
Abstract

Virtual Private Networks (VPNs) use the Internet or other
network service as a backbone to provide a secure
connection across a potentially hostile WAN. Such security
guarantees provide the motivation for VPN deployment. This
security does, however, come at a performance cost brought
about by the increased processing overhead. This paper
presents an investigation into these overheads. In particular,
this investigation will consider the server side overhead for
VPN deployments and seek to establish a relationship
between this overhead and the number of clients being
serviced.

Index Terms—Communication System Security,
Cryptography.

1. Introduction
he results of this work comes from several different VPN
scenarios which have been tested, measured and

analysed. The tests were performed on IPv4 and IPv6
networks and results were collected for several client
enumerations in both IPv4 and IPv6 control scenarios in
addition to the IPv6 enciphered scenarios. Two different
Linux kernel versions were used, firstly a vanilla or stock
kernel[1] and secondly the USAGI[2] kernel which replaces
the entire IPv6 stack with its own, more standards conformant
version.

The results will demonstrate a relationship between the
number of clients connected to a Local Access Point [3] (LAP
– essentially a ‘smart’ router which sits between the access
network and the core network) and the load placed upon the
LAP. From this it should be possible to define limits to the
number of clients that each LAP is capable of servicing while
guaranteeing QoS requirements.

This work has evolved from an investigation within the
TORRENT IST [4] project where it was deemed desirable to
offer a service which consisted of a secure communications
channel between a Residential Gateway (RG) and a LAP. In
time, this led to an evaluation of the performance

implications of using IP security (IPsec)[5] to achieve this
goal. This, in turn, brought about a more detailed
investigation as it became apparent that there were scalability
issues involved. The results of this work will feed directly into
the decision making process of the Agent Based SRM
(Service Resource Management) system in TORRENT.

2. Context

2.1 TORRENT Overview

Among the expected outputs of the IST supported
TORRENT project is a testbed providing for residential,
multi-service access networks. This testbed (Figure 1) will
allow the project to demonstrate the benefit of intelligent
control, both for the customer and for the network operators
and service providers.

An important additional need is to optimise the bandwidth
utilisation in existing access and core networks, while at the
same time meeting a user’s requirements in an optimal

manner. These requirements include Quality of Service
(QoS), security, cost, and availability.

2.2 Motivation for IPsec deployment
It was proposed early in the TORRENT project lifecycle to

integrate IPv6 as the transport protocol and IPsec as a service
for securing the data between the RG and the LAP. It was
understood that there would be performance implications
arising from this, which were not quantified at the time. The

Overhead Issues for Local Access Points in IPsec enabled VPNs

John Ronan, Paul Malone, Mícheál Ó Foghlú
Telecommunications Software Systems Group (TSSG)

Waterford Institute of Technology, Ireland.
Email: {jronan, pmalone, mofoghlu}@tssg.org

T

core
network

core
networkresidential

gateway local
access point

service &
resource management

home
distribution system

access
network

network topology / status

user control window
?subscribe,
?stop, start
?modify/adjust
?QoS

Figure 1 - TORRENT Architecture

work presented here is a result of a desire within TORRENT
to gain an understanding of these performance implications.

3. IPsec Protocol Suite
IPsec is the security architecture for the Internet Protocol

(IP). This protocol is applicable to both IPv4 and IPv6. The
architecture is defined in [5] and addresses the following 4
elements:

A. Security Protocols: Authentication Header (AH) [6]
and Encapsulating Security Payload (ESP)[7].

B. Security Associations: Definition, management and
processing.[8]

C. Key Management: The Internet Key Exchange (IKE)
[8],[9],[10],[11].

D. Algorithms: Requirements of the authentication and
encryption algorithms.

3.1 Security Protocols
Traffic Security is provided by two security protocols:

• The Authentication Header protocol [6] provides
connectionless integrity and data origin authentication.
There is also an optional anti-replay service available.

• The Encapsulating Security Payload protocol [7]
potentially provides two types of security service. The
first being confidentiality via encryption and limited
traffic flow confidentiality. The second type is
connectionless integrity, data origin authentication and
an anti-replay service.

Either of these protocols can be applied alone or in
combination, thus providing the desired level of security. The
IPsec security protocols are represented by headers that
appear before the IP header in the IP packet.

3.2 Security Associations
The security protocol headers do not contain information

pertaining to the cryptographic algorithms and the associated
parameters. These representations are achieved through the
transmission of a Special Parameter Index (SPI). This index
combined with the destination IP addresses and the type of
protocol header (AH or ESP) determines the parameters of
the IPsec processing.

These parameters of a unidirectional security service are
represented by a Security Association (SA). There are two
types of SAs:

• Transport Mode SA: This is a security association

between two hosts, generally used to secure the traffic
of the upper layer protocols.

• Tunnel Mode SA: This is a security association in an
IP-in-IP tunnel, generally used in connecting to
security gateways.

3.3 Key Management
IPsec mandates support for two separate methods of

cryptographic key and SA management: manual and
automatic.

• Manual Key Management: This is the simplest form of
key management and involves each IPsec connection to
be configured manually on both hosts. While this is
suitable in small static situations, it is unsuitable in
larger deployment scenarios due to scalability
problems.

• Automatic Key and SA Management: Larger
deployment scenarios call for an Internet-standard,
scalable and automated SA and key management
protocol. This is provided by Internet Key Exchange
(IKE). IKE is required to allow for use of anti-replay
features of AH and ESP and to facilitate on-demand
creation of SAs.

3.4 Algorithms
The IPsec protocol suite does not define the authentication

and encryption algorithms used in implementations. These
are defined in individual RFCs per algorithm. Algorithms
used in these tests were:

DES [12]
AES [13]
HMAC-MD5 [14]

4. The WIT IPv6 IPsec Testbed
To perform the tests required to examine the performance of
the various IPsec scenarios, a testbed was set up. All hosts
were interconnected using a Cisco 2924 Ethernet switch
using their own isolated VLAN.

A logical view of this testbed configuration is shown in
Figure 2. This view shows all six test machines configured
with IPv4 and IPv6 addresses. From a physical viewpoint, the
testbed has at its core a Flextel WebVision 4012 (identical to
the TORRENT LAP), which provides 12 multipurpose slots
each of which can take processor cards or I/O carrier cards.
Four of processor blades acted as hosts for the testbed. Each
of these processor blades was equipped with dual Pentium III
850Mhz processors, 512 MB RAM and an Intel Ethernet Pro
100 network card integrated onto the motherboard. The other
two hosts used in the testbed consist of two Dell PIII 500Mhz
desktop machines with 100Mbit 3Com 3c905 Network Cards.

4.1 Software
Each host was configured with the following software:

Operating System:
SuSE Linux 8.0 [15]

Kernel Version:
‘Vanilla’ Linux Kernel 2.4.19 [1]
USAGI Linux Kernel 2.4.19 [2]

In order to reduce the variables, we chose the 2.4.19 kernel
as it was a relatively recent kernel and the USAGI stable
Release 4, dated October 7 2002, which is based on this
kernel.

Network performance Benchmarking:
Netperf version 2.2.pl2 [16]

Having searched for tools to do throughput testing that
included metrics for CPU utilisation and also had IPv6
support. Netperf seemed to suit our needs after it had been
patched with the KAME IPv6 patch [17].

IPsec Software:
 The USAGI kernel and all its supporting utilities were

compiled and installed as per the USAGI documentation.
Pluto, the IKE daemon had to be patched [18] to allow for
automatic usage of the AES algorithm as manual keying
proved problematic.

5. The Tests and the Test Scenarios
Performance tests were organised as follows:

Host aragorn acted as the netperf server. This was invoked
using the following command:

aragorn:#netserver -6

Where the –6 option enables IPv6 performance testing.

Scripts were written which ran Netperf User Datagram
Protocol (UDP)[19] and Transmission Control Protocol
(TCP) [20] stream tests. Each test was 4 minutes in length
and was performed 3 times. The content of these scripts is

shown in Listing 1 and Listing 2.

The purpose was to establish relationships between the
performance overhead in the server (aragorn) and the
number of clients being served. With this in mind, the above
tests were first run sequentially on 1 client (gandalf), then on
2, 3, 4 and finally, all 5 clients.

The test start times were set up on each client using the
standard unix job scheduler cron. All hosts times were
synchronised to a local time-server using the netdate utility.

This test set was repeated for each of the following
scenarios:

5.1.1 Control Scenario: IPv4

Protocol IPv4
IPsec No
Kernel Vanilla 2.4.19

USAGI 2.4.19
Bandwidth Limited None

This scenario (IPv4 tests with no IPsec VPN deployed) was

aragorn
IPv4 - 10.37.200.3

IPv6 - fec0::1:10:37:200:3/64

gandalf
IPv4 - 10.37.200.2

IPv6 - fec0::1:10:37:200:2/64

frodo
IPv4 - 10.37.200.4

IPv6 - fec0::1:10:37:200:4/64

sam
IPv4 - 10.37.200.5

IPv6 - fec0::1:10:37:200:5/64

theoden
IPv4 - 10.37.200.24

IPv6 - fec0::1:10:37:200:3/64

bilbo
IPv4 - 10.37.200.26

IPv6 - fec0::1:10:37:200:26/64

Figure 2 - Testbed configuration

#!/bin/sh
#TCP Stream test
time=240

./netperf -H aragorn.tssg.org -t TCP_STREAM -C -c -l $time

./netperf -H aragorn.tssg.org -t TCP_STREAM -C -c -l $time

./netperf -H aragorn.tssg.org -t TCP_STREAM -C -c -l $time

Listing 1: Netperf TCP Stream test script

#!/bin/sh
#TCP Stream test
time=240

./netperf -H aragorn.tssg.org -t UDP_STREAM -C -c -l $time

./netperf -H aragorn.tssg.org -t UDP_STREAM -C -c -l $time

./netperf -H aragorn.tssg.org -t UDP_STREAM -C -c -l $time

Listing 2: Netperf UDP Stream test script

used as a guide to throughput and overhead figures.

5.1.2 Control Scenario: IPv6
Protocol IPv6
IPsec No
Kernel Vanilla 2.4.19

USAGI 2.4.19
Bandwidth Limited None

This scenario was used as a guide to throughput and
overhead for IPv6 with no IPsec VPN deployed.

5.1.3 IPsec Scenario 1: IPv6
Protocol IPv6

SA Transport Mode
Auth HMAC-MD5

IPsec

Enc 3des-cbc
Kernel USAGI 2.4.19
Bandwidth Limited None

This scenario provided results for throughput and overhead
for IPv6 tests with IPsec VPNs deployed using the 3des-cbc
algorithm for encryption.

5.1.4 IPsec Scenario 2:IPv6
Protocol IPv6

SA Transport Mode
Auth HMAC-MD5

IPsec

Enc aes-cbc
Kernel USAGI 2.4.19
Bandwidth Limited None
This scenario provided results for throughput and overhead
for IPv6 tests with IPsec VPNs deployed using the AES
algorithm for encryption.

6. Results
Notes on the results:

The results for IPv4 and IPv6 throughput with no
encryption for both vanilla and USAGI kernels were
extremely close (less than 1%), so for clarity they will not be
shown here.

0

10

20

30

40

50

60

70

80

90

100

Mbit / sec

1 2 3 4 5

Number of Clients

TCP Throughout

Vanilla IPv4

USAGI IPv6

IPsec-des IPv6

IPsec-aes IPv6

Figure 3 - TCP Throughput

0

10

20

30

40

50

60

70

80

90

100

% CPU
Utilisation

1 2 3 4 5

Number of Clients

TCP Overhead

Vanilla IPv4

USAGI IPv6

IPsec-des IPv6

IPsec-aes IPv6

Figure 4 - TCP Overhead

0

10

20

30

40

50

60

70

80

90

100

MBits / sec

1 2 3 4 5

Number of Clients

UDP Throughput

Vanilla IPv4

USAGI IPv6

IPsec-3des IPv6

IPsec-aes IPv6

Figure 5 – UDP Throughput

0

10

20

30

40

50

60

70

80

90

100

% CPU
Utilisation

1 2 3 4 5

Number of Clients

UDP Overhead

Vanilla IPv4

USAGI IPv6

IPsec-3des IPv6

IPsec-aes IPv6

Figure 6 – UDP Overhead

Firstly, before analysing the results, it should be noted that
results could not be obtained for 4 and 5 client connections
using UDP. These tests were attempted several times and
their failure is currently being investigated.

Looking at Figure 3 it can be seen that enciphering the link
with AES and using HMAC-MD5 for authentication does not
reduce the throughput of the clients appreciably. AES is
markedly superior to DES in this case.

Looking at Figure 4 it can be seen that the load induced by
the AES algorithm seems to maintain a relatively constant
level of 60%, except in the case of a single client. This would
seem to indicate that the bottleneck, in this case, is the
network card and not the processor.

The results are similar for AES with UDP traffic, but it can
be seen from Figure 5 (at least up to and including 3 clients)
that DES throughput falls dramatically once more than one
client is involved, which indicates that the server is being
overworked. This is borne out by Figure 6, which shows the
DES CPU utilisation approaching 100% when more than one
client is involved.

7. Conclusion
After applying the above tests the conclusions can be

drawn that the AES algorithm performs more efficiently than
its predecessor, DES, on similar hardware. Hence, IPsec
could be deployed as an encryption and authentication service
in the TORRENT architecture, without hitting any significant
performance bottlenecks, if the algorithms deployed are AES
for encryption and HMAC-MD5 for authentication.

References
[1] The Linux Kernel Archives, Available: http://www.kernel.org
[2] USAGI UniverSAl PlayGround for Ipv6) Kernel, Linux IPv6

Development Project. Available: http://www.ipv6.org

[3] E. Scharf, P. Hamer, K. Smparounis, W. Payer, J. Ronan, M.
Crotty, “An Intelligent Integrated Approach to Multi-service
Residential Access Networks”, Journal of the Communications
Network, July-September 2002

[4] TORRENT (Technology for a Realistic End User
Access Network Test-bed), IST-2000-25187.
http://www.torrent-innovations.org

[5] S. Kent and R. Atkinson, “Security Architecture for the Internet
Protocol,” Internet Engineering Task Force, RFC 2401,
November 1998.

[6] S. Kent and R. Atkinson, “IP Authentication Header,” Internet
Engineering Task Force, RFC 2402, November 1998.

[7] S. Kent and R. Atkinson, “IP Encapsulation Security Payload,”
Internet Engineering Task Force, RFC 2406, November 1998.

[8] D. Maughan, M. Schertler, M. Schneider, and J. Turner,
"Internet Security Association and Key Management Protocol
(ISAKMP)", Internet Engineering Task Force, RFC 2408,
November 1998.

[9] H. Orman, "The OAKLEY Key Determination Protocol",
Internet Engineering Task Force, RFC 2412, November 1998.

[10] D. Piper, "The Internet IP Security Domain of Interpretation for
ISAKMP", Internet Engineering Task Force, RFC 2407,
November 1998.

[11] D. Harkins, and D. Carrel, "The Internet Key Exchange (IKE)",
Internet Engineering Task Force, RFC 2409, November 1998.

[12] C. Madson and N. Doraswamy, “The ESP DES-CBC Cipher
Algorithm with Explicit IV”, Internet Engineering Task Force,
RFC 2405, November 1998.

[13] S. Frankel, S. Kelly and R. Glenn, “The AES Cipher Algorithm
and Its Use With IPsec”, Internet Engineering Task Force,
Internet draft, December 2002.

[14] C. Madson and R Glenn, “The Use of HMAC-MD5 within
ESP and AH”, Internet Engineering Task Force, RFC 2403,
November 1998.

[15] SuSE, Linux Distribution, http://www.suse.com
[16] Netperf, A Network Performance Benchmark, Available:

ftp://ftp.cup.hp.com/dist/networking/benchmarks/netperf/netper
f-2.2pl2.tar.gz

[17] The KAME Project, http://www.kame.net/
[18] USAGI IPv6 IPsec AES enhancement patch, Available:

http://www002.upp.so-net.ne.jp/h-
yamamo/ipv6/usagi/ipsec.html

[19] J. Postel, “User Datagram Protocol”, Internet Engineering Task
Force, RFC 768, August 1980

[20] Defence Advanced Research Projects Agency, “Transmission
Control Protocol”, Internet Engineering Task Force, RFC 793,
September 1981.

