801 0.808 0.786 0.745 0.690 0.676 0.695 0.743 

Bottom 20% 0.780 0.770 0.764 0.743 0.698 0.650 0.638 0.664 0.702 
           

7 

Top 20% 0.876 0.878 0.862 0.851 0.823 0.763 0.756 0.790 0.813 

60 to 80% 0.843 0.854 0.845 0.824 0.761 0.726 0.721 0.764 0.764 

40 to 60% 0.835 0.828 0.812 0.789 0.744 0.705 0.684 0.727 0.751 

20 to 40% 0.801 0.778 0.773 0.745 0.714 0.653 0.654 0.712 0.721 

Bottom 20% 0.737 0.741 0.740 0.711 0.659 0.594 0.593 0.601 0.684 
           

8 

Top 20% 0.838 0.845 0.837 0.804 0.754 0.687 0.692 0.736 0.771 

60 to 80% 0.806 0.800 0.787 0.756 0.701 0.681 0.657 0.682 0.715 

40 to 60% 0.773 0.768 0.763 0.737 0.671 0.636 0.605 0.638 0.689 

20 to 40% 0.713 0.735 0.714 0.690 0.642 0.569 0.553 0.568 0.650 

Bottom 20% 0.677 0.668 0.689 0.629 0.588 0.539 0.514 0.603 0.634 
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Supplementary Table S9.10: Fertility transition matrix with probabilities of transitioning from the current state to transition state month of calving 

groups (MOCG) which are 1 (January), 2 (February), 3 (March), 4 (April), 5 (May), 6 (June), 7 (July and August), 8 (September), 9 (October to 

December), as well as MOCGs 10 (January), 11 (February and March), and 12 ( April to August) which capture a two calendar year lag between 

successive calvings; probabilities have been stratified based on an animal’s rank for calving interval (CIV). 

Current 

state 
 Transition state month of calving 

MOCG  1 2 3 4 5 6 7 8 9 10 11 12 

 
Rank for 

CIV 
            

1 

Top 20% 0.358 0.225 0.145 0.068 0.028 0.010 0.009 0.001 0.156 0.000 0.000 0.000 

60 to 80% 0.349 0.223 0.144 0.075 0.032 0.011 0.010 0.001 0.155 0.000 0.000 0.000 

40 to 60% 0.339 0.225 0.153 0.081 0.031 0.013 0.010 0.001 0.146 0.000 0.000 0.000 

20 to 40% 0.328 0.221 0.165 0.089 0.035 0.015 0.013 0.001 0.132 0.000 0.000 0.000 

Bottom 20% 0.291 0.212 0.177 0.110 0.048 0.020 0.018 0.002 0.122 0.000 0.000 0.000 

              

2 

Top 20% 0.158 0.367 0.289 0.106 0.037 0.012 0.008 0.002 0.020 0.000 0.000 0.000 

60 to 80% 0.149 0.358 0.296 0.114 0.038 0.013 0.010 0.004 0.019 0.000 0.000 0.000 

40 to 60% 0.146 0.347 0.292 0.126 0.043 0.013 0.012 0.004 0.018 0.000 0.000 0.000 

20 to 40% 0.137 0.329 0.297 0.140 0.047 0.016 0.013 0.005 0.016 0.000 0.000 0.000 



 

200 
 

Bottom 20% 0.126 0.304 0.294 0.150 0.059 0.021 0.021 0.006 0.018 0.000 0.000 0.000 

              

3 

Top 20% 0.022 0.190 0.453 0.228 0.068 0.020 0.013 0.003 0.003 0.000 0.000 0.000 

60 to 80% 0.020 0.183 0.451 0.231 0.071 0.022 0.015 0.004 0.004 0.000 0.000 0.000 

40 to 60% 0.019 0.172 0.448 0.239 0.073 0.024 0.017 0.004 0.004 0.000 0.000 0.000 

20 to 40% 0.017 0.163 0.435 0.246 0.082 0.027 0.020 0.005 0.006 0.000 0.000 0.000 

Bottom 20% 0.016 0.147 0.412 0.260 0.093 0.033 0.025 0.008 0.008 0.000 0.000 0.000 

              

4 

Top 20% 0.000 0.033 0.302 0.415 0.163 0.047 0.027 0.006 0.007 0.000 0.000 0.000 

60 to 80% 0.000 0.028 0.292 0.420 0.165 0.049 0.031 0.007 0.009 0.000 0.000 0.000 

40 to 60% 0.000 0.028 0.282 0.416 0.169 0.053 0.034 0.007 0.011 0.000 0.000 0.000 

20 to 40% 0.000 0.023 0.271 0.418 0.173 0.054 0.038 0.010 0.013 0.000 0.000 0.000 

Bottom 20% 0.000 0.020 0.244 0.400 0.190 0.064 0.047 0.014 0.021 0.000 0.000 0.000 

              

5 

Top 20% 0.000 0.000 0.082 0.367 0.331 0.118 0.069 0.013 0.017 0.002 0.000 0.000 

60 to 80% 0.000 0.000 0.069 0.360 0.336 0.120 0.076 0.014 0.022 0.002 0.000 0.000 

40 to 60% 0.000 0.000 0.067 0.351 0.336 0.122 0.078 0.016 0.026 0.003 0.000 0.000 

20 to 40% 0.000 0.000 0.059 0.337 0.333 0.130 0.088 0.019 0.031 0.004 0.000 0.000 

Bottom 20% 0.000 0.000 0.048 0.307 0.332 0.135 0.098 0.026 0.047 0.006 0.000 0.000 
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6 

Top 20% 0.000 0.000 0.001 0.151 0.377 0.236 0.161 0.027 0.037 0.009 0.002 0.000 

60 to 80% 0.000 0.000 0.000 0.127 0.364 0.251 0.170 0.029 0.044 0.013 0.002 0.000 

40 to 60% 0.000 0.000 0.001 0.110 0.355 0.261 0.171 0.033 0.050 0.016 0.003 0.000 

20 to 40% 0.000 0.000 0.001 0.099 0.337 0.259 0.187 0.037 0.056 0.021 0.004 0.000 

Bottom 20% 0.000 0.000 0.000 0.087 0.305 0.255 0.196 0.044 0.078 0.030 0.005 0.000 

              

7 

Top 20% 0.000 0.000 0.000 0.001 0.081 0.205 0.464 0.107 0.094 0.020 0.026 0.003 

60 to 80% 0.000 0.000 0.000 0.001 0.070 0.184 0.466 0.118 0.106 0.023 0.030 0.003 

40 to 60% 0.000 0.000 0.000 0.001 0.059 0.166 0.472 0.122 0.116 0.025 0.036 0.004 

20 to 40% 0.000 0.000 0.000 0.000 0.051 0.151 0.453 0.137 0.128 0.034 0.042 0.003 

Bottom 20% 0.000 0.000 0.000 0.001 0.044 0.131 0.426 0.139 0.154 0.044 0.056 0.006 

              

8 

Top 20% 0.000 0.000 0.000 0.000 0.000 0.001 0.304 0.314 0.264 0.034 0.051 0.031 

60 to 80% 0.000 0.000 0.000 0.000 0.000 0.001 0.271 0.325 0.278 0.040 0.056 0.030 

40 to 60% 0.000 0.000 0.000 0.000 0.000 0.000 0.248 0.325 0.290 0.046 0.059 0.032 

20 to 40% 0.000 0.000 0.000 0.000 0.000 0.000 0.225 0.318 0.306 0.048 0.069 0.033 

Bottom 20% 0.000 0.000 0.000 0.000 0.000 0.000 0.195 0.302 0.316 0.060 0.086 0.041 

              

9 
Top 20% 0.000 0.000 0.000 0.000 0.000 0.000 0.026 0.104 0.516 0.130 0.133 0.091 

60 to 80% 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.094 0.518 0.133 0.140 0.094 
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40 to 60% 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.094 0.509 0.136 0.148 0.095 

20 to 40% 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.091 0.496 0.138 0.154 0.105 

Bottom 20% 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.079 0.471 0.139 0.172 0.126 
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9.3 Supplementary Figures 

 

 

Supplementary Figure S9.1: Transition probability of milk yield performances into 

different strata from the initial strata (identified in bordering circular segments). 

 


