
Context-aware Dynamic Personalised Service

Re-Composition in a Pervasive Service Environment

Yuping Yang
1
, Fiona Mahon

2
, M. Howard Williams

1
, Tom Pfeifer

2

1 School of Maths and Computer Sciences, Heriot-Watt University, Riccarton, Edinburgh,

EH14 4AS, UK
yang_yuping@hotmail.com, mhw@macs.hw.ac.uk

2 Telecommunications Software & Systems Group, Waterford Institute of Technology,
Waterford, Ireland

{fmahon, tpfeifer}@tssg.org

Abstract. A pervasive environment needs to take account of a user’s context

and preferences in determining which services to provide to the user. Moreover,

one of the important features of a pervasive service environment is its dynamic

nature, with the ability to adapt services as the context of a user changes. In par-

ticular, as a user moves around, new services may become available or existing

services may cease to be available. A user’s requirements or preferences may

depend on context attributes such as location and time, and hence the user’s re-

quirements will change as these do. This paper describes how these requirement

changes can be sufficiently accounted for by using a personalisation component

to ‘decide’ what a user needs, and a composition component to continuously

monitor services and the changes associated with them. The paper presents how

services can be recomposed dynamically if the changes in context require it.

This approach has been incorporated into a platform to support pervasive ser-

vices. The architecture for this and the service composition process used is de-

scribed, and the way in which personalisation is incorporated into this process

is shown. The paper finishes by providing a brief account two prototypes built

as a proof of concept for these ideas.

1 Introduction

In developing solutions to handle the requirements of mobile users, the environment is

becoming increasingly complex. The range of different services available to the user is

growing rapidly. So too is the number of devices that can be used to access different

kinds of services, and the different networks that can be used to communicate between

users and applications. The user is therefore presented with a myriad of choices; too

many to make the use of the environment a pleasant one, unless there is some inter-

vention.

The goal of pervasive computing is to provide an intelligent environment to sup-

port the user in this increasingly perplexing task. Where possible, such an environ-

ment should help to select the most appropriate services for any particular user, and to

employ the most relevant devices and supporting networks.

The situation becomes more complex when the mobility of the user is accounted

for. As the user moves around the environment, the services, devices and/or networks

that he/she is using may cease to be available, or new services, devices and/or net-

works may become available that the user would prefer to use. To complicate matters

further, the user’s preferences may depend on their location and thus as they move

around, the service, device or network that is the most appropriate might change. In

fact, location is merely one of the many attributes defining the user’s current context

and other context attributes including time or current activity can also affect the choice

of service, device or network. Thus one of the most important functions of a pervasive

environment is the dynamic discovery, selection and composition of services to meet a

user’s needs and preferences, and their reselection and re-composition if circum-

stances change [1, 2].

 This paper presents a solution to the problems described above. Dynamic per-

sonalised re-composition of services allows the user to interact seamlessly with the

pervasive environment, while hiding the complexity contained within it. The paper

concerns itself with how personalisation is involved in service composition and re-

composition, and how personalisation adapts services to user context and require-

ments in this dynamic process.

The service composition process is the process of creating customised services

from existing services and resources by a process of dynamic discovery, integration

and execution of those services in a planned order to satisfy a request from a client [3,

4]. Service composition should be context aware and personalisable, while it should

be able to use rules and policies for making the composition decisions [5, 6]. On the

other hand personalisation itself is developing rapidly. With the growing interest in

context awareness and pervasive systems, personalisation functionality has evolved to

take account of different aspects of the users’ context, in an environment populated by

many small, networked devices that can sense users’ situation anytime, anyplace [7-9].

Daidalos is a large European research project that is developing a pervasive sys-

tem for a mobile environment [10]. The Daidalos system incorporates personalisation

in various forms, including its use in service composition. This approach benefits from

exploiting user context including user preferences such as interests, expertise, work-

load, tasks, location, in order to increase the service flexibility and support intelligent

personalisation and adaptability features. In the personalisation framework, the poten-

tial for seamless context-aware adaptation in the emerging service engineering frame-

work will support the provision of customised value-added services that will address

the high and continuously increasing customer demands.

The goal of the research reported in this paper was to develop the approach re-

quired for a general system to handle personalised service composition and re-

composition dynamically depending on the preferences and changing context of the

user. Based on this a sequence of prototypes with increasing functionality have been

created and used to demonstrate the suitability of this approach. The next section

gives an overview of efforts made in the areas of Personalisation and Composition.

Section 3 describes the platform, to which the components described in the paper

belong. Sections 4 and 5 detail the Personalisation and Composition components and

how they work together to achieve dynamic service re-composition. Section 6 details

the implementation of the prototypes built as a proof of concept for the ideas de-

scribed in this paper. Overall, the paper shows how important personalisation is to the

whole process of service management in a pervasive service environment.

2 Related Work

Much of the work on composition to date, is on a static composition of services,

where requirements of the composition do not change and the state of the constituent

services remain the same.

Chakraborty [11] describes a static composition where a particular composition is

attempted and achieved, end of story. There is no accounting for continuous change of

the component services during the lifetime of the composed service. It is therefore not

a sufficient solution within a mobile environment.

Tosik [12] describes a service composition with some level of management. This

management however focuses primarily on usage privileges and QoS. Since Tosik

deals with web services, which are inherently static, he does not expand into an area of

composition management of services with volatile availability.

Casati [13] in his paper on ‘eFlow’ describes a dynamic service composition,

which includes personalisation. The personalisation involved assumes user input of

their requirements. The composed services are not technically dependent on each

other, although they do complement one another. For example, in Casati’s service

composition, a service to organise a charity ball would be composed of services to

book the banquet, order the invitations from the printers, and start the advertising

campaign. Although the paper describes ‘dynamic composition’ it focuses more on the

ability to change the definition of the composition, and so the dynamic composition is

over many compositions over a period of time, and not within a single composition.

The ‘dynamicity’ described does not include monitoring of the composition during the

lifetime of the composite service, although the composition definition in ‘eFlow’ can

be changed during the lifetime of a composite service. Real dynamic re-composition

based on continually changing user requirements is not addressed.

Though personalisation has been an area studied for many years, there is little work

on how to incorporate personalisation into the process of service composition in a

pervasive environment.

Sheng et al. [14] define a personalised composite service specification architecture,

based on which users can specify their needs by adjusting existing process templates.

However, this approach requires a user to locate process templates and annotate them

with contextual information. Thus, quite a few user interactions are involved when

orchestrating a composite service, which is not very realistic in a pervasive environ-

ment where a large number of service compositions may occur dynamically.

The Tivoli Personalized Service Manager [15] developed by IBM provides an in-

tegrated infrastructure of software products for Internet service provisioning. It offers

the ability to generate web pages for specific devices, allows users to personalise

portal home pages, and provides services with functionality such as calendar, agenda

and address book which can be used by ISPs (Internet Service Providers) to develop

their own additional services. Its localization feature provides the capability to trans-

late into different languages. However, this software product only takes into account

user’s profile and preferences – while more dynamic context information such as time,

current activity and people in the vicinity is not considered. In addition, it only allows

ISPs to utilize the simple services supplied by the product itself and does not provide

the essential function of composing any existing services/resources provided by other

parties.

The SPE (Secure Persona Exchange) framework described by Brar and Kay [16]

provides personalized services to users in ubiquitous computing environments based

on user preferences stored on mobile devices. Like [15], it does not take account of

dynamic contextual data while achieving personalization.

In summary, although a lot of work has been done independently in the areas of

service composition, and in personalisation, there is little work done in exploiting the

capabilities of one for the benefit of the other. Real dynamism seems to be missing

from the composition solutions proposed to date. Dynamism is essential for a mobile

environment, since the mobile environment itself is never static.

3 The Daidalos Pervasive Service Platform

The Personalisation and Composition components described in this paper, are part of

the Daidalos overall platform architecture. The architecture of the Daidalos Pervasive

Service Platform (PSP) can be seen in Figure 1. The PSP is the platform in Daidalos

that adds pervasiveness to all services deployed in the Daidalos network. The PSP is

analogous to an Applications Container in that it facilitates a certain amount of behav-

iour, without the service developers needing to control this behaviour. In the case of

the PSP, it facilitates pervasive behaviour. In the context of this project, this means

that

- user behaviour is continuously monitored using various environment sensors

- inferences are made by the system based on this information, which can then

be used to create network behaviour specific to the user

- network behaviour is stored as rules in the system

- the service can be managed, started/stopped, transferred from node to node

based on user preferences which are context aware

- the service can be personalised by having attribute values assigned, based on

the user preferences which are context aware

There are six main components in the PSP, which are as follows:

 Context Manager (CM): The task of the CM is to retrieve, process and pro-

vide context information. Context is the set of information that describes an identity’s

preferences, profiles and current situation. The Context Manager connects to various

sensors and provides the context in a unified manner to interested parties.

 Rule Manager (RM): The RM focuses on the management and processing of

rules. Rules describe a set of events that have to occur and conditions that have to be

met in order for some actions to be triggered. Users employ rules as part of the per-

sonalisation process while services use them to be notified about particular changes in

the user’s environment.

Pervasive Service Platform

Pervasive Service

Management

Location &

Network

Information

Services

Security

Services

Personalisation

Context

Manager

Personalisation

Identity, A4C.&

Personal Mobility

Services

user

service

context

User Service

Requests and

Advertisements

MM Call Control

Signaling &

Session Mobility

Services

QoS

Broker

Services

Rules &

Commands

Service

Discovery

Services

Security &

Privacy

Manager

Security

Configuration

Rules

Manager

Network

Monitoring

Inerface

Event

Manager

SERVICE

Figure 1 Pervasive Service Platform (PSP) Architecture

 Event Manager (EM): The EM collects and distributes events. Events occur

when context changes or when they are created by rules. Typically, events are used by

the Rule Manager or by services that want to be notified about changes.

 Personalisation (P): This tailors the services to the user’s preferences. Person-

alisation takes into account preferences that the user has stated explicitly and also

infers preferences to make services more personalised.

 Pervasive Service Manager (PSM): This is responsible for service discovery,

selection and composition. It is used to find available services, select them based on

the user’s context and compose them to a service session that can fulfil the user’s task.

It also continuously monitors composed services during their lifetime based on service

availability and contextual relevance to the user.

 Security and Privacy Manager (SPM): The SPM ensures that the user’s real

identity is not revealed to untrustworthy parties. Instead, it manages virtual identities

that hide the user’s real identity. Additionally, this component provides access control

to user information (such as context) and the use of services.

All of these components described above interact and co-operate to form the PSP.

The combination of their functions creates a unique pervasive service environment,

and provides a fully functional, integrated solution for context-aware, personalised,

rule-based and event-driven service discovery and composition. In the context of this

paper, P depends on CM to determine a user’s context, information that is vital to P.

P also uses RM and EM to execute rules to cause certain behaviour, based on a user’s

context, for example retrieval of specific services. PSM, which is the component

responsible for service composition, uses RM and EM to monitor when service adap-

tation and re-composition should occur. The main topic of this paper is how Pervasive

Service Manager uses Personalisation when deciding what services should be com-

posed together, and how Context Management facilitates that. Therefore, for the rest

of this paper we will not be considering the functionality of the other components in

any detail.

4 The Role of Personalisation in Dynamic Service Management

In the context of the Daidalos pervasive platform, the major objectives of personalisa-

tion in the system lie in service selection, configuration of service parameters, and

adaptation of the composition process based on user context and preference rules. In

addition, it provides the core services whose focus is on improving the personalisation

aspects of other third-party services as well as deriving new user preferences from the

user’s behaviour.

4.1 Personalised Service Selection

When a request for a service is passed to the Service Discovery component, it will in

general return more than one candidate service, each of which is able to fulfil the same

specific task required by a user. Due to the diversity of services, expecting the user to

determine the most appropriate one among them would be unrealistic and time con-

suming for the user. Thus, the system needs to make a decision to select one for the

user. This occurs during the process of service selection. In general for a composite

service Sc = S0 + … + St, a list of services S = {S0,…,Sn} may be discovered, any of

which could be used as a component service Sk of Sc. Given the user preferences and

context, a personalised selection is performed that best suits the user’s specific goal.

Selection criteria used in our system include:

• User specified criteria: Users may have specific requirements on the cost, speed,

QoS, location, mobility, etc. of a service. These may depend on where the user is

located, what devices/networks are available, what mode the user is operating in,

and so on. These requirements provide guidelines for finding an adequate match.

The list of discovered services are ranked according to the criteria (e.g., rank the

services from the lowest price to the highest one) and the highest ranked service is

chosen as a component service (e.g., the cheapest service). Moreover, a user might

have an explicit preference for a specific service (e.g., a specific provider’s wire-

less network). In this case, if the specific service is available, it can be simply se-

lected as a component service.

• System criteria: These criteria are used to improve the performance of a composite

service. For example, selecting component services that are located close to each

other would reduce the amount of data transferred and reduce communication time

among component services.

As described further in section 6, a limited set of simple criteria are used to choose

services in the current prototype. The situation can become complicated when several

criteria need to be combined together. How to make a rational compromise among

conflicting criteria (e.g., the fastest service may not have the best QoS) is an issue that

needs to be resolved in the next phase of this work.

4.2 Personalised Service Parameterisation

In order to personalise the individual services selected for a specific composition, the

appropriate attributes need to be passed to each service as parameters. There are two

categories of service parameters:

• Operating Parameters: These parameters are used by a service to control its func-

tioning as well as running process implicitly. They are used to describe inherent

properties of a service and thus their values can not be modified by others. These

parameters are represented as OPs = {p0,…,pi}.

• Personalisable Parameters: While offering its major functions, a service may

want to attract users by providing particular individual features. In order to cater

for different users, it allows some parameter values to be configured according to

user related aspects. These parameters are called personalisable parameters, rep-

resented as PPs = {p0,…,pj}, which are used to characterise a service and improve

its performance. Compared with operating parameters, personalisable parameters

can be configured with new values.

In order to distinguish between operating parameters and personalisable parameters, a

service parameter needs to have a property indicating whether or not it is personalis-

able. Each parameter pk has the form

 pk = (pname, pvalue, pcategory)

where pname and pvalue are the name and value of a parameter respectively, and

pcategory indicates whether or not the parameter is personalisable.

A service that allows itself to be personalised, needs to provide interfaces for per-

sonalisation. In order to know what features of the service can be customized, a stan-

dardized interface is required which tells the personalisable parameters PPs of this

service. To determine the parameter values, user context and his/her preferences re-

lated to this service are analysed and appropriate values are decided accordingly (e.g.,

the QoS of the WLAN network service is set high when the user is watching an impor-

tant football game). A parameter may have a default value, which applies to the situa-

tion, for example, the user has no special requirements. It can be overridden by the

specific value derived from user preferences/context. An interface which allows set-

ting the parameter values is also needed from the service.

Service parameters, including their names, meanings and types, may vary with ser-

vices. Due to the variety of services and their degree of dependence on each other, it

would be very difficult to interpret service parameters without a standard definition.

Thus, for each service type we need a list of general parameters that have common

definitions and shared meanings across all services with this type. This parameter list

acts as an ontology to be referred to by services that want their parameters to be per-

sonalised. In our first prototype the parameter list defined is of a simplified form, but

is currently being developed using an ontology language (e.g., DAML-S).

The type of a service parameter varies from very simple ones (e.g., integer) to

complex ones (e.g., data set), and thus an appropriate data representation is required

to describe parameter values. An example of a complex service parameter is the QoS

of multimedia services, which consists of traffic specification and reservation specifi-

cation. These two specifications can be further broken down into peak rate, bucket

size, minimal policed unit, maximum packet size, etc. In the prototype a parameter

value is wrapped as a common object which effectively hides the concrete details and

facilitates the definition of the interfaces. It is assumed reasonably that each service

should have the knowledge of how to cast an object into its actual data type.

Personalised service parameterisation can be static or dynamic depending on when

it takes place. When the personalisable parameters of a service are configured at its

starting point, this is referred to as static parameterisation. Due to the change of user

context or preferences during the service execution time, some service parameters may

need to be adjusted to suit the user requirements dynamically. Dynamic parameterisa-

tion usually happens in relatively unstable environments (e.g., the resolution of an

image may be lowered if it is transferred from a user’s computer to his/her mobile

phone).

4.3 Role of Personalisation in Service Composition

Service Composition involves combining a set of services together, to give a complete

service offering. As discussed in section 2, this is not a novel idea. However, the solu-

tion outlined in this paper goes one step further by introducing ‘dynamic service com-

position’. This means that even after the service has been composed, its constituent

services continue to be monitored based on the applicability to the overall composi-

tion. This is done with the assistance of Personalisation.

Personalisation is first used at the initial stages of composition. A composed ser-

vice is defined by its ‘Service Model’. The Service Model defines a set of service

types that are required to make a composed service. Some services are compulsory for

the functioning of the composed service and some are optional. The Composer in

PSM attempts to retrieve services of the service types defined in the Service Model.

For each component service type in the Service Model, there may be many instantia-

tions available in the user’s current environment. It is up to Personalisation to select

the most appropriate of the services to use for a particular user in a particular context.

This means that two different users with different preferences might get different

composed services based on the same Service Model. Moreover, the same user in a

different setting could potentially get a different composed service based on the same

Service Model.

Once the service is selected, the next interaction with Personalisation is to person-

alise the service itself to the user requirements. This involves adapting the service

itself in some way to suit the user e.g. large font for visually impaired users. The

specification of this type of service personalisation is described in section 4.2.

Personalisation continues to be paramount to the dynamic capabilities of the Com-

poser once the service is fully composed. The applicability of a service to the compo-

sition might change for reasons such as: the service is no longer available, a service

with a higher preference becomes available, QoS available on a service changes, or

changes to the service itself (e.g. cost changes based on time). When any of these

guards are triggered, then a re-composition will occur transparently to the user.

The PSM, which contains the composition component, uses the Personalisation

component to determine the user’s preferred service. Personalisation (using the RM

and EM) will trigger events to inform PSM when services of higher preference be-

come available. Service preferences can be based on such attributes as price and QoS,

and so when any of these attributes change, Personalisation will inform PSM.

In addition, even if these service attribute values remained the same, a user’s pref-

erence for a service may change. In a mobile world, the user preferences are context

sensitive and so change as the user’s context changes. These preference changes are

passed onto PSM to allow a service re-composition when Personalisation deems a user

requirement for a currently running composed service to have changed.

5. Service Composition in Daidalos

Service Composition is part of the Pervasive Service Management (PSM) of the PSP.

This PSM consists of five major components that cooperate to provide composite

services. These components are: the Priority Processor, Service Discovery, Service

Selection, the Service Composition Manager and the Service Actuator. The interac-

tions of these components can be seen in Figure 2.

These components interact as described below to bring together a composed ser-

vice offering.

1. The Service Composition Manager (SCM) in the PSM is responsible for per-

forming reasoning on the selected composite service. It obtains the detailed service

information from the composite service description, which includes the specific re-

quirements for component services.

2. The SCM calls Personalisation to adapt the composition process of the selected

composite service.

3. Personalisation refers to the Context Manager and the Rule Manager for user

context and preference rules respectively. The composite service is adapted (e.g.,

adding/removing a component service, setting appropriate starting time for each com-

ponent service or changing the order of component services) according to the user

context/preferences.

4. The SCM then issues the requests for component services to the Service Discov-

ery (SD) component in the PSM.

5. The SD searches the appropriate service directories for all possible services that

could be used to meet the user request and returns a set of possible candidate services.

Figure 2 Pervasive Service Management

6. The candidate services are then evaluated and ranked in order based on non-

functional preferences. Personalized Selection determines which services are most

appropriate to be composed together to make a composite service that best meets the

user’s preferences.

7. In order to decide the most appropriate services from the ones available, Person-

alisation refers to the Context Manager and the Rule Manager for user context and

preference rules respectively. Service selection is carried out based on the user con-

text/preferences.

8. The chosen service is fed to the Service Composition Manager, which retrieves

the “service model” for the service. This service model describes the template for

composing the various contributing services of the composite service.

Request Processor

Generic

Service

Discovery

Pluggable

Mechanism

Functional

Selection

Service

Composition

Manager

Service

Composition

Knowledge

Service

Actuator

PSM_Discovery PSM_Composition

Context

Management

Personalised

Selection

Common

Ontology &

Interface

Rules

Management

Security&

Privacy

Management

Personalisation

Parameter

Configuration

PSM

Value Added Service

GenericService <<meta>>

Service

Discovery

SLP

9. The Service Composition Manager looks for component services that match the

functional and technical criteria (specified in the service model) of the composite

service. This process is repeated until suitable component services have been found.

10. The list of component services making up the composite service then needs to

be personalised. This is achieved through adjusting the parameters to these services.

The Service Actuator in the PSM calls Personalised Parameterization to configure

personalisable parameters of the services.

11. Personalisation refers to the Context Manager and the Rule Manager for user

context and preference rules respectively in order to determine appropriate values for

the parameters. Service parameters are configured accordingly.

12. Finally, the Service Actuator instantiates service instances if necessary, and re-

turns a handle to the composite service, for use by the service consumer. The Service

Actuator is the main component responsible for monitoring constituent services of the

composed service during its lifetime. It is the component that adds the real dynamicity

to the service composition process. A composite service is never in a stable state i.e. it

is constantly open to service adaptation. The Service Actuator monitors the service

through its lifetime. If specific context guard conditions are violated, the service ac-

tuator may request a re-composition of the service, giving an indication of the violat-

ing service component.

6 Implementation and Testing

The system has been implemented and demonstrated at two public meetings so far.

Three separate scenarios have been used to drive the development and to demonstrate

the resulting system.

The first scenario is that of a shared wall display. In this scenario a student is mov-

ing around the university looking at some pictures stored in the system. He requests a

slideshow service. Initially the only device that is available is his PDA, and the PSP

composes a photo service using the PDA display. As he moves he approaches a shared

wall display that is free and the system recomposes the service to use this. A further

change in context (e.g. professor approaching) triggers a return to the use of the PDA

display).

The second scenario is that of a young lady suffering from diabetes who is wearing

a blood sugar monitor to warn her if her blood sugar level drops too low. If this oc-

curs, the immediate reaction of the system is to send her a message. However, if no

response is received (she has not received the message or is not responding), the sys-

tem attempts to send a message to other relevant people to help her depending on

where she is – her parents or friends (if any are nearby) or in the last event to the hos-

pital service.

These two scenarios are relatively small but demonstrate different aspects of the

problems of pervasiveness. The final scenario used to demonstrate the feasibility of

the PSP platform is more complex and involves a number of different events and ac-

tions. The basic flow of the relevant parts of this scenario is as follows:

Bart is at home watching his newscast on his home monitor. A VoIP call comes in

for him from his boss. Based on his current preferences the call is directed to his PDA.

The newscast is automatically paused while he is talking to his boss. His boss asks him

to go to the airport to pick up a customer. When Bart hangs up the call, the newscast

continues where it left off. Bart walks to his car. The newscast is automatically trans-

ferred to his car PC. When Bart starts driving, the newscast goes into sound only

mode. It runs to the end and finishes. Additionally another service on the car is the

Traffic Information Service that takes traffic information off the dvb-t network that

services the area. As he reaches the airport, the Information Service is recomposed to

become an Airport Information service, and now takes information off the Airport

WLAN. When Bart sees the customer’s plane has landed, he gets out of the car causing

the Airport Information Service to transfer to his PDA. Bart goes to meet the cus-

tomer.

The set of applications and their component services required for this scenario were

a Newscast Service, a VoIP service and an Information Service including the Traffic

and Airport specific services. The implementation of these services followed the re-

quirements of the PSP, in order that they could be managed in a pervasive manner by

the PSP.

In the scenario, there are examples of context triggers that cause certain behaviour

within the system. This was implemented using rules that were triggered when certain

contexts occurred, for example Newscast will pause when Bart’s context is ‘BUSY’,

this context value can be set by any other application, in this case the VoIP applica-

tion. Similar behaviour is visible throughout the scenario.

An example of Personalisation is evident with the Information Service, which will

display information based on the known native language of the user. In the demon-

strated scenario, this was limited to German or English. Of course, in reality this could

be extended to many other languages. This ability is made possible by the PSP, and

requires very little effort on the part of the application developers themselves. They

simply need to provide a method which allows Personalisation to ask what parameters

need to be personalised, ‘language’ in this case. They also need to provide a method

to allow Personalisation to tell the application what the value of the parameter should

be, in this case either German or English.

PSM’s control of Service Discovery and Composition is also evident in the sce-

nario. The most obvious example of composition is when the Information Service

recomposes from a Traffic Information Service to an Airport Service. The service

itself is composed of an ‘InformationGUI’ and a ‘TransportInformationService’. On

the car, PSM composes the BMWInformationGUI with the TrafficInterpreterService.

On reaching the airport, a re-composition occurs based on a context trigger. PSM

listens for events from the rules triggered and will cause the re-compose accordingly,

swapping the TrafficInterpreterService, that was listening to data coming off the dvb-t,

for the AirportInterpreterService that listens to data coming off the airport WLAN.

PSM also controls the service transfer, which is seen in two places in the scenario;

when Bart leaves the house for the car, the newscast follows him to the car, and when

the Airport Information Service follows him from the car to the PDA. Again, all this is

possible by having the applications provide some simple interface methods that the

PSP can then use to make the service pervasive.

This particular scenario was demonstrated on the current prototype at a demonstra-

tion in December 2005. In addition to the PSP, the applications and the PSP itself

were integrated with lower layer network components, also being developed inside

Daidalos. The context triggers were simulated; however, the rest of the demonstration

was real. The test site included a BMW with a display monitor, a dvb-t network for

the traffic information and several lower level components responsible for such things

as QoS, billing, authentication and network handover. This prototype has shown how

services can be made pervasive in a simple way by the PSP platform. Additionally,

this has been shown on a real network with all the issues associated with a network

accounted for. These were real services giving real value in a pervasive manner.

Pervasive Feature Evidence of Feature in Prototype

Context aware • Collection of Barts’s context attributes

• Collection of Applications’s context attributes

• Behaviour triggered as a result of context

Predictive • Transfer of Newscast from Home to Car

• Pausing of Newscast when busy

• Resuming of Newscast when free

• Redirection of VoIP call to Bart’s current device

(boss did not call the device, but just Bart in gen-

eral)

• Re-Composition of Traffic Information to Airport

Information

• Transfer of Airport Information from Car to PDA

Invisible • Automatic transfers of Newscast from Home to Car,

of Airport Information from Car to PDA

• Little required user intervention (though that possi-

bility has not been removed)

Mobile sensitive • Bart moves about his environment, while the system

continuously monitors him and tries to fulfil his re-

quirements with the knowledge it has for example,

putting the Newscast in sound-only mode when

driving

Continuously adaptive • Constant context monitoring is apparent. No state of

finality is reached in the scene. Bart’s services fol-

low him around as he moves through his environ-

ment, the adapt their behaviour depending on what

Bart is doing for example, talking on the phone or

driving.

Figure 3 Table of Pervasive Features Displayed in Prototype of December 2005.

As can be seen in Figure 3, the prototype demonstrated that services built on the

PSP demonstrate characteristics that would deem them pervasive.

In this section the progression of Daidalos has been illustrated, in particular the

progression of the Context, Personalisation and PSM components. Other aspects of

the platform such as the Privacy and Security component have been ignored as outside

the scope of this paper. It has been shown that it is not only possible to create a perva-

sive environment of services using the PSP, but also that the PSP makes this task an

amenable option for Service Providers.

The project continues to address more and more pervasive issues. The first demon-

stration in 2004 was very simple. In 2005, the prototype exhibited a higher degree of

complexity. This project has another three years to develop a platform that addresses

increasing amounts of the complex issues of pervasiveness and that will truly allow

Service Providers to create pervasive services.

7 Conclusion

This paper has described a dynamic method of service composition that uses the capa-

bilities of personalisation to achieve its requirements in pervasive environments. It

argues that this goes one step further than the static service composition that is de-

scribed in many research papers. Continuous monitoring of the user and their envi-

ronment enhances the user’s experience of services and networks by truly minimising

the need to interact with them. The implementation of a prototype has shown that the

ideas set forth in this paper are indeed feasible. Although the scenarios are merely a

slice of the potential of a pervasive network, they have given us a peek at its potential.

However, there are a number of challenging problems remaining. In the second

phase of Daidalos we will be addressing three of these:

(1) Monitoring user behaviour and inferring user preferences. It is essential that

the system itself should monitor the user and infer user preferences as far as it is able

in order to build up user preferences without requiring too much of the user. Although

provision has been made for this in the architecture, development has not yet started

on this. The problem is a challenging one and yet essential if the system is to provide a

useful service with minimal user intervention.

(2) Handling security and privacy. The issues here are clearly understood but unril

now assumptions have been made to enable us to concentrate on the task of dynamic

personalised service composition and re-composition. In the second phase the security

and privacy issues will be addressed too.

(3) Incorporation of full context awareness. In the first phase context information

and triggers, such as location information or location changes, were simulated to ver-

ify the ideas. In the second phase we will move to a fully integrated system in which

such information and triggers are provided by the underlying infrastructure.

Other interesting issues raised by the research and which need to be addressed in-

clude the development of appropriate context-aware user preferences. The first (and

simplest scenario) illustrated several of these. How does the system know that when

the professor approaches it should switch back to using the PDA? How do we know

that the professor’s proximity is relevant – he/she may be a few metres away but there

is a wall between them? How does the student get information on the professor’s loca-

tion without violating the professor’s privacy? And so on.

These ideas will continue to be explored and further developed and prototyped

over the next three years as the project progresses in its second phase. Due to the

integrated nature of the whole project, these developments will add value to the over-

all results produced. For example, new more innovative service discovery technolo-

gies are to be identified, new methods of inferring preferences and predicting required

behaviour are to be investigated. In this phase, we have combined the steam and the

pistons to provide forward motion. The next phase will focus on finding out how to

put more power in the engine itself.

References

1. Huang, C., Garlan, D., Schmerl, B., Steenkiste, P.: An Architecture for Coordinating Mul-

tiple Self-Management Systems. Proceedings of the 4th Working IEEE/IFIP Conference on

Software Architecture (WICSA-4), Oslo, Norway, June 12-15. (2004)

2. Davy, A.: Task Driven Service Composition for Pervasive Computing Environments. M-

Zones White Paper, http://www.m-zones.org. (2004)

3. Huang, A.-C., Steenkiste, P.: Building Self-configuring Services Using Service-Specific
Knowledge. The Thirteenth IEEE International Symposium on High-Performance Distrib-

uted Computing, Honolulu, Hawaii USA, June 4-6. (2004)

4. Hirschfeld, R., Kawamura, K.: Dynamic Service Adaptation. The 4th International Work-
shop on Distributed Auto-adaptive and Reconfigurable Systems, Tokyo, Japan, IEEE Com-

puter Society, March 23-26. (2004)

5. Filman, R. E., Friedman, D. P.: Aspect-Oriented Programming is Quantification and

Obliviousness. Proceedings of the ECOOP 2001 Workshop on Advanced Separation of

Concerns, Budapest, June 17-18. (2001)

6. Araniti, G., De Meo, P., Iera, A., Ursino, D.: Adaptively Controlling the QoS of Multime-

dia Wireless Applications through User Profiling Techniques, IEEE Journal on Selected

Areas in Communications, Vol. 21(10). (2003) 1546-1556

7. Lewis, D., O’Donnell, T., Feeney, K., Brady, A., Wade, V.: Managing User-Centric Adap-

tive Services for Pervasive Computing. Int. Conf. on Automatic Computing (ICAC’04),

New York, May 17-18 (2004) 248-255

8. Wagner, M., Balke, W.-T., Hirschfeld, R., Kellerer, W.: A Roadmap to Advanced Personal-

ization of Mobile Services. In Proceedings of the 10th Int. Conf. on Cooperative Informa-

tion Systems (CoopIS) Industry Program 2002, Irvine, CA, USA, October 30 – November

1 (2002)

9. Maamar, Z., Mostefaoui, S. K., Mahmoud, Q. H.: Context for Personalized Web Services.

Proceedings of the 38th Annual Int. Conf. on System Sciences (HICSS’05), Big Island,

Hawaii, January 3-6 (2005)

10. Daidalos. Daidalos EU Framework Programme 6 Integrated Project, http://www.ist-

daidalos.org. (2005)

11. Chakraborty, D., Yesha, Y., Joshi, A., “A Distributed Service Composition Protocol for

Pervasive Environments”, WCNC 2004 - IEEE Wireless Communications and Networking

Conference, vol. 5, no. 1, March 2004 pp. 2579-2584

12. Tosik, V., Pagurek, B., Esfandiari, B., Patel, K., “Management of compositions of E- and

M- business web services with multiple classes of service”, NOMS 2002 – IEEE/IFIP Net-

work Operations and Management Symposium, vol. 8, no. 1, April 2002 pp. 935-938

13. Casati, F., Ilnicki, S., Jin, L. et al (2000) : Adaptive and Dynamic Service Composition in

eFlow. HP Labs 2000 Technical Reports, www.hpl.hp.com/techreports/2000/

14. Sheng, Q. Z., Benatallah, B., et al, Enabling Personalized Composition and Adaptive Pro-

visioning of Web Services. The 16th International Conference on Advanced Information

Systems Engineering (CAiSE), Riga, Latvia, June 7-11, 2004.

15. IBM. Tivoli Personalized Services Manager, Version 1.2.

ftp://ftp.software.ibm.com/software/pervasive/info/tech/tpsm_ss.pdf, 2002.

16. Brar, A. and Kay, J. Privacy and Security in Ubiquitous Personalized Applications. User
Modelling Workshop on Privacy-Enhanced Personalization, Edinburgh, UK, 25 July, 2005.

