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Deep Learning for Autonomic SLA Management of NFV
Resources towards Next Generation Networks

Nikita Jalodia

Abstract

Recent advancements in the domain of Network Function Virtualization (NFV), and the
rollout of next-generation networks have led to a new era of applications delivered via a
paradigm of flexible and softwarized communication networks. This has opened the market
to a wider movement towards virtualized applications and services in key verticals such
as automated vehicles, smart grid, virtual reality (VR), Internet of Things (IoT), industry
4.0, telecommunications, etc. This has necessitated the requirement for the upkeep of
latency-critical application architectures in future networks and communications. While
Cloud service providers recognize the evolving mission-critical requirements in latency
sensitive verticals, there is a wide gap to bridge the Quality of Service (QoS) constraints
for the end-user experience. Most latency-critical services are over-provisioned on all
fronts to offer reliability, which is inefficient towards scalability in the long run.

The research presented in this work aims to address the challenges behind effectively
managing the trade-off between efficiency and reliability when considering latency critical
applications based in a high-availability network slice in next-generation softwarized
networks. In the course of research done in this work, we design and develop algorithms
to address the complexity towards meeting QoS demands in serving upcoming verticals
through the softwarised network architecture, and develop deep learning based frameworks
for proactive SLA management in the use-case of a latency-critical NFV application. We
utilize data from a real-world deployment to configure and draft a realistic set of Service
Level Objectives (SLOs) for a voice based NFV application, and leverage various machine
learning based methodologies to proactively identify and predict multiple categories of
SLO breaches associated with an application state. With this, we aim to gain granular
SLA and SLO violation insights, enabling us to study and mitigate their impact and inform
precision in drafting proactive scaling policies in future.
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Chapter 1

Introduction

The next generation of networks hold a vision to expand communications from the scale of
billions in the world’s population to a virtually limitless scale of inter-connectivity between
humans, machines, and things. As a result, we are facing a paradigm of exponential
growth in enhanced services and applications, network traffic, and consumers. The global
mobile traffic is expected to reach 5016 Exabytes (EB) per month in 2030 [1], which is
an explosive surge as compared to 51 EB per month in 2020 [2]. Both supporting and
driving this demand, the next generation of communication networks continue to be driven
by a fundamental restructuring in the way that the networks and services are deployed
and delivered. Network programmability and softwarisation are the key drivers of this
change, and are delivered via the concepts of Software Defined Networking (SDN) and
Network Function Virtualization (NFV) [3]. These continue to play a pivotal role in
the vision of 6G, forming the backbone of flexible and intelligent networks [4]. SDN
abstracts the underlying network while NFV introduces softwarisation and decouples
network functions from the underlying hardware, overall creating a hardware agnostic
virtualized environment for network applications [5]. This shift has opened the market to
a wider movement towards virtualised applications and services in key verticals such as
automatic vehicles, smart grid, virtual reality (VR), internet of things (IoT), industry 4.0,
etc., and also includes verticals that previously relied solely on specialised hardware. A
key example of such a sector is the telecommunications industry, which is driven by one of
the oldest and most complex operational and business support systems to date [4].

Traditionally, with its specialised infrastructure, the telecoms realm has evolved towards
a highly reliable service, with carrier-grade offerings guaranteeing a five-nines standard
of availability [6]. However, with the emergence of such agile and flexible paradigms as
enabled with the coupling of SDN and NFV, we are seeing an emergence of a new era
of applications driven by the vision of low latency and high reliability [4]. 5G’s usage
scenario of ultra-reliable low-latency communications (URLLC) is further expected to
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extend in scope to a high-throughput ubiquitous global connectivity at scale, driving all
major verticals towards a change [4]. As a result of such a shift, the Cloud infrastructure
is no longer host to just web based application services, but is also being extended for
the next-generation of requirements that fuel these futuristic application verticals [3]. A
key aspect to driving such a change is in how the Cloud reacts to such a latency-critical
demand, and in being precisely proactive over time [7].

The remainder of this Chapter presents the research hypothesis that summarises the
intent of this dissertation, explicitly defines the scope using research questions, states the
research contributions, and outlines the organization of this dissertation.

1.1 Research Hypothesis

The research presented in this work aims to address the complexity towards meeting QoS
demands in serving upcoming verticals through the softwarised network architecture. This
is directed towards effectively managing the trade-off between efficiency and reliability
when considering latency critical applications based in a high-availability network slice in
next-generation softwarized networks. To that end, the research hypothesis of this work is
as follows:

A combined framework of Graph Neural Networks and Deep Reinforcement Learn-
ing can bridge the tradeoff between efficiency and reliability to enable topology-aware dy-
namic resource management for NFV network services modelled as a multi-component
Service Function Chain, and be adept to deal with proactive SLA enforcement for virtual
resources.

Building up from the above, we examine four research questions in this dissertation.
These are defined as follows:

1.2 Research Questions

1.2.1 First Research Question (RQ1)

Given the use-case scenario of a latency-sensitive NFV based application, what
constitutes a suitable SLA definition to track resource provisioning based QoS over

time?

This aims to establish and draft a realistic SLA definition that tracks the futuristic com-
plexity of the use-case, which in turn would serve as the basis for optimizing all machine
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learning algorithms. This constitutes drafting the SLOs that would constitute the SLA defi-
nition, and identifying what service level metrics would be tracked as feature-engineered
KPIs input into the learning models. The procedure involves the process of understanding
the pains and gains of such a system and use-case in a real-world setup, identifying the
bottlenecks that trigger a degradation in QoS for such an application, and using these
definitions to label the application data for SLO and SLA violations accordingly. Data
engineering and analysis is an inherent part of this phase of study, and involves the trans-
formation of tracked and collected raw system resource monitoring telemetric data into a
structured dataset; further followed by cleaning, pre-processing, and appropriate labelling
too in this case.

1.2.2 Second Research Question (RQ2)

Given the complexity and dimensionality of data and tracked SLAs, what subset of
machine learning solutions are suited to classify the application state at a given point in

time as that of an SLA violation for such a task?

This aims to establish baselines in terms of the performance of classical machine learning
methods versus deep learning techniques given the complexity of classification methodol-
ogy required. Key factors include evaluating the processed and labelled data to establish
whether the classification problem is balanced or imbalanced, single-output or multi-output,
etc. This also involves assessing the level of correlation between output labels, identifying
whether they can be treated independently or constitute a more complex overlap that
requires non-linear learning methods like deep learning methodologies.

1.2.3 Third Research Question (RQ3)

While tracking the application use-case to proactively avoid SLA violations, do learning
methods that track and preserve the inherent topological dependencies perform

holistically better than those that work at the higher-level without active knowledge of
this metadata? How can this be measured?

This aims to establish the level of granularity in learning that yields the most precise results
in proactively forecasting SLA violations over time. While working with time-series data,
recurrent neural network architectures like LSTM work at the application level for both
single-step and multi-step forecasting, with the choice of both single-output and multi-
output predictions towards multivariate models. However, since the NFV application’s VNF
can be represented as a directed graph of VNFCs through which data flows sequentially,
GNN models that also incorporate the node dependencies as topological information
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preserved during learning have the capacity to leverage this information towards more
precise and effective forecasting. The intent here is to establish the best performing machine
learning models in both categories, and compare whether the additional incorporation of
spatial metadata enhances the predictive performance over just using temporal information.

1.2.4 Fourth Research Question (RQ4)

How can reinforcement learning enable a dynamic SLA-aware policy enforcement
control loop, working towards an adaptable system overseeing the scaling policy at play?

When it comes to dynamic application scenarios, reinforcement learning is an effective
machine learning methodology. We can formalize the decision making process here as a
markov decision process, which allows us to mathematically represent the environment
through states, actions and rewards. Deep reinforcement learning (DRL) uses neural
networks as function approximators to deal with a high dimensionality of outcomes while
computing their impact over time, and is much better adept towards policy based decision-
making for a complex environment with cascading implications. This aims to finish the
end-to-end proactive granular control loop. Taking in the forecasted predictions from the
model developed through RQ3, the reinforcement learning module is targeted towards
dynamic SLA-aware policy enforcement, overseeing the current scaling policy deployed.
Given the control over the exploration and reward policy of the reinforcement learning
agent, we can potentially aim to optimize the SLA enforcement based on the use-case’s
target objectives.

1.3 Research Contributions

Summarised on a high-level, the key contributions of this dissertation are:

1. Utilization of data from a real-world deployment to configure and draft a realistic
set of SLOs for a voice based NFV application, as presented in Chapter 3.

2. A deep learning based classification strategy to model frequent SLA and SLO viola-
tions on the application level as a novel multi-label type multi-output target to enable
more complex decision-making in the management of virtualised communication
networks. Further, as presented in Chapter 3, a thorough benchmarking of the perfor-
mance against a set of multi-label compatible machine learning classifiers, followed
by a heuristic-based solution to address the challenges in a realistic multi-label setup.

3. A novel multivariate time-series forecasting framework with Residual Long Short-
Term Memory (LSTM) based multi-label classification for proactive SLA man-
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agement in the latency-critical NFV application use case. Further, as presented in
Chapter 4, a benchmarking of the proposed approach against traditional forecasting
methodologies to demonstrate its suitability against the state-of-the-art.

4. A novel proactive SLA management framework leveraging spatio-temporal Graph
Neural Networks (GNN) and Deep Reinforcement Learning (DRL), leveraging
realistic SLA definitions for the use-case to achieve a dynamic SLA-aware oversight
for scaling policy management to balance the trade-off between efficiency and
reliability. Further, as presented in Chapter 5, a benchmarking of the proposed
approach against the previously established best in class model to demonstrate its
suitability on the use-case.

1.4 Dissertation Organization

The rest of the dissertation is structured as follows— Chapter 2 presents the related
background information that this dissertation builds upon, and a literature review in the
areas that the dissertation contributes to. The following three Chapters address the research
questions in detail. To this end, Table 1.1 maps the research questions with the contributions

Table 1.1 Research contributions.

Research
Question

Research
Contributions

Dissertation
Chapter

Associated Peer-Reviewed
Publication

RQ1
RQ2

• Realistic SLA and SLO
definitions for the use-case
• Machine/deep learning for

predictive classification

Chapter 3
Publication 1 –

IEEE ComSoc Open Journal 2021
[8]

RQ3
Traditional (temporal)

forecasting on the use-case Chapter 4
Publication 2 – IEEE CCNC 2022

[9]

RQ3
RQ4

• Graph-based spatio-temporal
forecasting

• Dynamic SLA enforcement
Chapter 5

Publication 3 – IEEE Access 2022
(under review)

RQ4

Early proof of concept for
combining reinforcement
learning with traditional

graph neural networks (GNN)

Appendix
Publication 4 – IEEE NFV-SDN 2019

[7]

made, and also the corresponding Chapters and associated peer-reviewed publications.
Figure 1.1 presents a visual representation of the same, along with the problem domain of
each research question, and the areas of contributions.

Chapter 6 presents the concluding remarks for the dissertation, and lists the limitations,
and details the directions of future work.
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Dissertation 
Deep Learning for Autonomic SLA Management of NFV Resources towards Next Generation Networks

Research Question 1

SLA/SLO Definitions

SLA/SLO Violation
Classification

SLA/SLO Definition Labels — Sliding Windows 

Traditional (temporal) 
Feature Forecasting

Graph-based  
Spatio-Temporal Feature

Forecasting

SLA/SLO Violation
Prediction 

(Classification)

SLA/SLO Definition
Labels

Machine Learning

Deep Learning

Multi-Output Predictive
Classification

Research Question 2 Research Question 3 Research Question 4

Publication 1 Publication 2
Publication 3

Publication 4

SLA/SLO Definition
Labels

Reinforcement
Learning

Dynamic SLA-Aware
Oversight

Multi-Variate Multi-Step Multi-Output 
Rapid Feature Forecasting

Chapter 3 Chapter 4 Chapter 5

Fig. 1.1 A visual representation of the dissertation work categorized into research questions,
peer-reviewed publications, Chapters, contribution areas, and scope.

6



Chapter 2

Background and Literature Review

In this Chapter, we present the background, motivation, and literature review for the
research presented in the dissertation. While the state-of-art is continuously evolving,
this study helps in identifying the knowledge gaps that demand further investigation.
This Chapter is structured as follows— Section 2.1 to Section 2.3 present the relevant
background information and motivation behind the research work. Section 2.4 and its three
sub-sections present an in-depth literature review for the areas of contribution of the three
main Chapters of the thesis.

2.1 Service Level Agreements (SLAs)

SLAs are closely tied to product and business definitions, and imply a formally explicit
consequence upon breach of contract when the agreed terms are violated. While an SLA
is a qualitative measure that binds the service provider and facilitator into a formally
agreed contract ensuring QoS for the end user, this is realised on a set of low level metrics
delivered through SLOs and Service Level Indicators (SLIs). The SLIs can be defined
as quantitative measures that build upon raw system metrics, which further feed into the
SLOs as a quantitatively definitive target range or threshold towards the deliverance of an
SLA. The breach of an SLA implies an explicit consequence, often financial; while the
SLOs and SLIs are typically measurable indicators that define the policy of tolerance [10].

While the SLA is a formal contract between a service provider and a consumer, it is
often a high-level definition of the service provided. From a service provider’s perspective,
the SLIs and SLOs are the means to that end, and imperatively define the measurable
service characteristics that quantifiably deliver that quality. Therefore, the choice of SLOs
are critical towards delivering the QoS promised to the end user, and vary depending on
the type of application and use-case scenario.
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2.2 Scaling Policies

While the end user Quality of Experience (QoE) may be defined by more than just
the server level QoS guarantees, the latter forms the core of the service offered, and is an
important characteristic when profiling the service offering.

2.2 Scaling Policies

While static threshold based scaling is still the most dominant scaling policy in use for
most systems on the Internet, some Cloud service providers also offer dynamic scaling
mechanisms [11]. These have more flexibility on the choice of threshold based on a
pre-defined range, and real time network traffic. While such policies offer better adaptation
to meeting desired QoS levels, they still do not match the elevated service requirements
facing the ebb and flow in network traffic and demand. Acknowledging these shortcomings,
some Cloud service providers now also provide an upgrade in the form of predictive scaling
policies [12–14]. These are based towards analysing the traffic and key high-level system
usage metrics over time, and increasing the system resources during regularly anticipated
patterns of high incoming traffic.

While service operators come up with new scaling policies to match the demand facing
the current generation of Cloud based application services, these are still a long way to go
towards supporting latency-critical applications with high availability values. Since the
requirements of real-time applications such as voice and multimedia communication differ
from the traditional web-based applications that the Cloud supports, so do the SLAs. A
momentary increase in latency and jitter in a voice application has an immediate influence
on the end-user QoE, while not quite so in conventional web applications [15]. A key
challenge highlighted in the conceptualization of 6G is to impose stringent end-to-end
QoS requirements within heterogeneous services [4]. To this end, 5G deployments include
the proposition of network slicing, clustering applications with similar demands in an
appropriate Cloud environment [5]. This ensures the placement of latency-critical URLLC
applications in a high availability network slice, where resources are suitably provisioned
to ensure reliability. However, 6G expects an improvement in reliability by at least two
orders of magnitude, i.e. from a five-nines standard to a seven-nines standard [4].

Further, efficiency and reliability are competing elements within an SLA, marking a
trade-off between system usage and requirements [16]. While network operators and Cloud
operators may resort to over-provisioning to match the high requirements for these latency-
critical applications in a high availability network slice, such practices are inefficient in
the long run [7]. 6G expects a 10 to 100 times improvement on the energy efficiency as
compared to 5G [4], which is a challenge in itself. Over time, we need to be mindful of the
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significant carbon footprint of Cloud data-centres too, so there is more to it than just the
end user experience here [3].

2.3 Quality of Service (QoS) in Softwarized Networks

A transition towards softwarized networks brings in the requirement to adopt more complex
models to guarantee QoS and reliability [17], and improve policy-based QoS management
[18]. This is because of an impending evolution in not just the way networks are composed
and managed, but also renewed application architectures [17, 19], corresponding QoS
and SLA management techniques [20], and optimization and automation to cope with the
added complexity [21].

Authors in [17, 19] study the impact of virtualization in fault management, and the
added challenges that the distinct yet complementary paradigms of SDN and NFV bring
in such a setup. Authors in [20] highlight the shift from traditionally tracking the QoS of
a single service to that of service compositions in networks, and use a genetic algorithm
to optimize the application reliability in the 5G network case. Further, authors in [22]
quantitatively model and assess availability from a core network perspective for an end-
to-end NFV enabled service. Reliability block diagrams and stochastic reward nets based
approaches have also been leveraged for providing an optimal configuration of an NFV
based SFC for telecommunications standards availability modeling [6, 23]. An in-depth
survey [18] on the autonomic provisioning and QoS management for SDN-based networks
highlights the need for more in-depth machine learning models that target and improve
policy-based QoS management, and remark that assuring end-user QoE continues to be an
open research area.

2.3.1 Forecasting based Resource Management in NFV

Much of the work done so far addresses QoS with characterizing and anticipating traffic
patterns, anomaly detection [24], and a combination of reactive and proactive scaling
policies [25], [26], [27]. Significant progress has been made in the context of forecasting
and clustering anticipated network traffic [28, 29], using machine learning to classify
network traffic in NFV [30, 31], and related resource allocation [7, 16]. From a feature
forecasting perspective, authors in [32] present an overview of linear and non-linear
forecasting methods, and discuss their use to improve multi-slice resource management in
5G networks. Recurrent Neural Network (RNN) based approaches [32–34] have also been
successfully applied in the area of communication networks for resource forecasting and
management [16].
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2.3.2 Automated SLA Management

Post appropriate provisioning following anticipated and identified traffic patterns, there is
not a lot of work that directly addresses the remaining SLA bottlenecks from an application
perspective. Automated SLA management for use-cases deployed on softwarized networks
has been highlighted to be a critical requirement for next generation networks [15, 35–
39]. A theoretical SLA management framework that maps high-level requirements to
low-level resource attributes is presented in [36], where the authors highlight the additional
challenges that 5G and future architectures present. Authors in [37, 38] present a cognitive
management architecture for these softwarized networks, and discuss the importance of
machine learning techniques in such complete end-to-end management control loops.
Existing work on SLA and SLO violation prediction approaches it as a single label output
classification [40]— either identifying an overall SLA violation with a binary classification,
or identifying a defined SLO breach with multi-class classification [41]. A proof of
concept for SLA enforcement in programmable networks in a Cloud-based environment
is presented in [42], where the authors work towards identifying an SLO breach with a
multi-class decision tree classification methodology.

2.4 Literature Review in Contribution Areas of the Thesis

2.4.1 Multi-Output Classification Models for Automated SLA Man-
agement in Latency Sensitive NFV Applications

As mentioned above, post appropriate provisioning following anticipated and identified
traffic patterns, there is not a lot of work that directly addresses the remaining SLA
bottlenecks from an application perspective. Automated SLA management for use-cases
deployed on softwarized networks has been highlighted to be a critical requirement for
next generation networks [15, 35]. Further, in a realistic scenario, there is a pressing
need for the incorporation of multi-output models as we move towards more complex
decision-making [43]. As future networks as well as deployed services gain complexity,
it is impractical to define and consider an SLO as a mutually exclusive single-output
target. There is no existing work in the area of SLA management that leverages advanced
classification methodologies for a multi-output prediction target, identifying and predicting
multiple categories of SLO breaches as applicable to study their impact.

To fill this gap, our work as presented in Chapter 3 proposes the use of multi-label clas-
sification methodology for a multi-output SLO violation prediction in NFV environments.
Multi-label classification is a branch of predictive classification models that involves
training models to associate a sample of input data features with more than one class
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labels [44]. While the primary motivation for such models draws from the domain of text
categorization, image and multimedia object interpretation, music information retrieval,
movie genre classification, automated video annotation, etc., other fields such as biology
and functional genomics have also leveraged multi-label classification models to address
challenging research problems [45]. While initial approaches focused on machine learning
based methods to handle multi-label problems [46–49], there has been a recent rise in the
application of several neural network architectures to address the complexity and of varied
use-cases [43, 50–54]. Associating structured data with multiple semantic information
at once holds tremendous potential in the future as we advance towards solving more
complex decision making problems [43].

To the best of our knowledge, this has been the first approach in the area that applies a
multi-label classification methodology towards a more granular SLA violation prediction
for a latency-sensitive VNF in a virtualised network environment, and works with extensive
real world data to compare the performance of both machine learning and deep learning
methodologies towards such an objective.

2.4.2 Feature Forecasting Methods for Proactive SLA Management
in Latency Critical NFV Applications

As mentioned earlier, LSTM based approaches [32–34] have been successfully applied
in the area of communication networks for resource forecasting. However, LSTMs are
computationally expensive [32]. There has been no comparative study to evaluate the
suitability of LSTM-based methods in scenarios that involve rapid forecasting in a realistic
high-frequency monitoring, something that is expected to be a critical characteristic for
latency sensitive NFV applications. ResNets (Residual Networks) in deep learning refer to
architectures where each layer adds to the model’s accumulating result [55]. Integrating
that with an LSTM methodology leads to a Residual LSTM model, which is expected to
overcome the potential limitations of regular LSTM based approaches in use-cases such as
ours. However, there have been very limited applications to the use of Residual LSTM in
NFV [56], and that too have been in the domain of network slice reconfiguration.

To fill this gap, our work as presented in Chapter 4 has been the first approach in
the area that proposes and applies a Residual LSTM based framework for proactive SLA
management in rapid forecasting based resource monitoring of latency sensitive NFV
applications, and applies multi-label classification towards such target objectives.
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2.4.3 Graph-based Spatio-Temporal Forecasting Methods for Proac-
tive SLA Management in Latency Critical NFV Applications

As mentioned above, LSTM based approaches [32–34] have been successfully applied
in the area of communication networks for resource forecasting. Our contribution [9] in
the area as presented in Chapter 4 benchmarks various deep learning based forecasting
methodologies, and proposes a Residual LSTM based framework for proactive SLA
management in rapid forecasting based resource monitoring of latency sensitive NFV
applications.

However, networks can inherently be represented in a graph based format of nodes and
edges, and so can the application structure and flow of data in the softwarized domain of
SDN and NFV [7, 16]. In traditional Machine Learning (ML) approaches, these spatial
inter-dependencies are removed in the pre-processing stage, and so the inherent effect of
these topological dependencies are not a part of the learning and prediction stage [57].
Graph neural networks (GNNs) are a family of neural networks that deal with signals
defined over graphs. Modern GNNs are categorized into four groups: recurrent GNNs,
convolutional GNNs, graph autoencoders, and spatial–temporal GNNs [58]. Further, in
contrast to conventional Machine Learning (ML) approaches, a GNN based approach is
capable of producing accurate predictions even when the underlying topology is changed
from what the model was trained on [59].

Within the wider domain of networks, GNN has been successfully used in problem
areas addressing networking performance and generalisation to larger networks [59], radio
resource management [60], etc. Such methodologies have also been successfully used in the
area of SDN, addressing connection management [61], energy-efficient VNF deployment
[62], spatio-temporal link state prediction [63], detecting and mitigating data plane attacks
[64], predicting the optimal path for Service Function Chain (SFC) deployment and packet-
level traffic steering [65], etc. Within the domain of NFV, GNN based methodologies have
proven successful in problem areas addressing network slicing management [66], VNF
deployment prediction [67], VNF resource prediction [16], finding optimal SFC path [68],
etc.

Since GNN successfully extracts and models spatial features and topological dependen-
cies, there is an intrinsic potential to use this in conjunction with a reinforcement learning
(RL) based approach [7]. Authors in [69] have used graph convolutional network (GCN)
based GNN with actor-critic based DRL towards network planning. The combination of
GNN and DRL has also been successfully leveraged to tackle power grid management [70].
Within the domain of SDN, message passing GNN with deep Q-learning has been used
towards connection management [61], and routing optimization [71]. Authors in [62] have
used a GCN based GNN with double deep Q-network (DDQN) towards energy-efficient
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VNF deployment. Within the subject area of NFV, graph network based GNN and DRL
have been effectively used towards NFV flow migration [72], [73], and optimal VNF
placement [74]. GCN based GNN, and DRL have also been leveraged to address the
problem areas involving VNF forwarding graph placement [75], and for virtual network
embedding [76], [77].

To the best of our knowledge, our work as presented in Chapter 5 has been the first
approach in the area that proposes a Graph Convolutional Recurrent Network (GCRN)
model for the use-case, and benchmarks its performance against conventional deep learning
models that have demonstrated favorable performance on the use-case in the past. We
also use realistic SLO definitions to propose an SLA-aware deep Q-learning based DRL
model, packaged together in a framework that delivers topology-aware proactive SLA
management in a latency-critical NFV application.
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Chapter 3

A Deep Neural Network based
Multi-Label Classifier for SLA Violation
Prediction in a Latency Sensitive NFV
Application

3.1 Introduction

As mentioned in Chapters 1 and 2, the next generation of networks hold a vision to expand
communications from the scale of billions in the world’s population to a virtually limitless
scale of inter-connectivity between humans, machines, and things. Both supporting and
driving this demand, the next generation of communication networks continue to be driven
by a fundamental restructuring in the way that the networks and services are deployed
and delivered. Network programmability and softwarisation are the key drivers of this
change, and SDN and NFV continues to play a pivotal role in the vision of 6G, forming
the backbone of flexible and intelligent networks [4]. This shift has opened the market to a
wider movement towards virtualised applications and services in key verticals, including
those that previously relied solely on specialised hardware. A key example of such a
sector is the telecommunications industry, which is driven by one of the oldest and most
complex operational and business support systems to date [4]. Traditionally, with its
specialised infrastructure, the telecoms realm has evolved towards a highly reliant service,
with carrier-grade offerings guaranteeing a five-nines standard of availability [6]. However,
with the emergence of such agile and flexible paradigms as enabled with the coupling of
SDN and NFV, we are seeing an emergence of a new era of applications driven by the
vision of low latency and high reliability [4]. A key aspect to driving such a change is in
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3.1 Introduction

how the Cloud reacts to such a latency-critical demand, and in being precisely proactive
over time [7].

While service operators come up with new scaling policies to match the demand facing
the current generation of Cloud based application services, these are still a long way to
go towards supporting latency-critical applications with high availability values. Since
the requirements of real-time applications such as voice and multimedia communication
differ from the traditional web-based applications that the Cloud supports, so do the
Service Level Agreements (SLAs). A momentary increase in latency and jitter in a voice
application has an immediate influence on the end-user Quality of Experience (QoE),
while not quite so in conventional web applications [15]. A key challenge highlighted in
the conceptualization of 6G is to impose stringent end-to-end QoS requirements within
heterogeneous services [4]. Further, efficiency and reliability are competing elements
within an SLA, marking a trade-off between system usage and requirements [16]. While
network operators and Cloud operators may resort to over-provisioning to match the high
requirements for these latency-critical applications in a high availability network slice,
such practices are inefficient in the long run [7]. 6G expects a 10 to 100 times improvement
on the energy efficiency as compared to 5G [4], which is a challenge in itself. Over time,
we need to be mindful of the significant carbon footprint of Cloud data-centres too, so
there is more to it than just the end user experience here [3].

In this Chapter, we take the example of a latency-critical NFV application, and draft
realistic Service Level Objectives (SLOs) in a way that provide more granular insights
into the violations occurring in operational settings. Such insights would help towards
improving the formulation of resource provisioning policies in a way that is targeted
towards the precise objectives that match service requirements of the target application use-
case, rather than a blanket over-provisioning of all categories of system resources. Contrary
to simplistic classification methodologies that predict a single label that categorises whether
the SLA is violated at the application level, we formulate our work as a multi-label
classification problem. This methodology involves training models to associate a sample
of input data features with a set of labels from a bigger set of disjoint labels [43, 44], thus
helping us to model individual SLO violations associated to the application’s state that
contribute to an SLA violation overall. We further provide a detailed analysis on how
to manage the challenges that such a system presents, including class imbalance with
minority classes. We test the performance against a cohort of machine learning solutions,
and present a methodical analysis towards the development and effective use of a deep
learning classifier for such objectives.

To the best of our knowledge, this is the first approach in the area that applies multi-
label classification towards such objectives, and formulates a methodology that combines

15



3.1 Introduction

Retraining 
 Feedback Loop

Objectives

Testbed Deployment

Virtual
Infrastructure

Manager
Monitoring

Agent

SIPp Bot Users

R
aw

 D
at

a

SLO Definitions

Data Labeling

Predictive Multi-Label
Classification Model

Development

Restructuring
Scaling Policies

Analysing frequent
bottlenecks

Monitoring SLA
Compliance

Production

Clearwater vIMS

Batch Sample

Clearwater VNF: vIMS

Bono

Sprout

Ralf

Homestead

Ellis

Homer

DATA MANAGEMENT

D
at

a 
Pr

ep
ro

ce
ss

in
g

EXPERIMENTATION

Training and
Validation

Test Performance on
Chosen Metrics

PRODUCTION DEPLOYMENT

Trained Classification
Model

Proposed Deep Learning Model

Deep Feed-Forward Neural
Network

Multi-Label Classifier

Performance Evaluation

Evaluating and Addressing
Imbalanced Multi-Label

Classification

Example-based Metrics

Label-based Metrics

Ranking-based Metrics

Benchmarking

Multi-Label Compatible Machine
Learning Models

OVERALL SCOPE OUR WORK

Fig. 3.1 Overview of system architecture, objectives, and scope.

realistic SLO definitions to predict precise QoS violations for such a latency-sensitive
use-case. The key contributions are summarised as follows:

• We work with data from a real-world deployment of a latency critical NFV appli-
cation with two months’ worth of raw network telemetry data sampled every 30
seconds, and use that as the basis for all our policy formation and learning models.
An overview of the system and scope is provided in Figure 3.1. The data-set is
further elaborated upon in 3.6.1.

• We break down the SLA into a set of realistic SLO definitions for such a latency
critical use-case in an operational setting. While SLA and SLO definitions are
application specific, we form these measures to be as realistic as possible to capture
the dynamics of a real-world deployment.

• As opposed to a single-label binary or multi-class classification objective, we asso-
ciate and model a multi-label classifier to effectively predict each SLO violation that
an application state is associated with. Over time, this helps us to study and mitigate
frequent application and use-case specific bottlenecks, and also in predicting a more
granular state of the application’s behaviour as it faces a drop in QoS, and a violation
in SLA.

• We test the performance of the developed model against a wide set of compatible
machine learning methodologies, and provide a justified reasoning to the deployment
of a deep neural network model in such a setup.
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• We methodically address the challenges that come up with training such a model
at scale, i.e. the associated problems of varying degrees of class imbalance in a
multi-label setup.

• We evaluate the performance on a wide range of metrics that include example based,
label based and ranking based measures, and provide an all-round evaluation of each
learning model benchmarked.

The rest of the Chapter has been structured as follows: §3.3 describes the Clearwater
NFV application, and defines the SLA and SLOs drafted for the purpose of violation
prediction. §3.4 provides an overview of the unique characteristics of a multi-label classifi-
cation methodology, the mathematical formulation of the problem statement, the machine
learning algorithms applied, and the definitions of the various metrics used for an all-round
evaluation. §3.5 addresses the prevailing issue of class imbalance in the multi-label context,
and presents the methodologies we use to overcome this issue with a deep neural network
model. Thereafter, §3.6 expands on the details of the experimental setup, §3.7 evaluates the
results obtained through the various models, and §3.8 presents the summary and conclusion.

The work presented in this Chapter has been disseminated in [Publication 1 – IEEE
ComSoc Open Journal 2021 [8]].

3.2 Focus and Scope

This Chapter addresses the first research question (RQ1), i.e.

Given the use-case scenario of a latency-sensitive NFV based application, what
constitutes a suitable SLA definition to track resource provisioning based QoS over

time?

and the second research question (RQ2), i.e.

Given the complexity and dimensionality of data and tracked SLAs, what subset of
machine learning solutions are suited to classify the application state at a given point in

time as that of an SLA violation for such a task?

3.3 Defining Service Level Agreements

As mentioned in Chapter 2, SLAs are closely tied to product and business definitions, and
imply a formally explicit consequence upon breach of contract when the agreed terms
are violated. While an SLA is a qualitative measure that binds the service provider and
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3.3 Defining Service Level Agreements

facilitator into a formally agreed contract ensuring QoS for the end user, this is realised on
a set of low level metrics delivered through SLOs and Service Level Indicators (SLIs). The
SLIs can be defined as quantitative measures that build upon raw system metrics, which
further feed into the SLOs as a quantitatively definitive target range or threshold towards
the deliverance of an SLA. The breach of an SLA implies an explicit consequence, often
financial; while the SLOs and SLIs are typically measurable indicators that define the
policy of tolerance [10].

While the SLA is a formal contract between a service provider and a consumer, it is
often a high-level definition of the service provided. From a service provider’s perspective,
the SLIs and SLOs are the means to that end, and imperatively define the measurable
service characteristics that quantifiably deliver that quality. Therefore, the choice of SLOs
are critical towards delivering the QoS promised to the end user, and vary depending on
the type of application and use-case scenario.

While the end user QoE may be defined by more than just the server level QoS
guarantees, the latter forms the core of the service offered, and is an important characteristic
when profiling the service offering.

3.3.1 Project Clearwater Cloud IMS

The IP Multimedia Subsystem (IMS) is a reference architecture first defined by the 3GPP
for delivering fixed-line and mobile communications applications built on the Internet
Protocol (IP) [78]. Project Clearwater1 is an open-source implementation of IMS in the
Cloud, following IMS architectural principles and supporting all of the key standardized
interfaces expected of an IMS core network. The web services-oriented design inherent to
Clearwater makes it ideal for instantiation within NFV environments as a virtualized VNF.
The new Service-Based Architecture adopted by the 5G standards is very closely related
to the inherent Clearwater model, and it has been widely used in research as a standard
testbed setup for NFV related work [6, 7, 16, 17, 42].

In our work, we use Clearwater as the use-case for a Cloud based virtualised NFV
application. It consists of 6 main components, namely Bono, Ellis, Homer, Homestead,
Ralf, and Sprout. A high level view of these VNFCs and their functionalities replicating a
standard IMS architecture is as shown in Figure 3.2.

3.3.2 Defining SLOs

We use raw network telemetry data and system metrics obtained via a standard realization
of the Clearwater testbed setup to define the SLIs and SLOs governing an SLA. These

1www.projectclearwater.org
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Fig. 3.2 Clearwater vIMS architecture, depicting the various VNFCs and their high-level
functionalities.

Table 3.1 Raw metrics collected through Monasca during Clearwater vIMS application
monitoring. This data is available for each of the VNFCs, and is sampled every 30 seconds.

Metric Name Semantics

CPU
cpu.idle_perc Percentage of time the CPU is idle when no IO requests are in progress

cpu.system_perc Percentage of time the CPU is used at the system level
cpu.wait_perc Percentage of time the CPU is idle AND there is at least one IO request in progress

Disk

Disk
disk.inode_used_perc The percentage of inodes that are used on a device
disk.space_used_perc The percentage of disk space that is being used on a device

IO Read
io.read_kbytes_sec Kbytes/sec read by an IO device

io.read_req_sec Number of read requests/sec to an IO device
io.read_time_sec Amount of read time in seconds to an IO device

IO Write
io.write_kbytes_sec Kbytes/sec written by an IO device

io.write_req_sec Number of write requests/sec to an IO device
io.write_time_sec Amount of write time in seconds to an IO device

Load
load.avg_1_min The normalized (by number of logical cores) average system load over a 1 minute period

load.avg_15_min The normalized (by number of logical cores) average system load over a 15 minute period
load.avg_5_min The normalized (by number of logical cores) average system load over a 5 minute period

Memory
mem.free_mb Mbytes of free memory

mem.usable_mb Total Mbytes of usable memory
mem.usable_perc Percentage of total memory that is usable

Network
In

net.in_bytes_sec Number of network bytes received per second
net.in_packets_sec Number of network packets received per second

Out
net.out_bytes_sec Number of network bytes sent per second

net.out_packets_sec Number of network packets sent per second
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3.3 Defining Service Level Agreements

metrics were collected on a 30 second sampling frequency through Monasca2, an open-
source Python based monitoring service running on each of the Clearwater VNFCs. The
list of these collected metrics is presented in Table 3.1, while further details regarding the
data is elaborated upon in Section 3.6.

These collected metrics are utilised as the foundations for the SLIs, which when
matched with a target threshold or range form SLOs. While the SLOs are largely dependent
on the kind of application use-case, and the underlying SLA, we recognize them on the
basis of the four key areas that are critical towards the deliverance of required performance.
Authors in [42] recognize the lack of realistic SLOs in consideration in research, and
recommend that an SLO be composed of a combination of atleast two metrics.

To set a fair ground for our analysis, we define the SLOs with this definition in mind,
and form these rules for the four key areas that impact the performance of an underlying
system. This is to highlight the varying reason behind the loss of QoS at any time withing
the use-case application, so that the scaling policies can be customised at a more granular
level towards better efficiency.

Formally, the SLOs are defined in terms of SLIs as a target value:

SLI ≤ target threshold (3.1)

or as a range of values for service level:

lowerbound ≤ SLI ≤ upperbound (3.2)

At any time, the state of an SLO can be represented as either violated or compliant.
We define four SLOs for the Clearwater VNF, targeting the load, computation, disk, and
input/output (IO) characteristics respectively. Let L denote the set of SLOs thus defined:

L = [SLO1,SLO2,SLO3,SLO4] (3.3)

This equivalently denotes:

L = [SLOload,SLOcomputation,SLOdisk,SLOio] (3.4)

The metrics as defined in Table 3.1 are captured at the granularity of the individual
VNFCs as shown in Figure 3.2, and an SLO violation at any of the individual VNFCs
triggers an SLO violation state for the Clearwater application service. Therefore, we
ultimately define the SLOs at the application level, i.e. for the entire VNF as an application
service. Thus, each data instance is associated with 4 SLOs as defined by L above, where

2www.monasca.io
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SLO j, j ∈ [1,2,3,4] assumes one of two states:

SLO j =





1, if Violated (at any VNFC)

0, otherwise
(3.5)

The SLOs are formulated after studying the scaling policies, dynamic monitoring
offerings, and alarm definitions adopted and used in practice by major cloud service
providers such as Amazon Web Services [79, 80], Microsoft Azure [81], Google Cloud
[82], and Huawei Cloud [83]. We categorise the SLOs into four broad characteristics, and
enhance these for a fine-grained monitoring of a latency-sensitive application that needs
high availability and reliability. The formal definitions of the SLOs are described below,
with the thresholds largely defined based on the application’s usage characteristics, reaction
to stress tests, and use-case requirements. The metrics referenced in the rule definitions
are as captured and described in Table 3.1.

3.3.2.1 SLO1: Load

Load is a measure of the computational work ongoing, and captures the running processes—
either using the CPU, or in a wait state. The values are normalized by number of CPU
cores. This SLO captures the application state based on the average load on an instance
over a period of the last 1 minute, 5 minutes, and 15 minutes. A short term surge in load
may be due to regular operational usage and thus may not be a direct cause of concern, but
higher load averages over longer intervals is a direct sign of overload. The data instances
that meet the following criterion are assigned a violation state for SLO1.

(load.avg1min ≥ γ1 and load.avg5min ≥ γ2)

or

(load.avg15min ≥ γ3)

(3.6)

γ1, γ2, and γ3 are defined as tunable threshold parameters, and were given the respective
value of 0.7, 0.5, and 0.8 in the experimentation.

3.3.2.2 SLO2: Computation

This SLO is defined as a combination of certain CPU and RAM characteristics. While
short bursts of IO can spike system kernel usage and is regular, this combined with the lack
of adequate idle time for the CPU over time when no IO is in progress is a sign of overload
or malfunction. The SLO is also considered violated if the amount of available RAM falls
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below a threshold, which is a warning sign of inadequate system resource allocation.

(mem.usableperc ≤ γ4)

or

(cpu.systemperc ≥ γ5 and cpu.idleperc ≤ γ6)

(3.7)

γ4, γ5, and γ6 are defined as tunable threshold parameters, and were given the respective
value of 40, 10, and 60 in the experimentation.

3.3.2.3 SLO3: Disk

This SLO captures prolonged periods of inefficient IO wait times when the CPU is other-
wise idle, which indicates potential bottlenecks in the read/write operations accrued by the
hard disk.

(cpu.waitperc ≥ γ7)

or
(

cpu.waitperc

cpu.systemperc
≥ γ8

) (3.8)

γ7, and γ8 are defined as tunable threshold parameters, and were given the respective
value of 50, and 2 in the experimentation.

3.3.2.4 SLO4: IO

This SLO captures the latency when interacting with IO devices, when there is a sudden
and prolonged surge in incoming network traffic as compared to the moving average.
A moving average (or rolling mean) is defined as the unweighted mean of the previous
M data instances sampled, where the selection of M (sliding window) depends on the
degree of smoothing desired since increasing the value of M improves the smoothing at
the expense of accuracy. Mathematically, rolling mean with a window of size M at a time
period t is denoted as follows, where at ,at−1, · · · represent the value at instance t, t −1, · · ·
respectively, and so on.

Rolling MeanM
t =

at +at−1 + · · ·+aM−(t−1)

M
(3.9)

We choose M to be 2880 (γ9) for the network traffic characteristics, which, considering that
the sampling happens every 30 seconds, corresponds to 24 hours. For the IO read/write
characteristics, we use a moving average over the last 3 sampling instances, so M = 3
(γ10), which corresponds to the last 1.5 minutes. Thus, this SLO considers both read/write
requests per second as compared to the last 90 seconds, as well as the amount of time spent
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reading/writing with an IO device as compared to the last 90 seconds.

(
net.inbytes_sec > γ11 net.inγ9

bytes_sec

and

net.outbytes_sec > net.outγ9
bytes_sec

)

and
(

io.readreq_sec > γ11 io.read
γ10
req_sec

or

io.writereq_sec > γ11 io.writeγ10
req_sec

)

and
(

io.readtime_sec > io.read
γ10
time_sec

or

io.writetime_sec > io.writeγ10
time_sec

)

(3.10)

γ11 is defined as a tunable parameter, and was given the value of 1.5 in the experimen-
tation based on the characteristics of the data within the observed period.

3.4 Multi-Label Classification

Multi-label classification is defined as a classification task where each data sample instance
can be assigned n labels from a set of |L | possible label classes as defined in 3.3 and 3.4,
where n ∈ [0,L ], and |L |> 1. Each of the class labels in L is binary, i.e. either 0 or 1,
where 0 denotes a negative occurrence and 1 denotes the positive occurrence.

This implies that L is a set of binary classes that are not mutually exclusive, and each
sample of input data can be assigned multiple such binary classes as applicable.

In our problem definition, L is the set of all SLO violation classes, where each class
can take a value of 0 or 1, signifying compliance and violation states respectively.

Semantically, a multi-label target can be thought of as a set of labels for each sample.
Multi-label classification differs from multi-class classification in that the latter applies
mutually exclusive labels to a data sample, which is not the case for multi-label problems.
The challenge with multi-label classification is the requirement for such classifiers to treat
the multiple classes simultaneously, accounting for the correlated behaviour among them.
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3.4.1 Mathematical Formulation

Formally, let D be a multi-label dataset where X = Rd is a d-dimensional input instance
space of numerical features, and L = {λ1,λ2, · · · ,λq} a finite output label space of
|L |= q discrete class labels (with values 0 or 1), and q > 1.

The task of multi-label learning is to learn a function f : X −→ 2L from the multi-
label training set S with u examples, S = {(xi,Yi) | 1 ≤ i ≤ u}. To compare, multi-class
classification can be seen as a special case of multi-label classification where f : X −→L ,
while in binary classification f : X −→ {0,1}.

For each multi-label example (xi,Yi), xi ∈ X is a d-dimensional feature vector
(xi1,xi2, · · · ,xid)

⊤, and Yi ⊆ L is the set of labels associated with xi. Label associations
can also be represented as a q dimensional binary vector yi = (yi1,yi2, · · · ,yiq)

⊤ = {0,1}q,
where each element is 1 if the label is relevant, and 0 otherwise. By contrast, in single-label
(binary or multi-class) learning, |Y |= 1.

3.4.2 Multi-Label Learning Methods

Approaches to solve a multi-label classification problem typically belong to two main
categories— (a) problem transformation, and (b) algorithm adaptation [44].

3.4.2.1 Problem Transformation Methods

Problem transformation methods aim to transform and decompose the multi-label learning
problem into one or many single-label classification tasks, followed by a re-transformation
of the outputs into a multi-label representation. The key idea of problem transformation
methods is to fit the data to the well-represented set of existing algorithms.

This methodology can be further grouped into three use-case specific categories based
on the kind of transformation required— binary relevance, label ranking, and multi-class
classification.

3.4.2.2 Algorithm Adaptation Methods

Algorithm adaptation methods, on the other hand, aim to directly tackle the multi-label
learning task by adapting or extending the existing classification algorithms to work
with multi-label data directly. Unlike problem transformation methods, the key idea of
algorithm adaptation is thus to fit or extend an algorithm to work with a multi-label data
representation.
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3.4.3 Machine Learning Methodologies

Since multi-label classification can be transformed to a binary classification task with
the label transformation method as described above, we use two supported methods to
transform the multi-label problem to a single-label problem— Binary Relevance (BR), and
Classifier Chains (CC). These enable us to compare the performance of some compatible
single-label binary classification algorithms when adapted to our multi-label use-case of
predicting SLO violation categories.

3.4.3.1 Binary Relevance (BR)

Given L = {λ j | j ∈ [1,q]} as a finite output label space of q discrete class labels as
described above, the Binary Relevance method involves treating the jth class independently,
i.e. fitting one binary single-label classifier B for each class label λ j. This is akin to a
One-vs-Rest strategy with binary classes, where q binary classifiers each treat one of the q
label classes independently. In the rest of the Chapter, Binary Relevance and One-vs-Rest
is used interchangeably, and One-vs-Rest implies a binary One-vs-Rest strategy.

For a binary learning algorithm B embedded in a problem transformation methodology,
the worst-case bound training complexity is O(q.FB(u,d)), and the testing complexity is
O(q.F ′

B(d)), where FB denotes the training complexity of the binary classification algo-
rithm B embedded in a problem transformation method, and F ′

B denotes its corresponding
testing complexity.

We use logistic regression as a base classifier within the BR methodology, and evaluate
its performance against other methods.

Logistic Regression is a linear classification model that uses the logistic (sigmoid)
function to take in the input log-odds and output the probability of outcomes for the binary
dependent variable. This is interpreted as a binary classification model by establishing a
cutoff threshold on the output probabilities to classify the outcome as belonging to one of
the two classes.

3.4.3.2 Classifier Chain (CC)

Given L = {λ j | j ∈ [1,q]} as a finite output label space of q discrete class labels as
described above, the Classifier Chain method involves linking q binary classifiers ordered
randomly along a chain, where the jth classifier tackles the binary relevance problem of
label λ j. However, the feature-space of the jth classifier in CC is extended with the binary
label associations of all the previous classifiers linked before it in the chain, thus also
exploiting label correlations to an extent.
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Classifier chains have a worst-case bound training complexity of O(q.FB(u,d +q)),
and a testing complexity of O(q.F ′

B(d+q)). To evaluate the CC methodology, we use the
the following machine learning algorithms as base binary classifiers— Logistic Regression,
Naive Bayes, AdaBoost, and Support Vector Machine (SVM).

Naive Bayes is a supervised learning probabilistic classifier that leverages Bayes’
theorem with an assumption of conditional independence between each pair of features.
Owing to the binary feature space, we use the Bernoulli variant for Naive Bayes as a base
classifier.

AdaBoost, or Adaptive Boosting, is an ensemble learning classification technique
that builds multiple weak learners on the data and adjusts their weights to improve upon
misclassifications as they occur, overall resulting in a boosted classifier.

Support Vector Machine (SVM) is a supervised learning methodology that supports
both linear and non-linear classification through kernel functions. An SVM classifier is
traditionally non-probabilistic, and we deploy one with a Radial Basis Function (RBF)
kernel for a non-linear decision function.

3.4.3.3 Multi-Label k-Nearest Neighbours

Multi-label k-nearest neighbors (ML-kNN) extends the k-nearest neighbors (kNN) algo-
rithm, which is an instance based lazy learning algorithm [45]. It works by identifying the
k-nearest neighbours for an example instance in the training set, and utilizes the maximum
a posteriori (MAP) rule to make a prediction leveraging the labeling information gained
through the neighbours. While ML-kNN reasons the relevance of each label separately
[48], it inherits the merits of both lazy learning and Bayesian reasoning. ML-kNN has
a worst-case bound training complexity of O(u2d + quk)), and a testing complexity of
O(ud +qk)).

3.4.3.4 Decision Trees

Decision Trees are a non-parametric supervised learning methodology that have been
adapted for a multi-label setup by adapting the C4.5 algorithm [47]. The algorithm
builds a tree-based model with conditional control statements forming decision rules for
classification, and assumes label independence in a multi-label setup [48]. Decision tree
models belong to the class of white-box family of algorithms, and the depth of the decision
tree is analogous to the complexity of the decision rules. Decision tree based multi-label
models have a worst-case bound training complexity of O(udq)), and a testing complexity
of O(uq)).
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3.4.3.5 Random Forest

A random forest is a decision tree based ensemble learning strategy that works as a meta-
estimator and fits a number of decision tree classifiers on various sub-samples of the dataset,
leverages this information to control over-fitting. Same as with the adapted decision trees
above, random forests belong to the algorithm adaptation method family for handling
multi-label classification problems. Likewise, multi-label random forest models have a
worst-case bound training complexity of O(udq)), and a testing complexity of O(uq)).

3.4.4 Deep Neural Network

Deep learning is a powerful subset of the machine learning domain, that uses over three
layers of interconnected neurons (nodes) to create an artificial neural network (ANN)
model. Each neuron within a layer represents a mathematical function comprising of
inputs, weights, bias, and threshold; and uses an activation function to transform the
outputs to a non-linear space to learn and perform more complex tasks. Thus, subject to
the right choice of architecture and parameters for the task at hand, ANNs can be trained to
address a wide variety of complex tasks, including that of directly addressing multi-label
classification.

To this end, we build a deep multi-layer perceptron (MLP) model, i.e. a fully connected
deep feed-forward neural network to natively address the multi-label classification problem
at hand and compare its performance against other machine learning methodologies.
Specific to the task at hand, we appropriately design the model such that the output layer
consists of q neurons, each representing a label λ j in L , where L = {λ j | j ∈ [1,q]}. We
use sigmoid as the activation function in the output layer, so the jth neuron in that layer
outputs the probabilities in the range [0,1] of the data instance belonging to λ j. Similar as
with logistic regression, this is interpretable as a binary classification by setting a cutoff
probability threshold value (set to 0.5) for each class label.

Sigmoid(x) =
1

1+ e−x (3.11)

The computational complexity for neural network models can be written as O(ru ·O(n3))),
where r is the number of iterations, and O(n3) is the complexity of the underlying matrix
multiplications. The worst-case bound complexity of neural networks is thus O(n5)).
However, this is a very wide overestimate, considering that in practice, modern day neural
networks are trained efficiently using stochastic gradient descent, a variety of optimizations
and efficient activation functions, over-specification, and regularization [84]. To this end,
determining the actual complexity of modern neural networks is an active research area.
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Table 3.2 Performance of the various Machine Learning Models as compared to the Base
Deep Neural Network Model, evaluated on all presented multi-label classification metrics.
The best numeric values corresponding to each metric have been highlighted in bold.

Binary Relevance Classifier Chain
ML-kNN

Decision
Tree

Random
Forest

Deep Feed
Forward

Neural Network
Logistic

Regression
Logistic

Regression
AdaBoost Naive Bayes SVM

Training Loss NA NA NA NA NA NA NA NA 0.009
Micro Average 0.881 0.902 0.978 0.825 0.857 0.854 0.994 0.980 1.000

AUC-PRC Macro Average 0.570 0.632 0.749 0.398 0.477 0.523 0.752 0.745 0.778
Weighted Average 0.880 0.904 0.981 0.832 0.841 0.857 0.996 0.981 0.998

Micro Average 0.957 0.968 0.994 0.927 0.938 0.940 0.997 0.994 1.000
AUC-ROC Macro Average 0.701 0.735 0.857 0.651 0.624 0.657 0.885 0.846 0.969

Weighted Average 0.593 0.634 0.902 0.583 0.526 0.567 0.989 0.901 1.000
True Positives (TP) 36211 36886 37976 34220 34582 34961 38062 38016 38040
False Positives (FP) 3379 2988 656 4216 3063 3539 130 639 91
True Negatives (TN) 100034 100425 102757 99197 100350 99874 103283 102774 103322
False Negatives (FN) 2008 1333 243 3999 3637 3258 157 203 179

Micro Average 0.915 0.925 0.983 0.890 0.919 0.908 0.997 0.983 0.998
Precision Macro Average 0.643 0.679 0.790 0.582 0.451 0.615 0.779 0.745 0.747

Weighted Average 0.907 0.922 0.982 0.897 0.831 0.882 0.996 0.981 0.996
Micro Average 0.947 0.965 0.994 0.895 0.905 0.915 0.996 0.995 0.996

Recall Macro Average 0.631 0.678 0.769 0.529 0.500 0.550 0.775 0.748 0.747
Weighted Average 0.947 0.965 0.994 0.895 0.905 0.915 0.996 0.995 0.996

Micro Average 0.931 0.945 0.988 0.893 0.912 0.911 0.996 0.989 0.997
F-1 Score Macro Average 0.633 0.678 0.775 0.436 0.474 0.562 0.777 0.747 0.747

Weighted Average 0.925 0.942 0.988 0.856 0.867 0.894 0.996 0.988 0.996
Jaccard Micro Average 0.870 0.895 0.977 0.806 0.838 0.837 0.993 0.978 0.994

Similarity Macro Average 0.570 0.631 0.759 0.377 0.451 0.520 0.763 0.743 0.744
Coefficient Weighted Average 0.875 0.899 0.978 0.815 0.831 0.849 0.994 0.978 0.994

(Subset) Accuracy (or EMR) 0.856 0.882 0.974 0.793 0.825 0.822 0.991 0.976 0.993
Hamming Loss 0.038 0.030 0.006 0.058 0.047 0.048 0.002 0.005 0.001

Log Loss 1.837 1.206 0.272 3.731 3.630 2.981 0.266 0.279 0.289
Subset Zero-One Loss 0.144 0.117 0.025 0.206 0.174 0.178 0.008 0.023 0.006

Coverage 1.236 1.194 1.102 1.364 1.305 1.310 1.092 1.100 1.080
Average Precision (Label Ranking) 0.963 0.970 0.993 0.940 0.963 0.953 0.996 0.993 0.999

Ranking Loss 0.045 0.034 0.007 0.081 0.060 0.065 0.004 0.006 0.0002

The choice of architecture and learning model is further elaborated upon in section 3.6.

The evaluation results for the performance of each of these models for the multi-label
classification task at hand are as presented in Table 3.2. Results are also discussed in §3.7.

3.4.5 Metrics

Let T = {(xi,Yi) | 1 ≤ i ≤ p} be the test set with p instances, and f (·) be the learned
multi-label classifier. For any unseen instance x ∈ X , the multi-label classifier f (·) predicts
f (x)⊆L as the set of proper labels for x. Correspondingly, let Yi ⊆L and Zi ⊆L denote
the sets of ground-truth and predicted labels for an input instance from the p instances in
the test set T .

In traditional single-label classification problems such as the ones belonging to binary
classification or multi-class classification, accuracy has been the most common evaluation
metric, usually complemented by precision, recall, F-measure, and area under the curve for
the receiver operating characteristic (AUC-ROC) [46]. However, multi-label classification
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requires a wider and contrasting range of metrics for an overall comparison of performance,
given the added freedom, flexibility and complexity in such a setup [44, 47, 85]. These
can be grouped as example-based, label-based, and rankings-based [44, 45]. The former
two belong to the bipartitions-based evaluation category, which is based on the idea
of comparing the predicted relevant labels with the corresponding ground truth labels.
The ranking based metrics, on the other hand, offer another perspective to measure the
generalization performance of multi-label problems, wherein the most relevant label for an
example instance is assigned a value of 1, and so on, with the least relevant label assigned
a rank of q.

3.4.5.1 Example-based Evaluation

Example-based evaluation metrics are calculated based on the average differences of the
predicted and actual sets of labels over all examples of the test set T .

Exact Match Ratio, also known as Subset Accuracy, computes the fraction of examples
for which the predicted set of labels is an exact match with the ground-truth labels. This
is defined to be the multi-label equivalent of the traditional accuracy metric; and given
that it does not distinguish between partially correct and completely incorrect, tends to
be an overly strict measure, especially for a larger label space q. It is formally defined as
under, where · denotes an indicator function that returns 1 if true, and 0 if f alse. The best
performance of this metric is 1.

Exact Match Ratio =
1
p

p

∑
i=1

Yi = Zi (3.12)

Accuracy is defined by micro-averaging the Jaccard Similarity Coefficients across all
examples, and is defined as:

Accuracy =
1
p

p

∑
i=1

|Yi ∩Zi|
|Yi ∪Zi|

(3.13)

where | · | denotes the cardinality, and the Jaccard Similarity Coefficient for the ith example
instance is defined as:

Jaccard Score =
|Yi ∩Zi|
|Yi ∪Zi|

(3.14)

Precision is defined as the proportion of correctly predicted labels to the total number
of predicted labels, averaged over all examples.

Precision =
1
p

p

∑
i=1

|Yi ∩Zi|
|Zi|

(3.15)
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Recall is defined as the proportion of correctly predicted labels to the total number of
actual labels, averaged over all examples.

Recall =
1
p

p

∑
i=1

|Yi ∩Zi|
|Yi|

(3.16)

Fβ Score is defined as a weighted harmonic mean of precision and recall, whereby β

controls the weight of recall in the combined scoring. The case when β = 1 is referred to
as the F1 score (or balanced F1 score), which implies that precision and recall are weighted
equally in the calculation.

Fβ Score = (1+β
2)

Precision×Recall
(β 2. Precision)+Recall

(3.17)

F1 Score = 2
|Yi ∩Zi|
|Yi|+ |Zi|

(3.18)

Subset Zero-One Loss is defined as the fraction of imperfectly classified examples,
with the best performance at 0.

SubsetZeroOneLoss = 1−ExactMatchRatio (3.19)

Hamming Loss is defined as the fraction of labels predicted incorrectly, and accounts
for all misclassifications (prediction errors and omission errors) over total number of label
classes over all examples. It is more forgiving in that it penalizes only the individual labels.
It is formally defined as under, where ∆ stands for the symmetric difference between the
two sets, the equivalent of XOR in Boolean logic. The best performance of this metric is 0.

Hamming Loss =
1
p

p

∑
i=1

1
q
|Yi∆Zi| (3.20)

Log Loss, also called the cross-entropy loss, is used to evaluate the probability outputs
of a classifier instead of its discrete predictions. As applicable in the multi-label context,
the binary variant is defined as under, where P(·) is defined as the corresponding probability
estimate, a threshold value of which leads to Zi.

Log Loss =−1
p

p

∑
i=1

[
Yi · log(P(Yi)) +

(1−Yi) · log(1−P(Yi))
] (3.21)
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3.4.5.2 Label-based Evaluation

Label-based evaluation metrics are calculated by evaluating the classifier’s performance on
each class label separately, and then returning the micro or macro averaged value across
all class labels.

For the jth class label λ j, T Pj,FPj,T N j,FN j denote the number of True Positive, False
Positive, True Negative, and False Negative test samples from T with respect to λ j, where
T Pj +FPj +T N j +FN j = p.

T Pj =
∣∣{xi | λ j ∈ Yi ∧λ j ∈ Zi}

∣∣

FPj =
∣∣{xi | λ j /∈ Yi ∧λ j ∈ Zi}

∣∣

T N j =
∣∣{xi | λ j /∈ Yi ∧λ j /∈ Zi}

∣∣

FN j =
∣∣{xi | λ j ∈ Yi ∧λ j /∈ Zi}

∣∣

(3.22)

Any known evaluation measure applicable to a binary classifier can be adapted to a label-
based setup. For any binary evaluation metric B ∈ {Accuracy,Precision,Recall,Fβ , · · ·}
calculated on the basis of B(T Pj,FPj,T N j,FN j) for a particular label, the overall la-
bel based classification metrics can be obtained by one of the following two averaging
methodologies:

Macroaveraging, which implies calculating a metric B for each class in L , and then
averaging over all classes. This can be seen as per-class averaging, and since it gives equal
weights to all classes, it is a good methodology to highlight the performance of infrequent
classes that are nonetheless important.

Bmacro =
1
q

q

∑
j=1

B
(

T Pj,FPj,T N j,FN j

)
(3.23)

Microaveraging, which implies calculating a metric B globally over all the examples
in T together, aggregating the measure over all classes as a whole. This can be seen
as per-example averaging, and tends to be dominated by the performance of the most
frequently occurring classes within the example space.

Bmicro = B

(
q

∑
j=1

T Pj,
q

∑
j=1

FPj,
q

∑
j=1

T N j,
q

∑
j=1

FN j

)
(3.24)
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An example of the binary evaluation metrics B that the above averaging methodologies
can be applied on include:

Accuracy(T Pj,FPj,T N j,FN j) =
T Pj +T N j

T Pj +FPj +T N j +FN j

Precision(T Pj,FPj,T N j,FN j) =
T Pj

T Pj +FPj

Recall(T Pj,FPj,T N j,FN j) =
T Pj

T Pj +FN j

(3.25)

and so on.

3.4.5.3 Ranking-based Evaluation

Ranking based evaluation metrics compare the predicted ranking of the labels with the
ground-truth ranking. The rank predicted by a label ranking method for a label λ is denoted
as Ri(λ ).

Coverage is defined as an evaluation that calculates an average for how far down the
list of ranked labels does the classifier need to go in order to cover all the true labels
of an example instance. It is useful in use-cases where it is utmost important to get all
true labels predicted, even if that means a few extra false positives [46]. Coverage can
be also considered an example-based metric as it is firstly computed for each example,
and then averaged across the test set T . The smaller the value of coverage, the better
the performance. It is common in implementations to remove the subtraction by 1 in the
following equation, so as to be able to extend the metric to handle the degenerate case in
which an example instance has no true labels associated with it [86].

Coverage =
1
p

p

∑
i=1

max
λ∈Yi

Ri(λ )−1 (3.26)

Average Precision is defined as the average fraction of labels ranked higher than a
particular label λ ∈ Yi, which actually are in Yi. This can be also considered an example-
based metric as it is firstly computed for each example, and then averaged across the test
set T . The best value for this evaluation metric is 1, with larger values indicating better
performance.

Average Precision =

1
p

p

∑
i=1

1
Yi

∑
λ∈Yi

∣∣{λ ′ ∈ Yi | Ri(λ
′)≤ Ri(λ )}

∣∣
Ri(λ )

(3.27)

Ranking Loss is defined as an evaluation of the average proportion of label pairs that
are incorrectly ordered for the example instance, i.e. true labels have a lower score than
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3.4 Multi-Label Classification

false labels. Y denotes the complementary set of Y in L , where the goal is that the labels
in Y be ranked higher than the labels in Y . This can be also considered an example-based
metric as it is firstly computed for each example, and then averaged across the test set T .
The best value of this metric is 0.

Ranking Loss =
1
p

p

∑
i=1

1
|Yi||Yi|

|E|

|E|=
{
(λ ,λ ′) | Ri(λ )> Ri(λ

′), (λ ,λ ′) ∈ Yi ×Yi

} (3.28)

Area Under the Curve (AUC) is defined as either the area under the receiver operating
characteristic (AUC-ROC) as illustrated in Figure 3.3, or the area under the precision-recall
curve (AUC-PRC). AUC is an intuitive representation of the probability of a randomly
selected positive example getting a higher ranking than a randomly selected negative
example. The instance-based definition of AUC as described below follows closely from
the Wilcoxon-Man-Whitney Statistic [87].

AUC =
1
p

p

∑
i=1

∣∣{(λ ,λ ′) ∈ Yi ×Yi | Ri(λ
′)≥ Ri(λ )}

∣∣
|Yi||Yi|

(3.29)

This is a label-based ranking metric, and can be calculated as both a macro and micro
averaged value based on Equations 3.23 and 3.24. Its value ranges from 0 to 1, the higher
the better.

AUC-ROC j =
∫ 1

0
T PR j d(FPR j) (3.30)

AUC-PRC j =
∫ 1

0
Precision j d(Recall j) (3.31)

Sensitivity, or Recall, or T PR j =
T Pj

T Pj +FN j

Speci f icity, or T NR j =
T N j

T N j +FPj

FPR j = 1−T NR j =
FPj

T N j +FPj

(3.32)
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(a) Binary Relevance— Logistic Regression
Classifier

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (1 - Specificity)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
sit

iv
ity

)

AUC - ROC Curve

Micro-average (Area=0.97)
Macro-average (Area=0.73)
slo_load (Area=1.00)
slo_computation (Area=0.85)
slo_disk (Area=0.59)
slo_io (Area=0.50)

(b) Classifier Chain— Logistic Regression Clas-
sifier
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(c) Classifier Chain— AdaBoost Classifier
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(d) Classifier Chain— Naive Bayes Classifier
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(e) Classifier Chain— Support Vector Machine
Classifier
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(f) Multi-Label k-Nearest Neighbours
Classifier
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(g) Decision Tree Classifier
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(h) Random Forest Classifier

Fig. 3.3 AUC-ROC plots depicting the learning of the various machine learning classifiers
on individual class labels, as well as the micro and macro averaged performance on the
entire set.
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3.5 Addressing Class Imbalance in the Multi-Label Con-
text

Typical classification algorithms perform best when the distribution of data in each of the
binary classes is equally distributed. However, when dealing with a high volume of data,
especially in the multi-label context, class imbalance is a typical side effect, since not all
the labels may be evenly distributed across data instances [43].
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(a) Multi-Label Dataset
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(b) Training Set
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(c) Random Oversampling

Fig. 3.4 Overall distribution of the 4 SLO class labels. The training set contains a positive
distribution of 5.64%, 10.05%, 92.16%, 0.23% respectively on the four SLO classes.

Figures 3.4a and 3.4b show a graphical representation of the distribution of the data
in each of the SLO classes in our use-case. Owing to the special properties of a multi-
label setup, imbalance in a multi-label dataset is measured differently from regular binary
or multi-class classification. For the multi-label dataset D as described earlier, where
D = {(xi,Yi) | 1 ≤ i ≤ |D |}, measures such as cardinality and label density are often used
in literature to characterize the distribution of labels [44, 48].
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Label Cardinality is a measure that defines the average number of class labels associated
with each data instance in a multi-label dataset D . It is independent of the number of label
classes |L |= q that exist in D .

Cardinality(D) =
|D |
∑
i=1

|Yi|
|D | (3.33)

Label Density is a measure that obtains the ratio of cardinality with the number of label
classes that exist in D .

Label Density(D) =
Cardinality(D)

|L | (3.34)

However, label cardinality and label density do not accurately convey the notion of
imbalance [88]. A more concrete measure of the level of imbalance in a multi-label dataset
is through the combined use of three specialised metrics— Imbalance Ratio per Label,
Mean Imbalance Ratio, and Coefficient of Variation of the Imbalance Ratio per Label [89].
These are defined as follows:

Imbalance Ratio per Label (IR) is a measure that is defined as the ratio between the
majority class label λ and each class label λ j ∈ L . It therefore takes on the value of 1 for
the most frequently occurring class label, and a higher value proportionate to the relative
degree of imbalance for the other class labels.

IR =
argmaxλ∈L

(
∑
|D |
i=1 λ ∈ Yi

)

∑
|D |, |L |
i=1, j=1 λ j ∈ Yi

(3.35)

Mean Imbalance Ratio (Mean IR) is a ratio that presents the mean level of imbalance
in D . For example, a Mean IR value of 1.5 represents that there exist, on average, 50%
more samples in the majority class label than the minority class label.

Mean IR =
1

|L |
|L |
∑
j=1

IR(λ j) (3.36)

Coefficient of Variation of the Imbalance Ratio per Label (CVIR) is an indicator of
whether all class labels suffer from the same level of imbalance, or if the degree of
imbalance differs between them. For example, a CVIR value of 0.2 represents that there
exists 20% variance in the IR values among individual class labels. A higher value of
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Table 3.3 Metrics capturing the degree of imbalance in the multi-label dataset, and the
SLO class labels.

Label
Cardinality

Label
Density

IR Mean IR CVIRSLO1 SLO2 SLO3 SLO4
1.081 0.270 16.259 9.198 1 395.181 105.409 1.833

CVIR implies a higher degree of variation of imbalance between individual class labels.

CV IR =
1

Mean IR

√√√√
|L |
∑
j=1

(IR(λ j)−Mean IR)2

|L |−1
(3.37)

Table 3.3 presents the measure for the degree of imbalance in our use-case data, using
the above measures. To compare, a multi-label dataset is considered imbalanced if the
Mean IR is higher than 1.5, and CVIR is over 0.2 [89].

There exists class imbalance in all the class labels, but the distribution is quite extremely
skewed in the last class label, i.e. SLOio. Such a distribution skews the performance as
portrayed by the evaluation metrics, as the classifier may not learn the representations of
the minority classes in the training set S . For example, in the cases such as our use-case
where the binary distribution of classes between the class labels is skewed to such varying
range of extremes, a classifier can achieve 94.12% accuracy by just predicting the majority
classes for all the class labels in L in the test set at all times. This is also the reason why
training based on maximising accuracy and other conventional metrics do not perform well
in an imbalanced multi-label context.

Moreover, since the prediction value for each neuron in the output layer is a continuous
value in [0,1] which is translated to a binary classification by setting a threshold, this
creates a trade-off between precision and recall. The AUC-ROC is a great way to ascertain
the quality of a predictor without the threshold, and is a very useful metric to evaluate a
classifier, especially in the context of an imbalanced class distribution [87]. However, it is
much more appropriate to train by aiming to maximize the area under the precision recall
curve (AUC-PRC) during training [90, 91].

Post training, while it is helpful to consider the macroaveraged metrics to understand
the performance in a multi-label context, they may not independently convey the full
picture on the model and its learning capabilities for the individual classes. It may so
occur that a class is entirely ignored by the classifier, and its interactions never picked up
and modeled in the learning phase, while the performance continues to improve on the
macro and microaveraged metrics due to improvements in learning the other classes. As
such, for such extreme distributions, it is acutely important to also track each of the class
labels individually to understand if the classifier has been modeling them in the learning
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phase, and to ascertain if it is performing better than a random classifier (i.e. a classifier
that assigns classes randomly). We present a visual representation for the performance of
each of the learning classifiers on the individual classes by way of confusion matrices and
AUC (both AUC-ROC and AUC-PRC). This aspect adds on to the requirement of tracking
the classifier’s performance on a wider set of metrics as mentioned earlier, as it helps to
better understand the shortfalls of a learning strategy, and reveals a bigger picture behind
an overly optimistic prediction performance.

As can be understood from Table 3.2 and elaborated upon in §3.7, neural networks have
a direct advantage in multi-label classification algorithms by concurrently understanding
the correlations and working on learning all label classes simultaneously. However, neural
network architectures do not implicitly support imbalanced classification [92]. There are
two ways to directly address class imbalance in classification problems— either to take
steps to make models resilient to class imbalance, or to apply rebalancing and resampling
techniques to reduce the imbalance in data [93]. Improving multi-label classification
for real world data is currently an active research area [94, 95], and so is addressing
imbalance in a multi-label setup [96–98]. We address imbalance in our use-case by
adapting two conventional methodologies to a multi-label context, and use them to improve
the performance of the deep feed-forward neural network model for the minority class
labels.

3.5.1 Adding Class Weights

The most common strategy to address class imbalance is to introduce appropriate weights
for the minority samples, so as to have a weighted learning cost-sensitive strategy[92]. In
single output classification models, this is usually done by weighing each class inversely
to the ratio of minority to majority labels within it [99].

3.5.1.1 Deep FFNN with Balanced Class Weights

Since multi-label classification consists of multiple class-labels associated with a data
instance, and each of the labels is binary, we adapt the above strategy by weighing each
class label in inverse proportion to its frequency of positive to negative occurrence. Thus,
for each class label λ j in L , where L = {λ j | j ∈ [1,q]}, we weigh λ j as per the ratio of
its 0 : 1 label distribution in the training set S :

| Total j |
| Positive j |

−1 (3.38)
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which is equivalent to
| Negative j |
| Positive j |

(3.39)

This ensures that the class labels that have a lower frequency of positive occurrence in
the training set S are weighted relatively higher than the other class labels, and thus a
misclassification for these infrequent classes is compensated by penalizing it higher in that
proportion. Thus, the classifier is forced to adequately tune the learning model by also
considering the behaviour of the minority classes.

So, for a training set S with 113,303 data instances with a positive distribution of
5.64%, 10.05%, 92.16%, 0.23% respectively on the four SLO classes, we correspondingly
apply the relative positive class label weights of 16.74, 8.94, 0.08, 443.32, with this
methodology.

3.5.1.2 Deep FFNN with Clipped Class Weights

Neural networks do not train well with large weights [100]. While imbalance in classes is
measured by orders of magnitude, the extreme weight value of 443.32 for the last class
with the above method, although formally correct, is anticipated to be detrimental for
performance. Furthermore, SLO3, the most positively distributed class label, assumed a
weight of 0.08 by the above methodology. This is lower than the relative weight of 1.0
that is assigned to the distribution of all negative occurrences, which should deteriorate the
learning for that class label with a drastic addition in the false predictions for that class
label.

Thus, in order to test the above hypothesis, we add a model with clipped class weights.
Here, we clip the class weights derived from the above methodology such that the maximum
value that any of the class labels assume is set to a tunable upper limit (we set it to 100.0),
and the minimum value for any weight is 1.0, i.e. equal to that of the negative distributions.
Thus, with this methodology on the four SLO classes, we correspondingly apply the class
label weights of 16.74, 8.94, 1.0, 100.0.

3.5.1.3 Deep FFNN with Log Smoothed Class Weights

While the above methodology is expected to be an improvement on the first one, setting
the upper threshold for class weights is a heuristic nonetheless, and finding its optimal
value would require another grid search each time the model is changed. Thus keeping in
mind that the neural network weights should be set to low values for optimal training and
bias-variance trade-off, we introduce a log smoothed model that combines the benefits of
the above two methods.

40
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log

(
α ·
[ | Total j |
| Positive j |

−1
])

(3.40)

α here is a tunable hyperparameter that can be varied to change how many class labels
should be weighed above 1. This depends on the distribution of the positive and negative
occurrences within a class label, and the unweighted model’s learning performance on
the skewed classes. We set α to 0.16, which is its maximum value until which the first
three classes are weighed at the default value of 1.0, and only the most skewed class, i.e.
SLO4 takes on a class weight. This is the methodology that seeks to set the weighting to a
bare minimum, both on the number of classes as well as the relative ratios. Thus, with this
methodology on the four SLO classes, we correspondingly apply the class label weights of
1.0, 1.0, 1.0, 4.26.

3.5.2 Random Oversampling

An alternative to class weighting is the use of oversampling or undersampling techniques
to either increase the occurrence of minority class labels, or decrease the sampling of
the majority class labels respectively during the training phase [101]. It is to be noted
that in the multi-label context, this would also cause indirect over or under sampling the
other class labels that co-occur in Yi on these training instances. Further, the degree of
oversampling has a proportionately high likelihood of disrupting the learning model in
a multi-label context, and is expected to cause overfitting nonetheless, since the model
would see certain data instances more than once during training [96]. Since oversampling
increases the size of the training set S , it also affects the distributions of labels overall in
that set. While traditional resampling strategies aim to create a balanced dataset from an
imbalanced one [101], doing so is not as straightforward in a multi-label context due to the
high level of concurrence between imbalanced labels, its translational impact on a large
number of unique label-sets, and the resultant introduction of a rather high level of noise
in training [96].

To this end, a simplistic methodology involves oversampling one or more class labels
until their IR matches up to the Mean IR, or to oversample one or more imbalanced class
labels until the size of the training set |S | is a certain percentage larger than the original
[89]. However, the exact dynamics vary largely by the individual data and distribution
characteristics, as well as the complexity and performance of the classification algorithm
in use. Since a deep neural network model is extremely prone to overfitting and was
seen to already perform well in capturing the imbalance in the first three class labels,
we adopted a random oversampling strategy wherein we oversample the training set S

during training for the data instances that feature the class label with the most extreme IR
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compared to the other class labels, i.e. SLO4. Corresponding to the IR values in Table 3.3
stating the degree of imbalance in each class label, the actual distribution for each class
label (positive occurrence) is 5.64%, 10.05%, 92.16%, and 0.23%. We oversample the
instances containing SLO4 by approximately 4% of |S |, such that the incidence of SLO4

increases from 0.23% to 4.24%, but still remains below the distribution of the next closest
imbalanced class. The new distribution on the bigger training set becomes 5.45%, 9.84%,
91.04%, and 4.24%, with a corresponding IR of 16.70, 9.26, 1, and 21.49. The Mean IR
for the new oversampled training set is 12.11, with a CVIR value of 0.74.

With this methodology, the model would see an increased incidence of the most
infrequent minority class label in the mini-batches during training, and this is aimed
towards increasing the odds that the model will at least be able to capture its behaviour as
well as interactions with the other class labels. Nevertheless, the validation and test set
remain unchanged, and the training can be readjusted by breaking up the epochs, applying
appropriate weight regularization, and providing finer control to early stopping callbacks.
Figure 3.4c shows the resulting distribution after we apply the oversampling strategy on
our use-case.

Algorithm 3.1: Decision-making strategies towards addressing extreme class
label imbalance for SLA violation prediction in a latency sensitive NFV applica-
tion

Input : Training Data S ∈ Rd

Compute IR for each SLO class label SLO j | j ∈ [1, |L |] using Eq. 3.35, the Mean
IR using Eq. 3.36, and the CVIR using Eq. 3.37

• CLASS WEIGHTED STRATEGY

Function Class Weighted Strategy(S ):
if (Mean IR > 0.5 and CVIR > 0.2) then

Compute class weights using Eq. 3.38
if (Class weight of any SLO j > 100 or < 1) then

Compute class weights using Eq. 3.40
End Function

• RESAMPLING STRATEGY

Function Resampling Strategy(S ):
if (IR of SLO j ≫ Mean IR) then

Randomly oversample S for data instances belonging to SLO j
else

Randomly oversample S until IR for SLO j gains better proximity to the
Mean IR

End Function

Algorithms 3.1 and 3.2 present the consolidated proposition towards effectively ad-
dressing class imbalance in a multi-label setup in a deep FFNN model, that extracts the
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Algorithm 3.2: A deep feed-forward neural network based multi-label classifier
for SLA violation prediction in a latency sensitive NFV application

• PRE-PROCESSING
Input : Data: D ∈ Rd

Output : Pre-processed training set S , validation set V and test set T

Function Pre-Processing(D):
Split the data in train, test, and validation sets
Standardize according to the training set S

End Function

• DEEP FFNN MODEL
Input: Pre-processed training set S , validation set V and test set T
Output: Multi-label classification for SLO violations
Function Deep FFNN Model(D):

Construct neural network architecture
if (Addressing label imbalance with class weight based models) then

CLASS WEIGHTED STRATEGY

else
if (Addressing label imbalance with random oversampling) then

RESAMPLING STRATEGY
Apply appropriate values for all key structural and non-structural

hyperparameters
Specify the Early Stopping criterion
Compile the deep FFNN model
repeat

Train and fit the model with batches from S , using V as validation set
Output multi-label classification prediction values
Monitor and evaluate training with validation set

until CONVERGENCE;
End Function

Use data from the test set T to evaluate the trained model
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learning from the above four methodologies adapted for our use-case scenario. In the
following sections, we present and compare these strategies, highlight model performance
and evaluation, and present the challenges through such a setup.

3.6 Experimental Setup

The experiments were all set up using Python (version 3.8.5) and its associated data-science
libraries. We use the Scikit-Learn [86] library for all machine learning based methodologies
used in this Chapter, and Tensorflow [102] version 2.4.1 with Keras [103] to program all
the deep learning based implementations.

3.6.1 Dataset

We use a publicly hosted dataset3 obtained via a standard Clearwater testbed, a visualization
for which is presented in Figure 3.1. The dataset comprises of raw telemetric data files
that track 26 metrics for each of the 6 monitored VNFs that compose the Clearwater
ecosystem, and includes bursts of abnormal behaviour through its integrated stress testing
tools to simulate VNF congestions and QoS degradations. The data is sampled every 30
seconds, and spans an overall period of 2 months. This corresponds to 156 features overall,
and 177,098 rows of raw temporal data. A brief description of the captured metrics is
summarised in Table 3.1. Outcomes of the exploratory data analysis as performed on this
data-set have been presented in Appendix A.

3.6.2 System Configuration

The experiments were performed in a Docker4 based containerized environment running
atop a bare-metal Linux server with 64 GB RAM, Intel® Xeon® CPU E5-2660 v2 @
2.20GHz (40 physical processors), 2 NVIDIA® Tesla K20m GPUs, and 500 GB local
storage. The Docker image runs an Ubuntu 20.04 LTS operating system, and CUDA
version 11.3 for the GPUs.

3.6.3 Learning and Adaptation

The data input into any model, be it machine learning or deep learning, is first standardized
via mean centering and ensuring a standard deviation of 1, i.e. subtracting each data
feature value by its corresponding mean in the training set, and dividing by the standard

3www./bit.ly/3gPY8c5
4www.docker.com
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Table 3.4 Key results from random search for finding an optimal neural network architecture.
Best values have been highlighted in bold.

Results of Random Search for Neural Network Architecture
Neural Network Layers, and Number of Neurons in

Each Loss TP FP TN FN Accuracy Precision Recall AUC
Input
Layer Hidden Layers Output

Layer
65, 0.2 (D) 0.015 37973 366 103047 246 0.995 0.990 0.993 0.999

65, 0.2 (D), 24 0.010 38043 139 103274 176 0.997 0.996 0.995 0.999
65, 0.2 (D), 65 0.014 37960 248 103165 259 0.996 0.993 0.993 0.999

126 65, 0.2 (D), 24, 0.1 (D) 4 0.011 38006 130 103283 213 0.997 0.996 0.994 0.999
65, 0.2 (D), 65, 0.1 (D), 24, 0.1 (D), 24 0.010 38041 161 103252 178 0.997 0.995 0.995 0.999
65, 0.3 (D), 65, 0.2 (D), 24, 0.1 (D), 24 0.008 38035 118 103295 184 0.997 0.996 0.995 0.999
65, 0.3 (D), 65, 0.2 (D), 24, 0.2 (D), 24 0.010 38050 155 103258 169 0.997 0.995 0.995 0.999

deviation. This pre-processing, as also presented in Algorithm 3.2, helps in the learning
and convergence of any predictive modeling algorithm [100].

We split the available data into training and test sets in the ratio of 80 : 20, and the
training set is further split into training and validation sets in the ratio of 80 : 20. Hence,
overall, the data consisting of 177,098 rows is split in the ratio 64 : 20 : 16, corresponding
to train, test, and validation splits respectively.

The choice of architecture has an important role to play in the model learning and
performance for a neural network methodology. While there are no fixed guidelines on the
number of layers and the number of neurons in each of them, the choice is often driven by
following a heuristic based on number of inputs and outputs, and using a random search
methodology to arrive at an optimal architecture for the use-case and data at hand. We
begin with a shallow universal approximation architecture [16], i.e. with one hidden layer,
and the number of neurons in it equal to the average of the neurons in the input and output
layers. We use its results as a baseline to adjust the number of layers and neurons, and also
adjust the dropout regularization factor between layers to control overfitting [104] as the
model gains complexity. This results in a deep learning architecture, and the key results
from this random search based architecture optimization are presented in Table 3.4.

For FFNN model training, we use Binary Crossentropy as the loss function to be
minimized. It is a probabilistic loss function that computes the cross-entropy loss between
true and predicted labels, and is appropriate for use in a binary classification based setup.
Further, we use Adam [105] as the optimizer for its computational efficiency and adaptive
learning, with its default learning rate of 10−3. ReLu (Rectified Linear Unit) is used as
the activation function for each of the hidden layers due to its computational simplicity
and high optimization performance in a deep MLP based setup [100]. As mentioned
earlier, we use sigmoid as the activation function for the output layer to concurrently output
the individual probability of each label’s association with the input data instance, thus
supporting multi-label classification outputs.
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Fig. 3.5 Grid search for L1 L2 weight regularization on the deep FFNN architecture.

Since the label classes are imbalanced, we initialize the bias in the output layer to reflect
this and enable the model to begin with more reasonable initial guesses, thus contributing
to faster convergence. The bias initialization is derived through the log of the ratio of
positive : negative in each of the class labels, averaged over all class labels in the training
set. This also eliminates the erratic initial behaviour in the learning loss curve in the initial
epochs of training, where the model is just learning the bias.

To further control the degree of overfitting during training, we perform a grid search
for the optimal choice of weight regularization hyperparameters for the neural network
model, and based on the results, apply both L1 and L2 weight regularization on each of
the hidden layers in the FFNN, with a regularization factor of 10−7 for the unweighted
and class weighted models, and 10−4 for the model with random oversampling. A visual
representation of the outcome of grid search to this end is presented in Figures 3.5 and 3.6.

We use a large batch size of 2048 to increase the probability of class representation from
the minority class labels during the training phase. While we set the maximum training
epochs to 500, we also deploy an early stopping criteria that tracks the macroaveraged
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Fig. 3.6 Grid search for L1 L2 weight regularization on the deep FFNN architecture used
for the oversampled training set.
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AUC-PRC with a maximization objective, and a patience of 50 epochs to ensure that
the training is not stopped at a local optimization minima. At the end of training, model
weights are restored from the best epoch, which is considered as the best performance
achieved during training, before the model began to overfit on the training set. Finally, the
prediction threshold for probability output is set to 0.5, i.e., probability outputs below 0.5
are assigned the class 0, and above 0.5 are assigned the class 1. The AUC plots, however,
visualise the values and trade-offs of the model behaviour, should the threshold be varied.

3.7 Results and Discussion

Table 3.2 presents the results for the performance of the machine learning methods and
base deep neural network model on the multi-label task as of SLO violation prediction. The
deep feed-forward neural network performs better than all other machine learning methods
on most metrics, and is followed closely by the decision tree method. However, when
comparing the averaged AUC-ROC for these models with the performance on individual
class labels as shown in Figure 3.3, we notice that almost all the machine learning models
have the ROC curves for one or more class labels lying on the diagonal, or close to the
diagonal line, which represents a random classifier. This is especially true for the class
label SLO4, i.e. SLOio, which none of the machine learning models learnt well. Hence,
the values on precision, recall, and related example and label-based metrics stem from
stochastic classification on some class labels, which is undesirable for the use-case here.
Further, using such machine learning based methods is suitable only in the cases in which
the class labels in the data either have a low level of correlation between them, or are
independent altogether. However, it is clear from the comparison with the base deep neural
network model that the class labels are correlated, and in a way that is not straightforward
to learn given the level of imbalance in the multi-label dataset. Therefore, while binary
relevance is the most straightforward in the way it handles the multi-label data, it is
limited by its assumptions of complete label independence, which makes it unsuitable
for advanced applications. The Classifier Chain method overcomes the limitations of the
independent label assumption of the one-vs-rest binary relevance methods, and considers
correlations among labels in a random manner. However, the chaining property still has
its disadvantages in that it is not a parallel implementation, and the performance is highly
dependent on finding the most appropriate order of chaining [106], which random ordering
may not always solve. It is also very sensitive to skewed class distributions [107], and thus
limited in applications depending on the use-case and the size and characteristics of data.

ML-kNN also assumes label independence, and moreover, takes a lot of time to train.
It is therefore unsuited for data of large magnitude. Decision trees are yet another family
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of methods that assume label independence in solving multi-label problems. While the
biggest advantage of using a decision tree methodology is that it is a white-box method
and thus the decisions can be traced back to the logic behind them; on our use-case, the
decision tree model holds a depth of 35 with 589 leaves. This conveys a high degree
of model complexity that is not as easy to analyze and interpret. Random forest is an
ensemble of decision trees, and thus prone to the same issues that decision trees face here.

The deep feed-forward neural network has a clear edge on the task, stemming from the
fact that it is capable of modeling the patterns behind each of the class labels in parallel,
and can concurrently capture the correlations between them. As shown in Figure 3.8a, the
base FFNN model learns the behavior of all classes, including class SLO4. However, a
parallel view of the individual classes for the base FFNN model in Table 3.5 shows that
unlike the other class labels, SLOio has no true positive or false positive detections. To
address this, we improve the model with class weighting and oversampling strategies, as
elaborated earlier in Section 3.5. Table 3.5 presents the performance of these strategies as
compared and evaluated on the multi-label classification metrics. A direct inference from
the comparison is a quantification of how inflated the performance estimates from the base
model were. By adding strategies to address class imbalance, we prevent the model from
developing a bias towards the majority class labels, and ensure that the prediction is not an
overestimation.

As mentioned earlier in Section 3.5, rather than training to maximize accuracy or any
other conventional metric, we train the deep neural network models to maximize the area
under the precision recall curve (AUC-PRC). Figure 3.7 presents the Precision-Recall
curves for these deep FFNN models. A high AUC-PRC implies high recall and high
precision, i.e. low false negative rate and low false positive rate respectively.

Figure 3.8 depicts the ROC curves for the individual class labels, . Any point on the
curve here signifies a trade-off between precision and recall, should that be the threshold—
if set low, the recall of the positive occurrence (class value 1) will be high, and the precision
will be low; and vice-versa if the threshold is set high. Which one to prioritize depends on
the use-case— for example in our case the model can be tolerant of false positives at the
cost of minimizing the false negatives, since false negatives signify missed SLO violations,
which have a higher cost associated with them. Thus, in our use-case, we prioritize recall
over precision when measuring performance. Figure 3.9 gives an overview of the degree
of overfitting within the AUC-ROC curves in effect in each of the trained neural network
models.

Figures 3.11, 3.12, 3.13, 3.14, and 3.15 show the learning curves depicting loss, AUC-
PRC, precision, and recall performance for the corresponding deep FFNN models as they
train to converge over the training and validation sets. When comparing the class weighting
strategy, we notice the fluctuations when the model assumes large weights as per the
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Table 3.5 Performance of the various strategies adopted to address the class label imbal-
ance, evaluated on all presented multi-label classification metrics. Best numeric values
corresponding to each metric have been highlighted in bold.

Addressing Class Imbalance

Deep FFNN
Deep FFNN with

Balanced
Class Weights

Deep FFNN with
Clipped Class

Weights

Deep FFNN with
Log Smoothed
Class Weights

Deep FFNN with
Random

Oversampling
Training Loss 0.009 0.519 0.020 0.010 0.046

Micro Average 1.000 0.837 0.999 0.999 0.999
AUC-PRC Macro Average 0.778 0.741 0.771 0.776 0.773

Weighted Average 0.998 0.952 0.997 0.998 0.997
Micro Average 1.000 0.953 0.999 1.000 1.000

AUC-ROC Macro Average 0.969 0.885 0.936 0.959 0.955
Weighted Average 1.000 0.757 0.997 0.999 0.999

SLO 1 (Load) 1973 1974 1976 1973 1972
SLO 2 (Computation) 3499 3529 3517 3491 3499

SLO 3 (Disk) 32568 6591 32168 32547 32528

True
Positives

(TP)
SLO 4 (IO) 0

38040

37

12131

17

37678

13

38024

31

38030

SLO 1 (Load) 1 9 18 0 1
SLO 2 (Computation) 37 1818 240 35 93

SLO 3 (Disk) 53 514 37 81 59

False
Positives

(FP)
SLO 4 (IO) 0

91

505

2846

72

367

34

150

202

355

SLO 1 (Load) 33429 33421 33412 33430 33429
SLO 2 (Computation) 31822 30041 31619 31824 31766

SLO 3 (Disk) 2749 2288 2765 2721 2743

True
Negatives

(TN)
SLO 4 (IO) 35322

103322

34817

100567

35250

103046

35288

103263

35120

103058

SLO 1 (Load) 5 4 2 5 6
SLO 2 (Computation) 50 20 32 58 50

SLO 3 (Disk) 38 26015 438 59 78

False
Negatives

(FN)
SLO 4 (IO) 86

179

49

26088

69

541

73

195

55

189

Micro Average 0.998 0.810 0.990 0.995 0.991
Precision Macro Average 0.747 0.663 0.779 0.813 0.776

Weighted Average 0.996 0.904 0.991 0.994 0.994
Micro Average 0.996 0.317 0.986 0.996 0.995

Recall Macro Average 0.747 0.656 0.794 0.775 0.835
Weighted Average 0.996 0.317 0.986 0.996 0.995

Micro Average 0.997 0.456 0.988 0.996 0.993
F-1 Score Macro Average 0.747 0.560 0.786 0.787 0.793

Weighted Average 0.996 0.409 0.988 0.995 0.994
Jaccard Micro Average 0.994 0.295 0.976 0.991 0.986

Similarity Macro Average 0.744 0.478 0.753 0.764 0.765
Coefficient Weighted Average 0.994 0.282 0.978 0.992 0.991

(Subset) Accuracy (or EMR) 0.993 0.197 0.974 0.990 0.984
Hamming Loss 0.001 0.204 0.006 0.002 0.003

Log Loss 0.289 1.680 0.312 0.294 0.303
Subset Zero-One Loss 0.006 0.802 0.025 0.009 0.015

Coverage 1.080 1.186 1.081 1.080 1.080
Average Precision (Label Ranking) 0.999 0.946 0.999 0.999 0.999

Ranking Loss 0.0002 0.035 0.0006 0.0003 0.0004
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(a) Base Neural Network Classifier— Deep Feed-
Forward Neural Network Model
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(b) Deep Feed-Forward Neural Network Model—
Balanced Class Weights
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(c) Deep Feed-Forward Neural Network Model—
Clipped Class Weights
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(e) Deep Feed-Forward Neural Network Model—
With Random Oversampling

Fig. 3.7 AUC-PRC plots depicting the learning and precision-recall trade-off of the various
deep neural network classifiers on individual class labels, as well as the micro and macro
averaged performance on the entire set.

balanced class weighting strategy. This is because the model sees an infrequent example
associated with a very large weight within some batch of training, which suddenly disrupts
the gradient signal at each occurrence. This also transfers to poor performance for all
evaluations on the test set. Clipping the class weights to a lower range improves both
model training and performance, thus necessitating that formal class weighting strategies
that enforce large weights given a high ratio of imbalance are unsuitable in this context.
The best performance of the model is achieved when the weights are smoothed by log
scaling, and kept to a minimal ratio. The log smoothed model outperforms on almost all
categories of metrics with the best convergence and least overfitting, and achieves the
highest macroaveraged AUC-PRC (0.776) and AUC-ROC (0.959), with a subset accuracy
of 99%, and multi-label accuracy of 99.1%. Figure 3.10 gives an overview of the degree
of overfitting within the AUC-PRC curves in effect in each of the trained neural network
models.

As can be seen in Figure 3.15, the model with random oversampling does overfit
given the repetitions in the training set, but the appropriate regularization ensures that
the validation curve is smooth, and the model converges well. The model has the highest
macroaveraged F1 score (0.793) and recall (0.835), and fares almost at par with the log
weighted model in learning and perform well on all classes. However, while it minimizes
the false negatives the most, it has a slightly higher number of false positives. The

52



3.7 Results and Discussion

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (1 - Specificity)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
sit

iv
ity

)

AUC - ROC Curve

Micro-average (Area=1.00)
Macro-average (Area=0.96)
slo_load (Area=1.00)
slo_computation (Area=1.00)
slo_disk (Area=1.00)
slo_io (Area=0.82)

(a) Base Neural Network Classifier— Deep Feed-
Forward Neural Network Model

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (1 - Specificity)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
sit

iv
ity

)

AUC - ROC Curve

Micro-average (Area=1.00)
Macro-average (Area=0.93)
slo_load (Area=1.00)
slo_computation (Area=1.00)
slo_disk (Area=0.99)
slo_io (Area=0.73)

(b) Deep Feed-Forward Neural Network Model—
Balanced Class Weights

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (1 - Specificity)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
sit

iv
ity

)

AUC - ROC Curve

Micro-average (Area=1.00)
Macro-average (Area=0.94)
slo_load (Area=1.00)
slo_computation (Area=1.00)
slo_disk (Area=1.00)
slo_io (Area=0.75)

(c) Deep Feed-Forward Neural Network Model—
Clipped Class Weights

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (1 - Specificity)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
sit

iv
ity

)

AUC - ROC Curve

Micro-average (Area=1.00)
Macro-average (Area=0.95)
slo_load (Area=1.00)
slo_computation (Area=1.00)
slo_disk (Area=1.00)
slo_io (Area=0.82)

(d) Deep Feed-Forward Neural Network Model—
Log Smoothed Class Weights

53



3.7 Results and Discussion

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (1 - Specificity)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
sit

iv
ity

)

AUC - ROC Curve

Micro-average (Area=1.00)
Macro-average (Area=0.97)
slo_load (Area=1.00)
slo_computation (Area=1.00)
slo_disk (Area=1.00)
slo_io (Area=0.88)

(e) Deep Feed-Forward Neural Network Model—
With Random Oversampling

Fig. 3.8 AUC-ROC plots depicting the learning of the various deep neural network classi-
fiers on individual class labels, as well as the micro and macro averaged performance on
the entire set.

exact classification distributions for the individual class labels are depicted in Table 3.5.
Ultimately, the choice between opting for sampling based strategies or class weighting
strategies depends on the degree of imbalance, the model being used, the use-case and
objectives. In the case of a deep FFNN model, when the class weights enforced are small,
both class weighting and oversampling work similarly, assigning the equivalent of small
weights to infrequent positive examples in individual batches during training. However,
when the class weights formally attain large values, the results suggest that oversampling
may be better strategy, since it involves a smoother gradient update in each batch seen
during training.
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Fig. 3.9 AUC-ROC plots depicting the performance of the various deep neural network
classifiers on individual class labels on the Train vs Test set, signifying the degree of
overfitting.
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Fig. 3.10 AUC-PRC plots depicting the performance of the various deep neural network
classifiers on individual class labels on the Train vs Test set, signifying the degree of
overfitting.
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Fig. 3.11 Learning Curves depicting training and validation performance for Base Neural
Network Classifier— Deep Feed-Forward Neural Network Model
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Fig. 3.12 Learning Curves depicting training and validation performance for Deep Feed-
Forward Neural Network Model— Balanced Class Weights
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Fig. 3.13 Learning Curves depicting training and validation performance for Deep Feed-
Forward Neural Network Model— Clipped Class Weights
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Fig. 3.14 Learning Curves depicting training and validation performance for Deep Feed-
Forward Neural Network Model— Log Smoothed Class Weights
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Fig. 3.15 Learning Curves depicting training and validation performance for Deep Feed-
Forward Neural Network Model— With Random Oversampling
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3.8 Summary and Conclusion

In this Chapter, we address the problem of SLA and SLO violation prediction in an NFV
environment with the use of multi-label classification methodology. This enables the
incorporation of multi-output models as we move towards more complex decision-making
in the management of virtualised communication networks, identifying and predicting
multiple categories of SLO breaches as applicable to study and mitigate their impact
towards SLA and SLO violations. We work with Clearwater, a latency-sensitive NFV
based vIMS application to draft realistic SLO definitions for this vertical, and use these as
the basis to model the violations as a multi-output target. We propose the use of a deep
feed-forward neural network classifier to adequately capture and learn the correlations
between the different categories of SLO violations, and predict them as they (co)-occur
given the state of the NFV application at a point in time.

The results suggest the suitability of such a deep learning methodology in achieving
the target objective, and in also overcoming the issue of class imbalance in training by
adapting class weighting and random oversampling strategies to a multi-label setup. We
achieve a subset accuracy of 99%, and multi-label accuracy of 99.1% in the best model
approach, working with a dataset where the highest class label imbalance ratio is 395.18,
with a mean imbalance ratio of 105.40.

We reason and demonstrate that our proposed methodology can be useful to identify the
gaps in SLA policy enforcement, to further fine-tune the scaling policies for an enhanced
balance between efficiency and reliability, as well as to identify and address the frequent
vulnerabilities and bottlenecks that a latency-sensitive real-time application such as this
may face.
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Chapter 4

A Residual LSTM based Multi-Label
Classification Framework for Proactive
SLA Management in a Latency Critical
NFV Application Use-Case

4.1 Introduction

As mentioned in the pervious Chapters, efficiency and reliability are competing elements
within an SLA, marking a trade-off between system usage and requirements [16]. While
network operators and Cloud operators may resort to over-provisioning to match the high
requirements for these latency-critical applications in a high availability network slice, such
practices are inefficient in the long run [7]. A transition towards complete softwarization
of networks and services brings in the requirement to adopt more complex models to
guarantee QoS and reliability [17]. This is because of an impending evolution in not just
the way networks are composed and managed, but also renewed application architectures,
corresponding QoS and SLA management techniques, and optimization and automation to
cope with the added complexity [21]. A key aspect to driving such a change is in how the
Cloud reacts to such a latency-critical demand, and in being precisely proactive over time
[7].

In this Chapter, we present a machine learning based framework for proactive SLA
management in the use case of a latency-critical NFV application. The key contributions
are summarised as follows:

• We work with data from a real-world deployment of a latency critical NFV appli-
cation with two months’ worth of raw network telemetry data sampled every 30
seconds, and use that as the basis for all our policy formation and learning models.
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4.2 Focus and Scope

An overview of the system and scope is provided in Figure 4.1. The data-set is
further elaborated upon in 4.5.1

• We compose a multivariate time-series forecasting model with multiple time-step
predictions in a multi-output scenario, i.e. the model forecasts a sequential range of
future values for multiple features in one go, thereby enabling us to track a realistic
deployment setup. Further, we propose the suitability of a residual connections based
Long Short-Term Memory (LSTM) architecture when used for such a task, and
compare the performance of multiple forecasting methodologies on such a use-case.

• While drafting the SLA, we decompose it into a set of realistic Service Level
Objective (SLO) definitions for such a latency critical use-case in an operational
setting. We categorise the SLOs into four broad characteristics that are critical
towards the deliverance of required performance, and enhance these for a fine-
grained monitoring of a latency-sensitive application that needs high availability
and reliability. Further, we associate and model a multi-label classifier to effectively
predict each of the multiple SLO violation categories that an application state can
concurrently be associated with at an instance, i.e. as a multi-output prediction target.
This helps in proactively predicting a more granular state of impact within an SLA
violation projection.

To the best of our knowledge, this is the first approach in the area that proposes and
applies a Residual LSTM based framework for proactive SLA management, and applies
multi-label classification towards such predictive objectives.

The rest of the Chapter has been structured as follows: §4.3 describes the Clearwater
NFV application, and defines the SLA and SLOs drafted for the purpose of violation pre-
diction. §4.4 provides an overview of the proposed framework. Thereafter, §4.5 expands
on the details of the experimental setup, §4.6 evaluates the results obtained through the
various models, and §4.7 presents the summary and conclusion.

The work presented in this Chapter has been disseminated in [Publication 2 – IEEE
CCNC 2022 [9]].

4.2 Focus and Scope

This Chapter addresses a component of the third research question (RQ3), i.e.

While tracking the application use-case to proactively avoid SLA violations, do learning
methods that track and preserve the inherent topological dependencies perform
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4.3 Defining Service Level Agreements

holistically better than those that work at the higher-level without active knowledge of
this metadata?

This Chapter is focused at comparing the performance of learning methods that fall
under the domain of classic deep learning for sequential forecasting, i.e. temporal fore-
casting at the high level without active consideration of spatial metadata and topological
dependencies. Chapter 5 will then address the other component of this RQ, i.e. comparison
with learning methods that track and preserve the inherent topological dependencies.

4.3 Defining Service Level Agreements

As defined in the last Chapter, while an SLA is a qualitative measure that binds the service
provider and facilitator into a formally agreed contract ensuring QoS for the end user,
this is realised on a set of low level metrics delivered through SLOs and Service Level
Indicators (SLIs). The SLIs can be defined as quantitative measures that build upon raw
system metrics, which further feed into the SLOs as a quantitatively definitive target range
or threshold towards the deliverance of an SLA.

SLI ≤ target threshold (4.1)

lowerbound ≤ SLI ≤ upperbound (4.2)

The breach of an SLA implies an explicit consequence, often financial; while the SLOs and
SLIs are typically measurable indicators that define the policy of tolerance with measurable
service characteristics [10].

4.3.1 Project Clearwater Cloud IMS

To recap from the last Chapter, the IP Multimedia Subsystem (IMS) is a reference archi-
tecture first defined by the 3GPP for delivering fixed-line and mobile communications
applications built on the Internet Protocol (IP) [78]. Project Clearwater1 is an open-source
implementation of IMS in the Cloud, following IMS architectural principles and support-
ing all of the key standardized interfaces expected of an IMS core network. The web
services-oriented design inherent to Clearwater makes it ideal for instantiation within NFV
environments as a virtualized VNF. The new Service-Based Architecture adopted by the
5G standards is very closely related to the inherent Clearwater model, and it has been

1www.projectclearwater.org
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Fig. 4.2 Clearwater vIMS architecture, depicting the various VNFCs and their high-level
functionalities.

widely used in research as a standard test-bed setup for NFV related work [6, 7, 16, 17,
42].

In our work, we use Clearwater as the use-case for a Cloud based virtualized NFV
application. It consists of 6 main components, namely Bono, Ellis, Homer, Homestead,
Ralf, and Sprout. A high level view of these VNFCs and their functionalities replicating a
standard IMS architecture is as shown in Figure 4.2.

4.3.2 Defining SLOs for Clearwater

We use raw network telemetry data and system monitoring metrics obtained via a standard
realization of the Clearwater test-bed setup to define the SLIs and SLOs governing an
informal SLA. We utilise these metrics as the foundations for the SLIs, which when
matched with a target threshold or range form SLOs. These metrics were collected on a 30
second sampling frequency through Monasca2, an open-source Python based monitoring

2www.monasca.io
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service running on each of the Clearwater VNFCs. Further details regarding the data is
elaborated upon in Section 4.5.

As covered in detail in the last Chapter, we define four SLOs for the Clearwater VNF,
targeting the load, computation, disk, and input/output (IO) characteristics respectively.
This is to highlight the varying reason behind the loss of QoS at any time, so that:

1. The scaling decisions can be dynamically adapted with a high degree of detail,
considering the projected forecasts. This helps towards the objective of proactive
resource management for SLA compliance.

2. The scaling policies can be customised at a more granular level towards better
efficiency, upon analysing long term trends of frequent SLO bottleneck categories as
specific to the application.

Authors in [42] recognize the lack of realistic SLOs in consideration in research, and
recommend that an SLO be composed of a combination of atleast two metrics. To set
a fair ground for our analysis, we define the SLOs with this definition in mind, and use
a combination of over two SLIs while drafting each SLO rule. The thresholds were
largely defined based on the application’s usage characteristics, reaction to stress tests, and
use-case requirements.

1. SLO1: Load: This SLO is a measure of the computational work ongoing, and
captures the running processes— either using the CPU, or in a wait state.

2. SLO2: Computation: This SLO is defined as a combination of certain CPU and
RAM characteristics combined with the idle time profile, which overall characterizes
an overload or malfunction.

3. SLO3: Disk: This SLO captures prolonged periods of inefficient IO wait times when
the CPU is otherwise idle, which indicates potential bottlenecks in the read/write
operations accrued by the hard disk.

4. SLO4: IO: This SLO captures the latency when interacting with IO devices, when
there is a sudden and prolonged surge in incoming network traffic as compared to
the moving average.

A detailed composition of the SLO definitions can be found in Chapter 3. Formally, let L

denote the set of SLOs thus defined:

L = [SLO1,SLO2,SLO3,SLO4] (4.3)
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This equivalently denotes:

L = [SLOload,SLOcomputation,SLOdisk,SLOio] (4.4)

The metrics captured by Monasca are at the granularity of the individual VNFCs as shown
in Figure 4.2, and an SLO violation at any of the individual VNFCs triggers an SLO
violation state for the Clearwater application service. Therefore, we ultimately define the
SLOs at the application level, i.e. for the entire VNF as an application service. Thus, each
data instance is associated with 4 SLOs as defined by L above, where SLO j, j ∈ |L |
assumes one of two states:

SLO j =





1, if Violated (at any VNFC)

0, otherwise
(4.5)

4.4 Proactive SLA Management Framework

Given that the aim is to be able to proactively predict the future SLA violations given
the time-series of tracked system and application metrics at a set sampling frequency,
we decompose the problem as that of continuous feature forecasting, followed by a
classification methodology that predicts the associated SLO violations in the forecasts.
The workflow and pseudo-code of the methodology adopted is as depicted in Algorithm
4.1.

4.4.1 Clearwater Feature Forecasting

Artificial neural networks (ANNs) are powerful non-linear function approximators that are
flexible to be adapted to both regression and classification tasks, and have demonstrated
tremendous potential within the machine learning space. Each neuron within a layer
represents a mathematical function comprising of inputs, weights, bias, and threshold;
and uses an activation function to transform the outputs to a non-linear space to learn and
perform more complex tasks [100]. Thus, subject to the right choice of architecture and
parameters for the task at hand, ANNs can be trained to address a wide variety of complex
tasks, including that of time-series forecasting.

Recurrent neural networks (RNN) are a class of neural networks that are powerful
for modeling sequential data such as time-series, and are especially crafted towards such
use-cases [7]. An RNN layer maintains an internal state that encodes information about
the time-steps it has seen so far. LSTM is a special enhancement on RNN, and overcomes
the potential gradient vanishing and gradient exploding problems that RNNs tend to

71



4.4 Proactive SLA Management Framework

Algorithm 4.1: Residual LSTM based Forecasting and Multi-Label Classification
Input : Data: D ∈ Rd

• PRE-PROCESSING (D)

procedure DATA SPLITS
Split the data in train, test, and validation sets

procedure DATA TRANSFORMATION
Data standardization and normalization

procedure DATA WINDOWING AND BATCHING
Split data into windows of features and associated labels)
< input width, all input features>
< label width, predicted features>
Prepare tensor slices of windows as model inputs
< batch, time, features>

• THE MODEL (output from DATA WINDOWING)

repeat
FORECASTING– RESIDUAL LSTM
Take train and validation data windows

if Stacked LSTM model(Return Sequence) then
Model architecture based sequentially stacked LSTM layers

else
Model architecture based LSTM layer

end if
for each time step t do

delta = MODELt(MODELt−1)
end for
return (MODELt−1 + delta)

Model architecture based Dense layer
Model architecture based Reshaping layer
Output forecast values
MULTI-LABEL CLASSIFICATION
Dense layer
Reshaping layer
Output multi-label classification prediction values

until CONVERGENCE;
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succumb to while training using back-propagation [108]. An LSTM layer consists of a
set of recurrently connected memory blocks, known as LSTM units. Each LSTM unit is
composed of a memory cell and three multiplicative units – the input, output and forget
gates. These control the interaction of the cells with the network by regulating the flow
of information in and out of the cell with continuous analogues of write, read and reset
operations [100].

LSTM models are adept at capturing short-term and long-term dependencies in tempo-
ral sequential data, and have been shown to outperform linear models on a wide range of
use-case scenarios [34]. Moreover, neural network based approaches like LSTM are well
equipped to effectively model problems with multiple input variables, making them a good
fit for multivariate time-series forecasting.

However, LSTMs are computationally expensive [32]. In use-cases such as ours with a
high sampling frequency and rapid forecasting windows, the output is expected to be a
small change as compared to the previous time-step. ResNets (Residual Networks) in deep
learning refer to architectures where each layer adds to the model’s accumulating result
[55]. Adapting that structure into LSTM layer(s) [109], we can take advantage of the fact
that the change at the next time-step is expected to be small. Thus, instead of predicting the
next value of each feature at each time-step, a better approach to the model structure would
be initialize the LSTM layer with the model’s values from the previous time-step, and then
to predict the subsequent change in these values over the next time-step. We reason that
the LSTM layers in our use-case scenario can benefit from such a Residual LSTM model
structure, and lead to better performance as opposed to traditional LSTM based models.
Algorithm 1 presents the procedural workflow adopted towards achieving such a model.
We evaluate this methodology in the following sections for both wide and stacked LSTM
model structures.

4.4.2 SLA Violation Classification

Multi-label classification is defined as a classification task where each data sample instance
can be assigned n labels from a set of |L | possible label classes as defined in 4.3 and 4.4,
where n ∈ [0,L ], and |L |> 1. Each of the class labels in L is binary, i.e. either 0 or 1,
where 0 denotes a negative occurrence and 1 denotes the positive occurrence.

Semantically, a multi-label target can be thought of as a set of labels for each sample.
Multi-label classification differs from multi-class classification in that the latter applies
mutually exclusive labels to a data sample, which is not the case for multi-label problems.

Formally, let D be a multi-label dataset where X = Rd is a d-dimensional input
instance space of numerical features, and L = {λ1,λ2, · · · ,λq} a finite output label space
of |L |= q discrete class labels (with values 0 or 1), and q > 1.
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The task of multi-label learning is to learn a function f : X −→ 2L from the multi-
label training set S with u examples, S = {(xi,Yi) | 1 ≤ i ≤ u}. To compare, multi-class
classification can be seen as a special case of multi-label classification where f : X −→L ,
while in binary classification f : X −→ {0,1}.

For each multi-label example (xi,Yi), xi ∈ X is a d-dimensional feature vector
(xi1,xi2, · · · ,xid)

⊤, and Yi ⊆ L is the set of labels associated with xi. Label associations
can also be represented as a q dimensional binary vector yi = (yi1,yi2, · · · ,yiq)

⊤ = {0,1}q,
where each element is 1 if the label is relevant, and 0 otherwise. By contrast, in single-label
(binary or multi-class) learning, |Y |= 1.

Specific to the task at hand, we appropriately design the model such that the output layer
consists of |L | neurons, each representing a label λ j in L , where L = {λ j | j ∈ [1,q]}.
We use sigmoid as the activation function in the output layer, so the jth neuron in that layer
outputs the probabilities in the range [0,1] of the data instance belonging to λ j. This is
interpretable as a binary classification by setting a cutoff probability threshold value (set to
0.5) for each class label.

4.5 Experimental Setup

The experiments were all set up using Python (version 3.8.5) and its associated data-science
libraries. We use Tensorflow [102] version 2.4.1 with Keras [103] to program all the neural
network based implementations.

4.5.1 Dataset

We use a publicly hosted dataset3 obtained via a standard Clearwater test-bed, a visu-
alization for which is presented in Figure 4.1. While real-world deployments require
frequent retraining and readjustment of weights, the nuances of production deployment are
beyond the scope of this work. The dataset comprises of raw system resource monitoring
telemetric data files that track 26 metrics for each of the 6 monitored VNFs that compose
the Clearwater ecosystem, and includes bursts of abnormal behaviour through its integrated
stress testing tools to simulate VNF congestions and QoS degradations. The data is sam-
pled every 30 seconds, and spans an overall period of 2 months. This corresponds to 156
features overall, indexed at timestamps, and 177,098 rows of raw data. Outcomes of the
exploratory data analysis as performed on this data-set have been presented in Appendix
A.

3www.bit.ly/3gPY8c5
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4.5.2 System Configuration

The experiments were performed in a Docker4 based containerized environment running
atop a bare-metal Linux server with 64 GB RAM, Intel® Xeon® CPU E5-2660 v2 @
2.20GHz (40 physical processors), 2 NVIDIA® Tesla K20m GPUs, and 500 GB local
storage. The Docker image runs an Ubuntu 20.04 LTS operating system, and CUDA
version 11.3 for the GPUs.

4.5.3 Learning and Adaptation

We adopt a sliding window methodology for time-series forecasting, which is suitable for
rapid forecasting. We tested the models on different window sizes, and considering the
short-term dynamics of the use-case, the input window size was optimally set to 4, and the
models forecast the possibilities of SLO violations over each of the next 4 time-steps. Thus,
since the sampling frequency is 30 second intervals, we use the data for all the features
over the last 2 minutes to forecast the specific SLOs that may be violated at each step over
the next 2 minutes.

We split the available data into training and test sets in the ratio of 80 : 20, and the
training set is further split into training and validation sets in the ratio of 80 : 20. Hence,
overall, the data consisting of 177,098 rows is split in the ratio 64 : 20 : 16, corresponding
to train, test, and validation splits respectively. Further, given the data has a high degree of
very large outliers due to the incorporated stress tests, and the scales vastly vary for each of
the features depending on the category of raw metric, we use a non-linear transformation
method to transform the very skewed nature of this dataset and map it to a uniform
distribution in [0,1]. This pre-processing is done via a Quantile Transformer, and this
makes it suitable for learning by neural network methodologies.

For model training, we use Binary Cross-entropy (BCE) as the loss function to be
minimized— a probabilistic loss function that computes the cross-entropy loss between
true and predicted labels, and is appropriate for use in a binary classification based setup.
Further, we use Nadam as the optimizer for its computational efficiency and adaptive
learning, with its default learning rate of 10−3. ReLu (Rectified Linear Unit) is used as the
activation function for each of the dense hidden layers due to its computational simplicity
and high optimization performance in a multi-layer perceptron (MLP) based setup [100].
For the LSTM layers, we use the default tensorflow initializations for weights, activation,
and bias. As mentioned earlier, we use sigmoid as the activation function for the output
layer to concurrently output the individual probability of each label’s association with the
input data instance, thus supporting multi-label classification outputs.

4www.docker.com
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We used a grid search based methodology to arrive at the best configuration for the
number of neurons/ LSTM units in each hidden layer as applicable, and to adjust all
hyperparameters. To control overfitting as the model gains complexity, we apply the
dropout regularization factor of 0.2 between all hidden layers. On the LSTM layers,
we also applied a recurrent dropout of 0.4. To further control the degree of overfitting
during training, we perform a grid search for the optimal choice of weight regularization
hyperparameters for all the hidden layers, and based on the results, apply both L1 and L2
(ElasticNet) weight regularization on each of the hidden layers. The regularization factor
was set to 10−6 for the LSTM models, and 10−5 for the dense feed-forward neural network
models.

The batch size for each window was set to 64. While we set the maximum training
epochs to 100, we also deploy an early stopping criteria that tracks the macroaveraged
AUC-PRC (interpolated average precision) with a maximization objective, and a patience
of 10 epochs to ensure that the training is not stopped at a local optimization minima. At
the end of training, model weights are restored from the best epoch, which is considered as
the best performance achieved during training, before the model began to overfit on the
training set.

4.6 Results and Discussion

Figure 4.3 presents an evaluation of Residual LSTM models against standard methods,
when configured with the same wide model architecture (2048 neurons/LSTM units),
and implemented purely as a forecasting component. The LSTM architecture when
supplemented with residual connections has a clear advantage with the nature of the use-
case here, both when the output horizon is forecast at the last time-step after going through
all inputs, or sequentially. The latter among them, however, has a higher Mean Absolute
Error (MAE) due to the fact that the model architecture was wide, and sequential outputs
of LSTM layers work best when layers need to be stacked in a deeper model.

Table 4.1 Performance metrics for the best performing model architecture within each
category

Model
Name

No. of Neurons/Units in the Key
Hidden Layers in the Model Architecture

Classification Metrics Regression Metrics
Accuracy Precision Recall AUC-ROC AUC-PRC BCE Loss MAE RMSE

Linear 130 0.6488 0 0 0.5 0.3512 5.4176 0.3512 0.5926
Dense 2048 0.8500 0.9025 0.6424 0.8074 0.7955 2.0124 0.1599 0.3836
LSTM 2048 0.8500 0.9025 0.6424 0.7893 0.7776 1.9082 0.1625 0.3853

Residual LSTM 128 0.8510 0.9082 0.6424 0.8082 0.7982 1.6747 0.1647 0.3810
Residual LSTM

(Stacked Sequence)
1024, 512, 256 0.8500 0.9025 0.6424 0.8069 0.7929 1.3284 0.1629 0.3839

Figure 4.4 shows the performance benchmarking of the varied model architectures and
configurations as evaluated during grid search. Generally, models that leverage residual
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Fig. 4.3 Performance (MAE) of Residual LSTM models evaluated on their forecasting
component against standard methodologies, when configured with the same wide model
architecture.

connections perform better in almost all model configurations when tested against standard
methods. Table 4.1 presents the classification and regression performance metrics for
the model architecture that performed best among those tested with each category of
models on the test set data windows. The linear model makes linear projections based
on the input window, and was used as a baseline to compare all models. With an area
under the receiver operating characteristic (AUC-ROC) value of 0.5, it has the skill level
of a random classifier. The results demonstrate the suitability of Residual LSTM based
architectures against all other, on almost all metric categories in both evaluation groups.
The Residual LSTM approach achieves an improvement of 31.1% over the baseline on
the forecast classification accuracy, 127.28% on the interpolated average precision, and
61.64% on the AUC-ROC. It also showed a 0.63% increase in precision over the standard
LSTM methodology, a 2.65% improvement on AUC-PRC, and 2.39% improvement on the
AUC-ROC.

Further, given the use-case and the nature of the data, wide model architectures for
LSTM demonstrate an edge over deep architectures. While adding more LSTM units
in a layer tends to increase the chances of overfitting, we tackled those with appropriate
regularization as applicable, as mentioned in the preceding section.
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Fig. 4.4 Performance benchmarking of the varied model architectures and configurations,
evaluated within each category.
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4.7 Summary and Conclusion

In this Chapter, we compose a multivariate time-series forecasting model that forecasts the
evolution of system monitoring features for the Clearwater VNF over the next 4 time steps,
followed by a multi-label classification model that predicts the individual categories of
SLO violations at each step over a 2 minute future horizon. We demonstrate the suitability
of a Residual LSTM model over other MLP and LSTM based methodologies in such a
scenario that involves fine-grained rapid forecasting, and reason that the high level of
granularity in predicting SLOs as multi-label outputs would help ensure a balance in
precise provisioning while maintaining reliability in latency-critical NFV applications.
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Chapter 5

A Graph Neural Networks based
Framework for Topology-Aware
Proactive SLA Management in a Latency
Critical NFV Application Use-case

5.1 Introduction

As Cloud infrastructure transitions to serve the next-generation requirements of upcoming
softwarized application verticals [3], this is met with evolutionary challenges of incre-
mental reliability guarantees [4]. As highlighted in the previous Chapters, efficiency and
reliability are competing elements within an SLA, marking a trade-off between system
usage and requirements [16]. While network operators and Cloud operators may resort
to over-provisioning to match the high requirements for these latency-critical applica-
tions in a high availability network slice, such practices are inefficient in the long run
[7]. A transition towards complete softwarization of networks and services brings in the
requirement to adopt more complex models to guarantee Quality of Service (QoS) and
reliability [17]. This is because of an impending evolution in not just the way networks
are composed and managed, but also renewed application architectures, corresponding
QoS and SLA management techniques, and optimization and automation to cope with the
added complexity [21]. A key aspect to driving such a change is in how the Cloud reacts
to such a latency-critical demand, and in being precisely proactive over time [7].

In this Chapter, we present a graph-based deep learning framework for dynamic and
proactive SLA management in the use case of a latency-critical NFV application. The key
contributions are summarised as follows:
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Fig. 5.1 Overview of system architecture, objectives, and highlighted scope.

• As with the previous Chapters, we work with data from a real-world deployment of
a latency critical NFV application with two months’ worth of raw network telemetry
data sampled every 30 seconds, and use that as the basis for all our policy formation
and learning models. An overview of the system and scope is provided in Figure 5.1.
The data-set is further elaborated upon in 5.5.1

• We compose a multivariate time-series forecasting model with multiple time-step
predictions in a multi-output scenario, i.e. the model forecasts a sequential range of
future values for multiple features in one go, thereby enabling us to track a realistic
deployment setup. Further, we propose the suitability of a topology-aware Graph
Neural Network (GNN) based model as opposed to traditional Recurrent Neural
Network (RNN) methodologies when applied to such a task. Specifically, our imple-
mentation of a Gated Recurrent Unit (GRU) based Graph Convolutional Recurrent
Network (GCRN) model demonstrates a 74.62% improvement in performance over
the established state-of-art model [9] on the use-case.

• We leverage realistic Service Level Objective (SLO) definitions defined in our previ-
ous work [8] (and Chapter 3) to compose a Q-learning based Deep Reinforcement
Learning (DRL) model to achieve dynamic SLA-aware policy enforcement for such
a latency critical use-case in an operational setting.

To the best of our knowledge, this is the first approach in the area that proposes a GNN
and DRL based framework for proactive SLA management, and widely outperforms the
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previously established residual connections based Long Short-Term Memory (Residual-
LSTM) model benchmark [9] in the use-case’s predictive objectives.

The rest of the Chapter has been structured as follows: §5.3 describes the Clearwater
NFV application, and defines the SLA and SLOs leveraged in the framework. §5.4 provides
an overview of the proposed framework. Thereafter, §5.5 expands on the details of the
experimental setup, §5.6 evaluates the results obtained through the various models, and
§5.7 presents the conclusion and future work.

The work presented in this Chapter has been disseminated in [Publication 3 – IEEE
Access], currently under review. An early proof of concept for combining reinforcement
learning with traditional graph neural networks (GNN) was disseminated in [Publication
4 – IEEE NFV-SDN 2019 [7]]. While its contents are not directly a part of this Chapter,
the publication has been placed in Appendix B for reference.

5.2 Focus and Scope

This Chapter addresses the third research question (RQ3), i.e.

While tracking the application use-case to proactively avoid SLA violations, do learning
methods that track and preserve the inherent topological dependencies perform

holistically better than those that work at the higher-level without active knowledge of
this metadata?

and the fourth research question (RQ4), i.e.

How can reinforcement learning enable a dynamic SLA-aware policy enforcement
control loop, working towards an adaptable system with automated model tuning and

dynamic readjustment?

5.3 Defining Service Level Agreements

To recap from the earlier Chapters, while an SLA is a qualitative measure that binds the
service provider and facilitator into a formally agreed contract ensuring QoS for the end
user, this is realised on a set of low level metrics delivered through SLOs and Service Level
Indicators (SLIs). The SLIs can be defined as quantitative measures that build upon raw
system metrics, which further feed into the SLOs as a quantitatively definitive target range
or threshold towards the deliverance of an SLA.

SLI ≤ target threshold (5.1)
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lowerbound ≤ SLI ≤ upperbound (5.2)

The breach of an SLA implies an explicit consequence, often financial; while the SLOs and
SLIs are typically measurable indicators that define the policy of tolerance with measurable
service characteristics [10].

5.3.1 Project Clearwater Cloud IMS

As mentioned in previous Chapters, the IP Multimedia Subsystem (IMS) is a reference
architecture first defined by the 3GPP for delivering fixed-line and mobile communications
applications built on the Internet Protocol (IP) [78]. Project Clearwater1 is an open-
source implementation of IMS in the Cloud, following IMS architectural principles and
supporting all of the key standardized interfaces expected of an IMS core network. The
web services-oriented design inherent to Clearwater makes it ideal for instantiation within
NFV environments as a virtualized VNF. The new service-based architecture adopted by
the 5G standards is very closely related to the inherent Clearwater model, and it has been
widely used in research as a standard test-bed setup for NFV related work [6, 7, 16, 17,
42].

In our work, we use Clearwater as the use-case for a Cloud based virtualized NFV
application. It consists of 6 main components, namely Bono, Ellis, Homer, Homestead,
Ralf, and Sprout. A high level view of these VNFCs and their functionalities replicating a
standard IMS architecture is as shown in Figure 5.2.

5.3.2 Defining SLOs for Clearwater

Same as with the previous Chapters, we use raw network telemetry data and system
monitoring metrics obtained via a standard realization of the Clearwater test-bed setup
to define the SLIs and SLOs governing an informal SLA. We utilise these metrics as the
foundations for the SLIs, which when matched with a target threshold or range form SLOs.
These metrics were collected on a 30 second sampling frequency through Monasca2, an
open-source Python based monitoring service running on each of the Clearwater VNFCs.
The list of these collected metrics is presented in Table 5.1, and further details regarding
the data is elaborated upon in Section 5.5.

In our previous work [8] as also presented in Chapter 3, we fulfill the gap of a lack of
realistic SLOs when used in research, and define Clearwater SLOs by using a combination

1www.projectclearwater.org
2www.monasca.io
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Fig. 5.2 Clearwater vIMS architecture, depicting the various VNFCs and their high-level
functionalities.

Table 5.1 Raw metrics collected through Monasca during Clearwater vIMS application
monitoring. This data is available for each of the VNFCs, and is sampled every 30 seconds.

Metric Name Semantics

CPU
cpu.idle_perc Percentage of time the CPU is idle when no IO requests are in progress

cpu.system_perc Percentage of time the CPU is used at the system level
cpu.wait_perc Percentage of time the CPU is idle AND there is at least one IO request in progress

Disk

Disk disk.inode_used_perc The percentage of inodes that are used on a device
disk.space_used_perc The percentage of disk space that is being used on a device

IO Read
io.read_kbytes_sec Kbytes/sec read by an IO device

io.read_req_sec Number of read requests/sec to an IO device
io.read_time_sec Amount of read time in seconds to an IO device

IO Write
io.write_kbytes_sec Kbytes/sec written by an IO device

io.write_req_sec Number of write requests/sec to an IO device
io.write_time_sec Amount of write time in seconds to an IO device

Load
load.avg_1_min The normalized (by number of logical cores) average system load over a 1 minute period

load.avg_15_min The normalized (by number of logical cores) average system load over a 15 minute period
load.avg_5_min The normalized (by number of logical cores) average system load over a 5 minute period

Memory
mem.free_mb Mbytes of free memory

mem.usable_mb Total Mbytes of usable memory
mem.usable_perc Percentage of total memory that is usable

Network
In net.in_bytes_sec Number of network bytes received per second

net.in_packets_sec Number of network packets received per second

Out net.out_bytes_sec Number of network bytes sent per second
net.out_packets_sec Number of network packets sent per second

of over two SLIs while drafting each SLO rule [42]. To highlight the varying reason behind
the loss of QoS at any time, we define four SLOs for the Clearwater VNF, targeting the load,
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computation, disk, and input/output (IO) characteristics respectively. As detailed in Chapter
3, the thresholds were largely defined based on the application’s usage characteristics,
reaction to stress tests, and use-case requirements.

1. SLO1: Load: This SLO is a measure of the computational work ongoing, and
captures the running processes— either using the CPU, or in a wait state.

2. SLO2: Computation: This SLO is defined as a combination of certain CPU and
RAM characteristics combined with the idle time profile, which overall characterizes
an overload or malfunction.

3. SLO3: Disk: This SLO captures prolonged periods of inefficient IO wait times when
the CPU is otherwise idle, which indicates potential bottlenecks in the read/write
operations accrued by the hard disk.

4. SLO4: IO: This SLO captures the latency when interacting with IO devices, when
there is a sudden and prolonged surge in incoming network traffic as compared to
the moving average.

Formally, let L denote the set of SLOs thus defined:

L = [SLO1,SLO2,SLO3,SLO4] (5.3)

This equivalently denotes:

L = [SLOload,SLOcomputation,SLOdisk,SLOio] (5.4)

The metrics captured by Monasca are at the granularity of the individual VNFCs as shown
in Figure 5.2, and an SLO violation at any of the individual VNFCs triggers an SLO
violation state for the Clearwater application service. Therefore, we ultimately define the
SLOs at the application level, i.e. for the entire VNF as an application service. Thus, each
data instance is associated with 4 SLOs as defined by L above, where SLO j, j ∈ |L |
assumes one of two states:

SLO j =





1, if Violated (at any VNFC)

0, otherwise
(5.5)

5.4 Proactive SLA Management Framework

Given that the aim is to be able to proactively mitigate the potential SLA violations given
the time-series of tracked system and application metrics at a set sampling frequency,
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Algorithm 5.1: A GNN-based Framework for Topology-Aware Proactive SLA
Management in a Latency Critical NFV Application Use-case

• PRE-PROCESSING
Input : Data: D ∈ Rd

procedure DATA SPLITS
Split the data in train, test, and validation sets

procedure DATA TRANSFORMATION
Data standardization and normalization

procedure DATA WINDOWING AND BATCHING
Split data into sliding windows of features and targets

• GCRN FORECASTING MODEL
Input : Train and validation data windows from DATA WINDOWING

Define Clearwater VNFC graph nodes
Initialize Clearwater graph edge indices (connections)
repeat

• X = Input data features sliding tensor slice
• Y = Expected data features sliding tensor slice
• Ŷ = Forecasted data features sliding tensor slice
• GCRN Model Layers (in,out,K):
GConvGRU layer (Clearwater edge indices) per Equation 5.7
Linear layer
• Return: MSE loss between (Ŷ ,Y )

until Convergence;
Output : Forecasted features Ŷ

• DEEP REINFORCEMENT LEARNING MODEL
Input : xt ∈ D
Initialize Q network function with random weights θ

Initialize target Q̂ function with random weights θ̂

Initialize experience replay memory E to set capacity

repeat
TRAINING DEEP Q-NETWORK
• Observe state st (i.e. xt) of Clearwater forecasting environment at time t
• Policy π: ε-greedy

if Exploration (with probability ε) then
Randomly select action at

else
Select action at = argmaxaQ(st ,a;θ)

end if
• Record reward rt for action at
• Store transition (st ,at ,rt ,st+1) in E
• Sample random minibatch of transitions (si,ai,ri,si+1) from E
• Perform a gradient descent step on (ri −Q(si,ai;θ))2 with respect to θ

• Reset Q̂ = Q periodically
until Training Episode Counter Complete;
Output : Trained reinforcement learning model
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we decompose the problem as that of continuous feature forecasting, followed by a
reinforcement learning methodology that oversees the scaling policy to avoid potential
SLA violations based on the forecasts. The workflow and pseudo-code of the methodology
adopted is as depicted in Algorithm 5.1.

5.4.1 Graph Neural Network (GNN) based Clearwater Feature Fore-
casting

Recurrent neural networks (RNN) are a class of neural networks that are powerful for
modeling sequential data such as time-series, and are especially crafted towards such
use-cases [7]. An RNN layer maintains an internal state that encodes information about
the time-steps it has seen so far. However, traditional forecasting by way of evolved RNN
models like GRU and LSTM consider only temporal information of features for sequence
modeling.

When considering use-cases with additional spatial dependencies between features,
relying solely on temporal variation likely imposes a cap on performance no matter how
complex the RNN model in use. When input data can inherently be represented in a
graph-based format of nodes and edges, the temporal flow of information between nodes
also involves spatial dependencies. GNNs are a family of neural networks that deal with
signals defined over graphs. As such, Graph Convolutional Recurrent Network (GCRN) is
an evolved version of GNN that is a generalisation of classical RNN to data structured in a
graph format, and can be defined as a deep learning model capable of predicting structured
sequences of data. For computational efficiency, GCRN combines Convolutional Neural
Networks (CNN) on graphs to identify spatial structures, and RNN to find dynamic patterns
[110].

Consider xt ∈D to be an observation at time t, where D denotes the domain of observed
features. The Clearwater vIMS architecture as defined in Figure 5.2 can be defined as an
undirected and unweighted graph G = (V ,E ,A) as shown in Figure 5.3, where V is a finite
set of |V |= n = 6 vertices denoting the 6 Clearwater VNFCs, E as the set of edges, and
A ∈ Rn×n as the adjacency matrix denoting the (optional) weight of connection between
two vertices. Therefore, a signal xt : V −→ Rdx defined on the nodes of the Clearwater
graph may be regarded as a matrix xt ∈Rn×dx , whose column i is the dx-dimensional value
of xt at the ith node.

Figure 5.3 provides an overview of the developed forecasting model. We define this
Clearwater GCRN model with GRU as the RNN component, i.e. as a Chebyshev Graph
Convolutional Gated Recurrent Unit Cell (GConvGRU) with Chebyshev filter [110] of
size K. K here controls the communication overhead, i.e. the number of nodes a given
node i should exchange information with in order to compute its local states.
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Fig. 5.3 Overview of the GCRN-based Clearwater feature forecasting model. GCRN is a
special kind of GNN that merges CNN for graph-structured data and RNN to simultane-
ously identify meaningful spatial structures and dynamic patterns.

Mathematically, we model the forecasting problem such that we take a history of each
of the Clearwater VNFC features for the past H = 4 time steps, and forecast the evolution
of these features over the next F = 4 time steps:

Ŷt , ...,Ŷt+F = argmaxYt ,...,Yt+F P(Yt , ...,Yt+F |Xt−H , ...,Xt−1) (5.6)

Xt ∈ D here is the matrix of the numeric state of each of the 21 features for the 6
VNFCs as observed at time t, Yt ∈ D denotes the corresponding matrix of expected data
features, and Ŷt ∈ D denotes the corresponding matrix of forecasted data features. P
models the probability of expected features Y in a window of size F to appear conditioned
on the past X features in a window of size H. Since we have spatial dependencies, the
features of observations within X , Y , and Ŷ are linked by pairwise relationships, modelled
by G .
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Since we use a GRU based GCRN, the model (GConvGRU) can be represented as:

z = σ(Wxz ∗G Xt +Whz ∗G ht−1),

r = σ(Wxr ∗G Xt +Whr ∗G ht−1),

h̃ = tanh(Wxh ∗G Xt +Whh ∗G (r⊙ht−1))

ht = z⊙ht−1 +(1− z)⊙ h̃

(5.7)

z, r, h̃, and ht are GRU parameters— z represents the update gate, r represents the reset
gate, ht represents the hidden state at time t, and h̃ represents the new hidden state. Further,
⊙ represents the Hadamard product, and σ represents the logistic sigmoid function. ∗G
then represents the graph convolution operator, and the support K of the graph convolutional
kernels defined by the the Chebyshev coefficients Wx· and Wh· determines the number of
parameters independent of the number of nodes n.

Algorithm 5.1 presents the procedural workflow adopted towards achieving such a
model that learns spatio-temporal structures from graph-structured and time-varying data.
We evaluate this methodology in the following sections, benchmarking it against the current
state-of-art on the use-case.

5.4.2 Deep Reinforcement Learning (DRL)

When it comes to dynamic application scenarios, RL is an effective machine learning
methodology. A RL agent directly interacts with the environment to form a policy for
decision-making based on a reward mechanism, that is customizable to achieve the desired
outcomes. Specifically, RL follows the Markov Decision Process (MDP) model to train
an agent that iteratively observes the state st of the environment at a discrete time step
t to prescribe action at that maximizes the reward rt . Cumulating and maximizing the
expectation of rewards over time, RL thereby attains an efficient policy π for stochastic
scenarios. Q-Learning in this regard is a typical off-policy model-free RL algorithm that
calculates the value of each state-action pair as a Q-value function Q(s,a):

Q(st+1,at+1) = E
[
rt + γ maxa′Qi(s′,a′)|(st ,at)

]
(5.8)

Then, based on the policy π = P(a|s) (e.g. ε-greedy), it chooses the action with the
largest Q-value (Q∗), and follows the gradient towards higher rewards:

Q∗(s,a) = maxπE
[
rt + γ rt+1 + γ

2rt+2 · · · |st = s,at = a,π
]

(5.9)

γ here is the discount factor applied to the rewards at each time step, accounting for
the diminishing value of the reward at time t as we iterate forward. DRL uses deep neural
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networks as non-linear function approximators to estimate the action-value function and
deal with a large range of outcomes and their impact over time:

Q(s,a;θ)≈ Q∗(s,a) (5.10)

θ here refers to the weights of the neural network function approximator. Further, with
the use of experience replay and network cloning, DRL is adept to deal with a complex
environment with a big range of outcomes [111].

As stated previously, there is an active trade-off between efficiency and reliability in the
existing scaling policies for latency-critical applications by service providers [16]. The aim
of the reinforcement learning module here is to oversee and interface between an existing
scaling policy and the defined SLA, and proactively generate warning alerts for anticipated
SLA violations based on the GNN-based feature forecasting module and the defined SLOs.
Building upon our existing work on granular SLA and SLO violation prediction[8], this
serves as a proof-of-concept for dynamic SLA-aware policy adjustment.

For the deep Q-learning problem formulation, we consider the SLA violated (state 1)
if any of the 4 SLOs as defined in Section 5.3 are violated, i.e.,

SLA =





1, if any SLO j in L is Violated

0, otherwise
(5.11)

Considering the information collected in the data we’re working with, the action space
is defined as:

at =





1, i.e. Scale up

0, i.e. No requirement to scale up
(5.12)

Correspondingly, we define the reward function as follows to cover all possible sce-
narios of the problem statement, and set the values as such so that there is a significant
difference in optimal, sub-optimal, and non-optimal scenarios.

rt =





+20, if at = 1 and SLA = 1

−10, if at = 0 and SLA = 1

−5, if at = 1 and SLA = 0

0, otherwise

(5.13)

Algorithm 5.1 details the workflow of the reinforcement learning model within the
overall framework deployed, and Figure 5.4 presents its corresponding graphical overview.
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Fig. 5.4 Overview of the deep Q-learning based Clearwater DRL model.

91



5.4 Proactive SLA Management Framework

Proposed Framework 
Two Independent Building Blocks — Forecasting and Reinforcement Learning

Reinforcement
LearningForecasting

Feature history of past 4 time steps — Sliding
Windows 

Traditional (temporal) 
Feature Forecasting

Graph-based  
Spatio-Temporal Feature

Forecasting

Forecast horizon 
(4 time steps ahead)

Expected features at
next forecasted time

step, and its computed
SLO labels

Reinforcement
Learning

Dynamic SLA-Aware
Oversight on the scaling

policy at play

Multi-Variate Multi-Step Multi-Output 
Rapid Feature Forecasting

Raw Data

Preprocessed Data

Temporal Forecasting

Spatio-temporal Forecasting

A proactive projection of application features is the desired
outcome

Seeking dynamic control—
optimal actions based on the

forecasts from forecasting
model, and a policy definition of

choice

Intelligent Control

Bu
ild

in
g 

Bl
oc

ks
In

cl
ud

es
U

se
 W

he
n

OR

D
at

a
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Figure 5.5 provides another view at how GCRN and GRL work together within the
framework, and what they deliver independently. Further, the following sections elaborate
on the learning and adaptation for the developed framework.

5.5 Experimental Setup

The experiments were all set up using Python (version 3.9.7) and its associated data-science
libraries. We use PyTorch3 and PyTorch Lightning 4 to program all the deep learning
based implementations in the Chapter. For the GCRN implementation, we use PyTorch
Geometric Temporal [112], a temporal GNN extension library for PyTorch Geometric
that supports the processing of spatio-temporal signals. We program a custom Gym 5

environment that supports Clearwater data for the DRL implementation, and use Stable
Baselines3 6 to implement deep Q-learning in PyTorch.

5.5.1 Dataset

We use a publicly hosted dataset7 obtained via a standard Clearwater testbed, a visualization
for which is as presented earlier in Figure 5.1. The dataset comprises of raw telemetric data
files that track 26 metrics for each of the 6 monitored VNFs that compose the Clearwater
ecosystem, and includes bursts of abnormal behaviour through its integrated stress testing
tools to simulate VNF congestions and QoS degradations. The data is sampled every 30
seconds, and spans an overall period of 2 months. This corresponds to 156 features overall,
and 177,098 rows of raw temporal data. A brief description of the captured metrics is
summarised in Table 5.1. Outcomes of the exploratory data analysis as performed on this
data-set have been presented in Appendix A.

5.5.2 System Configuration

The experiments were performed in a Docker8 based containerized environment running
atop a bare-metal Linux server with 64 GB RAM, Intel® Xeon® CPU E5-2660 v2 @
2.20GHz (40 physical processors), 2 NVIDIA® Tesla K20m GPUs, and 500 GB local
storage. The Docker image runs an Ubuntu 20.04 LTS operating system, and CUDA
version 11.3 for the GPUs.

3www.pytorch.org
4www.pytorchlightning.ai
5www.gym.openai.com
6www.github.com/DLR-RM/stable-baselines3
7www.bit.ly/3gPY8c5
8www.docker.com

93

www.pytorch.org
www.pytorchlightning.ai
www.gym.openai.com
www.github.com/DLR-RM/stable-baselines3
www.bit.ly/3gPY8c5
www.docker.com


5.5 Experimental Setup

5.5.3 Learning and Adaptation

We adopt a sliding window methodology for time-series forecasting, which is suitable for
rapid forecasting. We tested the models on different window sizes, and considering the
short-term dynamics of the use-case, the input window size was optimally set to 4, and the
models forecast the possibilities of SLO violations over each of the next 4 time-steps. Thus,
since the sampling frequency is 30 second intervals, we use the data for all the features
over the last 2 minutes to forecast the specific SLOs that may be violated at each step over
the next 2 minutes.

We split the available data into training and test sets in the ratio of 80 : 20, and the
training set is further split into training and validation sets in the ratio of 80 : 20. Hence,
overall, the data consisting of 177,098 rows is split in the ratio 64 : 20 : 16, corresponding
to train, test, and validation splits respectively. Further, given the data has a high degree of
very large outliers due to the incorporated stress tests, and the scales vastly vary for each of
the features depending on the category of raw metric, we use a non-linear transformation
method to transform the very skewed nature of this dataset and map it to a uniform
distribution in [0,1]. This pre-processing is done via a Quantile Transformer, and this
makes it suitable for learning by neural network methodologies.

For training the forecasting model, we use Mean Squared Error (MSE) as the loss
function to be minimized. Further, we use Adam as the optimizer for its adaptive nature,
with a learning rate of 10−2. ReLu (Rectified Linear Unit) is used as the activation function
between layers due to its computational simplicity and high optimization performance
[100]. For the general layers, we use the default PyTorch initializations for weights, activa-
tion, and bias. To control overfitting as the model gains complexity, we deploy an early
stopping criteria that tracks the validation MSE with a patience of 10 epochs to ensure that
the training is not stopped at a local optimization minima. At the end of training, model
weights are restored from the best epoch, which is considered as the best performance
achieved during training, before the model began to overfit on the training set.

For the deep Q-learning model, the observation space is defined as a discrete snapshot
of the forecasted features at time t, i.e., the episode length is defined as 1. We use a
multi-layer perceptron based deep-learning policy for the Q-value approximation and
the target network. We train the model for 5,000,000 timesteps, set the learning rate to
0.0001, and stick to default values from original algorithm propositions in [111] and [113]
for most of the hyperparameters. To elaborate, the size of the replay buffer was set to
1,000,000, the minibatch size for each gradient update was set at 32, the update coefficient
τ was set to hard update at 1, the discount factor γ was set to 0.99. The model collects
transitions for 50,000 timesteps before learning starts, and the model is set to update every
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4 steps, with 1 gradient step after each rollout. The replay buffer class was set to automatic
selection, and the target network Q̂ was set to update every 10,000 environment steps,
with the maximum value for the gradient clipping was set to 10. The initial value of the
random action probability ε was set to 1, while the final value of ε was set to 0.05, with
the exploration fraction set to 10% of the training period.

5.6 Results and Discussion

Table 5.2 Performance of two GCRN model architectures on forecasting metrics.

Model In
Channels

Out
Channels

Filter
Size MSE MAE RMSE

GCRN 4 128 K = 3 0.036 0.132 0.188
GCRN 4 2048 K = 3 0.034 0.128 0.185

Table 5.2 presents the results for the performance of two architecture variants of the
GCRN model on forecasting metrics. To set this in perspective, Figure 5.6 compares the
mean absolute error (MAE) of various models that have been previously applied to the
use-case data [9] with the same forecasting horizon. Our proposed GCRN-based spatio-
temporal forecasting model achieves a 74.62% improvement over the Residual-LSTM [9]
model that was presented as the best-in-class among the state-of-the-art in Chapter 4.

Further, Figures 5.7 and 5.8 demonstrate good convergence of the proposed deep
Q-learning model while training, with incremental improvements in learned policy. Figure
5.9 shows the results when the trained model policy was tested on a random test sample of
100 episodes, delivering a positive reward 98% of the time.

5.7 Summary and Conclusion

In this Chapter, we propose a GNN and DRL based framework for proactive SLA man-
agement in the use-case of Clearwater, a latency-critical NFV application. We compose a
Graph Convolutional Recurrent Network (GCRN) based spatio-temporal multivariate time-
series forecasting model that forecasts the evolution of system monitoring features for the
Clearwater VNF over the next 4 time steps, delivering 74.62% improved performance over
the established baseline state-of-art model on the use-case. The wide leap in forecasting
performance with our proposed framework quantifies the benefits of incorporating spatial
metadata in use-cases that require multi-dimensional feature forecasting in high-frequency
temporal data flows. Further, we leverage realistic Clearwater SLA and SLO definitions to
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Fig. 5.6 Multi-output forecasting performance (MAE) of proposed Clearwater GCRN
model against the previously established state-of-art models on the use-case, all configured
with the same 2048-dimensional wide model architecture.
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Fig. 5.7 Mean episodic DRL training reward (averaged over 100 episodes, further smoothed
with a rolling mean of 100,000 timesteps for a better visualization of trend).
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Fig. 5.9 Reward observed per episode when testing the trained deep Q-learning model.
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develop a deep Q-learning based DRL model, and train it to act as an effective SLA-aware
dynamic oversight of the scaling policy at play.
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Chapter 6

Conclusions and Future Work

This chapter summarises our work presented in the dissertation, and maps the direction for
future work. The main objective of this dissertation was to design and develop algorithms
to address the complexity towards meeting QoS demands in serving upcoming verticals
through the softwarised network architecture, and develop deep learning based frameworks
for proactive SLA management in the use-case of a latency-critical NFV application.
Working with real-world data from a latency sensitive NFV application, we established
realistic multi-output models towards SLA and SLO violation prediction. Such modelling
enables us to gain granular SLA and SLO violation insights, and presents an opportunity
to study and mitigate their impact and inform precision in drafting proactive scaling
policies in future work. Figure 6.1 presents an overview of the domain, the contributions
made, and summarises the utility of each of the model propositions. The dissertation
highlights the tremendous impact that various categories of deep learning based models
hold in adapting to the increasing complexity of next-generation application requirements
in latency-sensitive softwarised systems.

The previous chapters of the dissertation have discussed each of the research questions
in detail, providing insights into the foundational research work while mapping contribu-
tions to the core areas of proactive SLA management with deep learning. This chapter
focuses on concluding the work presented, and a discussion of possible avenues for further
research. We provide a short summary of the chapters in §6.1, and the various directions
for future work in §6.2.

6.1 Summary

Recent advancements in the domain of Network Function Virtualization (NFV), and
rollout of next-generation networks have necessitated the requirement for the upkeep of
latency-critical application architectures in future networks and communications. While
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Fig. 6.1 An overview of the domain, the contributions made, and a summary of the utility
of each of our model propositions.

Cloud service providers recognize the evolving mission-critical requirements in latency
sensitive verticals such as autonomous driving, multimedia, gaming, telecommunications,
and virtual reality, there is a wide gap to bridge the Quality of Service (QoS) constraints for
the end-user experience. Most latency-critical services are over-provisioned on all fronts
to offer reliability, which is inefficient towards scalability in the long run.

6.1.1 Chapter 3

In chapter 3, we address the above by proposing a strategy to model frequent violations on
the application level as a multi-output target to enable more complex decision-making in
the management of virtualised communication networks. We utilize data from a real-world
deployment to configure and draft a realistic set of Service Level Objectives (SLOs) for
a voice based NFV application, and propose the use of a deep neural network based
multi-label classification methodology to identify and predict multiple categories of SLO
breaches associated with an application state. With this, we aim to gain granular SLA and
SLO violation insights, enabling us to study and mitigate their impact and inform precision
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in drafting proactive scaling policies. We further compare the performance against a set
of multi-label compatible machine learning classifiers, and address class imbalance in a
multi-label setup. We perform a comprehensive evaluation to assess the performance on
example-based, label-based and ranking-based measures, and demonstrate the suitability
of deep learning in such a use-case.

6.1.2 Chapter 4

In chapter 4, we present a Residual Long Short-Term Memory (LSTM) based multi-label
classification framework for proactive SLA management in the application use case. We
compose a multivariate time-series forecasting model with multiple time-step predictions
in a multi-output scenario, and associate a multi-label classifier for a granular prediction of
individual Service Level Objective (SLO) violations for each step in the forecast horizon.
We demonstrate the suitability of the Residual LSTM model over other MLP and LSTM
based methodologies in such a scenario that involves fine-grained rapid forecasting, and
reason that the high level of granularity in predicting SLOs as multi-label outputs would
help ensure a balance in precise provisioning while maintaining reliability in latency-
critical NFV applications.

6.1.3 Chapter 5

In chapter 5, we look to tackle the over-provisioning of latency-critical services by propos-
ing a proactive SLA management framework leveraging Graph Neural Networks (GNN)
and Deep Reinforcement Learning (DRL) to balance the trade-off between efficiency and
reliability. We compose a Graph Convolutional Recurrent Network (GCRN) based spatio-
temporal multivariate time-series forecasting model with multiple time-step predictions in
a multi-output scenario, delivering a wide leap in performance over the established baseline
state-of-art model on the use-case. This quantifies the benefits of incorporating spatial
metadata in use-cases that require multi-dimensional feature forecasting in high-frequency
temporal data flows. Further, we leverage realistic Clearwater SLA and SLO definitions to
develop a deep Q-learning based DRL model, and train it to act as an effective SLA-aware
dynamic oversight of the scaling policy at play.

6.2 General Limitations, and Future Work

As with any study, there is always an associated set of limitations, and a scope for future
work. One of the key contributions of the research as presented in this dissertation is that
the underlying real-world data(set) and the custom defined SLA/SLO labels have been
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kept constant throughout all the stages of the work. This presents a stable benchmarking
within each of the target areas, and makes all competing methodologies directly and
quantifiably comparable— something that was lacking in the state-of-art thus far. However,
this also brings in some limitations in terms of factoring in external variables while
increasing the scope of the research. The most prominent avenue of future work here
is to go beyond application data— to set up a wider testbed with both SDN and NFV
components interlinked, and extend the collected and incorporated features to include the
external variables like miscellaneous network features, and factor in distributed application
scenarios. Further, since we have used general server metrics to draft the SLA and SLO
definitions, the methodology is transferable to other verticals within the high-availability
network slice. There is a good scope to validate this on a different vertical, and compare
the results achieved.

The testbed would also ensure an even closer environment to that of production systems,
with opportunity to include frequent re-training loops that address the ever-evolving data
patterns. As methodologies and principles evolve across systems and domains, and new
principles like site reliability engineering take over the legacy operational practices, ma-
chine learning has a key role to play. The next generation of systems contain requirements
that move beyond traditional monitoring, now venturing into the domain of observability.
Proactive problem and event management is the need of the hour to support Cloud-based
infrastructure and services for next generation verticals. To this end, one of the key
challenges in production systems is to tackle data drift— models trained offline and then
deployed online are effective only as long as the data distribution remains equivalent to
what the model has been trained on, and the features’ behaviour lies within the sample
subset of scenarios that the training set contains. To tackle this, it is important to configure
retraining feedback loops that periodically expose the model to a new subset of incoming
data offline, allow a readjustment of hyperparameters inline with the new observations if
any, and then a redeployment of the updated model in production. Retraining overheads
are a key consideration in production deployments, and something that could become a
potential demerit of an otherwise well-performing model. Moreover, an enhanced ability to
react to the unknown is another reason why reinforcement learning is an important layer of
oversight over the supervised learning models. Having a live testbed would also be helpful
to improve the reinforcement learning model for extended online sequence modeling with
longer episode lengths.

Another direction of future work is to study the implications of the proposed approaches
in this dissertation to directly improve the existing application scaling policy within the
vertical in a control loop. Further, while the data we worked with includes bursts of
abnormal behaviour through its integrated stress testing tools to simulate VNF congestions
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and QoS degradations, the proposed approaches from this dissertation could also be
integrated with a traffic and workload forecasting methodology for a higher degree of detail
in proactive violations’ prediction, and then combined with a dynamic policy enforcement
for a wider end-to-end management control loop.
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Appendix A

Exploratory Data Analysis

Since the data we have worked with has a high dimensionality with over 27 million
data points, this makes it difficult to visualize in a 2-dimensional space. Even when we
label the data with the SLA and SLO definitions as elaborated upon in Chapter 3, that
results on a multi-label format, i.e. each feature vector corresponding to a timestamp
may be associated with more than one SLO label concurrently. This adds on to the
complication of visualization of SLA/SLO clusters, since overlapping color coding and
a dense consolidation of very high number of data points in a small 2D space reduce
the efficacy of the visualization. To combat this, during the process of exploratory data
analysis (EDA), we visualiaze the data two ways – using principal component analysis
(PCA), and feature engineering using KPIs.

A.1 Principal Component Analysis (PCA)

PCA is a methodology involving the transformation of a high-dimensional data-set a
new set of features called principal components (PCs), using orthogonal projection. The
new set of features (principal components) typically present a lower-dimensional data-set,
since a small subset of PCs possess the capability of capturing a significant proportion
of the variance as present in the otherwise high-dimensional data-set with its original
features. This is useful for visualising and processing high-dimensional data-sets, while
still retaining as much of the variance in the data-set as possible. Figure presents an
inverted scree plot that presents the variance explained by the PCAs when using standard
scaler, and robust scaler respectively.

With standard scaler, the first 88 PCs are required to capture 99% of the variance in the
original data-set. However, with robust scaler, the first 8 PCs equivalently capture the same
information. If PCA is chosen from a dimensionality reduction perspective, the methodol-
ogy used to standardize the data-set becomes an important variable. Standardization of a
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A.1 Principal Component Analysis (PCA)
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Fig. A.1 Inverted scree plot that coveys the cumulative sum of explained variance as
captured by the various principal components when using standard scaler to standardize
the data.
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Fig. A.2 Inverted scree plot that coveys the cumulative sum of explained variance as
captured by the various principal components when using robust scaler to standardize the
data..
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A.2 Feature Engineering

data-set is a common requirement for many machine learning estimators. Typically this
is done by removing the mean and scaling to unit variance. However, outliers can often
influence the sample mean/variance in a negative way. In such cases, the median and the
interquartile range often give better results. Inherently, robust scaler removes the median
and scales the data according to the interquartile quantile range, i.e. the range between the
1st quartile (25th quantile) and the 3rd quartile (75th quantile). This makes it somewhat
resistant to outliers, which are very prevalent in our use-case data.

Figures A.3, A.5, A.6 present a 2D visualization of the SLA violation clusters using
the first two PCs using various standardization techniques, and Figure A.4 presents a
corresponding view of Figure A.3 when represented in 3D. Note that these representations
still have limitations as listed above— the clusters are superimposed in 2D from highest
prevailing SLO cluster to the lowest to ensure visualization, but there exist overlapping
color codings (multi-label, i.e. the data-point represented as a violet dot may also be
pink/grey, but the visualization here only shows it as violet due to the 2D overlap). A
dense consolidation of very high number of data points in a small 2D space eliminates
the possibility to use any other 2D visualizations that may have been more suitable for
multi-label data.

To eliminate the loss of information during this stage of additional pre-processing via
dimensionality reduction, and test the capabilities of the models on true features, our work
as presented in this dissertation does not involve any dimensionality reduction.

A.2 Feature Engineering

Since the trend in each of the 21 features of the 6 Clearwater VNFCs is hard visually to
interpret directly, we integrate general domain knowledge to feature engineer 7 KPIs that
visually captures this information instead, in Figures A.7, A.8, A.9, A.10, A.11, A.12, and
A.13. This is used to both understand the data, and the impact of the stress tests on the
different VNFC node functions and categories that would be further captured in the SLA
definitions we later formulate.

A.3 Correlation Analysis

To understand the correlation of features against others, we performed a visual analysis via
correlation matrices that capture this information for the Clearwater VNFCs. This was one
of the factors taken into account when drafting the feature-engineered KPIs as mentioned
in §A.2. Figures A.14, A.15, A.16, A.17, A.18, and A.19 present the correlation matrices
for each of the each of the 6 Clearwater VNFCs. Each square within the correlation matrix
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A.3 Correlation Analysis

Fig. A.3 SLO violation clusters in data visualised in 2D— using PCA with a standard
scaler.
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A.3 Correlation Analysis

Fig. A.4 A view of the SLO violation clusters in data visualised in 3D— using PCA with a
standard scaler.
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A.3 Correlation Analysis

Fig. A.5 SLO violation clusters in data visualised in 2D— using PCA with a robust scaler.
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A.3 Correlation Analysis

Fig. A.6 SLO violation clusters in data visualised in 2D— using PCA with a uniform
quantile transformer.
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Fig. A.7 KPI – IO (Read). This is defined as "Kbytes per sec read by an IO device / Number
of read requests per sec to an IO device". y-axis represents the value of this KPI with a
visual cap of 10, and x-axis represents discrete time-counts (rows within data-set).
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Fig. A.8 KPI – IO (Write). This is defined as Kbytes per sec written by an IO device /
Number of write requests per sec to an IO device. y-axis represents the value of this KPI
with a visual cap of 10, and x-axis represents discrete time-counts (rows within data-set).

125



A.3 Correlation Analysis

0 25000 50000 75000 100000 125000 150000 175000
0.0

2.5

5.0

7.5

10.0
bono-net.in_out_kpi

0 25000 50000 75000 100000 125000 150000 175000
0.0

2.5

5.0

7.5

10.0
sprout-net.in_out_kpi

0 25000 50000 75000 100000 125000 150000 175000
0.0

2.5

5.0

7.5

10.0
homestead-net.in_out_kpi

0 25000 50000 75000 100000 125000 150000 175000
0.0

2.5

5.0

7.5

10.0
homer-net.in_out_kpi

0 25000 50000 75000 100000 125000 150000 175000
0.0

2.5

5.0

7.5

10.0
ralf-net.in_out_kpi

0 25000 50000 75000 100000 125000 150000 175000
0.0

2.5

5.0

7.5

10.0

ellis-net.in_out_kpi

Fig. A.9 KPI – Network (In-Out). This is defined as "Number of network bytes received
per second / Number of network packets sent per second". y-axis represents the value of
this KPI with a visual cap of 10, and x-axis represents discrete time-counts (rows within
data-set).
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Fig. A.10 KPI – Network (Out-In). This is defined as Number of network bytes sent per
second / Number of network packets received per second. y-axis represents the value of
this KPI with a visual cap of 10, and x-axis represents discrete time-counts (rows within
data-set).
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Fig. A.11 KPI – CPU. This is defined as "% of time the CPU is used at the system level / %
of time the CPU is idle when no IO requests are in progress". y-axis represents the value
of this KPI with a visual cap of 10, and x-axis represents discrete time-counts (rows within
data-set).

128



A.3 Correlation Analysis

0 25000 50000 75000 100000 125000 150000 175000
0

1

2

3

4
bono-perf.load_mem_kpi

0 25000 50000 75000 100000 125000 150000 175000
0

1

2

3

4
sprout-perf.load_mem_kpi

0 25000 50000 75000 100000 125000 150000 175000
0

1

2

3

4
homestead-perf.load_mem_kpi

0 25000 50000 75000 100000 125000 150000 175000
0

1

2

3

4
homer-perf.load_mem_kpi

0 25000 50000 75000 100000 125000 150000 175000
0

1

2

3

4
ralf-perf.load_mem_kpi

0 25000 50000 75000 100000 125000 150000 175000
0

1

2

3

4
ellis-perf.load_mem_kpi

Fig. A.12 KPI – Performance (Load and Memory). This is defined as "The normalized
(by number of logical cores) average system load over a 1 minute period / Total Mbytes of
usable memory". y-axis represents the value of this KPI with a visual cap of 10, and x-axis
represents discrete time-counts (rows within data-set).
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Fig. A.13 KPI – Performance (CPU Wait and Load). This is defined as "% of time the
CPU is idle AND there is at least one I/O request in progress / The normalized (by number
of logical cores) average system load over a 1 minute period". y-axis represents the value
of this KPI with a visual cap of 10, and x-axis represents discrete time-counts (rows within
data-set).
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represents a visual representation of the correlation coefficient r via a heat-map – deep
red represents r =+1 (strong positive correlation), deep blue represents r =−1 (strong
negative correlation), and white represents r = 0 (no correlation). While analyzing the
correlation matrices, it is important to note that correlation does not imply causation.
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Fig. A.14 Correlation matrix for Bono.

A.4 Feature Scaling and Normalization for Forecasting
Models

Standardization of a data-set is a common requirement for many machine learning estima-
tors. Typically this is done by removing the mean and scaling to unit variance. However,
the neural network based forecasting algorithms all perform best when the input features
are normalized in the range of [0,1]. As mentioned in chapters 4 and 5, this pre-processing
is done via a Quantile Transformer, which is a non-linear transformation method to trans-
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Fig. A.15 Correlation matrix for Sprout.
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Fig. A.16 Correlation matrix for Homestead.
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Fig. A.17 Correlation matrix for Homer.
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Fig. A.18 Correlation matrix for Ralf.
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form the very skewed nature of this data-set and map it to a uniform distribution in [0,1].
The resulting feature distribution is as visualized in the sample violin plots in Figures A.20,
A.21, and A.22. The long tails in the distributions represent the outliers due to the incorpo-
rated stress tests, which need to be incorporated within the data during prepossessing steps
to capture abnormal trends that contribute to SLA violations.
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Fig. A.20 Violin plots representing the distribution of Bono after pre-processing via a
quantile transformer.
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Fig. A.21 Violin plots representing the distribution of Sprout after pre-processing via a
quantile transformer.
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Fig. A.22 Violin plots representing the distribution of the data-set after pre-processing via
a quantile transformer.
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Appendix B

Deep Reinforcement Learning for
Topology-Aware VNF Resource
Prediction in NFV Environments

This publication [Publication 4 – IEEE NFV-SDN 2019 [7]] was disseminated as an
early proof-of-concept regarding the integration of reinforcement learning and traditional
graph neural networks on the use-case. This was released to seek early peer-review and
subject-area feedback while contemplating simulation environments, before narrowing
down the scope to the real-world dataset.

While this has contributions to how the following work shaped-up in scope, it does not
directly feature in the material as presented in the key chapters of the dissertation.

Conference Title 2019 5th IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN)

Article Type Regular Paper (Fast-Track)
Complete Author List Nikita Jalodia, Shagufta Henna and Alan Davy

Status Published in the conference proceedings
Scope Early proof of concept

Dissertation Reference [Publication 4 – IEEE NFV-SDN 2019 [7]]
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Deep Reinforcement Learning for Topology-Aware
VNF Resource Prediction in NFV Environments
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∗Telecommunications Software and Systems Group, Waterford Institute of Technology, Waterford, Ireland
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Abstract—Network Function Virtualisation (NFV) has emerged
as a key paradigm in network softwarisation, enabling vir-
tualisation in future generation networks. Once deployed, the
Virtual Network Functions (VNFs) in an NFV application’s
Service Function Chain (SFC) experience dynamic fluctuations
in network traffic and requests, which necessitates dynamic
scaling of resource instances. Dynamic resource management is
a critical challenge in virtualised environments, specifically while
balancing the trade-off between efficiency and reliability. Since
provisioning of virtual infrastructures is time-consuming, this
negates the Quality of Service (QoS) requirements and reliability
criterion in latency-critical applications such as autonomous
driving. This calls for predictive scaling decisions to balance
the provisioning time sink, with a methodology that preserves
the topological dependencies between the nodes in an SFC for
effective resource forecasting. To address this, we propose the
model for an Asynchronous Deep Reinforcement Learning (DRL)
enhanced Graph Neural Networks (GNN) for topology-aware
VNF resource prediction in dynamic NFV environments.

Index Terms—NFV, Graph Neural Networks, Deep Rein-
forcement Learning, Asynchronous Deep Q-Learning, Dynamic
Resource Prediction, Future Generation Networks, Topology
Awareness, Prediction, Machine Learning, Deep Learning

I. INTRODUCTION

Telecommunications has been one of the oldest industries
serving humankind, with communication being the backbone
of our existence. Telecom operators have the most complex op-
erations and business support systems (OSS/BSS), with a vast
array of dedicated infrastructure resources provisioned over-
time to keep up with the demand and supply. These dedicated
hardware resources are not only plagued with maintenance and
operational overheads, but are also quite limited in flexibility.
The upcoming application architectures across supported verti-
cals on the Internet come with an extreme set of requirements,
including ultra-low latency and high reliability. In the current
overhaul of existing systems, Network Function Virtualization
(NFV) [1] has emerged as a revolutionary paradigm for future
networks and communications starting 5G and beyond [2]. By
decoupling Network Functions (NF) and dedicated Network
Appliances (NA), NFV allows NFs to evolve independently
from hardware, thus leading towards reduced Capital and
Operational Expenditure (CAPEX/OPEX).

Server placement, function placement, and dynamic
resource management are the three key problem areas when

This work has been funded by Science Foundation Ireland (SFI) and the
European Regional Development Fund under Grant Number 13/RC/2077.
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Fig. 1. A representation of an NFV application’s SFC, with directed links
between VNFs forming the VNF-FG (forwarding graph). Each VNF is
composed of smaller scalable software components called VNFCs, which
provide a sub-set of that VNFs functionality. VNFCs within a VNF are
linked to each other by directed and undirected links in a vendor-specific
topology, and work together to deliver the required functionality of the VNF.
This is followed by a directed graph representation of an SFC topology, at
the granularity of VNFCs. The GNN diffusion process for exchange of state
and features is highlighted for a subset of the graph. Also represented is the
encoding network formed, as per the GNN modeling mechanism described in
section II.

looking at resource allocation in NFV [3]. While the first two
have been widely studied [1], there are still challenges with
dynamic resource management in NFV [3]. Efficiency and
reliability are the key trade-offs while allocating resources
to Virtual Network Functions (VNFs) and VNF Components
(VNFCs) in an NFV application’s Service Function Chain
(SFC), an example of which is shown in Fig. 1. Dynamic
resource management in NFV refers to dynamic scaling of
deployed VNFs in the SFC subject to real-time network
traffic. Specific to horizontal scaling, the time taken to boot
and provision a Virtual Machine (VM) by the most popular
Virtual Infrastructure Managers (VIMs) is in the order of tens
of seconds. As studied in [4], this gets particularly worse
when considering scalability, as the provisioning time worsens
exponentially while spinning up multiple VM instances in this
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Deep Reinforcement Learning Agent Environment
(NFV Service Function Chain)

Action (At)

State (St)
Reward (Rt)

St+1

Rt+1

State

DNN

Policy
(s, a)

Fig. 2. A high level architecture of a DRL agent’s interaction with the
environment, which in this case is the NFV SFC. For DRL algorithms such
as Deep Q-Learning, deep neural networks (DNN) act as non-linear function
approximators to learn policy and state value representations. Actions here
represent scaling decisions, that affect the state of the nodes in the SFC.

scenario. Given that 5G would drive applications across key
latency critical verticals such as autonomous driving, smart
grid, etc., reliability is the key. However, over-provisioning
the systems to ensure reliability at all times not only adds to
the CAPEX and OPEX, but is also inefficient, unsustainable
and related to unnecessary carbon emissions and critical
resources fuelling data-centres.

Given that the network traffic and resource requirements
ebb and flow in this era of digital connectivity, the amount
of resources allocated to each VNF in a latency critical SFC
cannot be based on traditional threshold-based scaling due
to provisioning delay. There is a recognized need [5] for an
automated dynamic scaling solution for allocating resources
to VNFs whose load may vary over time. This requires
scaling decisions to be predicted ahead of time, so that the
required resources are up and running when traffic reaches
this point in the SFC. Existing work [6] in the domain uses
Graph Neural Networks (GNN) [7] to model the topological
dependencies between the VNFCs in the VNF Forwarding
Graph (VNF-FG) derived from the SFC of an open source
IMS (IP Multimedia Subsystem) application. While this
achieved a good performance over traditional scaling methods
and reduced the call drops by scaling the required VNFCs
ahead of time, there are still flaws. The accuracy of the system
drops significantly when moving from training to new and
test data, which implies a low generalisation accuracy. This
is because the the system uses the classic backpropagation
through time algorithm to train the GNN model, which
is inefficient when using large SFC [6]. It is also heavily
dependent on the training for the static input network, and
would require complete retraining with the slightest change
in the input network [7]. The approach also wouldn’t respond
well to anomalous dynamic network and traffic fluctuations
that aren’t covered in the training data.

When it comes to dynamic application scenarios,
Reinforcement Learning (RL) is an effective machine
learning methodology. As abstractly shown in Fig. 2, a RL
agent directly interacts with the environment to form a policy
for decision-making based on a reward mechanism, that is
customizable to achieve the desired outcomes. However, given

a complex interconnected topology with multiple components
like in an SFC, traditional RL is unscalable due to the high
dimensionality of outcomes. Deep Reinforcement Learning
(DRL) however, uses Neural Networks (NNs) as function
approximators to deal with a large range of outcomes and
their impact over time, and is much better adept to deal with
a complex environment with a big range of outcomes. Fig. 2
shows the high-level model of DRL when interacting with an
NFV SFC.

However, when looking at an SFC at the granularity of
the VNFCs as shown in Fig. 1, there is a clear effect of
topological dependencies that DRL wouldn’t be able to model
by itself in a complex environment. Fig. 1 demonstrates a
clear notion of a cascading domino effect – a single point of
failure in the form of an overloaded VNFC with more traffic
requests than it can address would directly affect the following
nodes in the VNF-FG. This has a range of implications on
the service provider bound by Quality of Service (QoS) and
Service-Level Agreements (SLA) depending on the type of
applications.

Thus, to address the above, we propose the model for
an Asynchronous DRL enhanced GNN for topology-aware
VNF resource prediction in dynamic NFV environments.
Multiple DRL agents with asynchronous input methodology
on learning and policy fit well into the different Points of
Presence (PoPs) of VNFs in the SFC topology represented by
GNN, and further help reduce learning and training overheads
as compared to classical DRL.

The paper has been further structured as follows: §II
describes the Graph Neural Network model for modeling
topological dependencies, §III elaborates on Asynchronous
Deep Reinforcement Learning for learning and adaptation
of policy for dynamic resource prediction, §IV presents the
proposed system architecture and links GNN and DRL with
our use case, and §V presents the conclusion and future work.

II. GRAPH NEURAL NETWORKS

The GNN model [7] is a supervised neural network model
for graph and node focused applications, with a methodology
based on constrained information diffusion and relaxation
mechanisms. It extends Recurrent Neural Networks (RNNs)
and Markov Chains to directly deal with generic graph struc-
tured information without losing topological dependencies.
Unlike traditional machine learning methodologies, the GNN
model preserves the topological dependencies by encoding
the topological graph relationships during the pre-processing
phase.

A. Mathematical Model

A graph G is represented as a pair (N,E), where N is the
set of nodes, and E is the set of edges. Each node n ∈ N has a
set of features fn ∈ RDN , which in our case would be VNFC
memory mn, CPU cn, processing delay dn, etc. n∗ represents
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Fig. 3. A representation of the GNN workflow and diffusion mechanism
to exchange state and features within all nodes in the neighbourhood, until
equilibrium.

the nodes directly connected to n, which is referred as its
neighbourhood. fm,n ∈ RDL represents the link characteristics
such as link delay lm,n, bandwidth bnm between two nodes n
and m, where m ∈ n∗. These are then used to determine the
state sn for each node as shown in equation 1, which is then
further used to calculate the output on as shown in equation
2.
At its core, the GNN is driven by two parametric functions
hw (transition function) and gw (output function) that express
the dependence of the state of each node on the state of its
neighbourhood, and the dependence of the node output on its
state, respectively.

sn =
∑

m∈n∗
hw
(
fn, fm, fm,n, sm

)
, ∀n (1)

on = gw(sn, fn), ∀n (2)

Banach’s fixed-point theorem [8] guarantees [7] the exis-
tence and uniqueness of a solution to equation 1 subject to
the transition function being a contraction map with respect
to s, and suggests a classic iterative scheme for computing the
state, as defined in equation 3 below:

sn(i+ 1) =
∑

m∈n∗
hw
(
fn, fm, fm,n, sm(i)

)
, ∀n (3)

s(i) here denotes the ith iteration of s, and each iteration
represents a discrete time step t. This makes the current state
of a node dependent on the previous state of its neighbours,
and this dynamical system converges exponentially fast to
the solution of equation 2 for any initial value s(0). The
GNN model classically uses backpropagation through time
methodology as its learning algorithm [7].

Fig. 3 describes the workflow of the GNN modeling, and
indicates how the parameters interconnect in the diffusion
mechanism.

B. Encoding Network

This computation as described in the equations above can
be interpreted as the representation of a network consisting
of units, which compute hw and gw. This is the encoding
network. Each VNFC in the SFC as shown in Fig. 1 is thus
modelled via two parametric functions hw and gw, each of
which is implemented by a Feedforward Neural Network
(FNN) to ensure that hw stays a contraction map. Each node
of the input VNFC graph is replaced by a unit computing hw
for that node, as shown in Fig. 1. When unfolded, each layer i
in the encoding network corresponds to an iteration in which
the state s(i+1) is computed for each node (VNFC). Each hw
unit thus stores the current state sn(i) for that node, and when
activated, calculates its next state sn(i + 1) corresponding
to the next time step. The output of node n is produced
by another unit, which implements the gw, as shown in Fig. 1.

As fw and gw are implemented by FNN, the encoding
network turns outs to be a RNN. The connections between
neurons in the encoding network can thus be divided into
internal and external connections. The internal connectivity
here would be that within the FNN that represents each
parametric function unit; and the external connectivity depends
on the topological dependencies from the input SFC topology
that determines the connections between individual units.

III. ASYNCHRONOUS DEEP REINFORCEMENT LEARNING

As demonstrated in Fig. 2, RL follows the Markov Decision
Process (MDP) model to train an agent a that observes the
state s of the environment at discrete time steps to prescribe
actions a that ultimately maximise the reward r, thereby at-
taining an efficient policy for stochastic scenarios. Q-Learning
in this regard is a typical RL algorithm that calculates the
value of each state-action pair as a Q-value function Q(s, a).
Then, based on the policy (e.g. ε-greedy) chooses the action
with the largest Q-value, and follows the gradient towards
higher rewards. To store the value functions, traditional RL
relies on either explicit look-up table (array/hash) or function
approximation to store the estimated value functions for each
state-action pair. However, RL fails due to dimensionality
when dealing with a large state space, as:
• A larger table is not only storage intensive, but also

expends more time while traversing the complete range
of state-action pairs.

• Linear function approximation is unable to accurately
model the estimated value function.

DRL (specifically DQL) overcomes these classical
challenges by using Deep Neural Networks (DNN) as
non-linear function approximators to learn policy and state-
value representations. As demonstrated in [9], by sampling
only a fraction of states, neural networks can be trained
to fairly accurately approximate the Q-value function. The
novel propositions [9] of incorporating ‘experience replay’
and ‘network cloning’ have enabled DRL to progress
exponentially, making the algorithm powerful enough to beat
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Fig. 4. Proposed system architecture as described in section IV for dynamic
resource prediction in NFV environments.

the human world champion in the game of AlphaGo [10].

However, experience replay has several drawbacks. It is
computationally intensive on each interaction, and can work
with only off-policy algorithms like Q-learning. To this end, a
parallel reinforcement learning paradigm seeks to decorrelate
the process by asynchronous execution of multiple agents on
multiple instances of the environment. These asynchronous
methods [11] for DRL seek to replace experience replay,
and enable the use of other on-policy RL algorithms as
well. Asynchronous DRL stabilizes learning, and reduces the
training time that is roughly linear in the number of parallel
threads [11].

IV. SYSTEM ARCHITECTURE FOR DYNAMIC RESOURCE
PREDICTION IN NFV ENVIRONMENTS

Fig. 4 presents the overall architecture of the proposed
system. On a high level, it consists of two primary building
blocks– the intelligent dynamic resource prediction module,
and the emulation platform for the deployed NFV application
SFC. Algorithm 1 presents the pseudo-code for the proposed
system architecture, and the linking of components for dy-
namic resource forecasting.

A. VIM-Emulator

The VIM-Emulator [12] is an emulation platform towards
rapid prototyping of network services across multiple points of
presence in a cloud environment. In our system architecture,
the VIM-Emulator mimics the NFV Infrastructure (NFVI) and
Virtualised Infrastructure Manager (VIM). It provides flexible
Python API endpoints to control and extend the functionality
of all components, which is critical for customizing models
and taking charge of the deployment. It offers interfaces
that are similar to the control that OpenStack1 offers, and
allows to start, stop and manage VNFs. From the Management
and Orchestration (MANO) [2] system perspective, this setup
translates to a real world multi-VIM deployment.

1https://www.openstack.org/

Algorithm 1: Asynchronous Deep Q-Learning enhanced
GNN for topology-aware VNF resource prediction in dy-
namic NFV environments
Initialise: Weight θ = 0, iteration i = 0, max iteration

counter T , state s(i) = 0 ∀n ∈ N

procedure OBSERVATION
Observe f for all VNFC’s and their neighbourhoods

end
procedure STATE COMPUTATION

while i < T do
Compute s(i+ 1) using equation 3

end
end
procedure OUTPUT COMPUTATION

Compute o(i) using equation 2
end

For each deep Q-learning agent thread:

repeat
Individual agent thread gets initial state s from GNN
encoding network formed above

The agent chooses action at with chosen exploration
policy based on Q(s, a; θ)

After executing the action at, the agent observes the
reward r and a new state s′ for the system

Compute Q+ next Q-value
The agent accumulates the gradients over multiple
time steps w.r.t. θ

The agent periodically asynchronously updates the
weights on the encoding network

until i > T (i.e. predefined stopping condition);

It is based on Containernet2, which extends the Mininet3

emulation framework towards allowing addition and removal
of Docker4 containers acting as compute resources repre-
senting each VNF in an SFC during runtime. This is an
essential service for NFV based applications and our approach,
which requires instantiating or terminating new infrastructure
resources for VNFs on the go. It also allows to dynamically
change resource limitations of services at runtime, which
mimics the real world scenario of fluctuating resource con-
straints based on network factors. This can be deployed in
a custom network topology with realistic network and link
characteristics.

To this end, we feed into the VIM-Emulator the topology
and data flow dependencies of our emulated SFC. This SFC
as shown in Fig. 1 is inspired from the architecture of Project
Clearwater5, which is an an open source implementation of
the IP Multimedia Subsystem (IMS) for cloud computing
environments. We defined this custom network service via
Virtual Network Function Descriptors (VNFD) and Network

2https://containernet.github.io/
3http://mininet.org/
4https://www.docker.com/
5https://www.projectclearwater.org/
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Service Descriptors (NSDs) [2], [5], [12], and fed this into the
emulator as the infrastructure component.

B. Intelligent Dynamic Resource Prediction Module

The SFC topology as shown in Fig. 1 is also input into the
GNN module. As also shown in Fig. 1, the forwarding graph
topology coupled with the parametric functions map the state
of each VNFC node with its neighbourhood, and together form
an encoding network to iteratively determine the states and
output resource prediction for the VNFCs.

Further, in our prediction module, we propose the use of
asynchronous Q-learning to enhance the GNN. This would
replace the use of the classic backpropagation algorithm from
previous work [6], [7]. The developed GNN encoding network
acts as the environment for the deep reinforcement learning
agents. Multiple agent threads are executed parallely on the
same machine, each with its own view of the environment.
These agents spread across the nodes in the GNN encoding
network asynchronously observe and feed back the state of
the VNFC nodes, which helps in adjusting the weights for
the encoding network and reinforcing the learned policy for
optimized prediction output. Each agent may have a different
exploration policy, which would add diversity to the explo-
ration and further improve the performance. To avoid multiple
agents overwriting each others’ updates, we accumulate net-
work weight gradients over multiple time-steps before they
are applied, as this has been shown to provide some ability to
trade off computational efficiency for data efficiency [11]. The
reward for the accuracy of output in the encoding network, i.e.
a correct scaling decision predicted helps drive the policy to
an optimum learned stage. The predicted output is sent to the
VIM in the MANO layer of the VIM-Emulator so that scaling
action on the actual infrastructure can be taken ahead of time
and the resources provisioned can be optimized based on the
demand.

V. CONCLUSION AND FUTURE WORK

In this article, we propose the system architecture for an
Asynchronous DRL enhanced GNN for topology-aware VNF
resource prediction in dynamic NFV environments. We use
the GNN to model the topological dependencies between
the nodes in an NFV SFC, and use the resultant encoding
network as the environment for asynchronous DRL agents
that help form the policy for predictive scaling of VNFC
resources. The asynchronous learning methodology works well
towards incorporating the different PoPs of VNFs, and further
helps reduce learning and training overheads as compared to
classical DRL.

In future work, we plan to share the implementation of the
proposed system architecture, and gather the results on how the
dynamic resource prediction algorithm best performs. As with
any machine learning algorithm, training is a crucial aspect
of how the algorithm performs. We intend to test the training
phase with different types of data sets, i.e. synthetic, real-world
(VoIP traces), and analyze the impact they have on the overall
performance. It is also in the pipeline to compare the learning

and prediction performance of different DRL algorithms here,
and see which one best supplements the GNN model with a
good generalisation accuracy. It would also be interesting to
see how well the model scales depending on the number of
VNFC and VNF nodes in the SFC.
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