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Abstract

Magnetic nanoparticles (MNPs), mainly iron oxide particles, have the advantage of being controllable
by magnetic fields. MNPs show promise in biomedical applications, typically as carriers for biological
or therapeutic entities or for their hyperthermic properties. Mathematical modelling assists in the
design of MNP applications. However, the role of interparticle interactions is frequently ignored due to
computational complexity, despite the general acceptance of the importance of interactions. Magnetic
hyperthermia and magnetic drug delivery are two important clinical applications of MNPs where
magnetic dipole interaction can be expected to have a significant role in the behaviour and thus be
important in any potential medical applications. Good design of magnetic hyperthermia treatment
approaches a thorough understanding of the complexities of the heating mechanisms. There are typically
two mechanisms which lead to heating: Debye and Néel relaxation. Most models of hyperthermia
consider only Debye relaxation and typically interparticle interaction is ignored. Targeted drug delivery
aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near
a desired site within the body. This is particularly beneficial in, for instance, cancer chemotherapy,
where the side effects of general drug administration can be severe. Although a number of mathematical
models exist in literature, certain differences in the theoretical and experimental results have been
noted. This thesis presents mathematical models of magnetic hyperthermia and magnetic delivery
along with detailed analysis of three other mathematical models of magnetic interaction available in
the literature.
In this thesis, chapter 1 overviews some general information concerning the role of magnetic nanoparticles
in biomedicine and the motivation for this work. Chapter 2 presents a mathematical model of
hyperthermia which includes interparticle interactions, and offers empirical approximations to estimate
the optimum heating for a chain of MNPs. Chapters 3–5 present replications and in some cases
corrections of the models published by various authors. Chapter 6 presents a model investigating
the aggregation of MNPs in parabolic flow. Here MNPs are considered whose initial positions are
always above or below each other along the vertical axis of the vessel. A critical distance is then found
between the MNPs within the vessel. If the MNPs begin their motion within this critical distance,
then over time aggregation occurs. This critical distance is found to depend upon the initial position
along the diameter of the vessel and also the fluid velocity. Analytic expressions for the upper and
lower bounds are obtained and validated with the numerical results. Also, an empirical approximation
of the critical distance is given, which gives close agreement with the numerical results.
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Chapter 1

Introduction to Magnetism

1.1 Magnetic nanoparticles and their role in biomedicine

An increase in interest in nanotechnology has led to growth in nanoparticle research. Nanoparticles in
particular offer many possibilities as diagnostic and therapeutic agents. They have controllable sizes
ranging from a few nanometres up to hundreds of nanometres, which places them at dimensions that
are smaller than or comparable to biological entities such as a cell (10− 100 μm), a virus (20− 450
nm), a protein (5− 50 nm) or a gene (2 nm wide and 10− 100 nm long). Magnetic nanoparticles can
be controlled by a magnetic field and thus can be heated, leading to their use as hyperthermia agents,
or can be used to deliver active agents, such as drugs or cells, to a targeted location [1].

1.1.1 Hyperthermia

Magnetic Hyperthermia is the heating of magnetic nanoparticles in an alternating magnetic field.
This heating can directly kill cancer cells. Thus after locating the particles in a tumour the heating
can act on the tumour. Furthermore in combination with radiotherapy and/or chemotherapy lower
levels of heating can be effective. An inadequate understanding of the heating has been conceded by
researchers [2, 3]. As better control of the heating requires a better understanding of the heating,
progress can be aided by the development of better mathematical models of hyperthermia. Reports
suggest that magnetic interactions, known to occur when the particles are closely spaced, can both
increase or decrease the heating [4–8]. Figure 1.1 depicts the strategies used in clinical applications,
such as the particle size, shape, surface structure, and composition, in order to improve antitumor
therapeutic efficacy of MNPs in magnetic hyperthermia therapy as given in Liu et al. [9].

Figure 1.1: Strategies (particle size, shape, surface structure, and composi-
tion) used in clinical applications to improve efficacy of MNPs in Magnetic

hyperthermia therapy (source [9]).
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1.1.2 Cell imaging and delivery

Cell imaging primarily uses light and fluorescence microscopy; however, magnetic labelling of cells,
via cell uptake of MNPs and subsequent detection via MRI, can also be used to image, identify and
track cells [10]. Regenerative medicine replaces old and diseased cells with healthy cells, and includes
applications in cell delivery and bone marrow transplantation. Magnetic cell delivery (MCD) is an
emerging technique in regenerative medicine, where healthy living cells are carried by MNPs to a
specific site in the body via magnetic fields [11–15]. These fields can be purely external or can be
assisted by ferromagnetic implants such as stents [16]. Sanz-Ortega et al. [17] showed that the MNPs
are used to magnetically guide T cells to a region of interest, via both in vitro and in vivo manipulation
as illustrated in Figure 1.2. Sanz-Ortega et al. showed promising results to favour cell retention that
could be implemented to improve cell-based therapy.

Figure 1.2: Magnetic cell retention in cell-based therapy (source [17]).

1.1.3 Magnetic drug targeting

Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing
the active agents of the drug near a desired site within the body. This is particularly beneficial in,
for instance, cancer chemotherapy, where the side effects of the drug administered can be particularly
detrimental. The use of MNPs as the carriers of active agents is known as magnetic drug targeting
(MDT). In designing such a targeting system, many factors need to be considered such as the size and
nature of the carriers and the fields required. Moreover, the range of relevance of these systems in
different blood velocities, from capillaries to high velocity arteries, needs to be considered. Dipolar
interactions in MNPs cause aggregation which can cause blood clots, leading to life threatening
conditions. Mathematical modelling can play a role in the design of such systems by developing our
understanding of aggregation. Figure 1.3 depicts MNPs used in clinical applications, visible under
MRI scan as given in [18]. These MR-active MNPs enable clear observation of various blood vessels.
Thus they can be used for imaging the vasculature, liver and other organs, as well as molecular imaging,
cell delivery & tracking and theranostics [18].
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Figure 1.3: Kidneys before and after injection of MNPs where accumulation
of MNPs can be observed in the renal pelvis (white arrows) (source [18]).

1.1.3.1 Magnetic microrobots

Magnetic particles are being used to develop microrobots (sized between 10 and 1000 microns) for
industrial applications or biomedicine. A magnetic microrobot is a colloidal suspension of superparam-
agnetic iron oxide (SPIO) particles [19]. Microrobots offer a number of prospective applications in
performing precise tasks inside the human body, such as providing a mobile viewing platform enhancing
a surgeon’s view [20]. Figure 1.4 depicts magnetic microrobots therapy proposed in cancer treatment
as given in [8].

Figure 1.4: Magnetic microrobots (source [8]).

1.2 Role of mathematical modelling in clinical applications

In experiments, the typical path to study the behaviour of MNPs is through in vitro and later in
vivo experiments. Computer simulations can play a key role in the design and interpretation of these
experiments. Any description of the behaviour of MNPs in the body must account for fluid dynamics
of blood flow as well as the magnetic effects on MNPs due to any external magnetic field. Furthermore
MNP interactions are also often critical in assessing the expected performance of MNP interventions.
These interactions can lead to particle aggregation, significantly altering the behaviour. A number
of authors have cited the importance of studying interparticle interactions [3–6, 21]. Specifically, Wu
et al. [7] use hyperthermia with antibiotics to treat infections and note that use of MNPs beyond a
certain size increases aggregation probabilities, thereby altering the behaviour. Gutiérrez et. al. [22]
have mentioned similar observation and specifies the importance of agglomeration/aggregation on the
alteration of the properties of MNPs. Figure 1.5 shows the difference between different MNPs in
colloidal suspension. It is mentioned in [22], that the MNPs aggregation process in colloidal solution
is irreversible and needs to be included while studying the properties of the MNPs.
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Figure 1.5: Schematic representation of the formation of the aggregation and
agglomeration processes of MNPs in colloidal suspensions (source [22]).

Riegler et al. [11] have produced results in MCD which differ from their own theoretical predictions.
Riegler et al. specifically mention that the disagreement between the theoretical and experimental
results is due to the neglect of interparticle interactions in their model. This disagreement with their
existing model persists and has been addressed in this thesis. The mathematical models by Sharma et
al. [23] and Mellal et al. [19] have been replicated in subsequent chapters. In chapter 2, a mathematical
model of hyperthermia is presented, examining the effects of interparticle interactions and propose
empirical approximations to estimate the optimum heating in a chain arrangement of MNPs. In chapter
6, a mathematical model of aggregation of MNPs is presented, including dipolar interactions for a
range of fluid velocities.

1.3 Primary quantities in magnetism, H, B and M

A significant aspect of this thesis involves computing and predicting the behaviour of magnetic
nanoparticles in a magnetic field. To understand these calculations, it is useful to discuss some basic
magnetic quantities.

The magnetic field strength created by an electric current can be calculated from the Biot-Savart
law or from Ampère’s law [24, 25]. In the SI unit system the strength of magnetic field, H is measured
in amperes per metre A m−1 which indicates the relation of this quantity to the electric current. The
alternate names of H are magnetic field intensity and magnetising field.

On the other hand, magnetic flux density or magnetic induction, B, is the response of the medium
to the magnetic field strength. It can be understood as the density of magnetic lines of force, or
magnetic flux lines, passing through a particular area. The movement of a compass needle (a magnetic
dipole) is clearly due to the applied torque on the compass needle. The strength of this torque is in
turn determined by the strength of the magnetic induction, B. Thus it is noted that B, not H, plays
the role of the physical observable in magnetism, in the same way that the electric field strength, does
in electrostatics. In the SI unit system B is measured in Wb m−2 and is defined as the tesla, T.
The volume magnetisation, M, is defined as the sum of the magnetic dipole moment per unit volume
of a material via,

M = m
V

(1.1)

where m is the magnetic moment and V is the volume. The quantity M is measured in ampere per
metre (A m−1). The interrelation between B, H and M is given by

B = µ0(H + M) (1.2)
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where µ0 is the permeability of vacuum.
In absence of any material properties i.e. in the vacuum, M = 0 and B = µ0H. The units of H and
M are A m−1 whilst the unit of B is T and µ0 is H m−1.
However they can still be related in terms of the permeability of the medium, µ, through,

B = µH (1.3)

where µ is in general not a constant and furthermore can be multivalued, as is the case with hysteresis
[26].

1.3.1 Magnetic permeability, µ

Magnetic permeability, µ 1 is the measure of the ability of any material to support a magnetic field.
The permeability of the vacuum is generally considered to be µ0 = 4π × 10−7 H m−1. However, since
20th May 2019, a revision of the SI system has been effected, which states that the µ0 is no longer a
defined constant but rather a measured constant, to be determined experimentally [28]. In general,
permeability is not a constant, as it varies within and around the material and with the frequency of
the applied magnetic field strength, humidity, temperature, and other parameters.

A related concept, the dimensionless relative permeability, denoted by µr, is also used in the SI
unit system, defined as

µr = µ

µ0
(1.4)

Magnetic susceptibility, denoted by χ, is closely related to the relative permeability through,

χ = µr − 1 (1.5)

1.3.2 Magnetic susceptibility, χ

Magnetic susceptibility is a dimensionless proportionality constant that refers to the extent of magneti-
sation of a material in response to an applied magnetic field. It is related to M and H as,

M = χH (1.6)

Diamagnetic materials have small and negative susceptibilities because M, is in the opposing direction
of H. Paramagnetic materials have positive susceptibilities as M is along the same direction as H.

1.3.3 Magnetic gradient

The variation of magnetic field, B, with respect to position, ∇B, is the magnetic gradient.

1.3.4 Magnetic domains and single domain particles

Ferromagnets are composed of domains. Each domain’s magnetisation reaches saturation but the
direction of magnetisation differs from domain to domain. In an unmagnetised sample, all of these

1It is to be noted that the symbol µ is used to symbolise magnetic moment in chapter 2. In rest of the chapters it is
termed as m. This is done to comply with the conventions of Châtel et al. [27].
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domains produce a net total magnetisation vector which is close to zero. In this model, the applied
magnetic field can either alter the domain direction or through domain wall motion can increase the
size of the domains in the direction of applied field. Both of these tend to increase the magnetisation.
The magnetic behaviour of ferromagnets can be broadly divided on the basis of particle size into two
types as:

1. multi domain

2. single domain

A multi domain particle contains many domains. The reason is that it reduces the magnetostatic
energy associated with the surface charges. However, the domains must be separated by domain walls,
that is small regions in which the moments have different directions. To be maintained, these walls
also require energy, determined by the exchange and magnetocrystalline energies [29]. Thus, for given
sample size, a number of domains is reached. If the size of the sample is reduced, a critical point is
reached beyond which it can no longer provide a wall. It then contains a single domain that is uniformly
magnetised. The critical size for particles varies depending on the saturation magnetisation and the
shape of particle (for magnetite, the critical size is about 80 nm) [26]. The magnetisation of a single
domain particle can only be changed by rotating the magnetisation, which can be an energetically
difficult process [29, 30]. On the other hand, changing the magnetisation of a multi domain particle
can be done by translating the domain wall, which requires a lower field.

1.3.4.1 Superparamagnetism

The magnetic relaxation time is defined as the measure of the time time taken by the magnetisation
vector to align itself with the magnetic field. The magnetic relaxation of the MNPs is a convolution of
two different processes, namely Brownian and Néel [31]. The Brownian relaxation, τB, is given as

τB = 3V η
kBT

(1.7)

where V is the volume, η is the viscosity of the fluid. The term kB and T denote the Boltzmann constant
and temperature. In sufficiently small single domain magnetic nanoparticles, the magnetisation can
flip direction under the influence of thermal energy. The typical time between two flips is called the
Néel relaxation time, τN , given as

τN = f0 exp
(
KaV

kBT

)
(1.8)

where f0 is the frequency pre-factor (typically 109 s−1) and Ka is the anisotropy constant. Rosensweig
[32] suggested that the Néel and Brownian relaxations occur in parallel, with an effective relaxation
angular frequency, which is an inverse of this effective relaxation time, τeff , given by

1
τeff

= 1
τB

+ 1
τN

(1.9)

In the absence of an external magnetic field, when the time used to measure the magnetisation of
magnetic nanoparticles is much longer than the Néel relaxation time, the average magnetisation appears
zero and the nanoparticles are said to be in the super-paramagnetic state. In this state, an external
magnetic field can magnetise the nanoparticles, similar to paramagnets but with higher value of
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magnetisation because superparamagnetic particles have higher susceptibility. Equally an ensemble of
single domain particles in a ferrofluid can be considered superparamagnetic, even if the Néel relaxation
time is larger than the measurement time, provided the time of the Brownian relaxation in the fluid is
less than that of measurement.

1.3.5 Magnetic Anisotropy

The term ‘anisotropy’ is used to describe situations where properties are dependent on direction.
A magnetically anisotropic material’s moment tends to align with an easy axis which refers to the
energetically favourable direction of the moment in the material. Magnetic anisotropy affects the shape
of hysteresis loops and changes the values of coercivity and remanence. Hence, magnetic anisotropy
is an important practical property in designing a magnetic material. There are different types of
anisotropy depending on the crystal structure, shape of grains and applied or residual stresses. The
likely effects of anisotropy are mentioned in chapter 2, magnetic hyperthermia, but in the rest of the
chapters, the magnetic properties are considered isotropic.

1.3.6 Magnetic Resonance Imaging, MRI

Magnetic resonance imaging (MRI) is a medical imaging technique used to view the anatomy and
the physiological processes of the body. MRI scanners use strong magnetic fields and magnetic field
gradients to generate images of the organs in the body. Hydrogen atoms exist in abundance within
humans and other biological organisms, especially inside water and fats. Thus, most MRI scans locate
water and fats in the body. Radio wave pulses stimulate the energy transition of nuclear spin, and
magnetic field gradients adjust the resonant frequency in space to create spatially measurable changes
in signal. By varying the parameters of the pulse sequence, different contrasts can be produced between
the tissues in accordance with the relaxation properties of the hydrogen atoms [33].



Chapter 2

Magnetic Hyperthermia

Magnetic Hyperthermia is the heating of magnetic nanoparticles using an alternating
magnetic field. In this chapter, existing models of magnetic hyperthermia are reviewed
and a mathematical model is presented, incorporating the interparticle interactions.
Along with numerical results, analytical and empirical approximations for regenerating
the numerical results are presented, to obtain optimum heating for MNPs in a chain
arrangement.

2.1 Additional list of symbols

• µ, magnetic moment1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A m2

• m(i), volume magnetisation vector of the ith MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A m−1

• H(i)
int, magnetic interaction field experienced by the ith MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . A m−1

• H, magnitude of H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A m−1

• θ, polar angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . radians

• φ, azimuth angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . radians

• γ0, gyromagnetic ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A m2 J−1 s−1

• η, Gilbert’s dissipation constant2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

• α = µ0γ0ηMs, the damping factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• M = (sin θ cosφ, sin θ sinφ, cos θ),
unit vector indicating the direction of the volume magnetisation vector . . . dimensionless

• Mx, x component of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• My, y component of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• Mz, z component of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• ζ, angle between the external field and the line joining the centres of the MNPs. . . . . . . . radians

• Ṁ, velocity of the unit volume magnetisation vector M . . . . . . . . . . . . . . . . . . . . . . . . . . . . A m−1 s−1

• ct, coating thickness ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• E, average energy per cycle per unit volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J m−3

1To comply with the conventions of Châtel et al. [27], the magnetic moment is symbolised as µ in this chapter. In rest
of the chapters it is termed as m.

2The symbol η is used for viscosity from chapter 3 onwards.



2.2 Introduction 9

• d0, distance between the MNPs relative to R, where
the value of E is same as one non-interacting MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

• dmin distance between the MNPs relative to R, where the value of E is minimum . . . . . . . . . . m

Table 2.1: List of parameters values for chapter 2.

Parmeter Description Value

Ms saturation magnetisation 0.5× 106 A m−1

H magnetic field strength 104 A m−1

γ0 gyromagnetic ratio when H = 1 1.76× 1011 A m2 J−1 s−1

α damping constant 1
φ initial value of azimuth angle 0 radians
θ initial value of polar angle π/2 radians

2.2 Introduction

Magnetic nanoparticles (MNPs) offer many possibilities as diagnostic and therapeutic agents. One
important therapeutic application of MNPs is magnetic hyperthermia treatment (MHT). In MHT,
MNPs are first focussed on a tumour; then, on application of radio frequency magnetic fields the MNPs
can be heated. The heating of cells above 47◦C generally leads to cell death. Heating within the range
41-46◦C damages cells and significantly assists in cancer cell death when used in combination with
radiotherapy and/or chemotherapy [34, 35].

In 2011, Carrey et al. [3] presented a review of magnetic hyperthermia models where attention was
drawn to the neglect of interparticle interactions in the models. Since then many authors on MHT
have drawn attention to the likely role of dipole-dipole interactions between the MNPs [3–5, 36–40].
Theoretical and experimental studies appear to indicate that the effects lead to reduced heating in the
majority of physical arrangements. Consequently, any random arrangement is likely to exhibit reduced
heating [4, 5, 21]. However, any cases in which the dipole-dipole interactions might increase heating
are of particular interest as these might allow the administering of less MNPs with potentially the
same heating. Haase and Nowak have undertaken a comprehensive computational study for a random
distribution of MNPs and have found reduced heating except for the case of elongated MNPs [21].
Their results showed decreasing hysteresis areas for (strongly) increased particle concentrations. Within
a fixed sample volume, however, the increased concentration also led to more particles that produced
heat. For small concentrations an almost linear increase of the volume specific absorbtion rate (VSAR)
was seen since dipole-dipole interactions were weak. At higher concentrations a maximum heating was
found with a further increase of particle density, which led to a reduced VSAR. This suggested that
an upper limit existed for the number of particles that should be injected into a fixed tumor volume,
defined by the dipole-dipole interactions.

Ruta et al. [6] have presented a Monte Carlo model which showed both enhancement and suppression
of the expected heating resulting from dipolar interactions. They mentioned the dependance of maximum
heating and the optimal particle size as a function of the packing fraction. With enhanced heating
in mind a chain of MNPs is considered aligned at right angles to the applied alternating magnetic
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heating field. Beginning with two particle interactions it is showed that heating per particle has
the potential to be increased by up to 18%. It is observed that longer chains show additional but
diminishing enhancement. It is noted that the dipole-dipole interactions scale with d3, where d is
vector along the line joining the centres of the MNPs and that as the volume scales with particle
radius, R, cubed (R3), the overall behaviour described by the model effectively scales with particle
radius. This applies provided the particle is superparamagnetic and anisotropy effects can be ignored.
The former condition is satisfied for MNPs below a critical size. The likely effects of anisotropy are
mentioned in the conclusion but have not been addressed in this work.

2.3 Mathematical models of MHT

In general, there are two mechanisms which can lead to heating: Brownian (Debye) and Néel relaxation.
The former refers to the rotation of MNPs. The latter is the internal rotation of the magnetic moment
within the MNPs. For MNPs below a critical size the MNPs are superparamagnetic and the magnetic
moment can move relative to the particle in response to an external field. The size differs for different
materials but is of the order of tens of nanometres [26]. Here situations are considered where the
particle rotation is blocked, leaving only the Néel relaxation, which might occur for MNPs fixed in a
tumour. This occurrence has been reported in [27, 41, 42]. Experiments have been carried out in [43] to
restrict the heat dissipation through Brownian relaxation to determine the relative contribution of Néel
relaxation to dissipate heat and its potential for in vivo application, in magnetite nanoparticles. Hergt
et al. [44] mention that generally, the faster of both relaxation mechanisms governs the absorption of
the particle system. As outlined by Hergt et al. [44] due to the very different size dependence given by
equations (2.1) and (2.2) for the two relaxation regimes, there is a separation of the spectral regions of
Brown (τB)and Néel (τN ) relaxation given by

τB = 3V η
kBT

(2.1)

τN = f0 exp
(
KaV

kBT

)
(2.2)

where V is the volume, η is the viscosity of the fluid. The terms kB and T denote the Boltzmann
constant and temperature. The term, f0 is the frequency pre-factor (typically 109 s−1) and Ka is the
anisotropy constant. The boundary between both regions is defined by τN = τB. In general, Néel
relaxation occurs at higher frequency combined with smaller particle size and Brownian relaxation
occurs at lower frequencies with larger particle size. The boundary frequency, fc, and the corresponding
particle diameter, dc, varies for different ferrofluid systems as listed in Hergt et al. [44]. Thus, it can
be said that for certain frequencies regimes the MNPs are essentially fixed and Debye heating effect
is effectively blocked. It is noted that the Debye heating mechanism is restricted in the two cases
when the MNPs are physically fixed in a tumour and when the MNPs are being excited within certain
frequency regimes.
The Landau-Lifshitz-Gilbert (LLG) equation is a phenomenological equation, which describes the
specific behaviour of the magnetisation of an individual single domain ferromagnetic particle [21]. The
approach taken here is to model the heating through the LLG equation and calculate heating through
the work done by the Gilbert ‘damping force’ of the magnetic moment acting over a distance. The
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approach is shown to be equivalent to that of Châtel et al. [27]. This model is extended to treat two
or more MNPs interacting via dipole-dipole interactions in a linear chain structure. The approach
can also be seen as a reduced case of the model of Haase & Nowak, where those authors also treated
uniaxial anisotropy and particle size distribution, and modelled the stochastic nature of the problem
through Langevin dynamics [21, 24, 25, 45]. Here, the results are presented in terms of energy per
cycle per unit volume, E, which can be related to the specific absorption rate (SAR) by

SAR = Ef

where f is the frequency of the applied field.

2.4 The Landau-Lifshitz-Gilbert (LLG) equation

The LLG equation [46] is a phenomenological equation for the average damped precessional motion
of the magnetic moment, µ (expressed as the normalised volume magnetisation vector, m, where
µ = Vm and m = MMs), of an MNP in a magnetic field H [21, 24, 27, 47–49].

Ṁ =
(
µ0γ0

1 + α2

)
[M×H + α(M×H)×M], (2.3)

where V is the volume of an MNP, and M = (sin θ cosφ, sin θ sinφ, cos θ) is the unit vector indicating
the direction of m, Ms is (volume) saturation magnetisation, µ0 is the magnetic permeability of free
space and α is the dimensionless damping parameter, defined by α = µ0ηγ0Ms, where η is the Gilbert
dissipation constant and γ0 is the gyromagnetic ratio. In this work, the MNPs are considered to be
spherical.
The alternating, cosinusoidal field, H, is assumed to be applied in the z direction, so that

H = H(0, 0, cosωt) (2.4)

where ω is the angular frequency of the field and H is the magnitude of the field.

2.4.1 Numerical techniques to solve the LLG equation

Equation (2.3) is a nonlinear equation and needs to be solved using numerical techniques. The following
properties, however, need to be maintained while solving the LLG equation using any numerical
technique [50].

• The magnitude of the magnetisation vector, m, must be kept constant at all discrete time points.
It is a fundamental constraint on the LLG time evolution that must be maintained in the time
discretised version of LLG equation.

• In the limit α→ 0, the numerical integration must always preserve energy.

• For a DC external field, the LLG evolution has a Lyapunov structure which means the total
energy of the system is a decreasing function of time along the trajectories of LLG equation [50].
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2.4.1.1 Problems in the low frequency region

The medical applications of magnetic hyperthermia are carried out at frequencies around 100 kHz.
However, because of the computational difficulties in the lower range of frequencies, numerical modelling
of LLG equations has mostly been carried out at a higher frequency from 10 MHz to 100 MHz. This
problem has been noted by Hasse & Nowak [21]. Thus to model the experimental results, most of which
have been carried out between 10 kHz and 100 kHz, the various numerical techniques are investigated
which have been used to solve the LLG equation at both high and low frequencies.

2.4.1.2 Semianalytical techniques

When the effective magnetic field, H, is constant in time, the LLG equation generates a simple
analytical expression in spherical coordinates [27, 51] or by the application of projection methods [50].
This analytical solution can then be used to improve an existing numerical scheme. The resulting
semianalytical scheme can then be used to fulfil the required conditions to solve the LLG equation.
In this section the different analytical expressions are examined that are presented in the literature
and show that some forms of analytical expression are unable to conserve the properties, as given in
section 2.4.1, which need to be maintained while solving the LLG equation.

For ω = 0, the analytical solution of the LLG equation as given in Châtel et al. is

Mx(t+ δt) = tanh(αNδt) +Mx(t)
1 +Mx(t) tanh(αNδt)

(2.5)

My(t+ δt) =
√

1−M2
x(t+ δt) sin (sin (ωLt+ δ0) + δ0) (2.6)

Mz(t+ δt) =
√

1−M2
x(t+ δt) cos (sin (ωLt+ δ0) + δ0) (2.7)

where

• Mx,My and Mz are the components of M along the x, y and z axes, respectively,

• ωL = µ0γ0H/(1 + α2),

• αN = αωL,

• δ0 = My(t)
Mz(t) are determined by the initial conditions,

• Mx(t) = Mx(0), where Mx(0) is the initial value of the x component of M.

In Wiele et al.[51], a different expression was obtained for the analytical solution,

Mx(t+ δt) = exp(qαδt)(1 +Mx(t))− exp(−qαδt)(1−Mx(t))
exp(qαδt)(1 +Mx(t)) + exp(−qαδt)(1−Mx(t)) (2.8)

Equation (2.8) can be written as the following

Mx(t+ δt) = sinh(qαδt) +Mx(t) cosh(qαδt)
cosh(qαδt) +Mx(t) sinh(qαδt) (2.9)

where q = γGH/(1 + α2), and3 γG = µ0γ0. Equation (2.9) is analytically equivalent to equation (2.5).
When the magnetic field is constant, i.e. ω = 0, equations (2.5), (2.8) and (2.9) conserve the properties

3In Wiele et al. [51] γG is defined as the gyromagnetic ratio. Consistency with Châtel et al. [27] can be achieved by
equating γG = µ0γ0.



2.4 The Landau-Lifshitz-Gilbert (LLG) equation 13

which need to be maintained while solving the LLG equation.
The value of Mx per cycle, as calculated in equations (2.8) and (2.9), agree when ω > 2π10−3 rad s−1.
For ω ≤ 2π10−3 rad s−1, the flipping of the direction of Mx is not captured in equation (2.9).
This could be resolved using smaller time steps which significantly increases the computation time.
Using equation (2.9), in order to obtain the correct nature of M , there is a trade-off between the
value of ω and computation time. As long as, ω > 2π10−3, using either equations ( equation (2.8) or
equation (2.9)), a given value of analytical expression can be computed using the default precision.
When all the constants, α, µ0 and γ, are normalised and ω = 2π10−3 rad s−1, Figure 2.1 plots the
values of Mx as equation (2.8) (form 1) and equation (2.9) (form 2). To generate Figure 2.1, the
parameters given in table 2.2 are used,

ω t H θ Mx My Mz α µ0 γ

2π10−3 (0, 2π/ω) |(cosωt, 0, 0)| π/4 sin θ 0 cos θ 1 1 1

Table 2.2: Table of constants for comparison between numerical methods.

Figure 2.1: The values of Mx calculated as per equation (2.8) (blue line)
and equation (2.9) (red line) when the time stepping is 10−3 s.

Figure 2.1 shows that when ω = 2π10−3, equation (2.9) does not capture the true nature of the
LLG equation. Therefore, it can be stated that certain forms of analytical expressions fail to capture
the correct nature of the LLG equation in the lower range of frequencies, f ≤ 10−3 Hz.

2.4.1.3 Adaptive Runge-Kutta (RK) method

The techniques used to solve the LLG equation are adaptive RK (ode45), 4th order RK (ode4), 5th

order RK (ode5), Euler’s and midpoint methods. The following table is obtained when all the constants,
α, µ0 and γ, are normalised and f = 10−3 Hz, i.e. ω = 2π10−3 rad s−1, i.e. the external field is
effectively close to a static field. The absolute errors between the obtained numerical value of Mx and
its approximated analytical value (as given in equation (2.5)) w.r.t. all the above mentioned methods
are calculated. Here, error denotes the maximum absolute error over the total time, t. Adaptive RK
gives the lowest error among these methods. Consequently, in the model (described in section 2.5
onwards) adaptive RK has been used.
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Table 2.3: Table of errors obtained in RK (errorRK), Euler’s (errorE) and
midpoint (errorM ) methods w.r.t. time step at f = 10−3 Hz.

time step errorRK(ode45) errorRK(ode4) errorE errorM error(ode5)

2.0004e−1 1.6904e−6 4.2266e−5 1.7357e0 4.7017e−2 1.6925e−6
1.0001e−1 5.2704e−8 1.3215e−6 9.9783e−1 6.1231e−3 5.2493e−8
2.0000e−2 1.0521e−8 1.0521e−8 1.1894e0 7.9875e−5 1.0520e−8
1.2500e−2 1.0504e−8 1.0521e−8 7.6876e−1 2.6032e−5 1.0521e−8
1.0000e−2 1.0504e−8 1.0521e−8 6.1921e−1 1.5599e−5 1.0521e−8

2.5 Model of the single particle

The total energy per unit volume, generated by a single MNP can be calculated from the product
of the damping force and the distance covered by the unit magnetisation vector, M, where the
damping force can be defined as α

γ0
Ms|Ṁ| and the distance as dM. The energy can be expressed as,

α
γ0
Ms|Ṁ| × dM = α

γ0
Ms|Ṁ|2dt and the energy dissipated in a single cycle can be calculated as

E = α

γ0
Ms

∫ 2π/ω

0
|Ṁ|2dt (2.10)

The energy in Châtel et al. is given by

E = µ0αNMsH

∫ 2π/ω

0
cos2 ωt(1−M2

z )dt (2.11)

E, from equation (2.11) is equivalent to the energy equation of Châtel et al. [27] as shown in section 2.6,
that follows.

2.6 Equivalence of the energy equations, equations (2.10) and (2.11)

From the LLG equation

Ṁ = µ0γ0g
′(M×H) + µ0γ0αg

′(M×H)×M (2.12)

where g′ = 1
1+α2 , M =


Mx

My

Mz

 and H =


0
0
Hz


So,

Ṁ = µ0γ0g
′Hz


My

−Mx

0

+ µ0γ0αg
′Hz


−MxMz

−MyMz

M2
x +M2

y

 (2.13)
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=⇒ Ṁ = µ0γ0g
′Hz


My − αMxMz

−Mx − αMyMz

α(M2
x +M2

y )

 (2.14)

=⇒ |Ṁ|2 = (µ0γ0g
′Hz)2

(
(My − αMxMz)2 + (−Mx − αMyMz)2 + α2(M2

x +M2
y )2

)
(2.15)

= (µ0γ0g
′Hz)2[(M2

x +M2
y ) + α2M2

z (M2
x +M2

y ) + α2(M2
x +M2

y )2] (2.16)

= (µ0γ0g
′Hz)2(M2

x +M2
y )[1 + α2M2

z + α2(M2
x +M2

y )] (2.17)

= (µ0γ0g
′Hz)2(1−M2

z )[1 + α2M2
z + α2(1−M2

z )] (2.18)

= (µ0γ0g
′Hz)2(1−M2

z )[1 + α2] (2.19)

= ( µ0γ0
1 + α2Hz)2(1−M2

z )[1 + α2] (2.20)

Hence,

=⇒ |Ṁ|2 = µ2
0γ

2
0H

2
z (1−M2

z )
1 + α2 (2.21)

The z component of H is, Hz = H cosωt. Thus, the energy dissipation in a single cycle can be written
as

∫ 2π/ω

0
|Ṁ|2dt = µ2

0γ
2
0H

2

1 + α2

∫ 2π/ω

0
cos2 ωt(1−M2

z )dt (2.22)

α

∫ 2π/ω

0
|Ṁ|2dt = µ0γ0H

(
αµ0γ0H

1 + α2

)∫ 2π/ω

0
cos2 ωt(1−M2

z )dt (2.23)

α

γ0

∫ 2π/ω

0
|Ṁ|2dt = µ0αNH

∫ 2π/ω

0
cos2 ωt(1−M2

z )dt (2.24)



2.6 Equivalence of the energy equations 16

where αN = αµ0γ0H
1+α2 . Thus

α

γ0
Ms

∫ 2π/ω

0
|Ṁ|2dt = µ0αNMsH

∫ 2π/ω

0
cos2 ωt(1−M2

z )dt (2.25)

Thus, the left hand side (our method) is equivalent to the energy expression in Châtel et al. as given
in the right hand side. Therefore, equation (2.10) can be written as

E = µ0αNMsH

∫ 2π/ω

0
cos2 ωt(1−M2

z )dt (2.26)

The energy, E, from the one particle model has the low and high frequency asymptotes, 4µ0MsH and
µ0πMsH

αN
ω respectively. Good agreement with the numerical data (within 4%) is obtained from the

following empirical formula, which is proposed by one of my supervisors Dr PJ Cregg.

E(ω) = 4µ0MsH√
1 + ( ωωc

)2
(2.27)

This formula is based on the form of a first order low pass filter frequency response where choosing a
cut-off frequency given by,

ωc = αNπ

4 (2.28)

aligned the formula well with the data.
Figure 2.2 plots the energy E as given by equation (2.26), its empirical approximation given by equa-
tion (2.27), the high and low frequency asymptotes when α = 1 and the initial value of θ = 0.
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Figure 2.2: Plot of the energy as given in equation (2.26) when the initial
polar angle θ = 0 and θ = π/4, empirical approximation of the energy, the low

and high frequency asymptotes.

As shown in Figure 2.2, below f = 108 Hz, the value of E is well described by the low frequency
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asymptote. The cut-off frequency varies with the initial value of θ, with the highest cut-off observed
for θ = π/2. For frequencies higher than the cut-off, E is well described by the high frequency
asymptote, valid for θ = π/2. The empirical formula (equation (2.27)) closely approximates the
calculated E (equation (2.26)) throughout the frequency range, valid for θ = π/2, thereby saving time
and computational resources.

2.7 Model of n interacting MNPs

Given n particles, the total interaction field experienced by the ith MNP as a result of the remaining
n− 1 MNPs, is given as

H(i)
int = Ms

n∑
j=1,j 6=i

(
R

|d(i,j)|

)3
[(

M(j) · d(i,j)

|d(i,j)|

)
d(i,j)

|d(i,j)|
− 1

3M(j)
]

(2.29)

where M(j) denotes the unit magnetisation vector of the jth MNP, d(i,j) is the difference between the
locations of the centres of the ith and the jth MNPs, d(i,j) = |d(i,j)| and R is the radius of each MNP.
In our model, the MNPs are identical in terms of size and material properties.

2.8 Interpretation of Results

Dipole-dipole interaction introduces a new energy into the system. This energy is determined by the
relative positions of the MNPs and also by the magnitude of the magnetic moments of each MNP.
If the arrangement of MNPs is as in Figure 2.3, the unit magnetisation vector, M, of each of the MNPs
is along the direction of the applied AC field, H, resulting in zero precession, under the assumptions of
no perturbations. It is noted that the LLG equation denotes the average precessional motion of an
MNP in a magnetic field. In this thesis, stochastic dynamics have not been considered, but have been
treated by García-Palacios et al. [52] and Ruta et al. [6].
For the touching MNPs, the unit magnetisation vectors, M, are aligned head to tail causing the
interaction field energy to be at its lowest energy state. Therefore Figure 2.3 indicates a state from
which no heat is generated.

p1

~M1

p2

~M2

p3

~M3

p4

~M4

p5

~M5

|d|

Magnetic field, H

Magnetisation vectors of the MNPs are aligned parallel to H

Figure 2.3: Arrangement of MNPs when the individual magnetic moments
are head to tail and parallel to the field.

As depicted in Figure 2.4, a perpendicular H can move the vectors from their initial states of
alignment, dissipating energy. This energy dissipation however can be less than would occur in the
non-interacting case where the vectors would be free to fully align with the external field. Here, as
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the vectors precess to align with the external field, the ‘interaction field’ changes direction with time.
This can allow the interaction field to change from being additive to subtractive w.r.t. the AC field
inhibiting further alignment. However, as the applied AC field reduces to zero, the interaction field
then acts to realign the vector, thus dissipating extra ‘interaction’ energy. This is the mechanism of
additional heating. The closer the MNPs, the stronger the interaction field; but additionally the closer
the MNPs the less the applied field can move the vectors.
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Magnetisation vectors of MNPs are aligned perpendicular to H

Figure 2.4: Arrangement of MNPs in the model, when the individual magnetic
moments are head to tail and perpendicular to the field

Figure 2.4 describes a state from which maximum heating is generated by the MNPs. Similar
obeservations with chain-like aggregates have been reported by [53].

2.8.1 Factors affecting SAR in multiple MNPs

The factors which affect the SAR in multiple MNPs are:

2.8.1.1 The initial angle, ζ, between the line joining the centres of the MNPs and the
direction of the applied magnetic field, H

The initial value of the angle between the line joining the centres of the MNPs and the direction of H,
ζ, affects the overall SAR. Figure 2.5 shows the change in heating with respect to ζ. It is found that at
ζ = π/2, as shown in Figure 2.4, maximum heating is generated.

Figure 2.5: Effect of alignment of M with H on average energy.
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From Figure 2.5 it can be concluded that initially as the value of ζ increases the overall SAR
increases. At ζ = π/2, the heating reaches its maximum value. Following the same pattern, futher
increase in ζ, i.e. when π/2 < ζ ≤ π, should result in the decrease of the heating. The d in the legend
of Figure 2.5 refers to the interparticle distance in terms of the radius of the MNPs, the effect of which
is further explained in section 2.8.1.2.

2.8.1.2 The distance between the centres of the MNPs, d

The distance between the centres of the MNPs affects the strength of the interaction field. However,
depending on the alignment of the magnetic moments of the MNPs, the direction of the interaction
field can either be additive or subtractive w.r.t. the AC field, which in turn affects the precession of
the magnetisation vector. It is found that when the MNPs are touching as depicted in Figure 2.4, the
overall heating is the highest.
In Figure 2.6, when the centres of the MNPs are 2R apart i.e. the MNPs are touching, the average
energy for two interacting MNPs is increased relative to the energy of one non-interacting MNP (the
dotted line). Further away, the interaction field heating reduces until it is reaches d0, where d0 denotes
the crossing point where the average energy of two interacting MNPs crosses the reference line of
energy of a single MNP. At further separation, the interaction field energy contribution is seen to
change sign and the dominating effect is the inhibition of the response to the applied field. Finally, at
infinite separation when interaction effects are negligible, the average energy approaches the reference
value. As given in Figure 2.6, the maximum average energy obtained for two interacting MNPs is
1.73342× 104 J m−3.

Figure 2.6: Effect of interparticle distance on average energy when ζ = π/2

2.8.1.3 The Ms/H ratio

The Ms/H ratio influences the ease of alignment of M with the applied field. A high value of Ms/H

decreases the alignment of the magnetisation vectors of the MNPs with H. In an alternating field,
as H reduces to zero within each cycle, the interaction field realigns M, dissipating the extra energy.
Therefore, the lower the initial alignment of M with respect to H, the higher is the value of the
dissipated energy.
In Figure 2.7 the behaviour for the two particle chain is presented with a fixed value of H = 10 kA/m,
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and a range of Ms values beginning with a reference magnetisation value of Ms = 0.5 MA/m with a
ratio of Ms/H = 50. The heating/energy ratio is calculated in terms of energy per cycle per particle
and divided by the energy of a single non-interacting particle, as a function of (centre to centre)
interparticle distance over particle radius. The normalised behaviour shows considerable regularity
with variation in Ms/H; the energy ratio saturates at 1.18. From Figure 2.7 it can be said that the
Ms/H ratio has a significant impact on heating generated by the MNPs. As the ratio increases, the
maximum value of heating is achieved even with increased interparticle distance.
As evidenced in table 2.4, both d0 and the position of minimum energy of two interacting MNPs, dmin,
exhibit a 3

√
Ms
H dependence with good agreement observed with the following empirical formulae;

d0 = π

4
3

√
Ms

H
(2.30)

and

dmin = 0.95 3

√
Ms

H
(2.31)
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Figure 2.7: Effect of increasing Ms/H ratio on average energy per cycle for
two MNPs, N = 2.

Table 2.4: Table generating the empirical and simulated values of d0 and
dmin for N = 2.

Ms/H d0 d0 (empirical) Relative % error dmin dmin (empirical) Relative % error

50 2.909 2.849 2.063 3.489 3.4998 0.3095
100 3.636 3.645 0.2475 4.392 4.4095 0.3985
500 6.232 6.234 0.0321 7.504 7.540 0.4797

1000 7.818 7.854 0.0460 9.498 9.5 0.0211
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2.9 Heating generated by multiple MNPs
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Figure 2.8: The effect of increasing the number of MNPs on the average
energy per cycle.

As seen in Figure 2.8 the maximum additional heating in multiple MNPs almost reaches saturation
when N ≥ 8. This indicates that increasing the number of MNPs does not necessarily increase the
generated heating. This phenomenon has been noted in [4]. The available computational power set a
limit of N = 12 in this simulation. Future work might investigate the effect of further increasing the
value of N .

2.10 Coating thickness for manufacturing MNPs

Maximum heating is obtained when the MNPs are touching, i.e. when the MNPs do not have any
coating. However, in the cases where the MNPs need to be coated, in order to increase heating, a
coating size, ct, can be tailored so that for touching particles, the heating is enhanced. Thus a condition
for enhanced heating can be given by

ct <
d0
2 − 1 (2.32)

For example, in Figure 2.7, when Ms/H = 50, d0 ≈ 2.8R. Thus, from equation (2.32), for two
interacting MNPs, in order to get enhanced heating, ct < 0.4R.
The expression given by equation (2.32) can be beneficial during the aggregation of MNPs occurring due
to dipolar interactions. To prevent aggregation and therefore to get a specific value of heating, authors
such as Wu et al. [7] have only considered MNPs of a certain size which is 22 nm or less. Irrespective
of the sizes of the MNPs, equation (2.32) can be used to adjust the heating in an aggregation of MNPs
by adjusting their coating thickness.
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2.11 Conclusion

In the single particle model, the energy has the low and high frequency asymptotes, 4µ0MsH and
µ0πMsH

αN
ω respectively. An empirical formula for energy has been developed which is based on the form

of a first order low pass filter frequency response where choosing a cut-off frequency given by ωc = αNπ
4

aligned the formula well with the data. For multiple particles, the transverse chain arrangement is found
to be the most favourable observed. In practice, this tranverse chain arrangement could be achieved by
aligning the MNPs with a static magnetic field prior to the application of the perpendicular alternating
magnetic field. When the magnetic field is perpendicular to the magnetic moment of the MNPs and the
MNPs are aligned head to tail, it is observed that interparticle interactions aid the heating, given the
interparticle distance, d0 ≤ 3

√
Ms
H . In all other cases the interparticle interactions hinder the heating

mechanism. Therefore, it can be concluded that as a result of dipole-dipole interactions, the Ms/H

ratio plays a significant role in the heating of MNPs. Equations (2.30) and (2.32), could be used to
predict the coating thickness required for optimum heating in the manufacturing of MNPs in MHT.
The empirical approximates as given in section 2.8, should allow designers to determine the limit on
the coating thickness which might still allow enhanced heating. It is noted that anisotropy is likely
to enhance the inhibition of the applied field response. Therefore, the inclusion of anisotropy can be
expected to inhibit the MNPs delivering this enhanced heating. In this work the effects of anisotropy
are not explored but might be included in the future.
As seen in Figure 2.8 the maximum additional heating in multiple MNPs almost reaches saturation
when N ≥ 8. This indicates that increasing the number of MNPs does not necessarily increase the
generated heating. The available computational power set a limit of N = 12 in this simulation. Future
work might investigate the effect of further increasing the value of N .
In this work, the MNPs are considered to be spherical for the ease of modelling. The amount of heating
is expected to change if the shapes of the MNPs are altered. Future work might investigate the effect
of the shapes of the MNPs on the overall heating.



Chapter 3

Magnetic cell delivery

Magnetic Cell Delivery (MCD) is the delivery of healthy cells to diseased targets
using MNPs as carriers guided by magnetic fields. Existing theoretical models differ
significantly from experimental results, which according to researchers, specifically
Riegler et al., is most likely due to neglect of magnetic interactions. To model
interparticle interactions in parabolic flow later in the thesis, in this chapter two
papers and a thesis of Riegler et al. have been replicated and verified.

3.1 Additional list of symbols

• Dc, duty cycle for steering gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• Rc, cell radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

• ∂Bz
∂x , external gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T m−1

• W , initial distribution of cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m

• vc, cell velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

• Te, Targeting efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• e, eccentricity of an ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• a, major axis of an ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

• c, minor axis of an ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

• Kn, Stokes correction factor using the surface equivalent diameter for
non-spherical objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• K, Stokes correction factor using the volume equivalent diameter for
non-spherical objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• lr = c/a, aspect ratio of ellipse/spheroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• dn, diameter of a sphere with the same projected area as that of the area of
the spheroid projected normal to its direction of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m

• ds, diameter of a sphere with the same total surface area as the spheroid . . . . . . . . . . . . . . . . . . . m

• f⊥, volume equivalent Stokes correction factor for the drag perpendicular to
the axis of symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• f||, volume equivalent Stokes correction factor for the drag parallel to
the axis of symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless
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Table 3.1: List of parameters values for chapter 3.

Parmeter Description Value

η viscosity 1.6× 10−3 kg m−1 s−1

∂Bz
∂x magnetic gradient 0.5 T m−1

Dc duty cycle for steering gradients 2/7
Rv circular tube radius 0.4× 10−3 m
n number of super paramagnetic iron oxide(SPIO) parti-

cles per cell as given in Riegler et al.
455× 103(Endorem)

Ms saturation magnetisation 314× 103 A m−1

Rc cell radius 5× 10−6 m
R radius of the MNP 10× 10−9 m(Endorem)
vf average fluid velocity 0.001 to 0.07 m s−1

3.2 Introduction

Magnetic particle imaging (MPI) is a new tomographic imaging method potentially capable of rapid 3D
dynamic imaging of magnetic tracer materials [54]. Magnetic resonance imaging (MRI) can provide
detailed images of the structure and functioning of the body. MRI produces images of all organs
and this is useful in analysis and during the course of therapy [26]. MPI and MRI can be used in
conjunction with magnetic drug targeting (MDT) where real time imaging can monitor the in vivo
distribution of the MNPs. The use of MRI systems to steer magnetic objects deep inside the body
has gained attention recently [55–60]. This is particularly appealing due to the high magnetic field
strength, and the precise spatial and temporal control over magnetic field gradients provided by an
MRI system. Combining this functionality with the conventional MRI used to generate high contrast
soft tissue images may allow for interactive real time feedback for the spatial position of the cells,
and/or immediate confirmation of targeting success, as cells labelled with MNPs appear hypointense or
dark on MR images. Regenerative medicine replaces old, diseased cells with healthy cells, and includes
applications in cell delivery and bone marrow transplantation. Magnetic Cell Delivery (MCD) is an
emerging technique in regenerative medicine for the delivery of healthy cells to the diseased targets
using MNPs as carriers guided by magnetic fields. In MCD for stem cell transplantation, Moysidis
et al. [15] have reported a magnetic field guided cell delivery system employing MNPs to treat the
human eye and have presented promising results. Gonzalez-Molina et al. [13] have presented results for
MCD in tubular constructs which resemble the natural lumens of biological systems such as circulatory
and respiratory systems. The importance of the modelling of interactions in the targeting efficiency
has been higlighted in the literature [14, 61] but not thoroughly investigated. Riegler et al. [11] have
produced experimental results in MCD which differ widely from their own theoretical predictions.
This disagreement persists from 2010 and to the best of my knowledge this problem has not yet been
resolved. This disagreement was attributed to aggregation of MNPs and these authors specifically
mentioned that the disagreement between the theoretical and experimental results is mainly due to the
neglect of interparticle interactions in their model. The absence of modelling dipolar interactions in
the literature is most likely due to the fact that including dipolar interactions between the MNPs is a
considerable modelling task requiring substantial knowledge of physics, and computational expertise.
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In this chapter, the numerical models in Riegler et al. [11, 12, 62] have been replicated. Disagreements
encountered while replicating the models have been outlined along with the attempts to reconcile the
discrepancies.

3.3 Physical setup

The physical setup given in Riegler et al. [11] is depicted in Figure 3.1. The mathematical model
described in [11] investigates the ability of MRI scanners to deflect cells filled with MNPs to a chosen
outlet of a bifurcation phantom.

Figure 3.1: Schematic drawing of the bifurcation phantom.

Figure 3.1 refer to bifurcation phantom used in [11].

3.4 Model of Riegler et al.

The force experienced by an MNP in a magnetic field, is given by

Fm = ∇(m ·B) = (m · ∇)B = nV (M · ∇)B (3.1)

where n is the number of MNPs inside one cell (n ∈ N), V is the volume of the MNPs, B is the
magnetic flux density. The mathematical model described is two dimensional with the applied gradient
only along the x-axis. Thus, equation (3.1) can be written as

Fm,x = nV DcMs
δBz
δx

= Fm (3.2)

V is the volume of each particle, δBz
δx is the external gradient, Dc is the duty cycle for the gradient and

Ms is the saturation magnetisation.
The main force which needs to be overcome by the magnetic force is the drag force of the fluid, given as

Fd = −6πηRc(vc − vf ) (3.3)
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where η is the viscosity, Rc is the radius of the cells, vc is the velocity of the cells and vf is the fluid
velocity. A laminar flow is assumed in the tube with the flow profile as

vf (x) = 2vf

[
1−

(
x

Rv

)2
]

(3.4)

where Rv is the radius of the tube and vf is the average fluid velocity in the tube. The trajectory of
cells can be calculated by equating the magnetic and the drag force (see Figure 3.2).

Fm = Fd (3.5)

Figure 3.2: Schematic drawing for the direction of the forces for a positive x
gradient taken directly from [11].

The cell trajectory along the x-axis is given as

dx

dt
=
nV DcMs

δBz
δx

6πηRc
(3.6)

The cell velocity in the z-axis is determined solely by the fluid velocity, as there is no magnetic force
acting along the z-axis.

dz

dt
= 2vf

[
1−

(
x

Rv

)2
]

(3.7)

The cell position along the x-axis is

x(t) = x0 + vct (3.8)

where vc denotes the cell velocity due to the magnetic force.
Integrating equation (3.7) yields

z(t) = 2tvf

(
1− t2v2

c

3R2
v

− tvcx0
R2
v

− x2
0

R2
v

)
(3.9)

For the calculation of targeting efficiency, it is assumed that initially the cells are randomly distributed
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over the circular tube cross-section. The projection of the initial distribution into the plane is given as
[12]

W (x) = 2Rv sin
(

cos−1
(
x

Rv

))
(3.10)

The trajectories for cells can be calculated using equations (3.8) and (3.9). If this is weighted
with equation (3.10), the distribution at the start and end of the separation distance can also be
calculated. It is assumed that cells which are above or below the axis, x = 0, at the end of the
separation length, (z = 60 mm), will end up in their corresponding exit tubes. The targeting efficiency
can hence be defined at that point as

Te = 2
(
ntarget_tube
ntotal

− 0.5
)

(3.11)

where ntarget_tube is the number of cells at the end of the tube to which the cells were targeted and
ntotal is the total number of cells.

3.5 Materials: Endorem & BioMag

Endorem is a suspension of superparamagnetic iron oxide particles used as a contrast agent in MRI.
The contrast agent consists of dextran-coated iron oxide particles with a general size distribution
between 120− 180 nm and an iron concentration of 7.1 mg ml−1. Before Endorem received approval as
a contrast agent in Germany and other European countries, clinical trials were performed in Japan,
the USA, and Europe [63, 64]. In Riegler et al. Endorem has suspension iron concentration of 11.2
g l−1 and was manufactured by Guerbet Laboratories Ltd, UK.
BioMag is composed of magnetic particles with affinity binding proteins may be coated with the
primary antibody or biotinylated molecule of interest through a straightforward incubation [65]. They
are also suitable for off-the-shelf use in applications, such as immunoprecipitation or PCR product
clean-up. In [11], it has been mentioned that the nominal radius for BioMag particles is around 0.75 μm
and their iron concentration is 0.8 mg/ml iron. In Reigler et al. BioMag particles were manufactured
by Bangs Laboratories Inc, Indiana, USA.

3.6 Trajectory of Endorem labelled cells

The data for the Endorem particles are given in table 3.1, corresponding to the appendix of Riegler et
al. [11]. Figures 3.3a to 3.3c display the trajectories of the cells obtained at two different flow rates.
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(a) Trajectory taken directly Riegler et al. Figure 3.3a, when vf is 10−4 m s−1.
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(b) Trajectory obtained when vf is 10−4 m s−1.
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(c) Trajectory obtained when vf is 1
1.5 × 10−4 m s−1.

Figure 3.3: Plot of trajectory of Endorem cells.

Using the parameters given in Riegler et al. (table 3.1), Figure 3.3b was obtained. However, close
agreement is obtained with Figure 3.3a in Figure 3.3c, applying either of the following conditions.

1. increase the magnetic steering gradient, ∂Bz
∂x , by a factor of 1.5.

2. decrease the fluid velocity, vf , by a factor of 1.5.
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If a = 1.5, then

vf,old
a

= vf,new (3.12)

aBz,old = Bz,new (3.13)

Figure 3.3a displays the trajectories of Endorem cells presented in Riegler et al.. Figure 3.3b displays
the replicated result. In order to make the the simulation results comparable to the published ones, the
parameters vf and Bz are decreased and increased respectively by using the factor, a as dispalyed in
Figure 3.3c. It would appear likely that this discrepancy is due to a typographical or numerical error.

3.7 Targeting efficiency of Endorem labelled cells

In the model of Riegler et al., the cells are filled with n particles. The two types of particles used
in [11], are Endorem and BioMag. Endorem particles have a nominal diameter of 80− 150 nm and
a suspension iron concentration of 11.2 mg ml−1. The nominal diameter for BioMag particles is 1.5
μm and their suspension iron concentration is approximately 0.8 mg ml−1. Each cell is labelled with
Endorem particles where n = 455×103. Figures 3.4a to 3.4c display the targeting efficiency of Endorem
labelled particles with respect to vf .
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(a) Targeting efficiency with respect to vf taken directly from Riegler et al [11].
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(b) Targeting efficiency with respect to vf obtained in this work.
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(c) Targeting efficiency with respect to obtained when ∂Bz
∂x

= 1
1.8137×0.5 T m−1

Figure 3.4: Plot of targeting efficiency of Endorem cells with respect to fluid
velocity, vf .

Figure 3.4a is the graph (4A) in the appendix of Riegler et al. [11] for Endorem labelled cells. Fig-
ure 3.4b is the graph obtained for Endorem labelled cells with the values R and n as given in ta-
ble 3.1. Figure 3.4c more closely agrees with to Figure 3.4a, generated by applying either of the following
conditions:

1. decrease the magnetic steering gradient, ∂Bz
∂x , to 1.8137 times of its original value,
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2. increase the fluid velocity, vf , by 1.8137 times of its original value,

If b = 1.8137,

bvf,old = vf,new (3.14)
Bz,old
b

= Bz,new (3.15)

In both cases, increasing Bz or decreasing vf has the same effect on the targeting efficiency. This can
be understood as the magnetic force depends on ∂Bz

∂x and the drag force depends on vf respectively.
Thus ∂Bz

∂x vf is a constant for a resulting targeting efficiency.

3.8 Targeting efficiency of BioMag labelled cells

Figure 3.5a plots the targeting efficiency of the combination of 40 cells into a spherical mega-cell. This
increases the magnetic force more than the drag force as the former scales with volume and the latter
with surface area.
In [11], it has been mentioned that the nominal radius for BioMag particles is around 0.75 μm and
their iron concentration is 0.8 mg/ml iron. Since the number of BioMag particles per cell, n, is not
given in [11], it has been calculated by the following expression.

R = 3

√
Fec
ρFen

Rc (3.16)

⇔ n = Fec
ρFeR3Rc

3 (3.17)

where Fec is the concentration of iron and ρFe is the relative density of iron with respect to water.
Using equation (3.17), I get n ≈ 29. If this value of n is used as the number of BioMag particles
per cell, a huge deviation is obtained from the published graph. The deviation can be observed by
comparing the published graph (Figure 3.5a) and the obtained graph using n = 29 (Figure 3.5b). The
BioMag particles are micron sized, i.e. bigger than the Endorem particles and n = 29 increases the
magnetic force, Fm, 29 times. Thus, a higher targeting efficiency is to be expected.
However, another article by Riegler et al. [12], states the iron concentration for micron sized particles
(supposedly BioMag) to be 0.5 mg/ml iron and, n = 250. Using Fec = 0.5 mg/ml and n = 250
in equation (3.16), the radius of the particle, R ≈ 0.3 × 10−6 m. Using this value of R instead of
0.75× 10−6 m, Figure 3.5c plots the targeting efficiency with respect to vf . Figure 3.5c is qualitatively
closer to Figure 3.5a than Figure 3.5b.
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(a) Targeting efficiency with respect to vf for BioMag particles (aggregation of 40 cells), taken directly
from Riegler et al. [11].
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(b) Targeting efficiency with respect to vf obtained when R = 0.75μm and n = 29.
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(c) Targeting efficiency with respect to vf obtained when ∂Bz
∂x

= 1
1.8137×0.5 T m−1, R = 0.3 μm and

n = 8.

Figure 3.5: Plot of obtained targeting efficiency of BioMag labelled cells with
respect to vf .

Figure 3.5a displays the published graph in [11], Figure 3.5b displays the obtained graph and
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Figure 3.5c displays the revised graph. As discussed earlier, BioMag particles being bigger than
Endorem particles are expected to have a higher targeting efficiency and therefore the targeting
efficiencies displayed in Figures 3.5b and 3.5c are expected. The discrepancies with the published
result may be accounted to numerical and/or typographical errors.

3.9 Stokes correction factor

An ellipsoid is a ‘squashed’ or ‘stretched’ sphere, technically known as an oblate or prolate spheroid,
respectively. The Stokes drag is different in both the prolate and oblate spheroid and this difference
can be expressed by a Stokes correction factor. The Stokes correction factor can be defined as the
coefficient by which the drag of a sphere of the same volume is multiplied, in order to compensate for
the fact that the object is not spherical. The drag of a spheroid will depend on both the degree of
non-sphericity and its orientation to the flow.

Figure 3.6: Prolate and oblate spheroid.

Riegler et al. [12], presented results for the targeting efficiency where the cells aggregate in the
form of a spheroid instead of a sphere. Because of the following discrepancies, a review on the different
expressions of Stokes correction factors is presented in section 3.9.1 and efforts have been made to
correlate these.

1. Qualitative and quantitative agreement with the results from Riegler et al. [12] could not be
obtained.

2. Various authors have used different formulations for the Stokes correction factor involving volume,
surface and perimeter equivalence. [66, 67].

3. Riegler et al. [12] referenced Leith [67] to calculate the form factor, Kn. However, derivation of
Kn from Leith, as given in section 3.9.1, concludes that the value of Kn used in Riegler et al.
[12], is incorrect.

3.9.1 Comparison of the form factors

3.9.1.1 Form factor in Leith

The form factor in Leith [67] is given as

Kn =
[1
3 + 2ds

3dn

]
(3.18)
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where dn is the diameter of a sphere with the same projected area as the area of the object
projected normal to its direction of motion while ds is the diameter of a sphere with the
same total surface area as the object.

The form factor, for a prolate spheroid, in Riegler et al [12] is given as

Kn =
[1
3 + 2

3
a2 + ac

e sin−1 e

2ac
]

(3.19)

where a is the minor axis, c is the major axis and e =
√

1− a2

c2 . However, reducing equation (3.18) (as
given in section 3.9.1.2) for a prolate spheroid, when projected perpendicular to its axis of rotation I
get

Kn =
[1
3 + 2

3

√
a2 + ac

e sin−1 e

2ac
]

(3.20)

3.9.1.2 Reduction of equation (3.18)

Prolate spheroid
To calculate the diameter of a sphere, ds, with the same total surface area as a prolate spheroid, the
surface area of a sphere and a prolate spheroid are equated. Thus

4π
(
ds
2

)2
= 2πa2

(
1 + c

ae
sin−1 e

)
(3.21)

⇒ ds =

√√√√2
(
a2 + ac

sin−1 e

e

)
(3.22)

• The prolate spheroid can be projected mainly in two directions, i.e. along its minor and major
axis. If the prolate spheroid is projected, perpendicular to its axis of rotation, the projection
resembles an ellipse of major and minor axis c and a. Thus, to calculate the diameter of a sphere
with the same projected area (a circle) as the area of the prolate spheroid projected normal to its
direction of motion (an ellipse), the area of the circle and the ellipse are equated, yielding

π

(
dn
2

)2
= πac (3.23)

dn = 2
√
ac (3.24)

Using equations (3.22) and (3.24)), equation (3.18) can be written as

[1
3 + 2

3
ds
dn

]
=
[1
3 + 2

3

√
a2 + ac

e sin−1 e

2ac
]

(3.25)

Equation (3.25) is equivalent to equation (3.20).

• If the prolate spheroid is projected in the direction along its axis of rotation, the projection
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resembles a circle of radius a, so that

π

(
dn
2

)2
= πa2 (3.26)

dn = 2a (3.27)

Using equations (3.22) and (3.27), equation (3.18) can be written as

[1
3 + 2

3
ds
dn

]
= 1

3 + 2
3

√
2(a2 + ac sin−1 e

e )
4a2 (3.28)

= 1
3 + 2

3

√
(1 + c sin−1 e

ae )
2 (3.29)

Therefore,

Kn = 1
3 + 2

3

√
(1 + lr sin−1 e

e )
2 (3.30)

where c
a = lr > 1.

Oblate spheroid
To calculate the diameter of a sphere, ds, with the same total surface area as an oblate spheroid, the
surface area of a sphere and an oblate spheroid are equated. This yields

4π
(ds

2
)2

= 2πa2(1 + 1− e2

e
tanh−1 e) (3.31)

⇒ ds =

√
2a2(1 + 1− e2

e
tanh−1 e) (3.32)

• When the oblate spheroid is projected perpendicular to its axis of rotation, the projection resembles
an ellipse of major and minor axis, a and c. The value of dn is the same as equation (3.24). The
form factor is

Kn =
[1
3 + 2ds

3dn

]
=
[1
3 +

2
√

2a2(1 + 1−e2

e tanh−1 e)
3
√

4ac

]
(3.33)

=
[1
3 + 2

3

√
a(1 + 1−e2

e tanh−1 e)
2c

]
(3.34)

=
[1
3 + 2

3

√
(1 + 1−e2

e tanh−1 e)
2lr

]
where c

a
= lr < 1 (3.35)

• When the oblate spheroid is projected along its axis of rotation, the projection resembles a circle
of radius a. The value of dn is the same as equation (3.27). The form factor is

Kn =
[1
3 + 2ds

3dn

]
=
[1
3 +

2
√

2a2(1 + 1−e2

e tanh−1 e)
3
√

4a2

]
(3.36)

=
[1
3 + 2

3

√
(1 + 1−e2

e tanh−1 e)
2

]
(3.37)
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3.9.1.3 Form factor in Loth

Prolate spheroid
The form factors denoted by equations (3.38) and (3.39)), both of which are considered in Loth [66],
are available since Oberbeck (1876) and Gans (1911) and have been cited in Kasper (1985) [68].
In the case of a prolate spheroid, the aspect ratio is given as lr = c/a > 1 where a is the minor axis
and c is the major axis. Here, f|| and f⊥ indicate the drag experienced by a spheroid while moving
parallel or perpendicular to the flow. The values of f|| and f⊥ from Loth [66] are,

f|| exact (lr > 1) = (4/3)l−1/3
r (1− l2r)

lr −
(2l2r−1) log(lr+

√
l2r−1)√

l2r−1

(3.38)

f⊥ exact (lr > 1) = (8/3)l−1/3
r (l2r − 1)

lr + (2l2r−3) log(lr+
√
l2r−1)√

l2r−1

(3.39)

f|| approx (6 > lr > 1) =
(4

5 + lr
5

)
l−1/3
r (3.40)

f⊥ approx (6 > lr > 1) =
(3

5 + 2lr
5

)
l−1/3
r (3.41)

Oblate spheroid
In the case of an oblate spheroid, the aspect ratio can be given as lr = c/a < 1. The values of f|| and
f⊥ from Loth [66] are,

f|| exact (lr < 1) = (4/3)l−1/3
r (1− l2r)

lr + (1−2l2r) cos−1 lr√
1−l2r

(3.42)

f⊥ exact (lr < 1) = (8/3)l−1/3
r (l2r − 1)

lr − (3−2l2r) cos−1 lr√
1−l2r

(3.43)

For an oblate spheroid, when (6 < lr < 1), the expressions for f|| approx and f⊥ approx are the same
as that of the prolate spheroid, denoted in equations (3.40) and (3.41) respectively.

3.9.1.4 Agreement of the Kn with f⊥

In the prolate spheroid, the value of Kn in equation (3.30) does not match with f⊥ in equation (3.39).
However, if a factor of l1/6

r is included in equation (3.39), agreement is achieved for small values
of lr. Similarly, agreement is obtained, if a factor of l−1/6

r is included in equation (3.30), as shown
in Figure 3.7a. In Figures 3.7a and 3.7b agreement between the various expressions is obtained only in
the small values of lr i.e. when the value of lr is near unity. Thus

f⊥ = l−1/6
r Kn (3.44)

Figure 3.7b shows that agreement is obtained in the case of oblate spheroid, when the value of lr is
near unity. As expected, Figures 3.7a and 3.7b show that all form factors converge to unity as the
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aspect ratio approaches unity. This is expected as lr = 1 is the value of circle.
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(a) Plot of f⊥ exact, f⊥ approx and Knl
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r as in equations (3.30), (3.39) and (3.41).
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(−1/6)
r as in equations (3.37), (3.41) and (3.43).

Figure 3.7: Plot of Knl
(−1/6)
r with respect to lr.

When the value of lr is near unity, agreement is obtained between f|| and Kn for both prolate and
oblate spheroids. This is because in Leith [67]

K = Kn
dn
dV

(3.45)

where K is the Stokes correction factor using the volume equivalent diameter, dV , and Kn is the
Stokes correction factor based on the surface equivalent diameter. The term dV can be defined as the
diameter of a sphere with the same volume as that of the prolate/oblate spheroid. The term, dn gives
the projection equivalence, in terms of the area. In both oblate and prolate spheroid, lr = c/a and
thus dn can be expressed as

d2
n = 4ac = 4a2lr (3.46)

Here dV denotes the volume conservation equivalence

d3
V = 8a2c = 8a3lr (3.47)

dn
dV

= l
1/2
r

l
1/3
r

= l1/6
r (3.48)



3.9 Stokes correction factor 38

From equation (3.45), it can be concluded that the agreement should be obtained when K = Knl
1/6
r .

Therefore, the correct form of Stokes correction factor with the correct form of volume equivalent
radius is

Fd = 3πµV dVK (3.49)

⇔ Fd = 3πµV dnKn (3.50)

3.9.2 Comparison with the graphs of Riegler et al.

Figure 3.8a indicates the effect of change of lr on targeting efficiency. As the number of cells aggregated
was not given, in order to match the obtained results with the plot when lr = 1, different values of
aggregates are considered in Figure 3.8b. Aggregation of 80 cells, including the factor b, appears to be
the closest approximation of Figure 3.8a, when lr = 1.

(a) Targeting efficiency with respect to vf taken directly from Riegler et al. [11] for different values of lr.
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(b) Targeting efficiency with respect to vf obtained by our calculations when lr = 1.

Figure 3.8: Targeting efficiency with respect to fluid velocity.
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3.10 Targeting efficiency for prolate and oblate spheroids

3.10.1 Prolate spheroid

• The drag experienced by a prolate spheroid while moving along its major axis will be less than
the drag experienced by an equivalent sphere. Hence, the targeting efficiency of a prolate spheroid
should increase. The green line in Figure 3.9 uses f|| in equation (3.38) to calculate the targeting
efficiency.

• The drag experienced by a prolate spheroid while moving along its minor axis will be more than
that of an equivalent sphere. Hence, the targeting efficiency of a prolate spheroid should decrease.
The black and red lines in Figure 3.9 represent the targeting efficiency, calculated by using f⊥ as
mentioned in equations (3.20) and (3.39) respectively.
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Figure 3.9: Targeting efficiency with respect to lr when vf = 5× 10−2 m/s in
different values of form factors as given by equations (3.20), (3.38) and (3.39).
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Figure 3.10: Targeting efficiency with respect to vf in different values of lr
when the form factor is taken as f⊥ from equation (3.39).
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Figure 3.11: Targeting efficiency with respect to vf in different values of lr
when the form factor is considered to be f|| in equation (3.38).

3.10.2 Oblate spheroid

• The drag experienced by an oblate spheroid, while moving along the minor axis, is more than
that of a sphere. Thus its targeting efficiency is less than a sphere.

• When an oblate spheroid moves along the major axis, the drag experienced is less than that of a
sphere. The targeting efficiency increases monotonically.
Zhou et al. [69], mention that oblate particles experience less drag than a volume equivalent
sphere while moving along minor axis while prolate particles experience less drag while moving
along their major axis. This increases the targeting efficiency of prolate and oblate spheroids as
lr changes with respect to a sphere of lr = 1, as shown in Figures 3.11 and 3.13b.
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Figure 3.12: Targeting efficiency with respect to lr in oblate spheroid for
different values of form factors as denoted by equations (3.42) and (3.43).
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(a) Targeting efficiency with respect to vf for different values of lr when the form factor is considered to
be f⊥ as in equation (3.43).
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(b) Targeting efficiency with respect to vf for different values of lr when the form factor is considered to
be f|| as in equation (3.42).

Figure 3.13: Targeting efficiency of an oblate spheroid

From Figures 3.10, 3.11, 3.13a and 3.13b it can be concluded that, for a given range of fluid
velocities, vf , the targeting efficiency of non spherical particles, both prolate and oblate spheroids,
can be greatly increased given the optimum value of aspect ratio, lr. As mentioned in [70], the
non-spherical particles are advantageous to improve drug delivery efficiency compared with spherical
ones, because of the increased drug loading efficiency and larger surface area which leads to enhanced
attachment to a vascular wall.

3.11 Conclusion

Riegler et al. have mentioned the importance of magnetic interaction multiple times and attributed
their experimental and theoretical discrepancies to the neglect of magnetic interaction in their model.
The models of Riegler et al. [11, 12] have been referred to by multiple authors, resulting in over 150
citations. Therefore, it was assumed to be a good starting point to build modelling skills in order to
model multi-particle interactions as presented in chapter 6.
In this chapter, numerical models of three research articles of Riegler et al. are presented. While
replicating their models and validating the results, different modelling errors were found and corrected.
In order to identify the source of errors, a thorough literature review of the derivation of form factors
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for various shapes is presented. It is found that along with the fluid velocity, the shape of MNPs plays
a vital role in determining the targeting efficiency.



Chapter 4

Mathematical modelling for
trajectories of magnetic nanoparticles

Sharma et al. presented a mathematical model for a cluster of MNPs inside a blood
vessel under the influence of an external permanent magnet. Buoyancy was included
in their model but it was not explored. In this chapter, the numerical model of Sharma
et al. is investigated and replicated. Our results show that the effect of buoyancy can
be neglected.

4.1 Additional list of symbols

• H, magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T1

• Hx, component of magnetic field along the x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T

• Hz, component of magnetic field along the z-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T

• Rm, radius of the external magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

• ρf , density of blood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .kg m−3

• ρp, density of the MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

• g, acceleration due to gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m s−2

• dm, distance of the MNP from the centre of the magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .cm

• χ, magnetic susceptibility of the MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• Fm,x, component of magnetic force along the x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

• Fm,z, component of magnetic force along the z-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

• vp,x, component of velocity of the MNP along the x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

• vp,z, component of velocity of the MNP along the z-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

1Following Sharma et al., only in this chapter the symbol for magnetic field is taken as H and not B. Alternative unit
of magnetic field used in this chapter is Gauss (the CGS unit of magnetic field). One Gauss is equivalent to 1× 10−4

Tesla. This was done in order to keep the analytic expressions consistent to trace the errors.
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Table 4.1: List of parameters values for chapter 4.

Parmeter Description Value

R radius of the particle 300× 10−9 m
Ms magnetisation of the external magnet 106A m−1

Rv radius of the blood vessel 75× 10−6 m
Rm radius of the external magnet 2× 10−2 m
η blood viscosity 3.2× 10−3kg m−1 s−1

ρf density of blood 1060 kg m−3

ρp density of the MNP 5000 kg m−3

vf average velocity of blood 10× 10−3 m s−1

g acceleration due to gravity 9.8 m s−2

4.2 Introduction

Sharma et al. [23] present a 2 dimensional mathematical model to describe the trajectories of MNPs in
a blood vessel. The MNPs are injected into a blood vessel and captured at a particular site using a
magnetic field, produced by a magnet positioned outside the vessel. The forces affecting the transport
of MNPs in the model are the magnetic force, the drag force and the buoyancy force. The results show
that when distance between the magnet and the vessel, dm ≤ 2.5 cm, the MNPs are captured before
or at the centre of the magnet. However, as dm increases, i.e. dm > 2.5 cm, the MNPs flow down
the vessel. Although buoyancy is included in the model of Sharma et al., it was not explored. While
implementing the model it was found that the effect of buoyancy is negligible and can be neglected.
Some typographical and presentational errors were also found and corrected.

4.3 Physical geometry

Figure 4.1: Diagram of MNPs in a blood vessel similar to as shown from
Sharma et al. [23]. The magnet is positioned outside the vessel.
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4.4 Equations and respective figures

4.4.1 Generating the components of the magnetic field, H

The components of magnetic field for an infinite magnet, magnetised perpendicular to its axis, can be
represented inside the blood vessel as,

Hx(x, z) = MsR
2
m

2
[(x+ dm)2 − z2]
[(x+ dm)2 + z2]2 (4.1)

and

Hz(x, z) = MsR
2
m

2
2(x+ dm)z

[(x+ dm)2 + z2]2 (4.2)

where, Ms is magnetisation of the magnet, Rm is radius of the external magnet, Hx and Hz are the
components of H. In generating Figure 4.2b, the values given in Sharma et al. are dm = 2.5 cm
and −3Rm ≤ z ≤ 3Rm. The x-component is said to be along the axis of the blood vessel, so x = 0.
In Figure 4.2c, the z values are changed to −3dm ≤ z ≤ 3dm.
Figure 4.2a is the published graph of Sharma et al. Using the parameters in Sharma et al., Figure 4.2b
is produced. However, if instead of z/Rm, z/dm is used in the x-axis, the result ( Figure 4.2c) is closer
to that of Figure 4.2a. This is most likely a typographical/presentational error in Sharma et al., where
instead of z/dm, z/Rm is published.
From Figure 4.2c it can be said that the maximum value obtained by the vertical component Hx = 4000
G is at the centre of the magnet, where z/Rm = 0. The horizontal component, Hz, oscillates around
the central axis of the blood vessel and peaks towards the edges of magnet, where z/Rm ± 1. It is to
be noted that the horizontal axis of Figure 4.2c is different from Figures 4.2a and 4.2b. This is done in
an effort to match the obtained graphs with the published result.
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(a) Simulated result taken directly from Sharma et al. [23].

(b) Calculated values of components of H, with respect to z/Rm.

(c) Calculated values of components of H, with respect to z/dm.

Figure 4.2: Vertical (Hx) and horizontal (Hz) components of magnetic field.
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4.4.2 Generating the components of the magnetic force, Fm

The components of Fm are given by

Fm,x = µ0V
3χ
χ+ 3

[
Hx

∂Hx

∂x
+Hz

∂Hx

∂z

]
(4.3)

Fm,z = µ0V
3χ
χ+ 3

[
Hx

∂Hz

∂x
+Hz

∂Hz

∂z

]
(4.4)

where the partial components of H are given as

∂Hx

∂x
= −MsR

2
m

(x+ dm)[(x+ dm)2 − 3z2]
[(x+ dm)2 + z2]3 (4.5)

∂Hz

∂x
= MsR

2
m

z[z2 − 3(x+ dm)2]
[(x+ dm)2 + z2]3 (4.6)

∂Hx

∂z
= −MsR

2
m

z[3(x+ dm)2 − z2]
[(x+ dm)2 + z2]3 (4.7)

∂Hz

∂z
= MsR

2
m

(x+ dm)[(x+ dm)2 − 3z2]
[(x+ dm)2 + z2]3 (4.8)

Equations (4.3) and (4.4) reduce to

Fm,x = −3µ0VM
2
sR

4
m

dm
2[d2

m + z2]3 (4.9)

Fm,z = −3µ0VM
2
sR

4
m

z

2[d2
m + z2]3 (4.10)

where µ0 is the permeability of vacuum and V is the volume of the particle.
Figure 4.3a cannot be correctly replicated using the given values in Sharma et al. ( Figure 4.3b).
In Figure 4.3c, the x-axis is set to z/dm instead of z/Rm, which brings Figure 4.3c closer to Figure 4.3a.
Once again, this is most likely another typographical/presentational error in Sharma et al. where
instead of z/dm, z/Rm is published.
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(a) Vertical (Fm,x) and horizontal (Fm,z) components of magnetic field taken directly from
Sharma et al.

(b) Calculated values of the vertical (Fm,x) and horizontal (Fm,z) components of magnetic
field with respect to z/Rm.

(c) Calculated values of the vertical (Fm,x) and horizontal (Fm,z) components of magnetic field with
respect to z/dm.

Figure 4.3: Values of the vertical and horizontal components of magnetic
force with respect to z/dm.

Similar to Figure 4.2, it is to be noted that the horizontal axis of Figure 4.3c is different from
Figures 4.3a and 4.3b. This is done in an effort to match the obtained graphs with the published result.
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In [23] and as evident from Figures 4.3a to 4.3c, it is observed that the horizontal component of the
magnetic force, (Fm,z), shows similar profile as the horizontal component of magnetic field (Hz) in the
opposite direction. Therefore, Fm,z oscillates around the central axis of the blood vessel and shows the
maximum value towards the edges of magnet, where z/Rm ± 1. Consequently, as the MNP travels
horizontally above the magnet from left to right, it accelerates till it reaches the centre of the magnet
and then decelerates. As a result, Fm,z is responsible for the oscillatory movement of the MNP within
the blood vessel. The vertical component of magnetic force (Fm,x) is strongest at the centre of the
magnet, where z/Rm = 0 and its strength decreases as towards edges of the magnet, where z/Rm ± 1.
At the centre of the magnet, the value of |Fm,x| = 0.20 pN. This force targets the MNP towards the
magnet.

4.4.3 Generating the trajectories of the magnetic nanoparticles

The equations of motion of the MNPs along the x- and z-axes, in parabolic flow, are given by

vp,x = dx

dt
= 1

3ηµ0R
2M2

sR
4
m

dm
(d2
m + z2)3 −

2
9ηR

2(ρp − ρf )g (4.11)

vp,z = dz

dt
= 1

3ηµ0R
2M2

sR
4
m

z

(d2
m + z2)3 + 2vf

[
1−

(
x

Rv

)2
]

(4.12)

where η is the blood viscosity, R is the radius of the particle, ρp is density of the particle, ρf is density
of blood and g is acceleration due to gravity. The initial position along the x-axis is varied.
Equations (4.11) and (4.12) are solved using ode45 (adaptive Runge-Kutta method) and odeint
(integration method). Figure 4.4 shows the trajectories of the MNPs over time, when dm = 2.5
cm. Figure 4.4a shows the published result of Sharma et al. Using all the parameters as given in
Sharma et al., Figure 4.4b is obtained. Figures 4.4a and 4.4b are qualitatively and quantitatively
different. In Figure 4.4a, the trajectory of the MNP beginning at x/Rv = 1, shows a pattern which is
expected in a parabolic flow. Keeping all the other parameters constant, Figure 4.4c uses rectangular
flow. Figure 4.4c is qualitatively and quantitatively similar to Figure 4.4a. This most likely is a
presentational/modelling error in Sharma et al.
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(a) Simulated result taken directly from Sharma et al. [23].

(b) Calculated trajectories at various initial positions along x-axis.

(c) Calculated trajectories at various initial positions along x-axis in a rectangular flow.

Figure 4.4: Calculated trajectories at various initial positions along x-axis
when dm = 2.5 cm.

From Figures 4.4a to 4.4c it can be said that the conclusion drawn in Sharma et al. that all the
MNPs are captured either before or at the centre of the magnet is incorrect, unless the MNPs are in a
rectangular flow.
Figure 4.5 shows the effect of dm on the trajectories of the MNPs starting from a fixed location. Fig-
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ure 4.5a shows the published result in Sharma et al. and Figure 4.5b shows the calculated result.

(a) Simulated result taken directly from Sharma et al. [23].

(b) Calculated trajectories at various initial positions along the x-axis.

Figure 4.5: Calculated trajectories at various initial positions along the x-axis
for different values of dm.

In Sharma et al., it was concluded that all the MNPS at the centre of blood vessel are captured by
the magnet when the distance between the centres of the blood vessel and the magnet is up to 4.5 cm,
as given in Figure 4.5a. However, the replicated calculations, as displayed in Figure 4.5, show that the
MNPs are captured by the magnet when the distance between the centres of the blood vessel and the
magnet, dm ≤ 3.5 cm.

4.5 Conclusion

The numerical model in Sharma et al. has been cited over 55 times. Therefore, the model in Sharma
et al. was implemented in order to develop modelling skills. A number of numerical errors were found
and corrected. Several graphs generated show significant deviation from the published results. These
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are presented for comparison. In order to trace the source of errors, the references in Sharma et al.
have been investigated.



Chapter 5

Mathematical modelling of the motion
of two microrobots

Mellal et al. analysed the motion of two microrobots in a microfluidic channel. In this
chapter, the theoretical formulations of magnetic interactions as given in Mellal et
al. are reviewed and ab initio calculations to predict the behaviour of two microrobots
have been performed.

5.1 Additional list of symbols

• R(i), radius of the ith MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

• V (i), volume of the ith MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

• m(i), magnetic moment of the ith MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A m2

• p(i), position of the ith MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m

• d(i,j) = |p(i) − p(j)|, distance between the centres of the ith and the jth MNP . . . . . . . . . . . . . . m

• d̂(i,j) = p(i)−p(j)

d(i,j) , unit vector along the line of MNP centres from ith to jth . . . . . . dimensionless

• dR, relative distance in terms of R, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• v(i), velocity of the ith microrobot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m s−1

• F(i)
m , magnetic force experienced by the ith MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

• F(i)
d , drag force experienced by the ith MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

• F(i)
int, dipolar interaction force experienced by the ith MNP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

• lr, aspect ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• k(i), Stokes correction factor of the ith microrobot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

Table 5.1: List of parameters values for chapter 5.

Parmeter Description Value

µ0 the permeability of free space 4π × 10−7 T m A−1

B magnetic field 30 mT
Ms saturation magnetisation 1.23× 106A m−1

η fluid viscosity 4× 10−3kg m−1 s−1

R(1) radius of the 1st microrobot 500 μm
R(2) radius of the 2nd microrobot 250 μm
∂Bz
∂x magnetic gradient 0.05 T m−1
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5.2 Introduction

The magnetic microrobot is a colloidal suspension of superparamagnetic iron oxide (SPIO) particles.
Microrobots offer a number of prospective applications such as performing precise tasks inside the
human body, for instance providing a mobile viewing platform enhancing a surgeon’s view [20]. Mellal
et al. [19], conducted experiments to investigate the motion of two different sized microrobots in a
microfluidic channel. Mellal et al. described the theoretical formulations of the magnetic dipolar
interaction forces between two microrobots in a microfluidic environment under an uniform magnetic
field. The paper showed experimental magnetic interaction forces to be in the order of micronewtons.
Using the methods employed in the past by Cregg et al. to model the effect of interactions on
aggregation of magnetic particles [26, 71–73], this chapter presents an extension of the model of Mellal
et al. [19] to 3D.

5.3 The mathematical model

5.3.1 The physical geometry

x
gradient

z

magnetic field

y

R(1) R(2)

10.4286 mm

2 mm

Fm

Fint

Figure 5.1: Schematic drawing of the experimental setup. The magnetic field,
B, is directed along the z-axis. The magnetic gradient is along the x-axis.

5.3.2 Model assumptions

1. It is assumed that the two microrobots do not make contact with the tube wall.

2. The background magnetic field, along the z-axis, is strong enough to align both the microrobots
in the same direction.

3. The centres of both microrobots are along a line parallel to the x-axis.

4. The magnetic interaction force continues to act along a line parallel to the x-axis till the end of
the simulations.

5. The microrobots are spherical and are placed in a cylindrical tube.

6. Throughout the simulation the magnetisation of the microrobots is considered to be saturated.
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5.3.3 Magnetic force

Two magnetic microrobots are placed in a microfluidic channel, positioned at p(i) = (x(i), y(i), z(i))T ,
where microrobot i ∈ {1, 2}. The magnetic gradient, perpendicular to the magnetic field B, is along
the x-axis. This gradient produces a magnetic force, F(i)

m , on the ith microrobot,

F(i)
m = (m(i) · ∇)B = V (i)(Ms · ∇)B (5.1)

where the magnetic moment, m(i) = V (i)Ms. Here V (i) is the volume of the ith microrobot, Ms is the
saturation magnetisation vector, and B is the background magnetic field. Here Ms = Msm̂, where Ms

is the saturation magnetisation value of the material and m̂ = (mx,my,mz), is the unit vector along
B. Equation (5.1) can be re-written as

[F (i)
m,x, F

(i)
m,y, F

(i)
m,z]T = V (i)Ms


mx

∂Bx
∂x +my

∂Bx
∂y +mz

∂Bx
∂z

mx
∂By

∂x +my
∂By

∂y +mz
∂By

∂z

mx
∂Bz
∂x +my

∂Bz
∂y +mz

∂Bz
∂z

 (5.2)

Since the magnetic moment is assumed to align with the background field B, along the z-axis, it can
be said that mx = my = 0 and mz = 1. Thus, equation (5.2) reduces to

[F (i)
m,x, F

(i)
m,y, F

(i)
m,z]T = V (i)Ms

[
∂Bx
∂z ,

∂By

∂z ,
∂Bz
∂z

]T
(5.3)

Furthermore, the applied gradient is only along the x-axis, so that equation (5.3) reduces to

F(i)
m = V (i)Ms

[
∂Bx
∂z , 0, 0

]T
(5.4)

Following Riegler et al. [11] for an ideal linear gradient it can be said that, ∂Bx
∂z = ∂Bz

∂x , as given in
equation (12) in the model of Reigler et al. [11].

5.3.4 Stokes drag

The drag force experienced by the microrobots is expressed as [19]

F(i)
d = −6πηk(i)R(i)v(i) (5.5)

where η is the fluid viscosity. The k(i) denotes the dimensionless Stokes correction factor for spheroids.
For spheres k(i) = 1. R(i) is the volume equivalent radius and v(i) is the velocity of the ith microrobot.

5.3.5 Magnetic interaction force

In presence of a magnetic field, the magnetic interaction force is given as [74]

F(i)
int = 3µ0

4πd4

(
d0(m(1) ·m(2)) + m(1)(d0 ·m(2)) + m(2)(d0 ·m(1))− 5d0(d0 ·m(2))(d0 ·m(1))

)
(5.6)

where m(1) and m(2) are the dipole moments of the 1st and 2nd microrobots respectively, d̂ = p(2)−p(1)

d is
the unit vector and d = |p(2)−p(1)| is the distance between the microrobots. The magnetic interaction
force, F(i)

int, between any two magnetic particles (here two microrobots) always acts along the same line
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in opposite direction, as shown in section 5.6.2.
Balancing the three forces, F(i)

int, F(i)
d and F(i)

m , I can write

F(i)
int + F(i)

d + F(i)
m = 0 (5.7)

Thus, the velocity vector of the ith microrobot of radius R(i)

v(i) =
F(i)
int + V (i)Ms

∂Bz
∂x [1, 0, 0]T

6πηk(i)R(i) (5.8)

where k(i) is the Stokes correction factor. For spheres, k(i) = 1. The change in the position of each
microrobot, p(i), can be given by

d

dt
p(i) = v(i) (5.9)

5.4 Results

5.4.1 Spherical microrobots

The microrobots begin with positions p(1) = (−5, 0, 0) mm and p(2) = (5.4286, 0, 0) mm. Noting
the alignment of the magnetic moments of the microrobots, shown in Figure 5.1, the direction of
F(i)
int is repulsive. Both F(i)

d and F(i)
m are dependent on R(i), so the microrobots begin with different

velocities determined by their individual sizes. Initially, microrobot 1 is faster than microrobot 2.
However, for microrobot 1, F(1)

m and F(1)
int oppose each other. For microrobot 2, F(2)

m and F(2)
int act in the

same direction. As the distance, d, between the microrobots decreases, F(1)
int increases, slowing down

microrobot 1 and speeding up microrobot 2.
Since the directions of F(1)

int and F(1)
m are opposite, when the value of |F(i)

int| is equal to the |F(2)
m − F(1)

m |,
the distance between the microrobots reaches a constant value.
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(a) Experimental observation taken directly from Mellal et al. [19].
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(b) Calculated positions of the microrobots.

Figure 5.2: Trajectories of the microrobots with time.

The initial idleness of the microrobots in the time range 0 s < t ≤ 1 s in the experimental data
in Figure 5.2a, in [19], is accounted for by the presence of adhesive forces. The model presented in this
chapter currently does not include adhesive forces. The relative distancing of the microrobots in the
time range 1 s < t ≤ 2 s in Figure 5.2a, can be accounted for since the bigger microrobot experiences
greater adhesive force, delaying its motion. Once both microrobots start moving, the bigger microrobot
attains a greater velocity due to its size and the distance, d, decreases in the time range 2 s < t ≤ 3 s.
However, aggregation between the microrobots is hindered due to the repulsive nature of the interaction
force and both microrobots adjust themselves to a common velocity in the time range 3 s < t ≤ 4 s.
Figure 5.2b refers to the calculated trajectories of the microrobots. Qualitative agreement is obtained
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with Figure 5.2a and both the microrobots adjust to a common velocity.
Equating, equations (5.1) and (5.6), (the simplified form of equation (5.6) is given in equation (5.15))
the minimum distance between the microrobots, at which the |F(1)

m | is equal to |F
(i)
int| can be written as

dmin = 4

√
6µ0|m1||m2|
4π|Fm,max|

(5.10)

where |Fm,max| = |F(1)
m | is the magnitude of maximum magnetic force generated by the external gradient

(since F(1)
m > F(2)

m ). The expression of dmin given in Mellal et al. with a possible typographical error is,

dmin = 6µ0|m1||m2|
4π|Fm,max|

(5.11)

In Figure 5.3, the value of dmin, being inversely proportional to |Fm,max|, decreases with increasing
gradient. The red line shows the value of dmin obtained using the expression of Mellal et al. and the
green line shows the value obtained using equation (5.10) when ∂Bz

∂x = 0.5 T m−1.
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Figure 5.3: Calculation of dmin as given in equations (5.10) and (5.11) when
the external gradient is 0.5 T m−1 and the change of dmin w.r.t. the external

gradient experienced, ∂Bz
∂x

.

Figure 5.3 shows that as the magnetic force due to the external gardient increases, even though the
microrobots experience repulsive interaction force, the separation distance decreases. This is caused
only when the overall interaction force is less that the maximum magnitude of magnetic gradient,
|Fint| < |Fm,max|.

5.4.2 Non-spherical microrobots

Microrobots are a colloidal suspension of MNPs and their shapes appear to be spheroidal as given in
the experimental diagram of Mellal et al. (Figure 5.4).
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Figure 5.4: Experimental diagram of Mellal et al. (A): microbeads at their
initial positions, and (B): microbeads at the final positions

The motion of non-spherical microrobots is similar to that of spherical ones. However, the
steady state distance value changes according to the Stokes correction factor, k(i), of the microrobots
(Figure 5.5a). As given in chapter 3, the Stokes correction factor, k(i), for a spheroid of aspect ratio, lr,
can be defined as the ratio of solid spheroid drag force to solid sphere drag force (where both have the
same volume equivalent radius) [66],

k(i) = fd(lr, Re→ 0)
6πηrv(i) (5.12)

The value of k(i) → 1 as lr → 1. As shown in Figure 5.5a, lr = d||
d⊥

, where d|| and d⊥ are the parallel
and normal diameters of a spheroid. The Stokes drag regime is when the value of Reynolds number,
Re� 1. In the presence of an external gradient, the distance, d, between the microrobots decreases
and then reaches a constant value when the magnitude of repulsive dipolar interaction force is equal to
the difference in the magnetic force experienced by the microrobots

(
|F(2)
m − F(1)

m |
)
. Figure 5.5b shows

that the time taken by the microrobots to reach a constant d changes with the value of lr.
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(a) Prolate and Oblate microrobots.
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(b) Change of the distance between the microrobots, d, with time in different values Stokes correction
factor.

Figure 5.5: Change of the distance between the microrobots with Stokes
correction factor.

Figure 5.5b shows that when the microrobots are prolate spheroids the magnetic interaction force
is the highest and it takes longer for the microrobots to reach a constant value of d. On the other hand
when the microrobots are oblate spheroids, magnetic interaction force is the lowest and a constant
value of d is attained much sooner.

5.5 Conclusion

Mellal et al. presented a model of two interacting MNPs, with experimental results. Therefore, this
paper was selected to model in order to learn about magnetic interactions and validate the results.
The numerical and typographical errors found in [19] are corrected.
Microrobots are a colloidal suspension of MNPs and their shapes appear to be spheroidal from the
experimental pictures in Mellal et al. (Figure 5.4). In their paper Mellal et al. model the particles
as spheres. In this chapter their model is extended to account for this spheroidal nature noting the
appropriate Stokes correction factors. Figures 5.5a and 5.5b accounts for the change in distance between
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the microrobots with Stokes correction factor.
This situation of the microrobots adjusting to a common velocity and moving in a straight line is
highly unstable and is unlikely to occur in reality. There is a strong probability that the nature of
the magnetic interaction force will push either/both of the microrobots from its trajectory and will
eventually lead to aggregation. The diameter of the tube (2 mm) is 4 times bigger than the radius of
the largest microrobot (500 μm), which may allow the mircrorobots to have enough space to aggregate.
Neither the mathematical model nor the experimental results presented in Mellal et al. account for
this phenomenon.

5.6 Appendix

While deriving equation (5.11), in Mellal et al., it was found that that the scalar form of the dipolar
interaction force had typographical/presentational errors. Therefore, two simple proofs of the dipolar
interaction force are presented in this section.

5.6.1 Simplification of the expressions for interaction force

The magnetic interaction force can be written in two expressions,

Fint = 3µ0
4πd4

(
d0(m(1) ·m(2)) + m(1)(d0 ·m(2)) + m(2)(d0 ·m(1))− 5d0(d0 ·m(2))(d0 ·m(1))

)
(5.13)

and

Fint = 3µ0
4πd4

(
(d̂×m(1))×m(2) + (d̂×m(2))×m(1) − 2d̂(m(1) ·m(2)) + 5d̂((d̂×m(1)) · (d̂×m(2)))

)
(5.14)

When the magnetic moments of two MNPs are parallel, i.e. m(1) = |m(1)|m̂ and m(2) = |m(2)|m̂, equa-
tions (5.13) and (5.14) can be written as,

Fint = 3µ0|m(1)||m(2)|
4πd4

(
d̂(1− 5(d̂ · m̂)2) + 2m̂(d̂ · m̂)

)
(5.15)

and

Fint = 3µ0|m(1)||m(2)|
4πd4

(
2((d̂× m̂)× m̂)− d̂(2− 5(d̂× m̂)2)

)
(5.16)

Using the rules of triple product of vectors, equation (5.16) can be simplified in

Fint = 3µ0|m(1)||m(2)|
4πd4

(
2(−d̂ + m̂(d̂ · m̂))− d̂(2− 5(d̂2m̂2 − (d̂ · m̂)2)

)
(5.17)

= 3µ0|m(1)||m(2)|
4πd4

(
−4d̂ + 2m̂(d̂ · m̂) + 5d̂(1− (d̂ · m̂)2)

)
(5.18)

= 3µ0|m(1)||m(2)|
4πd4

(
2m̂(d̂ · m̂) + d̂(1− 5(d̂ · m̂)2)

)
(5.19)

Thus, equation (5.15) is equivalent to equation (5.19). This confirms that when the magnetic moments
of any two MNPS are parallel to each other, the two expressions of dipolar interaction force as given
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in equations (5.13) and (5.14) are the same.

5.6.2 Direction of the interaction force

If m̂(2) = −m̂(1), and from the rules of dot product, m̂(1) · (−m̂(1)) = −1, then equation (5.13), can be
written as

Fint = 3µ0|m(1)||m(2)|
4πd4

(
d̂(−1) + m̂(1)(d̂ · (−m̂(1))) + (−m̂(1))(d̂ · m̂(1)) + 5d̂(d̂) · m̂(1))2

)
(5.20)

= −3µ0|m(1)||m(2)|
4πd4

(
2m̂(1)(d̂ · m̂(1)) + d̂(1− 5(d̂ · m̂(1))2)

)
(5.21)

If m̂(2) = m̂(1), then equation (5.13), can be written as,

Fint = 3µ0|m(1)||m(2)|
4πd4

(
d̂(1) + m̂(1)(d̂ · (m̂(1))) + (m̂(1))(d̂ · m̂(1))− 5d̂(d̂) · m̂(1))2

)
(5.22)

= 3µ0|m(1)||m(2)|
4πd4

(
2m̂(1)(d̂ · m̂(1)) + d̂(1− 5(d̂ · m̂(1))2)

)
(5.23)

Thus, equation (5.21) is equivalent with the negative of equation (5.23). This confirms that Fint

between any two magnetic particles is always oppositely directed with respect to each other.



Chapter 6

Dipolar Interactions in MNPs in
parabolic flow

A mathematical model is presented to study the role of the dipolar interaction force in
the aggregation of MNPs in rectangular and parabolic flow. Starting with two MNPs,
the model accounts for a uniform random distribution of multiple MNPs along the
x-axis of the vessel and predicts the size and nature of aggregation that occurs in
different values of fluid velocity. It was found that in parabolic flow, at a specific fluid
velocity, there exists a critical distance range along the x-axis within which if the
MNPs begin, aggregation occurs.

6.1 Additional list of symbols

• R, initial average radius of the MNPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m

• R(i), radius of the ith MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

• V (i), volume of the ith MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

• m̂, unit vector in direction of B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• m, the common magnetic moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A m2

• m(i), magnetic moment of the ith MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A m2

• p(i), position of the ith MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m

• d(i,j) = ||p(i) − p(j)||, distance between the centres of the ith and the jth MNP . . . . . . . . . . . . . m

• d̂(i,j) = p(i)−p(j)

d(i,j) , unit vector along the line of MNP centres from ith to jth MNPs dimensionless

• dR, distance relative to R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless

• r, distance between the MNPs along the x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

• rcrit, simulated value of the distance between the MNPs along the x-axis . . . . . . . . . . . . . . . . . . . m

• rlow, analytic lower limit of the distance between the MNPs along the x-axis . . . . . . . . . . . . . . . m

• rhigh, analytic upper limit of the distance between the MNPs along the x-axis . . . . . . . . . . . . . . m

• remp, empirical approximation of rcrit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

• θ, angle between the line joining the centres of the MNPs and the common magnetic moment .
radians

• F(i)
m , magnetic force experienced by the ith MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

1In the list of common symbols, B is defined as the magnetic field.
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• F(i)
d , drag force experienced by the ith MNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

• F(i)
int, dipolar interaction force experienced by the ith MNP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

Table 6.1: List of parameters values for chapter 6.

Parmeter Description Value

R initial average radius of the MNPs 500× 10−9 m
Ms saturation magnetisation 1.23× 106A m−1

η fluid viscosity 1.6× 10−3kg m−1 s−1

vf average fluid velocity 10−3m s−1

6.2 Introduction

In this chapter, a mathematical model is presented to study the trajectories of multiple MNPs in
parabolic flow, which includes dipolar interaction and drag force. Initially the MNPs are either
positioned manually or they are considered to have an uniform random distribution along the diameter
of the vessel. Following the model of Riegler et al. [11], the magnetic moments of the MNPs are
assumed to be aligned along the length of the vessel, throughout the simulation. According to the
positions of the MNPs along the diameter of the vessel, the differential drag experienced by the MNPs
varies, leading the MNPs to have different velocities. The differential drag refers to the difference in
drag experienced at points in a parabolic flow or other non-rectangular flow.
As the positions of the MNPs change, the strength and direction of dipolar interaction forces between
the MNPs change. When the distance between any two MNPs is equal to the sum of their radii, they
are assumed to be touching. Here, the model pauses, assumes the MNPs to be aggregated in the
form of a sphere with volume equivalent to the total volume of the aggregated MNPs and resumes the
calculations. The simulations run until a specific time or until all the MNPs aggregate. The effects of
the following parameters on the aggregation of MNPs are assessed:

• the average fluid velocity.

• initial positions of the MNPs along the x-axis.

• the initial angle, θ, between the line joining the centres of the MNPs and the common magnetic
moment.

Aggregations occurring in 2 to 50 MNPs are studied in detail. This work was motivated by the results
of Riegler et al. [11, 12, 14], where the discrepancies between the theoretical and experimental results
were entirely attributed to the aggregation of the MNPs. I find that in rectangular/no flow all the
MNPs aggregate with time. However, in parabolic flow, for a specific value of fluid velocity, there exists
a critical distance, rcrit, along the diameter of the vessel within which if the MNPs begin, aggregation
occurs over time. This value of rcrit obtained in the model is investigated when the only forces present in
the model are the dipolar interaction force and the fluid force. Equating the two forces, analytic upper
and lower limits for the value rcrit is obtained. The numerical results are shown to be within these limits.
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6.3 The physical setup
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Figure 6.1: Diagram of θ w.r.t. fixed p(1) and varying p(2), where θ is the
angle between the line joining the centres of the MNPs and the common

magnetic moment, m, of the MNPs.
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Figure 6.2: The simulated setup2.
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6.4 Magnetic force

In this model a uniform magnetic field is assumed, which can be produced by Helmholtz, Merritt or
Ruben coil systems [75]. The force experienced by the ith MNP, due to an external gradient is termed
as the magnetic force, F(i)

m . This model is capable of including an external gradient, however in the
current calculations this is taken to be zero.

6.5 Magnetic interaction force

The magnetic interaction force on the ith particle due to the jth particle is given as

F(i,j)
int = 3µ0

4π(d(i,j))4

(
d̂(i,j)(m(i) ·m(j)) + m(i)(d̂(i,j) ·m(j)) + m(j)(d̂(i,j) ·m(i))

−5d̂(i,j)(d̂(i,j) ·m(i))(d̂(i,j) ·m(j))
)

(6.1)

where m(i), m(j) are the dipole moments and p(i), p(j) are the locations of the ith and jth MNPs
respectively, d̂(i,j) = p(j)−p(i)

‖p(j)−p(i)‖ is the unit vector and d(i,j) =
∥∥∥p(j) − p(i)

∥∥∥ is the distance between the

centres of the ith and jth MNPs. The total magnetic interaction force experienced by the ith MNP,
F(i)
int, due to the remaining n− 1 MNPs is

F(i)
int =

n∑
j=1,j 6=i

F(i,j)
int (6.2)

where the n denotes the total number of MNPs 3. The magnetic interaction force between any two
MNPs always acts in opposite direction w.r.t. each other.

When m(i) = m(j) = m = |m|m̂, a simplified expression of equation (6.1) is

Fint = 3µ0|m|2

4πd4

[
d̂(1− 5 cos2 θ) + 2m̂ cos θ

]
(6.3)

where θ is the angle between the line joining the centres of the MNPs and the common magnetic
moment, m. When θ = 63.43°, the value of |Fint| is at a minimum.
The scalar product of Fint and d̂ is

Fint · d̂ = 3µ0|m|2

4πd4

[
d̂(1− 5 cos2 θ) + 2m̂ cos θ

]
· d̂ (6.4)

= 3µ0|m|2

4πd4

[(
1− 5 cos2 θ

)
+ 2 cos2 θ

]
(6.5)

= 3µ0|m|2

4πd4

[
1− 3 cos2 θ

]
(6.6)

When θ = 54.77° = θc, equation (6.6) is zero. At θc, the sign of the component of Fint along the line
joining the centres of the MNPs, changes from being positive to negative (Figure 6.3).

2Not drawn to relative scale.
3Only in chapter 2, the number of MNPs is denoted by N . In the remaining chapters including this chapter, the

number of MNPs is denoted by n.
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Equation (6.6) can be expressed in terms of the second Legendre polynomial given by

P2(x) = 1
2(3x2 − 1) (6.7)

Figure 6.3: Plot of |Fint| and |Fint · d̂| w.r.t. θ.

6.6 Fluid force

The Stokes’ drag is given as

Fd = −6πηR(i)(v(i) − vf ) (6.8)

where η is the fluid viscosity, vf is the fluid velocity and v(i) is the velocity of the ith MNP.
In the fluid velocity, vf , the velocity component in the direction normal to the flow is zero and non-slip
boundary conditions are applied at the tube surface of contact. The parabolic fluid velocity, vf , is
given as

vf =
[
0, 0, 2vf

(
1−

(
x

Rv

)2
)]

(6.9)

where vf is the average fluid velocity. Balancing the three forces, F(i)
int, F(i)

d and F(i)
m , I can write

F(i)
int + F(i)

d + F(i)
m = 0 (6.10)

The velocity of the ith MNP is given by

v(i) = F(i)
int + F(i)

m

6πηR(i) + vf (6.11)
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In our model, because of the absence of an external gradient, F(i)
m = 0.

The position of each MNP is calculated by solving equation (6.12),

dp(i)

dt
= v(i) (6.12)

6.7 Algorithm to calculate the aggregation

The following algorithm is applied to calculate the aggregation of n MNPs, where n ∈ N.

1. The initial positions of the MNPs can either be fixed manually or generated randomly. In either
case, the MNPs are positioned along the x-axis. More details on the random distribution are
included in section 6.10.2.1.

2. With the input arguments consisting of the initial values of positions and the starting time,
the ode solver is called to solve equation (6.12). The R.H.S. of equation (6.12), is calculated
from equation (6.11).

3. The ode solver is called in a loop until the maximum time is reached or until any p MNPs
aggregate, where p ∈ N, p ≥ 2 and p ≤ n.

4. The positions of the aggregated MNPs and the time instance of aggregation are recorded. In the
list of aggregated MNPs, the lowest numbered MNP is retained and the rest of the MNPs are
deleted.

5. In order to conserve the volume, from the total volume of the aggregated MNPs, the equivalent
radius of a sphere is calculated. The radius of the retained MNP is updated to the equivalent
radius. The calculations are then re-run from the recorded time instance until a certain value of
time.

6.8 Dipolar interactions in uniform flow

In Figure 6.4, the trajectories of both MNPs relative to p(1) are plotted. The starting positions of the
MNPs are, p(1) = (0, 0, 0) and p(2) = dRR(sin θ, 0, cos θ) where, dR = 20, 0 < θ ≤ π/2 and R is the
initial average radius of the MNPs.
The initial distance relative to radius, dR, is expressed as

dR = d(i,j)

R
(6.13)

In uniform flow, the effects of the dipolar interaction force can be summarised as follows:

• In Figure 6.4, when θ < θc, the MNPs attract each other. Here, θc ≈ 54.77°, is the critical angle,
at which the sign of the component of the dipolar interaction force along the line joining the
centres of the MNPs, changes from positive to negative.

• When θ > θc, the MNPs initially repel each other which changes the value of θ. As the value of
θ approaches θc, the sign of the component of the dipolar interaction force along the line joining
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the centres of the MNPs, changes from negative to positive. Figure 6.4 represents the closed
curve nature of the magnetic field.

• When the initial distance between the centres of the MNPs is less than 50 radius (d(i,j) < 50R),
aggregation occurs in every value of θ, except when θ = π/2.

Rectangular flow is comparable to no flow. Therefore, the above points are valid in the case of
rectangular flow as well.
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Figure 6.4: Relative trajectories of the MNPs w.r.t. MNP 1, when the initial
value of p(1) is fixed at the origin and the initial values of p(2) change with θ,

where 0 < θ ≤ π/2.

6.9 Dipolar interactions in parabolic flow

In parabolic flow, the aggregation of the MNPs depends on the following factors.

6.9.1 The average fluid velocity, vf

1. In low vf , i.e vf < 10−5 m s−1, F(i)
int dominates and the behaviour of the MNPs resembles that of

no flow. The probability of aggregation of most/all of the MNPs, is very high.

2. In high vf , i.e vf > 10−2 m s−1, F(i)
d dominates and depending on the positions of the MNPs

along the x-axis, one MNP attains a higher velocity due to the differential drag. Due to the
difference in the velocities, the distance, d(i,j), between the MNPs increases, which reduces the
effective F(i)

int. Therefore, the probability of aggregation is low.

3. In the intermediate range, i.e. 10−5 < vf < 10−2 m s−1, the values of F(i)
int and F(i)

d are comparable.
The likelihood of aggregation in this range, is investigated in this chapter.
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6.9.2 The capture range of aggregation

The differential drag in parabolic flow depends on the positions of the MNPs along the x-axis. For
a particular value of vf , the capture range of aggregation, rcrit, can be defined as the largest initial
distance between the MNPs along the x-axis, within which if the MNPs begin, aggregation occurs over
time. The value of rcrit, at different values of vf is calculated according to the following algorithm and
represented in Figure 6.5 in terms of radius apart i.e dR.

• The starting position of p(1) is kept fixed at the origin.

• The initial z coordinate of the p(2) is kept fixed while its initial x coordinate is varied using the
bisection method, to locate the particular point, rcrit, beyond which if p(2) begins, there is no
aggregation.

• Once a value of rcrit is obtained, the initial z coordinate is increased to ensure consistency.

• As vf increases, the value of rcrit decreases. This corresponds with the fact that in high values of
vf aggregation decreases.
Analytic limits of the capture range are obtained and plotted alongside rcrit w.r.t. vf . (Figure 6.5)

Analytic limits of the relationship between rcrit and vf can be obtained by equating the dipolar
interaction force and the differential Stokes’ drag. The analytic lower and upper limits, rlow and rhigh
respectively, are defined in equations (6.23) and (6.24).

6.9.2.1 Analytic derivation of rlow and rhigh when ∆Fd = Fint

When ∆Fd = Fint, analytic lower and upper limits, rlow and rhigh respectively, for the numerical data,
rcrit, can be obtained. The fluid velocity at any point along the x-axis is given by the parabolic profile

vf (x) = 2vf

[
1−

(
x

Rv

)2
]

(6.14)

Considering two MNPs located at points x1 and x2 along the x-axis, separated by a distance r, the
change in the drag, ∆Fd, experienced by the MNPs is

∆Fd = 2vf6πηR
R2
v

[
x2

2 − x2
1

]
(6.15)

= kdvf [(x1 + r)2 − x2
1] (6.16)

where kd = 12πηR
R2
v

(6.17)

∆Fd = kdvf [2x1r + r2] (6.18)

where x2 = x1+r. Depending on the distance, r, between the two MNPs along the x-axis, equation (6.18)
can be simplified in two ways.

1. When the MNPs are closely located along the x-axis, i.e. r � x1, equation (6.18) can be written
as

∆Fd = 2kdvfx1r (6.19)
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2. When the MNPs are equally spaced along the x-axis i.e. r = x1, equation (6.18) can be written
as

∆Fd = 3kdvfr2 (6.20)

When m(i) = m(j) = |m|m̂, equation (6.1), can be written as

Fint = 3µ0|m|2

4πd4

(
d̂(m̂ · m̂) + m̂(d̂ · m̂) + m̂(d̂ · m̂)− 5d̂(d̂ · m̂)(d̂ · m̂)

)
(6.21)

If both d̂ and m̂ are in the same direction and along the x-axis, r = d, equation (6.21) reduces to

Fint = 3µ0
2πr4 (VMs)2 = ki

r4 (6.22)

where ki = 3µ0
2π

(
4πR3Ms

3

)2
.

Considering ∆Fd = Fint,

• When the MNPs are very close to each other and equating equation (6.19) and equation (6.22),
the lower limit of the capture range can be given as

rlow =
(
ki
kd

1
2vfx1

)1/5

(6.23)

• When the first MNP is equally spaced from the origin and the second MNP, equating equa-
tions equations (6.20) and (6.22), the upper limit of the capture range can be given as

rhigh =
(
ki
kd

1
3vf

)1/6

(6.24)

The limits rlow and rhigh are obtained in two extreme cases. Equations (6.23) and (6.24) reveal a 1/5th

and 1/6th power dependence of vf with the lower and upper limits, respectively.
As given in equation (6.23), the lower limit, rlow, is obtained when the distance between the MNPs
along the x-axis is very small, i.e. when |x2 − x1| = r � 800R, where 800R is the radius of the vessel.
The limit, rlow, is valid for x1 > 0, because at x1 = 0 there is no linear variation in the parabolic
differential drag and I get infinite critical distance as the lower limit. For rlow, the extreme lower
bound can be obtained when, x1 = 800R. However, close agreement with the numerical results has
been observed with x1 = 200R in the same equation.
As given in equation (6.24), the upper limit, rhigh, is obtained when the first MNP is equally spaced
from the origin and the second MNP, along the x-axis. Unlike in rlow, here there is no explicit
requirement of the locations of the MNPs and equation (6.24), is valid as long as x2 = 2x1.
As shown in Figure 6.5, the capture range, rcrit, obtained in the numerical calculations is within the
lower limit, rlow, and the upper limit rhigh. Improved numerical agreement is also observed with an
empirical fit (equation (6.25)) valid throughout the range and accurate with a maximum error of less
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than 2%. This formula is proposed by one of my supervisors, Dr PJ Cregg.

remp = 1.4
(

ki
3vfkd

)0.1705

(6.25)
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Figure 6.5: Plot of rcrit, rlow (from equation (6.23)), rhigh (from equa-
tion (6.24)) and remp (from equation (6.25)), vs vf

6.9.3 The angle, θ, between the line joining the centres of the MNPs with the
common magnetic moment.

1. From Figures 6.6 to 6.9, it can be concluded that when the initial positions of the MNPs are
directly above each other i.e. (θ = π/2), they do not aggregate for the given fluid velocities.

2. In Figures 6.6 to 6.9, the MNPs come closer in the x-axis but they get further apart in the z-axis.

3. Figures 6.6 to 6.9, are calculated till a particular distance, d = 400000R, along the z-axis, is
travelled by the MNPs. All the figures show the same underlying pattern i.e. after a certain time,
the difference in the positions of the MNPs, d(i,j), increases linearly with time.

4. As shown in Figure 6.10, when the configuration of the MNPs is slightly altered, i.e. θ 6= π/2,
the MNPs may aggregate.
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(a) (b)

(c) (d)

Figure 6.6: When vf = 10−6 m s−1 and θ = π/2, (a): Plot of positions of
MNPs. (b): Plot of distance between the MNPs, dR, w.r.t. time, (c): Movement
of MNP 1 along x-axis w.r.t. time, (d): Movement of MNP 1 along z-axis w.r.t.

time.

(a) (b)

Figure 6.7: When vf = 10−5 m s−1 and θ = π/2, (a): Plot of positions of
MNPs. (b): Plot of dR, w.r.t. time.
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(a) (b)

Figure 6.8: When vf = 10−4 m s−1 and θ = π/2, (a): Plot of positions of
MNPs. (b): Plot of dR, w.r.t. time.

(a) (b)

Figure 6.9: When vf = 10−3 m s−1 and θ = π/2, (a): Plot of positions of
MNPs.(b): Plot of dR, w.r.t. time.

Keeping all the physical conditions fixed as in Figure 6.9, if the position of the second MNP is
slightly shifted so that the MNPs are not directly above each other i.e. when p(2) = [20R, 0, R], the
MNPs aggregate.

P
os
it
io
n
of

M
N
P
s
al
on

g
X

ax
is

(m
)

−20R

−10R

0R

10R

20R

30R

40R

Position of MNPs along Z axis (m)

0R 1000R 2000R 3000R 4000R

(a) (b)

Figure 6.10: When vf = 10−3 m s−1 and p(2) = [20R, 0, R], (a): Plot of
positions of MNPs. (b): Plot of dR, w.r.t. time.
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6.10 Multiple particles

6.10.1 Multiple MNPs with fixed initial positions

6.10.1.1 3 MNPs

1. When the MNPs are far apart i.e. r ≥ 100R, there is no interaction between them. All three
move with the fluid velocity.

Figure 6.11: Trajectories of 3 MNPs when r = 100R.

2. In Figure 6.12a, when two of the MNPs are closer and the 3rd one is far apart along the x-axis,
the behaviour of the two interacting MNPs in the 3 particle model is identical to the 2 particle
model.
In Figure 6.12b, when the starting distance between 1st and 3rd MNP is 100R, initially the 3rd
MNP does not interact. Due to the interaction between the 1st two MNPs, the 1st MNP moves
towards to the 3rd MNP (d < 100R), causing the 3rd MNP to interact, which in turn pushes the
1st MNP. As a result of the differential drag, the direction of the interaction forces change and
the 1st and 2nd MNP aggregates in time.
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Figure 6.12: Trajectories of 3 MNPs when 2 MNPs are closer along x-axis
than the third.

3. In Figure 6.13, the MNP at origin is equally spaced from the other two MNPs and r = 20R.
Initially p(1) = (0, 0, 0), p(2) = (20R, 0, 0) and p(3) = (−20R, 0, 0). For the 1st MNP with the
maximum velocity, the net interaction force due to the other two MNPs cancels out in the x-axis
but adds up in the z-axis. The other two MNPs are initially repelled by the 1st MNP. As 1st
MNP moves ahead due to the differential drag, the other two MNPs experience equal attractive
force from the 1st MNP and as a consequence all three MNPs aggregate in time.
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Figure 6.13: Trajectories of 3 MNPs when r = 20R.

4. In Figure 6.14, the MNP located at 20R along the x-axis is equally spaced from the other two
MNPs and r = 20R. The MNPs are initially positioned in the top half of the vessel. Initially
p(1) = (20R, 0, 0), p(2) = (40R, 0, 0) and p(3) = (0, 0, 0). Initially all the three MNPs repel. As a
result of the differential drag, the interaction angle between the MNPs changes. The third MNP
initially experiences the highest fluid velocity, moves ahead faster than the other two MNPs,
while the other two MNPs aggregate.

Figure 6.14: Trajectories of 3 MNPs, when positioned in the top half of the
vessel.

6.10.1.2 9 MNPs

As the number of MNPs increases, the number of collisions per particle increase and thus the probability
of aggregation increases. As described in section 6.7, once any two or more MNPs aggregate, the
model pauses and treats the aggregation as a sphere with radius equivalent to the conserved volume of
the aggregated MNPs. The model then restarts and calculates the trajectories of the new number of
MNPs until a time limit is reached or till all the MNPs aggregate. Figure 6.15a plots the trajectories
of MNPs until all the MNPs aggregate. The ‘stars’ in the Figure 6.15a indicate the positions of the
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MNPs before each run of the ode solver. Figure 6.15b plots the ratio between the total number of
MNPs after each aggregation instance and the initial number of MNPs. As time increases the ratio
decreases, i.e. the total number of MNPs decreases. Each aggregation instance can be defined as a
separate run of the ode solver. Figure 6.15b shows that by t = 0.3 s, all the MNPs aggregate.

(a)

(b)

Figure 6.15: (a): Trajectories of 9 MNPs over time. (b): Aggregation of 9
MNPs w.r.t. time.

6.10.2 Multiple MNPs with random initial positions

6.10.2.1 Initial configuration of multiple MNPs in random distribution

1. Inverse Transform sampling: In this method, random points, (z, x), are generated on a circle. To
generate a uniform random distribution of MNPs, along the x-axis of the tube, the generated x
values are then used as the initial x locations of the MNPs.

2. Rejection sampling: In this method, random points, (z, x), are generated uniformly on the square
of side, s, where −Rv ≤ s ≤ Rv. The points outside the circle of radius Rv are filtered out. The
generated x values are then used as the initial x locations of the MNPs.

3. Projection of MNPs: It is assumed that the MNPs are randomly distributed over the cylindrical
tube cross-section. It can be projected on a plane as

W (x) = Rv sin
(

cos−1 x

Rv

)
(6.26)
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where x indicates the random points generated along the x-axis.

Although all the above mentioned types of distribution patterns are investigated, the distribution
obtained by projection of MNPs more closely relates to a realistic experiment than the rest. Therefore
the following results are generated where the initial distribution of the MNPs is given by equation (6.26).
Figure 6.16 plots the trajectory of 30 MNPs, running for a time period of 5 seconds. Keeping all the
constants same as in Figure 6.16, Figure 6.17 plots the trajectory of 30 MNPs, running for a time
period of 0.1 s, i.e. Figure 6.17 depicts a zoomed version of Figure 6.16.

Figure 6.16: Plot of the number of aggregated MNPs when vf = 10−3 m s−1.

Figure 6.17: Plot of 30 MNPs for a time period of 0.1 s.
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6.11 Conclusion

A detailed description of aggregation of MNPs in parabolic flow in the presence of dipolar interaction
force and Stokes’ drag is presented. The average fluid velocity was found to be an important factor in
aggregation. At a specific value of the average fluid velocity, there exists a critical distance along the
x-axis within which if the MNPs begin, aggregation occurs over time. Analytic limits of the critical
distance are obtained and plotted with the numerical results and an empirical formula (agreement is
obtained with 2% error). The empirical formula is proposed by one of my supervisors, Dr PJ Cregg.
In the case of multiple MNPs starting with random positions along the x-axis, as the average fluid
velocity increases, the aggregation decreases.



Chapter 7

Conclusion

This chapter summarises the work done in each of the chapters presented in the thesis
and provides possible scenarios for future work in chapters 2 and 6.

7.1 Chapter 1

Chapter 1 details the general information regarding the the role of MNPs in biomedicine, especially in the
applications magnetic hyperthermia, magnetic cell imaging and delivery, magnetic drug targeting and
the development of magnetic microrobots. This is followed by a section on the magnetic fundamentals
relevant to the work carried out in chapters 2-6 of the thesis.

7.2 Chapter 2

Chapter 2 reviews the existing models of magnetic hyperthermia and the numerical techniques to
solve the LLG equation. The computational difficulties in solving the LLG equation in the lower
range of frequencies are discussed. In the single particle model, the energy has the low and high
frequency asymptotes, 4µ0MsH and µ0πMsH

αN
ω respectively. An empirical formula for energy has

been developed which is based on the form of a first order low pass filter frequency response where
choosing a cut-off frequency given by ωc = αNπ

4 aligned the formula well with the data.
This is followed by the development of a mathematical model of magnetic hyperthermia which
includes interparticle interactions. It is noted that as the dipole-dipole interactions scale with r3, the
overall behaviour described by the model effectively scales with particle radius. Finally, empirical
approximations are presented to determine the optimum heating for a chain of MNPs. For multiple
particles, the transverse chain arrangement is found to be the most favourable observed. In practice,
this tranverse chain arrangement could be achieved by aligning the MNPs with a static magnetic field
prior to the application of the perpendicular alternating magnetic field.
When the alternating magnetic field is perpendicular to the magnetic moment of the MNPs and the
MNPs are aligned head to tail, it is observed that interparticle interactions aid the heating, given the
interparticle distance, d0 ≤ 3

√
Ms
H . In all other cases the interparticle interactions hinder the heating

mechanism. Therefore, it can be concluded that as a result of dipole-dipole interactions, the Ms/H

ratio plays a significant role in the heating of MNPs. Equations (2.30) and (2.32), could be used to
predict the coating thickness required for optimum heating in the manufacturing of MNPs in MHT. It
is noted that anisotropy is likely to enhance the inhibition of the applied field response. Therefore, the
inclusion of anisotropy can be expected to inhibit the MNPs delivering this enhanced heating. The
empirical approximates as given in section 2.8, should allow designers to determine the limit on the
coating thickness which might still allow enhanced heating.
The maximum additional heating in multiple MNPs almost reaches saturation when N ≥ 8. This
indicates that increasing the number of MNPs does not necessarily increase the generated heating. The
available computational power set a limit of N = 12 in this simulation. Future work might investigate
the effect of further increasing the value of N .
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In this work, the MNPs are considered to be spherical. The amount of heating is expected to change
if the shapes of the MNPs are altered. Future work might investigate the effect of the shapes of the
MNPs on the overall heating.

7.3 Chapter 3

Magnetic Cell Delivery (MCD) is the delivery of healthy cells to diseased targets using MNPs as carriers
guided by magnetic fields. Existing theoretical models differ significantly from experimental results,
which according to researchers, specifically Riegler et al., is most likely due to neglect of magnetic
interactions. Riegler et al. have mentioned the importance of magnetic interaction multiple times and
attributed their experimental and theoretical discrepancies to the neglect of magnetic interaction in
their model. The models of Riegler et al. [11, 12] have been referred to by multiple authors, resulting
in over 150 citations. Therefore, it was assumed to be a good starting point to build modelling skills in
order to model multi-particle interactions as presented in chapter 6.
To model interparticle interactions in parabolic flow later in the thesis, chapter 3 reviewed, replicated
and verified two papers and a thesis of Riegler et al., during which different modelling errors were
found and corrected. In order to identify the source of errors, a literature review of the derivation of
form factors for various shapes is presented. It is found that along with the fluid velocity, the shape of
MNPs plays a vital role in determining the targeting efficiency.

7.4 Chapter 4

Sharma et al. presented a mathematical model for a cluster of MNPs inside a blood vessel under
the influence of an external permanent magnet. Buoyancy was included in their model but it was
not explored. The numerical model in Sharma et al. has been cited over 55 times. Therefore, in
this chapter the numerical model in Sharma et al. was implemented and investigated in order to
develop modelling skills. Our results show that the effect of buoyancy can be neglected. A number of
numerical errors were found and corrected. Several graphs generated show significant deviation from
the published results. These are presented for comparison.

7.5 Chapter 5

Magnetic microrobots offer a number of prospective applications in biomedicine. In this chapter, the
theoretical formulations of magnetic interactions as given in Mellal et al. are reviewed and ab initio
calculations to predict the behaviour of two microrobots were performed. A number of numerical
errors have been found and corrected. Mellal et al. presented a model of two interacting MNPs, with
experimental results. Therefore, this paper was selected to model in order to learn about magnetic
interactions and validate the results. The numerical and typographical errors found in [19] are corrected.
Microrobots are a colloidal suspension of MNPs and their shapes appear to be spheroidal from the
experimental pictures in Mellal et al. (Figure 5.4). In their paper Mellal et al. model the particles
as spheres. In this chapter their model is extended to account for this spheroidal nature noting the
appropriate Stokes correction factors. Figures 5.5a and 5.5b account for the change in distance between
the microrobots with Stokes correction factor.
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This situation of the microrobots adjusting to a common velocity and moving in a straight line is
highly unstable and is unlikely to occur in reality. There is a strong probability that the nature of
the magnetic interaction force will push either/both of the microrobots from its trajectory and will
eventually lead to aggregation. The diameter of the tube (2 mm) is 4 times bigger than the radius of
the largest microrobot (500 μm), which may allow the mircrorobots to have enough space to aggregate.
Neither the mathematical model nor the experimental results presented in Mellal et al. account for
this phenomenon.

7.6 Chapter 6

Chapter 6 presents a mathematical model to study the role of the dipolar interaction force in the
aggregation of MNPs in rectangular and parabolic flow. Starting with two MNPs, the model accounts
for a uniform random distribution of multiple MNPs along the x-axis of the vessel and predicts the
size and nature of aggregation that occurs in different values of fluid velocity. A detailed description of
aggregation of MNPs in parabolic flow in the presence of dipolar interaction force and Stokes drag is
presented. The average fluid velocity was found to be an important factor in aggregation. Here MNPs
are considered whose initial positions are always above or below each other along the vertical axis of
the vessel. A critical distance is then found between the MNPs within the vessel. If the MNPs begin
their motion within this critical distance, then over time aggregation occurs. This critical distance is
found to depend upon the initial position along the diameter of the vessel and also the fluid velocity.
Analytic limits of the critical distance are obtained and plotted with the numerical results and an
empirical formula (agreement is obtained with 2% error).
In the case of multiple MNPs starting with random positions along the x-axis, as the average fluid
velocity increases, the aggregation decreases. Future work might investigate the size of aggregation
with respect to the fluid velocity.
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