
A Trust Overlay Architecture and Protocol for Enhanced Protection against 
Spam 

 
 

Jimmy McGibney, Dmitri Botvich 
Telecommunications Software & Systems Group, Waterford Institute of Technology 

{jmcgibney, dbotvich}@tssg.org 
 

 
Abstract 

 
The effectiveness of current anti-spam systems is 

limited by the ability of spammers to adapt to new 
filtering techniques and the lack of incentive for mail 
domains to filter outgoing spam. This paper describes 
a new approach to spam protection based on 
distributed trust management. This is motivated by the 
fact that the SMTP mail infrastructure is managed in a 
distributed way by a community of mail domain 
administrators. A trust overlay architecture and a new 
protocol are presented. The TOPAS protocol specifies 
how experiences and recommendations are 
communicated between a spam filter at each mail 
domain and its associated trust manager, and between 
trust managers of different mail servers. A technique 
for improving mail filtering using these trust measures 
is also described. Initial simulations indicate the 
potential of this approach to improve rates of false 
positives and false negatives in anti-spam systems.  
 
1. Introduction 
 

As well as being annoying, spam introduces many 
serious security risks and is often used to conduct 
fraud, as a conduit for malicious software and to carry 
out denial of service attacks on mail servers.  

The principal current anti-spam techniques focus on 
filtering incoming email, either based on parsing 
message content, Bayesian filtering, maintaining 
Domain Name System (DNS) blocklists, and/or the use 
of collaborative filtering databases. Spammers tend to 
be resourceful though, and quickly find ways to get 
around most countermeasures. There are various 
attempts to also make anti-spam more adaptive, with 
the availability of reporting services that allow spam 
filters and blocklists to keep up to date with new spam 
techniques. There is a feeling though that spammers 
are always a step ahead, with the anti-spam community 
following with countermeasures some time afterwards. 

In addition to technical countermeasures, several 
governments have introduced legislation outlawing 

spam and providing for stiff penalties. Despite some 
prosecutions, such legislation has had little or no 
effect, for several reasons such as the inter-
jurisdictional nature of email traffic and spam. 

Internet email is transferred using the Simple Mail 
Transfer Protocol (SMTP) [1]. SMTP was first 
introduced [2] at a time when the total number of 
Internet hosts was just a few hundred and trust between 
these could be assumed, and was designed to be 
lightweight and open. Attempts to introduce 
authentication via extensions or with new protocols 
that can sit on top of SMTP (e.g. Pretty Good Privacy, 
PGP [3]) have proven useful in some situations but are 
very far from universal adoption. 

In this paper, we explore the use of decentralised 
trust to provide a more robust spam filtering system. 
Trust is primarily a social concept and is personalised 
by the subject. In this paper, we make use of trust by 
taking the socially-inspired notion of trust based on 
experience and recommendation. 

The peer-to-peer nature of the Internet mail 
infrastructure suggests that it should be well suited to a 
distributed approach to trust management.  

This paper proposes an architecture and protocol for 
establishing and maintaining trust between mail 
servers. The architecture is effectively a closed loop 
control system that can be used to adaptively improve 
spam filtering. In this approach, mail servers 
dynamically record trust scores for other mail servers; 
trust by one mail server in another is influenced by 
direct experience of the server (i.e. based on mail 
relayed by that server) as well as recommendations 
issued by collaborating mail servers. As well as 
modelling trust interactions between mail servers, we 
explore how mail filtering can combine trust values 
with existing mail filtering techniques. 

The remainder of this paper is organised as follows. 
The next section (section 2) outlines the reasons that 
spam is prevalent and the main anti-spam techniques. 
A trust overlay architecture is presented in section 3, 
followed by the new TOPAS protocol in section 4. 
Section 5 describes some algorithms for handling trust 

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00  © 2007



measures received with TOPAS. Section 6 describes 
how trust measures can be used to enhance spam 
filtering. Section 7 presents an illustrative example of 
the use of our approach. Finally, section 8 discusses 
related work and section 9 concludes the paper. 
 
2. Anti-spam background 
 

The Internet mail infrastructure, based on SMTP, 
has in general been very successful. Much of this 
success has been due to its simplicity. SMTP is a 
simple protocol wherein mail is transferred from a 
client system to a server system using a limited set of 
text commands. The focus of SMTP is on effective 
mail transport across heterogeneous systems, with the 
assumption that security or other desired features are 
provided at a higher layer or by means of extensions. 
The main security effect is in a lack of requirement for 
authentication of the source of an email or the path that 
it has taken. 

The main anti-spam techniques in practical use are 
based on message content and DNS blocklists, and/or 
use of collaborative filtering databases. SpamAssassin 
[4], for example, processes each incoming mail and 
assigns a “score” to it based on a combination of 
values attributed to possible spam indicators. The 
higher the score, the more likely it is that the mail is 
spam. A threshold is then used to filter mail – a mail 
that scores below the threshold is accepted and one that 
scores above the threshold is flagged as spam. The 
alternative, or complementary, approach is blocklisting 
– mail coming from unreliable sources is simply 
blocked.  

These techniques have significant limitations 
though. With content filtering using a threshold, some 
genuine mail messages may score above the threshold 
and be flagged as spam (false positives) and some 
spam may score below the threshold and be accepted 
(false negatives). Careful tuning of the threshold can 
optimise the balance between the incidence of false 
positives and false negatives. For example, many email 
users will tolerate a modest level of spam to reduce the 
risk of some important mails being blocked. In 
practice, spammers are quite resourceful and adapt to 
content filtering advances – by, for example, using 
images rather than text, mutating text to avoid 
keywords that cause high filter scores, or spoofing 
source address to make it more acceptable.  

DNS blocklists are also problematic. These 
effectively identify spam sources in a binary fashion 
(i.e. a mail source is either on the list or it is not). This 
becomes problematic when “good” mail servers are 
attacked and exploited. Even with good system 
administration, this can happen and may not be noticed 
immediately. 

Though innovative new anti-spam techniques have 
been proposed, such as the use of micro-payments [5] 
and a requirement for the sender to solve a 
computational challenge for each message, spam 
remains a significant problem for users and system 
administrators. 
 
3. Trust overlay architecture 
 

In this section, we propose the overlay of a 
distributed trust management infrastructure on the mail 
infrastructure, with a view to using trust information at 
nodes to assist with spam filtering. Figure 1 illustrates 
the relationship between SMTP and this new 
infrastructure. Mail transport operates as normal – we 
do not propose any changes or extensions to SMTP or 
other existing mail protocols. With our proposed trust 
overlay architecture, a trust management layer operates 
separately from mail transport. Two message passing 
interfaces are defined between the mail transport layer 
and the trust management layer and another between 
the trust managers of individual nodes. The interfaces 
are as follows (Figure 1): 
(1) Experience reports: Mail host → Trust manager 
(2) Recommendation: Trust manager ↔ Trust manager 
(3) Policy updates: Trust manager → Mail host 
 
3.1. Data structures: representing trust 
between mail servers 
 

We can assume, without loss of generality, that the 
Internet mail infrastructure is made up of a (large) 
number of SMTP-capable hosts. Each of these hosts 
can send and receive mail using SMTP. For the 
remainder of this discussion, we simply refer to these 
mail server hosts as nodes. 

Trust is defined as being between two nodes – i.e. 
node A has a certain level of trust in node B. Each 
node records a set of trust-related parameters for each 
other node. In the general case, there could be many 

SMTP

(3) Policy 
updates

(1) Experience 
reports

(2) Trust 
recommendations Trust 

management 
layerTrust 

manager

Mail 
transport

Trust 
manager

Trust 
manager

Trust 
manager

Mail 
host

Mail 
host

Mail 
host

Mail 
host  

Figure 1. Mail infrastructure trust overlay 

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00  © 2007



such parameters corresponding to a variety of services 
for which trust measures are used. In our experiments, 
trust in another mail server is represented by a score in 
the range (0,1) – each node then records this score for 
each other node of which it is aware. A trust score of 0 
means that there is no trust in this node and a trust 
score of 1 means that this node is fully trusted. Some 
trust scores will be very stable and may result from 
plenty of experience and corroboration by several peers 
and thus there may be a high level of confidence in 
these scores. Other trust scores may be less reliable. 
Thus we also record a confidence level for each trust 
score, again in the range (0,1). A third parameter that 
we use is recency, indicating how recently this trust 
score was updated. Recency is important as mail 
servers come and go; good mail servers become bad 
(e.g. due to a hijack) and bad mail servers become 
good (e.g. due to removal of malware). Recency can be 
recorded in any appropriate units of time. 

This can be implemented as a table that might look 
something like that shown in Table 1. 

Nodes can control the size of this table by choosing 
to “forget” a trust score and deleting its entry. For 
scalability reasons, trust scores could just be recorded 
for nodes that have been encountered fairly recently. 
 
3.2. Mail host identification 
 

Trust scores are recorded per IP address (IPv4 or 
IPv6). Table 1 shows hostnames only for reasons of 
readability. A trust score thus is just meaningful when 
applied to mails from the IP address to which it is 
attached. As SMTP does not protect against 
modification of sending SMTP server hostname or IP 
address by intermediate mail relays, processing of trust 
values is always based on the last hop. Mail received 
from an SMTP relay affects the trust score of that 
SMTP relay rather than the originating host. This 
provides the relay with a strong incentive to filter 
outgoing spam. The IP address of the last hop is 
collected from the source IP of packet(s) containing the 
SMTP HELO/ELHO message (to which a reply will 
have been sent). 

3.3. Modelling centralised trust references 
 

The architecture described here is highly 
distributed, with each node autonomously managing its 
own view of the trustworthiness of other nodes. In 
practice, however, some nodes might prefer to defer to 
a centralised trust reference. Such a centralised trust 
reference can be modelled as a virtual node with a very 
high trust value (perhaps 1.0). 
 
4. TOPAS protocol 
 

This section describes a protocol that we call 
TOPAS (Trust Overlay Protocol for Anti Spam). The 
TOPAS protocol is for collecting spam statistics to 
calculate trust, sharing this trust information between 
nodes and feeding it back to mail hosts to allow them 
to more effectively filter spam. 

The protocol executes using asynchronous message 
passing in the case of interfaces (1) and (2) of Figure 1. 
Interface (3) uses a simple synchronous request-reply 
technique. An underlying set of services is assumed, 
including message delivery, failure detection and 
timeout. It is assumed that each process receives 
queued messages of the form (tag, Arg1, …, Argn). 
This outline style of protocol specification is 
influenced by the Generic Aggregation Protocol (GAP, 
[6]). 

(1) Experience report: Mail host → Trust manager 

The mail host has an associated spam filter. Each 
item of mail that arrives at the server is processed by 
the spam filter, with the result that it is either accepted 
or flagged as spam. This information needs to be 
available to the trust manager. The following two 
messages, from the mail host to the trust manager, 
provide this: 
• (singleMail, i, s) may be sent from the local 

mail host to the trust manager to report on a single 
mail from node i. The value of s is 1 if the mail 
has been determined by the mail host to be spam 
and 0 otherwise. i identifies the sending node. 

• (bulkMail, i, n, s) may be sent from the local 
mail host to the trust manager to report on a 
sequence of mails from node i. n is the number of 
mails received from node i (since the last report) 
and s the number of these determined by the mail 
host to be spam. 

Note that in both messages above, the node 
identifier i could be an IP address, a hostname, a mail 
domain name or any other identifier supported by the 
mail host. It is up to the trust manager to process this. 

Sending a bulkMail message conveys the same 
information as would several singleMail messages. 

Table 1. Representation of trust scores, from 
perspective of a specific node (smtp1.foo-inc.com) 

Node name Trust score Confidence Recency 
smtp2.foo-inc.com 0.99 0.99 100 

mail.barfoo.org 0.95 0.95 200 
labserver.uxy.edu 0.80 0.80 700 
webmailprov.com 0.50 0.50 30 

lazyconfig.net 0.25 0.25 10 
phishysite1342.com 0.01 0.01 8000 

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00  © 2007



It is included in the protocol for performance reasons. 
Where mail volumes are heavy, it is more efficient to 
send periodic bulkMail updates rather than burden 
the server with generating a singleMail message per 
mail received. 

(2) Trust recommendation: Trust manager ↔ Trust 
manager 

Nodes collaborate to share trust information with 
one another. This is done by the trust managers, using 
the primitives outlined here. Trust managers may issue 
recommendations spontaneously (for example on 
occurrence of some event like sudden appearance of 
spam) or in response to a request from another node. 
Note that a request may be issued by one trust manager 
to another, but a reply is not guaranteed. As mentioned 
earlier, message passing is asynchronous and the 
protocol requires no state information to be maintained 
by the corresponding entities. The following five 
messages may be sent from one trust manager to 
another: 
• (getTrust, k) allows node i to ask another node j 

to report its trust in node k. This message should be 
interpreted as an indication from node i of a desire 
to receive a recommendation regarding node k. 
Node j may respond with a trust report. This might 
be expected to be used as follows. On receipt of 
some volume of mail from node k, node i could 
issue a series of getTrust messages to 
neighbouring nodes requesting recommendations 
regarding node k. Only those neighbours with some 
experience or knowledge of k might reply, with the 
remainder staying silent. Note though that nodes are 
not obliged to respond, even if they do have 
knowledge or experience of k. Nodes could have 
other reasons (e.g. lack of trust in the requester, i) to 
not reply. Nodes that have no information are 
expected to stay silent. 

• (getTrustResponseRequested, k) is a variation 
on getTrust that expects the recipient to respond 
(with a null value) even if it has no trust information 
on node k. Again, there is no strict obligation to 
respond. 

• (getTrustAll) allows one node i to ask another 
node j to report its trust in all known nodes. This 
message should be interpreted as an indication from 
node i of a desire to receive a recommendation 
regarding all nodes of which the recipient is aware. 
There is no obligation on the recipient to respond. 
Nodes that have no information on any nodes 
should issue a null reply. 

• (setTrustReportingPreferences, t, c, r, f) 
allows node j to specify to node i how spontaneous 
trust reports are sent to it (see discussion on “push” 

model later). This message also indicates a desire by 
node j to receive trust advertisements from node i 
(i.e. to be included in its neighbourhood). 
t is a list of zero or more trust level thresholds. Trust 
updates are requested whenever trust exceeds or 
falls below any of these threshold values.  
c is a confidence level threshold. Trust updates are 
only desired if the confidence level of the sender is 
at least c. 
r is a recency threshold. Trust updates are only 
desired if the trust information has been updated by 
the sender within the previous r time units. 
f indicates the maximum frequency of update. 

• (trustReport, k, T) allows node j to send a 
recommendation to another node i, in relation to 
node k. T is an object that encapsulates sender j’s 
trust in node k. T is set to null in the case where the 
sender j has no trust information regarding node k. 
Note that a trustReport may be issued either 
spontaneously or in response to a getTrust or 
getTrustResponseRequested message. 

• (bulkTrustReport, l) allows node j to send a 
recommendation to another node i, in relation to a 
set of nodes. Parameter l is a set of pairs (k, T) 
where k is the node identifier and T is an object that 
encapsulates sender j’s trust in node k. l is the empty 
set in cases where the local node has no trust scores 
to share. Note that a bulkTrustReport may be 
issued either spontaneously or in response to a 
getTrustAll request. 

(3) Policy update: Trust manager → Mail host 

The third part of this collaboration architecture is 
responsible for closing the loop. Direct experience is 
recorded by nodes and shared among them. The result 
of this experience and collaboration is then used to 
inform the mail host to allow it to operate more 
effectively. Specifically, the mail host, on receiving a 
mail from node i needs to be able to access the current 
trust information that its trust manager has on node i. 
Although the mail host may be able to use local storage 
to, for example, cache trust values, we do not place any 
such requirements on it. Thus we need the ability for 
the mail host to request trust information from the trust 
manager and receive a timely reply. 
• (getTrustLocal, i) allows the mail host to request 

the trust score for a particular node, i. 
• (trustReportLocal, i, T) allows the trust 

manager to respond to a getTrustLocal request. 
T is an object that encapsulates the trust manager’s 
trust in node i. T is set to null in the case where the 
trust manager has no trust information regarding 
node i.  

 

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00  © 2007



5. Using the TOPAS protocol 
 

The Internet mail architecture is highly dynamic – 
new nodes appear all the time, and existing nodes will 
quite frequently receive mail from previously unknown 
senders. In distributed trust management generally, 
choosing an initial value of trust to assign to such new 
arrivals is a non-trivial task. There are essentially two 
options, where the range of trust is (0,1): 
(1) Initialise the trust level at zero (motivated by the 

Sybil attack [7]). 
(2) Assume some “default trust” exists and initialise 

at some value above zero. 
Treating previously unknown senders the same as 

spammers would restrict the utility of email as it tends 
to block new entrants; this points to the second option 
as perhaps the best. 
 
Issuing inter-node trust advertisements 
 

The functions specified at interface (2) above allow 
for either a “pull” or a “push” model for sharing trust 
information. Messaging is asynchronous for experience 
reports and recommendations. 

“pull” model 
The trust manager receives a getTrust, 

getTrustResponseRequested, or getTrustAll 
request for trust information about another node, or all 
nodes, and subsequently replies with a trustReport 
or bulkTrustTeport message. The sender of the 
request will need to use its own timeout mechanism. In 
the case of a getTrust message, there is no obligation 
on the recipient to reply at all. With 
getTrustResponseRequested and getTrustAll, 
the recipient should issue a reply even if this contains 
no trust information. 

“push” model 
The trust manager may be configured to 

spontaneously issue trust updates, either to other nodes 
or to its local mail server. This is typically for reasons 
of performance and efficiency. It is wasteful for nodes 
to repeatedly poll each other unless there is useful new 
information. In the “push” case, each node decides 
when and to whom to issue trust advertisements. 

When to issue trust advertisements? 

Each individual node controls the frequency of 
issuance of trust advertisements, and may even decide 
to issue none. Issuing a trust advertisement uses 
processing, memory and network resources of both the 
sender and recipient. The sender needs to find a 
balance – the more collaboration the more effective the 
system, but sending too many updates may put a strain 

on resources. It is also desirable if the recipient can 
control the number or frequency of advertisements 
from the sender. A sender trust advertisement strategy 
might have them sent periodically or on significant 
change in trust value or confidence level in this value. 
For example, the sender may issue trust advertisements 
relating to a node when its trust in that node exceeds a 
certain threshold and when its confidence level in this 
trust is high. If the trust level exceeds the threshold but 
its confidence level in this value is low, it may choose 
not to send anything. 

The TOPAS protocol allows this to be based on the 
recipient’s specified trust reporting preferences. 

To whom to issue trust advertisements? 

Each individual node also controls the set of nodes 
that forms its “neighbourhood” – those nodes to which 
it sends trust advertisements. The set of neighbours 
could be defined, for example, as containing nodes that 
are nearby, most trusted, most collaborative, and/or 
have specifically requested trust reports (using 
setTrustReportingPreferences), 

Figure 2 illustrates the distribution of trust 
information. There are eight nodes (mail servers) in the 
example shown. Each node has its own 
neighbourhood, two of which are shown. In some short 
time duration, node ‘F’ sends mail to ‘A’, ‘D’ and ‘E’. 
Node ‘A’ establishes a trust score for node ‘F’ based 
on (i) mail it receives directly from ‘F’ and (ii) 
reputation information from its neighbours, ‘B’, ‘C’ 
and ‘D’. The reputation information provided by node 
‘B’ relates the experience of node ‘E’ that ‘E’ has 
shared with it. The reputation information provided by 
node ‘C’ derives its trust score relates the experience of 
node ‘D’ that ‘D’ has shared with it. Note that trust 
transitivity may allow a trust score to propagate quite 
some distance – in this example, the score that ‘E’ 
records for ‘F’ is propagated to ‘B’ and onward to ‘A’. 

A

C D

B

E

F

Neighbourhood 
of mail server ‘A'

Neighbourhood 
of mail server ‘B'

Key:

Mail transfer (experience)

Trust info (collaboration)

G

H

 
Figure 2. Distribution of trust information 

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00  © 2007



Handling experience reports 
On receipt of a singleMail message from the mail 

host relating to node j, the trust manager at node i 
updates its trust value in node j, jiT , , as follows: 

( )STfT jieji ,,, ← , 

where ef  is a function defining how trust is updated. 
Further work is required to recommend suitable 
algorithms for updating trust on experience. In our 
initial simulations, we use an exponential average 
function.  

 
Handling recommendations  

On receipt of a trustReport from node j, 
indicating a level of trust in node k, the trust manager 
at node i updates its trust value in node k as follows: 

( )kjjikirki TTTfT ,,,, ,,← , 

where rf  is a function defining how trust is updated. 
Further work is required to find suitable algorithms for 
updating trust on recommendation. In our initial 
simulations, we use an exponential average function.  
 
6. Using trust scores to filter email 
 

Assume that a spam filtering system applies some 
test to each incoming email. In each case, a decision is 
made whether to accept the mail. A negative result (in 
the spam test) means that the mail is accepted and a 
positive result means that the mail is rejected (or at 
least marked as spam).  

Most spam filters combine a variety of measures 
into a suspicion score and compare this with a pre-
defined threshold. This threshold is a fixed value that 
may be tuned manually. Mail resulting in a score above 
the threshold is marked as spam and the remainder 
(under the threshold) is accepted. 

In our system, we attempt to improve spam filtering 
by allowing the threshold to vary. The threshold level 
depends on the trustworthiness of the node that sent the 
message. So, we use the sender’s trust score (as 
perceived by the receiver) to define the threshold – i.e. 
the more trusted a node is, the higher we set the 
threshold for marking a new mail message as spam. 
Conversely, if a node is untrusted then the threshold is 
set to a lower value. There are several ways to cause 
this threshold to vary. In our initial experiments, the 
threshold for mail received from a server is simply a 
linear function of the trust score of that server (as the 
mean of the trust score range is 0.5 and the default 
threshold for SpamAssassin is 5, we set the threshold to 
be simply ten times the trust score). 

In practice, the dynamics of trust applied to spam 
filtering allows an organisational mail server to process 
email in a way that depends on its trust in the sending 

node. In many cases, this trust level will be somewhere 
in the middle, between “trusted” and “untrusted”. 

In the current (fixed threshold) situation, consider 
where the spam filter threshold is 5.0. This is the 
setting on the authors’ SpamAssassin implementation. 
All incoming mail is given a spam score. If a genuine 
messages scores 5.1, it is diverted to the spam box. If a 
spam message scores 4.9, it is allowed into the user’s 
inbox. 

If we instead have a dynamically tuned threshold, 
however, a genuine message from a trusted source 
scoring 5.1 will be accepted as the source should have 
a higher threshold. Likewise, spam received from an 
untrusted server scoring 4.9 will be filtered out as the 
threshold should be lower. 
 
7. Illustrative example 
 

This section reports on an illustrative 
implementation of the TOPAS protocol with a 
simulated network of mail servers generating traffic, 
some of which is spam. We show how improvements 
in spam filtering (in terms of reduced false positive and 
false negative rates) can be achieved through closed 
loop control based on sharing trust scores. 
 
7.1. Simulation set up 
 

In our simulations, each node has a neighbourhood 
defined. This is a set of nodes that are somehow 
“close” to the node in question, with the expectation of 
above average frequency of communication with them. 

Neighbourhoods are defined randomly for each mail 
server. This is done as follows: Initially, the 
neighbourhood of each node is the empty set. Choose 
two nodes at random. Add one to the neighbourhood of 
the other. Repeat until the total set of neighbour 
relations is equivalent to a connected graph. Then trust 
will (eventually) propagate throughout the network. 

Email traffic volumes also vary randomly, with 
spammers tending to produce email in greater 
quantities than regular email users. For each mail sent, 
the recipient can be anywhere on the network, but is 
more likely to be a neighbour than any random node. 

Each email contains a value S' that models 
aggregated indicators of spam, in the style of 
SpamAssassin. This value is used by the receiving 
node to test for spam. 

S' has a Gaussian (normal) probability density 
function with mean µ and standard deviation σ. Mail 
that is actually spam tends to have a high value of µ. 
Normal mail tends to have a lower value of µ. The 
standard deviation determines the tendency for the 
filtering system that analyses such mail to be prone to 
false positives and false negatives. 

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00  © 2007



For the purposes of our experiments, whether or not 
an email is actually spam is indicated by a binary value 
that is communicated separately to the receiver. This is 
not used in spam detection, but is used afterwards in 
the evaluation of how well the spam filter worked. 
 
7.2. Using Trust to Enhance Mail filtering 
 

In our experiments, we examine two different 
approaches to mail filtering: 

• Use of a pre-defined threshold. The value of the 
threshold is selected to be half way between the 
means of the probability density functions of S' for 
spam and non-spam respectively. Our experiments 
are designed so that this mean is 5.0 (a common 
SpamAssassin threshold). 

• Use of an automatic threshold that is directly 
related to trust in the sending node. 

The first approach takes no account of trust 
information. The second uses trust information to tune 
the spam filter. 

We now illustrate how improvements in spam 
filtering (in terms of reduced false positive and false 
negative rates) can be achieved through closed loop 
control based on sharing trust scores. We simulate a 
network of fifty nodes, of which a single one is a 
spammer. The spammer is responsible for 50% of all 
email generated in the system. Trust convergence for 
“good” nodes is based on exponential averaging, with a 
parameter of 0.03 (chosen experimentally for stable but 
moderately fast convergence). The randomly generated 
neighbourhood of each node consists on average of 
one-seventh of all nodes. 

For this experiment, we choose relatively flat (but 
distinct) probability density functions for spam 
indicators for both spam and non-spam email. Both 
have the Gaussian (normal) distributions shown in 
Table 2. Note the overlap implied by the relatively 

large standard deviation values. 
As already mentioned, most spam filters combine a 

variety of measures into a suspicion score and compare 
this score with a pre-defined threshold. For our 
experiments, a fixed threshold of 5.0 is chosen 
(SpamAssassin default) and used as a benchmark. As 
can be seen in Figures 3 and 4, a significant reduction 
in both false positives and false negatives can be 
achieved with auto-tuning of the threshold (based on 
trust values). Auto-tuning is of course most effective in 
a steady-state situation when trust values are quite 
stable. A range of other predefined threshold values 
were also tried, but with no better results than the value 
of 5.0 shown. Choosing a higher predefined threshold 
causes an increase in false negatives and choosing a 
lower predefined threshold causes an increase in false 
positives. 
 
8. Related work 
 

Specific spam filtering techniques are not of direct 
concern to us in this paper and can effectively be 
plugged in as needed. Our emphasis is on using trust 
information to tune such filters, and our initial 
implementation focuses on filters that are based on 
thresholds. This section overviews other work that uses 
collaborative techniques to fight spam, and points out 
similarities and differences in approach to ours. 

There has been some other work on applying trust 
and reputation information to spam filtering. 

Golbeck and Hendler [8] present a technique based 

Table 2. Parameters for Gaussian (normal) 
distributions used in experiments 

 Mean Std Deviation 
Spam 8.0 4.0 

Non-spam 2.0 4.0 

Figure 4. Comparison of dynamic vs fixed 
threshold: impact on rate of false negatives. 

False negative rate

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000

No of emails rece iv ed by node  1

Fa
ls

e 
ne

ga
tiv

e 
ra

te
 (%

)

Dynamic threshold Threshold=5.0

False positive rate

0

20

40

60

0 2000 4000 6000 8000 10000

No of e mails re ce ived by node  1

Fa
ls

e 
po

si
tiv

e 
ra

te
 (%

)

Dynamic threshold
Threshold=5.0

Figure 3. Comparison of dynamic vs fixed 
threshold: impact on rate of false positives. 

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00  © 2007



on social networks for sharing reputation information 
among email users. This allows users to sort received 
messages based on a sender rating value. This rating 
value is set by the user or is inferred from neighbours’ 
ratings using a weighted average technique. Our 
approach differs from this in two main ways: firstly, 
we focus on mail servers rather than individual email 
addresses; secondly, our system provides closed loop 
feedback without direct user involvement.  

Kong et al [9] also focus on end user email 
addresses, but provide for the anonymous sharing of 
information with a wider community. When a user 
flags a mail as spam, this is made available to other 
users’ spam filters, which is useful as the same spam 
messages are usually sent to a large number of users. 
Damiani et al [10] similarly present a system of sharing 
spam information, wherein a cryptographic digest of 
each spam mail encountered is shared. 

Seigneur et al [11] use "hard" cryptographic 
authentication to support whitelists of known good 
guys in conjunction with "soft" trust management for 
new contacts. Trust derives from stored evidence, 
which includes recommendations, observations, 
certificates and reputations. Though our trust model is 
similar to this (“observations” are called “experience” 
in our model, and we consider certificates and 
reputations to be the same as recommendations), our 
work uses this information for filter tuning and 
investigating the dynamics of the resulting system. 
Also, we focus on mail servers rather than individual 
email users, as mentioned above. 

Foukia et al [12] are, like us, motivated to 
encourage mail servers to restrict output of spam. Their 
approach is agent-based – each participating mail 
server has an associated Federated Security Context 
Agent that contributes to, and draws on, an aggregated 
community view (the Federated Security Context). 
They also use quotas to control the volume of mail 
output by a server in an attempt to prevent temporary 
traffic bursts that are typical of spammer activity. 

In summary, we can say that some elements of our 
anti-spam approach (using trust, closed loop control, 
etc) have already been proposed in some form by 
others, but our approach is unique in the way in which 
we combine them. 
 
9. Conclusions 
 

A new approach to improving spam filtering, based 
on collaboration between mail servers to manage trust, 
has been described in this paper. A trust management 
overlay architecture and a new lightweight protocol, 
called TOPAS (Trust Overlay Protocol for Anti Spam), 
have been presented. In this system, each mail server 

records trust measures relating to each other mail 
server of which it is aware. Trust by one mail server in 
another is influenced by direct experience as well as 
recommendations issued by collaborating mail servers. 
The TOPAS protocol specifies how these experiences 
and recommendations are communicated between each 
spam filter and its associated trust manager, and 
between trust managers of different mail servers. A 
technique for improving mail filtering performance and 
the TOPAS protocol using these trust measures has 
also been described. Experimental results have 
illustrated use of the protocol in a simulated network 
scenario, and indicate the potential of this approach to 
significantly improve rates of false positives and false 
negatives in anti-spam systems. 
 
10. References 
 
[1] J. Klensin (ed.), Simple mail transfer protocol, RFC 

2821, Internet Engineering Task Force, 2001. 
[2] J.B. Postel, Simple mail transfer protocol, RFC 821, 

Internet Engineering Task Force, 1982. 
[3] P.R. Zimmermann, The official PGP user's guide, MIT 

Press, 1995. 
[4] A. Schwartz, SpamAssassin, O'Reilly, 2004 
[5] J. Goodman and R. Rounthwaite, “Stopping outgoing 

spam”, Proc. ACM Conference on E-Commerce, 2004. 
[6] M. Dam and R. Stadler, “A generic protocol for network 

state aggregation”, Proc. Radio Science and 
Communication conference (RVK), Linköping, 2005. 

[7] J. Douceur, “The Sybil attack”, Proc. 1st Int’l Workshop 
on Peer-to-Peer Systems, 2002. 

[8] J. Golbeck and J. Hendler, "Reputation network analysis 
for email filtering", Proc. 1st Conference on Email and 
Anti-Spam (CEAS), 2004. 

[9] J.S. Kong, B.A. Rezaei, N. Sarshar, V.P. Roychowdhury 
and P. Oscar Boykin, "Collaborative spam filtering 
using e-mail networks," IEEE Computer, vol. 39, no. 8, 
pp. 67-73, Aug. 2006. 

[10] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi 
and P. Samarati, “P2P-based collaborative spam 
detection and filtering,” 4th IEEE Int’l Conf. Peer-to-
Peer Computing, 2004. 

[11] J.-M. Seigneur, N. Dimmock, C. Bryce and C. D. 
Jensen, “Combating Spam with TEA (Trustworthy 
Email Addresses)”, Proc. 2nd Annual Conference on 
Privacy, Security and Trust (PST), 2004. 

[12] N. Foukia, L. Zhou and C. Neuman, “Multilateral 
decisions for collaborative defense against unsolicited 
bulk e-mail”, K. Stolen et al (Eds.): iTrust 2006, LNCS 
3986, pp. 77-92, 2006. 

 
Acknowledgement 
The authors’ work is supported, respectively, by the 
European Commission FP6 project OPAALS and by 
Science Foundation Ireland (Foundations of 
Autonomics project). 

 

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00  © 2007


