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Fog Computing Support for Internet of
Things Applications

Mohit Taneja

Abstract

With more devices on-board the Internet every day, there is a constant drive to balance
Quality of Service (QoS) with an efficient use of resources. At present, the Internet of
Things (IoT) applications are entirely hosted in the cloud. With emerging ‘smart’ scenarios
in verticals such as dairy farming, health, home, mobility, etc., the real-time communication
delay from the cloud platform necessitates the need to use computing platforms closer to
the data source. While a traditional centralized cloud approach has led the path towards a
pivotal revolution in modern-day computing, the emerging IoT era gave way to its own
range of applications demanding a lower response time, efficient network usage, and
improved data protection, to name a few.

In this age of IoT, the devices along the things-to-cloud continuum present a unique
opportunity to additionally serve as computing hubs. Termed fog computing, this paradigm
can be used to host applications and process data closer to the source. However, these
intermediate devices are usually resource constrained in nature, and are thus limited in
computational flexibility. This paradigm shift towards fog computing brings up a challenge
of using these intermediary computing resources efficiently to host application(s) and serve
as additional computational resources without affecting their primary functionality.

The research presented in this work addresses these demands and challenges, and
presents how to use the fog computational platform to support these requirements. It
presents a set of tools, algorithms, approaches and methodology of developing and de-
ploying these emerging IoT applications while leveraging the fog computing paradigm.
With extracting knowledge from the generated data being one of the prime objectives of
IoT deployments, this work also presents how the data analytics computing operations
can be decomposed to run on these resource-constrained devices without affecting their
fundamental operation.
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Chapter 1

Introduction

With the exponential growth rate of technology, the future of all activities involves an
omnipresence of widely connected devices, or as we better know it, the ‘Internet of Things
(IoT)’. IoT is about connecting people, processes, data and things; and is changing the way
we monitor and interact. With the ever evolving IoT scenario, computing has spread to the
most minuscule everyday activities, and is leading the way towards an everlasting future
of connectivity and reachability. Moreover, the associated IoT applications are becoming
an integral part of our day-to-day activities. IoT applications have been developed and
deployed in several domains such as agriculture, transportation, manufacturing, logistics,
healthcare, supply chain, factories and environmental monitoring to name a few. Despite
their popularity and much progress, designing and developing IoT applications is still a
complex, time-consuming and challenging task.

A generic IoT application life cycle inspired from a systems perspective has been
presented in Fig. 1.1 [1], [2]. The systems development life cycle is a systematic process
for planning, creating, testing, and deploying an information system. In the software
engineering field, this is referred to as Software Development Life Cycle (SDLC) [4] or
Application Development Life Cycle (ADLC), and in a broader perspective as Application
Life Cycle Management (ALM). In the software engineering domain, SDLC is used as
a systematic process for building software to ensure the quality and correctness of the
software being built. ALM is a broader perspective than the SDLC; while the latter is
usually limited to the phases of software development such as requirements, design, coding,
testing, configuration and project management, ALM usually continues after development
until the application is no longer used, and may span many SDLCs. To this end, a generic
IoT application life cycle inspired from these concepts can be presented as shown in Fig.
1.1. A brief description of each of these stages of the IoT application life cycle is given
below:
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The IoT Data Life Cycle
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(a) IoT Application Life Cycle
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Fig. 1.1 A generic representation of a) IoT application life cycle (built and modified from
[1], [2]), and b) IoT data life cycle [3].

1) Plan (Requirement Analysis): This stage deals with gathering the requirements of
the system being developed. It includes inputs from all the stakeholders, domain
experts, end-users that will either be part of the system being developed or will use
it at a certain point in time.

2) Design: This stage deals with the architecture design, functional logic, inputs and
outputs, database design, and addressing all types of dependencies for the system
being developed.

3) Develop (Implement): After the design stage, the implementation stage deals with
building the system using chosen programming language(s). Hence, this stage is a
translation of the design document into source code.
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4) Test: Once the development is finished, the system is tested for its functionali-
ties. This is done to ensure that the entire system works according to the desired
requirements specified in the earlier stage.

5) Deploy (Placement): After the testing, the developed system is deployed in the
real-word to be used by the stakeholders.

6) Operate (Maintain): Once the system is deployed, and is in use, it needs to be
maintained to ensure smooth operation as per the defined requirements. This stage
may include – 1.) Re-configuration of the system, 2.) Bug fixing – any faults or
issues that may arise, 3.) Upgrading the system to a newer version , 4.) Enhancement
– to add some new features.

In the same Fig. 1.1, we also present the life cycle of data in an IoT deployment,
sometimes also referred to as the IoT analytics life cycle [3]. Over here, the steps involve
generation of data, followed by collection and analysis of the data, and the required action
to be taken based on the analysis and the objective. The end goal of this analytics cycle
is to have sufficient analytics ability that can make the predictions for the underlying
use-case at hand. Extracting useful information from the data being collected from the
IoT deployments is one of the prime objectives in many use-cases, thus it is important to
understand the underlying life cycle of the process. More importantly, an IoT application
might need to have a component that performs the desired analytics operation, and thus
the understanding of data life cycle becomes useful in the design phase of the application
life cycle.

Currently the IoT applications and associated services are delivered to consumers from
the ‘cloud’, over the Internet and to our devices. The current cloud-centric approach alone
cannot support a large number of current and emerging IoT applications, mainly for three
main reasons outlined below:

1. First, the huge amounts of data produced by IoT deployments make it impractical to
transfer it from the source (IoT end-devices) to the processing site (cloud servers)
due to the underlying bandwidth limitation, processing overhead, and transmission
costs.

2. Second, the significant end-to-end delay from end-devices to the remote cloud
servers can hinder the performance of applications that require real-time analysis,
such as online gaming, video applications, emergency response systems etc.

3. Finally, there might be implications over data transfer and handling in terms of
privacy and security, and thus it might be desirable to avoid sending it remotely over
the Internet; and in certain scenarios it might be forbidden as well.
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To cope with these issues, fog computing paradigm has emerged as a new conceptual
approach that combines the benefits of cloud, and the computational resources available in
the infrastructure along the things-to-cloud continuum to provide services at the edge of
the network.

As more and more devices with computing capabilities become connected to the
Internet, these devices can also potentially participate in the hosting and delivery of these
applications and services. In essence, the computing resources are moving beyond the
‘cloud’ and into the ‘fog’. This new paradigm shift can bring many advantages if used
effectively, such as lower cost, faster service delivery and improved data protection to
name a few. However this paradigm shift requires a fundamental rethink as to how the
applications are deployed and operated, and comes with its own set of challenges. This
demands a methodology to be developed to use this paradigm shift effectively. To use
these resources effectively and efficiently, there is need to have a careful placement of
desired computing operations onto these resources, and careful coordination of them for
efficient overall system performance.

It is important to understand both – the IoT application life cycle and the IoT data life
cycle presented above in order to be able to leverage the fog computing paradigm over the
continuum from IoT to cloud. In this work, we are mainly concerned with the first five
stages of the IoT application life cycle, which can be defined at a higher level as Design,
Development and Deployment. Further, from the IoT data life cycle, we primarily deal
with the Analytics stage, and show how the fog computing paradigm can be leveraged for
data analytics operation in IoT deployments. Fig. 1.2 shows a diagrammatic representation
of these three subject-fields addressed in this dissertation.

We identify three key challenges to efficiently leverage the fog computing paradigm
in IoT deployments as part of this work and address them in this research. The next
section presents a detailed description of the articulated research questions and identified
challenges. The work presented in the dissertation draws from three main subject areas —
Fog Computing, Internet of Things (IoT), and Data Analytics. A collective diagrammatic
representation of the work presented in the dissertation mapped to the subject areas is
illustrated in Fig. 1.3.

The remainder of this chapter presents the research hypothesis that summates the intent
of this dissertation, explicitly defines the scope using research questions, states the research
contributions and outlines the organization of this dissertation.
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1.1 Research Hypothesis
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Fig. 1.2 A modular representation of the three subject-fields of the dissertation work. This
represents the scope of the dissertation — IoT applications in fog computing environments
and their: a) design and development, b) deployment, c) data analytics functionality.

Dissertation Work
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Computer Science

Fog Computing

Internet of Things
(Architecture, Verticals

and Applications)

Data Analytics

Microservices based application design,
development and deployment in fog enabled IoT

environments : Smart Dairy farming use case
(Chapter 3)

IoT, fog computing and data analytics in Smart
Dairy farming

(Chapter 2, Chapter 3) 

IoT Application deployment in fog enabled
environments
(Chapter 4)

Distributed Decomposed Data Analytics in fog
enabled IoT environments

(Chapter 5)

Fig. 1.3 A brief diagrammatic representation of this dissertation work mapped to key
subject areas, and work presented in the further chapters.

1.1 Research Hypothesis

As mentioned earlier, the daily influx of devices getting connected to the Internet presents
an opportunity to use them to perform various computing operations including data analyt-
ics. These devices if used efficiently can an bring many advantages, which builds up the
research hypothesis of this work as below :
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1.1 Research Hypothesis

Executing parts of computing operations on fog nodes can reduce bandwidth con-
sumption, cloud computing related resource and operational costs, and can help im-
prove Quality of Service (QoS) for IoT applications.

Building up from the above, three research questions have been examined in this
dissertation with their description as below:

1.1.1 Research Question (RQ1) — Designing and developing IoT ap-
plications leveraging the fog computing paradigm

One of the key challenges is to examine the development of IoT applications from the
perspective of fog computing paradigm, where computing infrastructure available at the
network edge can be used to host applications, or their parts. The key points of study
here are to ascertain what methodologies or programming models to use while developing
applications in such fog enabled IoT deployments. Current approaches being cloud-centric
in nature do not fully serve the need here. The articulated research question thus is:

How to design and develop an IoT application leveraging the fog computing
paradigm?

Give the wide scope of possible IoT applications, we selected Dairy Farming as the
application domain to validate the approach. It was essential to decide on an application
domain to have a realistic and time-bound approach for the work carried out. We validated
the proposed approach in a real-world setup in a Smart Dairy Farm, but it is generic enough
to cater to other application domains as well with the essential modifications depending on
the underlying use-case scenario. Specific to the smart dairy farming application domain,
the question can be re-stated as: How to design and develop a fog enabled software system
in a smart dairy farming IoT scenario, addressing a specified application objective? The
selected use-case and application objective was early lameness detection in dairy cattle
using locomotion data. This has been elaborated in detail in chapter 3.

With the existing development methodologies being cloud-centric in nature, it becomes
essential to investigate approaches that can be used and extended for fog enabled application
development.
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1.1 Research Hypothesis

1.1.2 Research Question (RQ2) — Efficient deployment of applica-
tions on the computing resources available in the infrastructure
leveraging the fog computing paradigm

Another challenge is how to deploy these applications efficiently onto available computing
resources. The current approach of deploying them fully in the cloud does not consider
the computing resources available in the infrastructure along the things-to-cloud spectrum.
It does not take into consideration the resource capacity aspect of these available devices
along the path for the deployment purpose. The primary reason for this is that the cloud
has a resource-rich computing environment, where resources can be scaled up and down
during run time. While on the other hand, these intermediate devices in consideration
(termed as ‘fog devices’) to serve as additional computing hubs do not have the ability to
scale resources on the go. Hence, a careful placement of computing operations is required
for an efficient overall system performance.

How to efficiently deploy an IoT application in fog enabled infrastructure?

In fog enabled scenarios, the IoT application consists of various modules with active
inter-dependencies that can be placed onto the computing resources available in the
infrastructure. So, to make the research question more precise with the fog environment
in consideration, it can be phrased as — How to efficiently place components of a multi-
component IoT application in the network infrastructure leveraging the fog computing
paradigm?

Using devices along things to cloud spectrum for hosting application components is not
straightforward. The primary reason for that is the resource constraints with these devices,
and not having the flexibility of the cloud to scale up and down resources dynamically for
efficient resource utilization. Thus, there is a need to develop an approach that carefully
places the application components onto available resources, while at the same time fulfilling
their resource demand in order to provide the desired quality of service.

1.1.3 Research Question (RQ3)— Data analytics in IoT applications

In this IoT era, many "smart environments" (e.g., smart cities, smart factories) will be,
among others, generators of huge amounts of data. To provide valuable services in such
environments, data will have to be analysed to extract knowledge. Currently, this is
typically achieved through centralized cloud-based data analytics services. However,
this approach may present significant issues from the standpoint of data ownership, data
protection and the network capacity. One possible solution to cope with these shortcomings
is to move data analytics close to where data is generated i.e., on nodes that generate the
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1.2 Research Contribution

data or on nodes close by. Thus, it becomes essential to look into approaches that can
help achieve this. Specific to the approach of decomposing data analytics for fog enabled
systems that we present in chapter 5, the partial data analytics, termed as decomposed data
analytics is performed at the edge of the network i.e., on a subset of nodes (which act as
gateways and are termed as fog nodes) very close to the data source.

Extracting knowledge from data being one of the prime objectives of smart systems,
thus raises the question of whether the traditional data analytics algorithms can be
distributed in some form onto the devices at the network edge to form an intelligent edge,
capable of performing those analytic operations with the same computing principles as
the traditional algorithm under analysis. More formally,

How to decompose data analytics computing programs to run between fog and
cloud?

The objective here is to perform efficient data analytics in IoT deployments, while
leveraging the fog computing paradigm. Fog computing requires novel decomposition
methods for computing programs. This decomposition between the cloud and fog is not
straightforward, particularly for complex algorithms in data analytics applications. The
unique system challenges such as storage, computation, communication are not considered
by designers of machine learning algorithms, which makes the area worthy of investigation
with fog computing in picture.

We sequentially address these identified challenges in the work presented.

1.2 Research Contribution

This section extracts and summarises the high level contributions that have been made as
an output of this research work. The main contribution(s) of this dissertation are :

1. A design and development methodology for IoT application development leveraging
fog computing have been presented. The proposed methodology has been validated
in a real-world smart dairy farming IoT scenario.

2. With smart dairy farming as the selected application domain, contributions have
also been made in behavioral analysis study of dairy cows. Specifically, a blended
clustering and classification model for identifying lame cows have been proposed,
with the proposed clustering methodology being major contribution as part of the
research work from this dissertation. Although the existence of clusters in herd have
been used before in cattle behaviours, the study presented here is the first to combine
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1.3 Dissertation Organization

that with a classification mechanism to build a custom machine learning model to
detect lameness in dairy cattle at an early stage.

3. A framework for efficient placement of IoT application(s) in network infrastructure
leveraging fog computing has been presented. The existing approaches deploy an
application entirely in cloud even if the application is designed in modular way,
composed of various modules. However, the novel approach developed as a part of
this work presented in chapter 4 follows a hybrid fog-cloud strategy to efficiently use
the computation platform available at the network edge for application deployment
leveraging fog computing paradigm.

4. With realization of IoT deployments, and more and more data emerging as an output
of that, data analytics becomes an integral part of the application being developed
in these IoT deployments. An approach on how to enable these data analytics
computing programs to run on devices available at network edge has been presented.

1.3 Dissertation Organization

The rest of the dissertation is structured as follows. Chapter 2 first presents related
background information relevant for understanding this dissertation, followed by a literature
review with respect to the areas of contributions.

The following three chapters address the research question in detail. Table 1.1 maps
the research questions with the contributions made, and also indicates the corresponding
chapter they have been presented in. Fig. 1.4 presents a visual representation of the
same, along with the problem domain for each research question and the subject-field it
contributes to.

Table 1.1 Research Contributions.

Research
Question

Research
Contributions Chapter Peer-reviewed

Publications

RQ1
A hybrid modular-microservices approach

for design and development of IoT applications
leveraging the fog computing paradigm

3

P4 - WF-IoT 2018 [5]
P5 - CCNC 2019 [6]

P7 - SPE2019 [7]
P9 - IEEE IoT Magazine 2019 [8]

P10 - COMPAG 2020 [9]

RQ2
An algorithm for efficient placement of

multi-component IoT applications
leveraging the fog computing paradigm

4
P1 - CF Procedia2016 [10]

P2 - IEEE/ACM SEC 2016 [11]
P3 - IM 2017 [12]

RQ3
Extension of an existing approach for distributed
decomposed data analytics in fog environments 5

P6 - IEEE IoT Newsletter 2018 [13]
P8 - IEEE Access 2019 [14]

Chapter 3 addresses the first research question (RQ1). It presents the design and
development of an IoT application in fog computing environments, and uses smart dairy
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Research Question 1

Problem Domain: IoT Application Design and
Development in fog computing environments

Presented in: Chapter 3

Publications: [P4 - WF-IoT 2018], [P5 - CCNC
2019], [P7 - SPE2019], [P9 - IEEE IoT Magazine

2019], [P10 - COMPAG 2020]

Contribution: A hybrid modular-microservices approach 
for design and development of IoT applications 

leveraging the fog computing paradigm

Research Question 3

Problem Domain: Modular and abstracted data analytics
in fog enabled IoT environments

Presented in: Chapter 5

Publications: [P6 - IEEE IoT Newsletter 2018],
[P8 - IEEE Access]

Contribution: Extension of an existing approach for
distributed decomposed data analytics in fog

environments

Research Question 2

Problem Domain: IoT Application Deployment in fog
computing environments

Presented in: Chapter 4

Publications: [P1 - CF Procedia2016], [P2 - IEEE/ACM
SEC 2016], [P3 - IM 2017]

Contribution: An Algorithm for efficient placement of 
multi-component IoT applications 

leveraging the fog computing paradigm
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Fig. 1.4 A diagrammatic representation of dissertation work categorized into research
questions, problem domain associated with the research question, scientific contributions
made and also the peer-reviewed publications in which work presented in the dissertation
was disseminated. The circles in the diagram represent the subject-fields it connects with.

farm as the IoT deployment and the application domain for the work. It introduces the key
design principles of the proposed development approach and gives a complete methodical
analysis done for the validation of the same. It also presents the underlying machine
learning methodology used for the specified objective (early detection of lameness in dairy
cattle) in the selected application domain of smart dairy farming.

Chapter 4 addresses the second research question (RQ2). It presents an efficient
framework for deployment of IoT applications in fog computing environments. It describes
the design, prototype, methodology and approach used in the development of the proposed
framework. It puts forward an improved decision-making process of deployment stage of
the life-cycle management of IoT applications.

Chapter 5 addresses the third research question (RQ3). It introduces how the data
analytics functionality of IoT applications can further be modularized by means of de-
composition of data analytics algorithms in fog computing environments. It presents the
proposed distributed decomposed data analytics and its methodical validation in an experi-
mental fog computing test-bed setup. It ascertains that if a computing resource can not
host a complete data analytics service, then how it can be decomposed into smaller units in
order to be able to run on resource-constrained devices in fog computing environments.

Finally, Chapter 6 concludes this dissertation by summarizing the chapters and present-
ing the limitations of the work, and directions of future work.
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Chapter 2

Background and Literature Review

In this chapter, we present background, motivation, and literature review for the research
presented in this dissertation. While the state-of-art is continuously evolving, this study
helps in identifying knowledge gaps that demand further investigation. This chapter is
structured as follows: section 2.1 to section 2.6 present the relevant background informa-
tion, terminologies that are required to understand this dissertation, and also presents the
motivation behind the research work. It presents an in-depth study of the concepts related
to the main fields of research presented in this work. Further, section 2.7 presents an
in-depth literature review in the contribution areas of this research in a structured manner
in four sub-sections (2.7.1 to 2.7.4).

2.1 Internet of Things

The Internet of Things (IoT) is a network of connected physical devices, digital machines,
sensors mounted on objects, wearables for animals or people that have the ability to
transfer and exchange data with each other [15], [16]. It can be seen as a network of
interconnected physical or virtual ‘things’ that are capable of using intelligent interfaces
to be integrated as an information network in order to communicate with one another,
with other devices and with services over the Internet to accomplish some objective [17].
Authors in [18] identified and envisioned the introduction and realization of IoT to affect
both domestic and industry fronts. Some examples of domestic impact include application
scenarios in assisted living, e-health, etc. On the industrial front, the areas of most visible
impact include the likes of automation, industrial manufacturing, logistics, and intelligent
transportation for people and goods.

In brief, a collection of ‘things’, capable of transmitting data to the nodes higher in the
structural hierarchy of the network architecture can be defined as IoT.
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A thing in the‘IoT’can be a physical device such as temperature sensor, a person with
body wearable or implanted device such as heart monitor implant, a farm animal with a
wearable device, an automobile that has built-in sensors or any other man-made or natural
object that can be assigned a unique identifier such as an IP address and provided with
the ability to transfer data over a network. The simple idea is that anything that can be
connected will be connected. It is noteworthy that there are other terms such as “objects”,
“Inter Connected Objects (ICOs)” [19] that have the same meaning as ‘things’ here, and
are frequently used in IoT and fog related documentation. Some other terms used by the
research community are “smart objects”, “devices”, and “nodes” [20].

IoT aims to bring every object online, hence generating massive amounts of data
that can overwhelm the cloud centric application systems. In its report, McKinsey [21]
estimates that the user base will have 1 trillion interconnected IoT devices by 2025, further
substantiating the impending scenario. According to this estimate, by 2025 IoT will
have a potential economic impact of USD 11 trillion per year, which nearly represents
11 percent of the world economy. As per a recent publication by Cisco [22], we have
already reached the Zettabyte Era, and the number of devices connected to the Internet is
growing exponentially. Thus, in near future, it has been estimated that a large number of
applications will be processed and served through the realization of IoT [23].

2.2 Internet of Things Architecture

There is no universally-accepted overall architecture for IoT, although there are several
efforts underway to achieve some convergence. IEEE P2413 [25], [26] (IEEE standards
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represented#in#Figure#3,#below:#

Fig. 2.1 Three Tier IoT Architecture by IEEE P2413 [24].

working group on IoT and IoT oriented applications design) considers the architecture of
IoT as three-tiered [24], [27], with the layers as mentioned in Fig. 2.1.
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device may provide several services to enable a more intui-
tive environment. However, we are not even close to
exhausting the possible uses of IoT. The IoT provides an
opportunity to combine sensing, communication, network-
ing, authentication, identification, and computing, and ena-
bles numerous services upon request such that access to the
information of any smart thing is possible at any time.
Figure 2 demonstrates various applications of the IoT, which
we describe next:
1. Smart vehicles: Smart vehicles have started to revolu-

tionize traditional transportation. Small IoT-based sys-
tems can enable remote locking/unlocking of cars,
download of roadmaps, and access to traffic informa-
tion. Moreover, Internet-connected cars provide signifi-
cant protection against theft.

2. Smart buildings: Smart homes and buildings enable
effective energy management. For example, smart ther-
mostats, which have embedded sensors and data analy-
sis algorithms, can control air conditioners based on
user preferences and habits. Moreover, smart control-
lers can adjust lighting based on user’s usage. Several
household items, e.g., refrigerators, televisions, and

security systems, could have their own processing
units, and provide over-the-Internet services. These
smart devices greatly enhance users’ convenience.
Remotely-controllable devices receive commands from
users to perform actions that have an effect on the sur-
rounding environment. Thus, attacks on these devices
may lead to physical consequences [6].

3. Health monitoring: Recent advances in biomedical
sensing and signal processing, low-power devices,
and wireless communication have revolutionized
healthcare. IoT-based long-term personal health mon-
itoring and drug delivery systems, in which various
physiological signals are captured, analyzed, and
stored for future use, provide a fundamentally new
approach to healthcare [7]. Smart medical devices are
already in use in fitness, diet, and health monitoring
systems [8]. The future of IoT-based healthcare sys-
tems lies in designing personal health monitors that
enable early detection of illnesses.

4. Energy management: Use of smart IoT-based systems,
which integrate embedded sensors and actuation com-
ponents, enables a proactive approach to optimizing

FIGURE 1. Three IoT reference models.
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(a) Three-level model [18]
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(SOA) based model [28]
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(c) CISCO’s seven-level model [29]

Fig. 2.2 Three-level, five-level and CISCO’s seven-level Internet of Things architecture
reference models [30].

Several other IoT architecture models have been proposed in recent years as shown
in Fig. 2.2 (adapted from [30]), and each of them focuses on some specific formulation
or abstractions of the IoT ecosystem [31]. In 2014, CISCO presented a comprehensive
extension to the traditional three, and Service Oriented Architecture (SOA) based five-level
model by introducing their seven-level model [29] for the IoT paradigm. We consider the
CISCO reference model as presented in Fig. 2.2c and Fig. 2.3 (adapted from [29]) in this
study since it particularly summarizes the up-to-date modeling approach for IoT, and also
covers the three-tier architecture of IoT as presented by IEEE P2413.
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Fig. 2.3 The Cisco IoT Reference Model [29].

In all the architecture models, data flow is bidirectional in nature; however, the dominant
direction of the flow of data depends on the application being worked on. For instance, in
a control system, data and commands travel from the top of the model (the applications
level) to the bottom (edge-node level), whereas in a monitoring scenario, the flow is vice
versa (from bottom to top).

2.3 Limitations of Cloud-Centric Approach

Cloud computing has been a pivotal revolution in the field of computer science and research,
revolutionizing the way software and applications work, and exponentially increasing the
capability of the Internet in this related paradigm of hardware and resources. It has
seen significant growth over the past decade, generating a shift from distributed network
paradigm to being centralized, with its core being the data centres of cloud service providers
[32], [33]. In the last few years, researchers [34] [35, 36] have illustrated the particulars of
underlying processes involved behind the provisioning of cloud services.

Generally, the complete process of provisioning of cloud services involves invocation
of several components (such as different Virtual Machines) within a data centre, and
sometimes across multiple data centres dispersed in different geographical locations.
Cloud based computing systems, applications and services are centralized in nature, and
for every request, service provisioning may involve one or more data centres. With data
centres as the hub of computing resources and data centre networks invoked every time an
application makes a service request, it is inevitable for such a system to disappoint with the
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2.4 Fog Computing

increase in IoT user-base demanding real-time responses. The centralized cloud-centric
outlook for emerging real-life IoT scenarios thus seems infeasible and unprogressive with
the realization of IoT.

The increasing range of real-world IoT deployments essentially increases the sources
of data generation, thereby globally strengthening the challenges already being faced in
the big data space [37], particularly regarding moving data from one end (i.e., from data
sources such as sensor/IoT devices at the edge level of infrastructure) to the other extreme
end (i.e., centralized data centres at the cloud) in the network infrastructure. Therefore,
building architectures that allow executing services in multiple points have recently gained
attention from industry players [38], [39].

Sending the entire data set across the extreme ends in the infrastructure becomes an un-
realistic solution, specifically in scenarios with constrained network bandwidth and scarce
Internet connectivity. Instead, approaches that collect data and perform computational
processing near the data source itself present a more practical alternative in such scenarios.
This generates a vast array of benefits across use cases such as those with video oriented
applications, where the transport of video across infrastructure can claim considerable
network resources such as requirement for storage at each node from source to destination.

Thus, despite its advantages, the rapid increase in ubiquitous mobile and sensing
devices which are connected to the Internet challenges the traditional network architecture
of cloud computing framework. With IoT in play, we will have billions of interconnected
heterogeneous devices emitting large volumes of data streams for processing. In such
a scenario, transferring all the raw data to cloud for analysis is neither scalable nor
suitable, especially for real-time decision processing. Thus, the emerging IoT applications
demanding dynamic scalability, efficient in-network processing, and real-time low latency
communication have led to the evolution of the fog computing paradigm, which has been
discussed in detail in the next section.

2.4 Fog Computing

With the contemporary trends in data volume, velocity, and variety and the limitations of
cloud as mentioned above, Cisco proposed the revolutionary concept of Fog Computing
[40]. Fog computing aims to provide traditionally centralized data-center operations at
the edge of the network. It is a relatively new networking paradigm and has recently
emerged as a potential architecture for scaling IoT network applications. A graphical
representation of a general fog computing architecture with fog nodes forming a layer
between IoT devices and the cloud has been illustrated in Fig. 2.4.
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Fig. 2.4 Fog computing architecture representation as three tier IoT-fog-cloud architecture
with multi-tier fog in a standardized IoT reference architecture model [41], [10], [12].

2.4.1 Fog Node

Several interpretations [42] have been proposed for the implementation of fog nodes and
their configuration, either via servers [43, 44], networking devices [45–47], cloudlets [48,
49], base stations [50, 51], or vehicles [52, 53]. These interpretations exist because of
IoT ecosystem being multidimensional and multidisciplinary in nature. Owing to rapid
expansion and a vast expanse of possibilities, an IoT ecosystem is hard to define, complex,
and difficult to capture [54]. To this end, a graphical representation of one of the possible
multidimensional view of the IoT ecosystem illustrating IoT devices, available deployment
platforms and type of IoT applications has been illustrated in Fig. 2.5.

To our understanding, a fog node is any computing device that can be used to deploy
applications or a component of an application on it— for example, depending on the
specific use-case, it could be a gateway, set-top-box, switch, router, PC, etc. So, in the
network architecture and infrastructure, any element that is capable of performing any
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Fig. 2.5 Visual representation of IoT Ecosystem illustrating IoT devices, available deploy-
ment platforms and type of IoT applications [7].

computing operation such as being able to host and run an application module(s) is
considered as a fog node or fog device.

Fog computing aims to distribute data, computational processing and application to the
devices located at the network edge, which traditionally used to exist almost entirely in
cloud. It utilizes the available in-network computing resources and shows the capability of
reducing the dependency on the cloud by facilitating various computing operations on the
network edge [40] depending on the use-case and deployment. According to the Open Fog
Consortium [55] (now known as Industrial Internet Consortium [56]), the fog nodes are not
completely fixed to the physical edge, but should be seen as a fluid system of connectivity
[41]. A survey by the authors in [57] gives an overview of the opportunities and challenges
of fog and IoT.

The capabilities of the computing gateways [58] comes as an important aspect of
fog computing architecture for IoT based applications. With the increasing demand of
providing smart solutions, the shift towards utilization of gateway devices as fog nodes
for performing computing operations such as edge analytics is being supported by an
increasing number of industrial [19], [59], [60] IoT platform developers and solution
providers, including IBM, Intel, and Microsoft.
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2.4 Fog Computing

2.4.2 Fog Enabled IoT Deployments and Tier-Division in the Archi-
tecture

A fog enabled deployment means that there are elements in the network that are capable
serving as fog node(s), as per the understanding of a fog node presented in previous section
(2.4.1).

At an abstract level, fog computing architecture as presented in Fig. 2.4 consists of
three tier network structure as below:

1. Tier 1 - Lowest Tier - IoT Layer consists of IoT devices generating data streams.

2. Tier 2 - Middle Tier - Fog Layer comprises of fog devices in fog layer.

3. Tier 3 - Highest Tier - Cloud Layer is the cloud (traditional data-centres).

A fog enabled deployment may consist of several tiers of nodes [41], leading to multi-
tier levels in fog layer as presented in Fig. 2.4. The number of tiers in a deployment
are use-case dependent. A detailed explanation about this has been given by OpenFog
Consortium [55] in OpenFog Reference Architecture [41] released in 2017. The text and
points below outline in brief how use cases determine number of tiers in fog deployments.

Fog deployment can be small scale or large scale based upon the given scenario being
addressed. The number of tiers in a fog deployment will be dictated by the scenario
requirements, including:

• Amount and type of work required by each tier

• Number of IoT devices

• Capabilities of the nodes at each tier

• Latency between nodes and latency between sensors and actuation

• Reliability/availability of nodes

In general, each level of the N-tier environment would be sifting and extracting mean-
ingful data to create more intelligence at each level. Tiers are created in order to deal
efficiently with the amount of data that needs to be processed and provide better operational
and system intelligence.
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Fig. 2.6 Tree Topology in Fog Enabled IoT Deployments [14].

2.4.3 Tree Topology Representation in Fog Enabled IoT Deployments

Fog enabled IoT deployments can be visualized and modelled as a tree topology represen-
tation. Within scope of the work presented, we consider a tree like network architecture
in which an IoT device (say i) is connected with its unique fog node (say j) which is
further connected to the cloud. We have sensing devices that are transmitting their data
to fog nodes and they are sending their data towards cloud or another central location.
The tree topology is a hierarchy of nodes with single root node at the highest level of
hierarchy, which is connected to one or many nodes in the level below. The communica-
tion, computing and storage capabilities in node(s) increases as one moves from branches
of the tree towards the root node. In this tree-like topology, the root represents cloud,
intermediate nodes represent fog nodes and the leaf nodes represent IoT devices. Data in
IoT based deployments moves from ‘ things ’ to cloud, or in terms of tree representation,
from branches of the tree to cloud via fog nodes, allowing data to be processed closer to
where its generated. As presented by the authors in [61], the benefits of tree topology
include the fact that it is scalable in nature, and has a simple structure that makes it easier to
identify and isolate faults. The graphical representation of an end-to-end tree like network
architecture is as shown in Fig. 2.6. It should be noted that there can be topologies inside
each layer/level but the main structure and overall abstract topology is tree-like.
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2.5 IoT Application Architecture in Fog Enabled Envi-
ronments

There are two essential pieces to understand when it comes to developing a software or
application addressing a particular scenario. First is System Architecture and second is
Application Architecture. This is irrespective of whether the solution being developed
is dependent on data generated from IoT, or whether it is cloud based or fog based. The
above plays an important role in all cases. The details on these have been presented below:

1. System Architecture: The system architecture concerns with the infrastructure in
a deployment. It usually comprised of several entities and also highly depends on
the use case and scenario being addressed. The main entities for an IoT based fog
enabled scenario consists of IoT devices, fog nodes and cloud data centers (cloud
itself can have entities such as resource manager and virtual machines).

2. Application Architecture: The application architecture concerns with design of the
solution, programming approaches, and various entities from system architecture on
which the application will be deployed and running. The application architecture is
also dependent on the use case and specific scenario being addressed. While there can
be some similarities between different application architectures, there is no universal
one-size-fits-all architecture that is suitable for every scenario. Applications might
be different in functionality but might have a common application architecture, and
even system architecture.

Both of these are highly dependent on the use-case and specific scenario being
addressed.

We specifically focus on IoT based applications1 here i.e., applications that are
dependent on IoT devices as a data source.

Thus, to our understanding, an IoT application can be defined as an application that
has an IoT element associated with it. More specifically, within the scope of the work, we
consider IoT applications that operate on data as input generated by IoT devices (sensors,
etc. in Tier-1 of the fog computing architecture presented in Fig. 2.4).

2.5.1 Distributed Multi-component IoT Application Architecture

Fog-enabled IoT applications are usually divided into multiple interconnected application
modules [62]. Program execution can naturally be described as a graph in which vertices

1We use IoT based applications and IoT applications interchangeably in this document, both of them
refer to the same thing.
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represent computation that are labelled with computation costs and edges reflect the
sequence of computation, sometimes also labelled with communication costs [63] where
computation is carried out in different places.

Thus, in a similar way applications can be described as composed of set of independent
parts (or can be divided into set of independent parts) performing computation and having
active dependencies. The granularity of these independent parts may vary from application
to application and is majorly dependent on application functionality, these independent
parts can be a component or module [64], or Java class [65], or even a method [66].

To our understanding and within the scope of the dissertation, a distributed multi-
component IoT application can be defined as a set of software components running
on different nodes (and also might be in different geographical locations) in system
architecture (i.e., the infrastructure) and connected to each other through networking
technologies.

Some examples of applications made up of independently deployable computing
units are QR-code recognition [67], health monitoring using body sensor network [68],
mobile augmented reality application, etc. The number of independently deployable
computing units vary from application to application, for e.g., in a mobile augmented
reality application, the number of such components amounts 5 to 10 [69], with different
components for tracking camera movements, building a 3D map of the environment,
recognizing objects (object recognition module), detecting collision between objects
(collision detection module), rendering a 3D overlay etc. Other applications such as 3D
games are reported to consist of 10 to 20 components [70].

2.6 Communication in Fog Enabled IoT Environments

Even though our intention is not to survey different communication protocols, we briefly
present major communication protocols in the Fig. 2.7 that are used in IoT based appli-
cations and, especially, in the fog computing domain. It is important to note that none of
these protocols is superior to another. This is simply because all of them are superior in
some aspects and weak in other aspects [19]. Ideally, each protocol is designed to support
a particular use-case scenario more efficiently than others. Fig. 2.7 below illustrate how
different protocols fit in with respect to Open Systems Interconnection (OSI) model. Some
of the protocols are designed to communicate over short distances and are more suitable
to conduct communication between things and fog nodes. Other protocols are typically
suitable to communicate between fog nodes and the cloud infrastructure. As a result, in
fog computing, fog nodes should be able to deal with different types of communication
protocols, and mostly in parallel.

21



2.7 Literature Review in Contribution Areas of the Thesis

Fig. 2.7 Overview of Communication Protocols with respect to OSI model [71]

2.7 Literature Review in Contribution Areas of the The-
sis

This section presents a literature review done for the main contribution areas of the disserta-
tion. These form important aspects for the presented work and help lay a foundation for the
contributions made through our research work. Fig. 2.8 gives a graphical representation of
the literature review performed in the three contribution areas of the dissertation.

2.7.1 Design and Development of IoT Applications in Fog Computing
Environments

The challenge of designing, developing and deploying software for the Internet of Things
(IoT) is often underestimated [72]. For IoT systems to deliver their full potential, developers
must leverage the computing resources available along the things-to-cloud spectrum in an
IoT deployment. In the IoT vision, applications are no longer isolated, proprietary silos of
devices and software. Instead, they must combine resources as features that are readily
available in the environment: some generic, some application specific, and some legacy
things [73].

2.7.1.1 Fog-enabled IoT Applications from Practical Standpoint - Microservices
Based Approach and Modular Application Design Approach

As mentioned previously, in fog enabled environments an application can be considered
as a collection of application modules or components [74], [42], [62]. Thus, it is also
necessary to understand software development methodologies that can be used to develop
such applications for implementation in real-world systems.
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Fig. 2.8 A graphical representation of literature review performed in contribution areas of
the dissertation.

Microservices Approach [75]: Microservices based approach focuses on building an
application as a set of set of smaller, interconnected services. A service typically imple-
ments a set of distinct features or functionalities. Each microservice might have its own
business logic along with various inter-dependencies. Some microservices would expose
an API (Application Programming Interface) that is consumed by other microservices or
directly by the user.

Modular Approach [76]: Modular application design approach subdivides a system
into smaller parts, called modules, which can be independently created, modified, placed
and replaced or exchanged between different systems. Each module is a separate software
component. It emphasizes on breaking large problems or programs into smaller modules/u-
nits to increase the maintainability, and to make it easier to allow any changes like addition
of new features to be made in future.
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While microservices based approach implements the modular approach by its inherit
nature of the move towards modularity, but it is ideal to list and understand them separately
given that they have existed as two discrete items in the literature. The main aim here
is to understand the fundamental concepts behind these two approaches, and develop
an approach that can be used to design and develop IoT applications in fog computing
environments.

To our understanding, microservices based approach is more practical from an im-
plementation stand-point, while modular approach is more conceptual in nature, and is
applicable in wider scenarios than just software development. The concept from the
modular design approach can be combined with the microservices approach to build a
more practical approach for IoT application design and development in fog computing
environments. We believe that a microservices based approach would be adept at the devel-

Fig. 2.9 The four-layer model of microservice architecture- A comprehensive breakdown
of what lies in the four layered microservices architecture [75], [7]. API, application
programming interface; IPC, interprocess communication; RPC, remote procedure call
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opment and deployment of IoT applications over fog enabled infrastructures. This involves
a proposed change in the conventional application design and development, whereby an
IoT application can be built as a collection of microservices or decomposed into a collec-
tion of microservices for an already existing application, which can then be distributed
across physical resources available in the cloud and on the network edge. Traditionally, all
components of an application run in data centre (cloud). With fog computing into play,
component of application can be deployed and run across physical hardware resources
available in the cloud and on the network edge. Ever since the introduction and adaptation
of DevOps in practice, the microservices architectural style is the first realization of a
Service Oriented Architecture (SOA) in this context, and with the plethora of advantages
that fall in line with the flexible future applications and service, is rapidly evolving to be
the standard for developing continuously deployed systems. Some key reasoning outlining
similarities in the objectives of microservices and IoT are as follows:

• Lightweight communication

• Independent deployment facility

• Bare minimum centralized management and control

• Isolation support

• Building one or multiple applications from a set of different services

• Technological independence and support for multi-vendor interoperability

The microservices architectural model can be depicted to be an abstraction of four [75]
layers— hardware, communication, application platform, and microservices. Each of these
layers comprises of components as shown in Fig. 2.9. One of the key takeaways of the
microservices architecture is technological independence— each service is independent
in terms of deployment and platform, and potentially the technological stack. They can
run their own tasks and processes, and communicate via lightweight protocols and APIs.
This enables each service to be a business capability that can potentially use its own
technological stack, but still be a part of a connected comprehensive application structure
towards a solution to a larger use case.

As we can see that the architectural goals of both microservices and IoT are quite
similar. Although the practice instead sometimes can be different as can be seen from the
comparison presented in Fig. 2.10 (taken from [77]).

Altogether, the microservice approach comes from a different direction than that of IoT,
but both have the same architecture goal. A detailed consideration is required here in order
to be able to incorporate this approach into IoT, especially in fog enabled IoT scenarios.
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Fig. 2.10 Comparison of Microservices and IoT/Cyber Physical Systems (CPS) [77].

As mentioned that the microservices architectural style comes as the first realization
of a service-oriented architecture and is currently in wide use by industry for software
development and deployment as part of best DevOps practices. But its use has been
limited to cloud based applications only, i.e., deploying all the developed microservices
for an application within the data-centre itself, and very limited work [78], [79] has been
done that focuses on the deployment of applications across the cloud and network edge,
especially in the case of IoT applications. The cloud based applicability of a microservice
style architecture to design a smart city IoT platform has been presented by the authors in
[80], where they share their experience of implementing microservices approach in the
cloud environment. But all such cases so far have only been limited to the cloud, and not
explored in context to the fog computing environments.

The challenge here is how to apply the microservices approach to build the application
in an IoT scenario leveraging the fog computing paradigm. That is where combining
the concept of modular design approach with the microservices design principles comes
into play, and helps in building a hybird modular-microservices based approach for IoT
application design and development in fog computing environments. This is where we
position a part of the work presented in Chapter 3 as a contribution in the field.

2.7.1.2 Proposed Approaches and Frameworks

A number of different application design, modelling and development approaches [81] have
been proposed in the literature for IoT based applications, primarily in cloud computing
environments and a few in fog computing environments. A brief description of those have
been presented below:
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• PatRICIA [82] : Authors [82] describe PatRICIA (PRogramming Intentbased Cloud-
scale IoT Applications) as a framework to define an ecosystem, which provides an
end-to-end solution for cloudscale IoT applications. The core idea of the PatRICIA
is to enable the development of value-added IoT applications, which are executed
and provisioned on cloud platforms but leverage data from different sensor devices
and enable timely propagation of decisions, crucial for business operation, to the
edge of the infrastructure.

• IDeA [83] : IDeA [83] adopts a model-based systems engineering methodology for
IoT application development, focusing on the design phase. It consists of a method
called IoT DevProcess and a supporting tool called IoT AppFramework. It provides
high-level abstractions to address the heterogeneity of hardware devices and soft-
ware components in the system model through a SysML profile named SysML4IoT.
SysML4IoT aids stakeholders to deal with the system complexity and unambigu-
ously communicates the system model. Furthermore, it promotes reusability and
interoperability amongst software components and systems. IDeA addresses the
concerns of the various stakeholders (device expert, domain specialist, requirements
engineer, application engineer and deployment manager) using Views and View-
Points. The IoT application Viewpoints, SysML4IoT, and the model library make up
the IoT AppFramework. The IoT DevProcess is an extension of the object-oriented
system engineering method, which allocates activities to predefined stakeholders,
provides modifications and inclusion of existing activities and artefacts.

• FRASAD [84]: Framework for sensor application development : FRASAD [84] is
a node-centric software architecture and a rule based programming model that al-
lows designers to describe IoT applications. It uses the multi-layered model driven
architecture (MDA) for its architectural design. At the highest abstraction level, a
domain-specific language (DSL) enabled by rule-based programming model uncou-
ples the programming language and the execution model used by the underlying
operating system (OS).

FRASAD supports the interaction between an upper layer and the next lower layer
through a predefined interface. Every layer is encapsulated into a component. IoT
applications are built upon this architecture, independent of the underlying platform.
A translator/compiler over the OS layer deals with the complexity of the translations
between both abstraction levels. However, in evaluating FRASAD, there is a need to
extend the programming model and the framework to more operating systems and
different kinds of IoT applications.
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• DataTweet [85] : DataTweet [85] is an IoT application development framework that
provides a mechanism for decoupling an IoT Application Logic (AL) from common
IoT functionalities such as discovery, configuration, service management and regis-
tration. This framework provides an open source API for the common functionalities,
which allows developers to concentrate more on the end-user centric aspect of the
IoT application. The API significantly reduces the amount of written code and ulti-
mately the time to complete the application. The framework mainly consists of two
components: (i) AL and (ii) common service entity (CSE). The AL functionalities
are primarily implemented by RESTful web services. The CSE is responsible for
the identification and combination of several common functionalities required in the
development of an IoT application. The CSE interacts with the hardware devices
and provides a standard API to developers. To promote cross-domain/use cases IoT
application scenarios, this framework can allow the CSE of a particular domain to
be connected to embedded devices belonging to a different domain of operations.
Furthermore, the AL belonging to one application can be made to communicate with
the CSE of another application, thus enabling horizontal IoT use cases. However, in
industrial applications, this feature may be difficult to achieve.

• Moblie Fog [74] : Authors [74] describe Mobile Fog as a high level programming
model for future Internet applications that are geospatially distributed, large-scale,
and latency sensitive. Many large-scale future Internet applications require location
and hierarchy-aware processing to handle the data streams from widely distributed
edge devices. It provides a programming abstraction and allows applications to
easily use fog resources while supporting dynamic scaling at run time. In Mobile
Fog, an application consists of distributed Mobile Fog processes that are mapped
onto distributed computing instances in the fog and cloud, as well as various edge
devices. While running, each process performs application–specific tasks such as
sensing and aggregation with respect to its location and level in the network hierarchy.
The Mobile Fog communication API is composed of event handlers that must be
implemented and standard functions that can be called by the application. The same
code can be run on a different device like smartphones, vehicles, or cameras; the
developer only needs to write the code once.

• Foglets [86] : Foglets [86] is a programming model that facilitates distributed program-
ming across fog nodes. It provides APIs for spatio-temporal data abstraction for
storing and retrieving application-generated data on the local nodes. Through the
Foglets API, their processes are set for a certain geospatial region, and the applica-
tion components are managed on the fog nodes. Foglets is implemented through
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container-based virtualization. The Foglets API takes into account QoS and load
balancing when migrating persistent (stateful) data between fog nodes.

• Distributed Data Flow (DDF) [87], [88] : Dataflow [89] is a well-known program-
ming model that has been applied for developing Wireless Sensor Networks (WSN)
applications in several works [90]. In the dataflow programming model, application
logic is expressed as a directed graph (flow) where each node of the directed graph
can have inputs, outputs and independent processing units. There are nodes that only
produce outputs and ones that only consume inputs, which usually represent the start
and the end of the flow. The nodes processing units process the inputs and produce
outputs for downstream nodes. The processing unit of a node executes independently
and does not affect the execution of other nodes. Thus, the nodes are highly reusable
and portable.

A DDF is a dataflow program where the directed graph (flow or nodes of this directed
graph) is deployed on multiple physical devices rather than one. Each physical device
may be responsible for the execution of one or more nodes in the graph, and may
form sub-graphs. Some inter-node data transfer may happen between devices.

For the IoT, the dataflow programming model offers a significant advantage by
raising the abstraction level of the underlying IoT systems to ease the developers task
without sacrificing much flexibility. This is because once the underlying hardware,
protocols and functionality of IoT systems are abstracted as nodes in a flow, much of
the design of the application logic is simplified to manipulating node connections and
processing generated data. When the developer needs more flexibility or functionality
than the current nodes offer, new special-purpose nodes can be developed and
deployed, or nodes that support embedded script languages can be used to leverage
features of the underlying system, and implement new protocols or functionality that
does not exist in the current system.

The primary aim of the study of the available frameworks and approaches presented
above was to gain an understanding of the concepts and methodologies that can be used
while developing an IoT application in a practical setup in fog computing environments.
The frameworks such as Mobile Fog [74] and Foglets [86] use the concepts of modular
design approach in their methodology. These are the first in line that present a move
towards the modular design and programming approach in fog computing environments,
thus also serving as a guiding direction for development of a further novel approach from
practical standpoint.

Amongst the above, DDF appears to be the best choice while building an IoT ap-
plication in fog enabled environments in a simulated or emulated test-bed setup. With
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DDF, one can mathematically model the application as well as infrastructure into a graph
representation and can perform various possible operations in simulation or emulation
before moving to a real-world scenario. We later use the DDF approach in Chapter 4 for
the application modelling in the iFogSim [62] simulation platform.

To our understating, the common consensus and output from the studies above is that
an IoT application should be able to execute over a group of devices to fully leverage
the capability of these different devices in the infrastructure along the things-to-cloud
continuum. Thus, it should ideally be designed as a collection of independent components.

Accordingly, there is a need to have an approach for design and development of
IoT applications that utilizes the computing resources available along things-to-cloud
continuum, thus leveraging the fog computing paradigm and providing the functionality of
the desired IoT application and use-case scenario. Part of the work presented in Chapter 3
is positioned as our contribution to fill this gap in literature.

Furthermore, there is also a need to provide a way to define the constraints that
regulate where and how these individual components containing application logic (or
part of application logic) should be deployed so as to efficiently exploit computation
resources available. And that is where we position our work presented in Chapter 4 as the
contribution in the literature to fill the gap.

2.7.2 IoT Application Domain: Smart Dairy Farming — Fog Com-
puting Assisted Smart Dairy Farming

This sub-section presents the literature review performed in the selected application domain
of smart dairy farming. It presents a collective literature review on the topics of IoT, fog
computing and data analytics work in the selected application domain.

IoT, fog computing, cloud computing and data-driven techniques together offer a
great opportunity for verticals such as dairy industry to increase productivity by getting
actionable insights to improve farming practices, thereby increasing efficiency and yield.
There has been active initiation and movement in the agricultural domain to move towards
tech-enabled smart solutions to improve farming practices. The concept of Smart Dairy
Farming is no longer just a futuristic concept, and has started to materialize as different
fields such as machine learning have found a prosperous application in this domain. The
section (2.7.2.1) below presents an overview of limits, opportunities and challenges in
the field of agriculture in adopting smart solutions. Next, section 2.7.2.2 presents a
comprehensive review of the works done using IoT, fog computing and data analytics
in the field of agriculture, further progressing towards the limitations of those work and
positioning our work to fill the gap.
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2.7.2.1 Agriculture and ICT: Limits, Opportunities and Challenges

While there have been several approaches towards smart farming by an active incorporation
of Information and Communication Technology (ICT) in the agricultural industry, a vast
majority of them still remain practically unimplemented by virtue of the fact that a farm
environment is much unlike an ideally ‘connected’ IoT use case. The true penetration of
ICT in the most granular levels of global farming diaspora depends on the transformative
adaptability of the IoT ecosystem, wherein a shift is required from a predominantly urban
context towards a more flexible solution that addresses the unique environmental, temporal
and spatial challenges of remote farm locations. The major limitations, challenges, and
opportunities in the context of agriculture and ICT are described below:

1. Geographical Factors, Low Internet Connectivity and Weather Based Outages

What makes a farm scenario unique is the fact that typical farm locations are geographically
remote from the urban context and attributed with sparse to low Internet connectivity. The
existing IoT systems and applications that address certain specified objectives in the diverse
agricultural domain largely depend on Internet connectivity for proper functioning, as the
service and application components are traditionally deployed in a cloud-centric manner in
remote cloud infrastructures.
Owing to their typical geographical locations, a vast majority of farms already have limited
cellular [91] coverage. In that terrain, it is not uncommon to be facing long outages
in Internet connectivity due to constraints posed by adverse weather conditions, storms,
hurricanes, and other natural disasters. All of these scenarios are apart from general
network downtimes, which might be because of another variety of reasons such as network
maintenance, broken links, faults, and network/security attacks.

2. Cloud Based Solutions

The existing solutions suggested by industry and academia primarily include a lot of
closed form cloud based solutions that lack flexibility in the management of data, and
customization owing to on-demand services and operations. They often tend to get
expensive, and the trade-off between cost and system utility are not wholly profitable to a
small scale farmer.

3. Real Time Analytics

One of the key limitations of the existing solutions is the lack of support for real time
processing and analytics for latency sensitive use cases. For example, while dealing with
dairy cattle as in our case, a detailed analysis of patterns from the collected data would
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enable the development of algorithms, which, once deployed on the fog node closer to the
data source, would be able to identify latency critical scenarios in real time. The existing
systems of historical, cloud based analytics are incapable of serving a time critical situation,
and the bouts of no connectivity further worsen this management.

4. End-to-End Solution and Vendor Lock-In

Most of the solutions only focus on one tier of the problem, i.e., either data sensing, data
analytics or consumer relations [92]. Architecturally, there is also a major issue of vendor
lock in, wherein devices and applications of multiple vendor systems are incompatible
with each other, and the lack of features within one solution cannot be complemented with
its integration with another.

5. WiFi Sensors: Cost and Operational Trade-off

Not only is reading data and supporting sensors with WiFi capability challenging in such a
remote scenario, but this also comes at a higher trade-off with the cost. Supporting sensors
with an Internet connection hikes their price for both the acquisition and as well as in
terms of operational expenses, while Internet connectivity in itself is a challenge in remote
regions of operation.
A farm environment thus poses an atypical use case with heterogeneous demands, and the
lack of a flexible solution impacts the acceptance of ICT towards what can otherwise be a
very fruitful and profitable venture for both the farmer and the solution provider.

6. Existing Solutions and Challenges

There have been several propositions towards enabling connectivity on a farm scenario, as
listed below:

(a) Microwave Wireless Terrestrial Link: A point to point connection, this technology
is used by Internet Service Providers (ISPs) and cellular carriers to connect remote
regions towards a backhaul network for last mile connectivity. This link can connect
an ISP to a farm, which can then be distributed locally via WiFi access points. But
this has its own sets of challenges and dependencies, and is more dependent on
Internet providers rather than the individual farmer. Terrain and physical obstacles
also impact such a connectivity, as does rain fade and other weather based factors.

(b) TV White Spaces : To enable connectivity on the farm, solutions such as FarmBeats
[93] have proposed the use of unlicensed TV White Spaces to set up a link from the
farmer’s home Internet connection to an IoT base station on the farm, that further
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provides a WiFi front end. However, this involves its own set of challenges and
expenditures that might make such a solution difficult for adoption by a small scale
farmer. For instance, the IoT base station needs power to work, which in itself is a
problem in certain areas. One can use solar electricity, but that is highly reliant on
weather conditions, and not reliable at this stage, considering the fact that no power
on the IoT base station means no WiFi connectivity, and in turn, no data collection
and transmission from sensors deployed.

This significantly reduces the reliance and adaptability of ICT on a farm, and is
not dependable in case of an adverse scenario. Also, currently being unlicensed, it
requires permission and authorization from Government and Federal agencies which
is an additional overhead; thus making it difficult to be used in a number of countries
at the moment.

(c) Data Mules : This is one such proposition that addresses the issue above in certain
use-cases where moving objects such as vehicles or people serve as a mule to collect
data from the sensors and upload it to the cloud as soon as Internet connection
becomes available. It was initially proposed for the purpose of delivering emails
to remote, rural or economically under-served regions [94] which suffer from the
Internet connectivity challenge as specified above. The idea is not straight forward
applicable and feasible with large scale sensor deployments as in such scenarios
the storage capacity of micro-computers or on-chip computers available on sensor
devices might get overwhelmed and over-utilized with that amount of data. Further-
more, even when the Internet connection is available, the bandwidth available could
still be very low, thereby making the upload of large amount of data (in order of
Megabytes or Gigabytes) coming from wide scale deployments of data infeasible.

2.7.2.2 IoT, Fog Computing and Data Analytics in Agriculture Domain

With the recent advancements in IoT, the use of computing systems utilizing wireless
sensor networks (WSN) has been widely proposed in the agricultural sector in order to
facilitate real-time monitoring of farm processes. IoT is an active enabler of smart farming,
whereby various entities on the farm can be connected for collecting and exchanging data,
thus allowing joint or independent operations. As technology grows to be an integral part
of the agriculture and dairy industry, it is important to generate timely insights from the
data collected, and enable effective data management.

There have been proposed systems in industry [95], [96], [97] as well as in academia
[98], [99], [100], [101] for animal health management in dairy farms. A study by authors
in [102, 103] gives an overview of the sensor systems available for health monitoring of
animals in dairy farms. Along with the proposed systems and solutions, there has also been
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research in integrating technologies to increase productivity and sustainable growth in
agriculture; ranging from improving wireless network connectivity in economically under
privileged areas [104], [105],[94], to data mining and analytics for agricultural applications
[106], [107], [108] to providing decision control in variable environments under constraints
[109], [110], [111]. A review by the authors in [112] shows that predictive insights in
farming operations drive real-time operational decisions, and redesign business processes
for the benefit of various stakeholders in a farming landscape, and that the influence of
such systems goes beyond primary production, to the entire supply chain.

Authors in [113] provide a detailed survey of IoT enabling technologies that can offer
automation, data aggregation and protocol adaptation in the wide field of IoT. They also
present the required integration of IoT with emerging technologies such as data analytics
and fog computing. Another survey in [114] identifies a serious lack of analytics and
intelligence in existing smart dairy farming systems, thus leading to gaps between the
desired requirement of the system and proposed solutions. It articulates the pressing
requirement of intelligence to be present on the premises, in the on-farm systems.

As a consequence, attention is being drawn towards designing systems with intelligence
and data analytics capability being present on premises [115], and utilizing fog computing
comes to shore with those objectives in mind. While fog computing was initially aimed
to cater to latency-sensitive, time critical applications and use-case scenarios, we believe
that fog computing will act as an active enabler for computing systems, applications and
services which suffer from constrained and unreliable cloud connectivity.

In our case, considering that the farm locations are usually remote with intermittent
Internet connectivity, dependence on the cloud for pervasive monitoring and computation
is less reliant due to a variety of connectivity issues, and other associated factors like
high response latency, and high bandwidth requirements [116]. In such situations, fog
computing can ensure high availability, and less reliance on remote cloud infrastructures.
Such a system becomes even of more importance with adverse weather conditions such as
during storms and hurricanes [117], [118], when the Internet services get interrupted and
affected for various reasons.

Authors in [119] present the use of Raspberry Pis [120] as edge devices which are
further connected with the cloud to demonstrate a smart farm computing systems for
animal welfare monitoring. Authors demonstrated that a low-cost and open computing
and sensing system can effectively monitor multiple parameters related to animal welfare.
While animal welfare remains a broad concept, their paper shows that many parameters
relevant to various stakeholders can be measured, collected, evaluated and shared, opening
up new possibilities to improve animal welfare and foster high-tech innovations in this
sector.
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The authors in [121] propose the use of fog computing for innovative service creations
for existing cloud based agriculture system. By means of simulation, the authors demon-
strate that fog computing presents a unique capability for a creative IoT platform adoption
in agriculture with existing cloud support. Quite recently, authors in [122] describe the
design, development and evaluation of a system that covers extreme precision agricul-
ture requirements by using automation, IoT technologies, and edge and cloud computing
through virtualisation.

Authors in [123] present the need of data driven movement in agriculture in order to
improve crop yields, improve quality, and reduce costs. Another recent survey by authors
in [124] identifies the lack of interoperability provided by such systems, and the need of
developing an integrated system combining edge, fog and cloud to provide application and
services. The authors here also identify that technology solutions with no consideration
of interoperability results in vendor lock-in, which not only hinders innovation, but also
results in higher costs for the farmer/user.

One of the primary limitations of the previously proposed systems is that they follow
historical data analysis and perform only cloud based analytics without leveraging and
efficiently utilizing the resources [10] available on the farm along the things-to-cloud
continuum [12]. Moreover, such techniques are not always suitable for real-time tracking
and monitoring of dynamic entities such as dairy cows. The gaps with the existing research
is that either it has been developed out of the agricultural context, or addresses the issue of
analytics and control in isolation; this has also been identified as key limitations by authors
in [125].

While there has been an initiated movement towards data-driven agriculture in recent
times for sustainable and productive growth, there is still lack of leveraging emerging
paradigms such as fog computing, and applying innovating machine learning models to
solve a specific problem in the dairy sector. Most of the articles in literature present results
based on simulated experiments, and those which come from real world deployment are
mostly agriculture based, and rarely based on dairy farming. Further, only some of them
have a machine learning element to automate their approach. However, to the best of our
knowledge, no prior work focuses on providing an end-to-end IoT solution integrating
edge, fog and cloud intelligence specifically in case of smart dairy farming IoT settings.

We position our work as an answer to the issues mentioned above, thus bridging the
gap, and providing an innovative way that integrates edge, fog, cloud computing and
machine learning to provide a solution specifically in case of smart dairy farming in an IoT
setup. The novelty of the proposed approach comes from the standpoint that it has been
specifically designed and developed to address a specific vertical of the IoT ecosystem
i.e., dairy farming, and within that to address a specific problem related to animal welfare
i.e., detecting lameness at an early stage before the clinical signs of it appear, and the
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microservices oriented design makes it multi-vendor interoperable. This has been detailed
in Chapter 3.

2.7.3 IoT Application Placement in Fog Computing Environments

It is clear from the discussion and studies presented in section 2.5 and 2.7.1 that, an IoT
application should be built as a collection of components. This brings us to the next
question of efficient deployment of these components on the available computing resources
in the infrastructure.

Deploying all computational components of an application in the remote cloud is not
always necessary and effective. We study how to distribute and deploy these components
of a multi-component application between fog and cloud, and effectively utilize the
computational resources available in the infrastructure.

What is application placement? The application placement2 defines a mapping
pattern by which application components are mapped onto the computing devices available
in the infrastructure. Fig. 2.11(b) [126], [127] shows an example of a cognitive assistance
IoT application modelled as a Directed Acyclic Graph (DAG) (Fig. 2.11(a)) mapped onto
the available computing devices in the infrastructure [127].
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b) Set of inter-dependent services This case assumes that the application is pre-partitioned
into a set of components (services), each performs some specific operation (functionality) in the
application. In that case, dependencies between the application components are not considered.

c) A connected graph The application, in this case, is composed of a set of inter-dependent
components represented as a connected graph. The vertices represent the processing/computational
components of the application, and edges represent the inter-dependencies and communication
demand between nodes [62].

Different topologies of a graph can be identified and among them, we have respectively: line
graph, tree application graph, and Directed Acyclic Graph (DAG). The DAG application topol-
ogy is the most often used because it models a large range of realistic IoT applications like Video
processing [14, 21, 125], gaming [162], or healthcare [57] applications. Figure 3.a) illustrates an
example of DAG application (cognitive assistance application).

Regarding the application requirements, we can summarize some of them in the following:
Computing: CPU power, number of cores, RAM, etc. Network-oriented: Bandwidth, Latency,
Error-rate, Jitter (per link, end-to-end). Task-oriented: Deadline. Location-oriented: the appli-
cation must run in a specific geographical location (for instance in Paris); the application can
run only at some Fog node, etc.

4.1.3 Deployment pattern

The application placement problem defines a mapping pattern by which applications components
and links are mapped onto an infrastructure graph (i.e., computing devices, and physical edges).
Figure 3 shows a mapping example of an application modeled as a DAG (Fig. 3.a) to available
Fog nodes (Fig. 3.b).

Figure 3: Cognitive assistance application [65], shown in (a), and deployed onto Fog network,
shown in (b).

Typically, application placement involves finding the available resources in the network (nodes
and links) that satisfy the application(s) requirements, satisfy the constraints, and optimize the
objective (if any). For instance, respect the applications (services) requirements, not exceed the
resource capacities, satisfy the locality constraints, minimize the energy consumed, etc. Service
providers have to take into account these constraints to first, limit the research space and second,

Inria

Fig. 2.11 Directed Acyclic Graph (DAG) of an application and its deployment onto the
infrastructure [126], [127]. (a) DAG of a cognitive assistance application, (b) Deployment
of this DAG onto the computing resources available in the infrastructure.

2It should be noted that we use application placement and application deployment terminology inter-
changeably in this dissertation. Within the scope of this document, they both refer to the same thing.
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The DAG is the most often used representation of a multi-component application as it
models and covers a large range of realistic IoT applications like video processing [128],
[129], gaming[130], healthcare [131] etc. The application placement involves finding the
available resources in the infrastructure that satisfies the application requirements and the
constraints, and optimizes the objective functions (if any). Service providers have to take
into account these constraints to first, limit the search space, and second, to provide an
optimum or near optimum placement. It should be noted that DAG is a special topological
representation of a connected graph, and other possible topological representations include
line graph, tree application graph, etc. But as mentioned above, the DAG representation
covers a large range of realistic IoT applications as suggested by literature; hence we
consider the DAG representation in our study for application placement research.

Mathematical definition of application placement: Let G be a multi-component
application with a set of requirements R, and let N be the set of computing resources
available in the infrastructure. Solutions to the application placement problem are mappings
of each component of G to some computational node in N, meeting all the requirements
set by R, and also optimizing objective function(s), if any.

When deciding on where to deploy application components over the continuum from
things-to-cloud, application administrator or service providers need to find the best de-
ployment that satisfies all the application requirements over the available resources in the
infrastructure along this continuum , and also optimizing objective function(s) if any.

2.7.3.1 Application Placement Approaches in Literature

Modern day applications are not monolithic anymore [132]. Therefore, an application
running in a fog computing environment consists of a set of independently deployable
components (or services, or microservices) that work together to meet some objective.

How to deploy multi-component applications? — The problem of multi-component
application(s) placement has been thoroughly studied in the cloud computing scenarios.
The work towards application placement in fog computing environments as presented in
this dissertation was was one of the early developments in this research direction at the
time. A lot of inspiration was drawn from the work available in the cloud computing and
related areas. Over here, we systematically present the most related work and the literature
studies from whom the work presented was inspired, and also highlight the novelty of our
work within the scope of the timeline when this part of research was performed.

Cloud Computing Application Placement Work: The application deployment prob-
lem in cloud infrastructure has been studied by various researchers. Authors in [133]
defined a process algebraic approach named cloud calculus to specify deployment, migra-
tion and security policies of virtual machines (VMs) across different clouds. Based on
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a cloud computing network architecture, virtual machine replication and a complemen-
tary merging mechanisms were proposed and analyzed by authors in [134], capable of
exploiting the locally available information to reduce the communication and support cost
in the network. Authors in [135] proposed a service placement architecture for IoT based
on Integer Linear Programming (ILP) that continuously adapts services according to the
changing network conditions and user status. A model-driven optimised planning solution
to deploy software applications in cloud /multi-cloud environment was proposed in [136]
and [137]. Likewise, solutions such as [138], [139] for automated application deployment
in cloud or multi-cloud environments are in regular use by the DevOps community . An
evaluation of a set of heuristic algorithms for solving the service placement problem in the
context of computer networks has been presented by authors in [140]. It minimizes the
end-to-end delay, and elaborates a layered graph placement algorithm that proposes to find
a lowest cost path that includes communication cost and processing cost. It was proposed
by authors for the next-generation network architecture vision at that time, but it does not
consider the fog computing environment and related resource constraints.

With respect to the work available in cloud computing domain, fog computing intro-
duces the challenges of dynamicity, distributed and heterogeneous computational resource
environment with IoT, which were not taken into account by the research at the time.

Fog Computing Application Placement Work: Among the first investigations in
this direction was the work presented by authors in [62], where they proposed an edge-
ward placement algorithm that determines an eligible deployment of multi-component
applications modelled as DAG in fog computing environments. The authors here released
an open-source simulator iFogSim, which to best of our knowledge was the first simulator
at that time specifically developed for simulating fog computing environments to be
released in academic and research community. It is developed over the CloudSim [141]
framework for modelling and simulating IoT, edge and fog Computing environments.
Building upon this work along the same line, we developed a heuristic based application
placement algorithm presented in chapter 4, exploiting binary search as heuristic to find
the best placement solution for a test application.

A heuristic algorithm to solve module deployment problem in fog computing has
been proposed by authors in [142]. The developed heuristics maximizes the number of
satisfied services, and more specifically, it limits the maximum number of modules that
can be deployed on a device. However, it does not consider the resource requirements
of the modules during deployment as considered by our approach for efficient resource
utilization.

Authors in [143] presented an Integer Linear Programming (ILP) formulation for the
QoS-aware service allocation problem for combined fog-cloud scenarios. They minimize
the service latencies in fog while satisfying the QoS requirement. Authors in [144] pro-

38



2.7 Literature Review in Contribution Areas of the Thesis

posed a solution for the distributed data stream application placement in a geographically
distributed environment with the goal of minimising the end-to-end application latency.

To the best of our knowledge, when this part of the work looking into the deployment
stage of IoT application life cycle in fog computing environments was performed, no
approach other than [62] and others presented above was available that looked into this,
and there was no existing work specifically proposed for application deployment in fog
computing environments.

2.7.4 Distributed Decomposed Data Analytics in Fog Computing En-
vironments

In this section we first present a brief background of data analytics in fog computing
environments (2.7.4.1), followed by a comprehensive view of data collection pipeline in
such deployments (2.7.4.2), which maps with the IoT data life cycle presented in Chapter
1 (Fig. 1.1(b)). We present the areas of further improvement with fog computing into
the picture in this data collection pipeline of the IoT data life cycle, which sets up the
motivation behind the proposed distributed decomposed data analytics approach in fog
computing environments. Section 2.7.4.3 presents the literature review of the work done in
this direction, and positions the work presented in the dissertation to fill the gap.

2.7.4.1 Data Analytics in Fog Enabled IoT Environments

While IoT deployments vary across use cases, the most prominently common underlying
aim is to analyse the data generated from the devices to achieve a specified objective. Ma-
jority of current IoT data processing solutions transfer the data to the cloud for processing.
This is mainly because existing data analytics approaches are designed in a cloud-centric
methodology. With millions of IoT devices generating data, transferring all of that to the
cloud is neither scalable nor suitable for real-time decision making. As data travels from its
point of origin (e.g., sensors) towards applications deployed in cloud virtual machines, it
passes through many devices, each of which is a potential site for computation offloading.
Therefore, it is important to take advantage of computational and storage capabilities of
these intermediate devices.

Analysing data during the early stages in the infrastructure pipeline presents additional
benefits of data and communication security in the overall system, owing to the fact that
raw data is now processed closer to the data source, and only processed data is sent
further. The efficient use of available computational resources realized by means of fog
computing, in turn, promotes the idea of green computing [145] as well. Fog nodes have
limited computational capabilities. In such circumstances, one of the requirements is
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to have independent data analytical components that can be remotely pushed onto fog
devices, such as module-based. These modules would be black boxes running in individual
sandboxes where they intake certain types of inputs and generate certain types of outputs.
Performing data analytics or partial data analytics operation on data at early stages of
infrastructure pipeline may help in reducing the amount of data being sent to nodes further
in the hierarchy leading to savings in data communication cost, storage and computational
cost.

2.7.4.2 Data Analytics Decomposition in Fog Enabled Environments

With IoT generating large volumes of data, transferring data from sensors to remote data
centers is currently not efficient from a performance perspective due to limitations on
bandwidth and high latency. With data being generated and collected in a distributed
manner, it becomes necessary to look for approaches where knowledge extraction from
this data can also be done in a distributed manner. A comprehensive view of the data
pipeline is presented in Fig. 2.12, with Fig. 2.13 highlighting the areas with a scope of
improvement by the incorporation of fog computing.

Data Acquisition ResultsData Storage Data Analytics

Transportation of data in the spectrum between IoT and Cloud for knowledge extratcion

Data Generation

Fig. 2.12 A comprehensive view of data collection pipeline.

Data Acquisition ResultsData Storage Data Analytics

Transportation of data in the spectrum between IoT and Cloud for knowledge extratcion

Data Generation

Areas of further improvements with fog computing paradigm

Fig. 2.13 A comprehensive view of data collection pipeline and highlighting the areas with
a scope of improvement by incorporation of the fog computing paradigm.

With fog computing into picture, in this pipeline, the collection approaches can be
changed and the data analytics processing algorithms can be re-structured to perform
operations closer to the data source. The classic data reduction techniques such as filtering,
selective forwarding, summarizing etc. all apply, but now along with that, these fog nodes
at the edge of the network can be used to perform data analytics operation on them.
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However, these fog nodes being resource constrained in nature might not be able to
run the full analytics service, so the idea is that if the device cannot hold the full service,
then only put the part of the service that can be handled by it. Thus, the approach of
decomposing the computing program into smaller units seems like an ideal proposition
in fog enabled IoT environments. A detailed literature review related to data analytics
decomposition within the scope of work presented in this dissertation has further been
presented in the next section 2.7.4.3.

2.7.4.3 Literature Review of Related Data Analytics Approaches in Fog Computing
Environments

In traditional centralized approaches [146], [147] for data analytics in IoT, all collected
data are transferred to centralized location such as server(s) in data centre (i.e., the cloud)
and is then subjected to the desired data analytics model; thus such approaches suffer
from the bottleneck of data transfer. However, when the data itself is generated in a
distributed manner (as with IoT deployments), transferring it all to the centralized cloud is
an additional overhead when it can actually be processed in a distributed manner as well.
Furthermore, in some use-cases such as healthcare, network nodes might not want to share
data because of privacy issues.

There are approaches [148], [149] that have been proposed for Wireless Sensor Net-
works (WSNs) based on selective forwarding that take into account the constraint of
bandwidth, latency and energy. The issue with such approaches is that they only focus on
communication efficiency without being aware of analytical task being performed at the
destination. Further advanced methods based on selective forwarding [150], [151], [152]
work on dynamic optimal decision making to find best time to deliver data for communi-
cation efficiency and to minimize reconstruction error at the destination. However, such
methods are limited to communication overhead and have not be developed and applied to
the network edge i.e., in a fog based setting.

Authors in [153] present the survey of a subset of methods that can be be modified
to run in a distributed manner to solve the problem of linear least-squares. Distributed
approaches [154], [155], [156] specific to regression work on the constraint that gathering
data centrally is either expensive or impossible, and focus on distributing estimation
of global model parameters over nodes with the aim to achieve the same prediction
performance that would have been achieved by the corresponding centralized model. The
issue with such approaches is that they need additional techniques for parameters update
and synchronization, which restricts their use for a wide set of IoT based applications.

Recent work [157], [156] in edge-analytics exploits the computational power of devices
such as Raspberry Pi [120] and BeagleBone [158] to design and launch lightweight
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algorithms directly at the data sources. Authors in [157] present edge stochastic gradient
descent (EdgeSGD) algorithm for solving linear regression problem with the objective
of estimating the feature vector on the edge node. They show that such approaches
can converge faster to the optimal values as compared to the centralized approach. Their
approach is different from ours as their approach is iterative in nature and needs to converge
to find the solution, while we present the closed form solution of the problem that fits to
the parameter without the need to use an iterative algorithm. We elaborate more on this
later in chapter 5 (section 5.3).

Authors in [159] and [160] present methods of data suppression based on local fore-
casting models on sensors with the aim of re-constructing data at the sink node. These
methods exclusively focus on reducing data communication by means of data suppression
using forecasting models.

Initial exploratory work by authors in [161] shows that such decompositions can reduce
bandwidth consumption and can significantly decrease the associated costs. But further
research and developments on areas like decomposition methods, system performance and
quality of analytics need to be carefully studied to design efficient distributed solutions for
fog enabled IoT settings, and that is where we position our work.

Our work presented in Chapter 5 decomposes the desired data analytics model to run
on the edge of the network coping with the above mentioned constraints. Our approach, as
devised from [162] and explained further in in Chapter 5 (section 5.3) does not modify the
algorithm in use, rather remains an exact implementation of it albeit capable of running in
a distributed manner in fog enabled IoT deployments.

2.8 Summary

This chapter presented a review of the technologies, trends and current literature that are
supplemental to the research proposed in this dissertation, and laid a foundation for the work
done. It commenced with a background study on IoT, IoT architecture, and limitations of a
cloud-centric approach, leading to an evolution of fog computing, its associated concepts,
definitions, terminologies and challenges that come with these paradigms that need to be
addressed. Next, a literature review in the contribution areas of the thesis was presented.
These are all related work that help in identifying the contributions made through this
research work.

As presented in the chapter, most existing research has been fragmented when it comes
to the decision making processes related to IoT application life cycle management in fog
computing environments. Either the work has been performed in isolation without leading
to any practicality from it or it has been done out of context of fog computing environments.
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To the best of our knowledge, limited attempts have been made in the combined research
direction of IoT, IoT applications and fog computing as presented in this dissertation.

Our work presented in this dissertation focuses on design, development (Research
Question 1), deployment (Research Question 2) and data analytics functionality (Research
Question 3) of the IoT applications in fog computing environment; thus making contri-
butions in improving the decision making process related to the associated stages of IoT
application life cycle management. This chapter highlighted how current literature is
unable to address the research questions defined for this dissertation. It also helped to
compare and contrast between the proposed research and existing work.

In summary, the dissertation presents – how to develop fog enabled software system in
an IoT oriented use-case? What software design methodologies are appropriate to use?
What is the efficient deployment i.e.,where to place the application component(s) that
need to perform computation? With extracting knowledge from data being prime objective
in IoT deployments, can data analytics be decomposed to make it easier to run on resource
constrained devices? How to do that? What approaches or methodologies can be used to
do that?
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Chapter 3

An IoT Application Design and
Development in a Real-World Smart
Dairy Farming Scenario Leveraging the
Fog Computing Paradigm

3.1 Introduction

The Internet of Things (IoT) is about connecting people, processes, data, and things,
and is changing the way we monitor and interact with them. An active incorporation
of information and communication technology coupled with sophisticated data analytics
approaches has the potential to transform some of the oldest industries in the world. It
presents a great opportunity for verticals such as the dairy industry to increase productivity
by getting actionable insights to improve farming practices, thereby increasing efficiency
and yield. Dairy farms have all the constraints of a modern business — they have a fixed
production capacity, a herd to manage, expensive farm labor, and other varied farm-related
processes to take care of. In this technology-driven era, farmers look for assistance from
smart solutions to increase profitability and to help manage their farms well.

In this chapter, we present the design and development of an IoT application in a real
world smart dairy farm setup. We outline the key design principles and methodologies
used in the development of the application. The developed IoT solution uses a distributed
modular application architecture using microservices that allows the developed software
solution to leverage the fog computing paradigm in such IoT deployments. The presented
solution is an end-to-end IoT application system with fog assistance and cloud support
that analyzes data generated from wearables on cows’ feet to detect anomalies in animal
behavior that relate to illness such as lameness. The solution leverages behavioral analytics
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to generate early alerts toward the animals’ well being, thus assisting the farmer in livestock
monitoring. This in turn also helps in increasing productivity and milk yield by identifying
potential diseases early on. The application developed specializes in detecting lameness
in dairy cattle at an early stage, before visible signs appear to the farmer or an animal
expert. Our trial results in a real-world smart dairy farm setup, consisting of a dairy herd
of 150 cows in Ireland, demonstrate that the designed system delivers a lameness detection
alert up to three days in advance of manual observation with an overall accuracy of 87%.
This means that the animal can either be isolated or treated immediately to avoid any
further effects of lameness. Moreover, with fog based computational assistance in the
setup, we see an 84% reduction in amount of data transferred to the cloud as compared
to the conventional cloud based approach. Further, the proposed application design and
development methodology of having a hybrid modular-microservices approach, coupled
with the fog computing paradigm make the solution scalable and fault tolerant as well.

The research project was termed SmartHerd, with a time-line from year 2016 to year
2018. Hence, the overall solution and software developed is referred to as ‘SmartHerd’,
and the fog node in use is termed as ‘SmartHerd IoT Gateway’. A high-level view of
system workflow and different components of the developed IoT solution are presented in
Fig. 3.1.

Long Range Pedometers (LRP) 
attached to front leg of the 
cows

Fog Node on farm 
premises
(PC form factor device 
or any other possible 
representative)

Cloud Component for 
resource demanding data 
analytics 

Fig. 3.1 A high-level diagrammatic representation of the system workflow, and different
components of the developed IoT solution [8].

The SmartHerd project had the smart dairy farm deployment in Ireland with a full
dairy herd of 150 cows, with a single vendor as the wearable sensor providers for the
cows. Moreover, to further validate the proposed approach for early lameness detection,
we are expanding the work undertaken in SmartHerd to date through the execution of a
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use case in the IoF2020 project1 named MELD2. This follow-on project is building and
expanding upon our existing work presented in this chapter, and integrating it into the
IoF2020 dairy farming technology trials with deployments in Ireland, Portugal, Israel and
South Africa. It leverages sensor technologies from two different vendors on a combined
total of approximately 1000 cattle, consisting of both beef and dairy.

This chapter is structured as follows: §3.2 describes the problem, research question
being addressed, and also lists the sub-questions that were answered as part of this work,
§3.3 presents the specified objective of the IoT solution, §3.4 presents the experimental
setup and the real-word test-bed deployment done, §3.5 presents the proposed design
and development methodology for fog enabled software deployment, §3.6 presents the
microservices oriented application design and architecture of the developed solution, §3.7
presents the results, output from the validation experiments, discussion and analysis of
results obtained, and finally §3.8 summarizes and concludes the chapter.

The work presented in this chapter has been disseminated in the following publica-
tions: P4 - WF-IoT 2018 [5], P5 - CCNC 2019 [6], P7 - SPE 2019 [7], P9 - IEEE IoT
Magazine 2019 [8] and P10 - COMPAG 2020 [9].

3.2 Problem

The first research question (RQ1) is being addressed in this chapter: How to design and
develop an IoT application leveraging the fog computing paradigm?

Specific to the selected application domain of smart dairy farming, and the particular
use-case objective of early lameness detection, the question can be phrased as below:

How to design and develop an IoT application with a specified objective in a smart
dairy farm scenario leveraging the fog computing paradigm?

The above research question has been answered as a major contribution in this work.
Furthermore, we also address the integrated sub-questions that arose as a part of this.
These can be divided into two parts — one from fog computing and software development
perspective, and the second is data analytics and machine learning element of the developed
solution. A brief description of them have been provided below:
A.) Fog computing and software development: The integrated questions in this part
consist of the system and application architecture understanding presented in Chapter 2,
section 2.5.

1. Which network device among the available options along things-to-cloud continuum
should be leveraged as a fog node in such IoT deployments?

1Internet of Food & Farm 2020, https://www.iof2020.eu/
2MELD stands for Machine Learning based Early Lameness Detection in Beef and Dairy Cattle
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Fog computing is an emerging computation paradigm that aims to extend cloud comput-
ing services to the edge of the network, thus enabling computation closer to the source
of data. It has been used increasingly in IoT applications, especially in constrained
network and Internet connectivity scenarios, which is also one of the issues in remote
farm-based deployment such as ours.

Most IoT enabled smart farms have some sort of farm management system in place
which usually runs on a PC form factor device available within farm premises. Farmers
use it to maintain logs and to keep other details electronically at hand. So our plan was
to utilize the computing resources already available in such scenarios and leverage them
under the fog computing paradigm. Thus, we chose the laptop available with farmer in
our case as the fog node. It should be noted that the developed system is fully capable to
adapt if the fog node is changed to any other possible representation such as a gateway
device. A detailed discussion on this has been presented later in this chapter in section
3.7.1 (§3.7.1.4).

This decision also helps to improve fault tolerance, and build up the system resilience
to variable farm environments such as weather-based network outages and connectivity
issues owing to geographical remote locations of farms. In scenarios with low/no
Internet connectivity, it becomes ideal to process the data locally as much as possible,
and send the aggregated or partial outputs over the Internet to the cloud for further
enhanced analytical results. The fog computing based approach leads to effective
utilization of the limited bandwidth available, and reduces the dependency on the cloud
by facilitating a part of data analytics involved in the solution on the network edge.

2. What should be the development design of the system so that it should be usable,
compatible and able to serve in both user possible scenarios listed below:

(a) when a farmer acts as the end-user?

(b) when an agri-tech service provider acts as the end-user?

The end user in our scenario could be a farmer with an existing system or an agri-tech
service provider who wants to provide more services to their clients. With that in
mind, we decided that the system should be developed as ‘Application/Software as a
Service’(AaaS/SaaS), which can be used by the service providers to integrate with their
existing systems, or can be used directly by the farmer as well.

3. Which software development methodology to use so that the designed system should be
multi-vendor inter-operable, and also be in-line with the finalized design of question 2
above?

The answer and discussion on this has been presented in detail in section 3.5.
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Dairy Cattle

B.) Data analytics and machine learning: The sub-questions here in this part deal with
the specified objective of the IoT solution being built and mapped to the IoT data life cycle
of the underlying deployment.

1. Cow Profiles: How to build robust cow profiles that are distinguishable by the learning
model as lame and non-lame? Which parameter to use as baseline while building and
comparing cow profiles?

2. Clustering: Does each animal in the herd need to be treated separately i.e., treating
each cow as a single experimental unit; or can some clustering technique be used to
define clusters of animals that share similar features within the herd?

3. Classification — Early Lameness Detection: Which classification model to use given
the objective of early detection of lameness in dairy cattle?

The answer and discussion on these three questions of part 3.2 -B have been presented
in detail in the section 3.7.3.

3.3 Objective of the Developed IoT Solution — Early De-
tection of Lameness in Dairy Cattle

Dairy farmers work hard from dawn till late in the evening — milking, feeding and
maintaining the farm. So, it is a challenge to monitor the well-being of hundreds of cows
in a dairy farm in real time. The methods for looking after animal welfare are based on
millennia of human experience, and grounded on observational methods to analyse animal
behaviour by visual observation for some kind of anomaly or potential health-issue. This
leads to the question — Could technology help? Can there be a better way to do it?

There are behavioural changes when animals become ill, which can be mapped to
specific illnesses. The risk of diseases has a large effect on the economy of a farm —
payment for veterinary treatments and loss of milk production from the infected animals,
as well as on animal welfare. So, what if one could detect the onset of common diseases
before any symptoms are even visible?

To reiterate, the health and welfare of dairy cows is paramount to the productivity of
the herd in both operational and capital expenditure related to pasture management and
milk production. One of the issues that need to be addressed in this domain is lameness
management.

Lameness in Dairy Cattle: Lameness is a condition that affects the locomotion
patterns of livestock. An all-encompassing definition of lameness includes any abnormality
which causes a cow to change the way that she walks; and can be caused by a range of foot
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and leg conditions triggered by disease, management or environmental factors. Controlling
lameness is a crucial welfare issue, and is increasingly an inclusion in welfare assurance
schemes.

Lameness is considered to be the third disease of economic importance in dairy cows
after reduced fertility and mastitis [163]. It is estimated [164] that lameness costs an average
of C275 in treatment per instance. Early and timely lameness detection allows farmers to
intervene earlier, leading to prevention of antibiotic administration and improvement in the
milk yield, as well as saving on veterinary treatment for their herd.

The existing solutions for lameness detection in dairy cattle either have high initial
setup costs and complex equipment, or, in the ones that are technology based, major inter-
operability issues towards compatibility with existing farm based management solutions.
As a solution to this, we have developed an end-to-end IoT application that leverages ma-
chine learning and data analytics techniques to monitor the herd in real-time, and identify
lame cattle at an early stage.

3.4 Experimental Setup — Real World Test-bed Deploy-
ment

Focused on animal welfare and health monitoring, this deployment involves installing
sensors on cows’ feet. Data generated from these sensors is subjected to analysis using fog
computing, which is further enhanced by its cloud component that acts as the site for data
fusion and other related resource demanding data analytics functionalities.

3.4.1 Smart Dairy Farm Setup

The trial was conducted on a local farm with a full dairy herd of 150 cows in Waterford,
Ireland. It should be mentioned here that the ethical approval for the experimentation was
taken from Research Ethics Committee of Waterford Institute of Technology, Ireland prior
to the deployment in July, 2017.

From the options available for the sensors/wearable for livestock monitoring, we
decided to use radio communication based Long Range Pedometer (433MHz, ISM band)
instead of WiFi based. The reason behind this was that the former does not depend on
the Internet for its operation, and serves the purpose of data acquisition in farms where
network connectivity is a constraint.

These wearables have less operational expense, and do not use WiFi based connectivity
to send sensed data to a base station. Therefore, as a part of the real-world deployment,
off-the-shelf available Long-Range Pedometers (LRP, ENGS Systems©®, Israel) specially
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Fig. 3.2 Cows with long-range pedometers (LRPs) attached on one of their front legs as
part of our smart dairy farm setup [5], [7], [9].

designed for livestock monitoring were attached to the front leg of cows as shown in Fig.
3.2.

3.4.2 Real World Test-bed Architecture and System Overview

The overall architecture of the test-bed is shown in Fig. 3.3. The pedometer consists of
an active system with a (backup) data retention capacity of upto 12 hours that measures
the activity of cows (standing, lying, walking, etc.) with a sampling frequency of 8
milliseconds; and the data unit thereby generated is sent to the corresponding receiver
and transceiver every 6 minutes. The range of the antennas attached to the receiver and
transceiver is 2 kilometres each, which gives enough coverage to collect data from cows
at all times, whether they are grazing in the field, present in their sheds (during adverse
weather conditions), or being milked at the milking station.

As shown in Fig. 3.3, the receiver is the master unit which sends the received data to
the communication unit (RS485 to USB) through wired connection, which in turn then
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Fig. 3.3 SmartHerd Management system overview — overall architecture of the test-bed
[5], [7], [6], [9].

sends it to the SmartHerd IoT gateway (a PC form factor device in our case, which acts as
controller and fog node. The configuration used is Intel® CoreTM 3rd Generation i7-3540M
CPU @ 3.00GHz, 16.0 GB RAM, 500 GB local storage) through wired connection via a
USB interface.

The fog node consists of a local database which stores all the raw data as received from
the sensors. This is then pre-processed and aggregated their to form behavioural activities,
and summed to form hourly and daily time series. In this study, we used the following
three behavioural activities for the analysis:

1. Step count: This is the number of steps an animal takes.

2. Lying time: The number of hours an animal spends lying down.

3. Swaps: This is the number of times an animal moves from lying down to standing
up.

The choice of these three parameters is based on literature survey, which suggests that
these three act as the best predictors of a lame cow (or one transitioning to lameness) while
analyzing movement or activity patterns of cows.
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Connectivity protocol between fog node and cloud: There are a number of options
available when it comes to streaming the data, for e.g. MQTT (Message Queue Telemetry
Transport) [165], AMQP (Advanced Message Queuing Protocol) [166], XMPP (Extensible
Messaging and Presence Protocol) [167], etc. Each of these have their individual pros and
cons, and selecting one depends on the use-case, objective and IoT deployment scenario.
Our aim was to use a lightweight protocol that can work in our use-case and is also widely
supported by both academia and industry in such scenarios. After evaluating and comparing
the available options, we selected MQTT as the connectivity protocol between fog node
(i.e., local PC) and cloud (service instances running on IBM Cloud) in our deployment
setting.

MQTT is an open-source protocol originally invented and developed by IBM [168]. It
is a lightweight publish-subscriber model based protocol designed on top of the TCP/IP
stack. It is specifically targeted for remote location connectivity with characteristically
unreliable network environments such as high delays and low bandwidth [169], which is
one of the issues in remote farm based deployments such as ours. Hence, we chose MQTT
as the connectivity protocol in our deployment.

MQTT provides three QoS (Quality of Service) levels [170] that define the guarantee
of delivery for a specific message between sender and receiver:

• At most once (QoS 0): There is no guarantee of delivery here. If the failure happens,
no additional attempts are make to re-handle those messages. It is often called “fire
and forget”, and provides the same guarantee as the underlying TCP protocol.

• At least once (QoS 1): At least once means that messages in a stream are guaranteed
to be delivered at least one time to the receiver. If the failure happens additional
attempts will be made to re-handle those messages. This approach may cause
unnecessary duplication of data packets in the streams.

• Exactly once (QoS 2): Exactly once means that messages are guaranteed to be
handled exactly the same as it would be in the failure-free scenario, even in the event
of various failures. It is the safest and slowest quality of service level.

A developer can specify the QoS level they want on both publisher and subscriber as
per their application requirements. We used QoS 2 in our setting.

The MQTT architecture comprises of two components, namely MQTT clients (such as
publishers and subscribers) and MQTT broker (for mediating messages between publishers
and subscribers). In our setup these components are as follows:

• MQTT Publisher: Script running on fog node (i.e., SmartHerd IoT gateway)

• MQTT Broker: IBM Watson IoT Platform (as a service on IBM Cloud)
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• MQTT Subscriber: Application designed and hosted on IBM Cloud

Thus, the data from fog node after processing as described above is streamed to
IBM Waston IoT platform using MQTT; the IBM Watson IoT platform receives all these
messages, and the MQTT subscriber listening to the events of this broker picks up all the
data and stores it in Cloudant NoSQL JSON Database (Database service on IBM Cloud).

3.5 Designing and Developing Software Systems in Fog
enabled IoT Environments with Cloud Support

Designing and developing software systems is an intricate process which requires profound
understanding of the procedure, consideration of software architecture and development
techniques involved, and knowledge of various interconnected components in the deployed
physical or virtual infrastructure.

Microservices: Given its successful and wide adaptation in cloud computing domain,
a microservices based architecture seems quite an obvious candidate for use in such fog
enabled IoT deployments, but its use is not straightforward. The design and operational
practice is sometimes quite different between these two technological paradigms [77].
The major reason for this can be that the microservices approach comes from a different
perspective, which is to efficiently build and manage complex software systems, which
in turn came to realization as a move towards architectural modularity. The main drivers
of modularity are: agility, testability, deployability, scalability, and availability. The
challenge now is how to apply the microservices software development approach to build
the application in an IoT scenario leveraging the fog computing paradigm.

Based on the literature survey done as presented in Chapter 2 (section 2.7.1) , and other
qualitative useful resources available on the Internet, we proposed a hybrid approach for
designing and developing IoT applications following a distributed modular application
architecture using microservices. We validated this approach in our application domain of
smart dairy farming with the use-case objective of early detection of lameness in cattle
using locomotion data.

In our analysis, we found that a distributed modular application architecture using
microservices was the best approach, given we could align with the service-based and
event-driven needs of our application.

The analysis leading to this has been presented below:
❖ Domain Driven Design and Data Requirement Observation: First, we followed

a domain-driven and data-driven design approach for the application being developed. The
first step was to identify what data are we collecting or can be collected from a smart
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dairy farm IoT setup. And based on this data what kind of services we can provide to the
end-user. We conducted survey of dairy farmers, dairy-tech service provider companies
and also consulted the available literature. The output of this process has been presented
in table 3.1 as a collection of different attributes. Insights on this came more from survey
than from literature. This is in line with the domain driven design methodology of software
development i.e., to work closely with a domain expert (majorly the farmer in our case)
and gain a better understanding of how the real-world system currently works and what
are the demands/needs there.

Table 3.1 Data requirements with sensitivity level and latency constraints of various
application and services in a smart dairy farming environment.

Application/Service Latency Constraints Data Requirement
Query sensor data Minutes Immediate

Livestock location monitoring
and mobility analysis

Minutes Immediate

Heat detetcion Minutes Immediate
Lameness and other

illness detection
Hours - Days Non-immediate

Animal health statistics Hours - Days Non-immediate
Logging and other application
performance logging services

Hours - Days Non-immediate

Animal behavior and variability
analysis via mathematical modeling

Days Non-immediate

We make the key observation that data requirements and latency constraints of various
applications and services in a smart dairy farming scenario can be primarily classified in
the categories as shown in table 3.1. This along with other reasons mentioned in Chapter
2, section 2.7.1 motivates the use of microservices based architecture and fog computing
based approach in smart dairy farm setup.

❖ Service-based and Event-driven needs of the application: The next part after
the above analysis was to look into the service-based and event-driven need of the applica-
tion. Service-based need means that to provide a service what kind of data or input(s) are
required and who is the consumer of that service. This mainly aligns with the needs of the
user. In our use-case, service-based needs of the application are as follows:

• A service that the farmer can use to see the locomotion pattern of a particular cow or
the whole herd.

• A service that the farmer or an animal expert can use to annotate or add details for
the whole herd or for a particular cow.

• A service using which the farmer wants to check whether a particular cow is lame or
not, and thus a data-query service needs to be in place.
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Event-driven need refers to the events that are possible in the application workflow, and
the corresponding services that need to be triggered to handle those events. This aligns
with the possible events that can happen in the system. For e.g., in our use case, finding
out that an animal(s) is lame is an event, and the farmer needs to be informed of that.
Other such possible events are to alert the farmer when an animal goes out of a specified
geographical boundary, when an animal falls down, or when an animal is in heat, or if
there are constantly inconsistent locomotion patterns for a particular animal.

Most of the IoT applications will have both of these needs, or at least one of the above.
Combining the conceptual approach of modular design with practical microservices based
approach gave us a way to align the approach with both of these. For e.g. following
modular approach one can write a data-query and search function which can be used by
any other service needing this functionality and logic to generate the output. It is not
necessary to create such search functionality as a separate microservice, rather one can
build it as modular part of the code-base accessible to all services.

Modularity is a must, though not every portion of production has to be a microservice.
Microservices need collaboration, and only when there are one or more drivers present
should one make use of microservices. In the our use case scenario, we had all of the
drivers for having modularity in the solution developed i.e., agility, testability, deployability,
scalability, and availability. Microservices come with a set of advantages that make it
an ideal architectural style for software development in end-to-end IoT solutions with
constrained environments, giving the ability to overcome the constraints of vendor lock-in,
while attributing technological independence between each set of services that make up an
application.

Thus, with this understanding we decided on following a hybrid modular-microservices
based approach for application design and development in our end-to-end IoT solution.
This decision was also made keeping a future vision of the work in mind, where the
microservices act as facilitators to enable dynamic service migration based on the network
characteristics to increase quality of service and for better service provisioning.

The proposed approach needs to be incorporated at the very initial stages of the IoT
application cycle, and it iteratively works through the successive stages. The required
sub-steps in stage 1 and 2 of the IoT application life cycle of the proposed approach are
presented in Fig. 3.4.

It is also important to note that the smart dairy farm setup in this work was limited to
putting wearables on cows, and did not have any other sensors on the field, for e.g. soil
monitoring or any other (arable farming etc.). With a diversity of sensors on the farm, and
thus with more data, the set of services that can be provided may increase. Furthermore,
there might be some limitations based on the sensors in use i.e., what kind of features can
be generated or sensed by the sensors, and also what is the objective of the solution being
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Distributed Modular
Application Design Using

Microservices
Stage 1 and 2 of IoT Application Life Cycle

Sub-steps in the proposed approach

1. Exploratory Analysis: Domain Expert and End-User Inputs
(Knowledge Exchange)

2. Initial Analysis of Data being Collected or that can be collected
3. Services that can be offered
4. Service-based needs of the use-case (if any)
5. Event-driven need of the use-case (if any)

Fig. 3.4 The sub-steps of the proposed approach that need to be included in the stage 1 and
2 (plan and design) of the IoT application life cycle.

developed. For instance, in beef herds along with lameness detection, location tracking is
also important in certain geographical regions such as South Africa to locate the herd for
safety purpose and to ensure that they are away from wild animals such as mountain lions.
In such scenario, it might be ideal to have the sensors that can provide the locomotion data
and GPS coordinates of the cows. Thus, deciding on a vendor or more specifically the
sensors to be used in the deployment primarily depends on the objective of the solution
being developed.

In our scenario, the ultimate objective was early detection of lameness in dairy cattle,
and lameness being dependent on locomotion scoring, it was ideal to use sensors that can
provide locomotion data. We performed a market study to find out what other solutions
use locomotion data and the associated dairy tech-service providers. We found that heat
detection or estrus detection is a well-established market that uses the locomotion data
to inform the farmers when an animal goes into heat and is ready to be inseminated for
pregnancy. Thus, after reaching out to a number of service providers we went ahead with
ENGS Systems, Israel as the finalized one to supply the sensors for our use-case for the
SmartHerd project deployment in Ireland.
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3.6 Microservices Oriented Architecture

The desired application has been built as a collection of microservices as shown in Fig. 3.5.
We believe that microservices act as one of the key enablers to leverage fog computing
while building an end-to-end IoT solution in such scenarios.
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Fig. 3.5 Representation of developed SmartHerd System as collection of microservices and
placement of these services on computational resources available in the infrastructure [7].

As mentioned before in Chapter 2 (section 2.7.1) that from an application deployment
standpoint, fog computing can be perceived as component of application running at the
network edge as well as in cloud, with the components running at fog being latency
sensitive and time critical in nature. In our use-case scenario, the latency constraint and
data requirement of a microservice remains static all the time. But this might not be
the case with other use case scenarios — as an hypothetical example here, consider a
microservice which takes temperature and humidity values from the sensors to determine
environmental conditions, let’s say in order to regulate air conditioning in an area. Now
a sudden change in temperature might not mean anything, but if the change stays for a
long time it might be an indication of fire in that area. Now in this scenario, the latency
constraint and data requirement of the microservice will change. So, these two features of
a microservice are use-case dependent.

In the case of detection of an event which would require attention towards the animal,
an alert is sent out to the farmer. The end-to-end data and work flow of the developed
application has been presented in Fig. 3.6.
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Fig. 3.6 Workflow and data flow in the testbed deployment [5], [7].

Orchestration and Choreography in the developed application: The individual
service modules do not make any application workflow in isolation and need a method so
they can interact, share data and provide the desired application workflow. This leads to
the question of – How to tie the service modules together for the desired application flow?
There are two ways to do it, that are used in practice — orchestration and choreography.

In orchestration, a single centralized entity usually referred to as the orchestrator
coordinates the interaction among different services. It is responsible for invoking and
combining the services. While in choreography, every microservice performs their actions
independently. It does not require any instructions. It is like the decentralized way of
broadcasting data known as events. The services which are interested in those events will
use it and perform actions. The main difference between choreography and orchestration
is in terms of where the logic that controls the interactions between the services resides.

The general norm is to have the developed services abstracted inside containers. The
realization of service abstraction becomes more important in scenarios where fog devices
are heterogeneous in nature and can range from end user devices to access points, routers
to switches; so to accommodate such heterogeneity service abstraction is desired, and can
be realized in terms of containerization. The examples of container technologies include
Linux containers, Docker [171], etc. ; and from programming platform perspective Java
Virtual Machines (JVM), Python Virtual Machine (PVM) can be used as an equivalent
substitute. A wise decision on deciding which container technology to choose acts as an
important factor in the efficiency and performance of the overall system. In our deployment
setting, we used PVM and JVM as container technologies (equivalent substitutes) on fog
node, and the default container technology in the IBM cloud (i.e., Docker as platform and
Kubernetes as container orchestration system for Docker containers) while building the
SmartHerd IoT system.

In our setup, we used orchestration for the service collaboration within fog node, and
choreography for outside fog node and in cloud. Fig. 3.7 gives a representation of the
same.
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Cloud 
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Fig. 3.7 Orchestration and Choreography implementation in the developed system.

We wanted to keep the service management overhead on fog node as low as possible.
The programming platform (languages) used in the development process were Python
and Java. Keeping track of developed modular part of the code base as isolated processes
(Namespaces and Cgroups) gave us a way to use them as individual and different services
with a simple service registry (in form of a simple file) rather than using an additional
software/framework to do the same, and hence we used PVM and JVM as container
equivalents on fog node.

The above is what contributed to the methodology being hybrid in nature i.e., modular-
microservices approach. The designed and built microservices of SmartHerd IoT ecosystem
are placed and run on the computational resources available in the infrastructure i.e.,
SmartHerd IoT Gateway (fog node) and cloud. The implementation is also hybrid from
choreography and orchestration perspective.

3.6.1 Application Deployment in SmartHerd

The decision on which services to deploy on fog node and which on cloud node was made
based on a number of factors presented below:

• Some restrictions arising from the sensor provider, such as that the data acquisition
and data processing component necessarily have to be placed on fog node because
of its involvement with the heat detection service.

• Correspondingly, heat detection service being a black box for us in the SmartHerd
code-base had to be placed on fog node. This was part of the setup from the sensor
provider for the heat detection offering to the farmer.

• The deployment decision for remaining services was based on data requirement
analysis presented in table 3.1, and as per the application workflow. For e.g., heat
detection is a latency sensitive service with immediate data requirement, and thus
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should ideally be placed on fog node. Thus, as soon as the data is available, it can be
used by the service without any additional transmission delays.

• Some of the services were bound to be deployed in cloud because of the connected
association with IBM cloud for e.g. IBM Watson IoT Platform.
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Fig. 3.8 Mobile application developed specifically considering the needs of the farmer,
including an offline first strategy. The figure presents data and notification flow in the
developed mobile application [9].

3.6.2 Offline-First Model for Mobile Application Design

We also developed a mobile application for the farmer to use and be notified of alerts from
the developed system. The application works on both android and iOS operating system
platforms, and was developed using Ionic Framework 3.0 [172] at that time, which is an
open-source cross-platform mobile application development framework.

Farms are usually located in geographically remote locations facing constrained net-
work connectivity. Most of the IoT deployments in such settings are faced with limited
cellular coverage. Existing solutions are mostly cloud based or completely offline. This
limits the farmers’ ability to interact with the application anytime and anywhere. The
system developed in this study uses an offline first strategy via the mobile application and
cloud dashboard. Fig. 3.8 shows the data flow of the offline enabled design approach.

Once the model produces notifications, these are sent to the farmer’s mobile device
as push notifications. On board the application is a PouchDB [173] database which
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synchronizes with the cloudant database in IBM cloud using a REST API whenever a
connection is established. The application in general helps to achieve the following tasks:

• Push notifications: Whether on WiFi or limited cellular network, or whether the
application is open or not, these will go through each time the status of the farm
changes.

• Data annotation: During the training process, this feature was used by the human
operator to annotate the data. In our case, this was done weekly by an agriculture
student.

• Feedback to improve model learning: When a notification is generated, the farmer
has the option of confirming if the said cow is actually lame, or tag it as a false
alarm or even report a missed alert. All this information is sent back to the model to
improve its accuracy.

3.6.3 Multi-Vendor Interoperability of the Developed System

As mentioned earlier, that unlike the existing systems that are based on a monolithic
design approach, the application designed in this study follows a microservices based
approach for design, creation and deployment. The aim was to make the developed system
as ‘Application/Software as a Service’, which can be used by the service providers to
integrate with their existing systems. For example, an agri-tech company could be a
service provider for any other solution such as mastitis detection, who wants to expand
their system or integrate any of the services such as lameness or heat detection into their
system. A visual representation of such a possible integration is presented in the Fig. 3.9.
Feature engineering layer as shown in the Fig. 3.9 ensures that data is transformed to
output only the required features and also reject those that cannot be engineered to form
the required features for a desired service: For example, Lameness Detection and Heat
Detection Service expects lying time, step count and swaps, but a service provider might
have activity counter instead of step count, and Stand up + Liedown instead of swaps.

It is important to note that this layer will be different for each service provider, since
the underlying sensor technology might be different. This is turn makes the developed
system sensor agnostic. The output from feature engineering layer is then passed to the
access layer, which includes both mobile and web components. This then goes through a
REST API which in turn calls the desired service.

Vendor software stack interoperability: In the SmartHerd deployment, the heat
detection service provided by ENGS system was integrated into our developed software
stack. This interoperability was possible because of the microservices oriented design
approach. The interoperability feature is bi-directional, but it was easier for us to integrate

61



3.7 Results and Discussion

Farm Service provider

Heat detection 
Mastitis detection

Lameness 
detection

Customer A (farm)

Heat detection 
Mastitis detection

Lameness 
detection

Customer N (farm)

REST API

Access layerMobile Web

Lameness detectionHeat detection Mastitis detection

Cloudant

Database

Feature Engineering Layer

Fig. 3.9 Proposed microservices based application design and flow for integration of
services from different service providers [6], [9].

their heat detection service in our software stack as accessing their code-base for the
integration required additional legal approval from the involved entities.

So with their approval we incorporated their heat detection service to demonstrate
interoperability within the SmartHerd deployment. Although it should be noted that the
developed system (and approach) is multi-vendor interoperable as well, which is being
validated as a part of the ongoing and future work in the MELD project with two vendors
as sensor technology providers.

3.7 Results and Discussion

A short demo-video of the developed system is available at [174]. The research output
presented in this chapter was collaborative work with colleagues within our organization,
and a mentor from industry partner IBM, Ireland.

As the overall work has two objectives — one from fog computing perspective, and
other from machine learning perspective, thus there were contributions made into various
places and stages of the project. An illustrative representation of contributions made as
major and minor in the project has been shown in Fig. 3.10.

For a better representation and analysis, the results from this work have been divided
into three parts as below:
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Fig. 3.10 Diagrammatic representation of the SmartHerd work mapped to contribution
share made in the project.

(1) Fog computing functionality and objective of the developed system (sub-section
3.7.1)

(2) Analysis of application design and development approach coupled with the fog
computing paradigm (sub-section 3.7.2)

(3) Machine learning objective of the developed system (sub-section 3.7.3)

Fig. 3.11 presents a graphical mapping of the results, which have been presented in
detail in the sub-sections below.

Some specifications and terminologies used in the sections 3.7.1, 3.7.2
and 3.7.3

There are few terms that have been used to describe the results presented in sections below.
The details on these terminologies and specifications have been presented here:

1. For a comparative analysis, we have compared the fog functionality of the system
in two experimental scenarios. First one, is with fog functionality and is termed as
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Fig. 3.11 A diagrammatic representation of the analysis presented for the solution devel-
oped in SmartHerd setup. It represents the SmartHerd work mapped into fog computing
objective, application development approach and machine learning objective of the de-
veloped system. The solid line in the triangular representation indicates that the analysis
presented is a combination of two vertices. The dotted line indicates vertices being a
part of the developed solution, but there is no direct association between them for the
experimental analysis presented, other than being a part of the whole end-to-end solution
developed.

fog assisted approach. Over here the fog node has all the services deployed on it
as presented in Fig. 3.5. Second is without fog functionality and this is termed as
cloud-centric approach. Over here, the fog node only serves as a usual gateway to
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transport the collected data to the cloud node without performing any computation on
it.

2. In both scenarios i.e., with fog functionality enabled (fog assisted approach) and
without fog functionality enabled (cloud-centric approach), the response to the user is
sent from service running on cloud node. The user, which in the SmartHerd project
deployment is the farmer, interacts with the system via the mobile application. All the
generated alerts are sent via the mobile application, which also serves as the medium
through which the user can query the system. The user has also been provided with a
functionality to mark the alert or queried output presented from the lameness detection
service as either correctly classified or wrongly classified.

3. The data streaming frequency of sensors to fog nodes is every 6 minutes, and is
specified by the sensor-provider in the deployment. The data streaming frequency of
the fog node to transmit processed data to the cloud node was set to an hourly basis.

4. The network available on user’s mobile phone was set to 3G for all the experiments.

5. For development of the lameness detection algorithm, in the initial stages of the
project the analysis was done on the hourly basis; but this was later switched to a
daily analysis of the data as that was more insightful for the early lameness detection
objective. All the feature and data analysis graphs presented in sub-section 3.7.3
have been presented with the daily analysis of the system. Thus, the development
of lameness detection algorithm was performed on daily summarized data, and the
graphs presented in that section are for each activity on a per day basis.

6. We started with 150 cows each having a pedometer on one of their front legs in the
deployment. During the life span of the project, a total of four cows were eliminated
from the analysis for miscellaneous reasons. Thus, the total number of animals in the
project varied from 150 (at the beginning of the project), to 147 (at mid-stage of the
project), to 146 (at final finishing stage of the project).

7. Table 3.2 presents the resource specification of the fog node and cloud node, and other
associated context in the SmartHerd project test-bed setup.

8. The tool used to monitor CPU and Memory consumption was psutil [175] python
library. It is a cross-platform library for process and system monitoring in python.

9. Other than having a backup service on cloud node, there was no additional func-
tionality added to the developed system to increase the fault tolerance or system
resilience.

10. System access by the user — User-Access Queries for the system: As mentioned
before, the user in the current setup of SmartHerd is the farmer in the loop. A user
can make a query to the system via the mobile application. The possible queries can
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Table 3.2 Resource specification of fog node and cloud node, and other associated context
in the SmartHerd deployment.

Number of animals on the farm,
which corresponds to the

number of sensors on the farm
150

Number of fog node (s)
and it’s resource configuration

1
Configuration: Intel® CoreTM

3rd Generation i7-3540M CPU @3.00GHz,
2 Core(s), 4 Logical Processor(s)

16.0 GB RAM, 500 GB Local Storage

Number of cloud node (s)
and it’s resource configuration

1
Configuration: 8 VCPUs

Intel® CoreTM Xeon E3-1270 v5
4 Cores, @3.60 GHz

16.0 GB RAM, 500GB Hard disk
Data transmission frequency

of sensors to fog node Every 6 minutes

Data transmission frequency of
fog node to cloud Hourly basis

be divided into user-triggered queries and system-triggered queries. A list of some of
the possible queries have been listed below:

Query 1: The user chooses a random cow to view the locomotion pattern and histori-
cal lameness report. For this we select a random cow from the available list and make
this query, and we take a note of the time taken by the system to respond to this.

Query 2: The user chooses a random cow to check whether it is lame or not. Over
here we select a random cow from the list and take a note of two things: 1) the time
taken by the system to respond to the query 2) the farmer’s input– either confirmation
or rejection of the classification output presented by the system. The user’s annotated
response as correctly classified or mis-classified is useful in further retraining the
machine learning element of the developed solution to improve accuracy.

Query 3: The system detected an animal (or a list of animals) as lame, and the user
needs to be informed of those. For this the same metrics are noted down as in Query
2. The difference between Query 2 and Query 3 is that Query 3 is system triggered
while Query 2 is user-triggered.

Query 4: The user picks a random cow and wants to check whether it’s in heat or
not.

Query 5: The estrus detection service detected that an animal (or a list of animals)
are in heat, and the user needs to be alerted of them.

For Query 4 and Query 5, we treat the Heat detection service provided by ENGS
System as a black box. As stated earlier, the main aim of integrating the heat detection
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service in our software stack was to show the interoperability feature of the developed
system. Therefore for us, it acts as a black-box to generate the output on a user-
triggered query or send the output in case of system-triggered events.

Please note that the queries listed above are transformed as standard NoSQL queries
from a code-base standpoint.

11. Service Delivery Time: Service delivery time refers to the time when the query was
made, plus the processing time by the system, plus the time it took for the response to
reach the user. It is therefore the sum total of overall transmission and computational
time.

We limit our selves to user-triggered queries of type 1 and 2 (i.e., Query 1 and Query
2) stated above in the experimental analysis of service delivery time and fault tolerance. In
the service delivery time experimentation, each query was repeated 30 times to collect the
metric. The experimental results on service delivery time have been presented in section
3.7.1.3. For the fault tolerance experiment, each query was repeated 3 times to note down
the response time. The reason behind the difference in the number of times the queries are
being repeated for collecting the metric is that in-case of a normal service delivery time
experimentation, the primary objective is to see the average response time of the system to
the user. While in case of a fault tolerance experiment, as the system is already getting
disrupted, the aim is to check the working of system in such disruptions. The large sample
size of values in first case is useful to analyze the average response time with a confidence
interval, while in second experimentation the objective is to see how the system works with
services getting broken randomly i.e., to check the fault tolerance of the developed system.

3.7.1 Fog Computing Functionality of the Developed System

3.7.1.1 Data reduction

Among the downsides of the existing approaches is that they are either fully cloud-centric
in nature, i.e., all the data is sent to the cloud for processing and analysis; or have just farm
premises based system which limits the accuracy and intelligence [114] of such systems as
there are no dynamic and frequent updates.

From what we have monitored, each sensor/LRP generates around 70 KB of data per
day, which, as shown in Fig. 3.12, accounts for 10.1 MB of data collected from the 147
sensors at the SmartHerd gateway each day, with data acquisition and streaming happening
every hour. But given the local processing capability attributed to fog computing, the
amount of data that is sent further to the cloud is only 1.62 MB per day, which, as shown in
Fig. 3.12, is an 84% reduction in the amount of data that would otherwise have streamed
to the cloud throughout the day. This aspect of data reduction becomes even more crucial
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Fig. 3.12 Daily reduction in the amount of data between the fog node and the cloud.

while scaling up the farm and the herd, as the amount of data collected and streamed would
rapidly increase.

3.7.1.2 CPU and Memory utilization with and without fog functionality

The bar plots in Fig. 3.13 presents the CPU and Memory utilization collected using psutil
with a time step of 3 minutes window as the utility parameter. It was captured for a period
of 12 hours, and averaged over the entire period for a better representation. The whiskers
present the 95% confidence interval for the values presented.
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Fig. 3.13 Average CPU and Memory consumption of fog and cloud node with and without
fog functionality.
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The CPU and Memory utilization of fog node is more in fog assisted approach and less
in cloud centric approach as visible from the bar plot presented in Fig. 3.13a and 3.13b.
For cloud node, the CPU and Memory utilization is more in cloud centric approach as
compared to fog assisted approach. This is because of the fact that in fog assisted approach,
there is additional computation that happens on the fog node which results in an increase in
computing resource utilization; while in cloud centric approach, the fog node only serves
as a gateway to forward the data to cloud node for processing.

The same goes for cloud node as well, in cloud centric approach, every computing
operation on the data received happens there. While in fog assisted approach, the cloud
node receives processed data, wherein a part of the computing operation is already done
by the fog node, which results in less computing resource utilization in fog assisted and
more in cloud centric approach for cloud node.

3.7.1.3 Service Delivery Time experimentation with and without fog functionality
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Fig. 3.14 Service Delivery Time of the developed SmartHerd IoT solution with and without
fog functionality.

The service delivery time here represents the average query time that we performed
on the system with different queries as defined earlier in 3.7.2 for user-triggered Query of
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type 1 and 2. It includes the network round trip time along with the processing delays by
the system.

Fig. 3.14 presents the service delivery time of the developed system. The value listed
on the top of the each bar presents the service delivery time with number after the ±
symbol denoting the 95% confidence interval for the value. As visible from the plot, the
service delivery time is less in fog assisted approach and more in cloud centric approach
for both Query 1 and Query 2.

With fog assisted approach it is less, as the animals here are already clustered (i.e., part
of computing operation has already been performed by the fog node) and the user-access
Query directly executes the animal as a data-query point. While in cloud centric approach,
the animal being queried has to be put into a cluster first and then treated as a data-query
point to send the output. Thus, the additional time in cloud centric approach corresponds
to that. The animal clustering process used in the setup has been explained in detail later
in section 3.7.3.2.

3.7.1.4 Benchmarking of the developed system, and discussion on platform perfor-
mance on using fog node with low-level computational power

As the real world test-bed had a high-end fog node (computer), there were a number of
obvious questions listed below that were a required ask for a thorough analysis of the
developed system:

† How does the designed software system perform when a fog node with lower computa-
tion power is set as a gateway?

† Is the developed system capable of running on resource constrained devices having
lower computation capacity?

† What are the minimum resource requirements for the fog node in such a setup?

These questions lead to benchmarking of the developed system. As per the application
deployment made, we are aware that the main processing component amongst the mi-
croservices running on fog node is the MQTT publisher which is responsible for data
pre-processing, aggregation, and streaming processed data to the cloud. For initial analysis
ultimately leading to benchmarking of the system, we first zoom into the CPU and memory
analysis data captured for analysis in section 3.7.1.2. i.e., we monitored resource (CPU
and Memory) consumption on fog node every 3 minutes when all the microservices were
running on it. Using psutil python library, we calculated the percentage increase in both
CPU and Memory before, during and after streaming (i.e., before the MQTT publisher was
run, during and after it was run). We used the percentage increase because this would form
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a baseline here i.e., irrespective of change in the fog node capabilities, the same increase in
resource consumption would be expected.

Such an analysis will help us in designing the experimental setup for benchmarking
the system to find the minimum computing resource requirement. The idea is to check the
postulate made above, which states that irrespective of change in the fog node capabilities,
the same percentage increase in resource consumption would be expected.
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Fig. 3.15 Resource utilization at fog node (i.e., SmartHerd IoT Gateway).

Fig. 3.15a shows memory usage before, during and after the MQTT publisher is run.
The highlighted region shows the period during which the MQTT publisher was streaming.
As it can be seen, there is an increase from about 35.38% to 36.75%. The total usable
memory was about 14.50 GB. This would mean the impact of MQTT component was only
0.12 GB.

Fig. 3.15b, shows CPU usage before, during and after the MQTT publisher is run. The
region highlighted shows the period during which the MQTT publisher was streaming. As
it can be seen, there is an increase from ≈20% to ≈45%.

The table 3.3 summarizes the CPU and Memory utilization before, during and after
streaming.

In all, the overall resource utilization and effects of MQTT component on the fog
node are very minimal validating that it can be run on very resource constrained compute
environments.

It should also be mentioned here that although the real world experiment was carried
on a high-end fog node (computer), but prior to this experiment (i.e., before putting the
developed code-base in the actual deployment), we tested the resource (CPU and Memory)
consumption on another PC setting (Intel® CoreTM i5-4300M CPU@ 2.60GHz, 8.0 GB
RAM, 500 GB local storage), and also on a single VM instance running on OpenStack
with following configuration: 2 VCPUs (Intel® Xeon Processors @2.60 GHz), 4 GB RAM,
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Table 3.3 CPU and Memory utilization on fog node before, during and after streaming for
comparison of the developed system to be able to run in resource constrained environment
as well.

Resources
Before streaming with all

the microservices running

During streaming with all

the microservices running

After streaming with all

the microservices running

CPU
At max 20% and

mostly below that

From 20% to 45 %

(25% increase)

At max 20% and

mostly below that

Memory
At max 35.38% and

mostly below that

From 35.38% to 36.75%

(1.37% increase)

At max 35.38% and

mostly below that

20 GB Disk, initially with artificial data and later with data obtained from ENGS systems
(our sensor vendor for this deployment). Similar behaviour as per the aforementioned
postulate was observed there as well.

Power Consumption:
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Fig. 3.16 Power utilization at fog node.

We also captured the power consumed at fog node as that would also help in the
analysis of benchmarking of the developed system. We used Intel® Power Gadget tool
[176] to measure the power consumption of the fog node (i.e., SmartHerd IoT Gateway).
It is a software-based power usage monitoring tool enabled for Intel® CoreTM processors.
While we collected the data for a longer period during the deployment for this analysis,
we observed a constant power consumption pattern throughout. Thus, to give a better
representation of the power consumption pattern, we present the power consumption at
the fog node in a time window of 3 minutes in Fig. 3.16. As visible from the plot, the
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maximum utilization is 23.2 Watts, and for most of the time, it stays below 18 Watts.
The utilization reaches its maximum value (during the streaming period) when there is a
message stream happening between fog node and cloud node.

Benchmarking of the developed system – experiment and analysis

It should also be mentioned here that the computing resource benchmarking in such a
setup is primarily concerned with the fog node in the setup i.e., analyzing the effect of
varying computing resources at the fog node while keeping the resources on cloud constant.
The justification for this is that at fog node auto-scaling (adding and removing computing
resources dynamically) of resources is not possible, unlike cloud computing environments.

Without affecting the integrity of the experiment and analysis here, it can be assumed
that the cloud node is capable of managing the computing resource for such as setup
dynamically while fog node currently is not. There is no doubt that there are research
efforts in that direction for fog computing environments as well, but the dynamic resource
allocation to services in fog computing environments is not in the scope of the work
presented in the dissertation.

The benchmarking of the system was done to check the minimum amount of computing
resources required to run the developed solution in the SmartHerd deployment. The
experimental testing here is done with one user and application deployment as presented
in Fig. 3.5. The idea was to check with such a setup where there are 150 animals
with wearables on them generating data for the desired analysis, what is the minimum
computing resource capacity required for fog node. Table 3.4 presents further insight
into the benchmarking experimentation. Please note that CPU and Memory utilization is
noted down every 3 minute window period as the time step for a total of 3-time windows
in the 15 minutes duration of each set of experiment separately (i.e., each row here). In
those three time windows the data streaming from fog node to cloud node happens only
once because of hourly streaming frequency at fog node. In these set of experiments, the
streaming happened in the second time window.

Table 3.4 Benchmarking Experimental Scenario — Keeping computing resource on cloud
same and varying resources on fog node.

Limiting
Allocated CPU

(Varying Physical
CPU (1 to 4))

Limiting
Allocated Memory
Varying Memory
(2GB to 16GB)

Metrics Noted Down

1 2
Note down CPU and Memory Utilization of
allocated resources, and attribute them as follows:

2 4 1. Average CPU and Memory Utilization during the experiment
2. CPU and Memory utilization before, during and after streaming
3. % increase in CPU and Memory utilization during streaming

3 8
4 16
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Methodology used for benchmarking — limiting allocated computing resources with
Cgroups: The full form of Cgroups [177] is Control Groups. It is a Linux kernel feature
used to limit resources to process groups such as CPU, memory, permissions and many
more on Linux. We use Cgroups to perform benchmarking of the developed system. We
varied the available computing resource capacity on fog node using Cgroups as listed in
Table 3.4.

Further details on the use of Cgroups has been included in appendix B. The output
obtained from the benchmarking experimentation have been presented Table 3.5 and 3.6.

Table 3.5 CPU utilization of fog node during benchmarking experiment.

Allocated
CPU

Allocated
Memory

CPU utilization of fog node

Before
streaming

Increase in
value during
streaming

After
streaming

% increase
value during
streaming

Average value
for the duration
(Value ± 95% confidence
Interval)

1 2 ≤50.72 50.72 to 76.53 ≤50.72 25.8 63.41 ± 3.22
2 4 ≤39.26 39.26 to 64.96 ≤39.26 25.7 51.65 ± 2.89
3 8 ≤31.84 31.84 to 57.34 ≤31.84 25.5 45.21 ± 2.86
4 16 ≤20.12 20.12 to 45.23 ≤20.12 25.1 35.66 ± 3.21

Table 3.6 Memory utilization of fog node during benchmarking experiment.

Allocated
CPU

Allocated
Memory

Memory utilization of fog node

Before
streaming

Increase in
value during
streaming

After
streaming

% increase
value during
streaming

Average value
for the duration
(Value ± 95% confidence
Interval)

1 2 ≤58.82 58.82 to 60.66 ≤58.82 1.84 59.55±0.24
2 4 ≤55.27 55.27 to 56.93 ≤55.27 1.66 56.18±0.19
3 8 ≤51.75 51.75 to 53.27 ≤51.75 1.52 52.55±0.17
4 16 ≤35.38 35.38 to 36.75 ≤35.38 1.37 35.97±0.15

As expected that with decreasing amount of computing resources on fog node, the
CPU and memory utilization of fog node increases, as also visible from the plots presented
in Fig. 3.17. The whiskers in plots present the 95% confidence interval for the values
obtained.

Also, as analyzed from the % increase column in Table 3.5 and 3.6, the increase in
resource utilization is not with the exact same value, but it still appears to be in a very close
range of that, which appears to be almost the same value as postulated above. Moreover, it
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Fig. 3.17 Benchmarking experiment analysis — CPU and Memory utilization at fog node.

still supports that the developed system is fully capable of running on fog devices with low
computational capacity.

We also agree that the computing resource benchmarking can further be abstracted to
number of CPU cycles required to run the computing operations on the machine, with a
similar analogy for Memory as well. We did look for options that can help us achieve that,
but could not find something constructive and finally selected using cgroups for this, and
presented the results obtained as per the granularity of the underlying methodology. This is
one of the possible future directions for the work for further abstracting the computational
resource benchmarking of such fog enabled IoT solutions, and has been mentioned in
Chapter 6.

Our objective was to see the effect of code-base deployed on fog node in our setup while
varying the amount of allocated computing resources. Such an analysis becomes essential
to consider for possible scenarios where a single fog node hosting multiple services from
different providers is in use, such as in a more heterogeneous IoT deployment scenarios.
The minimum resource requirement of fog node in current setup from the analysis presented
above is 1 physical CPU and 2 GB of Memory.

3.7.2 Analysis of Application Design and Development Approach Cou-
pled with the Fog Computing Paradigm

As the distributed modular application architecture is using microservices based software
development approach in SmartHerd deployment; thus, for experimental analysis, the
objective was to analyse how a fog assisted approach helps the developed application.
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A standalone analysis of application development approach without considering the fog
computing paradigm would only have shown the benefits arising from using a microser-
vices based software development methodology. Fig. 3.11 gives a presentation of the
combinations of different aspects and objective of the SmartHerd IoT solution as presented
in the analysis.

The novel contributions coming from this part of the work can be summarized as
below:

• To the best of our knowledge and literature survey done, microservices based soft-
ware development methodology has been limited to the cloud computing environ-
ments. It has only recently gained attraction to be used in fog computing environ-
ments, and there exists very limited work on using it in fog enabled IoT scenarios,
particularly in a real-world setting.

• The novelty of the work presented comes from the point of applying the distributed
modular application architecture using microservices based software development
methodology coupled with the fog computing approach in the developed IoT appli-
cation.

We used fault tolerance and scalability as the metrics to measure the effectiveness of
the proposed application design and developed approach coupled with the fog computing
paradigm.

Fault Tolerance: One of the key motivations for having a distributed system design is
fault tolerance. Fault tolerance implies that the system still works well even when some
parts of it are broken.

From a software standpoint and for the experimentation purpose, fault tolerance was
implemented by means of timeouts, exception handling, and incremental restarting of the
service. The idea was to break some part of the services and see the response of the system
in such events.

We used a stochastic methodology to decide which services to break based on a probability
function. The main aim of this was to keep the nature of the experiment random, i.e., to
not selectively decide which services are working and which are not. Table 3.7 presents
a description of the probabilistic approach used for disrupting the service randomly in
the developed software solution for the purpose of experimentation. It should also be
mentioned here that it was not possible to use a tool such as Chaos Monkey [178] for
doing fault tolerance experimentation because of security restrictions imposed by IBM
Cloud. Thus, we had to write our own controller code with the stochastic methodology
and software standpoint described above for the purpose of experimentation with admin
privilege access to all the services.

76



3.7 Results and Discussion

Table 3.7 Experimental settings for the fault tolerance experiment for randomized disrup-
tion of services in the developed solution.

Probability Value Interpretation
0 Probability value of 0 means that none of the services are broken.
0.2 Probability value of 0.2 means that 20% of the total available services are broken
0.4 Probability value of 0.4 means that 40% of the total available services are broken
0.6 Probability value of 0.6 means that 60% of the total available services are broken
0.8 Probability value of 0.8 means that 80% of the total available services are broken
1.0 Probability value of 1.0 means that 100% of the total available services are broken

The maximum wait time to get a response for query was kept as 10 seconds, and if the user
does not get a response by then, then an error message is displayed to the user. It should
be noted that it was essential to setup a max limit in-case if there was no response from the
service in case of it being broken as part of the fault tolerance experiment. The wait time
of 10 seconds before sending an error message was kept in line with the usual response
time limit of users experience [179] and also inline with the usual response time of the
developed system for these queries without any disruption as presented in section 3.7.1.3.
If the called service is not available, and if backup is available, the request is redirected to
backup service and the response goes from there. For each service in case of unavailability,
the wait time to get a response was kept as 200 ms before going and looking for backup
service and serving the request from there.

As mentioned earlier, that both the Queries (Query 1 and Query 2) were run thrice. We
performed the fault tolerance experiment in both scenarios i.e., with fog functionality (fog
assisted approach) and without fog functionality (cloud-centric approach). The metrics
noted for service delivery time in both scenarios for each execution of the experiment have
been presented in Table 3.8 and 3.9.

In these tables, a ‘✓’ means that the corresponding Query was served, a ‘✓B’ means
that the corresponding Query was served from backup service, and ‘✗’ means that the
Query was never served and the user received an error message. After carefully observing
and analyzing Table 3.8 and Table 3.9, we present Table 3.10 which presents the general
pattern observed by both Query 1 and Query 2 user access requests with and without fog
functionality.

For a visual analysis of the results, we present two sub-figures in Fig. 3.18. Fig. 3.18a
presents the number of the times the user access query was served in three experimental
runs of the experimentation, and Fig. 3.18b presents the average service delivery time of
those three experimental runs.

It should be noted that there were no additional measures taken to increase the fault
tolerance of the system, and as mentioned earlier, the idea was to check the merits or
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Table 3.8 Fault Tolerance experiment results with fog functionality i.e., in fog assisted
approach.

Service Delivery Time in milliseconds (ms) is noted down in each experimental run for each Query,
with 10 seconds (10000 ms) as the maximum wait time before sending an error message.

1st Experimental Run 2nd Experimental Run 3rd Experimental RunProbability Value % of total services
getting broken Query 1 Query 2 Query 1 Query 2 Query 1 Query 2

0 0 495.87 (✓) 1096.89 (✓) 494.05 (✓) 1100.12 (✓) 495.04 (✓) 1097.62 (✓)
0.2 20 10000 (✗) 10000 (✗) 2498.97 (✓B) 3200.18 (✓B) 2502.06 (✓B) 3102.51 (✓B)
0.4 40 491.75 (✓) 1094.05 (✓) 2490.89 (✓B) 3108.35 (✓B) 493.28 (✓) 1101.71 (✓)
0.6 60 2497.67 (✓B) 3098.70 (✓B) 10000 (✗) 10000 (✗) 2490.91 (✓B) 3099.17 (✓B)
0.8 80 2500.18 (✓B) 3572.38 (✓B) 10000 (✗) 10000 (✗) 10000 (✗) 10000 (✗)
1.0 100 10000 (✗) 10000 (✗) 10000 (✗) 10000 (✗) 10000 (✗) 10000 (✗)

Table 3.9 Fault Tolerance experiment results without fog functionality i.e., in cloud-centric
approach.

Service Delivery Time in milliseconds (ms) is noted down in each experimental run for each Query,
with 10 seconds (10000 ms) as the maximum wait time before sending an error message.

1st Experimental Run 2nd Experimental Run 3rd Experimental RunProbability Value % of total services
getting broken Query 1 Query 2 Query 1 Query 2 Query 1 Query 2

0 0 644.26 (✓) 2077.38 (✓) 642.35 (✓) 2076.96 (✓) 646.18 (✓) 2077.63 (✓)
0.2 20 2643.75 (✓B) 4078.89 (✓B) 10000 (✗) 10000 (✗) 640.77 (✓) 2075.32 (✓)
0.4 40 10000 (✗) 10000 (✗) 2465.26 (✓B) 4089.32 (✓B) 645.28 (✓) 2081.99 (✓)
0.6 60 10000 (✗) 10000 (✗) 2689.62 (✓B) 4078.71 (✓B) 10000 (✗) 10000 (✗)
0.8 80 10000 (✗) 10000 (✗) 10000 (✗) 10000 (✗) 2642.73 (✓B) 4079.05 (✓B)
1.0 100 10000 (✗) 10000 (✗) 10000 (✗) 10000 (✗) 10000 (✗) 10000 (✗)

Table 3.10 Trend observed by Query 1 and Query 2 in the fault tolerance experiment with
and without fog functionality.

Probability Value % of total services
getting broken

Query 1 and Query 2
With Fog Functionality

Query 1 and Query 2
Without Fog Functionality

0 0 3 out of 3 times served 3 out of 3 times served

0.2 20
2 out of 3 times served
(with backup service used 2 times)

2 out of 3 times served
(with backup service used 1 time)

0.4 40 3 out of 3 times served
(with backup service used 1 time)

2 out of 3 times
(with backup service used 1 time)

0.6 60 2 out of 3 times served
(with backup service used 2 times)

1 out of 3 times served
(with backup service used 1 time)

0.8 80
1 out of 3 times served
(with backup service used 1 time)

1 out of 3 times served
(with backup service used 1 time)

1.0 100
Never served
(User received an error message)

Never served
(User received an error message)

de-merits of having a fog enabled system in such IoT scenarios. As visible from the plot
in Fig. 3.18a, the number of times the user-requests were served during the breakdown of
services almost trace-down each other, and only at 40% and 60% of services being broken,
the fog assisted approach serves all the requests, while cloud centric approach gets totally
disrupted there atleast once out of a total of 3 runs.

A possible explanation for this can be that in cloud centric approach there is only a single
point of failure, while the fog assisted approach being distributed in nature, the points of
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Fig. 3.18 Fault tolerance experimental analysis.

failure also get distributed, and thus is able to increase the overall fault tolerance of the
system developed.

Also, a near usual-trend for service delivery time as observed during the times of non-
disruption of services is observed during the breakdown of services as well i.e., the average
service delivery time is less with the fog assisted approach and is more in cloud centric
approach. The same has been shown in plot presented in Fig. 3.18b.

We also did an empirical mathematical analysis of such behaviour by the system using
concepts of combination and probability theory. This has been presented in appendix A,
and is a further possible extension for this work. With a more distributed setup coming
from the MELD project, we plan to do a further analysis of the system behaviour continued
from the empirical analysis as presented, and combine it with the concepts of Chaos
Theory [180], [181]. This is part of the future direction of work coming from this chapter,
and has also been included in Chapter 6.

Scalability: Scalability is an attribute that describes the ability of a process, network,
software or organization to grow and manage increased demand [182]. It is the feature of
a software solution to handle increased workloads. This can be larger data-sets, higher
request rates, or a combination of both.

Usually at the production level, to handle such changes or to achieve scalability, there are
two approaches that are used:

1. Vertical Scaling (Scale Up): Over here, scaling is done by adding more computational
power (CPU, Memory) to an existing machine. Vertical scaling is often limited to
the capacity of a single machine, and scaling beyond that often involves downtime in
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order to add more computational power to the machine. Therefore, scalability with
vertical scaling is limited.

2. Horizontal Scaling (Scale-Out): Over here, the scaling is done by adding more
machines into the pool of resources.

In our use-case, the scalability trait of the developed software can arise in the following
possible scenarios:

1. When there is a change in the amount of data. This is also referred to as load scaling
in literature [183]. This refers to the case when the number of animals on the farm
increase and all the other variables stay the same.

2. The other possibility is to have a change in the number of simultaneous requests
coming to access the service, i.e., the scenario when there are increased requests
to access the system at the same time. This is possible in large scale farms having
various stakeholders. For e.g., there can be multiple workers on a farm who need to
access the application (and maybe at the same time).

3. When there is a change in the number of computational nodes. This is also referred
to as strong scaling in literature [183]. This refers to the case of having multiple fog
and cloud nodes in the setup, with all other variables the same.

For scalability testing, we perform the experiment in fog assisted approach only, as for
cloud-centric approach, it can be assumed that given that cloud has comparatively more
resources than fog. So, in the scenario where everything is being deployed and executed
from cloud, all the traditional cloud system based scalability traits will apply by default.
The objective of the experiment here is to see how the proposed approach of leveraging
fog computing is contributing to scalability.

We limited ourselves to scenarios 1 and 2 for the scalability testing experiment for the
developed solution. Further, we limited ourselves to Query 2 as the user access request to
access the developed system. We wrote custom scripts to generate the data as was generated
by the real animals in the SmartHerd deployment for scenario 1 of the experimentation.

Fig. 3.19 gives a more insight visual representation of the scalability experiment. Table
3.11 and 3.12 further present more insight into the experimentation.

In the SmartHerd setup, we had 150 cows (or 150 sensors generating data), one fog node
and one cloud node with the configurations as listed in Table 3.2. From the understanding
of the scalability trait of a software system as listed above, we define scalability for the
developed IoT solution as the ability to handle increased workload (either more data
or requests) without adding additional resources to the setup and without spawning a
new service instance for any of the microservices, and perform the scalability testing
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Fig. 3.19 Visual representation of the Scalability Experiment.

experiment accordingly. The objective of the scalability testing experiment here is to
determine how the application performs with these possible changes. There are different
possible attributes such as response time, throughput, CPU usage, Memory usage, Network
usage that can be used as a metric while doing scalability testing.

We collected CPU usage, Memory usage, service delivery time and throughput as the
metrics while doing scalability testing experiment on the developed IoT solution. It should
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Table 3.11 Scalability experiment scenario 1 — changing the amount of data. This set of
experiment was oriented towards checking the scalability aspect of fog computing part of
the developed IoT solution.

Amount of data
(presented in context to the number of

animals on the farm, which represent the
corresponding number of sensors on the farm)

Metrics Noted Down

150

CPU and Memory Utilization
of fog and cloud node

200
250
300
350
400
450
500

Table 3.12 Scalability experiment scenario 2 — changing the amount of simultaneous
requests. This set of experiment was oriented towards checking the scalability aspect of
cloud computing component affecting the user experience of the developed IoT solution.

Number of simultaneous requests
in unit time

(x requests every minute)
Metrics Noted Down

1

CPU and Memory Utilization of fog and cloud node
Service Delivery Time, and

Throughput

5
10
15
20
25
30

be noted that throughput here is the measurement of number of requests processed in
a unit time by the system. Its definition can differ from one application to another, for
e.g. as in web application it is measured in number of user requests processed in a unit
time whereas in database application it is measured in number of queries processed or
transactions performed in a unit time.

The output of the scalability experiments have been presented in Fig. 3.20, 3.21 and
3.22. The whiskers in the plots represent the 95% confidence intervals for the values. It
should also be noted that for each set (i.e., each row) in Table 3.11 and 3.12, the CPU and
Memory utilization values are noted down for a period of 30 minutes and then the average
value for the duration is used for making the plots. The analysis of the output obtained
have been presented below:
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(a) Plot representing average CPU utilization at
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Fig. 3.20 Scalability experimental analysis — experimental scenario 1 — CPU and Memory
utilization.

0 5 10 15 20 25 30
Increasing number of simultaneous requests in unit time

 (x requests every minute)

30

40

50

60

70

A
ve

ra
ge

 C
P

U
 U

til
iz

at
io

n 
(in

 %
) 

Average CPU Utilization at fog node and cloud node
 during the scalability testing experiment    Experimental Scenario 2

Fog Node CPU Utilization
Cloud Node CPU Utillization

(a) Plot representing average CPU utilization at
fog and cloud node during the scalability testing
experiment in scenario 2.
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at fog and cloud node during the scalability testing
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Fig. 3.21 Scalability experimental analysis — experimental scenario 2 — CPU and Memory
utilization.

• Experimental Scenario 1: Fig. 3.20a and Fig. 3.20b presents the CPU and Memory
utilization of fog and cloud node in the experiments. As visible from the plots, the CPU
and memory utilization of fog node increases with an increasing amount of data, while
there is very little effect on the cloud counterpart. As the data is processed at fog node
and the outputs are sent to cloud node, thus there is an increase in the resource utilization.
While at cloud node there is an increase in the incoming of the outputs obtained, but it is
not as computationally intensive for the cloud component as it is for the fog, and thus the
computing resource utilization stays almost constant here.

83



3.7 Results and Discussion

0 5 10 15 20 25 30
Increasing number of simultaneous requests in unit time

 (x requests every minute)

1100

1150

1200

1250

1300

1350

1400

1450

1500

A
ve

ra
ge

 S
er

vi
ce

 D
el

iv
er

y 
Ti

m
e 

(in
 m

ill
is

ec
on

ds
(m

s)
) 

Average Service Delivery Time
 during the scalability testing experiment   Experimental Scenario 2

Average Service Delivery Time

(a) Plot representing average service delivery time
during the scalability testing experiment in sce-
nario 2.

0 5 10 15 20 25 30
Increasing number of simultaneous requests in unit time

 (x requests every minute)

0

5

10

15

20

25

30

N
um

be
r o

f r
eq

ue
st

s 
se

rv
ed

 in
 u

ni
t t

im
e 

 (x
 re

qu
es

ts
 e

ve
ry

 m
in

ut
e)

Throughput
 during the scalability testing experiment    Experimental Scenario 2

Throughput

(b) Plot representing throughput during the scala-
bility testing experiment in scenario 2.

Fig. 3.22 Scalability Experimental Analysis — Experimental Scenario 2 — Service Deliv-
ery Time and Throughput.

This can also be concluded from the results here that beyond 500 animals, which corre-
sponds to the number of sensors sending data to fog node, there will be a need to have
another fog node in the setup for the system to work well and deliver all of its function-
alities. Hence, if the herd size exceeds 500, there will be a requirement to add more
computing resources at the fog layer of this particular IoT deployment.

• Experimental Scenario 2: Fig. 3.21a and Fig. 3.21b presents the CPU and Memory
utilization of fog and cloud node in the experiments. Over here, with an increase in the
number of simultaneous requests coming to the service running on cloud, the CPU and
memory utilization of cloud node increases, while there is a very little effect of it on the
fog node. As all the user-requests are directed to cloud and served from there, and only
the connected service if any is invoked at fog node, so the computing resource utilization
at fog node stays almost constant here.

We further continued the experiment with increasing the number of requests every minute
to check what are the maximum number of requests that are served by the service without
invoking the auto-scale service i.e., without having another instance of the service. The
value was found to be 46 requests per minute for the setup. At 46 requests per minute
there will be a need to have multiple instances (at least two) of the user-access service.

Fig. 3.22a presents the average service delivery time for Query 2 in the experiment. With
increasing number of simultaneous requests, the average service delivery time increases.
This is potentially because of requests being queued before getting served, which results
into an increase in the service delivery time.
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Fig. 3.22b presents the number of requests that are served in unit time with increasing the
simultaneous requests. For each request there is a separate connection that is established
by the user-access service. The developed system is able to serve 46 simultaneous requests
per minute as the threshold value, beyond which there is a need to have another instance
of the service in place.

3.7.3 Machine Learning Objective of the Developed System

3.7.3.1 Cow Profiling

As the number of cows being analysed are significant in number, the first question is how
to analyze them for an insightful analysis of their behaviour. Formally,

How to build robust cow profiles that are distinguishable by the learning model as
lame and non-lame? Which parameter to use as baseline while building and comparing
cow profiles?

For the system to differentiate between normal and anomalous behaviour due to
lameness, we must first form profiles to characterize normal (non-lame) and lame behaviour
in the herd. The most frequently used approach for this is to examine the activity level of
lame and non-lame animals and study how these differ from the mean of the entire herd.
But as it is known that outliers (i.e., a single element in sample being too high or low) can
affect the mean value of sample; hence median or quantiles are sometimes taken as a better
measure. To address this issue, we studied the relationship between the herd mean and the
herd median. The results of this as presented in Fig. 3.23 show that these almost trace out
each other for all the three activities (Lying time, Step count and Swaps). This is one of
the features of a normal distribution, and therefore it would not matter whether the mean
or median is used. Thus, we decided to use herd mean in our analysis.
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Fig. 3.23 Comparing the mean and median of the various animal activities.
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A study [184] on animal behaviour analysis and association patterns of cattle shows that
animals grazing within the same pasture can influence the movement, grazing locations,
and activities of other animals randomly, with attraction, or with avoidance; therefore most
of the animals will have their activity levels almost equivalent to the herd mean.

For such reasons, using herd mean as the baseline seems appropriate. Thus, any
deviation from the herd mean should serve as a preliminary indicator for a sign of change
in behaviour, which could potentially be lameness, among other reasons. Such an analysis
eliminates the effects of external factors, as these will be largely affecting the herd as a
whole. Further, the measure used to note the deviation in behaviour while forming Lame
and Normal profiles of cows in the herd was Mean Absolute Deviation (MAD), and while
comparing behaviour of individual cows with these formed profiles was Average Deviation.

Fig. 3.24 Relationship between herd mean and cow activity for cow 2346, showing
deviation in its behaviour from herd as it transitions into lameness.

We build a profile for each animal to characterize normal behaviour in a time window
using activity based threshold clustering, details of which have been presented further in
the next section (3.7.3.2). This helps us to define Lameness Activity Region (LAR, the
period during which the animal is confirmed lame) and Normal Activity Region (NAR, the
period during which animal is confirmed as non-lame), which later acts as ground truth
input for the classification model for detecting lameness. An example of this has been
presented in Fig. 3.24 for a random cow with ID 2346 in the herd.

Once a cow is identified as lame, we compare the herd mean for all the activities to
that cow’s activities and define a region d1 ≤ D > d2, where d1 is the day the activity starts
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to deviate from the herd activity mean, d2 is the day that cow is identified as lame. As
lameness is a transition, we ascertain that the cow will remain lame after that until it is
out of its lameness cycle. D is the entire duration between d1 and the days after d2 until
the cow is out of its lameness cycle. It is the whole duration between d1 to the last day
when the cow was still lame. The values of d1, d2, and D will vary for each cow as some
may have longer lameness cycles than others, and also depending on when the cow is
identified as lame. This is motivated by the fact that lameness is a transition from normal
behaviour to lameness and back, it will probably start before it is seen and even continue
after treatment until the cow becomes normal again. Once we define the LAR, the rest of
the graph is treated as the NAR.

However, by comparing the activity of each cow against the herd mean, we found out
that not all animals behave the same way. Not all the animals in the herd had their activity
tracing the herd mean — some had higher, some lower and some equal. This observation
led us to our next decision in the analysis, which was to identify the clusters in the herd.

3.7.3.2 Clustering

Now given that the number of cows being analysed are significant in number, the intuitive
step would be to somehow group them into smaller groups for the behavioural analysis.
Formally,
Does each animal in the herd need to be treated separately i.e., treating each cow as a
single experimental unit; or can some clustering technique be used to define clusters of
animals that share similar features within the herd?

In this work, we tried two clustering methods to group animals into smaller groups
that share the same features with in the herd. The first intuitive method was based on
their age, and the second one which is activity-based threshold clustering came from
a literature study and our observation on animal activities over a period of time. The
age based clustering did not lead to the objective of early detection of lameness while
the activity based clustering did help in making robust cow profiles, and helped with the
objective of the developed solution

Fig. 3.25 presents the diagrammatic representation of the two clustering methodologies
tried during the project, and further details on this has been provided below:

Age-based clustering : The total number of animals used to form clusters here were
147 as three of the animals were eliminated due to some health related issue. The age
distribution of these 147 cows are as depicted in table 3.13. The first and most intuitive
way of clustering the cows is in terms of age groups— young (age 2-5) and old (age 6-12).
While this matches the intuition that the activity patterns of young cows are closer to the
herd mean as opposed to older ones in the herd, there are crucial aspects missed out. For
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Activity based threshold
clustering of animals Cow profiles

Age-based clustering of
animals Cow profiles

Classification Model
Output

Finalized one with the required objective of early
lameness detection

Output

Fig. 3.25 Animal clustering methodologies tried in the project to make cow profiles, and
the formed profiles passed to the classification model with the objective of early detection
of lameness.

instance, the sample size in young category exceeds the old by 67%, and it is difficult to
trace out the sub sets of animals that may behave differently in these binary groups. It thus
excludes the outliers in each group and generalizes the classification as a whole, which
leaves the true behaviour of a cow difficult to trace. The behavioural trend of young and
old cows for the three activities is as shown in Fig 3.26 and Fig 3.27 respectively.

Table 3.13 Age Distribution of Cows in the Herd.

Age (in years) Number of Cows Cateogry
2 29

Young cows (Age 2-5)
Number of young cows = 111

3 31
4 29
5 22
6 9

Old cows (Age 6-12)
Number of old cows = 36

7 7
8 7
9 5
10 7
12 1
Total 147 147

Activity-based threshold clustering : The number of animals used to form clusters
here and as presented as the final output from the project were 146 as three of the animals
were eliminated due to health related issue as mentioned before, and one animal lost their
tag during the experiment.

The same study [184] referred earlier in section 3.7.3.1 also shows that cattle in the
same pasture are not treated as independent experimental units because of the potential
confounding effects of the herd’s social interactions. It also provides the insight that
activity patterns of groups of cows with in the herd may have level of independence that
is sufficient for analysing them as individual units under situations such as large herd
size of around 53-240 cows. This means that smaller sizes herd (less than or equal to
40) don’t exhibit any patterns of group formations within the herd while the larger herd
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Fig. 3.26 Age based clustering of cows in the herd — Young Cows: Behavioural trend of
young cows for the three activities in the herd.
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Fig. 3.27 Age based clustering of cows in the herd — Old Cows: Behavioural trend of old
cows for the three activities in the herd.

sizes (53-240) show formations of groups within the herd. It should also be noted that the
technology based automated smart solutions for animal welfare are more beneficial for
farms with large herd sizes; one can assume that for small ones the farmer can manually
keep track of each animal’s welfare without much effort.

There can be no one-size-fits-all solution for determining the behaviour of an individual
cow, considering the difference in the behaviour of sub-sets within the same herd. Not all
cows would have the same levels of activity as others their age, or behave similarly. From
our analysis and literature study, it was clear that a one-size-fits-all approach where it is
assumed that all animals behave the same way, and all cows are treated as a single set (i.e.,
without any grouping) to detect anomaly in behaviour would not be efficient. There exist
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sub-sets in the herd that share similar features, which once identified can be leveraged to
fit the use-case as opposed to a one-size-fits-all solution. In our analysis, we found that
even animals of the same age behaved differently and had different levels of activity.

Our clustering model is based on the observation that there are some animals in the
herd whose activity levels (step count, lying time and swaps) were always greater than
the mean activity value of the herd, while some whose activity levels were always less
than the mean herd activity, and then there were others who traced the herd mean. It is
also important to note that even when they became lame they had different activity levels
depending on which category they belonged to.

To define a cluster, we define a window of size k days, and calculate MAD (Mean
Absolute Deviation) between the cow activity and the herd mean for all the three activities.

CMAD =

n
∑

k=1
|Hm −Ci|

k
(3.1)

Here Hm is the herd mean within a defined window, Ci is the cow activity for activity i
and k is the window size. We varied the values of k while testing the accuracy of the
classification model and concluded that 14 days would be the optimal number of days to
define a cluster. Based on MAD, we defined a threshold h. Now based on this threshold,
and the following criterion, we define three clusters. If any two of the activity levels are
below a certain threshold, then that animal is assigned into one of the below clusters:

• Active: These are animals in the herd whose activity levels are always higher than
the herd mean. These have the mean deviation of any two of the activities greater
than threshold h.

• Normal: These are animals in the herd whose activity levels always trace out the
herd mean. These have the mean deviation of any two of the activities less than h
but great or equal to zero.

• Dormant: These are animals in the whose activity levels are always lower than the
herd mean. These have the mean deviation of any two of the activities less than zero.

The threshold was carefully chosen by a repetitive evaluation process, and was set to
1.7. The results presented in next section (3.7.3.3) have been derived with h value equals to
1.7. From our further analysis and investigation, we found that these clusters are dynamic
in nature, i.e., the animals can migrate from one cluster to another in a time window. There
can be a number of reasons behind this, we postulate because of age and weather at least,
and perhaps other factors that affect the activity levels of the animals and the herd as
a whole. Thus, it is the responsibility of the clustering model to re-cluster the animals
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prior to feeding it into the classification model. The optimal time to re-cluster was found
out to be about 2 weeks (14 days). This decision was made by continuously observing
the movement of animals between different clusters, and finding the time frame of these
movements. It should also be mentioned here that value of h was observed in both LAR
and NAR period separately to ensure that it should not conflict with the lameness detection
system being developed.

Fig. 3.28 shows the lying activity of the different clusters against the herd mean, and
Fig. 3.29 and 3.30 depict the same for number of steps and swap count respectively.
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Fig. 3.28 Lying activity of the clusters against herd mean
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Fig. 3.29 Step activity of the clusters against herd mean

This method of clustering is unbiased of age, thus not only covers the outliers within
each age group, but also depicts a more in depth analysis of the activities of each of the
cows belonging to each age group, and the overall analysis of the herd activity.
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Fig. 3.30 Swap activity of the clusters against herd mean

As mentioned earlier that during the life span of the project, we started with 150 cows,
then had 147 cows, and at a later final stage we had 146 cows in our analysis. Table 3.14
shows the distribution of these activity clusters as of final reporting of the project in June
2018.

Table 3.14 Distribution of cows in each activity clusters with 146 cows in the analysis.

Total number of cows
in the analysis

(as of June 2018)

Active Cluster Normal Cluster Dormant Cluster

146 25 109 12

3.7.3.3 Hybrid Machine Learning Model

Fig. 3.31 gives a quick overview of the SmartHerd pipeline from a machine learning
objective of the developed solution. The aim of this representation is to provide an
end-to-end representation of the system from data analytics perspective. It presents the
end-to-end pipeline of the developed solution illustrating: 1) data collection from sensors,
2) observation of the herd by an animal expert for locomotion scoring, 3) translating the
human observer’s expertise into a machine learning based system leading to early detection
of lameness in dairy cattle. Table 3.15 presents the locomotion scoring scale system used
by the agricultural science student during animal observation in this study.

Fig. 3.32 presents the overall blended clustering and classification model for early
lameness detection in dairy cows. As visible, the cows in the herd are clustered first based
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Fig. 3.31 A diagrammatic representation of the end-to-end pipeline of the developed
solution illustrating: 1) data collection from sensors, 2) observation of animals by an
animal expert to give locomotion score, 3) translating the human observer’s expertise into
a machine learning based system leading to early detection of lameness in cattle.

Table 3.15 Locomotion scoring scale system used by the agricultural science student while
observing cows.

Locomotion
Score

1 Normal
Non-Lame

2 Mildly Lame
3 Lame

Lame
4 Severely Lame

Training
Data

Cow activity 
      data

Unlabelled data
(Test data) 

ML
Classification

Training
Model

Model
Evaluation

Production

Feedback

Classification model

Validation
Data0

1

Clustering model

Step count
Lying time

Swaps

Data preprocessing

Active

Normal

Dormant

Labelled
Data

Fig. 3.32 Designed hybrid machine learning model for early lameness detection consisting
of activity-based threshold clustering followed by the classification model.

on the threshold based activity clustering, and then for each of these clusters a model is
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trained, and put in production after validation; so three separate models are made — each
corresponding to one activity cluster.

Classification — early lameness detection : Classification algorithms belong to the
set of machine learning algorithms that output a discrete value. Often, these output
variables are referred to as labels, classes or categories. Classification problems with two
classes are called binary classification problems, and those with more are referred to as
multi-class. In our use-case scenario, the problem was written as a binary classification
problem with Lame being the positive class and Non-lame as the negative class. The data
split was as 80-20, i.e. 80% of data was used for model training and rest 20% was used
for testing. The final classification algorithm used in this study was K- Nearest Neighbors
(K-NN).

Accuracy of the developed system : We experimented on a number of sklearn [185]
classification algorithms ranging from Support Vector Machine (SVM), Random Forest
(RF), K- Nearest Neighbors (K-NN) and Decision Trees. We then went ahead with the
K-NN base classification algorithm, as it was best balanced in terms of accuracy and
early lameness prediction window as shown in table 3.16. It is also important to note that
although a different model was trained and built for each of the three clusters (i.e., three
classification models – one for each cluster), results reported (performance and accuracy)
in this study are only for the normal cluster. This is because it was not possible to efficiently
evaluate the other two clusters as testing data in these was very small (i.e., imbalanced for
a proper evaluation).

Table 3.16 Lameness detection accuracy of the developed system.

Classification Model
Accuracy
(in %)

Number of days
before the visual signs of lameness appears

Random Forest 91 1
K-Nearest Neighbors (K-NN) 87 3
Support Vector Machine (SVM) 61.5 2

K-NN: It has a number of parameters that should be fine-tuned in order to achieve the
desired results. Among these, we evaluated different K-values (2-5), which is the number
of neighbours to consider while assigning the nearest class. We set the distance metric to
minkowski. The highest accuracy was obtained with k = 2 although this was over fitting
the data. The accuracy of the developed system has been presented in table 3.16. Optimal
results were obtained at k = 4 which gave an accuracy of 87% with 3 days before the visual
signs could be seen as presented in table 3.17.

Early lameness detection assessment: Figure 3.33 shows two cases where the model
was able to detect a cow being lame 3 days before its visual clues were available to the
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(a) The highlighted red box shows the number of days the cow was lame but undetected and to only
be visually seen on 07/11/2017 (highlighted and arrowed blue-box), and the beginning of red dots
and dotted line shows that model detected it three days before on 04/11/2017.
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(b) The highlighted red box shows the number of days the cow was lame but undetected and to only
be visually seen on 20/10/2017 (highlighted and arrowed blue-box), and the beginning of red dots
and dotted line shows that model detected it three days before on 17/10/2017.

Fig. 3.33 Early detection of lameness by the developed model and late observation by
farmer.
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Table 3.17 Different K-values and accuracy of the developed system.

K-value Accuracy (in %)
Number of days before the visual

signs of lameness are captured
2 91 1
3 89 2
4 87 3
5 81 1

farmer. The highlighted blue box shows the day when it was visually detected by the
farmer or animal expert, and the start of the red points shows when the model detected the
cow to be lame, and highlighted box shows the number of days for which the visual sign
did not appear to be seen by the farmer or animal expert.

3.8 Summary and Conclusions

We have outlined the key design principles used in the development of our IoT solution
aimed at early detection of lameness in dairy cattle. We present the critical decisions made
and methodologies used in designing an end-to-end software system in fog-enabled IoT
scenarios for our use-case. The key takeaways are as below:

• A distributed modular application architecture using microservices would be apt for
design and development of IoT applications in fog computing environments.

• The results suggest that the proposed application design and development approach
leveraging the fog computing paradigm is scalable, is able to efficiently utilize the
computing resources available in the infrastructure, and also increases the fault
tolerance and system-resilience of the overall system.

• A hybrid machine learning model such as one presented — activity based clus-
tering combined with classification model — returns accurate results in detection
of anomalies in animal behaviour for early detection of lameness as opposed to
one-size-fits-all approach.

• Results clearly suggest that once monitored, the behavioural changes when animals
are ill can be mapped to specific illnesses such as lameness in our use-case scenario.

• Many of these behavioural changes that occur before visual onset are extremely
subtle, and difficult to detect in practice without technology.
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• A careful coordination of computational resources along the technology path from
sensor to cloud continuum is vital to the performance of such a system. Edge, fog
and cloud resources each bring their unique input towards the functionality and
performance of the overall IoT application system developed.

We believe that the insights from this study can contribute to the behavioural analysis
of animals, and can help detect subtle changes in livestock behaviour before any clinical
symptoms of disease are visible. This will lead to improved insights in animal behavioural
analysis, and better practices for farmers. The wearable technology for livestock in
conjunction with advanced machine learning methods has the potential for development of
robust early warning systems to detect disease development early-on.
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Chapter 4

A Framework for Efficient Placement of
Components of an IoT Application in
the Network Infrastructure Leveraging
the Fog Computing Paradigm

4.1 Introduction

Since IoT aims to bring every object online, it constantly generates a huge amount of data
that can overwhelm the storage systems and cause a significant surge in the application
reaction time. With IoT into play, the near future will involve billions of interconnected
IoT devices emitting large volumes of data streams for processing, leading to a momentous
shift in the way applications are developed and deployed. Now, with this evolving scenario,
there arises the need for a coherent approach of deploying these applications for an efficient
utilization of the network infrastructure. While an application consists of various modules
that run together with active inter-dependencies; traditionally, all these modules run on
the cloud hosted in global data centres. With fog computing into picture, computation is
dynamically distributed across the fog and cloud layer, and the modules of an application
can thus be deployed closer to the source on devices in the fog layer.

With the increasing IoT deployments and the volume of impact increasing exponentially,
a coherent approach of deploying these applications is critical for an efficient utilization of
the network infrastructure. When deciding on where to deploy the application components
over the continuum from things-to-cloud, application administrators need to find the best
deployment, satisfying all the application requirements over the available computing
resources. This chapter presents a Module Mapping algorithm for efficient utilization of
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resources in the network infrastructure by efficiently deploying application modules onto
fog and cloud resources for IoT applications.

This chapter is structured as follows: §4.2 presents the system architecture, mathe-
matical model of the system, and formulates the problem, §4.3 presents the proposed
approach and the methodology behind the development of the approach, §4.4 presents the
experimentation, evaluation and validation of the proposed approach, and discussion on the
experimental results, and §4.5 summarizes the work and contains the concluding remarks.

The work presented in this chapter has been disseminated in the following publications:
P3 - IM 2017 [12], P2 - IEEE/ACM SEC 2016 [11], P1 - CF Procedia 2016 [10].

4.2 System Architecture and Problem Formulation

This chapter addresses second research question (RQ2). It addresses:

How to efficiently deploy components of a multi-component IoT application onto
computing resources available in the infrastructure leveraging the fog computing

paradigm?

The remainder of this section presents the system architecture, simulation platform
used, application modeled, and mathematical model of the problem being addressed here
by the proposed framework.

4.2.1 System Architecture

A generic three tier IoT-fog-cloud architecture illustrating the distributed data processing
has been shown in Fig. 4.1. While the end devices come under the first tier, the fog and
the cloud layer comprise the second and the third tier respectively, together forming the
three tier architecture. Each tier can be mapped to support a specific component of the
application, which is further elaborated and worked upon in this section.

In the architecture, any element in the network that is capable of hosting application
module(s) is considered a fog device. As discussed earlier in 2.4.1 and depending on
the use-case, it may be some other common device, such as small server, or routers,
access-points, or gateway etc. Amongst the available networking devices in the network
infrastructure, the devices of prime consideration to us here are the gateways that connect
the devices in the bottom most layer (Tier 1/IoT layer) to the Internet. While the fog layer
can be conceptualized as that comprising of all the aforementioned devices, in practicality,
the gateways have emerged as the key constituents of the fog, for the reason that they
support/enable protocol conversion across different network segments, and are thus least
conservative about additional requirements and constraints. Thus, the gateways that are
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Fig. 4.1 Three tier IoT-fog-Cloud architecture illustrating distributed data processing [12].

also additionally working as fog devices in the network are often termed as Smart Gateways
and are present in Tier 2 of the architecture as illustrated in Fig. 4.1

Each network node has a specific computing capability, which in turn forms (and
contributes to) the resources available in that layer. While the devices in the fog layer have
a defined and limited computing capability owing to a hardware constraint of the resources
each device has, the cloud, on the other hand has corresponding resources realized in
terms of multiple virtual machines (VMs), each configurable to a specific configuration
which tells the computing capability of that VM. This is owing to the fact that the overall
computational/resource capacity of the cloud, as a whole, is tremendously more than that
of a typical device available in fog layer, so much that in comparison to the fog devices,
the cloud is visualized as being limitless. Thus, the complete set of resources comprise of
the devices at the fog, and VMs at the cloud.

4.2.2 Simulation Platform Used and Application Modelled

Simulation Platform: The simulation platform used in prototyping the IoT application,
fog computing environment, and algorithm development is iFogSim [62], which is a
toolkit developed by Gupta et. al [62] over the CloudSim [141] framework for modeling
and simulating IoT, edge and fog computing environments. It uses the Distributed Data
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Flow(DDF) model and Directed Acyclic Graph (DAG) representation while simulating
any application scenario in fog computing environment.

Application Modelled: The application modelled is motivated from realistic scenarios
like health care [131] and latency-critical gaming [130]. The application was formulated,
modeled and deployed in iFogSim. The application works on the Sense-Process-Actuate
model, where the information collected by sensors is emitted as data streams, which is
processed and acted upon by application modules running on fog and cloud layer, and
the resultant commands (or outputs) are sent to the actuators. The other model, which
is Stream Processing model, is where a network of application modules running on fog
and cloud layer continuously process data streams emitted from sensors; and information
mined (or aggregated) from the incoming streams is stored in cloud hosted in a data
centre for large-scale, long-term and complex analytics. The Stream Processing model
is considered as a subcategory of the Sense-Process-Actuate model. These models can,
however, be extended to cater use-cases other than IoT applications as well.

IoT_Sensor

module_1

module_2

module_3

Display

TT_2

TT_8

TT_3

TT_9

ACTUATOR_B

IoT_Sensor

module_6

module_4

module_5

TT_4

TT_7

TT_5

TT_6

TT_10
<<periodic 100 ms>>

TT_11
<<periodic 100 ms>>

<1000, 4096, 500>

<500, 1024, 250>

<2000, 2048, 1000>

<1500, 1024, 300>

<3000, 6144, 2000>

<1500, 8192, 5000> 

*Module Requirements =
 < CPU (MIPS), RAM (MB), BANDWIDTH (Mbps) >

ACTUATOR_A

Fig. 4.2 Directed Acyclic Graph (DAG) of the application deployed, with relevant tuples
indicating the values used for simulation of the algorithm. The number of modules as
well as sensors/actuators are synchronous to the needs of a typical IoT application, and
may vary as per the use case and application size; the modules can be conveniently linked
to various logics to convey the various stages of application processing, as are the ones
conveyed by the color pair encoding here [12].

As shown in Fig. 4.2, the DAG of the application modeled in the simulation consists of
six application modules— module_1 to module_6. IoT_Sensor represents an IoT sensor,
which emits tuples of type IoT_Sensor to module_1. Display is an actuator, which is
designed to respond to changes in the environment captured by the sensor. Tuples form
the fundamental unit of communication between entities in the IoT Ecosystem, and are
indicated over the edges in the DAG. The colored dots signify tuple mapping, as in, for
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example, an incoming tuple of type TT_3 on module_3 will result in an output tuple of
type TT_4.

Note that module_1 of the application needs to be placed (and run) on the end devices
(Device-X-X in topology in Fig. 4.3, and IoT_Sensor in Fig. 4.2) to ensure that the user
base, or the source application modules, are co-located with fog devices in the fog layer.
The actionable (sensor and actuator) are connected to these devices running module_1 on
them.

4.2.3 Mathematical Model

Infrastructure: The computational capacity (or resource capacity) of a network node
can be represented as a set of three narrowed-down attributes, namely CPU, RAM and
Bandwidth. However, it is to be noted that the proposed algorithm is scalable even on
adding more number of attributes for a node, and more of them (like storage capacity) can
be included if need be. Thus, if ni represents a network node i in the infrastructure, the
capacity of the said node is represented as:

Cap(ni) = <CPUi,RAMi,Bandwidthi > (4.1)

The set of all computing resources available with in the infrastructure is given by N.

N = {ni} (4.2)

N can be divided into two mutually exclusive subsets— NF and NC as below:

NF = Set o f network nodes in f og layer (4.3)

NC = Set o f network nodes in cloud layer (4.4)

NF ∪NC = N (4.5)

NF ∩NC = φ (4.6)

Application Design and Architecture: The applications developed for deployment in
this chapter are based on the DDF model [87]. Distributed computing environment
calls for distributed components, which would give better results with multi-component
applications, for which DDF is one of the best approaches available.

As shown in Fig. 4.2, the application is modeled as a DAG, with various application
modules constituting the data processing elements. In context of analytics applications
such as stream analytics or event based analytics, these modules are usually termed as
application operators. In the DAG so formed, the vertices represent the various modules
of the application, and the edges represent the data dependencies between them. These
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modules perform processing on the incoming data, and the edges connect the output of
one module to the input of another, representing the flow of data between the modules.

In mathematical notation, the DAG G of an application consists of vertices (V ) and
edges (E) and is written as follows:

G = ⟨V,E⟩ (4.7)

Each module of the application has a requirement represented as a set of three attributes,
namely CPU, RAM and Bandwidth. The proposed algorithm, though, is similarly scalable
even on adding more number of attributes as requirements, and thus more of them can be
included if need be. Thus, if vi represents an application module i in the application, the
requirement of the said module is represented as:

Req(vi) = <CPUi,RAMi,Bandwidthi > (4.8)

The set of all modules of the application is devoted by V .

V = {vi} (4.9)

An edge originating from an application module vi to another application module is
denoted by ei, and indicates data flow in an application. The set of all edges in the DAG of
an application is denoted by E.

E = {ei | ei = ⟨vi,v j⟩} ∀vi,v j ∈V (4.10)

There are two types of edges possible in a DAG— periodic and event based. Tuples
on a periodic edge are emitted regularly at the specified interval; whereas in event based,
a tuple is sent out if the source module of the edge receives an incoming tuple, and the
defined selectivity model (fractional selectivity, in our case) allows its emission.

A Module Mapping function M ,

M : V → N (4.11)

indicates the network node on which the application module is placed during the application
deployment, such that it meets the following:

∀(vi,ni) ∈ M
=⇒ Req(vi)≤Cap(ni)

∀vi∈V
∀ni∈N

(4.12)

While traditionally all the application modules were placed on the cloud, this brought
in a tremendous network cost, in addition to a high application response. With the proposed
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Fog-Cloud Placement approach, these application modules can be distributed across
the fog and the cloud resources based on meeting the module requirements and network
capacity constraints as shown in the above equation (4.12).

We further proposed to identify the DAG of the application as having static and dynamic
characteristics as follows:

• Static Characteristics: These are those which we expect developers to provide, and
remain invariant over time for an application— such as data (tuple) emission rate of
sensors, data processing rate (selectivity model) of application modules, etc.

• Dynamic Characteristics: These are those which come into play once the application
has been deployed on the network infrastructure. These are dynamic run time
characteristics of fog and cloud resources (which are network nodes in the IoT
ecosystem)— such as their network connectivity.

In the present study as shown in the chapter, the static characteristics of the application
DAG are presented/studied, the results from which can further be translated to address
the dynamic characteristics. Further, addressing dynamic characteristics of DAG has been
included in the scope of future work discussed in the last chapter 6 of the dissertation.

4.3 Proposed Fog-Cloud Placement Approach and Algo-
rithm Design

To enable resource aware placement of application modules onto the computing resources,
we propose three integrated algorithms that have been presented in detail in this section.

4.3.1 Working of Algorithm

Algorithm 4.1 is the ModuleMapping algorithm, which enables fog-cloud placement. It
returns the efficient mapping of modules of an application onto a network infrastructure.
Taking the set of network nodes N and set of application modules V as input, it first sorts
the network nodes and modules in ascending order as per their capacity and requirement
respectively. A key-value pair corresponding to network node as key and application
module as value is then created.

The control loop of the algorithm (for loop/line5) runs for all the modules of the
application that need to be placed, and calls the function LOWERBOUND (Algorithm 4.2)
in each iteration, which searches for the eligible network node meeting the requirement
of the module (constraint specified in equation 4.12). The requirement check is ensured
by COMPARE function (Algorithm 4.3), and when an eligible network node is found, the
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Algorithm 4.1 ModuleMapping Algorithm: Fog-Cloud Placement
Input : Set of Network nodes N and Application modules V
Output : Mapping of modules on to network nodes

1: function MODULEMAP(NetworkNode nodes[], AppModule modules[])
2: Sort(nodes[]),Sort(modules[]); ▷ in ascending order
3: Map < NetworkNode,AppModule[ ]> moduleMap; ▷ Creates Key-Value Pair

with Network Node as Key and AppModule as Value
4: int low = 0, high = nodes.size-1, start;
5: for start =0 to modules.size do
6: int i=LOWERBOUND(nodes[],modules[start],low,high);
7: if (i != -1) then
8: moduleMap.insert(nodes[i],modules[start]);
9: Cap(node[i]) = Cap(node[i]) - Req(modules[start]);

10: Sort(nodes[]); ▷ in ascending order
11: low = i + 1;
12: else
13: moduleMap.insert(nodes[nodes.size-1],modules[start]);
14: end if
15: end for
16: return (moduleMap);
17: end function

corresponding key-value pair entry is added into the result (moduleMap). This way it
iterates from fog nodes to cloud nodes, first placing the modules on eligible nodes in fog
layer, and once the nodes in fog layer are exhausted or if there is no eligible node in the
fog layer, only then it places the corresponding module on cloud.

4.3.2 Time Complexity Analysis

The sorting of the set of network nodes and application modules takes O(|N| ∗ log |N|)
and O(|V | ∗ log |V |) time respectively. The LOWERBOUND function is called for all the
modules of the application, and uses the principle of binary search as its basis for searching
for the eligible network node for module placement, thus giving us the time complexity
of O(|V | ∗ log |N|). An additional sorting is required after updating the network node
selected for the placement of module (line 10, Algorithm 4.1) which gives us another
time complexity of O(|N| ∗ log |N|). Thus the overall time complexity of the solution is
O((|N|+ |V |+ |N| ∗ |V |)∗ log |N|+ |V | ∗ log |V |).

If |N| is much greater than |V |, then the upper bound becomes |N|*|V | and the com-
plexity becomes O(|N| ∗ |V | ∗ log |N|).

Usually, the brute force solution (i.e., searching through all possible combinations (2N)
and returning the best one) to such problems tends to be NP-hard [186], [187], and thus
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Algorithm 4.2 LowerBound Algorithm - Algorithm used for Search
1: function LOWERBOUND(NetworkNode nodes[], AppModule module, int low, int

high)

2: int length = nodes.size, mid =
(low+high)

2
;

3: while (True) do
4: NetworkNode x = node[mid];
5: if COMPARE(x, module) == 1 then
6: high = mid-1;
7: if (high<low) then return mid;
8: end if
9: else

10: low = mid + 1;
11: if (low>high) then
12: return((mid<length-1)?mid+1:-1);
13: end if
14: end if
15: mid =

(low+high)
2

;
16: end while
17: end function

Algorithm 4.3 Compare Network Node and Application Module
1: function COMPARE(NetworkNode a, AppModule b)
2: if

(
a.CPU≥ b.CPU && a.RAM≥b.RAM && a.Bandwidth≥b.Bandwidth

)
then

return 1;
3: end if
4: return -1;
5: end function

we present the heuristic approach to the problem, which contributes to a logarithmic time
complexity.

The problem of finding solution mappings between application components in G
and available computing resources in N, and minimizing/maximizing objective function
if any is NP-hard [186]. The perfect solution to such problems require evaluating all
possible solutions in worst case scenario i.e., assume the application is made up of m
components and the total number of computational resources in the infrastructure are n,
then nm different candidate solutions are possible. This kind of complexity can be managed
by using heuristics that allow to find sub-optimal solutions with low complexity, such as
the one presented by the proposed approach.
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4.4 Experimental Evaluation and Validation

To test the proposed algorithm, the application was run on network topologies supplied
by us as JSON (JavaScript Object Notation) file(s). The scenario has been varied over
three network topologies with different workloads respectively, the graphical view of one
of which as generated by iFogSim is shown in Fig. 4.3. The experiment was iterated on
topologies with 2, 4 and 6 fog gateways, each having two devices per fog gateway. The
experimental network configurations used in iFogSim can be found in table 4.1, 4.2 and
4.3.

Fig. 4.3 One of the network topologies used for deployment iteration. The simulation has
been varied over three such topologies with varied workloads, but essentially the same
standardized network structure [12].

4.4.1 Experimental Setup, Configurations and Simulation

Table 4.1 Experimental network configurations used in iFogSim.

Between Latency (ms)
Cloud ISP_Gateway 200

ISP_Gateway Fog-X-Gateway 25
Fog-X-Gateway Device-X-X 5

Device-X-X Sensor 2
Device-X-X Actuator 3

The proposed fog-cloud placement approach (ModuleMapping algorithm) was com-
pared with the traditional cloud-based placement approach in terms of application latency
(response time), network usage and energy consumption; various metrics reported by
iFogSim for the modeled application using both the placement approaches were collected.
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Table 4.2 Experimental network configurations used in iFogSim.

Devices in Network Upstream Downstream RAM CPU
Infrastructure Capacity (Mbps) Capacity (Mbps) (MB) (MIPS)

Cloud 1000 10000 40960 40000

ISP_Gateway 10000 10000 8192 10000

Fog-X-Gateway 10000 10000 6144 8000

Device-X-X 100 250 2048 4000

Table 4.3 Experimental network configurations used in iFogSim.

Tuple Type Tuple CPU Length (MIPS) Network Length
IoT_ Sensor 3000 500

TT_2, TT_3, TT_4, TT_5 6000 500

TT_6, TT_7, TT_8, TT_9 1000 500

TT_10, TT_11 1500 1000

ACTUATOR (A/B) 2000 500

#The average tuple emission rate of a sensor is 10 milliseconds,

specified by a deterministic distribution.

The results of the simulation (Fig. 4.4, 4.5, 4.6) demonstrate an immensely favorable
impact on network usage, application latency (response time) and energy consumption in
the proposed placement approach on all 3 network topologies used.

4.4.2 Results and Analysis

In this section we present the analysis of the results obtained by using the proposed
approach as shown in Fig. 4.4, 4.5, 4.6.

• Network Usage: As shown in Fig. 4.4, there was noticed a staggering decrease in the
network usage with the proposed fog-cloud placement approach. The reason behind this
is that as now the application modules are being placed closer to the source of data, and
hence the communication being done in the network decreases as visible from the plot in
Fig. 4.4. While in the traditional cloud-centric approach, all the application modules are
placed on the cloud, and all the tuples have to be transmitted across the things-to-cloud
spectrum to be processed by the application, and hence more network-usage compared to
the proposed fog-cloud placement approach.

108



4.4 Experimental Evaluation and Validation

Config-1 (2FG|Workload- 4 Devices) Config-2 (4FG|Workload- 8 Devices) Config-3 (6FG|Workload- 12 Devices)
 

 Network Topology Configurations (Number of Fog-Gateways|Corresponding Workload)

0

100000

200000

300000

400000

500000

600000

700000

800000

Ne
tw

or
k 

Us
ag

e 
(in

 K
ilo

By
te

s)

Network Usage
Fog-Cloud Placement
Traditional-Cloud Placement

Fig. 4.4 Staggering decrease in network usage via proposed approach.
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Fig. 4.5 Huge effect of efficient module mapping on end-to-end latency.
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• Application Latency: There was also a huge effect of efficient module mapping on
end-to-end latency, with highly favourable results towards fog-cloud placement as per the
designated approach as shown in Fig. 4.5.

With the proposed fog-cloud placement approach the application-modules are being placed
on fog and cloud resources both, instead of just being placed on cloud entirely. This leads
to an overall decrease in the response time of the application as visible from plot in Fig.
4.5.
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Fig. 4.6 Variation of energy consumption in both the placement approaches— Creating a
balance between energy consumption in the cloud (at cloud data centres) and in fog layer
(fog devices) by spreading computing across the network. The energy consumption in the
cloud data center decreases when application modules are placed on fog devices using the
proposed Fog-Cloud Placement approach compared to the Traditional-Cloud Placement
strategy.

• Energy Consumption: Fig. 4.6 shows the variation of energy consumption in both
the placement approaches, where we look towards creating a balance between energy
consumption in the cloud (at cloud data centres) and in fog layer (fog devices) by spread-
ing computing across the network via the proposed approach. By using the proposed
approach, the application modules are placed on the computing resources available along
the things-to-cloud continuum rather than being placed all together in the cloud. The
energy consumption in the cloud data center decreases when application modules are
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placed on fog devices using the proposed Fog-Cloud Placement approach compared to the
Traditional-Cloud Placement strategy as visible in Fig. 4.6 .

The key observations here are as follows:

• Energy consumed by devices in IoT layer (Tier-1) is less in fog-cloud placement ap-
proach as compared to traditional cloud placement approach. A possible explanation
for this can be that data tuples from devices are being processed just one hop away.
Since application modules are being placed on fog nodes via the proposed approach,
this leads to decrease in energy consumption of devices required for communication.
While on the other hand in the traditional cloud-centric approach, the data tuples still
have to be transmitted from the device to the other end of the infrastructure in cloud,
and results in more energy consumption in the transmission process.

• Energy consumed in fog layer (Tier-2) is more in fog-cloud placement approach as
compared to traditional cloud placement approach. The reason behind this is that in
the proposed approach the application modules placed on fog nodes lead to more
energy consumption with data tuples being processed there, while in the cloud-centric
approach the fog nodes just act as the usual gateways to send the received tuples to
cloud for processing without performing any computation on them, and thus less
consumption of energy.

• Energy consumed in cloud layer (Tier-3) is more in traditional cloud placement
approach compared to fog-cloud placement approach. In traditional cloud-centric
approach all the application modules are hosted completely in the cloud, and thus
all the computation happens entirely there. While with the proposed fog-cloud
placement approach, some modules are placed on fog nodes and thus comparatively
less energy consumption by cloud node in the proposed approach compared to the
traditional cloud-centric approach.

4.5 Summary and Conclusion

The aim of second research question (RQ2) was to build an application deployment strategy
for fog computing environments. We presented the benefits of having a fog enabled
application deployment strategy, which results into efficient utilization of computing
resources in the network infrastructure by means of efficiently deploying application
modules onto fog and cloud computing resources for IoT applications. This shows the
impact of the evolving computing paradigm towards solving the problem of latency in time
critical IoT applications, while also accounting for the pressure on the existing network
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resources owing to the exponentially increasing loads due to heavy IoT usage in daily life
across myriad sectors.

We outlined the key characteristics that impact the performance of IoT applications,
and have classified and kept into account the static part while increasing the network
efficiency and broadening the scope of such applications. The logarithmic complexity of
the proposed approach trumps the usual brute force solution to the deployment strategy
problem, thereby making a contribution in improving the decision making process of
deployment stage of IoT applications in fog computing environments.
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Chapter 5

Distributed Decomposed Data Analytics
in Fog enabled IoT Deployments

5.1 Introduction

The edge of the network plays a vital role in an IoT system, serving as an optimal site
to perform operation on data before transmitting it over the network. One of the prime
objectives is to generate useful information from the data in the IoT deployment. In the
existing approaches for data analytics in IoT, all data from an IoT deployment is collected
at a centralized location such as server(s) in data centre (i.e., cloud) and is then subjected
to the desired data analytics model to generate information. Data in these IoT deployments
moves from ‘things’ to cloud, and along this continuum passes through a number of
network devices such as routers, gateways, etc. Each of these devices can be a potential
candidate to host partial analytics capability to analyse the data, and further sending the
calculated partial results instead of sending the raw data to cloud.

Contrary to the cloud which can be thought of as resource rich, the fog devices are
resource constrained in nature whereby resource scaling (up/down and horizontal/vertical)
cannot be done dynamically. An additional deployment of a complete data analytics
computing module on the said resource might lead to full utilization of resources as the
workload or data input increases, and may also affect its fundamental network operation.
Hence, a careful placement of computing operations is sought for an efficient overall
system performance, and thus, the approach of decomposed computing units seems ideal
in an IoT environment with fog assistance. The intention here is to be able to learn a model
directly either entirely in the fog environment or in a fog-cloud assisted environment based
on local sensor data available to each fog node without sending all the raw data along the
infrastructure pipeline.
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For e.g., consider a case where the additional deployment of physical devices is not
possible, and we are required to predict temperature based on given readings of limited
environmental parameters such as humidity and air pressure for a large physical area. In
such a scenario, sending all the raw sensing data to cloud for analyzing, and sending
the result back to the user is neither feasible nor scalable [57]. This becomes even more
challenging with limited Internet connectivity and growing volume of data. In such
scenarios it is ideal to leverage fog computing architecture, where fog focuses on local
knowledge in different local areas, while cloud can have a global view of the environment
by combining all the information received from fog. These kinds of cases exists in industrial
systems, such as monitoring complex hydraulic systems [188] to be working in order and
to their desired capacity. Another related example can be to know the temperature of
different areas of a large stadium during an event to get actionable insights for regulating
air conditioning of those specific areas.

The contributions from this chapter have been summarized as follows:

• We present the fog based distributed data analytics solution for IoT deployments.

• The decomposition method used for distributing the analytics/intelligence in the
infrastructure is based on Statistical Query Model and Summation Form, which
makes it closed form in nature.

• To the best of our knowledge this is first attempt to decompose an analytics model
(in closed form) to make it run in distributed manner in a fog based setting.

• The solution and methodology is generic is nature and is applicable to a wide variety
of IoT based use case scenarios.

• The proposed approach has been applied to a real-world data set in a fog based
testbed, and metrics related to resource utilization and quality of analytics solution
have been presented.

The decomposition method used is not the contribution, but applying the decompo-
sition method to the analytics model to run in a distributed manner in fog enabled IoT
deployments is the contribution. What is novel is the decomposition made on a fog based
distributed setting.

The chapter has been further structured as follows: §5.2 outlines the mathematical
model of the system and the problem, and also presents the analytics model (multivariate
linear regression) used in the work, §5.3 presents the decomposition methodology, §5.4
presents the experimental setup and data sets used, §5.5 presents results and discussion,
§5.6 presents further discussion based on use-case, constraints and impact of changing
data processing frequency, and finally §5.7 presents the conclusion and future work.
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This work has been disseminated in the following publications P8 - IEEE Access 2019
[14], P6 - IEEE IoT Newsletter 2018 [13].

5.2 Mathematical Model of the System and Problem For-
mulation

The research question 3 (RQ3) is being addressed in this chapter, articulated as:

How to decompose data analytics computing programs to run between fog and
cloud?

The objective of this research question was to develop a methodology for designing
modular data analytics approach in IoT environments, while leveraging the fog computing
paradigm. This is towards decomposing the data analytics programs, followed by the
deployment of these decomposed units along the things-to-cloud continuum.

The remainder of this section gives the mathematical representation of the system
(5.2.1) and presents the analytics model (multivariate linear regression) used to validate
the approach (5.2.2).

5.2.1 Representation of System

We consider the network architecture with fog nodes forming a layer between IoT devices
and the cloud. A graphical representation of the same was shown earlier in Fig. 2.4. For
convenience, the same has been presented here as well in Fig. 5.1.

We examine scenarios where local IoT devices and the remote cloud services carry
out data sensing, collection and analytics. With fog layer in the middle of IoT devices
and cloud, the analytics computation can be distributed among fog nodes and can be
collectively solved by either fog nodes alone or in a combined manner by fog nodes and
cloud.

We consider a tree like network architecture in which an IoT device i is connected
with its unique fog node j, which is further connected to the cloud. We have sensing
devices that are transmitting their data to fog nodes, and they are sending their data towards
cloud or another central location. The tree topology is a hierarchy of nodes with single
root node at the highest level of hierarchy, which is connected to one or many nodes
in the level below. The communication, computing and storage capabilities in node(s)
increases as one moves from branches of the tree towards the root node. In this tree-like
topology, the root represents cloud, intermediate nodes represent fog nodes and the leaf
nodes represent IoT devices. Data in IoT deployments moves from things to cloud, or in
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Fig. 5.1 Fog computing architecture representation as three tier IoT-fog-cloud architecture
with multi-tier fog in a standardized IoT reference architecture model [41], [10], [12].

terms of tree representation from branches of the tree to cloud via fog nodes, allowing data
to be processed closer to where its generated. The graphical representation of an end-to-end
tree like network architecture was presented earlier in Fig. 2.6. For convenience, the same
has been presented here as well in Fig. 5.2. Again, it should be noted that there can be
topologies inside each layer/level, but the main structure and overall abstract topology is
tree-like.

The neighbourhood of fog node j is denoted as N j which is the set of IoT devices
connected to it, and is written as N j = {n j} such that i ∈N j. The range of communication
of a fog node is defined in terms of its communication distance capability, i.e. any IoT
device that can communicate with the fog node within its range can become a part of the
fog node’s neighbourhood.

We consider a discrete time domain t ∈ T= {1,2, ...} such that an IoT device i at every
time instance t ∈ T, senses a d-dimensional vector xt ∈ Rd termed as sensed or context
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Cloud

Fog Node Fog Node Fog Node

IoT Devices 
(Sensors and Actuators) 

IoT Devices 
(Sensors and Actuators) 

IoT Devices 
(Sensors and Actuators) 

IoT Edge Network

Fig. 5.2 Tree Topology in Fog Enabled IoT Deployments [14].

vector1 containing contextual features/parameters for e.g. accelaration, g-force values,
temperature, humidity, feature counter etc. The IoT device i communicates with its fog
node j by sending sensed vectors at a a set frequency f . The transmission frequency f
of IoT devices depends on a number of factors such as sampling rate and can range from
seconds to minutes to hour(s) depending upon the use case. So at any time instance t ∈ T,
fog node j receives a set of sensed vectors from an IoT device, and overall sets of sensed
vectors from its neighbourhood N j. A set frequency (or to say time-window or time-frame)
is defined on fog node to perform the computing operation over data received till that point.

A frequency is also set on the IoT devices for sensing and transmission. Usually, in
sensing (IoT) devices, a sliding window is specified using certain parameters that keep on
appending the new sensed vectors and discarding the older ones based on their appearance
without having the specific need to save them in local storage. Still, it is dependent on the
IoT device(s) in use i.e., the sensing infrastructure, and varies from one to another.

5.2.2 Analytics Model - Multivariate Linear Regression

One of the most widely used and well-understood predictive analytics model is the multi-
variate linear regression [189], and thus we choose it as the analytics model in this work for
the desired fog specific decomposition. Given a data set D =

〈
xin

k ,y
out
k

〉m
k=1 with m training

examples, where xin
k ∈ Rd and yout

k ∈ R represents input-output pairs, the linear regression

1Note that any vector by defualt is assumed as column vector, the defualt convention is to write given
vector as column vector.
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estimates the current coefficient w ∈ Rd which interprets the dependency between xin
k and

yout
k :

w∗ = argmin
w∈Rd

m

∑
k=1

(
yout

k −wTxin
k

)2
(5.1)

The predicted output by the linear regression model is ŷout
k = wTxin

k ,k = {1,2...m}.
The Root Mean Square Error (RMSE) over q predictions is defined as:

ε =

√√√√(1
q

q

∑
k=1

(yout
k − ŷout

k )2

)
(5.2)

Linear regression is also referred as Ordinary Least Squares (OLS) and Linear Least
Squares (LLS). The methods to solve linear regression i.e., equation 5.1 are typically clas-
sified in two categories, Closed Form Solution or Direct Methods, and Iterative Methods.
The same has been illustrated in Fig. 5.3.

Methods to solve the Linear
Regression/ Orindanry Least Square/

Linear Least Square 

Closed Form Solution or Direct
Methods based on Matrix

Representation
(These are based on the factorization
of matrix of input data into invertible

matrices )

Iterative Methods
(These methods solve the system by
generating a sequence of improving

approximate solutions for the problem )

Solve via Q-R Factorization

Solve Via Singular Value
Decomposition 

Matrix Representation based
Closed Form Solution i.e.

using Equation 5.3
(Sometimes its also referred
to as Analytic Solution using

Matrix Inverse) 

Gradient Descent or
Stochastic Gradient Descent

based solution

Fig. 5.3 Brief categorical representation of methods available to solve the problem of linear
regression [14].

Each of these methods are equally used in different domains of study depending on
number of factors including the type of problem being solved using linear regression, and
the objective at hand such reducing time to get the solution, to get numerical stability
[190] in the solution etc. The main difference in the available approaches is that each of
them uses a different numerical method to solve the problem. There is extensive research
in numeric linear algebra which look at and aim for parallelizing, and to certain extent
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distributing these numerical operations [190], [191] with each having its own set objective.
What is novel here is the utilization of fog computing paradigm to achieve that, and trying
to get an efficient solution for the upcoming IoT and fog based applications and use case
scenarios.

Objective: Our objective is to have the fog specific decomposition of the linear regres-
sion and focus on the arising trade-offs in latency (computing and communication), quality
(analytical result obtained without decomposition and with decomposition) as the metrics
for evaluation. We choose matrix representation based closed form solution for linear
regression in this work and present its fog specific decomposition in the next section. The
major difference and reason behind choosing closed form solution is that Gradient Descent
and Stochastic Gradient Descent are iterative in nature and their convergence towards
solution is time consuming, whereas matrix representation based closed form solution
gives us a way for solving the least squares problem fit to the parameter without needing
to use an iterative algorithm. Other reasons of preferring direct methods over iterative
include their robustness and predictable behaviour in terms of resources required for their
execution [192], [193]. The selection of the method depends on the context of the problem
being solved [153]. So given m training examples : (xin

1 ,y
out
1 ),(xin

2 ,y
out
2 ), ........,(xin

m ,y
out
m ),

we write a matrix X ∈ Rm×n with xin
1 ,x

in
2 , ......,x

in
m as rows (each being a vector of dimen-

sion n), and column vector y ∈ Rm×1,y = [yout
1 ,yout

2 , .....,yout
m ]m×1 as the targeted value

corresponding to each row, then the solution for parameter w is:

w∗ = (XTX)−1XTy (5.3)

5.3 Decomposing Data Analytics Model

In this section we present the decomposition method for fog enabled IoT systems. We
present the theoretical fundamentals that are used in this work for the decomposition of
the multivariate linear regression model. The following mathematical notation is used in
the sub-section 5.3.1 below:

• Data set D =
〈
xin

l ,y
out
l

〉m
l=1

• X is input to the learning model — X = ⟨xin
l ⟩

m
l=1

• Y is a function of X that we want to learn — Y = F(x) = ⟨yout
l ⟩m

l=1

5.3.1 Statistical Query Model and Summation Form

. The Statistical Query Model [194], [195] is often presented as a restriction on the Valiant
model [196]. In Valiant model, the learning algorithm uses randomly drawn training

119



5.3 Decomposing Data Analytics Model

example ⟨xin
l ,y

out
l ⟩ to learn the target function f where as in Statistical Query model the

learning algorithm uses some aggregates over the examples and not the individual examples.
Given a function f (x,y) over instances (data points x and labels y), the statistical computing
operation returns an estimate of the expectation of f (x,y)(averaged over training/test
distribution). Any learning model/algorithm that calculates sufficient statistics or gradients
fits this model, and since these calculations may be batched, they are expressible as a sum
over data points [162]. The class of such models/algorithms is large,2 [162] for example
Linear Regression, Naive Bayes, Logistic Regression, Support Vector Machine (SVM) are
to name few among-st many others.

Authors in [162] show that any algorithm that fits the Statistical Query Model may be
written in a certain “summation form”. This form does not change the underlying algorithm
and so is not an approximations, but is instead an exact implementation. They show that
the summation form can be expressed in a map-reduce framework and the technique can
achieve a linear speed up with the number of cores on a multicore machine. Their approach
is a novel contribution to achieve parallelization for a large class of machine learning
(ML) methods on a multicore machine. Their main objective was to develop a general and
exact technique for parallel programming of a large class of ML algorithms for multicore
processors.

The authors show that when an algorithm does sum over data then its computation can
be distributed over multiple cores by dividing the data set into as many pieces as there are
cores, give each core its share of data to sum the equations over, and aggregate the results
at the end. They call this form of the algorithm as the “summation form”. We use and
extend their technique for the fog specific decomposition in our work to achieve distributed
data analytics in fog enabled IoT deployments.

5.3.2 Summation Form of Linear Regression

In this section we present that how to put the algorithm into “summation form” as worked
by authors in [162]. The solution for the parameter w as shown in equation 5.3 is:

w∗ = (XTX)−1XTy (5.4)

To put the above computation into summation form, it is reformulated into a two phase
algorithm where first sufficient statistics are computed by summing over the data, and

2Although we present the fog specific decomposition only for Linear Regression, but in the same manner
the methodology can be extended and modified for decomposition of other predictive analytics models as
well.
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those statistics are aggregated to get and solve:

w∗ = A−1b (5.5)

Where A = XTX and b = XTy, and is computed as follows:

A =
m

∑
α=1

(
xin

α (x
in
α )

T) and b =
m

∑
α=1

(xin
α yout

α )

m is the total number of training examples in the dataset. The computation of A and b
can now be divided into equal size pieces and distributed amongst the cores as presented by
authors [162] to achieve parallelization for ML programs on multicore machines. In terms
of their proposed Map-reduce framework for ML the above computation is divided among
mappers. As in this case, one set of mappers is used to compute ∑subgroup

(
xin

α (xin
α )

T) and
another set to compute ∑subgroup(xin

α yout
α ). A set of reducers then respectively sum up the

partial values for A and b, and finally computes the solution w∗ = A−1b (i.e. equation 5.5).
In our work instead of distributing the computing operations over cores, the computing

operation of summation is put on each fog node in the infrastructure. So each of the
fog node performs the computing operation of summing over the collected data and
then sending the summarized outputs to either fog node or cloud (depending on the
implementation and use-case) rather than sending raw data over the network.

In many industrial settings and IoT deployments, the data is collected and stored in
a decentralized manner. When the data generation/ storage is itself distributed, then it
appears more desirable to also process/analyse it in a distributed fashion to avoid the
bottleneck of data transfer to the centralized cloud.

The pseudo code of the implementation discussed in this section and as used in the
experiments has been presented in Algorithm 5.1 and Algorithm 5.2. Algorithm 5.1
represents the linear regression component running on fog nodes and Algorithm 5.2
represents the component running in cloud for the fog based distributed analytics approach.
In cloud centric approach, both Algorithm 5.1 and 5.2 run on the cloud as the whole
processing happens there and fog node acts as normal gateways without the analytics
component running on them.

5.4 Experimental Setup, Data-sets and Validation

The experiment was performed on the OpenStack VM (Virtual Machine) instances. The
setup consists of a total of 5 VMs as shown in Fig. 5.4. The configuration details of the
VMs are presented in table 5.1. All VMs have Ubuntu 18.04.2 LTS as their operating
system and Intel Xeon processors (@2.60 GHz).
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Algorithm 5.1 FLRC (Fog Linear Regression Component) - Decomposed Computing
Program Running on each Fog Node VM
Initialize : At = 0, bt [ ] = 0
▷ At will be a real value and bt will be a vector with same dimension as [xin

α ]t . At and bt
will contain the partial calculated values after the execution of the program.
Input : Xt [ ] = [xin

α ]t , Yt [ ] = [yout
α ]t

▷ [xin
α ]t and [yout

α ]t represent the data received in set processing frequency t
Output : Processed outputs calculated in the set processing frequency

1: function FLRC( Xt [ ], Yt [ ])
2: for index = 0 to (size of Xt [ ]) - 1 do
3: At + = DOTPRODUCT (Xt [index], TRANSPOSE (Xt [index]))
4: bt [ ] + = Xt [index] * Yt[index]
5: index + = 1
6: end for
7: return (At, bt [ ])
8: end function

Algorithm 5.2 CLRC (Cloud Linear Regression Component) - Program Running on Cloud
to combine the partial results obtained from Fog Nodes
Initialize : A = 0, b [ ] = 0, w∗ [ ] = 0
Input : Processed outputs obtained from Fog Nodes i.e. Different At’s and bt’s [] received
during the whole duration of the experiment
Output : Regression Coefficients i.e. Linear Regression Model in the Distributed Ap-
proach

1: function CLRC(At’s , bt’s [])
2: A = SUM of all At’s received
3: b [ ] = SUM of all bt’s received

4: w∗ [ ] =
b
A

5: return (w∗ [ ])
6: end function

Table 5.1 Experimental Configurations

Use and type of VM VCPUs
RAM

(in GB)

DISK

(in GB)
Number of VMs

VM used for streaming data 2 4 10 1

VMs acting as Fog Nodes 4 8 20 3

VM acting as Cloud 8 16 30 1

The configuration of VMs acting as fog nodes were kept inline to the commercially
available IoT Gateways by Dell and Intel [197], [198]. The computing capacity of the VMs
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Fig. 5.4 Experimental setup deployed on OpenStack.

increases as we move up in the hierarchy. We used real-world dataset from UCI repository
[199] in our experiments to evaluate the performance of the proposed mechanism. The
dataset [200] contains 9358 instances of hourly averaged responses of chemical compounds
and environmental parameters from an air quality sensor. In the dataset, the parameters
used to measure the air pollution of a specific area include — CO (ground truth values),
PT08.S1 (CO), NMHC (Non Metanic HydroCarbons, ground truth values), Benzene
(C6H6, ground truth values), PT08.S2 (NMHC), NOx (ground truth values), PT08.S3
(NOx), NO2 (ground truth values), PT08.S4 (NO2), PT08.S5 (O3), temperature, relative
humidity, absolute humidity. These parameters are used to measure the air pollution of a
specific area. It consists of a total of 13 features out of which 5 represent the ground truth
values for the same type. The authors in [200] have used this dataset for benzene estimation
in an urban environment pollution scenario. We also use this dataset for benzene estimation
in our linear regression task. We remove the ground truth values from the dataset and thus
remain with 8 features as input (xin

i ) to the regression task with Benzene (C6H6, ground
truth values) as the targeted variable yout

i .
The data is column-standardized (mean centering and scaling) and normalized i.e. each

vector xin
i is mapped to xin

i −µ

σ
with mean value µ and variance σ2, and scaled in [0,1].

The 8 features correspond to 8 sensors in the real-word setting. The data split is
made as 70-30 i.e. 70% (approximately 6540 instances) data is used for model training
and 30% (approximately 2818 instances) is used for testing. We then randomly divide
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the train data into three equal parts each containing approximately 2180 instances and
each part is streamed on row by row basis to corresponding VM acting as fog node
gateway. This corresponds to a real-world setup where a group of 8 sensors is present in 3
different locations (so 24 sensors in all) which are streaming their sensed values to their
corresponding gateways. The graphical representation of such an equivalent real-world
setup is as shown in Fig. 5.5
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Fig. 5.5 Real-world equivalent representation of the experimental setup deployed on
OpenStack [14].

We selected MQTT [165] as the streaming protocoal in our setup. The MQTT ar-
chitecture comprises of two components, namely MQTT clients (such as publishers and
subscribers) and MQTT broker (for mediating messages between publishers and sub-
scribers). In our setup these components are as follows:

• MQTT Publisher: Script running on streaming VM acts as the MQTT publisher
client. It streams the data on row by row basis every second (i.e 1 row per second) to
each of three VMs acting as fog node gateway.

• MQTT Broker: The VMs acting as fog node gateway act as broker between VM
acting as cloud and VM streaming data as sensor. The VMs acting as fog node
gateway subscribe to the streaming VM acting as publisher.

• MQTT Subscriber: Another script running on VM acting as cloud subscribes to
the VMs acting as fog node gateways.
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The processing frequency for data received at fog node VMs (i.e. MQTT broker) was
set to 5 seconds. We used Paho [201] as MQTT client library and Mosquitto [202] as
MQTT broker library in our implementation. The VMs acting as fog node gateway receive
data, performs the computing operation as described earlier and presented in Algorithm
4.1, and sends the output to the VM acting as cloud.

The experiment was performed in two scenarios, one where the VMs acting fog node
gateways perform the computing operation of calculating subgroups of A and b as per
Algorithm 5.1, and send the processed output to the cloud VM. Second scenario is the
traditional centralized setup where fog gateway VMs receive the streaming data and
forward it as is to the cloud, and the whole data analytics operation takes place in the cloud
VM. The results from the first scenario have been labelled as Distributed Approach and
from second scenario as Cloud Centric Approach.

5.5 Results and Discussion

The system utilization metrics such as CPU, memory and bandwidth utilization were noted
in both the scenarios and have been presented in this section. Along with that, metrics to
measure the quality of analytics solution in both scenarios were evaluated and have also
been presented here. The centralized solution acts as a comparative measure against the
distributed approach.

The following notations have been used in this section:

• Fog Layer: Average value of metrics obtained from the 3 VMs acting as fog nodes

• Cloud Layer: VM acting as Cloud

The experiment runs for approximately around 35 minutes. We used Python Resmon [203]
and Glances [204] to measure the resource utilization metrics of VMs in the experiment.

5.5.1 Accuracy and Distribution Plots

The Linear Regression model generated in both the approaches was tested on the same test
data, and results of the same have been presented in table 5.2. The values presented for
both RMSE (Root Mean Square Error) and variance score/accuracy are up-to 4 significant
digits after the decimal.

The lower the RMSE the better the model. The results suggest that both the approaches
generate the same model, as the RMSE and variance score values obtained are exactly the
same. So distributed approach can be used to obtain the same results as one would have
obtained from the traditional centralized approach.
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Table 5.2 Accuracy of Generated Models

Approach Root Mean Square Error (RMSE) Variance Score/ Accuracy

Distributed Approach 0.0384 0.9673

Cloud Centric Approach (Summation Form) 0.0384 0.9673
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Fig. 5.6 Error distribution plot in both approaches.

The error distribution in both the approaches has been presented in fig. 5.6. The X-axis
here represents ∆Y = Ytest −Ypredicted and Y-axis represents the probability density of it.
The first thing to notice here is that the errors are centered at zero in both approaches i.e.
the most often found error is zero, which is good. The distribution plot from both the
approaches look exactly the same, which suggests that distributed approach can be used in
fog enabled IoT deployments. In both approaches the errors are more on the positive side
as we can see from the heights of the distribution on the +ve side and there are fewer error
on the -ve side. The errors are fairly small in both approaches which suggests that its a
fairly decent solution.
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Fig. 5.7 Scatter plot that shows that the distributed and cloud centric approach both trace
out each other.

Fig. 5.7 presents the scatter plot of actual and predicted values in both the approaches.
Fig. 5.7a represents the plot on shared axis and fig. 5.7b represents the plot on same axis.
As visible from the plot, the distributed approach and cloud centric approach trace out each
other.

5.5.2 CPU Utilization

The CPU utilization of various entities involved in the experimental setup has been pre-
sented as box plots in Fig. 5.8. The values shown in the figure represents the median
values. The results of CPU utilization have been discussed below:

Fog layer CPU utilization: CPU utilization of fog node VMs increases in the dis-
tributed approach as now they are also performing the analytics operation rather than just
forwarding the data to cloud for analysis. This also adds to efficient resource utilization of
these devices.

Cloud layer CPU utilization: CPU utilization of cloud VM is less in distributed
approach and more in the traditional cloud-centric approach. The reason for this is that in
cloud centric approach all the processing happens in cloud, while in distributed approach
cloud only sums up the partial results obtained from fog nodes, thus leading to less CPU
utilization in the latter.

This is beneficial for the user as now the monetary cost will be less for the cloud service
utilization under the ‘pay as you go’ model. In most IoT based deployments the gateways
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Fig. 5.8 CPU utilization visualized for both the distributed and cloud centric approach.

are usually owned by the user so effectively the user will have to pay significantly less
amount in the distributed approach.

5.5.3 Memory Utilization

The memory utilization has been presented as bar plots in Fig. 5.9. The values shown in
the plot represent the median values. This follows the same behavior as for CPU utilization
as discussed above.
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Fig. 5.9 Memory utilization visualized for both the distributed and cloud centric approach.

5.5.4 Data Reduction

The bar plot in Fig. 5.10 represents the reduction in amount of data being streamed from
fog VMs to cloud VMs in both approaches. There is 80% reduction in the amount of data
being streamed in distributed approach as compared to the cloud centric approach. The
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Fig. 5.10 Reduction in amount of data being streamed from fog VMs to cloud VM in fog
based distributed approach.

reason for this reduction is the Fog Linear Regression Component (Algorithm 5.1) running
on fog VMs in distributed analytics approach while in cloud centric approach they just
act as normal gateways to forward the data received to cloud for analytics and the whole
analytics operation happens there.

5.5.5 Time

We also measured the time required to calculate the regression coefficients in both the
approaches i.e. to generate the final linear regression model. In both the approaches, the
final model is calculated at the cloud. The values have been presented in table 5.3.

Table 5.3 Time taken to calculate regression coefficients in both approaches.

Distributed
Approach

Cloud Centric
Approach

Time Taken
(in milliseconds) 2.87 ms 138.62 ms

There is significant reduction in the amount of time required to calculate the final
model in distributed approach compared to the cloud centric approach. The reason behind
this is that in distributed approach cloud sums (Algorithm 5.2) the partial outputs obtained
from fog nodes and then calculates the final model, while in cloud centric approach, the
entire end-to-end processing happens in cloud (i.e. both Algorithm 5.1 and Algorithm 5.2
run on cloud).
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5.6 Further Discussion

5.6.1 Use Case and Constraints

Given that the streaming rate of data from sensor/base node to the fog device is fixed, there
are two kinds of use cases that define the role of the fog node in the distributed computing
approach:

1. The first use case is where the fog node uses its resources for pre-processing the data
acquired from sensors. This serves two purposes:

(a) Data reduction: Lesser data is sent from fog node to the cloud

(b) Decreased computation time (in the cloud): Since the data is already pre-
processed with some initial operations, the time taken for the cloud component
to process the entire data set into the desired output is lesser than the regular
cloud-centric case. This is in addition to no overheads in terms of the total time
required in the complete end-to-end process.

2. The second use case is where the fog node acts as both the data processing and
decision making entity. This is particularly for latency sensitive use cases, where the
data streaming and processing scenarios require latency critical decision making.

The three constraints that drive the above scenarios include:

1. Rate of streaming of data from end node to fog layer

2. Resource capacity of fog layer

3. Nature of use case:

(a) latency sensitive / time critical decision making

(b) regular computation required from data set

5.6.2 Impact of changing processing frequency at Fog Node and Data
Reduction

With the above understanding we also measured the effect of varying processing frequency
for the data received at fog node and corresponding reduction in data transfer from Fog
Layer to Cloud Layer. The corresponding plots has been presented in Fig. 5.11a and 5.11b.

As visible from the plot, if we keep the data processing frequency at fog nodes same as
the data receiving rate then there is no reduction in the data transfer, but as we gradually
increase the processing frequency the data reduction becomes significant. The decrease in
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Fig. 5.11 Impact of changing data processing frequency at fog node and data reduction.

data reduction with increasing processing frequency almost saturates after some point, and
% reduction in data transfer becomes smaller.

In cloud centric approach even if we increase the data processing frequency at fog
nodes, they still send all the received data, just that now they send it collectively, while
in distributed approach, only the processed data is sent further to cloud and hence gain
in data reduction. With higher processing frequency at fog node, which in turn means
bigger buffer size to process the received data, the approach in turn effectively becomes
centralized in nature, and thus the gain in reduction does not increase much after a certain
point.

5.7 Summary and Conclusions

The aim of research question 3 (RQ3) was to develop a methodology for designing modular
data analytics approach. In this chapter, we presented the methodology, approach and
results for adopting distributed decomposed data analytics in fog enabled IoT deployments.
The benefit of using fog computing for all IoT based applications may not be obvious
since benefits gained may not be significant to motivate the use of the edge of the network.
It might also be argued that it is more desirable to develop cloud centric solutions with
sufficiently large number of resources available on hand, rather than designing fully dis-
tributed computing programs/algorithms which might bring along additional complexities.
However, the number of data centres is less likely to grow at the same rate as the number
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of devices at the network edge (and thus the generated amount of data) being connected
to the Internet, since traditional data centres consume a lot of power and global network
bandwidth, and have begun to raise the impending concern of an increased carbon footprint.

Overall, keeping in mind the challenges, the decomposition of analytics programs in
fog assisted IoT environments does look promising towards the effort to design efficient
distributed data analytics solutions and making the edge of network smarter, and in line
with the vision of distributed computing towards future networks.
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Chapter 6

Conclusions and Future Work

This chapter summarizes our work presented in the dissertation, and maps the direction for
future work. The main objective of this dissertation was to examine and develop approaches
on providing fog computing support for IoT applications. This includes prototyping,
validating, and building approaches that can improve the decision making process in the
life cycle of IoT applications towards leveraging the fog computing paradigm. Fig. 6.1
gives a quick overview of the different areas studied as part of this work as presented
in different chapters, and the corresponding contributions made in those areas, thereby
summarising the dissertation as a high-level graphical representation. The dissertation
highlighted the benefits that can be brought with using a fog computing assisted approach
in the life cycle of IoT applications, which was formalized in the research hypothesis with
three research questions presented in Chapter 1. It focused on the design, development and
deployment stages of IoT application life-cycle, and on the data analytics functionality of
these IoT applications in the fog computing environment.

The previous chapters of the dissertation have addressed each of the research questions
in detail, providing insights into the foundational research work while mapping contribu-
tions to the core areas of IoT and fog computing. This chapter focuses on concluding the
work presented, and a discussion on possible avenues for further research. It provides a
short summary (§6.1) of the chapters followed by presenting the directions for future work
(§6.2).

6.1 Summary

Chapter 3 presented a design and development methodology for IoT applications leveraging
the fog computing paradigm in a smart dairy farming setup for animal behaviour analysis
and health monitoring. It included the design principles and changes required in the IoT
application life cycle stages in order to have an application architecture that complements
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Fig. 6.1 A modular representation of subject-fields and contributions made in through the
research work as presented in this dissertation.

the fog computing paradigm. It investigated the benefits of using a fog computing assisted
approach in scenarios with low/scarce Internet connectivity, such as in remote geographical
locations of farms. It presented the benefits of having a distributed modular application
architecture using microservices coupled with the fog computing paradigm, and measured
its subsequent benefits in terms of data reduction, efficient computing resource usage,
scalability, and fault tolerance. It also presented the computing resource benchmarking of
the developed solution. Early lameness detection being the objective of the IoT solution, it
also presented the associated concepts, methodology used from the data analytics domain
to achieve that.
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Chapter 4 presented a fog-cloud placement approach (Module Mapping Algorithm) to
place distributed applications in a fog-cloud environment. It presents how to efficiently
deploy multi-component IoT applications in the infrastructure, leveraging fog computing.
The proposed approach ensures efficient resource utilization in the infrastructure. It sorts
both the nodes and application modules according to the available capacity and require-
ments, and maps the modules when the constraint is satisfied. The proposed approach
reflects the way to reduce resource under-utilization for distributed IoT applications. It
also highlights how fog-cloud inter-operation can minimize end-to-end latency compared
to the cloud-based approaches.

Chapter 5 presented the distributed decomposed data analytics in fog enabled IoT
deployments. It showed how the traditional data analytics algorithms can further be
modularized to run on resource constrained devices in fog computing environments. It
presented the methodology used for decomposition, and validated the proposed approach
in a fog computing test-bed environment. The benefits arising from having distributed
decomposed data analytics were noted and measured in terms of efficient computation
resource usage, reduction in amount of data, and reduction in training time of the model. It
also presented the discussion on use-case constraints and the effect of changing the data
processing frequency at the fog layer of the setup.

6.2 Future Work

A discussion on the possible avenues and extension for further research is presented here,
along with the limitations and shortcomings.

• CHAPTER 3: In the SmartHerd project work presented in Chapter 3, one of the limita-
tions is a plausible failure situation of the fog node. In the current setup there was only
one fog node used in the deployment, so if that fog node fails, the system will face a
downtime. In the likely event that this fog node (SmartHerd gateway) is overloaded or
is unavailable, the sensors have a data retention capacity of up to 12 hours. Moreover,
the gateway also has a local database which stores the data before pre-processing, and
the MQTT publisher saves the state of the last successfully transmitted events. Thus, the
system would then continue from where it stopped in case of a network outage. However, a
natural extension to the work would be to further increase the fault tolerance and resilience
of the system by introducing the co-existence of multiple gateways in the infrastructure
which are synchronized with each other, and data can be redirected between them in-case
of failure of one gateway.

Another direction would be to further analyze and improve the fault tolerance and re-
silience for the developed system (i.e., distributed modular application architecture using
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microservices in fog computing environments) using the concepts from Chaos Theory
[180], [181]. Appendix A presents a complementary extension to this direction of work. It
presents the initial empirical analysis to this end, and serves as a guiding point for further
enhancements that can be done. Another possible direction would be to look at the further
granularity of the computational resource benchmarking of the system i.e., instead of
quantifying the minimum resources as number of CPUs, quantify it as CPU cycles etc.

From the machine learning perspective, further work may include a move towards ensemble
learning and federated learning methodology. The deployment under the follow-on project
MELD on multiple farms presents an opportunity to look into these approaches in such a
setup.

• CHAPTER 4: One of the natural extensions of the work would be to look into the
dynamic nature of the DAG of the application. Since the time the application deployment
framework presented in Chapter 4 of the dissertation was disseminated, to the time of
writing the dissertation, there has been new work in the area that has addressed some of
the shortcomings of our work. We have included that activity below as complementary
addition to the dissertation. All the work included below addresses certain aspects of the
dynamic nature of the DAG.

Authors in [205] further refined the edge-ward algorithm of iFogSim [62] with a posteriori
management policy to guarantee the application deadlines and optimize fog resource
exploitation.

Authors in [206] proposed a software platform that provides a mapping strategy for IoT
application placement in fog computing environments, that optimizes resource utilization,
bandwidth and response time constraints. Their approach permits to choose among a
cloud-only, a fog-only or a cloud-to-fog deployment policy.

Authors in [207] proposed a QoS-aware deployment strategy for multi-component IoT
applications in fog infrastructure. It determines eligible deployment of a multi-component
application by pre-processing plus backtracking. It utilizes a greedy backtracking algorithm
as the heuristic that uses system requirements of the application as constraints.

Authors in [187] exploit Monte Carlo simulations to handle the communication links’
variations, and to perform pre-processing plus backtracking to determine the final eligible
deployment of a multi-component IoT application.

Authors in [186] presented an exhaustive survey of the existing methodologies to solve the
application placement problem in fog infrastructure.

Authors in [127] recently present a detailed survey of service placement problem in fog
computing environments.
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Another direction of work would be to have a combined deployment and migration
framework in fog computing environments, where both the deployment and migration
of application components takes place during run time depending on the changes in the
environment.

• CHAPTER 5: One of the possible directions for future work in the distributed decom-
posed data analytics would be to develop an approach where the decomposition itself is
automated and happens dynamically during run-time. Another direction would be to have
a dynamic service migration frame in place, which allows automated migration of the
data analytics functionality between fog and cloud. It should also be mentioned here that
from the software development perspective, having data in one place is useful, as it allows
processing as and when required. This makes it easier to perform: (i) parameter tuning,
(ii) retraining, (iii) understanding when more data could be needed. There needs to be
further investigation to match the software and machine learning development practices,
while incorporating the edge of the network for data analytics. It becomes important to
investigate in this direction of research given that the number of data centres is less likely to
grow at the same rate as the number of devices at the network edge (and thus the generated
amount of data) being connected to the Internet, since traditional data centres consume a
lot of power and global network bandwidth, and have begun to raise the impending concern
of increased carbon footprint.

Fog Computing as a Fluid Computational Platform: With server-less computing in
picture, the idea here is that the whole infrastructure acts as a computation platform. It can
be seen as a system consisting of various computing resources along the technology path
from sensors to cloud. This is a future vision, where there is no hard boundary between
edge or fog and cloud, and the whole infrastructure is visualized as a fluid computational
resource. The idea is that one can perform and move computation anywhere in this
complete technology path, and can gain benefits from execution of services closer to the
data sources or consumer depending on the use case.
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Appendix A

Probabilistic Analysis of System Fault
Tolerance and Resilience

Over here, we present the empirical mathematical analysis using the concepts from prob-
ability and combination theory for such a behaviour by the developed software solution
during the fault tolerance experiment. We start with the analysis on the fault tolerance
experiment, and further lead the analysis to System Resilience feature of the developed
IoT solution. We also see that how the fog functionality of the developed solution adds to
the trait of fault tolerance and resilience. For convenience, the notations used have been
listed in Table A.1 for quick reference.

Table A.1 Symbols and Notations Used.

Symbol Interpretation

n
Total number of microservices

that make the system

k
Number of services out of n that

are getting broken

2n

Total possible system states, given
that there are two possible states

for each service i.e., either working
or broken

(Set T = Total possible different combinations
of broken and working services together, and

|T |= 2n

p Probability of a service getting broken

2k
Total possible combination for broken

services to come back into the system, this
is called set B, and |B|= 2k

2n−k Total possible system states when k services
out of n are not working

Assume that we have a total of n microservices that make up the entire system. Now
given that the services can get broken in the system leads to two possible states of an
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individual service, which are broken (not-working, unavailable, interrupted) or not-broken
(working, available, uninterrupted). With n total services, the total possible states of the
system are 2n.

Out of n services, let’s say k services are getting broken at a given time. Let’s say p is
the probability of a service being down or broken, correspondingly 1− p is the probability
of a service not being down or broken. Then using the concepts of binomial distribution,
the probability mass function for k services being down can be written as below:

P(X = k) =
n
Ck × pk × (1− p)n−k (A.1)

Where k = 0,1,2....n and
n
Ck =

n!
k!(n−k)! . The random variable X here follows the

binomial distribution with parameters n ∈ N and p ∈ [0,1]. Equation A.1 represents the
probability mass function for the system with k services failures.

Now as a service can either be in broken state or in working state, so p = 0.5 here.
Although, if there is a biasing in the system or for some reason some services have more
chances of being broken than others, then p can take the corresponding values accordingly.

In our scenario, keeping p = 0.5 in equation A.1 leads to:

P(X = k) =
n
Ck × (0.5)k × (0.5)n−k (A.2)

Which on solving further leads to equation A.3 below:

P(X = k) =
n
Ck

2n (A.3)

The equation A.3 represents the probability of k services getting broken out of a total
of n services where each individual service can have two states(available or unavailable),
and the whole system can have 2n possible system states.

Now, we make a plot presented in Fig. A.1 for probability mass function for the
binomial distribution with keeping p = 0.5 and varying the value of n. Each point on
X-axis represents a value corresponding to k. We infer from the plot that as n increases the
probability corresponding to k services getting broken as presented on Y-axis decreases.

Which implies that a system built with more number of services has less chances
of failures, or a distributed system will have less chances of failures as compared to a
centralized system. This is in-turn the trait of a distributed system design i.e., distributed
systems are more fault tolerant in nature. This can also be inferred from equation A.3, by
substituting the value of k = n, which gives :

P(X = k) =
n
Cn

2n =
1
2n (A.4)
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Fig. A.1 Plot presenting probability mass function(pmf) of binomial distribution with
p=0.5 and different values of n. We map this pmf with the number of service failures and
probability of such service failures in the system.

We can see that there is only one possible system state where none of the services are
working (i.e., all the services are broken). But then the probability for such an event to
happen is quite less. And as n increases, 2n also increases and the value becomes even less.
Further to note that in production level system, there are multiple instances of a single
service that are used in order to achieve efficiency and scalability, which further increases
the number of elements in the set of total possible states of the system. Moreover, the
services and service instance might also be running in different location i.e., in multiple
VMs (Virtual Machines), in geographically multiple locations such as multiple data centres
and multiple fog nodes, in multiple VMs in multiple data centres or computational nodes,
all this will further increase the number of possible states of the system.

The above postulate supports the approach proposed for designing and developing
fog enabled IoT software system proposed in the dissertation, which is to have a hybrid
distributed modular application architecture approach using microservices.

System Resilience: Resilience refers to a system’s ability to withstand or recover
quickly from difficult conditions. It is the capacity to recover quickly from difficulties.
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Once again we refer to Table A.1 for the notations used. Let’s name the set consisting
of total possible system states as T , and another set B which represents the total possible
combinations of broken services to come back in the system at a given time. The same has
been presented in equation below:

T = Set of total possible system states = 2n (A.5)

B = Set of total possible combinations for broken services to come back into the system = 2k

(A.6)

The set B refers to how the broken services come back in working state in the system.
To further understand the context behind defining the set B, let’s assume 2 services out of
n were broken. Now there is a possibility that either both the broken services come back in
working state into the system at the same time, or they come one after the other, or none
of them come back in working state at all. For a better representation here, the Table A.2
presents the possible combinations, where 0 refers to broken state, and 1 corresponds to
the working state. On careful examination, we find that B is a subset of T i.e.,

B ⊂ T (A.7)

Table A.2 Possible ways for two broken services to come into working state to join back in
the pool of working services.

0 0
0 1
1 0
1 1

Fig. A.2 gives a pictorial representation of the subset relation written in equation A.7.
We can see that there will be an exact mapping for a point in set B to a point in set T .

For the system resilience trait there are two possibilities as per the discussion above:

1. The broken services come back into working state into the system one after the other.
A diagrammatic representation of the same has been given in Fig. A.3. Over here,
the relationship listed in equation A.7 will still hold true for the possible states for
the n− k+1 working services and k−1 services that are not working.
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Fig. A.2 Subset relation representation between set of total possible system states with set
of possible combinations of broken services getting back into the system.

2. The broken services come back into working state into the system all at once. From
the possible combination of services coming back into the system, there will be only
one favourable state that will bring both the services back into the system at the
same time. The probability of such an event can be written as (equation A.8):

P (Probability of broken services coming back into working state at the same time)=
1
2k

(A.8)

Now, a system will be called resilient in both the possibilities written above. It will be
more resilient if the second possibility happens. Analysis of equation A.8 suggests that if
k is less which means correspondingly 2k is less, then there will be more chances of the
services coming back into the system at the same time. Which means that if less services
are disrupted, the system will come back to it’s original working state more quickly. This
can be linked to the fault tolerance trait of a system, which is the working of the system in
the event of services getting disrupted.

Without any doubt, there is a fine line between system resilience and fault tolerance,
but a high fault tolerant system would ideally be more resilient. Having a distributed appli-
cation architecture approach for design and development, and utilizing the computational
resources along things to cloud continuum by means of fog computing adds to the fault
tolerance trait of the developed solution, making it more fault tolerant and more resilient
as well.

159



�

Total number of
microservices

that make the whole
system

 
working
services

� − � + 1

broken
services

� − 1

 working
services

� − �

broken
services

�

 
working
services

� − � + 2

broken
services

� − 2

....
working
services

....
broken

services

Fig. A.3 Diagrammatic representation of services getting broken and getting back into the
pool of working service sequentially one after the another.

Resilient would be more related to how quickly the system can recover or come back
to its fully working state; so the ideal quantity to measure will be time taken to recover,
while in fault tolerance experiment it’s the working of the system.
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Appendix B

Using Cgroups in Benchmarking
Experimentation

Below we provide a quick yet complete overview of control groups:

1. Install the control groups by — apt-get install cgroup-lite libcgroup1 cgroup-bin

2. cgroup-mount
This command will mount all the resource folders such as cpu, memory, disk (blkio)
and network in /sys/fs/cgroups/. Each resource folder represents a specific resource
named as cpu, memory, disk (blkio) and network. You can set the required resources
by setting the values in each folder. For our need we require just four folders.

3. Now create multiple sub-folders in the four folders above. These sub-folders will
represent our resources. Simple mkdir command can be used.

mkdir /sys/fs/cgroup/cpuset/1P1024M10D1N
mkdir /sys/fs/cgroup/memory/1P1024M10D1N
mkdir /sys/fs/cgroup/blkio/1P1024M10D1N
mkdir /sys/fs/cgroup/netio/1P1024M10D1N

The above four commands will create four sub-folders in each of the above resource
folders. Similarly we can create as many folders as we want.

4. Now you need to assign the values to the control group. Like CPUs, Disk and
memory etc, In the below example, I am assigning 1 physical CPU and 1024 MB
(i.e., 1GB) main memory.

1 #!/bin/bash
2 echo "0" > /sys/fs/cgroup/cpuset /1 P1024M10D1N /cpuset.cpus
3 echo "0" > /sys/fs/cgroup/cpuset/service/cpuset.mems
4 echo "1024M" > /sys/fs/cgroup/memory /1 P1024M10D1N /memory.

limit_in_bytes
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Similarly, we can create as many folders as we want based on the lines in the Table
3.4 and assign the resources.

5. Now, we will assign all the processes running in the machine to the above group.

1 #!/bin/bash
2 for process in ‘ps -A | awk ’!/PID/{print }’| awk ’{print $1}’

‘; do cgclassify -g cpu ,cpuset ,blkio ,memory :1 V1024M10D1N
--sticky $process; done

6. We can repeat 3, 4 and 5 for as many resource categories we have, which is limited
to the maximum capacity of the machine.
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