
Placement of Distributed Services on
Vehicle Clusters for Sensing Applications

Kanika Sharma, B.Tech

Supervisors: Dr Bernard Butler

Dr Brendan Jennings

School of Science and Computing

South East Technological University

Thesis submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy

January 2023

This thesis is dedicated to my loving parents - Arun Sharma and Dr Rajni

Sharma, and the rest of my wonderful family.

tū shāhı̄ñ hai parvāz hai kaam terā
tire sāmne āsmāñ aur bhı̄ haiñ

Translated as: You are a falcon, you have to fly!
You have a vast sky before you. Soar!

—ALLAMA IQBAL

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Signed

Kanika Sharma, B.Tech
January 2023

Acknowledgements

This work would not have been possible without the support and efforts of many people who
have helped me throughout my study.

The two people who have been my biggest supporter in the last few years are my
supervisors, Dr Bernard Butler and Dr Brendan Jennings. Both were a constant source of
encouragement and inspiration from the first day of my PhD degree. Dr Bernard Butler
had the patience to guide me through the proposal writing process, gave insightful tips on
formulating research problems and walked me through the process of carrying out valuable
research work. He would gently nudge me to improve my work’s shortcomings and had the
patience to read my drafts multiple times without ever getting frustrated at my mistakes. Dr
Brendan Jennings guided me to build up my research work from the ground up, focusing
on smaller problems first. His vision for my PhD helped me to keep going on days when I
felt like my work was not heading in the right direction. His scientific guidance, attention
to detail and ideas in communicating research ideas to the community are things I will take
away with me at the end of the study. Brendan and Bernard always encouraged me to take up
research projects, and internships provided me with opportunities to work on international
conference committees and research committees at SETU while ensuring my PhD research
was on track. It would be impossible to find a supervisory team like them. They were always
a call away to check on my posters, presentations, and papers and always approached me
with great compassion. I will forever be grateful to them for trusting in me and helping me
push through this journey.

I would also like to thank Dr Alan Davy for selecting me for the PhD study and for
always encouraging me as the head of the Emerging Networks Lab (ENL). I am also very
grateful to Dr Deirdre Kilbane for her immense support as the head of ENL and the Director
of Walton Institute. I have been fortunate to have had the opportunity to work under her
on projects. She always took time for me, motivating me on days when I felt my research
study was stagnant. She encouraged me to write proposals, and think out of the box and was
always available to answer all my queries even with her busy schedule. She has helped me to
become a better researcher and team player, and I appreciate her support very much.

viii

I also want to thank Science Foundation Ireland’s Connect Research Centre and Intel
Research Labs, Dublin, for funding my study. I appreciate the support they have provided
me over the years. I am very thankful to our colleagues at Intel, John Kennedy and Dr
Radhika Loomba, for their discussions and collaboration. Radhika has become a very close
friend over the years. I would also like to thank the NGI Explorer project for supporting
my visit to the University of Tennessee at Chattanooga, where I worked with the Center of
Urban Informatics and Progress (CUIP). I am also very grateful to the head of CUIP, Dr
Mina Sartipi and her team for welcoming me to the group, supporting my research and stay
in Chattanooga and providing me with data from their testbed. I would also like to thank
my managers in the SDN Lab at the Huawei Research Centre, Dublin, Dr Olga Havel, Dr
Vincenzo Riccobene and Dr Adriana Hava, for giving me the opportunity to work on an
exciting project with them as Research Intern.

I am very grateful to other colleagues at Walton, including Dr Daniel Martins, Dr Michael
Taynnan Barros and Dr Sasitharan Balasubramaniam, for the research collaborations and
fruitful discussions that helped me immensely. This research would have been impossible
without the support of my wonderful colleagues at the RITS division, John Ronan, Derek
O’Keeffe, Michael Kugel and Tibor Molnar, who made sure that the infrastructure was always
running smoothly. Thank you for providing support through outages and the many transitions.
I would also like to thank Jane Mahony, Nichola Courtney and Jonathan Mullowney for
helping with all the logistics.

I would especially like to thank my wonderful colleagues who became my closest friends
over the years. Dr Kriti Bhargava has been my number one supporter and cheerleader
throughout my time at Walton Institute. I also owe her for all the time she spent discussing
my research and her helpful advice at ungodly hours. I would also like to thank Sidhant
Hasija, Dr Dixon Vimalajeewa, Dr Genaro Longoria and Dr Ruisong Han for ensuring I had
downtime and felt loved and supported in Waterford. I would also like to thank Dr Mandy
Hmar and Curtis Hall, who took great care of me in Waterford and Tennessee, where I was
visiting for a project. I wish to also thank the newer batch of students who became my close
friends including Samitha Somathilaka, Thakshila Wedage, and Naga Lakshmi Anipeddi.
I am grateful to them for the enormous support and love they have offered me through my
PhD research’s many ups and downs.

I would especially like to thank my wonderful friends in Ireland and back home in India
including Jean, Pavel, Neha, Naina, Paiker, Megha, Kanika and Medha, who would always
ensure that I was taking care of myself, stayed up to date with my progress and always
supported me when I needed them. I would especially like to thank my wonderful parents,
Arun Sharma and Dr Rajni Sharma, who are the reason I could think beyond my limits and

ix

aim for the sky. They have been there for me like a rock, taking care of everything else during
my stint here in Ireland and making sure I was fully focused on my PhD work. I would
also like to thank my sister Radhika and my brothers Aditya and Akash for all the fun times
that I have had on my trips back home. Those times we spent together were a huge help in
keeping me afloat through the challenging phases of my degree. I would also like to thank
my wonderful uncles Ajay and Anil and aunts Lata and Kalpana, whom I am immensely
lucky to have in my life. They have taught me to be patient and kind, no matter what life
offers. I would also like to thank my wonderful cousins, who were my first set of friends
and have always been a call away no matter how far we live. I would also like to thank my
nephew and nieces for their selfless love. I will forever be grateful to my late grandparents,
who taught me valuable life lessons that I keep very close to me. I have the most profound
debt of gratitude to all four of them.

Last but certainly not least, I would like to thank my wonderful partner Chandan, who has
been a pillar of strength throughout my course of study. I am so grateful to him for staying
with me on zoom calls through the very last minute of my submission deadlines.

List of Publications

• "Graph-based Heuristic Solution for Placing Distributed Video Processing Applications
on Moving Vehicle Clusters", K. Sharma, B. Butler and B. Jennings, IEEE Transactions
on Network and Service Management, (2022).

• "Scaling and Placing Distributed Services on Vehicle Clusters in Urban Environments",
K. Sharma, B. Butler and B. Jennings, IEEE Transactions on Services Computing,
(2022).

• "CogITS: cognition-enabled network management for 5G V2X communication", M. T.
Barros, G. Velez, H. Arregui, E. Loyo, K. Sharma, A. Mujika, and B. Jennings, IET
Intelligent Transport Systems, 14, pp 182-189, (2020).

• "Optimizing the Placement of Data Collection Services on Vehicle Clusters", K. Sharma,
B. Butler, B. Jennings, J. Kennedy and R. Loomba, 2018 IEEE 29th Annual Interna-
tional Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),
pp. 1800-1806, (2018)

• "Decentralised federated learning-based object detection scheme for vehicular fog
computing applications", In preparation

https://doi.org/10.1109/TNSM.2022.3173913
https://doi.org/10.1109/TNSM.2022.3173913
https://doi.org/10.1109/TSC.2022.3173917
https://doi.org/10.1109/TSC.2022.3173917
https://doi.org/10.1049/iet-its.2019.0111
https://doi.org/10.1049/iet-its.2019.0111
https://doi.org/10.1109/PIMRC.2018.8581027
https://doi.org/10.1109/PIMRC.2018.8581027
https://doi.org/10.1109/PIMRC.2018.8581027

Abstract

Vehicular fog computing (VFC) is an extension of cloud and mobile edge computing aimed
to utilise the rich sensing and processing resources available in vehicles. The emergence
of VFC was motivated by the need to reduce latency in delay-sensitive applications, which
makes it infeasible to deploy applications on the cloud. Thus, there emerged a need to
deploy data processing services close to the source of data generation to reduce response
time and bandwidth usage in uploading collected data to the cloud. Most modern vehicles
in the near future will be equipped with plentiful sensing and processing capacity to make
sophisticated decisions related to autonomous driving. The aim of this study is to utilise
the under-utilised resources on these vehicles to deploy data-intensive, over-the-top services
on a group of closely-moving vehicles. With the emergence of data-driven applications
developed in the process of urban informatization, there is a need to collect and process data
in a resource-efficient manner.

In this work, we consider applications where vehicles gather and process data for surveil-
lance purposes such as studying the interaction of users with roadside cafes and gas stations
etc. or detecting vulnerable pedestrians to increase commuter safety. Our work introduces
methods and techniques to use the historic mobility pattern of vehicles to address the chal-
lenge of dynamism and instability in the vehicular network. To determine the availability of
these resources, a stochastic mobility model is utilised, to select nodes with similar mobility
patterns. Then a distributed and flexible service model and a mobility-aware infrastructure
model are designed that are compatible with an unstable, non-static network. These dis-
tributed services are scaled in real-time and placed as multiple instances on the selected
vehicular cluster to make the services more robust. The service scaling and placement
problem is modelled as a bi-objective, constrained optimisation problem with the objective of
efficient resource utilisation. To place the service chains efficiently on the vehicular clusters,
a community detection-based cluster selection scheme and graph-based service placement
heuristics are introduced. The feasibility of the study is presented by demonstrating results
from extensive simulations using different resource and mobility profiles of vehicle clusters.
The results of the performance of our service scaling and placement scheme indicate that it
performs better than competing schemes in terms of resource utilisation.

Contents

List of Figures xviii

List of Tables xx

List of Algorithms xx

1 Introduction 1
1.1 Research Hypothesis . 5

1.1.1 RQ 1. How feasible is it to use vehicle clusters for service execution?
How to estimate the aggregate computation and communication
capacity of these vehicle clusters? 5

1.1.2 RQ 2. How can closely moving vehicles be used for service provi-
sioning? . 6

1.1.3 RQ 3. How to resolve the vehicle cluster selection, service scal-
ing, and service placement problem using community detection and
graph-based algorithms? . 7

1.1.4 RQ 4. Can a federated-learning-based scheme be introduced to
deploy a distributed object detection service using video data from
multiple video sources? . 8

1.2 Research Contributions . 9
1.3 Dissertation Organisation . 12

2 Background 15
2.1 Evolution of VANET to the Internet of Vehicle Ecosystem 16
2.2 Vehicular Fog Computing Architecture . 20

2.2.1 Applications with different level of processing on the vehicular fog 21
2.3 Suitability of Service Placement on a Vehicular-Fog Ecosystem 22

2.3.1 Urban Scenarios: . 23
2.3.2 Distributed service placement on mobile nodes 24
2.3.3 Mobility models for mobility prediction of vehicles 28

Contents xv

2.3.4 Flexible Programmability: . 30
2.3.5 Vehicular radio access technologies (V-RATs) 30
2.3.6 Communication Management . 32

2.4 Literature Review . 32
2.4.1 Fog Computing Architecture, Feasibility and Use Cases 33
2.4.2 Vehicular Cloud and Fog Computing 36
2.4.3 Programming model for Future Internet Applications 36
2.4.4 Feasibility of using vehicles as infrastructure 38
2.4.5 Task Allocation and Scheduling in Vehicular Fog 38
2.4.6 Latency-sensitive applications . 39
2.4.7 Data-centric applications . 46

2.5 Summary: Challenges and Limitations . 48

3 Macroscopic and Microscopic Mobility Modelling 51
3.1 Introduction . 51
3.2 Motivation . 53

3.2.1 Predictability of vehicle flows . 53
3.2.2 Comparative mobility models . 58

3.3 Aggregate Communications and Computation Capacity Estimation 60
3.4 Mobility Patterns of Vehicles . 62
3.5 Microscopic and Macroscopic traffic trajectory data 66
3.6 Vehicular Fog Marketplace . 67
3.7 Service Scaling and Placement Scheme 69

3.7.1 System Model . 70
3.7.2 Network Topology . 71
3.7.3 Service Model: Task and Task Instances 72

3.8 Summary . 74

4 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters 75
4.1 Introduction . 75
4.2 Service Scaling and Placement Scheme with Single-hop Cluster 78

4.2.1 Node Resource Constraints . 80
4.2.2 Link Constraints . 81
4.2.3 Optimization . 83
4.2.4 Video Streaming Application for Pedestrian Detection 84
4.2.5 Simulation and Evaluation . 86

4.3 Service Scaling and Placement Scheme with Multi-hop Clusters 89

xvi Contents

4.3.1 Infrastructure Constraints . 89
4.3.2 Distributed Service Model Constraints 90
4.3.3 Cluster cohesion probability . 92
4.3.4 Service Placement Cost . 93
4.3.5 Bi-objective Optimisation Function 94

4.4 Results for Service Placement for the Bi-objective Service Placement Problem 95
4.4.1 Application Types . 95
4.4.2 Evaluation . 99
4.4.3 Penalty Function . 104
4.4.4 Mininet-WiFi Simulation . 106

4.5 Service Scaling and Placement Plan Procedure 106
4.5.1 Comparison of MIP with baseline approaches 108

4.6 Conclusion . 110

5 Placement of Distributed Video Processing Applications on Moving Vehicle
Clusters 113
5.1 Introduction . 113
5.2 System Model . 117
5.3 Model . 118

5.3.1 Application Type . 118
5.3.2 Network Topology . 121
5.3.3 Distributed Service Model . 121

5.4 Service Scaling and Placement Constraints 122
5.4.1 Flow capacity constraint . 122
5.4.2 In-network processing constraint 122
5.4.3 Service Scaling constraint . 123
5.4.4 Infrastructure constraints . 123
5.4.5 Mobility modeling . 124
5.4.6 Objective Function . 126

5.5 Heuristic-based Solution . 127
5.5.1 Vehicular Node Selection . 129
5.5.2 Service placement heuristic . 130

5.6 Evaluation . 132
5.6.1 Comparison of placement techniques in terms of service time . . . 137
5.6.2 Evaluation of the selected cluster over time 137

5.7 Conclusion . 139

Contents xvii

6 Video Data from the MLK Corridor 141
6.0.1 Object detection techniques . 142

6.1 Federated Learning based Object Detection 145
6.1.1 Federated Learning . 145
6.1.2 System architecture . 146

6.2 Preliminary Results and Future Direction 148
6.3 Conclusion . 149

7 Conclusions and Future Work 151
7.1 Summary . 151
7.2 Future Works . 154

7.2.1 Next steps of research . 154
7.2.2 Longer-term research direction . 156

Bibliography 157

List of Figures

1.1 A graphical representation of the three-tier Fog computing architecture. . . 2
1.2 An overview of the research plan and the mapping between the motivation,

the research questions and the contributions. 9

2.1 The evolution of VANETs to VFC. 16
2.2 High level architecture of distributed computing paradigms 17
2.3 The formation and lifecycle of vehicle clusters. 23
2.4 Four tiers of VFC architecture. 33
2.5 Components of Fog architecture introduced in [Bonomi et al., 2014]. . . . 34

3.1 Flow model at the selected intersection in Dublin. 54
3.2 Traffic Prediction using real vehicle density data. 54
3.3 Comparison of MVLR with competing schemes. 55
3.4 Vehicle density, vehicular flow and vehicular speed recorded in different time

intervals. 56
3.5 Speed versus occupancy graph for a detector on the I-405 freeway for seven

consecutive days. 63
3.6 Speed versus occupancy graphs on weekday and weekend. 64
3.7 The LOS parameter for the I5-N freeway traffic. 65
3.8 The process of vehicle cluster selection. 68
3.9 System Model depicting the management between the RSU, CN and the

vehicle cluster. 70
3.10 Service model depicting tasks and their inter-dependencies. 72

4.1 Vehicle cluster states over time t1 to t2. 79
4.2 Service Instance graph for video streaming application mapped on a service

cluster of 7 vehicle nodes. 83
4.3 Placement of 5 TIs on different sized cluster. 85
4.4 Placement of 7 TIs on different sized cluster. 85
4.5 Ratio of bandwidth usage: 5 TIs on cluster of 20 vehicles. 85

List of Figures xix

4.6 Ratio of bandwidth usage: 7 TIs on cluster of 20 vehicles. 85
4.7 Different service requests with varying levels of SCIs. 86
4.8 Description of the simulation scenario. 87
4.9 The SUMO simulation for the intersection in Dublin, Ireland. 92
4.10 Sensitivity analysis for resource-rich and resource-poor clusters. 96
4.11 Sample application for pedestrian detection 97
4.12 Comparing different placement techniques using the average node utilisation. 98
4.13 Node and Link Cost for Case A,B & C. 101
4.14 Penalty cost, total hope count and bandwidth efficiency at Type TIs and RSU.105
4.15 Comparison of node cost in the optimal, naive scheme and a clustering

scheme for Case A:resource-constrained cluster and low data rate. 108
4.16 Comparison of link cost in optimal v/s naive scheme for Case A:resource-

constrained cluster and low data rate. 108

5.1 Vehicle cluster’s lifecycle. 116
5.2 Type graph of two services. 117
5.3 Two types of applications of chain lengths 3 and 4. 119
5.4 Mobility modelling for selected road segments at intersections. 125
5.5 Using two different methods for community/cluster detection. 130
5.6 Joint CCP-based path selection for service placement. 131
5.7 Total node utilisation cost, total link utilisation cost and total objective value

for task chain of lengths 3 and 4. 134
5.8 Different performance metrics to evaluate the performance of the proposed

heuristics. 136
5.9 Calculated betweenness centrality score for the two community-detection

approaches. 138

6.1 The CUIP testbed corridor. 143
6.2 Detected objects using YOLO. 143
6.3 Detected objects using Faster R-CNN Resnet. 144
6.4 Training and validation loss for Faster R-CNN Resnet. 145
6.5 Standard FL framework. 147
6.6 Proposed, distributed FL framework. 147
6.7 Training and test loss and accuracy of the centralised FL model. 148

List of Tables

1.1 Research contributions from the dissertation. 10

2.1 List of publications focusing on task allocation for latency-sensitive applica-
tions. 40

2.2 List of publications focusing on task allocation for latency sensitive applica-
tions in VFC. 45

2.3 List of publications focusing on task allocation for data-centric applications. 46

3.1 The r-value, p-value and standard error for predictability of the six flows at
the intersection. 58

3.2 Traffic prediction using three different comparative models using real vehicle
density data at the intersection in Dublin. 58

3.3 Comparative mobility modelling schemes in literature. 60
3.4 Relationship between density, volume and the LOS on a freeway. 65

4.1 Table of Notation. 102
4.2 Simulation parameters. 103
4.3 Resource profiles by size. 103
4.4 Comparison of two service placement schemes introduced in the chapter. . 111

5.1 Task function, techniques and commonly-used algorithms for the data collec-
tion application’s tasks. 119

5.2 Task function, techniques and commonly-used algorithms for application the
object detection application’s tasks. 120

5.3 Optimality gap percentage for the link utilisation cost for different number
of Type 1 TIs. 132

List of Algorithms

4.1 Service Scaling and Placement . 107
4.2 KMeans Clustering . 109
5.1 Service Placement . 128

Chapter 1

Introduction

Fog Computing is an emerging paradigm to deploy existing and futuristic Internet of Things
(IoT) applications closer to the edge of the network [Bonomi et al., 2012]. The fog computing
platform introduces the distributed deployment of applications, as opposed to centralized
cloud services, and processes most of the data close to the source of data generation instead
of sending raw data to the backend servers. This reduces the usage of the expensive and
limited network bandwidth at the core network and also promotes real-time interaction
between end devices. Fog computing, as an extension of Cloud computing, is based on
deciding where to deploy applications that have local context and have lower delay tolerance.
These applications are orchestrated in an automated manner based on the demand and the
availability of the heterogeneous Fog devices, to ingest the large amounts of data generated
from end devices. A large amount of data that is relevant for historical analysis and requires
more complex processing and persistent storage is sent to the cloud for further processing.

The need for distributed computing paradigms like mobile edge computing (MEC) [Li
et al., 2019; Ning et al., 2019] and fog computing is generated from the end devices getting
smarter and generating massive amounts of data that needs to be fused with other data sources.
Most of this generated data from smartphones, static cameras, and wearables, is collected
in isolation and is not fused with other sources of data to make inferences. For utilizing
this generated data and adapting to the distributed computing paradigms, there is a need to
introduce novel services and service deployment methodologies, that can be used to leverage
the heterogeneous and distributed devices for data generation and for hosting services. In this
work, we focus on vehicles as fog computing devices as they are rich in embedded sensors
like cameras, and radars and have rich processing capacity with advanced onboard units.
Vehicles spend a significant amount of time in urban traffic and their sensing and processing
capability is largely under-utilized. There is a projection of growth for both semi-autonomous
and autonomous vehicles to over 12–14 million over the next decade, which will lead to

2 Introduction

Tier 1: Data
generating
smart devices

Tier 2: Edge
devices

Tier 3: Cloud

Generated
pre-processed
data

Data for
persistent storage
and complex processing

Fig. 1.1 A graphical representation of the three-tier Fog computing architecture.

the realization of connected vehicles (CVs) [Lienert, 2015; MEOLA, 2020]. The increasing
deployment of applications for CV, related to safety, infotainment, or traffic management can
be realized by exploiting the distributed fog computing resources.

This placement of services on either the end devices, the fog, or the cloud is a crucial
problem to solve in fog computing research. There have been many existing works focusing
on introducing the three-tier fog computing architecture [Aazam et al., 2018] and introducing
service placement schemes aiming to efficiently utilise fog computing nodes for service de-
ployment [Skarlat et al., 2017]. The three-tier vertical Fog computing architecture comprises
multiple low-power sensing and computing IoT devices that collect raw sensor data [Sarkar
and Misra, 2016] as the first layer. The second layer, also called the Fog computing layer
comprises edge devices like edge routers, base stations, and home gateways. The devices in
this layer have more processing capacity compared to the “thin” clients in the first layer and
are also connected to the Cloud framework. The third layer of the architecture comprises
powerful servers and data centres that can handle an enormous amount of data. A graphical
representation of the three-tier fog computing architecture has been presented in Fig 1.1.

The architecture for the collaborative utilization of individual vehicular resources to
carry out communication and computation is called vehicular fog computing (VFC) [Hou
et al., 2016]. The computing capacity of each vehicle may not be enough to deploy compute-

3

intensive tasks, however, a group of vehicles can be used to collectively deploy sensing and
processing applications. The initial work on vehicular cloud computing (VCC) considered
vehicles as entities that generated demands for services or were used as sensing entities where
the collected data was offloaded to the remote server [Abuelela and Olariu, 2010]. Eventually,
the potential of vehicles themselves providing computational and networking resources for
service deployment was explored. The use of vehicles as infrastructure was identified for three
supporting reasons, firstly, vehicles are getting smarter with the emergence of autonomous
vehicles that are rich in processing and sensing capacity. Secondly, the study of vehicular
flow in busy segments of the city suggests that vehicular congestion is a major problem.
Vehicles spend a significant amount of time either completely at a halt or moving slowly
in high-density traffic. Thirdly, urban traffic has predictable macroscopic flow densities
and peak traffic times. For example, a lot of vehicles commute towards the city centre or
towards business parks on a weekday morning and travel back towards residential areas
during evenings. Similarly, many vehicles commute towards shopping malls and recreational
areas during weekends. These predictable vehicular flows can be used to initiate service-
based clusters at busy intersections for data collection and processing, during peak traffic
times. Thus, instead of focusing on parked vehicles or taxis and buses that have a very fixed
trajectory, we focus on building flow models for private vehicles, whose mobility patterns
are more challenging to identify.

In this dissertation, the focus is on horizontal scaling of services to not only utilize the
ever-increasing computation and communication capacity in end devices but also to use
the dash cameras on vehicles to collect data. Typically, service placement in data centre
networks requires service placement plans for static and composite services. Such services
are not suitable for a dynamic vehicular environment where vehicles will continue to join or
leave the cluster leading to node and link failures. Individual vehicles might not have enough
resources to deploy data collection and processing services, as they are computationally
intensive. Such smart vehicles might also have their own computational requirements so they
can run services like self-driving and navigation systems. These vehicles will lease their
spare resources for over-the-top services only in return for an incentive. Thus, it is crucial
to break down the service into smaller service components called ‘tasks’ in our work. Each
task has different functionality and is dependent on data from another task to carry out its
functionality. Thus, a service is modelled as a linear graph where nodes represent tasks and
the edges represent the data dependency between these tasks. These tasks are further scaled
to multiple task instances/replicas so that the processing in the service can be broken down
further. This model increases the resilience of the service in case of node and link failures.

4 Introduction

This service model also supports data collection from multiple vehicles. The data is sent
to the data processing tasks on the vehicle clusters. Collecting data from multiple sources
can improve the quality of the collected data. Our service model can be extended to collect
multi-modal data from different sensors on vehicles. The processing tasks in our service
model then clean the collected data such that redundant frames, especially with video data
collected from multiple sources, can be separated from frames of interest. The processed
information is then sent to the client as dedicated information or the roadside unit (RSU) for
more complex processing and/or persistent storage.

A lot of existing work in VFC focuses on using vehicles for latency-sensitive applications.
We focus on a novel use case of initiating an opportunistic vehicular cluster as a group
of ‘moving sensors’ that can collect and process data for applications with different local
contexts and scopes. Such applications include surveillance/monitoring, like the collection
of data to study the interaction of commuters with gas stations, and cafes and collecting road
traffic information to decrease traffic congestion. The data collected for such applications
are pre-processed and then sent to edge or cloud services for more complex learning-based
algorithm training. Other applications like detecting vulnerable cyclists and pedestrians
require drivers to be alerted in real-time. Such applications have local and situational contexts
and do not require the data to be collected at a back-end server. We specifically focus on
video data in our service model as video streaming and object detection are the building
blocks of many vehicular applications, including scene understanding, driving assistance etc.
[Zhu et al., 2019]. Since video data requires more network bandwidth and higher processing
capacity, it is more useful to process the video data close to the source of generation, in a
distributed manner.

Hence, our service model can significantly reduce the need for installing additional
infrastructure for data collection, which directly increases the CAPEX and OPEX for the
data collection process. It will also reduce the need to have dedicated links that transfer
data collected from static video cameras to servers using expensive network bandwidth. Our
services reduce network usage by collecting most of the data close to the source of data
generation. Such services will also help in ad-hoc data collection that can be initiated at any
road segment which has enough vehicular density. The vehicles that agree to lease their data
collection and processing capacity can be incentivised by road transport authorities by giving
them free parking and discounts on toll booths. If such services are initiated by telecom
companies, vehicle owners can be incentivised by giving extra credit in return for added
infrastructure capacity provided to the network operators. Thus, a whole VFC marketplace
can be created where these moving vehicles can provide additional capacity to the existing
fog/edge and cloud infrastructure.

1.1 Research Hypothesis 5

We try to resolve the complexity in vehicular networks due to the inherent mobility of
vehicles that govern the availability of these vehicles as fog nodes. We study the traffic
patterns of vehicles to identify the spatial and temporal distribution of slowly moving traffic.
Furthermore, we focus on how these moving vehicles can be used as infrastructure, by
intrinsically considering the mobility of vehicles as part of the service placement model. We
also introduce a novel service model in which services can be scaled flexibly according to
the availability of vehicular fog nodes and the demands of the application. We then focus
on how to efficiently place these novel services on the distributed and dynamic vehicular
network. The main goal of this thesis is to introduce this novel use case of using vehicles
as an opportunistic sensing and computing infrastructure and introduce service placement
schemes to tackle the complexity of the dynamic infrastructure. The scope of the dissertation,
the research hypothesis and questions, and the contributions are elaborated below:

1.1 Research Hypothesis

We consider realistic mobility patterns of vehicles and build efficient node selection and ser-
vice placement schemes to successfully implement distributed data collection and processing
services on moving vehicle clusters. To make a robust system of IoV that can be used for
data collection and service deployment, we formalise the following research hypothesis:

The coordination and effective management of computation and communication, in a
group of closely moving vehicles, can result in efficient service deployment at the network
edge, resulting in a systematic method to collect and process data without deploying
additional infrastructure.

To find a solution to efficiently utilize resources in moving vehicles, we divide the
research broadly into four research questions:

1.1.1 RQ 1. How feasible is it to use vehicle clusters for service execu-
tion? How to estimate the aggregate computation and communi-
cation capacity of these vehicle clusters?

Unlike traditional infrastructural networks that are stationary, in distributed and moving
networks, the resources are available only for a certain amount of time. There has been very
limited work undertaken on the total time when vehicle clusters stay together, especially
as a potential resource pool for service deployment. We start by introducing a generalised
flow model for intersections, to study the predictability of vehicular flow using multivariate
linear regression, random forest and ARIMA models etc. We then study the aggregate

6 Introduction

communication and computation capacity of these vehicle clusters. We use real highway
data to understand the speed versus occupancy/density of vehicles on different days of the
week at different road segments. The performance or stability of such clusters with respect to
the number of well-connected nodes that make it to the end of service execution time has not
been studied in the literature. Similarly, the relative mobility of vehicles, w.r.t. the vehicles
moving around them has also not been studied. We thus introduce centrality score-based
measures to evaluate the performance of selected clusters. To understand the feasibility of
using vehicle clusters by leveraging their mobility data, we break RQ1. into the following
issues:

• Are vehicle flows predictable? Can a generalised intersection-based flow model be
used for predicting vehicular flows and initiating vehicular flows?

• What is the aggregate communication and computation capacity of such vehicle
clusters?

• What is the relationship between vehicular speeds versus occupancy?

1.1.2 RQ 2. How can closely moving vehicles be used for service provi-
sioning?

The second research question focuses on how to utilize the mobile, virtualized resource pool
of vehicle clusters to deploy applications. Such a model requires the efficient management of
resources, especially if those resources are to be leased to third-party service providers. The
network states in a dynamic and virtualized network constantly change over time, requiring
flexible service provisioning and orchestration. With virtualization and loose coupling, we
can map services to resources in a shared infrastructure. However, it is not always feasible to
place static and monolithic services as an individual vehicle might not have enough resources
to perform complex analytics. For example, a scene understanding application that can help
grasp the information of the target environment to make a reasonable judgement can be
deployed on a vehicular cluster. The application will be broken down into several service
components or tasks. A perception service would be required for detecting and tracking
objects. Then data from multiple sensors will be fused at the fusion service to construct
a more accurate representation of the environment in comparison to what a single sensor
can achieve. The final task would be a decision layer that will include alerting based on the
application requirement or behaviour planning based on the perception of the application.
Such a task would require a lot of data and high computation capacity for processing the data.
Thus, instead of deploying it as a monolithic service, it is broken down into several tasks to

1.1 Research Hypothesis 7

leverage the distributed resources available in nearby vehicles. The dynamic network would
also lead to link and node failures, thus, more resilience needs to be added to the service for
successful deployment. This is achieved in our model by replicating a task to multiple task
instances.

In the case of mobile nodes, the availability of resources is dependent on the location of
each vehicle in space and time and its connectivity to a managing entity. In the special case
of vehicular networks, the mobility is restrained to the topology and the traffic conditions
of a particular road. The mobility of the vehicles makes the problem of service placement
in the vehicular network more complex. Thus, mobility needs to be an intrinsic part of the
model to find a resource-efficient service placement plan. We consider video collection and
processing services as video data provides more context and information to the services. The
analytics of video data requires more processing capacity in comparison to other sensor data,
thus making it beneficial to break down services to multiple task instances. To address these
dynamism issues in the vehicular network and leverage the distributed, heterogeneous and
limited resources on each vehicle, we break down RQ2. into the following issues:

• What constraints are necessary for service cluster selection and effective service place-
ment with the objective of efficient utilization of bandwidth resources and increasing
the probability of successful service execution?

• What kind of service model is required for effective and adaptive service provisioning
based on the resource and mobility state of the service cluster?

• What is the performance of the network, derived from a realistic emulation of the
vehicular network and video collection services?

1.1.3 RQ 3. How to resolve the vehicle cluster selection, service scaling,
and service placement problem using community detection and
graph-based algorithms?

The second question covers the mathematical modelling of the IoV infrastructure and the
distributed service model and studies the feasibility of service execution on moving vehicle
clusters. This question aims to find solutions for the cluster nodes and control node (CN)
selection techniques and introduces graph-based heuristics for service placement. As we
deploy distributed applications on moving vehicles, we aim to select those vehicles that
are more probable to stay together for the duration of data collection and processing. The
cluster selection ensures that a sufficient number of vehicles stay as part of the cluster to

8 Introduction

collect and process data over a period of time. The selection of CN and vehicular clusters is
based on the historic mobility patterns of the vehicles. This mobility-based CN and vehicular
cluster selection procedure will reduce the need for service reconfiguration as those vehicle
nodes are selected that are more probable to stay together for a defined period of time. We
introduce two specific applications related to vehicular crowdsensing and object detection
for increasing commuter safety.

We aim to select stable opportunistic clusters managed by a local controller (the RSU or
CN). The service placement model uses vehicular mobility models built by leveraging the
predictability of vehicular flows at intersections and the historic mobility patterns of vehicles
in urban regions. The model aims to select those nodes that are more likely to stay within
the cluster till the service is executed fully. After CN and vehicle cluster selection, we need
to introduce service scaling and placement methods such that the competing objectives of
distributing the service widely and of minimizing bandwidth usage in placing these services
are achieved. To solve the cluster selection and the service placement problem, RQ3. needs
to address the following issues:

• How to select nodes for the service cluster such that the selected nodes stay together
for a longer period of time?

• How to scale and place the services on the selected vehicular cluster effectively? How
does the introduced scheme perform compared to existing service placement and node
selection solutions?

• What examples of distributed applications can be deployed on moving vehicles?

1.1.4 RQ 4. Can a federated-learning-based scheme be introduced to
deploy a distributed object detection service using video data from
multiple video sources?

To implement the object-detection application introduced in our work, we introduce a
distributed federated learning (FL) scheme. FL is a collaboratively decentralised technology,
designed to overcome data silos and sensibility [Li et al., 2020a]. It is also a privacy-
preserving mechanism where multiple clients coordinate with one or more centralised servers
to share local updates with local data for the model to achieve the desired performance. The
distributed FL model is a direct match to the service and infrastructure models introduced in
our work. We use data from an intersection-based test-bed in Chattanooga, Tennessee, to
implement a distributed and hierarchical federated learning scheme to implement an object

1.2 Research Contributions 9

Research
Questions

RQ 1
Mobility

Modeling

RQ 2
Mathematical

modeling

RQ 3
Cluster

selection

RQ 4
FL-based
scheme

C1
Chapter 3

Contributions

C2
Chapter 4

C3
Chapter 5

C4
Chapter 6

Motivation

Novel service model and
service placement

schemes are required to
leverage resources in

moving networks.

To build mobility models
to study the predictability

and availability of
vehicular nodes to make

efficient service
placement plans.

To introduce a distributed
FL-based object

detection scheme using
video data collected from

a testbed

Methods are needed to
select nodes and place
services on a moving

network using the historic
mobility pattern of
vehicular nodes

Fig. 1.2 An overview of the research plan and the mapping between the motivation, the
research questions and the contributions.

detection application to detect pedestrians and cyclists and alert drivers in the region. To
implement such a scheme and application and to address RQ4., we aim to focus on the
following issues:

• How to use video data from a real road intersection-based testbed for implementing an
object detection application?

• How does the centralized FL-scheme perform against a hierarchical and distributed
scheme?

1.2 Research Contributions

The main contribution of this dissertation is the management and utilization of dynamic
networks, leveraging the mobility patterns of vehicles, for deploying novel crowdsensing
and commuter safety-related applications. We aim to find service placement plans that are

10 Introduction

Table 1.1 Research contributions from the dissertation.

Research
questions Research contributions Chapter Publication

RQ1.

Introduced methods for mobility
management for slow-moving
vehicles in terms of:
- predictability of vehicular flow.
- resource capacity estimation for
vehicle clusters.
- density estimation for initiating
vehicle clusters.

3
IEEE Trans. on
Services Computing
[Sharma et al., 2022b]

RQ2.
Introduced novel service models,
an efficient service placement
scheme for the dynamic networks.

3, 4

IEEE PIMRC
IEEE Trans. on
Services Computing
[Sharma et al., 2018]

RQ3.

Introduced heuristics for node
selection and service placement.
Introduced two novel and distributed
services related to video crowd-
sourcing and pedestrian detection.

5

IEEE Trans. on
Network and Service
Management
[Sharma et al., 2022a]

RQ4.

Introduced a federated learning
scheme for object detection
Compared the federated learning
approach to existing schemes like
YOLO and Faster-R-CNN.

6 Manuscript in preparation

probabilistically optimal, given the absence of information about individual vehicles. This is
an example of decision-making under uncertainty. In cloud service placement, the service
requests are uncertain (in scale, frequency, etc.) but the infrastructure is static with prior
knowledge of available resources. In this work, the opposite applies, such that the availability
of computational and communication resources is dependent on the mobility of vehicles. An
overview of the motivation, the research questions and the contribution is illustrated in the
Fig. 1.2. The contribution, listed as C1-C5, with respect to the RQs are also summarised in
the research contribution table (1.1), and are detailed below:

• RQ1:C1 To understand the feasibility of using vehicle clusters as infrastructure for
data collection and data processing, we use real vehicle density data to introduce a

1.2 Research Contributions 11

generalised vehicular flow model for intersections. We use the macroscopic vehicular
density data to study the predictability of vehicular flow using techniques like multi-
variate linear regression, random forest, and ARIMA model for time series forecasting
to study the predictability of vehicular flow. We show that vehicular flows can be
predicted accurately using historical mobility data. We also study the speed versus
density data of the available vehicles to identify service zones where the vehicular
cluster can be initiated. We study the speed versus occupancy data and Level of Service
(L0S) parameters to study the traffic flow description using vehicular density. We
also compute the aggregate communication and computation capacity of these vehicle
clusters.

• RQ2:C2: The main contribution of this work is to develop an infrastructure and
service model to implement the novel use case of initiating opportunistic clusters and
deploying distributed services on these clusters. We formulated the service placement
problem as a detailed integer linear program (ILP), which gives an optimal service
placement plan for the opportunistic vehicular cluster. The ILP solves the competing
objectives of distributing the service widely, increasing the robustness of the service,
and also minimising the bandwidth usage, which makes the problem challenging to
solve. We also validated the service placement on a dynamic network by emulating
the service using road mobility simulators like SUMO and network simulators like
Mininet-WiFi. We evaluate the optimal service placement solution which results in
a higher service completion rate and more efficient network utilisation. We also run
extensive simulations to study the effect of stable and unstable vehicle clusters on
processing and communication costs. We compare the introduced scheme to other
placement schemes including cloud placement, edge/RSU placement, and mobile node
placement without scaling the task to multiple instances.

• RQ3:C3 We first leverage community detection-based algorithms to select vehicle
clusters. The group of participating vehicles is modelled as undirected graphs, where
the edge between any two vehicular nodes is weighted by the joint cluster cohesion
probability (CCP). The CCP is the probability of two nodes staying together for a
time period. To find an optimal placement plan for the services, we introduced a
graph-based service placement plan that finds an optimal placement of service chains
in-network, on the path from the video collection task instances (TIs) to the CN. The
graph-based heuristic promotes that most of the TIs are placed on the vehicular cluster,
to promote the horizontal scaling of resources. We compare the introduced heuristics
to the ILP and other competing schemes in the literature.

12 Introduction

• RQ4:C4 We use an FL scheme to deploy an object detection application for detecting
pedestrians and cyclists. We use real video data from static cameras installed at an
intersection-based testbed in Chattanooga, Tennessee. We study the application’s
performance, based on the detection accuracy.

1.3 Dissertation Organisation

The thesis is organized as follows. This chapter introduces the research and highlights the
research hypothesis and research questions. The contributions with respect to each research
question have also been highlighted.

Chapter 2, presents a detailed background of the evolution of vehicular networks from
VANETs to IoV systems today. The chapter also presents the relevant literature review of
VFC architecture, different VFC use cases, and task scheduling and offloading schemes used
in fog computing systems. We then summarise the literature review by identifying gaps in
VFC research and map each gap to the research questions that address the gap.

The following four chapters address the four research questions described in this chapter
in Section 1.1. In chapter 3, the first research question (RQ1) is addressed. The chapter
first introduces the intersection model for predicting vehicular flows at intersections. We
study flow predictability using MVLR, random forest and ARIMA models. We introduce the
aggregate communication and computation capacity estimates for the vehicle clusters. We
then study the correlation between vehicular density/occupancy versus the speed of vehicular
flow, to see how closely spaced slow-moving vehicle clusters are. The chapter then introduces
the system model, network topology and service model for the service placement problem
introduced in this work.

Chapter 4, addresses RQ2 where we provide the detailed mathematical formulation
for the mobility-aware infrastructure model, the distributed service model, and the service
placement problem modelled as an ILP. The chapter also provides detailed simulation results
for validation of the model. In chapter 5, the third research question (RQ3) is addressed. It
introduces the community-detection-based vehicle cluster and CN selection schemes. The
chapter also introduces the graph-based service placement scheme to promote in-network
processing of the collected video data on an opportunistic cluster. The introduced schemes
are compared to the competing schemes in the literature.

In chapter 6, we introduce an FL-based scheme to deploy an object detection application
for detecting pedestrians and cyclists using data from an intersection-based testbed. This
chapter addresses RQ4. Chapter 7, presents the summary of the research work carried out

1.3 Dissertation Organisation 13

in this dissertation. The chapter also highlights the short-term and long-term future works
planned for this research.

Chapter 2

Background

This chapter presents an in-depth background of technologies like vehicular computing and
fog computing that are crucial to understand the need for using vehicles as infrastructure.
The technological advancement in distributed computing has driven the concept of using
moving networks with distributed resources for service deployment. Section 2.1 explores the
transition of vehicular networks from being used for safety-related information dissemination
networks to connected vehicles today that are envisioned to use their huge computational
power by aggregating the resources of individual vehicles and RSUs. Section 2.2 presents
the VFC architecture and also gives details of applications with different update cycles,
classifying them into (i) crowdsensing, (ii) processing-intensive and (iii) autonomous driving
type applications.

We then present the suitability of placing distributed services on the VFC ecosystem
by first highlighting the urban mobility scenarios and then introduce the key challenges
in utilising moving vehicular nodes for application deployment in Section 2.3. We then
present different mobility models considered for mobility prediction in Section 2.3.3, flexible
programmability in Section 2.3.4 and the communication management for the distributed
service deployment in Section 2.3.6.

We then give a detailed outlook on the existing literature in the field of fog computing
and vehicular computing paradigms. We have identified gaps in the literature, such as limited
study in utilising moving vehicles as a means of collecting and processing data and the lack
of novel service models and service placement plans to leverage the resources in moving
networks.

16 Background

Inspired from
MANETs.
Used primarily for
vehicle safety and
information
dissemination.
Main challenges are
to increase
throughput,
reduce failure of
route, and delay in
packet delivery.

VANET VCC VFC

MANET MCC Fog
Computing

Inspired from
personal mobile
clouds or MCC.
Main applications
include urban
sensing, content
distribution, mobile
advertising.
Local data is stored
in the vehicular
cloud with proper
indexing and
scoping.

Inspired from the
fog computing
paradigm.
Focuses on both
urban sensing and
latency-sensitive
applications like
real-time object
detection, local map
generation and
driving assistance

Evolved to Evolved to

Fig. 2.1 The evolution of VANETs to VFC. The figure also highlights the mobile networks
that inspired the respective vehicular networks.

2.1 Evolution of VANET to the Internet of Vehicle Ecosys-
tem

Vehicular adhoc networks (VANETs) have been studied extensively over the past decade
from a communication point of view, to effectively disseminate safety-related information to
neighbouring vehicles and transport authorities [Ucar et al., 2016]. These vehicles focused
on timely dissemination of safety messages to update nearby drivers about accidents, traffic
jams, and the condition of roads. More specifically the applications included safety recall
notice, wrong way driver warning and alerting the approach of emergency vehicles etc.
[Report, 2009]. The main focus of the research undertaken in VANETs was achieving
mobility and connectivity management while ensuring high data packet delivery ratio and
low latency. The research also focused on efficiently utilising fourth-generation and Long
Term Evolution (LTE) along with IEEE 802.11p which is the standard for wireless access
for vehicular networks. There has also been active research in the application of Software-
Defined Networks (SDN) to manage VANETs and to control the heterogeneous demands of
different applications in a scalable and flexible manner [Al-Heety et al., 2020].

VANETs were also visualised for value-added services like parking navigation, automated
toll payment, location-based services such as finding the closest washrooms, restaurants,

2.1 Evolution of VANET to the Internet of Vehicle Ecosystem 17

Fig. 2.2 High level architecture of Mobile Cloud Computing (MCC), Mobile Edge Computing
(MEC), Edge Computing (EC), Dew Computing (DC), Fog Computing (FC) and Fog Dew
Computing (FDC) from Naha et al. [2018].

18 Background

gas stations etc. Many of these services are now provided as part of navigation maps like
google maps. VANETs were also aimed to utilise for infotainment type applications, for
example, to provide internet to nearby vehicles. However the role of each vehicle was to
be either the sender, the receiver or the router of messages to nearby vehicles. Vehicles
were not yet visualised as a means of hosting processing services. There was a lot of
relevant research undertaken for configuring inter-vehicle or V2V and vehicle-to-everything
(V2X) communication using multi-hop broadcast/multicast or unicast to transmit traffic-
related information over the network [Benkerdagh and Duvallet, 2019],[Lin et al., 2017].
This research on adequate communication protocols was crucial to build the foundation for
utilising vehicular networks as a means to deploy applications that can benefit from wireless
communication between vehicles.

The advances in computation and communication technologies have led to the advent
of automated vehicles with embedded sensors and onboard computers that can be used to
fuse large amounts of sensor data to make decisions in real-time. This has further led to
vehicles being visualised as a potential source of data generation as well as data processing
for analysing and disseminating information. The benefits of the close coupling between
the data source and data processing agents are (i) reducing the latency between users and
processing device, specifically for real-time interactive applications and decision making, (ii)
reducing network utilisation by not offloading all the generated data to the remote cloud and
(iii) improving Quality of Service (QoS) and Quality of Everything (QoE) by flexibly scaling
services in real-time, based on the resource availability, mobility patterns of vehicles, and the
application requirements.

The IoT trend started the movement of application deployment away from clouds to
things on the edge of the network. In the newer computational paradigms like Edge and Fog
computing, the application logic and analytics are placed on devices close to the source of
data generation. The study of such technological paradigms that deal with heterogeneous
devices being used to deploy services coupled with the evolution of vehicles as intelligent
devices, has led to the application of fog computing on vehicle-based settings.

Even after decades of research on VANETs that focused on improving the intermittent
connectivity and decreasing the delay for safety-related applications, there have not been
many implementations of such networks in real-life settings. The next technological advance-
ment in vehicular network research was the concept of VCC which was inspired by the use
of Mobile Cloud Computing (MCC). MCC is a platform where individual mobile devices
can be both cloud users or cloud service providers [Khan et al., 2014]. The research on
MCC included adapting applications to cloud computing application models and introducing
an MCC architecture for application offloading. Most of these devices were seen as hosts

2.1 Evolution of VANET to the Internet of Vehicle Ecosystem 19

for communication whereas all the processing was offloaded to the cloud. VCC included
the use of a group of vehicles for enabling safe driving, urban sensing, content distribution
and parking navigation. For the first time, [Gerla, 2012] suggested that VCC can carry out
significant computing on the vehicular cloud. The vehicles in a VCC keep local and contex-
tual information instead of directly uploading it all to the cloud. The VCC also has search
features for the content stored in the vehicular cloud. In the different VCC architectures
introduced in the literature, vehicular clouds have some processing autonomy however, they
had to communicate with remote data centres even if intermittently [Gu et al., 2013].

MCC had some drawbacks including high latency, low coverage and lagged data trans-
mission. MCC also falls short in scenarios that require real-time decision-making. The
implementation of MCC, along with the exponential growth in connected devices on the
internet further makes the usage of MCC in highly dynamic environments infeasible. The
newer era of computing paradigms included Mobile Edge Computing (MEC) [Abbas et al.,
2018] and Fog computing tries to address the challenges faced by MCC by deploying the
cloud resources, e.g., processing and storage capacity at the edge of the network. This extends
the capacity of cloud computing to the edge of the network by providing high processing
capacity, high bandwidth and ultralow latency.

VFC is the concept of using vehicles as both computation and communication resources
and are considered as Fog nodes themselves [Hou et al., 2016]. VFC is motivated by MEC
and fog computing paradigms[Keshari et al., 2022]. Even though there is no one widely
accepted definition of VFC, the role of vehicles in VFC system is of data generation due to
the availability of computing and sensing devices like cameras, radars and GPS and of data
processing due to the availability of on-board units with computational and communication
capacity. Some of this collected data can be processed on the vehicle itself, in order to make
real-time decisions for delay intolerant applications [Huang et al., 2017]. The evolution of
VFC from VANETs has been described in Fig. 2.1. The figure also reprsents the mobile
networks that inspired to respective vehicular networks.

Fig. 2.2 represents similar computing paradigms besides Fog computing including MCC,
MEC, Edge Computing (EC), Dew Computing (DC) and Fog Dew Computing (FDC). EC is
defined as a computing paradigm where edge devices provide computing facilities without
spontaneously associating with any cloud-based services. DC is a microservice-based concept
that does not require any management or coordination from centralised server. The dew
server is accessible to devices in the same network without the need for Internet. The FDC
paradigm provides offline services to IoT devices by connecting to a community server. The
community server interacts with the Cloud, thus providing services in offline conditions.

20 Background

2.2 Vehicular Fog Computing Architecture

A high-level VFC architecture is composed of three layers, similar to the fog computing
architecture which seamlessly integrates network edge devices and cloud servers [Yi et al.,
2015]. FC is a geographically distributed computing architecture that ubiquitously connects
heterogeneous devices at the edge of the network to collaboratively provide elastic com-
putation, communication and storage services [Hu et al., 2017]. Fog computing provides
different instances of fog resources to the underlying networks like wireless sensor networks
(WSNs), virtual sensor networks (VSNs) and VANETs. We describe the three layers of the
VFC architecture below and present it in Fig. 2.4.

1. Vehicular layer: The first layer of the VFC architecture comprises smart vehicles.
These vehicles are rich in embedded sensors like built-in cameras, radar and GPS. For
example, a Tesla car has 8 cameras. These vehicles are used to collect data as they are
moving through traffic. A smart vehicle is estimated to generate approximately 25 Gb/s
in a single day: 20-60 Mb/s from cameras, 10 Kb/s from radar and 50 Kb/s from GPS
[Huang et al., 2017]. Due to the large amount of data generated, especially video data,
it is expensive to upload all the generated data to edge servers for permanent storage
and processing. These smart vehicles are also rich in computation, communication and
storage resources. In our work, we consider that the generated data can be processed
not just at the vehicle generating data but also at nearby vehicles that move closer to
the data-generating vehicles. Our work focuses on scaling and placing services on the
group of closely moving vehicle nodes.

2. RSU/edge server layer: The data generated and processed at the group of vehicles is
then sent to the stationary RSU and edge servers which form the second layer of the
VFC architecture. These edge servers can be deployed in different parts of the city to
support VFC applications. The RSU manages the state of the vehicles that execute
services and also manages the state of the service deployed on the vehicular cluster.
The RSU then implements more complex processing tasks if needed and reported them
to the cloud servers. The RSU can also be used for persistent storage for local requests
related to video streaming, parking navigation and smart traffic light management. The
data collected, processed and stored at the RSU has more scope and relevance in space
and time.

3. Cloud layer: The cloud layer is composed of a traffic management server [Ning et al.,
2019]. The cloud server is used for city-wide monitoring and stores data that has
information relevant for a long period of time. Only the data processed at the vehicular

2.2 Vehicular Fog Computing Architecture 21

layer and the RSU layer is sent to the Cloud such that redundant raw data with only
local scope and context is not sent to the remote servers. More complex analytics
including training large data sets for object detection or classification is also executed
at the cloud server.

2.2.1 Applications with different level of processing on the vehicular
fog

Vehicular applications range from safety-related applications like lane changing and accident
alerts to over-the-top services for infotainment and to make the commute more comfort-
able through parking recommendations etc. Such applications have different processing
requirements and delay tolerance. Vehicular applications are also classified based on the
update cycle of the applications[Zhu et al., 2018]. With the availability of data generated
from vehicles, we focus on data-centric applications and classify them on the basis of the
proportion of processing carried out at the vehicular fog.

• Crowdsensing application: Application based on crowdsensing use vehicles as mov-
ing sensors for sensor data collection. Applications of this category include measuring
the traffic density at an intersection in real-time, or surveying road conditions for road
traffic monitoring. Generally, the focus is on passive video collection; most processing
does not happen in the cluster. Such applications perform minor pre-processing tasks
on data in the vehicle cluster. Such pre-processing includes data sampling, segmenta-
tion or encoding. Thus, the data is reduced to 70-80% of its original size before being
sent to the cloud for executing compute-intensive tasks, possibly applying complex
machine learning to the data.

• Processing-intensive applications: Applications in this category have local context
and have real-time processing requirements. One example of such an application is a
pedestrian detection application that can be used to study the popularity of a coffee
shop or a gas station, based on the number of pedestrians detected in the stream of
video data. This data is collected by vehicles standing at a traffic light or an intersection,
close to the coffee shop, say. This data has local relevance/scope and hence, most of
this data should be processed locally. Such applications can be considered compute-
intensive and require higher processing capacity and so large amounts of unnecessary
data should not be uploaded to the cloud before processing.

In the compute-intensive application, lightweight video processing is performed on the
video stream to transform it into other forms, e.g., capturing specific frames with license

22 Background

plates, or highlighting pedestrians or other objects of interest in each scene. We assume
that the data is reduced to 20% of its size and only relevant information is sent to the
client or the RSU for broadcasting the information. Another example of a processing-
intensive application is the detection of vulnerable pedestrians and cyclists to alert the
drivers in the region and increase the overall safety of the commuters. Such applications
will have even smaller delay-tolerance in comparison to applications related to studying
the traffic conditions, road conditions and usage patterns of restaurants and cafes.

• Autonomous driving assistance: A large plethora of vehicular applications are now
based on driving assistance or autonomous vehicles. Autonomous vehicles generate
3D maps to sense and navigate the environment [Zhu et al., 2018]. Vehicles with
embedded cameras can be used to contribute to generating 3D maps from multiple
sources to generated a high definition and accurate map. Such applications are also
very latency-sensitive and the generated data has very limited scope in terms of locality
and time period.

2.3 Suitability of Service Placement on a Vehicular-Fog
Ecosystem

From a management perspective, we argue that the Intelligent Transport System (ITS) is
not a homogeneous domain. Indeed, there are two different regimes, each with differing
management challenges. Even though the scenarios and the services might appear to be the
same, the differences in resource availability and mobility behaviour are such that a single
deployment and management strategy is not advisable.

The first of these regimes are concerned with slow-moving, “urban” traffic, with closely-
spaced vehicles and relatively easy access to supporting roadside networking infrastructure.
The vehicles on the network edge are mobile, but the effort required to identify and maintain
connectivity with the nearest network gateway (for routing purposes) is not significantly
more than what would be needed with pedestrians with terminal devices. Some applications
relevant in an urban scenario are:

From a management perspective, we argue that the ITS is not a homogeneous domain.
Indeed, there are two different regimes, each with differing management challenges. Even
though the scenarios and the services might appear to be the same, the differences in resource
availability and mobility behaviour are such that a single deployment and management
strategy is not advisable.

2.3 Suitability of Service Placement on a Vehicular-Fog Ecosystem 23

RSU

Control Node

Leaving
Nodes

Leaving
Node

Cluster Initiation

Service
Request

Cluster
State(t1) Cluster

State (t2)
Cluster
State (t3)

Nodes
joining

Cluster
State (t4)

Cluster Re-initiation

Fig. 2.3 Vehicle Clusters form, but membership changes over time. Clusters accept service
chain placement requests from RSUs and perform service chain scaling and placement.

The first of these regimes are concerned with slow-moving, “urban” traffic, with closely-
spaced vehicles and relatively easy access to supporting roadside networking infrastructure.
The vehicles on the network edge are mobile, but the effort required to identify and maintain
connectivity with the nearest network gateway (for routing purposes) is not significantly
more than what would be needed with pedestrians with terminal devices.

2.3.1 Urban Scenarios:

In this section, we present some data-centric applications relevant in an urban scenario.
These application have different processing and delay requirements. We aim to deploy such
application on slow-moving vehicles in urban sections of the cities.

• Vehicles as moving sensors (video crowdsourcing): Monitoring and surveying is an
expensive task, critical for data collection and aggregation in smart cities. Vehicles in
urban scenarios spend a lot of time in slow-moving traffic. This time can be utilized to
build opportunistic clusters that collaborate to collect and process surveillance data.
This information can be application-specific, like collecting the density of greenhouse
gases, gathering information on the popularity of vehicle models, reporting accidents,
and other emergencies for safety measures. The processing components can be mapped
to the network based on the scope of generated data: (i) Example: Pedestrian detection
at a local coffee shop to gauge its popularity. Such applications can be processed at
the Fog nodes as the data has limited spatial scope (ii) Vehicles can also stream data,
which is pre-processed at the network edge, but is sent to the core network for further
application-specific processing. For example, insurance companies may provide an

24 Background

incentive for providing video streams related to erratic driving behaviour or accidents.
Such data can be used by multiple applications and has a wider scope.

• Assisted driving: Applications for situational awareness, lane-changing, and accident
prediction have a very small delay deadline. Most autonomous vehicles navigate using
a high-definition 3D map of real-time vehicle movement and the location of nearby
entities [Zhu et al., 2018]. This application requires a lot of videos generated in a short
validity period. This data is then trained in real-time for accurate situational awareness
of the road users. Such applications are compute-intensive and delay-sensitive. These
time-sensitive applications cannot be entirely deployed at the remote cloud and require
newer service placement techniques to utilise the computing capacity at the fog/edge.

• Over-the-top services: Passengers in vehicles can be provided services like mobile
gaming, where the terminal devices get streamed audio and video of the game, but the
game is processed at the edge of the network. The vehicles have enough computation
to act as thin clients, whereas it becomes easier for gaming companies to upgrade and
develop games on a uniform platform at the edge of the network.

The second regime of ITS is quite different. Here the vehicular traffic is moving quickly,
typically on the open road. Vehicles are not as close to each other for safety reasons. There
may be roadside infrastructure, particularly cell towers, but it is probably not as dense as it
would be in an urban setting. The rapid movement of the vehicles poses mobility problems
because vehicles move in and out of a coverage area in much shorter timescales. Therefore
the network state has a much higher rate of change than would be the case for pedestrians
with hand-held devices.

2.3.2 Distributed service placement on mobile nodes

To facilitate the use of the dynamic IoV ecosystem for deploying services, we require
the study of the novel and distributed applications that can adapt to the challenges of a
dynamic network. It also requires the study of mobility patterns of vehicles to understand the
availability of slow-moving or dense vehicular flows that can be used for service deployment.
We look at the following key challenges involved in the application deployment on the IoV:

• Service Offloading: The main goal of task offloading in fog computing is to effectively
distribute applications over the fog nodes to improve the QoS by reducing the task
response time and improving network bandwidth and computation resource utilization
[Hussein and Mousa, 2020]. The task offloading in backend clouds can lead to network

2.3 Suitability of Service Placement on a Vehicular-Fog Ecosystem 25

congestion at the backend and results in higher delay due to relatively higher network
latency. The increase in IoT devices will result in large amounts of generated data that
requires data filtering instead of uploading redundant data to the cloud, which will
lead to increased overhead at the backend network. Thus, fog computing provides
computation offloading closer to the network edge, resulting in lesser data transfer
time and reducing the amount of network transmission. To optimally place tasks in the
fog computing paradigm, the following aspects are considered [Misra and Saha, 2019]:

– The optimal location for task offloading needs to be discovered. Typically the
offloading decision is between fog or remote nodes.

– The optimal fog nodes needs to be selected if tasks are offloaded to the fog layer.
This will be covered in the next sub-section.

– In some cases, the optimal path selection is also considered while offloading tasks
or the focus of task placement is to find optimal computation nodes on which
services can be mapped.

Many existing works in Fog computing study the most resource-efficient and low-
latency location for deploying applications, either on the device, the network edge or in
the Cloud. However, the sensing nodes or the devices and the fog nodes are decoupled
on two different layers. Another key challenge in utilising the IoV ecosystem for
application deployment is to use distributed applications instead of traditional static
applications due to the dynamism in the moving network leading to node and link
failures. The task offloading strategies in VFC have additional complications due
to information asymmetry and uncertainty [Zhou et al., 2020]. The availability of
computation and communication resources varies in the VFC due to the mobility of
vehicles. The global state of the vehicular network is not known as opposed to the case
of resource allocation in static data centre networks. As the number of vehicles and
the number of tasks to be deployed increases, the complexity of the exhaustive search
to match tasks to the vehicles also increases.

• Node Selection and Service Mapping: The heterogeneous fog nodes have different
capabilities, and this needs to be advertised through the resource estimation step. To
filter and select the candidate nodes in the system, the nodes are ranked based on
their current computation resources and network conditions to determine the most
appropriate node for service deployment [Phan et al., 2021]. In the case of distributed
services, we need to identify multiple fog nodes in a vehicle cluster, with similar
mobility patterns, which can result in higher reliability in service execution. Thus,

26 Background

identifying close moving clusters and then mapping services on these clusters is a
crucial step in service deployment in the dynamic IoV ecosystem. As the Fog services
in this study are broken down into smaller, co-dependent instances, the selected vehicle
clusters need to be stable and move closely for the period of service execution. The
multi-component instances also need both link and node mapping, which is sometimes
solved by only considering link or node mapping, in other cases, links and nodes are
mapped one after the other or mapped jointly, based on the complexity of the problem.

• Efficient Service Placement: The service placement problem borrows from the VM-
bin placement problem which is used to model static resource allocation in the cloud
computing paradigm. The optimal placement plan is to place the VMs to a minimum
number of physical machines such that the vector sum of any physical machine does
not exceed its resource limit [Shi et al., 2013]. In the case of service placement in
VFC, the placement problem becomes more complex owing to the availability of
resources and its dependence on vehicular mobility. Unlike cloud servers that are rich
in processing capacity, each vehicle has limited processing capacity and hence services
are broken down further, thus, the placement scheme needs to accommodate for the
distributed services. Once we have selected nodes based on their resource availability
and mobility patterns in the case of VFC and scaled services according to the resource
requirement of the service, we require an efficient service placement plan, such that the
service placement objectives are met. Different services, with different update cycles,
have varying goals that define a successful service placement. For example, services
on resource-constrained sensors or thin clients would aim to optimise the energy
usage without degrading the performance of the application significantly. Similarly,
safety-related applications in the vehicular scenario related to driving assistance like
lane changing applications would have very strict latency applications. Some novel
applications like using VFC nodes for crowdsensing and processing the collected data
would require efficient resource utilisation for the monetary feasibility of the service
deployment.

More resource provisioning approaches need to be introduced due to the dynamism in
the network and the heterogeneity of both the applications and the available resources
on fog nodes. The service placement problem can also be optimized for objectives
that are in accordance with the novelty in the VFC scenario. Due to the dynamism
in the network, the completion of the task should be an objective for the placement.
Similarly, for crowdsensing applications, the quality of collected data is a measure of
the QoS and should be maximised for effective service placement. The lifecycle of
the selected vehicle nodes is another way to identify how good was the selection of

2.3 Suitability of Service Placement on a Vehicular-Fog Ecosystem 27

the group of fog nodes that were assigned for service deployment. Similarly, more
objectives can be introduced with respect to vehicles that provide services, in terms of
benefit maximisation, that will encourage drivers to lease their resources [Tang et al.,
2021].

• Flexible Service Models: The QoS metrics like service latency and bandwidth require-
ments are key factors in choosing a node to execute a service. A selected node may
fail or lose connection to other nodes due to the dynamism in the network. Also, one
vehicle node may not have enough resources to execute a video data processing task.
Thus, instead of static service templates, it is crucial to deploy services that can be
scaled in real-time according to the amount of data collected through the application.
It also increases the robustness of the service by having multiple service instances as a
fail-safe in case nodes hosting an instance of the task fails.

For the online management of services, the real-time QoS feedback can help in
migrating services for load balancing or in case of a node failure, to improve the
performance of the application. The adaptive deployment of services is a key feature
of Fog Computing wherein services can be scaled up or down based on the application
requirement and the real-time feedback to improve the QoS/QoE. This requires efficient
infrastructure estimation, a flexible service model and scheduling policies to support
flexible application deployment.

• Service Discoverability: One of the Service-Oriented architecture principles is the
need for the services to be available and accessible for discovery. As each thing/device
has different functionality, services must be used efficiently and securely with the
minimum human intervention. This requires means to describe the functionality
and availability of sensors and virtual camera instances. Service discoverability also
requires communication protocols to manage existing things in the network, as well as
to adapt to the changing network dynamics. The dynamic scaling of instances requires
services to be aware of the number of active instances of another service, to make the
decision of task offloading.

• Advanced QoS/QoE monitoring metrics: Due to the variability in-network and
the need to estimate the available resources and application requirement, newer QoS
metrics need to be developed. These metrics should account for real-time resource
estimation, mobility awareness, and flexible service scaling. Some metrics need to be
application performance-centric and others benefit the service provider, ie. in terms of
network and resource efficiency. Another inter-dependency is the involvement of users
who are willing to subscribe to these services as well as those willing to lease resources

28 Background

for the service execution. Similarly, QoE metrics like service availability rate, service
access rate, expected service processing time, etc. need to be considered. However,
it is also notable that predicting QoS and QoE in real-time is not straightforward due
to the huge number of real-time interactions. Thus better QoS and QoE prediction
schemes need to be developed.

• Service Migration: The mobility of nodes and unstable wireless links require service
instances to be migrated in case a node fails or leaves the vehicle cluster. This service
migration is different from the service migration between geographically distant data
centers or between base stations due to vehicle mobility. This service migration is
related to the service instances placed on vehicles and migrating them in case the
service becomes unavailable. The migration decision needs to be made in real-time
with minimum overhead due to the limited resources at the edge of the network.
The process of migration also requires that the latency and downtime for accessing
the service instance is minimum during the process. If the migration is related to
the mobility of the node, the site of migration needs to be decided according to the
mobility prediction of surrounding vehicles, to keep the service instance close to the
user, especially considering the size of the service instance. The migration can also be
performed to improve the QoS, as discussed in the QoS/QoE monitoring topic. In the
special case of vehicle clusters, service management instances can also be migrated to
RSUs ahead of time, based on the predictable mobility of a group of vehicles.

2.3.3 Mobility models for mobility prediction of vehicles

The MCC paradigm focuses on user mobility which leads to variable demands in the ap-
plication at the Fog or Cloudlet level. In the Fog computing paradigm, the end devices are
also potential application hosts, which makes resource management and task placement a
more complex problem. In the case of the vehicular network, the mobility of vehicles can
be predicted based on the historical mobility pattern of vehicles. Vehicular flow follows
predictable mobility patterns through different days of the week and during peak and off-peak
traffic hours. Such time periods and zones need to be identified to initiate vehicle clusters that
can be used for service deployment. At the microscopic level, the use of navigation systems
in smart cars can also help in predicting the location of a vehicle in the next time step. The
use of mobility prediction can increase the reliability when services are placed on moving
Fog nodes. The increased reliability can decrease the overhead caused by re-configuring
services due to node or link failure related to the mobility of end devices. The urban and

2.3 Suitability of Service Placement on a Vehicular-Fog Ecosystem 29

highway scenarios and the differences in mobility patterns have already been detailed in
Section. We now classify vehicle mobility models into macroscopic and microscopic models.

• Macroscopic Mobility models: These mobility models focus on the aggregated be-
haviour of vehicles and focuses on the vehicle dynamics including vehicular flows or
counts, the average speed of vehicles, traffic density etc. Such information is available
at many open source datasets mainly collected by transport authorities of different
cities or made available through uber movement data 1. Such vehicular parameters are
enough to identify zones or segments in the city where such vehicle clusters can be
initiated. The vehicular flows and average speeds also help in identifying the speeds at
which vehicles navigate a particular road segment during a particular time of the day.
This study can help in detecting slow-moving, high density and sometimes jammed
traffic. Our study focuses on closely-spaced vehicles that can be used for application
deployment.

Even though vehicles in highways and freeways have more predictable trajectories,
due to the topology of long highways, the vehicles move at very high speeds. The
management of a vehicular cluster at higher speeds is more complex. There would
be higher management overhead due to the faster dynamics in the vehicle cluster.
We have focused on identifying busier freeways with slow-moving traffic that can be
leveraged for service deployment. There is also a gap in the literature in studying the
predictability of traffic flow and the density of traffic at busy sections of both urban
intersections and freeways.

• Microscopic Mobility Model: This mobility model is based on the individual behaviour
of each vehicle and its interaction with surrounding vehicles. Even though there
are some open data for vehicular trajectories, many of the datasets are taxi or buses
traces. It is useful to leverage the more predictable mobility patterns of taxis and buses,
however, our work is based on utilising a general smart vehicle on the road. Most of
the microscopic mobility models are studied through simulation generated from road
traffic simulators like SUMO and network simulators like NS3, Omnetpp and Mininet.

At urban intersections, vehicles are slow-moving and are probable to take one of the
trajectories, constrained by the topology of road segments. In our work, we suggest
that certain vehicles will have a fixed trajectory over the week, say from a residential
area to a business park. This mobility behaviour can be used to select a candidate
over another candidate. Many people may have a similar driving trajectory, which can
further assist in selecting a group of vehicles for task allocation and execution. Such

1https://movement.uber.com/?lang=en-US

30 Background

traffic patterns can be used to assign tasks that need data gathering for surveying traffic
conditions on a certain segment of the road or to check the popularity of a coffee shop
or supermarket etc. over a period of time. Such vehicles or groups of vehicles can be
subscribed to for delivering this survey over a longer period. Such applications can be
used as an alternative to deploying additional infrastructure for surveying tasks.

2.3.4 Flexible Programmability:

A programming framework is required for programmers to write device-independent code
for flexible deployment. Even though we do not focus on flexible programmability in this
work, it is an important aspect of distributed service provisioning. The code can be compiled
by retrieving the device capability and services can then be deployed based on device
functionality. The services can also be mapped to devices based on the device functionality,
ie. sensing, communication, or compute-intensive task is mapped to the node with specific
functionality. We highlight the key features of flexible programmability:

• The distributed services also require communication APIs to manage an asynchronous
application deployed on different Fog nodes. The components also need to synchronise
with components on the other network topology.

• The orchestration or coordination of different application instances needs to be auto-
mated. Certain applications have directed flow, which requires processing the flow
according to the flow order specified by the service template. This requires the man-
agement of the application execution sequence.

• The scalability of applications is required to cater to the increasing number of IoT
devices and application users at the network edge. As most of these applications are
distributed, the application instance deployment also needs to be flexible and scalable,
to increase or decrease service instances based on dynamic workloads

2.3.5 Vehicular radio access technologies (V-RATs)

Vehicular communication and access technology have been researched extensively for more
than a decade now. The advancement in vehicular technologies has led to the enablement of
applications for safety, infotainment and over-the-top services. The communication entities
in a vehicular network can include any device connected to a network like vehicles, RSUs,
fog nodes, base stations, pedestrians with hand-held devices etc. The information exchanged
between vehicles and any other communication entity is called vehicle-to-everything or (V2X)

2.3 Suitability of Service Placement on a Vehicular-Fog Ecosystem 31

communication. V2X type communication includes both V2V and V2I communication
modes.

The leading RAT for V2X communication is cellular networks and DSRC [Abboud et al.,
2016]. Many commercial vehicles are now equipped with 3G or 4G/LTE-powered wireless
access. We give some details about RATs for connected and autonomous vehicles below:

• DSRC: The main motivation for DSRC deployment is to enable traffic safety applica-
tions and improve traffic efficiency. The DSRC spectrum of 75 MHz is divided into
seven channels including a control channel (CCH) and the other six service channels
(SCH). The CCH is the highest priority channel reserved for safety-related applica-
tions whereas SCH can be used for both safety and non-safety-related applications.
The DSRC supports a bandwidth of 3-27 Mbps per channel and allows two SCHs
to combine to form 20MHz channel width to provide a higher data rate of 54 Mbps
[Singh et al., 2019]. To utilise the DSRC spectrum in the vehicular network, the IEEE
802.11p and Wireless Access in Vehicular Environments (WAVE) protocol stack have
been developed. The IEEE 802.11p is developed by adding V2V and V2I support in
the IEEE 802.11a standard.

• LTE-Advanced/4G: Is the primary communication standard for V2I communication.
Unlike the previous versions of 3G technologies, LTE uses an "all-in-one" approach
with everything over IP. The LTE-A has a feature of carrier aggregation which combines
multiple channels to provide higher data rate support. The LTE provides shorter round
trip times, more high spectral efficiency, high bandwidth and mobility support. It has
been tested in literature for its suitability for V2I communication.

• Wi-Fi: is an unlicensed band that is deployed to provide high-speed internet connec-
tivity to devices. The Wi-Fi stack was not designed to support the mobility of vehicles,
but improvements have been made in IEEE 802.11 to provide support for fast roaming
via IEEE 802.11r, improved bandwidth and security for V2V and I2V communication.

• 5G: To support communication between automated vehicles and infrastructure, it is
required to provide ultra-low latency, very high data rates and high reliability. 5G
provides a scalable, and highly reliable platform to support novel applications including
vehicular applications related to self-driving cars. The 5G-enabled communication
provides proximity services that can be used to discover devices and services in a
locality. This will especially help in service and device discovery in the moving
vehicular networks. The proximity services reduce the traffic congestion at core
networks by enabling high data rate and secure device-to-device communication
platform [Shah et al., 2018]. The proximity services also help in beaconing safety-

32 Background

related messages to nearby vehicles which were largely constrained by the available
bandwidth in IEEE 802.11p.

2.3.6 Communication Management

We do not cover communication management in this work, but we briefly present com-
munication management in IoT networks. IoT protocols are classified as data-centric,
message-centric and resource-centric [Teo and Kadir, 2006]. The data-centric approach
is based on a publish-subscribe message to send information from a data source to the
sink. MQTT is a message-oriented protocol, where sensor devices are directly connected to
compute devices, whereas compute nodes are connected to back-end servers via brokers. The
distributed services need to communicate at intra-Fog and inter Fog-Cloud levels to deploy
the hierarchical Fog computing paradigm. Due to the constrained devices, many Constrained
Application Protocol (CoAP) and REST-based communication protocols are developed but
have the issue of overhead costs.

For interoperability between sensor clouds (using peer-to-peer communication), wireless
and wired mobile edge devices, compatible protocols are required for seamless hierarchical
communication. Providing device abstraction and virtual networks are required to manage
geographically distributed Cloud and Fog domains. The communication between resource-
constrained IoT devices/sensors uses the Constrained Application Protocol (CoAP). The
communication between sensors and compute nodes also need to be facilitated for seamless
data processing tasks. The next level of communication is required between Fog and Cloud
nodes for coordinating the execution flow among different service components, hosted at a
different level of the network. The communication between end devices could be peer-to-peer,
could be via Edge nodes or could be via Cloud nodes, based on the latency imposed in the
design.

2.4 Literature Review

This section presents the literature review of fog computing, VCC and VFC. We also present
the related works on task allocation schemes and scheduling schemes in vehicular fog which
is the main focus of our research work. We classify the task offloading schemes based on the
application type they consider i.e. latency-sensitive and data-centric application types and
the QoS measure they aim to optimize.

2.4 Literature Review 33

Vehicle Cluster

Fore-runner

Lagging Vehicle:
Outside the cluster

Tier 1

Tier 2

Tier 4

Elected CH
Elected CH

eNodeB WiFi RouterWiMax
Router

Network
Gateway

Fog Nodes on Access Points, traffic lights, routers

SwitchStorage

Compute
Node

Fog Nodes for distributed compute and storage

Data
Plane

Handover:
Cluster
state

Distributed
Controller 1

Distributed
Controller 2

Distributed
Controller 3

Distributed
Controller 3

Distributed Control

East/Westbound
API

Logically Centralized
Tier 3

Southbound API

Application Plane

Requests Policy

Cloud Layer

Northbound API

Control
Plane

Fig. 2.4 The use of distributed controllers to manage the resource and mobility state of the
four tiers of the VFC architecture as Fog nodes, the data plane as eNodeB, and network
gateways, the control plane and the Cloud computing layer.

2.4.1 Fog Computing Architecture, Feasibility and Use Cases

With the emerging IoT paradigm and the enormous number of heterogeneous and ubiquitous
end devices, there is abundant computation and communication capacity available at the edge
of the network. These resources can be used to support latency-sensitive and bandwidth-
hungry applications and to reduce the burden of increasing service requests at the data
centre. There is an increasing demand for mobile multimedia services including mobile
gaming, audio, and video streaming which contributes to network traffic and can cause
network load and poor QoS/QoE. These technological trends have led to the emergence
of MEC which reduces the traffic load on the backbone network by utilizing the edge
resources for local computation, network control, and storage [Chen et al., 2016]. Another
distributed computing paradigm, called Fog Computing introduces a system-level, horizontal
architecture that distributes resources and services of computing, networking, storage, and
control anywhere between end devices and cloud2. The highly virtualized Fog paradigm
supports services and applications with widely distributed deployments. The Fog is suitable
for providing streaming services to moving nodes, emergency and healthcare applications,
gaming, and augmented reality with very low latency requirements.

This transition from Cloud to Fog required different programming models, architecture,
service offloading and placement schemes to enable heterogeneous and geo-distributed
devices to provide computation or networking resources to service requests in the vicinity.

2https://opcfoundation.org/markets-collaboration/openfog/

34 Background

Fig. 2.5 Components of Fog architecture introduced in [Bonomi et al., 2014].

These issues in Fog have been studied widely in literature, which we summarize here.
From an architecture point of view, it requires horizontal and virtual scaling of service
requests according to the delay constraint, geographical and temporal scope, and computation
requirement of the application. [Sarkar et al., 2018] introduced the three-tier Fog Computing
architecture with terminal nodes as Tier 1, which form a location-based logical virtual cluster
that transmits data to Fog Instances at Tier 2. The Fog layer comprises devices like router,
gateway, and switch, to process and analyse data to be either sent to Cloud if it requires
historical data-based analysis or is processed locally. The limited storage and processing
capacity at the Fog layer is to be used for latency-sensitive applications, or applications that
require location or context awareness. The Cloud layer forms Tier 3, which receives limited
or controlled requests from the Fog layer. Fig. 2.1 represents the use of distributed controllers
to manage the resource and mobility state of the four tiers of the VFC architecture as Fog
nodes, the data plane as eNodeB, and network gateways, the control plane and the Cloud
computing layer.

[Bonomi et al., 2014] introduced a high-level description of Fog’s software architecture
that is presented in Fig. 2.5. It consists of the Fog Abstraction layer for seamless resource
management for the heterogeneous Fog platform by providing generic APIs for monitoring,
controlling, and provisioning resources. The layer also supports virtualization for multiple
OSes or running service containers for multi-tenancy. They also introduce a distributed

2.4 Literature Review 35

Policy management based service orchestration layer for life-cycle management of Fog
services. A small software agent foglet monitors the state of the devices and deployed
services using abstraction layer APIs, a distributed database stores application data and
metadata for service orchestration, and a service orchestration module is responsible for the
distributed policy-based routing of application requests to an appropriate service instance.
Similar to [Bonomi et al., 2014], [Yi et al., 2015] also introduced a fog computing platform
composed of authentication and authorization, offloading management, resource management
and VM scheduling components. They also introduce the design goals and challenges of
a fog computing platform. They discuss the choice of virtualisation technology for the
platform, the latency in the platform, network management and security and privacy concerns
in the platform.

Aazam and Huh [2016] introduced a Fog Smart gateway (FSG) which gathers data
from underlying nodes. It has enhanced capability for carrying out pre-processing or
interoperability-related tasks. An FSG has contextual awareness based on receiving feedback
from the application and hence communicates data only when required. They introduced a
layered architecture based on tasks undertaken by the Fog. The architecture has a physical
and virtualization layer that consists of physical nodes, WSNs, virtual nodes, and virtual
sensor networks. The layer above it monitors the underlying nodes and networks. The layer
manages task allocation for underlying nodes and their energy consumption for effective
management. The pre-processing layer performs data filtering and trimming. The temporary
storage layer keeps the data until it is uploaded to the cloud. The private data for health care
services or location-aware data is secured in the security layer. The transport layer uploads
the data to the cloud. They focus on the functional aspect of different components in the Fog
for efficient and in-time scheduling and management of resources.

Hong et al. [2013a] introduced a programming architecture called Mobile Fog for IoT
applications that are geo-spatially distributed, large scale and latency-sensitive. To orchestrate
the highly dynamic and heterogeneous resources at different levels of network hierarchy,
they introduce a PaaS programming model. The model provides a simplified programming
abstraction that supports the dynamic scaling of applications during runtime. The Mobile
Fog architecture runs the same application code on various devices including smartphones,
smart cameras, connected vehicles, fog computing nodes and the cloud. It simplifies the
scaling and heterogeneity problems in large scale application deployment. The architec-
ture also provides control interfaces to manage applications and communication APIs to
enable interaction between the distributed application components. Giang et al. [2015] also
introduced a programming architecture that deals with distributed data flow (DDF) model.
The application topology is expressed as a directed graph where each node represents an

36 Background

application component. The model allowed developing and deploying an application for
heterogeneous nodes according to their resource capabilities.

2.4.2 Vehicular Cloud and Fog Computing

Gerla [2012] was the first to introduce the term, Vehicular Cloud Computing (VCC) as a
distributed computing platform, wherein vehicles form a micro cloud in an ad hoc manner.
They identified many novel applications for VCC including urban sensing especially up-
loading videos for congestion and pavement conditions that other vehicles could access and
also suggested carrying computations on these clouds for the collaborative reconstruction
of an accident scene or urban population map etc. Some other works in VCC included
modelling the traffic flows to represent the mobility behaviour of the vehicles. In [Boukerche
and Grande, 2018], three mobility models are considered: a car-following model which is
a microscopic model in which every vehicle’s behaviour is characterized, a traffic stream
model in which behaviour of individual cars is not considered and vehicle stream parameters
are considered, and stochastic traffic models, wherein roads have grid topology and traffic
follows the random movement. This model does not consider interactions between vehicles
or other correlated parameters like vehicle density, speed, and flow rate.

Similarly, many papers explored the VFC concept, which focuses on on-demand resource
provisioning using on-board units in parked or moving cars. Sookhak et al. [2017] introduces
a Vehicular Fog architecture with a Fog sublayer and a vehicular cloud sublayer. They also
elaborate on a decision manager who computes the task completion time and assigns the
task to the required sublayer. Zhu et al. [2018] analyzes video crowdsourcing using VFC.
They first analyse the availability of vehicle fog nodes using real-world trace data. They
then evaluate the serviceability of this model by estimating the network performance over
two access technologies: LTE and DSRC. Ning et al. [2019] introduced the three-layer
VFC architecture to enable distributed traffic management to minimize the response time
of city-wide events. A VFC-enabled offloading scheme is formulated as an optimization
problem by leveraging moving and parked vehicles. They minimize the expected response
time by assigning traffic flows to the cloudlet and parked and moving vehicles.

2.4.3 Programming model for Future Internet Applications

Future Internet applications are large-scale, latency-sensitive, and geographically distributed.
Unlike traditional web applications, future Internet applications run on distributed mobile
and sensor devices. The programming model for these applications have challenges like
synchronization between distributed instances, device heterogeneity, mobility of devices, and

2.4 Literature Review 37

thereby lead to reliability and security issues. These applications need to run dynamically
without causing more network usage or control overhead.

Programming models for deploying services at Network edge: Fog devices are
network devices that are equipped with additional storage and compute power towards the
edge of the network. Thus, it is essential to judiciously manage resources to match the
resource capacity of traditional servers. Aazam and Huh [2015] presented a service-oriented
resource management model. Fog not only provides services on an ad-hoc basis but also, has
to estimate the consumption of resources so that they can be allocated in advance. Resource
prediction allows more efficiency and fairness at the time of consumption. As mentioned, the
requests can be made from objects or nodes as well as devices operated by people. Therefore,
prediction and pre-allocation of resources also depend upon the user’s behaviour and the
probability of using those resources in the future. In the model, they have taken into account
the variance of relinquish probabilities, which helps to determine the actual behaviour of
each customer

Hong et al. [2013b] introduced Mobile Fog, a Platform as a Service (PaaS) programming
model to provide programming abstraction and support applications that scale dynamically
at run time. The high-level programming model simplifies development on a large number of
heterogeneous and distributed devices and supports automatic scaling based on workloads
and available resources capacity of all nodes in the network. Mobile Fog processes are
mapped to distributed computing instances in Fog and Cloud. The application logical
structure is a hierarchical model where processes on the edge are leaf nodes, processes at
the cloud become the root node while the process on the Fog layer becomes intermediary
nodes. These processes have a communication path between them, through the Mobile Fog
communication API. The hierarchical communication API send_up and send_down and
point-to-point communication API called send_to are developed to encourage in-network
processing and run-time scaling to support the mobility of nodes.

Wang et al. [2018] introduced fog-based architecture and programming model for dis-
tributed coordination within fog computing nodes in the smart grid. The computing coordina-
tor periodically gathers information on remaining resources in fog nodes, assigned tasks, etc.
It also supports the collaboration of computing nodes to carry out complex tasks. In their
programming model, the mobility of the terminal node is encountered by initiating migration
within compute nodes using two APIs. State on_migration_start returns state object for flow
information, waiting for migration. Void on_migration_end is invoked by the target device
after receiving a request message from the migration initiator.

Some applications developed for deployment in the Fog are based on Distributed Data
Flow(DDF) model. In the DDF programming model application is modelled as a collection

38 Background

of modules, which constitute the data processing elements. This application model allows
representing application components as a directed graph with vertices representing modules
and directed edges showing the flow of data between modules. Two models that are suitable
for fog computing architecture are:

• Sense-Process-Actuate Model: The information collected by sensors is emitted as
data streams, which are acted upon by applications running on Fog devices, and the
resultant commands are sent to actuators.

• Stream Processing Model: The stream processing model has a network of application
modules running on Fog devices that continuously process data streams emitted from
sensors. The information mined from the incoming streams is stored in data centres
for large-scale and long-term analytics.

2.4.4 Feasibility of using vehicles as infrastructure

Hou et al. [2016] introduced the concept of using under-utilised vehicular resources for
service provisioning. They focus on four types of scenarios of moving and parked vehicles
as communication and computation infrastructure. They derived a relationship between
communication capability, connectivity and mobility of vehicles. The computation capacity
is analyzed by vehicle density, staying time and the incoming and outgoing process models
of vehicles, which resulted in predictable computing capacity for both moving and parked
vehicles. Another system, called JamCloud [Xiao et al., 2019] also works on estimating
the computation capacities by introducing performance metrics like the average number of
mobile clouds that satisfy computation demands. They identify a unique application of using
these mobile clouds at intersections to carry 5G BS’s Baseband signal processing tasks, apart
from using the mobile cloud for vehicle’s computational requirements.

Xiao et al. [2019] studied several statistical features of a VFC system. They predicted
the potential computation capacity of a VFC and studied the relationship between the
communication capacity and the communication range of the vehicular fog. They also
studied the temporal and spatial distribution of potential computation capacity on a city-wide
scale using visualisations. These parameters can help in designing a more efficient vehicular
fog system and optimise the computation capacity allocation schemes.

2.4.5 Task Allocation and Scheduling in Vehicular Fog

Service placement, task allocation and task scheduling are the main focus of our research.
In this section, we aim to classify research works based on the application type they focus

2.4 Literature Review 39

on. We classify the placement and scheduling schemes based on latency-sensitive and
data-intensive applications. In our review, we also classify recent works based on the QoS
parameter they are aiming to optimize. There are many works undertaken to reduce the
latency of applications through task offloading and deployment decisions in a VFC system.
We also highlight some related works that focus on crowdsensing type applications.

2.4.6 Latency-sensitive applications

We further classify the task allocation schemes for latency-sensitive applications and their
allocation schemes in a fog computing paradigm and a VFC ecosystem. The task allocation
in VFC has added complexity compared to scenarios with static infrastructure because of the
following issues [Skarlat et al., 2016]:

• Because of the mobility of vehicles there is frequent handovers between smart vehicles
and RSUs which makes resource management more challenging. The mobility states of
moving vehicles have not been studied extensively for utilising close-moving vehicles
for the service execution. How long do vehicles stay together and how can this
information be utilised for service deployment is an important parameter to make VFC
systems more robust.

• The wireless channel conditions and content popularity are not known before the
service deployment. The wireless channels conditions are time-varying and difficult to
predict.

• The computation task or content also needs to be divided into components/segments to
support computation offloading or edge caching. How to divide and place these service
components is also an added complexity to the resource management problem.

40 Background

2.4.6.1 Task allocation in fog computing for latency-sensitive applications

Table 2.1 List of publications focusing on task allocation for latency-sensitive applications.

Papers Task allocation problem Optimizing Metric

Xu et al. [2017] Auction-based mechanism for
resource contract establishment
and latency aware scheduling
technique.

Maximising utility for edge com-
puting infrastructure provider
and service provider.

Gu et al. [2018] Addresses a joint radio and com-
putational resource allocation
problem for fog computing: us-
ing student project allocation
(SPA) game, to provide a dis-
tributed solution.

Optimising the user satisfaction
as well as system constraints
such as service delay, transmis-
sion quality, power control.

Ni et al. [2017] Dynamic resource allocation
strategy for Fog Computing
based on priced timed Petri nets
(PTPNs) also propose method
for credibility evaluation of both
users and fog resources.

Considers price cost and time
cost to complete a task.

Zeng et al. [2016] Effective resource management
and task scheduling mechanism
to balance workloads between
client side or edge side.

Minimising task completion
time in Fog computing based
Software-defined embedded sys-
tems.

Intharawijitr et al.
[2016]

Policy based selection of target
Fog server for task placement.

To minimise the rejected work-
load to the total number of work-
loads in the entire system, called
blocking probability.

Skarlat et al. [2016] Suggest the independent execu-
tion of Fog applications, without
the involvement of Cloud, by in-
troducing a Fog Middleware.

Monitors computation resource
usage and QoS metric, i.e. exe-
cution time.

Applications that have strict latency requirements need to have proper resource configuration
and task placement to reduce the execution time of the application. [Zeng et al., 2016] have

2.4 Literature Review 41

worked on an effective resource management and task scheduling mechanism for minimizing
task completion time in Fog computing based software-defined embedded systems. Unlike
the traditional embedded system, the task image in their model is not fully loaded into the
embedded system but is placed on an edge server. It is retrieved on-demand during run-time.
The I/O interrupts are also handled by edge servers instead of a standalone embedded system.
However, due to limited resources on the network edge, certain task performs better when
placed on clients. They balance workloads between the client-side or edge side to minimize
computation and transmission latency of all requests.

The communication time in exchanging data between different fog nodes also has a
significant impact on application performance. [Intharawijitr et al., 2016] introduces a
policy-based selection of target Fog server for task placement. They select the target using a
random policy, the lowest latency policy, and a maximum available capacity policy. They
work for an objective to minimize the rejected workload to the total number of workloads
in the entire system, called blocking probability. They also calculate the total latency of an
accepted workload, which is composed of computing and communication delay, to be less
than the maximum tolerant latency of a service. Their results show that selecting Fog nodes
that provide the lowest latency given the current state of the system, perform better than
other policies in terms of blocking probability, by executing workload in a shorter time and
releasing resources sooner for accepting other workloads.

In [Oueis et al., 2015b], radio access points are clustered for additional computation
capacity to execute a requested task. They propose adaptive sizing and resource management
of these computation clusters. The objective of the optimization problem is to minimize
power consumption in the cluster while meeting the latency constraint of each user request.
They compare their model to no clustering schemes which result in no power consumption
in communication but poor QoE. They also compare it to the static clustering scheme which
results in higher power consumption to achieve task completion without latency violation.

In [Skarlat et al., 2016], a conceptual framework for fog resource provisioning is intro-
duced. They suggest the independent execution of Fog applications, without the involvement
of Cloud, by introducing a Fog Middleware comprising of Fog Orchestration Control Nodes.
Their framework highlights other important aspects for the composition of Fog colonies that
comprise of Listener that receives task requests, Monitor that observes service execution
and the database that stores the current system state as well as the received service request.
They also cover the instantiation, deployment, starting, and stopping of services through
REST APIs. They also introduce components to scale the services horizontally to other
Fog colonies based on monitoring the computation resource usage and the QoS metric, ie.
execution time.

42 Background

Goudarzi et al. [2021] introduced an application placement technique for concurrent IoT
applications in Edge and Fog computing environments. They propose a batch application
placement technique based on the Memetic Algorithm to efficiently place tasks of different
workflows on appropriate IoT devices, fog servers, or cloud servers. The aim is to optimize
the execution time and energy consumption of IoT devices. They also introduce a failure
recovery mechanism to overcome potential failures in the execution of tasks in runtime.
Table 2.1 summarises all the publications discussed in this section, highlighting the task
allocation problem and the optimizing metrics.

2.4.6.2 Task allocation in VFC for latency sensitive applications

Yadav et al. [2020] have investigated the joint energy and latency tradeoff based, efficient
task offloading and computation resource allocation for VFC while considering both mobility
and end-to-end latency constraints. They assume participating vehicular nodes to be either
taxis or buses. They consider a hierarchical model which consists of cloudlet nodes or
mini data centres comprising of RSUs, gateway routers, set-top boxes and vehicular nodes.
the second layer comprises user equipments (UEs) equipped with sensors, cameras, GPS
devices and onboard computers. The third layer is the cloud data centre which is a standalone
computational platform. They consider a mobility model based on the dwell time of vehicular
nodes in the service zone based on [Mohd Zaini et al., 2016]. The model uses a geographical
model for predicting the dwell time within WLAN to derive a probability for the vehicular
node to move out of the coverage area. The benefits brought by the proposed scheme are:
reduces the risk of overload, minimize the offloading failures, maximize the energy saving,
minimising service latency, and reducing the time complexity.

Dai et al. [2019] propose the use of BS and RSUs for executing resource-intensive
tasks and caching resources on BSs whereas small and localised content is cached at the
RSU. They introduce a cross-layer, two-tier infrastructure using the small cell BS and RSU
for the task offloading. They also highlight key issues in existing edge computing and
caching schemes that make them incompatible to be used in the vehicular scenario. Firstly,
wireless channel condition and content popularity are assumed to be known in advance by
existing schemes. Secondly, the high mobility of vehicles results in dynamic communication
topology, especially between vehicle pairs, which makes the task offloading in vehicular
networks more complex. They then propose a deep reinforcement learning approach named
Deep Deterministic Policy Gradient (DDPG), for the edge computing and caching problem.
However, they considered a simplistic mobility model where each vehicle is assumed to be
driving at a constant speed on a road segment. They do not study the relative mobility of
vehicles but consider the sojourn time with the RSU.

2.4 Literature Review 43

Ma et al. [2019] introduced a Platoon-assisted Vehicular Edge Computing system based
on the stability of the platoon in vehicular networks. They were the first to introduce a
Reinforcement Learning (RL)-based optimization scheme to obtain optimal price strategy of
task flows. They have introduced a task offloading and take-back scheme which is introduced
when vehicles hosting the tasks leave the current platoon. The re-offloading is carried out by
the leaving node instead of sending the request to the service requester, which effectively
reduces the latency of the re-offloading process and improves the task execution rate. Lee
et al. [Lee and Lee, 2020] also modified an existing RL-based algorithm to make efficient
resource allocation decisions leveraging vehicles’ movement and parking status to minimise
service latency.

Zhao et al. [2019] jointly optimize the computation offloading decision and computation
resource allocation in vehicular networks. They designed a collaborative optimization
scheme where offloading decisions are made through a game-theoretic approach and resource
allocation is achieved using the Lagrange multiplier method. The feasibility of using vehicles
as Fog nodes for video crowd-sourcing and real-time analytics has been studied by Zhu et
al. [Zhu et al., 2018]. They evaluated the availability of client nodes that generate data in
proportion to the vehicle Fog nodes that process the data, using the processing capacity of
onboard units. However, they focus solely on the data transmission problem in the model.
The mobility of vehicle nodes makes the task allocation problem more challenging in VFC.
Zhu et al. [Zhu et al., 2019] introduced an event-driven dynamic task allocation framework
designed to reduce average service latency and overall quality loss. The task allocation
problem is modelled as an optimization problem considering constraints on service latency,
quality loss and fog capacity. The optimisation maintains the trade-off between service
latency and quality loss. They focus on video streaming and real-time object recognition
applications.

Liu et al. [2021] investigated a service scenario of task offloading under a three-layer
service architecture, including resources of vehicular fog, fog server and central cloud. The
three layers are used cooperatively to solve a probabilistic task offloading (PTO) problem.
To solve the PTO problem they introduce an alternating direction method of multipliers
(ADMMs) and particle swarm optimization (PSO), to divide the problem into multiple
unconstrained subproblems that iteratively reach an optimal solution. The objective of
the PTO is to minimize the weighted sum of execution delay, energy consumption, and
payment cost. Liang et al. [Liang et al., 2021] suggest the use of public transport facilities
like buses and taxis as fog nodes to reduce the randomness of vehicle movement with
fixed bus trajectories. To solve the interruption problem caused by vehicle mobility as
well as the problem of delay and reliability loss, they introduced a low-latency information

44 Background

distribution scheme for VFC. They study network topology dynamics to evaluate and predict
the connection status between fog nodes and the adjacent vehicles. The scheme recalculates
an optimized relay route for the vehicle if a fog node finds that a vehicle may move outside
its communication range in a future period.

Tan et al. [2022] decomposes the joint optimisation problem into decomposed sub-
problems of task offloading and resource allocation. The task offloading problem decides
where the task is to be executed whereas the resource allocation problem characterises how
much computation and communication resources are allocated to the tasks. They develop
a decentralised convex optimisation approach that decomposes a holistic Mixed Integer
Non-Linear Problem (MINLP) into a hierarchy of convex optimisation problems. The
optimisation criteria include the total latency of all tasks and the energy consumption in
both vehicles and RSUs. They also presented the convexification procedure to transform the
discrete optimisation problem for task offloading into a continuous convex one. Probabilities
for offloading targets replace the integer design variables of deterministic task offloading
targets. de Mendonça et al. [2022] investigates the trade-offs on the operation of fog nodes
under different vehicle densities and network conditions and formalizes a Time Constrained
One-Shot Open First Price Auction for resource allocation in VFC. They also conclude that
current wireless network standards may dictate processing limits despite the availability of
processing power of fog nodes.

Qiao et al. [2018] considered advanced driver assistant systems and autonomous driving
as the use case for a distributed and collaborative task offloading scheme with a guarantee of
low communication and computation latency. They work on removing redundant computation
tasks based on task similarity and computation capacity. Vehicles are partitioned into the task
computing sub-cloudlet to provide underutilized communication and computation resources.
Vehicles with lesser similarities are partitioned into the task offloading sub-cloudlet to assign
their computation tasks to edge infrastructures. Table 2.2 presents all the publications
summarised in this section along with the task allocation problem and the optimising metric.

2.4 Literature Review 45

Table 2.2 List of publications focusing on task allocation for latency sensitive applications in
VFC.

Papers Task allocation problem Optimising Metric

Yadav et al. [2020] Hierarchical model which consists
of cloudlet nodes or mini data cen-
tres comprising of RSUs, gateway
routers and set-top boxes.

Minimise energy consump-
tion and service latency.

Dai et al. [2019] Introduced a cross layer, two-tier
infrastructure using the small cell
BS and RSU for the task offloading.

Maximise system utility.

Ma et al. [2019] Platoon-assisted vehicular edge
computing system based on the sta-
bility of the platoon in vehicular
networks.

Optimises price decisions and
computing resource alloca-
tion.

Zhao et al. [2019] Designed a collaborative optimisa-
tion scheme where offloading de-
cisions are made through a game-
theoretic approach and resource al-
location is achieved using the La-
grange multiplier method.

Task processing delay, cost of
computation resource, and the
normalisation factor.

Zhu et al. [2019] An event-driven dynamic task allo-
cation framework.

Minimise average service la-
tency and overall quality loss.

Liu et al. [2021] To solve a probabilistic task offload-
ing (PTO) problem under a three-
layer service architecture.

Minimise the weighted sum
of execution delay, energy
consumption, and payment
cost.

Liang et al. [2021] Solve the interruption problem
caused by vehicle mobility as well
as the problem of delay and relia-
bility loss.

Minimise latency.

Tan et al. [2022] Decomposes the joint optimisation
problem into decoupled subprob-
lems of task offloading and re-
source allocation.

Minimise total latency and en-
ergy consumption.

Qiao et al. [2018] A distributed and collaborative task
offloading scheme with a guarantee
of low communication and compu-
tation latency.

Low communication and
computation latency.

46 Background

2.4.7 Data-centric applications

Table 2.3 List of publications focusing on task allocation for data-centric applications.

Papers Task allocation problem Optimising Metric

Shi et al. [2015] Present an alternative to the hierar-
chical view on fog-computing by
enabling device clouds to interact
in a P2P fashion with smart de-
vice/sensor clouds.

Enabling seamless access be-
tween smart devices and sen-
sors and mobile device re-
sources using the IoT proto-
col CoAP.

Nazmudeen et al.
[2016]

Framework for distributed data
aggregation between sensors and
Smart Grid Cloud applications.

Fog-based approach for data
processing outperforms tradi-
tional approaches in-terms of
increasing the virtual capac-
ity of PLC and improved re-
sponse times.

Oueis et al.
[2015a]

Algorithm for fog cluster formation
and load balancing is designed for
computation offloading on small
cell clusters.

Proposed a joint optimisation
of computational and radio
resources that minimises the
power consumption per user
while meeting all the latency
constraints imposed by each
user.

Yu et al. [2018] Study joint application placement
and data routing to support all data
streams with both bandwidth and
delay guarantee.

Proposed algorithms greatly
improve the quality-of-
service of the IoT appli-
cations compared to the
heuristics.

Ni et al. [2018] Fog assisted secure data-
deduplication scheme. Chameleon
hash function is used for contribu-
tion claim and reward retrieval.

To improve communication
efficiency.

These applications are also crucial for managing the enormous data generated in the IoT
ecosystem. Some important works related to the data-centric application are:

2.4 Literature Review 47

In [Nazmudeen et al., 2016] a framework for distributed data aggregation between
sensors and Smart Grid Cloud applications is introduced. Currently, the big data collected
from consumers is stored in a centralized place for processing and forecasting the energy
demand. This becomes a bottleneck for efficient data collection due to the limited bandwidth
capacities of power line communication. Their fog-based approach to data processing
outperforms traditional approaches in terms of increasing the virtual capacity of PLC and
improved response times.

The data flow between distributed nodes in Fog computing affects bandwidth usage
and service latency and is an important consideration in service provisioning. In [Oueis
et al., 2015a], an algorithm for fog cluster formation and load balancing is designed for
computation offloading on small cell clusters. The small cell cloud cooperates to form
computation clusters subject to momentary and local resources available, base station deploy-
ment scenarios, offloaded applications delay constraints, and power consumption budgets.
They propose a joint optimization of computational and radio resources that minimizes the
power consumption per user while meeting all the latency constraints imposed by each user.
The algorithm has a customizable design where metrics, scheduling rules, and clustering
objectives can be set according to specific applications and network requirements.

Application provisioning in Fog computing comprises two sub-problems node selection,
for local processing as well as for potential forwarding or routing. Then optimal path needs to
be formed for the in-network processing of data. In [Yu et al., 2018], the authors present both
single and multiple application provisioning in an IoT environment. For multiple applications,
they consider both parallel processing using multiple instances as well as non-parallelizable
applications. Vehicular micro cloud has been studied as virtual edge servers for efficient
connection between cars and backend infrastructure in [Hagenauer et al., 2017]. They
use map-based clustering at intersections, as intersections have a line of sight in multiple
directions which results in better connectivity between the Cluster Heads (CHs) and other
cluster members. Even though they primarily focus on cluster creation and cluster head
selection, they evaluate a data collection application, with varying data aggregation rates at
the CH.

Few papers have considered user mobility, specifically in mobile-sensing based appli-
cations. Ni et al. [2018] proposed a fog-assisted crowdsensing based framework by which
tasks are allocated to users based on user mobility. They also consider another important
issue in mobile crowdsensing, ie. a fog-assisted secure data-deduplication scheme to improve
communication efficiency. They also address another contradictory problem, where a user
providing duplicate data also needs to be rewarded, as this data increases trustworthiness.

48 Background

For this issue, they use Chameleon Hash Function by which mobile users can claim their
contribution and receive rewards.

Both multi-source data acquisition and distributed computing in Fog-computing based
intelligent vehicular networks are studied by [Zhang et al., 2017]. They introduce a hierar-
chical, QoS-aware resource management architecture, but consider the Fog servers as static.
They discuss the four functions of building regional cooperative fog computing-based IoV
architecture to deal with the big data generated in smart cities. the functions include mobility
control, multi-source data acquisition, distributed computing and storage, and multi-path
data transmission. The hierarchical resource management model includes both energy-aware
and QoS-aware resource management. Table 2.3 summarises the publications discussed in
this section along with the task allocation problem addressed and the optimising metric that
is targeted.

2.5 Summary: Challenges and Limitations

This chapter first presented the detailed background of the evolution of VANET to the
IoV ecosystem where vehicles are utilised as processing and communication infrastructure.
We also give details on VFC architecture, applications for vehicular use cases and the
suitability of service placement in the VFC ecosystem. We then give a detailed outlook on
key challenges involved in the application placement in the VFC scenario. We first discuss
the main goal of task offloading in VFC which is to effectively distribute applications over
the fog nodes to improve the QoS by reducing task response time and improving network
bandwidth and computation resource utilization. We then extend on node selection and
service mapping techniques that need to be adapted to determine the most appropriate
node for service deployment. We then give details on flexible service models, service
discoverability, advanced QoS/QoE and service migration required in adopting services on a
distributed and dynamic VFC platform.

The background also gives details on mobility models for mobility prediction of vehicles,
which is an important parameter to consider for leveraging the under-utilised vehicular
resources. Even though the vehicular communication networks are not the primary focus
of this research work, it is important to study VRATs and communication management
to understand how vehicular networks operate and what are the resource limitations and
shortcomings of the moving network. Next, a very detailed literature review has been
presented with a focus on fog computing and VFC architecture, the feasibility of using
fog computing principles for leveraging vehicular resources and discussed the use cases
considered in the literature. We also discuss works undertaken in introducing programming

2.5 Summary: Challenges and Limitations 49

models for future internet applications. We discuss the works undertaken to study the
feasibility of using vehicles as infrastructure. To the best of our knowledge, the feasibility
studies for using vehicles as infrastructure are very limited. The stability and mobility
patterns of vehicles need to be studied to build service models and placement schemes
relevant to the VFC scenario.

We give a very detailed review of task allocation and scheduling in both fog and VFC
paradigms. We classify the recent works based on the QoS objectives and application types.
Based on our literature review, we observed the following gaps in the literature:

• We also observed that many important schemes and algorithms in the VFC ecosystem
consider very simplistic mobility models. They either consider parked vehicles or taxis
and buses as the fog nodes which have much more predictable mobility patterns. Most
existing works do not consider the dynamics and mobility patterns of vehicles with
respect to other vehicles in the vicinity. There is also limited work undertaken to study
the predictability of vehicular flow in urban city centres, and the estimated computation
and communication capacity of moving vehicle clusters. We address this research gap
in RQ 1. How feasible is it to use vehicle clusters for service execution? How to
estimate the aggregate computation and communication capacity of these vehicle
clusters?

• Secondly, many existing works on VFC consider scenarios, where vehicles are coupled
with RSUs, and computation is carried out on these vehicle nodes with tight coupling
and management from stationary nodes. Our work studies service placement on
moving vehicles, where closeby vehicles are utilised for the service execution. In some
applications with a local context, the end-to-end application is executed entirely on
the vehicle clusters. We address this research gap in RQ 2. How can closely moving
vehicles be used for service provisioning?

• Thirdly, most existing works consider static services with pre-determined CPU and
memory requirements. These service models are not suitable for the dynamic vehicular
network, especially with node and link failures due to the mobility of nodes. In
our work, we introduce flexible and scalable services that increase the resilience of
the service and utilise heterogeneous resources on different vehicular nodes. We
address this research gap in RQ 3. How to resolve the vehicle cluster selection,
service scaling, and service placement problem using community detection and
graph-based algorithms?

• There are limited works undertaken using real data from the vehicular testbed. We
use a federated learning scheme to implement an object detection application for

50 Background

detecting pedestrians and cyclists using video data from the testbed. We address
this challenge in RQ 4. Can a federated-learning-based scheme be introduced to
deploy a distributed object detection service using video data from multiple video
sources?

Chapter 3

Macroscopic and Microscopic Mobility
Modelling and System Model for the
Service Placement Problem

3.1 Introduction

The future generation of vehicles will have both increasing computational demands due to the
adoption of compute-intensive applications as well as would have powerful computational
resources in the form of System on Chips (SoC) [MEOLA, 2020]. Many of these smart
vehicles will use a lot of the processing capacity for self-driving tasks including moving
object tracking, path planning, route planning, etc. In our model, we encourage the use of
inbuilt sensors in moving vehicles for collecting data as well as using unused processing
capacity for hosting applications to process the collected data. Thus, the mobility and
behaviour patterns of vehicles become an important parameter in service placement decisions
in our work. A lot of existing works that introduce procedures and methods to utilise vehicles
for their computational capacity consider the mobility of vehicles as user equipment with
respect to stationary RSUs. They use sojourn time as a measure of the time spent by a vehicle
in a cell or coverage area while using a communication channel [Wang et al., 2019]. In
other cases, only parked vehicles [Zhang et al., 2019b] or vehicles with a more predictable
trajectory like buses and taxis are considered as potential fog nodes [Ge et al., 2020].

With the advent of smart vehicles, the mobility patterns of vehicles can be identified
and utilised to study congestion patterns in urban traffic. The influx of communication
capabilities has led vehicles to be independent communication networks that we aim to
leverage for service placement in this work. A major drawback in utilising vehicular networks

52 Macroscopic and Microscopic Mobility Modelling

as infrastructure is the lack of vehicular mobility data including macroscopic features for
private vehicles. To fill this gap of unavailability of realistic vehicular mobility data we
focus on the following aspects of urban vehicular mobility: 1. We show that vehicular
flows can be predicted at intersections using their density data. 2. We simulate microscopic
vehicular mobility models, calibrating them with real macroscopic data. 3. We study the
relationship between vehicular speeds and vehicular occupancy/density to understand if there
are threshold speeds at which slow-moving vehicular clusters can be initiated. 4. We also
estimate the available aggregate communication and computation resource capacity of these
moving vehicle clusters.

We identified a gap in recent works, where the relative mobility of vehicles with respect to
neighbouring vehicles is not considered to make task offloading decisions on closely-moving
vehicles. Either analytical mobility models are introduced in the service placement model
or the mobility of vehicles is considered as part of simulations or vehicular traces, which
includes parameters like location and speed [Zhang et al., 2019a]. In some cases, a very
simplistic mobility model is considered with all vehicles travelling at the same speed and in
the same direction [Dai et al., 2019]. In this chapter, we use macroscopic vehicular data at
intersections to study the predictability of vehicular flows and use these macroscopic mobility
data to calibrate the microscopic mobility model for the vehicles.

We first present the motivation for using moving vehicles as infrastructure for service
placement in §3.2. As part of the motivation, we introduce a generalised vehicular flow
model at an intersection to classify traffic flow into six different driving profiles. We
employ multivariate linear regression (MVLR) model that considers vehicular flow for seven
consecutive weekdays to predict the traffic flow in §3.2.1. To compare the performance of
our model with competing schemes we use a random forest-based regression model and
ARIMA model for time-series forecasting. As part of the motivation, we also analyse the
aggregate communications and computation capacity estimation for a vehicular network in
§ 3.3.

Even though the density or occupancy of vehicular traffic is an important parameter
in vehicular mobility studies, we have not identified existing works in VFC literature that
considers vehicular density as a parameter for service placement. To study the level of
congestion in urban traffic, we take data from the California Department of Transport
(Caltrans) [Author, 2020] dataset from detectors on the I-405 freeway, known as one of the
busiest freeways in the USA. We provide the speed versus occupancy graphs to analyse the
usage patterns of freeways on different days of the week in §3.4. We also utilise a level of
service (LOS) parameter to understand traffic conditions at different times of the day. In §3.5,
we provide a brief on how microscopic trajectories are simulated to generate the CCP of the

3.2 Motivation 53

vehicles, which is an important parameter for our service placement problem. Finally in §3.7,
we define the system model, the network topology, and the service model used in the service
placement scheme introduced in this dissertation.

3.2 Motivation

Our work is motivated by the increasing number of smart cars with embedded sensors
that can connect to other cars, and the unresolved issue of vehicle congestion—especially
in urban areas. To make the service scaling and placement scheme more robust we first
provide justification that placing services on a vehicle cluster in order to provide time and/or
location-sensitive sensing functionality is a viable proposition.

This chapter focuses on the following aspects to study vehicular mobility and the use of
mobility patterns for vehicular cluster selection and placement:

1. Predictability of vehicular flows at intersections: We first study whether traffic flows
in an urban setting are likely to be predictable over the course of a day. We use an
MVLR-based scheme for predicting vehicular flows. We also highlight comparable
mobility schemes in the literature and select random forest and ARIMA models as the
competing schemes for predicting vehicular flows.

2. Aggregate communication and computation cost estimation: We study whether a
slow-moving cluster will accommodate sufficient communications capacity between
vehicles to facilitate service operation.

3. Density of vehicular traffic in highly congested urban areas: We study how closely
spaced vehicles are in congested urban areas and if there is a threshold speed at which
vehicle clusters can be initiated. The vehicular density is an important parameter to
use in moving vehicles for executing distributed services. As services are broken
down into data-dependent tasks, these tasks are required to be placed on slow-moving
vehicles, to reduce service failures due to high mobility. We use California Transport
data to observe the patterns of vehicular speeds in correlation with vehicular density
for weekday and weekend traffic. We also use a LOS parameter to study the traffic
conditions at different times of the day.

3.2.1 Predictability of vehicle flows

We find that vehicular flow in urban traffic zones is predictable throughout the day. We also
show that the vehicular density pattern at an intersection follows a similar pattern of peak and

54 Macroscopic and Microscopic Mobility Modelling

A A'

B

B'

C C'

Fig. 3.1 Flow model at the selected intersection in Dublin with six different traffic flows from
A to B, A to C, C’ to A’, C’ to B, B’ to C and B’ to A.

off-peak flow through different weeks. We use macroscopic vehicle density data to create
a generalised flow model for an intersection. This helps in classifying traffic flow into six
different driving profiles. The vehicle clusters can then be initiated at the predicted peak
traffic times, on any of the traffic flows with an assured density flow.

0 5 10 15 20 25
Time (hours)

0

100

200

300

400

500

Fl
ow

 (v
eh

/5
m

in
s)

Actual
Predicted

(a) LR model for traffic prediction every 5 min-
utes

0 5 10 15 20 25
Time (hours)

0

200

400

600

800

Fl
ow

 (v
eh

/1
0m

in
s)

Actual
Predicted

(b) Linear regression model for traffic prediction
every 10 minutes

Fig. 3.2 Traffic Prediction using real vehicle density data; these data depict the consistent
and predictable vehicle densities at the intersection using a linear regression model.

We first focus on a road network near Dublin Airport, using the vehicle flow data captured
by the Transport Infrastructure Ireland Traffic Data website 1. A vehicular flow is defined
as the number of detected vehicles passing a point in a period of time. The idea is to use
the stochastic traffic flows at an intersection to predict the trajectory of a vehicle cluster. As
depicted in (Fig. 3.1), we consider northbound flow from A to B and A to C, southbound
flow from C’ to A’ and C’ to B, eastbound traffic from B’ to C and B’ to A. We then employ
a multivariate linear regression (MVLR) model to predict the traffic flow from one segment

1https://trafficdata.tii.ie/publicmultinodemap.asp, available: 6/02/22.

3.2 Motivation 55

0 5 10 15 20 25
Time (hours)

0

100

200

300

400

500

Fl
ow

 (v
eh

/5
m

in
s)

Actual
Predicted

(a) Multivariate linear regression model for traffic
prediction every 5 minutes

0 5 10 15 20 25
Time (hours)

0

200

400

600

800

Fl
ow

 (v
eh

/1
0m

in
s)

Actual
Predicted

(b) Multivariate linear regression model for traf-
fic prediction every 10 minutes

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (hours)

0

200

400

600

800

1000

1200

1400

Fl
ow

 (v
eh

/1
5m

in
s)

Actual
Predicted

(c) Multivariate linear regression model for traffic
prediction every 15 minutes

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (hours)

50

100

150

200

250

300

Fl
ow

 (v
eh

/1
5m

in
s)

Actual
MVLR
Random forest

(d) Multivariate linear regression model for traf-
fic prediction every 15 minutes, April 2020

0 5 10 15 20 25
Time (hours)

50

100

150

200

250

Fl
ow

 (v
eh

/1
0m

in
s)

Actual
MVLR
Random forest

(e) Comparison of MVLR with random forest for
traffic prediction every 10 minutes, April 2020

Fig. 3.3 Comparison of MVLR with competing schemes.

56 Macroscopic and Microscopic Mobility Modelling

0 100 200 300 400 500 600 700
Time (minutes)

102

103

Ve
hi

cle
 D

en
sit

y

Northbound Traffic: 11thFeb2019
Northbound Traffic: 18thFeb2019
Northbound Traffic: 25thFeb2019
Northbound Traffic: 4thMarch2019

(a) Vehicle density recorded every 10 minutes

0 50 100 150 200
Time (minutes)

102

103

Ve
hi

cle
 D

en
sit

y

Northbound Traffic: 11thFeb2019
Northbound Traffic: 18thFeb2019
Northbound Traffic: 25thFeb2019
Northbound Traffic: 4thMarch2019

(b) Vehicle density recorded every 30 minutes

0 5 10 15 20
Time (hourly)

0

1000

2000

3000

4000

5000

Fl
ow

(v
eh

/h
ou

r)

Lane 1: 27thAug2019
Lane 2: 27thAug2019
Lane 3: 27thAug2019
Aggregate: 27thAug2019

(c) Vehicular flow over a period of 24 hours

0 5 10 15 20
Time (hourly)

55

60

65

70

Sp
ee

d(
m

ph
)

Lane 1: 27thAug2019
Lane 2: 27thAug2019
Lane 3: 27thAug2019
Aggregate: 27thAug2019

(d) Vehicular speed over a period of 24 hours

Fig. 3.4 Vehicle density, vehicular flow and vehicular speed recorded in different time
intervals.

3.2 Motivation 57

to the other, for all the six flows at the intersection. To understand the predictability of the
traffic flows, we use the vehicle flow data, collected in the interval of 5, 10 and 15 minutes
(based on the estimated travel time between any of the six points at peak and off-peak traffic
time of the day) for a period of 24 hours. This data is used to model a generalized traffic flow
model for an intersection. We predict the vehicle density at point B taking into consideration
the vehicle density at point A, by first using a simple linear regression model, then consider
traffic flow from seven consecutive weekdays to use a MVLR model. We analysed the data
to study how vehicular flow patterns change over time. We noticed that vehicular flow varies
significantly between weekdays and weekends. Hence, we consider only weekday traffic
data. We also analysed that traffic flow also varies significantly during bank holidays and
holiday season. Thus, we chose a window of seven consecutive weekdays as it generated
most accurate results for vehicle density prediction. To compare the performance of the
MVLR model with competing schemes we use random forest-based regression model and
an ARIMA model for traffic forecasting. We plot the actual and predicted incoming vehicle
density at point B, for an interval of 5 minutes (Fig. 3.2a) and 10 minutes (Fig. 3.2b). The
R2 score for the Linear Regression model is 0.915 for a period of 5 minutes and 0.945 for
10 minutes respectively. This way, vehicles can be clustered in six different driving profiles
for service execution, corresponding to the above-mentioned six flows. Table 3.1 depicts the
r-value, p-value and the standard error for all the six flows.

We then use the vehicle flow data for the last 7 consecutive Mondays to predict a single
flow, from A to B, using MVLR for data collected at an interval of 5 (Fig. 3.3a), 10 (Fig. 3.3b)
and 15 (Fig. 3.3c) minutes. The same days in the week were studied to have similar patterns
of mobility, within a range of a month to two, hence data for 7 consecutive Mondays was used.
The predicted and actual vehicle flow at point B is depicted in Fig. 3.3a, 3.3b and 3.3c. The
R2 score of the prediction was 0.937, 0.948 and 0.992 for 5, 10 and 15 minutes respectively.
We also considered the vehicle flow data during the period of COVID-19 lock-down, from
1st to 8th April 2020, to analyze the pattern of flow during the Coronavirus restrictions in
Ireland. The restrictions resulted in much less traffic density at the intersection. Fig. 3.3e and
Fig. 3.3d depict predicted vehicle flow using MVLR, considering seven consecutive days
during the lock-down, with an R2 score of 0.98 and 0.987.

We also compare the prediction of MVLR with random forest regression, as depicted in
Fig. 3.3e and Fig. 3.3d, which results in comparable prediction with an R2 score of 0.979
and 0.997. We also compared the MVLR and random forest regression model to an ARIMA
model for time-series forecasting. All the models are evaluated using the root mean squared
error (RMSE), R-squared error, and mean absolute error (MAE) that are summarised for
each model in Table 3.2. The random forest performs marginally better than MVLR. MVLR

58 Macroscopic and Microscopic Mobility Modelling

Table 3.1 The r-value, p-value and standard error for predictability of the six flows at the
intersection.

Flows Slope Intercept r value p value Standard error
A ->B 0.28 75.14 0.81 4.45 0.02
B’ ->C 2.30 -86.36 0.85 4.00 0.12
C’ ->A’ 1.03 100.14 0.97 2.45 0.02
B’ ->A’ 0.01 64.38 0.75 2.83 0.15
C’ ->B 0.38 85.02 0.87 1.38 0.02
A ->C 1.49 -27.35 0.96 1.01 0.04

Table 3.2 Traffic prediction using three different comparative models using real vehicle
density data at the intersection in Dublin.

Technique used RMSE R-squared MAE

Multivariate Linear Regression 11.70 0.97 8.1
Random Forrest 3.80 0.99 2.96
ARIMA time series forecasting 18.57 0.69 18.07

is a simple, linear model that predicts vehicular flows accurately whereas random forest is
an ensemble learning model, which is more complex but generally a more accurate model.
We use MVLR for traffic prediction, however, both models can be used interchangeably for
traffic prediction. The ARIMA model, which is a standard model for time-series forecasting
performs the worst out of the three schemes and has an R2 score of 0.695. The logic of using
the comparative schemes and other mobility models introduced in the literature is detailed in
the supplemental pages. We also plot the overall vehicular flow data for four consecutive
Mondays, recorded in an interval of 10 minutes (Fig. 3.4a) and 30 minutes (Fig. 3.4b). The
figures depict the consistent and predictable vehicle density data for both northbound and
southbound traffic for all four weeks.

3.2.2 Comparative mobility models

To predict the vehicular flows at intersections, we introduce a multivariate linear regression
(MVLR)-based scheme that accurately predicts vehicular flows at an intersection. To compare
our schemes to existing models, we did a literature survey specific to mobility models in
vehicular fog computing (VFC) and traffic flow modeling studies. Lee and Lee [2020]
formulated the problem of allocating the limited fog resources to vehicular applications such
that the service latency is minimized, by utilizing parked vehicles. The paper considers a

3.2 Motivation 59

simple mobility pattern where vehicles are generated based on sine functions with a period
of 10-time slots. For the realistic vehicular mobility scenario, they used vehicular mobility
traces in Zurich to model vehicles arriving and departing from parking lots. In both cases,
the model is not comparable to our mobility model. Zhou et al. [2020] proposes a novel
resource management and task offloading framework for VFC-enabled autonomous driving.
In this work, a time-slotted model is adopted where many vehicles or potential fog servers
in the coverage area of base stations vary in different slots due to the mobility of vehicles.
They assume vehicles to be stationary through consecutive time slots and do not consider real
vehicular data to model mobility. Noorani and Seno [2018] proposed a method to improve
data sharing in vehicle-to-vehicle communications to cover communication coverage holes.
They propose intersection-based routing by leveraging fog computing and software-defined
networks. However, the intersections have been simulated using SUMO and OpenStreetMaps.
They do not use real data to study vehicle mobility behavior at intersections.

Xiao et al. [2019] do not study service provisioning on moving vehicles but analyze the
potential computing capacity of a vehicular fog. They take microscopic traces specifically
of taxis in Beijing. Even though they have considered many intersections in their study,
their mobility modelling is not comparable to our flow model of the intersection. Our model
uses macroscopic vehicular data to make inferences on the predictability of vehicular flow
and the opportunistic clusters are initiated in an area of dense traffic and are not specific to
taxis. The percentages of vehicles that are taxis would be much lower and would be widely
spaced to other taxis, resulting in lower density and sparse communication between vehicles.
Wang et al. [2016] suggests the use of both time-series methods based on historical data and
machine learning methods for short-term traffic prediction. The time-series methods forecast
the future traffic flow via internal statistical features of observed data sequences. To compare
the performance of our MVLR-based flow prediction model for the intersection, we use both
random forest regression and ARIMA modelling for time-series forecasting.

Random Forest (RF) is a supervised learning algorithm and is an ensemble learning
method. It uses the Bagging technique of data randomization and uses multiple Decision
Trees such that all calculations are run in parallel and there is no interaction between the
Decision Trees. The randomness is first introduced in the model by creating k unique sample
sets of training data, which helps in making decision trees more uncorrelated. The second set
of randomization comes from splitting each node in every Decision Tree using a random set
of features. RF has been used for traffic flow prediction in literature [Liu and Wu, 2017] and
is a powerful technique for comparing against our linear MVLR approach. The RF achieves
an r-squared value of 0.99 in comparison to our approach and performs marginally better
than our MVLR approach with an r-squared value of 0.97. RF also has a disadvantage in that

60 Macroscopic and Microscopic Mobility Modelling

Table 3.3 Comparative mobility modelling schemes in literature.

Comparative schemes
Real vehicular

data used Scenario
Comparable to
our flow model

Lee and Lee [2020] Yes Parking modeling No

Zhou et al. [2020] No Not specified No

Noorani and Seno [2018] No
Simulated for inter

sections No

Xiao et al. [2019] Yes
Microscopic traces

used No

Wang et al. [2016] Yes
Macroscopic mobility
model for intersections Yes

it cannot extrapolate and the predicted values are never outside the training set value for the
target variable whereas a linear regression model can extrapolate based on the data. It is safe
to say that the two models can be used for short-term traffic prediction interchangeably.

We also use the ARIMA model which stands for autoregressive integrated moving
averages. ARIMA model is widely used for time series forecasting [Alghamdi et al., 2019],
and we use the model for non-stationary, short-term prediction for vehicular flows. We
first convert the non-stationary data to stationary data by differencing and then testing the
normality of the dataset. After pre-processing the data we use the ARIMA model to fit the
time series. However, the R squared error is much lower for the ARIMA model (0.69) and
the RMSE and MAE scores are much higher compared to the MVLR and RF models.

3.3 Aggregate Communications and Computation Capacity
Estimation

Due to the novelty of using moving vehicles as infrastructure, we estimate the communi-
cation capacity of a vehicular network. Estimating the capacity of a vehicular network is a
challenging problem to solve as it depends on several factors including the average number of
simultaneous transmissions, link capacities, the density of vehicles, mobility in the network,
the distance between vehicles, and the transmission range of the vehicles. Our previous
analysis shows that the problem of less vehicular density causing a delay in communication
is not prevalent in urban centers, and even freeway traffic flow in some cases. We also
demonstrated that most traffic flow prediction can be done effectively. The estimation of the

3.3 Aggregate Communications and Computation Capacity Estimation 61

capacity of the vehicular network has been done in great detail via customized theoretical
studies [Chen et al., 2018; Grossglauser and Tse, 2001; Mao et al., 2013]. We calculate the
effective capacity of the vehicular network obtained using a cooperative scheme from Chen
et al. [2018].

Theoretical Capacity: We consider the closed-form expression of effective available
capacity specified by Chen et al. [2018], which uses a cooperative scheme to derive the
communication capacity for a vehicular network. The cooperative strategy uses both Vehicle-
to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication to increase the capacity
of vehicular networks. They built an analytical framework to model the data dissemination
process and derive a closed form expression of the achievable capacity (BWmax), given as:

BWmax =
L
d

min{WI(1−exp−2ρrI),WI(1−exp−pρ2rI)+
WV .c2(d−2rI)

c2.RC + p− pexp−2pro
+exp−pρ2ro}

(3.1)
where c2 = (1− p)pρ(1− exp−ρ2ro). In this expression, L is the length of the highway
segment, d is the distance between RSUs, WI and WV are the data rate for V2I and V2V
communication, respectively, ρ is the density of vehicles per meter, p is the proportion of
vehicles with download requests in the range [0,1], rI is the range of infrastructure points,
and ro is the radio range of vehicles. RC is the sensing range for the medium access control
protocol. We calculate the available capacity for this case, taking the value for L as 100
km, d as 5, 10 or 15 km, WI as 20 Mb/s, WV as 2 MB/s, ρ as 0.03, 0.04, or 0.05. We take
the radio ranges as typical values for Dedicated Short-Range Communication (DSRC) such
that rI is 400 m and ro is 200 m. The value of RC is taken as 300-400 m. For these values,
the effective available capacity lies in the range of 5-20 Mb/s with different proportions of
vehicles participating in the scheme. The density of vehicles, the use of cooperation schemes
and the number of participating vehicles have a direct impact on this effective available
capacity.

The potential computation capacity of a vehicle cluster is dependent on how dense the
cluster is, in terms of the number of vehicles that are optimal for placement of a particular
service request. The computation capacity is also based on how slow the vehicle cluster is,
which can be predicted by the occupancy of a road segment, calculated as how much time
vehicles take to pass over a detector. This time can also be derived as the sojourn time of
vehicles with the RSU. According to the study conducted by Xiao et al. [2019], predicted
computation capacity is higher than 650 Gflops with a probability of 60% when the range of
vehicle clusters is set to be 5m, and throughout the day the computation capacity is above
this value. When the range is 10m, the predicted capacity is 1800 Gflops. With the increasing

62 Macroscopic and Microscopic Mobility Modelling

number of smart vehicles, the number of sensors, video cameras, and computation capacity
should increase significantly in the next decade. This means that the infrastructure will exist
to collect data, process it on the resource pool of a vehicular cluster and send it to the cloud
for further processing. However, this infrastructure cannot be exploited unless services can
be placed on it in such a way that the overall service objectives are met.

3.4 Mobility Patterns of Vehicles in Highly Congested Ur-
ban Areas

Even though it is known that vehicular congestion is a major problem in both urban sections
of the cities and busier freeways, it is crucial to study the mobility patterns of vehicles to
decide in which sections of the city can vehicular clusters be initiated for data collection and
processing. Our service model requires vehicles to be closely spaced to each other to deploy
the distributed data-dependent applications. Hence, we strictly focus on very slow-moving
vehicles as a high-speed vehicle cluster would lead to more service failures and require many
service re-configurations, increasing the management overhead. The traffic congestion is
estimated using either the density or the occupancy of a road segment. Density is a measured,
spatial quantity that represents the number of vehicles averaged over a spatial distance(per
lane or mile), whereas occupancy is an observed value collected by detectors2. Occupancy is
calculated as the percentage of time in which the vehicles are passing over the detector. We
chose occupancy as a measure to see how closely spaced vehicles are and at what occupancy
do the vehicles become slow-moving or reach a complete breakdown condition.

The speed versus flow (number of vehicles passing a detector) and the occupancy versus
flow graphs are standard traffic theory plots that are commonly used in transport research.
However, we plot the speed versus occupancy graphs to understand the correlation between
how closely spaced vehicles are and if there is a threshold speed at which vehicles come to a
halt. We take the data from the California Department of Transport (Caltrans) dataset from
detectors on the I-405 freeway, known to be one of the busiest freeways in California. We plot
the speed versus occupancy graphs from a detector on the freeway. As can be seen in Fig.3.5,
the speed of vehicles tends to zero for lane 5, declining from 40% to 60% occupancy, whereas
for lane 4, the speed gets at 10 mph after 20% occupancy. Similarly, for lane 3, the speed
gets lower than 20 mph and tends to zero after 35 % occupancy. We do piece-wise fitting
for the speed and can see a breaking point after which vehicular speeds stabilizes to slower
speeds for all lanes and in some cases vehicles stop completely. This highlights that there

2http://pems.dot.ca.gov/

3.4 Mobility Patterns of Vehicles 63

0
2 0
4 0
6 0
8 0

0 2 0 4 0 6 0 8 00
2 0
4 0
6 0
8 0

0 2 0 4 0 6 0 8 0

Sp
ee

d (
mp

h)
 L a n e 1
 P W L 3

 L a n e 3
 P W L 2

 L a n e 4
 P W L 2

O c c u p a n c y (%)

 L a n e 5
 P W L 2

Fig. 3.5 Speed versus occupancy graph for a detector on the I-405 freeway for seven consec-
utive days.

are enough vehicles that are closely spaced in busier road segments, moving at very slow
speeds. This also helps in identifying where and when clusters can be initiated based on the
available vehicular occupancy. However, the threshold speed of vehicles slowing down and
congesting is different for different road sections. It is not practical to infer vehicle speeds
at which clusters can be initiated. Occupancy percentage is a more appropriate measure to
study how closely-spaced vehicles are. The occupancy is also independent of the shape of
road segments.

We have observed that the freeways follow very different occupancy and speeds during
different days of the week. We compared the occupancy versus speed graphs for the same
detector on the I-405 freeway on weekdays (Fig. 3.6 (a)) and weekends (Fig. 3.6 (b)). We
observed that high occupancy is observed only on the weekdays. Such analysis is crucial to
study when can vehicle clusters be initiated and which road segments get congested.

There is another standard way to study the traffic flow conditions. Caltrans PeMS
(https://pems.dot.ca.gov/) provides a parameter called the LOS, which uses vehicle density
to analyze the quality of service or the condition of the traffic along a freeway. The freeway
LOS is a way to classify the traffic condition into a grading system ranging from A to F. The
relationship between LOS, density and the capacity of a freeway is defined in the Highway
Capacity Manual (HCM2010) and is summarized in the table 3.4.

The percentage of vehicles in each LOS profile is plotted for different times of the day
for the I5-N freeway for the first week in August 2019 in Fig. 3.7. As can be noted, there is

64 Macroscopic and Microscopic Mobility Modelling

0
2 0
4 0
6 0
8 0

0 2 0 4 0 6 0 8 00
2 0
4 0
6 0
8 0

0 2 0 4 0 6 0 8 0

 A v e r a g e
 P W L 2

 L a n e 2
 P W L 2

Sp
ee

d (
mp

h)

 L a n e 4
 P W L 2

O c c u p a n c y (%)

 L a n e 6
 P W L 2

(a) Speed versus occupancy graph for a detector on the I-405 freeway on weekdays

0
2 0
4 0
6 0
8 0

0 5 1 0 1 5 2 00
2 0
4 0
6 0
8 0

0 5 1 0 1 5 2 0

Sp
ee

d (
mp

h)

 A v e r a g e
 L i n F i t

 L a n e 2
 L i n F i t

 L a n e 4
 L i n F i t

O c c u p a n c y (%)

 L a n e 6
 L i n F i t

(b) Speed versus occupancy graph for a detector on the I-405 freeway on weekends

Fig. 3.6 Speed versus occupancy graphs on weekday and weekend.

3.4 Mobility Patterns of Vehicles 65

10am 2pm 5pm 8pm
Time of the day

0

10

20

30

40
Pe

rc
en

ta
ge

 o
f v

eh
icl

es
LOS A
LOS B

LOS C
LOS D

LOS E
LOS F

Fig. 3.7 The LOS parameter for the I5-N freeway to understand the traffic conditions at
different times of the day. The y axis shows the percentage of vehicles in each grade of LOS.
LOS A depicts virtually free flow to LOS F which represents breakdown condition.

Table 3.4 Relationship between density, volume and the LOS on a freeway.

LOS
Density
(veh/mi/lane) Volume/Capacity Traffic Flow Description

A 0 ≤ x = 11 x ≤ 0.3
Virtually free flow; completely
unimpeded.

B 11 ≤ x ≤ 18 0.3 < x ≤ 0.5
Stable flow with slight
delays;reasonably unimpeded.

C 18 ≤ x < 26 0.5 < x ≤ 0.71
Stable flow with delays; less
freedom to maneuver.

D 26 ≤ x < 35 0.71 < x ≤ 0.89 High density, but stable flow.

E 35 ≤ x < 45 0.89 < x ≤ 1.0
Operating conditions at or near
capacity; unstable flow.

F 45 ≤ x 1.0 ≤ x
Forced flow, breakdown
conditions.

66 Macroscopic and Microscopic Mobility Modelling

a significant percentage of vehicles in LOS E which depicts unstable flow due to near full
density of traffic, and LOS F which depicts flow breakdown conditions. The percentage of
vehicles in LOS E and F constantly increases from 10 am to 5 pm. Almost 20% of vehicles
are in LOS F at 5 pm, which represents breakdown or traffic jam conditions. The percentage
of vehicles increases significantly in LOS A and B at 8 pm, which depicts free flow and a
stable flow of traffic.

This analysis also gives an estimate of available vehicle density at different times of the
day. This also reduces the uncertainty in resource availability and identifies time slots when
it’s viable to initiate a vehicular cluster. The LOS profile of vehicles gives a better idea of
vehicular traffic being in free-flow or stationary condition in comparison to threshold speeds.
We only intend to initiate clusters in areas that are known to have high-density traffic during
certain times of the day.

3.5 Microscopic and Macroscopic traffic trajectory data

The utilization of the predictable vehicle trajectory and available processing capacity requires
knowledge of both the microscopic behaviour of individual vehicles as well as the overall
macroscopic traffic flow dynamics. In our work, we use both macroscopic and microscopic
vehicular data to make predictions on the future trajectory of each vehicle in a region with
dense and slow-moving traffic. Our model uses real macroscopic data to calibrate the
simulation model at intersections to generate microscopic trajectories of vehicles. In essence,
our model provides a way to use minimal data i.e., vehicular flow data, to select a robust
vehicular cluster for service placement. The basis of selecting the vehicular cluster, based on
their historic mobility patterns, is to select vehicles that are more probable to stay together
for the duration of service execution. This will lead to less task failures due to vehicle nodes
leaving the cluster.

From a networking point-of-view, a well connected multi-hop cluster will have multiple
paths from one node to another in the cluster. This will ensure the successful execution
of the distributed service with data-dependent tasks. To ensure the selection of a well-
connected cluster, we use community detection algorithms like Louvain method and Girvan
and Newman method, to identify the most well connected nodes in the vehicular cluster. As
depicted in Fig. 3.8, the urban intersection with more dense and slow moving traffic can be
identified using their speed versus occupancy graphs. Once density is estimated, the vehicular
flows can be predicted using historic mobility patterns of vehicles on different road segments.
Using these vehicular flows, we model the microscopic mobility trajectories of each vehicle.
We first extract road network using Open Street Map (OSM). We then use a road traffic

3.6 Vehicular Fog Marketplace 67

simulator called Simulator for Urban Mobility (SUMO) to model the microscopic trajectory
of each vehicle. We use real vehicle flow data to calibrate the microscopic car-following
model to make it as realistic as possible based on the flow model in §3.2.1. After generating
calibrated traffic data in SUMO, we run a number of simulations to derive the CCP of each
vehicle. The vehicular network is represented as a directed graph. The joint CCP of the
two vehicles is used as the weight of each edge in the graph. The edge weight is used for
selecting nodes that are more probable to stay as members of the vehicle cluster. We evaluate
the quality of the selected nodes, based on a graph centrality measure, which is detailed in
Chapter 5.

The microscopic trajectory of individual vehicles cannot be used explicitly because of
privacy concerns over the use of user trajectory data by third parties. Therefore, to reduce
privacy concerns, microscopic data can be considered at and between specific intersections,
so there is no need to know the trajectory for the entire journey of a vehicle. This method
can be predicted as the joint probability of vehicles starting at a road segment, say RS j, and
ending at the road segment say RSk, expressed as:

P(src = RS j,dest = RSk)

= P(src = RS j).P(dest = RSk)
(3.2)

The macroscopic traffic data includes flow level variables like traffic flow rate, traffic den-
sity, and average velocity of the traffic stream. This data is easier to collect, using the
vehicle counter and cameras commonly installed in cities for traffic management purposes.
Macroscopic models also include deriving the relationship between traffic speed, flow rate,
and density to estimate slow-moving vehicle traffic to initiate vehicle clusters. Most traf-
fic estimation studies utilize both microscopic and macroscopic data to estimate vehicle
trajectories.

3.6 Vehicular Fog Marketplace

The problem of deploying edge servers and utilizing the traffic density in urban centres can
be resolved by introducing a vehicular fog marketplace, where vehicles can temporarily lease
some of their video capturing, sensing, computing, and networking capabilities. This market-
place would include consumers in the form of service providers looking for reliable vehicular
resources to capture and process information. The computational resources they seek can
be used for applications that go beyond our motivating use case of crowdsourcing. Such
additional use cases include intensive machine learning applications that can be implemented

68 Macroscopic and Microscopic Mobility Modelling

Use vehicular
speed versus
occupancy to

estimate traffic
availability

Study
predictability of

traffic flows

Derive road
trajectories
from OSM

Use vehicular
flow data to

calibrate
microscopic

trajectories (in
SUMO)

Run SUMO
simulator to

collect CCP of
different

vehicles on
each road
segment

Use community
detection to

select clusters
based on

derived CCP

Density
estimation

Vehicle flow
predictability Road modelling

Calibration of
synthetic

trajectories

Derive CCP of
available
vehicles

Use community
detection to

select clusters

Fig. 3.8 The process of density estimation, vehicle flow predictability, road modelling,
calibration of microscopic trajectories, to derive CCP of available vehicles and selection of
vehicle cluster.

3.7 Service Scaling and Placement Scheme 69

in a distributed manner. The producers in the form of participating vehicles offer to host
applications that pay a fair price while leasing the least amount of resources. The service
provider aims to process most of the information on the vehicle cluster and collect as much
data as possible, subject to the limitations of the infrastructure made available, collectively,
by the vehicles in the cluster.

The service providers could also be transport or motor authority, willing to collect
surveillance data to improve the traffic and other aspects of the city. Surveying is an expensive
task and requires a lot of human hours and resources. The process of data collection, as well
as processing, can be initiated on moving vehicles, as proposed in our work. These vehicles
can be incentivised by getting free parking or waiving their toll fee, in return for leasing
their resources for service deployment. Thus, a marketplace can evolve based on the historic
performance of service completion by different vehicles. The vehicle owners can also decide
which service to agree to based on the incentives of performing the service. In the longer run,
such a set-up can provide a cheaper way for service providers to extend their infrastructure
and collect ad-hoc data in different locations. It can also provide a means for vehicle owners
to earn credit while they are stuck in urban traffic.

This marketplace has been explored in the context of implementing complex, distributed
machine learning models in an edge computing marketplace [Yerabolu et al., 2019]. The
approach has been compared to job completion time with third-party cloud providers. A
similar marketplace needs to be studied for a moving vehicular cluster use case, in terms of
monetary cost and task satisfaction rate.

3.7 Service Scaling and Placement Scheme

For efficient placement of services on virtualized vehicle resources, we require the RSUs to
act as service coordinators. With this role, the RSU should have knowledge of the system
state of the vehicle cluster which is communicated by the selected CN in that cluster. These
nodes would have high connectivity to all the other nodes within the cluster. The mobility of
vehicles is what makes the service placement problem in vehicular networks different from
the service placement in cloud networks. It makes resource availability a function of time
owing to both resource usage and vehicle dynamics. We formulate the placement of Tasks
on virtualized vehicle nodes as an optimisation problem. The solution of the optimisation
problem is a service configuration mapped onto a cluster formed between closely associated
vehicles, with efficient communication links for end-to-end service execution.

70 Macroscopic and Microscopic Mobility Modelling

Processed data

RSU CN Vehicle
ClusterClient

Resource
update

Service
Request

CN
selection

Type graph,
 min & max

#TIs

Processed data

Resource
request

Actor

[if placement
is successful]

Processed data
& unplaced TIs

Processed data
& unplaced TIs[if placement

is unsuccessful]

Cluster
Selection

Type graph, min & max
#TIs

Resource
update

Fig. 3.9 System Model depicting the management between the RSU, CN and the vehicle
cluster.

3.7.1 System Model

In this section we first describe the terminology of the system model; then we present the
network topology and the distributed service model.

3.7.1.1 Terminology

The terminology used in the system model is presented below:

• Vehicle Clusters: We consider vehicle clusters as micro cloud-like entities [Higuchi
et al., 2018], whose members (vehicles) provide resources used to execute tasks that
form a distributed service.

• Control Node (CN): The CN is a vehicle in the cluster that acts as a gateway between
the cluster and RSUs; is elected based on its connectivity to the RSU and other cluster
nodes (this election process is outside the scope of this chapter). It collects status
information about the cluster, including available resources at nodes, link capacities
and it also receives service placement requests from the RSU/client.

3.7 Service Scaling and Placement Scheme 71

• RSUs: The vehicle nodes in a cluster are supported by resource-rich RSUs, which
connect the cluster to the Internet. The management of services between the RSU, CN,
and the vehicle cluster is depicted in Fig. 3.9. The RSU knows the system state of the
cluster, which is communicated to it by the CN.

• Task: Tasks are data collection or processing functions that can be scaled out as
multiple task instances (TIs) to realise a distributed service. For example, a distributed
service to realise pedestrian counting may in its specification request as many vehicle
cameras as possible for monitoring a given stretch of road. The TIs are the smallest
unit that a task can be split into and that can be mapped to a vehicle node.

• Service: We consider distributed services with unidirectional, acyclic control, and
data-flows. These services are specified as hierarchies of different task types, each with
different functionality. Each task is typically deployed as several TIs, which can be
dynamically and flexibly scaled (in terms of size per TI (up) and number of TIs per task
(out)) according to resource availability and stability of the vehicle cluster at a given
instant. We assume a linear chain of data-dependent tasks represented as a Type graph,
in Fig. 3.10. This Type graph is sent as an input to the service placement function.
Based on the Type Graph, an Instance graph is created, where each task of Type p
(represented as sp in Fig. 3.10) can have multiple TIs of Type p and count j (represented
as sp j). Other works that leverage parked vehicles (PVs) also deploy similar service
models, where a task with a large workload is split into several sub-tasks and assigned
to multiple PVs for cooperative execution [Zhang et al., 2020].

• Service Placement: The process of placing the scaled Instance graph (in Fig. 3.10) on
a vehicle cluster is called the service placement problem.

Our approach is to first find an optimal Instance graph, considering both service and
infrastructure constraints, as this decision cannot be taken independently of the infrastructure
state. This is optimised based on minimising the total number of hops in the path between
each Type 1 TI and the CN. This step reduces the bandwidth usage and selects a dense service
spread, which also reduces delay in service execution. We then map the optimised Instance
graph onto the physical vehicle nodes. We jointly consider both TI mapping as well as the
route/flow mapping, between the placed TIs.

3.7.2 Network Topology

We assume that I nodes participate in the formation of the vehicle cluster. We represent the
cluster as a directed, connected graph, G = (V,E). The node i ∈ V represents the vehicle

72 Macroscopic and Microscopic Mobility Modelling

1
S13

2
S22

2
S21

spj : Task instance
 id j of type p

Task 1
 Task instance = 3

Task 1
Task instance = 1

Np: Set of task
instance count of type p

F(1,2)

F(1,2)

Task 1
 Task instance = 2

1
S12

1
S11

1
S1

2
S2

3
S3

4
SCN

3
S32

3
S31

2
S23

4
SCN

Type Graph

Instance Graph
Scaling

Fig. 3.10 Service model depicting tasks and their inter-dependencies. The Type graph is
scaled to the Instance Graph based on the resource state of the vehicle cluster.

nodes, each with K resource types, where k ∈ {1...K} and i ∈ {1...I} denote resource type
k on node i. The processing capacity of each vehicle node i in respect of resource type
k is represented as Ck(i). The directed edge, (i1, i2) ∈ E, of the graph represents the link
between any two vehicle nodes i1 and i2. The link capacity limit is depicted as {B(i1, i2)}
Kb/s between any two nodes i1 and i2. If there is no direct connectivity, due to excessive
range, line of sight difficulties and/or incompatible protocols then B(i1, i2)≡ 0.

The mobility in the network is represented by the cluster cohesion probability (CCP)
of each vehicle node (P(t1,t2)(i1)), which represents the probability of a vehicle to be in a
certain segment of the road, in a particular period of time [t1, t2]. We also consider the joint
probability (P(t1,t2)(i1, i2)) of two nodes i1 and i2 to stay together on a given road segment over
the time interval [t1, t2], due to the inherent data dependency between two interacting task
nodes, as specified in the service model. This makes it important to consider the combined
probability of two nodes with data-dependent TIs to stay together until the completion of
both TI tasks. We assume that this information regarding the mobility pattern, in terms of
CCP of the nodes, is available at each road intersection.

3.7.3 Service Model: Task and Task Instances

The service model is composed of tasks, denoted as sp, each with different functionality,
to be deployed on different nodes of the cluster. The functions include video streaming,
data compression/processing as well as application control, for the flexible management of

3.7 Service Scaling and Placement Scheme 73

infrastructure links and nodes. Each task can have any number of TIs, represented as sp j,
to be mapped in an optimal configuration onto vehicle nodes. The number of TIs for a task
sp is represented as Nsp . Each TI sp j requires a minimum demanded amount of Dp jk units
of each resource of type k. Furthermore, the flow demand between task sp1 and task sp2

is provided as F(sp1,sp2). Note that such flows might be point-to-point (between adjacent
nodes) or might need to be routed via other nodes according to flow tables maintained by the
CN. Both the per resource type k demand for TI sp j, labeled by {Dp jk}, and the inter-task
demand {F(sp1 ,sp2),sp1 ̸= sp2} need to be specified as input to the model.

Each TI can support a maximum flow rate, which is derived from the processing require-
ment of the incoming flow, given as C(F(sp1 j,sp2 j)), i.e., the processing requirement for flow
from TI sp1 j to sp2 j. We check that the target TI has enough processing capacity to process
an incoming flow and also ensure that this leaving flow, after being streamed or processed
at an TI, is directed to a single corresponding TI. Recall that each processing TI can have
multiple incoming flows. We follow this rule to promote the collocation of processing nodes,
whenever vehicle nodes have available resource capacity. This promotes a balanced service
placement rather than over-provisioning the available infrastructure.

When setting up the problem, each of the node capacities Cik and the bandwidth limits
{B(i1, i2), i1 ̸= i2} need to be supplied as input. After placement, Aik represents the allocated
resource of type k at node i. The CN of the cluster is represented as io. It acts as a gateway
between service nodes and external resources such as the RSU/client. Io represents the
total number of participating nodes in the service-based cluster. Note that Io ≥ Imin, the
minimum number of nodes required for service execution. Io is a subset of all I nodes in the
opportunistically formed cluster.

We aim to minimize the cost of service execution, by favoring nodes with a higher proba-
bility of staying with the vehicle cluster and promoting a “narrower” service placement (just
enough nodes for reliability in the presence of node mobility) to reduce resource bandwidth
usage. The model can be used to optimize other resources like the increasing number of
accepted requests on vehicle clusters, the number of nodes used or other performance metrics
like latency or service bandwidth demand, based on the requirements of the application.

3.7.3.1 Service Mapping based on Requests

The RSU takes to time to estimate the available resources of all nodes in an opportunistic
(location-based) vehicle cluster via the CN(io). On receiving a service placement request,
the RSU initiates a deployment which is forwarded to the CN in the cluster. The service
placement request is in the form : R =< t,S, tT > where t is the time instant at which the

74 Macroscopic and Microscopic Mobility Modelling

deployment request is received and S is a set of Tasks to be deployed on available vehicle
nodes moving in close proximity.

The RSU derives a more comprehensive specification of the service based on lo-
cal information like link capacity and node resource availability, as follows: R =<

t,G(Sp j,e),Np,{Dp,k}, tT >. {Dp,k} represents the demand for resource type k of each
Task sp. tT is the delay threshold of one such service request. The time duration from t to tT
is the maximum time allowed for service provisioning and execution. G is the graph (nodes
as Tasks and edges as dependencies between them) used to define the arrangement of Tasks
and their inter-dependencies as given in Figure 3.10. The CN needs to place Tasks according
to the derived request R.

3.8 Summary

In this chapter, we have highlighted the predictability of vehicular flows using a multivariate
linear regression-based model that predicts flows accurately and compared the model to other
competing schemes like random forest and the ARIMA model for time-series forecasting. We
present a detailed discussion on the motivation behind using moving vehicles as infrastructure.
We first introduce a flow model for intersections which can be used to select different traffic
flows to initiate service placement. We also made aggregate communications and computation
capacity estimates for such vehicle clusters, initiated at urban intersections. We then studied
the density of vehicles wrt to their speed using data from the California Department of
Transport (Caltrans) dataset. The study shows how vehicular speeds decline as the density
or occupancy of traffic increases. We also highlight how generalised threshold speeds to
initiate vehicle clusters cannot be predicted as speeds depend on the geometry of different
road segments.

In the next part of the chapter, we introduce the system model, the network mode and the
service model used in the service placement scheme introduced in this work. The section
also presented the terminology used in the rest of the dissertation.

Chapter 4

Scaling and Placement of Linear Service
Chains on Moving Vehicular Clusters

4.1 Introduction

The network states in a dynamic and virtualized network constantly change over time,
requiring flexible service provisioning and orchestration. One such scenario is when a group
of distributed and connected IoT devices with sensing and computing capabilities collaborate
to perform computation on locally generated sensor data [Barcelo et al., 2016]. With
virtualisation and loose coupling, we can map services to resources in a shared infrastructure.
These principles also enable service reconfiguration in response to changing network topology
and service demands [Salahuddin et al., 2015]. The service model required for utilising these
distributed IoT devices is set of smaller components called ‘Tasks’with specified data flow
dependency between them. These components are required to be mapped on the vehicle node
infrastructure with available resources and enough bandwidth capacity between selected
nodes. Each Task has a resource requirement specified as computational, memory and
required link capacity. In the case of IoT applications, the service also requires access to
sensors and other devices like video cameras. In the case of mobile nodes, the availability of
resources is also dependent on the location of each node in space and time and its connectivity
to a managing entity. In the special case of vehicular networks, location and connectivity can
be predicted using mobility models based on historic routes of vehicles [Jang et al., 2017].
Predictable mobility patterns arise in the case of moderately dynamic, relatively slow moving,
urban traffic, supported by RSUs. With such patterns, flexible provisioning and orchestration
of services is easier.

76 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

Vehicles will be one of the most important agents in the emerging IoT ecosystem, owing
to their embedded sensors and built-in cameras, which can be used to capture contextual data
for object detection and surveillance [Ning et al., 2019]. Since each vehicle generates an
average of 30 Tb of data per day, it is infeasible to send all the generated data to the Cloud
using the controlled and limited cellular bandwidth [Huang et al., 2017]. The increasing
number of Smart vehicles and overall vehicular traffic has inspired the concept of VFC [Hou
et al., 2016; Lee and Lee, 2020], where vehicles are utilised as Fog nodes and play the role
of service providers. This new data generation and communication paradigms is motivated
by Fog Computing [Ning et al., 2019] and Mobile Edge computing-based models [Li et al.,
2019; Ning et al., 2019] which provide ubiquitous connectivity and location-aware network
responses at the edge of the network, complemented with cloud computing in the network
core.

Vehicular applications include services that utilize the data sensed by the vehicles and
RSUs in real-time for applications like lane changing, automated driving using motion
detection or for video conferencing on the go [Suh et al., 2018]. Such applications have strict
deadlines for decision-making and need to place intelligence at the network edge to make
these decisions in real-time. As vehicles gain more sensing and computing resources, the
idea of leasing those resources for use by third parties is gaining attention. This is because
vehicles can also be seen as ‘moving sensors’ and as information collection agents. This
data can be aggregated and sent to the cloud for application-specific processing [Ni et al.,
2017]. Illustrative third-party applications include road traffic monitoring and evaluating
the popularity of a particular model of a car by analysing images captured by dash cameras.
In this chapter, we consider how such applications could be deployed onto moving vehicle
clusters. The reliability of a service deployment on mobile nodes needs to be managed.
The management system needs to take account of resource limitations including the limited
bandwidth in vehicular networks, which is a reason to minimise the data being exchanged
between the nodes and from the nodes to the cloud for more complex processing.

In our work, the closely-spaced, moving vehicles, are proposed to collect video that
can be used to estimate usage patterns of highways for urban planning, reducing the need
for installing dedicated infrastructure for surveillance. Slowly moving vehicles can also be
used to collect 3D roadmap data, to increase the perception range of intelligent vehicles,
reducing the need for sending high definition data to the Cloud [Ho et al., 2020],[Du et al.,
2020]. The VFC-based data collection and processing applications can be swiftly deployed to
monitor the compliance of both vehicles and pedestrians to lock-down restrictions introduced
in response to the COVID-19 pandemic, by capturing data from essential service vehicles.
All these use cases require rich computation and communication resources so that this data

4.1 Introduction 77

can be used for insights and decision-making. The otherwise under-utilized sensing and
processing resources in VFC systems can meet both the data generation and processing
requirements without the need for deploying additional infrastructure. Most of the existing
work on VFC either consider buses [Ye et al., 2016] and taxis [Xiao et al., 2019] as potential
fog nodes which are not representative of the mobility patterns of all vehicles in an urban city
center or consider very simplistic mobility models [Zhou et al., 2020]. Many of the service
placement/allocation schemes in VFC consider static services that are not adapted according
to the dynamics of the network or consider stationary/parked vehicles as Fog nodes.

Unpredictable mobility is a major problem when deploying distributed and collaborative
services on infrastructure at the network edge. We focus on providing stable opportunistic
service-based vehicle clusters managed by a local controller, supplemented with mobility
models of the vehicle nodes, to select nodes that have a greater probability of staying within
the cluster until service execution ends. Network congestion is further reduced by electing
CNs that act as gateways to access points. As depicted in Fig. 4.1, one vehicle and the RSU,
act as managing entities to collect and update both the resource and mobility states of the
cluster and enable flexible service scaling.

Vehicles are distinguished through their mobility (in particular, vehicles join and leave
a cluster in a stochastic manner), so the resource allocation task becomes time-dependent.
Mobility affects both network connectivity and computation capacity, and hence the Quality-
of-Service (QoS). Our work aims to utilise the aggregate mobility behaviour of vehicles to
select reliable vehicle nodes, i.e., those that have a higher probability of staying with a given
cluster of vehicles, in order to avoid service failure and reduce the need for service recon-
figuration. The competing objectives of distributing the service widely and of minimising
bandwidth usage make the service placement problem more challenging to solve.

We take the specific case of using in-built cameras in cars that are willing to lease their
resources, to provide streaming data on request. This data is processed by streaming it to
linear chains of tasks, where each task has different processing functionality. One linear chain
of tasks form a service that satisfies a service request. We employ a component-oriented
distributed service model, where each task can be realised via a collection of multiple task
instances (TIs); in this manner each task can be scaled out according to the demand and the
available infrastructure resources. For example, using multiple camera instances increases
the spatio-temporal coverage of the data collection, thereby increasing the scope for more
accurate and efficient data analysis, especially in applications like building 3D road maps
for self-driving cars. Moreover, having replicas of computing tasks enables the utilisation of
distributed resources and reduces the impact of nodes leaving the vehicle cluster. Node and
link failure in this service model requires only the replication of a problematic TI onto a more

78 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

suitable vehicle so the service chain still works, instead of re-configuring the entire service.
As the tasks are data-dependent, even if the cluster is computationally rich, it needs to be split
into smaller TIs if the link capacity between host nodes is not enough. The task placement
also needs to avoid placing TIs on those resource-rich nodes that have a high probability of
leaving the cluster. Thus, service deployments can be adapted at run-time according to both
the known resource availability and the predicted mobility state of the cluster.

In this chapter, service placement is formulated as an integer linear programming (ILP)
problem, whose solution is an optimal service placement plan for an opportunistically formed
vehicle cluster. The goal of the ILP is successful service execution, while keeping bandwidth
usage to a minimum. We formulate the service placement problem mathematically in two
parts: 1) a flexible and distributed service model with data-dependent tasks instead of
static service templates; and 2) a mobility-aware infrastructure model. This is an important
contribution towards utilising the distributed and dynamic vehicular network for service
provisioning. We compare our approach to the autonomous vehicular edge computing based-
naïve solution, presented in [Feng et al., 2017] and a clustering-based solution introduced in
[Hu et al., 2021]. The experimental results demonstrate that the proposed scheme outperforms
baseline approaches in terms of efficient resource utilization.

The chapter is organised as follows: In §4.2, we define the node resource constraints and
the mathematical formulation of the service mapping and resource allocation problem. In
§4.2.4, we introduce application types and run an experiment for an application scenario on
a Fog simulator. We then discuss solving the optimisation problem, the simulation setup
and our results in §4.2.5. We also discuss the performance of our model in comparison
to other schemes. The chapter then presents the constraints for a more sophisticated and
flexible service scaling model with multi-hop vehicular cluster in §4.3. In §4.4, we present
applications and results for the bi-objective service placement plan, compared to other
baseline approaches. Finally, in §4.6 we conclude the work, highlight how it addresses RQ2.
and gives an outline of our future work.

4.2 Service Scaling and Placement Scheme with Single-hop
Cluster

The placement solution consists of two parts: service mapping and resource allocation. The
first part expresses the association between the TIs and the (vehicle) host nodes. The binary
variable M(p, j, i) indicates that TI sp j is placed at node i at time t ∈ [t0, tT]. The second part
indicates the amount of resource type k at each node i that is allocated to all TIs placed at that

4.2 Service Scaling and Placement Scheme with Single-hop Cluster 79

(a) Vehicle cluster at state t1

(b) Vehicle cluster at state t2

Fig. 4.1 Vehicle Clusters form, but membership changes over time. Clusters accept service
placement requests from RSUs and perform scaling and placement of the accepted service.
Fig (a) and (b) depict the state of the cluster over time t1 and t2. The mobility of the vehicles
requires cluster re-initiation.

80 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

node and is denoted by Aik. This is calculated by summing the allocations for all TIs sp j,k

with resource type k placed on node i. For clarity, all notations are presented in Table 4.1.

4.2.1 Node Resource Constraints

4.2.1.1 Node Capacity Constraint

The minimum resource demand (of type k) to host a TI sp j on node i is given as Dp j,k. This TI
is mapped to host i which is denoted by the binary ((0,1)-valued) mapping variable M(p, j, i).
The resource required by the placed TI must not exceed the availability of resource type k
on the selected node. A minimum system resource must also be reserved for the operations
required for the vehicle’s normal operations. Thus, available capacity for hosting services at
every node i is represented as Cik, which is the capacity of the node. The resource constraint
is formally presented as:

∀i ∈ {1, . . . ,I},k ∈ {1, . . . ,K},

∑
∀p, j

M(p, j, i).Dp j,k ≤Cik
(4.1)

where the decision variable M(p, j, i) ∈ {0,1} is set to 1 to indicate the placement of TI
sp j on node i or 0 otherwise. The use of this indicator variable ensures that TI sp j requires
resources from node i, if and only if it is placed on that node. Indeed constraint 4.1 ensures
that

• for each TI sp j placed on node i, its requirements for resource type k can be met;

• for each node i, the total (across TIs placed on that node) demand for resource type k
does not exceed the capacity of that node.

4.2.1.2 Component_Instance-Node Anti-Collocation

: Some services require TIs to be placed at different nodes to increase the fault tolerance of the
system in case a vehicle leaves the service-based cluster. Also, a sensing or image capturing
service might require instances to be anti-collocated to increase the area of coverage. This
constraint is expressed as:

∀p ∈ {panticoll}, i ∈ {1, . . . ,I}∑
∀ j

M(p, j, i)≤ 1 (4.2)

Constraint 4.2 is applied directly to the mapping instance variable M(p, j,1). Note that
it is applied at each node i and to a (subset) of Tasks {panticoll} and uses the fact that the

4.2 Service Scaling and Placement Scheme with Single-hop Cluster 81

sum of indicator variables M(p, j, i) counts the number of TIs placed at a given node i for a
non-collocatable Task sp.

4.2.1.3 Full Deployment

: We require that all the Tasks of the distributed service are mapped to selected vehicle nodes
at deployment time for the service to execute correctly.

∀p, ∑
∀ j,i∈{1,...,I}

M(p, j, i)≥ 1 (4.3)

Constraint 4.3 sums the indicator variable M(p, j, i) to count the number of instances
(labeled by j), across all nodes (labeled by i) of a given Task sp that have been placed. At
least one such placement is required for each Task sp to ensure full deployment.

4.2.1.4 Adjacency Constraint

When placing Tasks on nodes, it is more efficient to ensure that the placement plan takes
account of both Task dependencies and inter-node network distances. For example, if sp2

depends on sp1 , it is advisable to ensure that each is placed either on the same node, or on
nodes that are 1 hop away from each other. Otherwise, multi-hop routing is needed, resulting
in more management complexity and potentially more overhead. This adjacency constraint
takes the following form:

∀p1, j1; p2, j2;F(p1, p2)> 0,d(I(M, p1, j1),I(M, p2, j2))≤ 1; (4.4)

where I(M, p, j) = i when M(p, j, i) = 1, and d(i1, i2) is the network hop distance between
the nodes indexed as i1 and i2. By removing the need for multi-hop routing, it becomes much
easier to ensure that enough bandwidth is reserved to support peak data flows between TIs.
However, this comes at a cost: it might prove more difficult to find a feasible placement.

4.2.2 Link Constraints

4.2.2.1 Bandwidth Constraint

The bandwidth requirement between two components sp1 and sp2 , where the latter requires
data from the former, is represented by F(p1, p2) Kb/s. Furthermore, it is assumed that all TIs
sp j of Tasks sp are identical and hence have the same bandwidth requirements. For reasons
of simplicity, we consider only one-directional traffic, from Task sp1 to sp2 , assuming that the

82 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

reverse data flow is negligible. However, the model can easily be extended to consider duplex
communication needs by adding extra constraints of the form described like constraint 4.5.

∀i1 ∈ {1, . . . ,I}; i2 ∈ {1, . . . ,I}; i1 ̸= i2 ∑
∀p1, j1;p2, j2;p1 ̸=p2

M(p1, j1, i1)F(p1, p2)M(p2, j2, i2)≤ B(i1, i2)

(4.5)

where i1 ̸= i2 and B(i1, i2) ̸= 0. This ensures that, for each node pair labeled by i1 and i2,
the total bandwidth requirement, for all TI pairs sp1 j1 and sp2 j2 placed on nodes i1 and i2
respectively, is F(p1, p2), which does not exceed the bandwidth limit B(i1, i2) between the
two nodes.

4.2.2.2 Mobility Constraints

Due to the mobility of vehicle nodes, we add constraints based on the dynamics of urban slow
moving traffic. The affinity of service-bearing vehicle nodes {i} is the probability they will
stay together until the service finishes execution and is calculated using Cluster Transition
Probability, as follows.

Cluster Transition Probability: The initial state is when the opportunistic cluster is
formed and coordinated by the CN at time t0. The transition to the next state determines the
number of nodes that stay with the cluster and are able to communicate with the CN at time
t1. At each instant, we estimate this probability of each node to stay connected (possibly over
multiple hops) with the CN for the duration of service execution (tT). Ongoing connectivity
is needed to minimize service migrations and reconfigurations. This transition probability
is based on the historical mobility patterns followed by vehicles, recorded over a period
of time. This probability is assumed to be known at each instance and can be calculated
using trajectory prediction techniques, which we do not investigate in this paper. The nodes
with the highest probability of staying with the CN (labeled as i0) are selected for service
placement, as this maximises the probability of successful service execution.

Transition in this case means “from the present state to the next desired state”, so it
is a numerical measure of cluster affinity. For node i, the transition probability of staying
connected to the CN from time t1 to t2 is represented by Pi(t1, t2):

Pi(t1, t2) = P{d(i, i0)t2 < dmax|d(i, i0)t1 < dmax} (4.6)

where d(i, i0)t2 is the network distance (hop count) between node i and CN i0 at time
t2, and dmax is the maximum permissible hop count for the two nodes to be considered
connected and hence members of the same service cluster.

4.2 Service Scaling and Placement Scheme with Single-hop Cluster 83

Fig. 4.2 Service Instance graph for video streaming application mapped on a service cluster
of 7 vehicle nodes.

The conditional probability of the selected service nodes to stay within the service cluster
from time t1 to t2 is given by:

P(t1, t2,I0) =
I0

∏
i=1

Pi(t1, t2) (4.7)

where I0 is the number of nodes participating in the service cluster. In practice, this probability
needs to exceed a threshold Pmin for the service completion probability to be acceptable,
leading to the following service cluster cohesiveness constraint:

P(t1, t2,I0)≥ Pmin (4.8)
4.2.3 Optimization

The number of TIs placed on different nodes govern the amount of data flow between
nodes based on selecting the closest one-hop neighbours. TIs need to be distributed across
nodes because of the anti-collocation constraint (eq. 4.2), node resource constraint(eq. 4.1)
and bandwidth constraint (eq. 4.10). The adjacency constraint (eq. 4.4) and cohesiveness
constraint (eq. 4.8) tend to encourage placement on nodes that are adjacent in network terms.
The requirement for full deployment (eq. 4.3) encourages the placement to use more nodes
to ensure that a full placement can be made, but the cohesiveness constraint (eq. 4.8) tends
to ensure that as few nodes are used as possible, as the more nodes that are used, the more
likely it is that at least one of the nodes will leave the cluster, other factors being equal.

84 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

Having a feasible placement is not enough, particularly when several feasible solutions
are possible. Several options are possible:

1. the total bandwidth used should be minimised;

2. the relative resources (memory, CPU, etc.) used per node should be minimised;

3. the relative bandwidth used per link should be minimised.

The last of these is particularly attractive when services are to be placed on a vehicle
network and the goals include:

• link bandwidth is a scarce resource, so as much as possible should be reserved for
other purposes;

• the placement should be robust in the sense that, if management operations need to be
applied later in response to context changes, there is adequate bandwidth to support
service reconfiguration and similar actions.

The objective function is:

∑
∀i1,i2;i1 ̸=i2

min

(
∑

∀p1, j1;p2, j2;p1 ̸=p2

(
F̃(p1, j1, i1, p2, j2, i2)

)
B(i1, i2)

)
(4.9)

where

F̃(p1, j1, i1, p2, j2, i2)≡M(p1, j1, i1)F(p1, p2)M(p2, j2, i2).

Note that the inner term is the ratio of the bandwidth needed by the service on each link,
compared to the available bandwidth on that link. Clearly the relative bandwidth usage will
be minimal if the TIs are widely distributed. However, these relative bandwidth usage ratios
are summed, so to minimise the sum of ratios, it is advisable to have as few such ratios as
possible. Hence the objective function itself tries to balance the competing objectives of wide
versus narrow placement strategies. We follow the service model given in Figure 4.2 but it
can be generalized for any application that can be decomposed as described above.

4.2.4 Video Streaming Application for Pedestrian Detection

The aim of this example is to emphasize how slow moving, connected vehicles with abundant
resources, can be utilized for a specific application, instead of utilizing one vehicle for data
collection and then offloading this data to cloud or RSUs for further data processing.

4.2 Service Scaling and Placement Scheme with Single-hop Cluster 85

10 20 30 40
Number of vehicles in a cluster

0

10

20

30

40

50

60

70

80

%
ag

e
of

 su
cc

es
sf

ul
 se

rv
ice

 p
la

ce
m

en
t

Optimization
Naive(w/out cluster probability)

Fig. 4.3 Placement of 5 TIs on different sized
cluster.

10 20 30 40
Number of vehicles in a cluster

0

10

20

30

40

50

60

70

%
ag

e
of

 su
cc

es
sf

ul
 se

rv
ice

 p
la

ce
m

en
t

Optimization
Naive(w/out cluster probability)

Fig. 4.4 Placement of 7 TIs on different sized
cluster.

0 10 20 30 40 50 60
Simulation time (seconds)

10 3

10 2

10 1

Ra
tio

 o
f a

ct
ua

l b
an

dw
id

th
 u

se
d

Optimized
Naive

Fig. 4.5 Ratio of bandwidth usage: 5 TIs on
cluster of 20 vehicles.

0 10 20 30 40 50 60
Simulation time (seconds)

10 3

10 2

10 1

100

Ra
tio

 o
f a

ct
ua

l b
an

dw
id

th
 u

se
d

Optimized
Naive

Fig. 4.6 Ratio of bandwidth usage: 7 TIs on
cluster of 20 vehicles.

86 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

 Type
1

 Type
1

 Type
 2

 Type
2

CN

 Type
1

 Type
1

 Type
1

 Type
1

 Type
2

 Type
2

 Type
2

CN

 Type
1

Data Generation via
camera instance

Data
Aggregation

Control
Node

Fig. 4.7 Different service requests with varying levels of SCIs.

Example: We map a video streaming request to selected vehicles in a service cluster
based on specific requirements of a service, which in this case is detecting pedestrians using
dash/smart cameras in vehicles. The Tasks and dependencies of one such sample video
streaming application are defined as a Type Graph as depicted in Figure 2. The cardinality
on the instance graph depicts the maximum and minimum number of allowed connections
among TIs of a particular type. The Type 1 TI streams video from selected cameras in
vehicles as input to Type 2 TIs. For maximum coverage, the TIs are anti-collocated to have a
wider field of view, and to increase the robustness of the application. The data streams to six
Type 2 TIs, possibly the nearest neighbour nodes with available resources. The Type 2 TI
reduces the video streams to frames with a detected pedestrian, which reduces the data flow
to 30-40% of its original size.

The Type 3 instances can be a decision making entity, which requires more intelligence
for application like real-time traffic management, with very low latency requirements. But we
focus on a monitoring-type application, where the reduced data flow is routed to the Client,
via the CN, for decision making. The goal of the application is to reduce the bandwidth
usage by choosing the nearest nodes for in-network processing and minimising data flow
volume sent from vehicular network to infrastructure. For our sample pedestrian detection
system, the classification task is subdivided in terms of data operations (TIs). Our placement
model maps these classification tasks/TIs to nodes in the service-based cluster.

4.2.5 Simulation and Evaluation

The ILP formulation is optimised using the Gurobi solver. Finding a solution for a service
with 7 TIs takes an average of 26 minutes for a cluster of 40 vehicles on an Intel i7-6500U
running at 2.50 GHz. We evaluate the performance of the resulting ILP solution in a SUMO
and Mininet-WiFi [Dos Reis Fontes et al., 2017] simulation to validate our claim that it
places TIs on the most suitable vehicle nodes. The simulation scenario is that a number of

4.2 Service Scaling and Placement Scheme with Single-hop Cluster 87

Cluster
Initialization

Wi-Fi
Router

RSU

Control
Node

Nodes with higher
cluster transition
probability
Nodes with lower
cluster transition
probability

Fig. 4.8 Description of the simulation scenario.

vehicles wait at an intersection and each can either continue straight on or take a right turn,
thus leaving the cluster, as depicted in Figure 4.8. A request is sent from the RSU to form
an opportunistic cluster and get the transition probability Pi(t1, t2) for every vehicle in the
cluster from time t1 to t2. We assume the transition probability for each vehicle in the cluster
is known at each intersection.

The simulation selects a single vehicle node as a CN that is one hop away from the RSU
and, at that time t, has the highest transition probability of staying on the intended route.
The CN acts as a gateway between the RSU and all the members in the cluster. The RSU
sends service requests from the client to the CN, which then selects nodes for a service-based
cluster, based on the highest transition probability at time t1 to stay with the CN at time t2,
s.t. P(t1, t2,Io)≥ Pmin). The minimum cluster transition probability threshold for selection
of the service cluster is chosen as 0.5, to ensure a fairly stable service cluster.

We simulate the same setup for 10, 20, 30 and 40 vehicle nodes and the cluster transition
probability is randomly distributed from 0 to 1. The resource types for each vehicle can be
small, medium or large, defined in Table 4.3. A cluster is resource-rich if it has 50% large
capacity nodes, 25% medium and 25% small capacity nodes. A resource-poor cluster has
25% large, 25% medium and 50% Small capacity nodes. For the evaluation in this paper, we
ensure there is enough processing resources by considering only resource-rich clusters.

The cluster mobility and resource state are maintained by the local CN. The nodes that
leave the cluster can no longer communicate with the nodes within the cluster, as the flow
entries relating to leaving nodes are deleted. In a real life scenario, a vehicle taking the right
lane might still be able to stream videos until it has lost connectivity with the CN/access

88 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

point. However, from an application point of view, it is important to maintain the minimum
required QoS level, which partial flows might not be able to provide.

Successful Service: Once the placement is complete, the service is considered successful
when all streaming video data flows are received at tier-2, which process the video, compress-
ing it to 30-40% and sending the reduced data flow from each instance in tier 2, to the CN,
which sends the aggregated data to the client. We run the simulation for an application with
5 and 7 instances (as depicted in Figure 4.7) to analyze the performance of the ILP against a
naive approach that ignores cluster transition probability.

For the case of 5 TIs (Figure 4.3), the percentage of success is higher, 60% for 10
vehicles, compared to the naive approach. We observe a 50% success for 7 instances. These
percentages are calculated by averaging over 25 simulation runs, varying the cluster transition
probability and the availability of resources on each node, and hence selecting different CNs.
The success percentage can be improved by treating different TIs differently, such that
capturing/sensing TIs are anti-collocated (ie. we place a single TI on selected node), as
more than one video capturing TI on a single node does not contribute to the service. The
processing TIs (of Type 2,3) can be collocated (packed on the same node, depending on
node and link capacity) to reduce the delay in data processing and to use network resources
efficiently. The anti-collocation constraint reduces the available nodes to 10, for 5 and 7
instances, but can be increased by collocating TIs on fewer nodes. As the resources increase,
and the cluster gets more dense, the percentage of success increases to 80% whereas the
success in the naive approach is lower and does not depend on the number of vehicles or the
infrastructure capacity. For the case of 7 instances(Figure 4.4), we get significantly lower
successful service completion for the naive approach, and up to 70% successful service
completion for a cluster of 30 and 40 vehicles.

To measure network resource usage, the simulation calculates the cumulative transferred
bytes/sec between nodes in the service cluster. We compare it to the total available bandwidth
capacity of the network at each instance, to compute the ratio of actual bandwidth usage. The
bandwidth used in the naive approach is significantly higher than our approach for the case
of 5 TIs (Figure 4.5). This is attributed to selecting the node by using the heuristic of nearest
hop distance for placing TIs, thereby reducing overall bandwidth usage. For the case of 7 TIs
(Figure 4.6), higher successful service completion requires significantly higher bandwidth
but still performs better than the naive approach. The bandwidth usage is calculated for a
single case of 20 vehicles in a cluster. For all cases, we observe decreasing bandwidth usage
over simulation time, and a significant decrease in usage around 40th second of simulation
due to the data flow reduction at Type 2 TI. A successful service implies a stable cluster for

4.3 Service Scaling and Placement Scheme with Multi-hop Clusters 89

both optimized and naive scenarios, thus, we see that the less constrained, naive approach
performs better in the last 10 seconds of the simulation.

4.3 Service Scaling and Placement Scheme with Multi-hop
Clusters and Detailed Service Model

The initial infrastructure and service model introduced in this chapter did not consider multi-
hop routing, which is necessary to model a realistic vehicle cluster which is equipped to
host distributed services on them. We now introduce multi-hop routing as an incremental
improvement to the model. We also introduce detailed service model constraints to ensure
that the data flow collected by Type 1 TIs is processed before reaching the CN. The constraints
also ensure that the order of TIs is maintained according to the service chain description in
the Type graph. This model also considers real vehicle density data to include the mobility
patterns of vehicles as an intrinsic part of the infrastructure model.

4.3.1 Infrastructure Constraints

The infrastructure constraints considered in the ILP are presented below:

4.3.1.1 Bandwidth Constraints for the multi-hop cluster

The bandwidth requirement between two task sp1 and sp2 , where the latter requires data from
the former, is represented by F(sp1,sp2) Kb/s. We consider only one-directional traffic, from
task sp1 to sp2 . However, the model can easily be extended to consider duplex communication
needs by adding extra constraints of the form 4.10.

∀i1 ∈ {1, . . . ,I}; i2 ∈ {1, . . . ,I}; i1 ̸= i2 ∑
∀p1, j1;p2, j2;p1 ̸=p2

M(p1, j1, i1)F(sp1 ,sp2)M(p2, j2, i2)≤ B(i1, i2) (4.10)

where i1 ̸= i2 and B(i1, i2) ̸= 0. Constraint 4.10 ensures that, for each node pair labeled by i1
and i2, the total bandwidth requirement, for all TI pairs sp1 j and sp2 j placed on nodes i1 and
i2 respectively, is F(sp1 ,sp2), which does not exceed the bandwidth limit B(i1, i2) between
the two nodes.

In our model, two tasks that are mapped to two different vehicle nodes i1 and i2, where
i1 ̸= i2 might not be linked directly to each other, but are connected over multiple hops. In
the following bandwidth constraint, we consider the resource capacity of each link over the
full path between tasks sp1 and sp2 . We consider another binary valued mapping variable
m(p1, p2, j, i) which takes the value 1 for each node i that is mapped to forward the flow

90 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

between TIs of type sp1 j and sp2 j and is part of the path between the two data dependent
TIs. Thus, nodes can act as both processing nodes or forwarding nodes. The constraint
4.11 ensures that the bandwidth used for forwarding the flow between any connected pair of
forwarding nodes should be less than the available bandwidth capacity between those two
nodes. This constraint is formally presented as:

∀i1 ∈ {1, . . . ,I′}; i2 ∈ {1, . . . ,I′}; i1 ̸= i2 ∑
∀p1, j1;p2, j2;p1 ̸=p2

m(p1, p2, j1, i1)F(sp1 ,sp2)m(p1, p2, j1, i2)≤ B(i1, i2)

(4.11)

where i1 and i2 belong to I′(p1 j)(p2 j), which is the set of all nodes on the path between
TIs sp1 j and sp2 j.

4.3.2 Distributed Service Model Constraints

We now formulate the constraints for placing distributed TIs and the corresponding service
data flow between these TIs. We ensure that the data flow is processed before reaching the
CN and the order of TIs is maintained according to the service chain or service description.

4.3.2.1 Flow Rate Constraint

As we propose a distributed service model, it is crucial to ensure that the TIs have enough
processing capacity for the incoming flow. The constraint 4.12 ensures that the flow rate
entering a TI should not exceed the processing capacity of that TI. The processing capacity
of TI sp2 j is represented as C(F(sp1 j,sp2 j)), which is the function of incoming flow from
sp1 j to sp2 j. This constraint is given as:

∀i1 ∈ {1, . . . ,I}; i2 ∈ {1, . . . ,I}; i1 ̸= i2 ∑
∀p1, j1;p2, j2;p1 ̸=p2

m(p1, p2, j1, i1)C(F ′(sp1 j,sp2 j))≤C(sp2 j)

(4.12)

where C(sp2 j) represents the processing capacity of TI sp2 j. This TI is placed on the node that
receives the incoming flow to be processed, from TI sp1 j. Here F ′(sp1 j,sp2, j) represents the
flow that has been processed at TI sp1 j or is forwarded from sp1 j specifically for processing
(not forwarding).

4.3.2.2 Flow Conservation Constraint

Constraint 4.13 ensures that the incoming to outgoing flow rate ratio, at a node, is governed
by the data processing factor of the TI. αp j represents the data reduction/processing factor

4.3 Service Scaling and Placement Scheme with Multi-hop Clusters 91

for a task with Type p resource. The constraint is presented as:

∀i1 ∈ {1, . . . ,I}; i2 ∈ {1, . . . ,I}; i1 ̸= i2 ∑
∀p1, j1;p2, j2;p1 ̸=p2

F(sp1 j,sp2 j)αp2 j ≤ F ′(sp1 j,sp2 j)

(4.13)
where 0 ≤ αp j1 ≤ 1 and F(sp1 j,sp2 j) represents the incoming flow to be processed at TI
sp2 j. F ′(sp1 j,sp2 j) represents the outgoing flow, that has been processed at the TI sp2 j. This
constraint ensures that all the necessary pre-processing is performed on the flow, at each
TI before the flow reaches the CN. Since nodes in our model can be forwarding nodes, or
processing nodes, or have both processing and forwarding role, the data processing factor
can lie in the range from [0,1].

4.3.2.3 Task Order Constraints

Constraint 4.14 ensure that the flow traverses the task instance graph in the order specified
by the service model, we require that once the flow is processed at one node, it is directed to
the “next” node with at least one “subsequent” TI (according to the Type Graph), i.e.,

∀i1 ∈ {1, . . . ,I}; i2 ∈ {1, . . . ,I}; i1 ̸= i2 ∑
∀p, j;p+1, j2;p̸=p+1

M(p, j, i1)F ′(sp1 j,sp2 j)≥M(p+1, j, i2)

(4.14)

where the decision variable M(p, j, i1) represents the TI mapped to node i1, F ′(sp1 j,sp2 j)

is the flow processed at the node i1. The right-hand side of the equation employs mapping
instance M(p+1, j, i2) to show that a subsequent TI of type s(p+1) j is mapped on the node
i2, which has enough resource capacity.

As forwarding nodes are introduced in constraint 4.10 to facilitate these multi-hop flows,
it is crucial to preserve the order of tasks at the service level. To ensure that the flow is
directed towards a subsequent TI, in case there is no direct path between two placed TIs, we
also ensure that the forwarding node is on the path joining nodes (i1, i2) with TIs sp j and
s(p+1) j mapped on them. This is represented as constraint 4.15:

∀i1 ∈ {1, . . . ,I}; i2 ∈ {1, . . . ,I′}; i1 ̸= i2 ∑
∀p, j;p+1, j2;p ̸=p+1

m(p, p+1, j, i1)F ′(sp1 j,sp2 j)≥ m(p, p+1, j, i2)

(4.15)

where m(p, p+1, j, i1) and m(p, p+1, j, i2) are mapping variables with 0 or 1 value. Here
m(p, p+1, j, i1) represents node i1 as a forwarding node for processed data flow F ′(sp1 j,sp2 j),
between TIs sp j and s(p+1) j, and m(p, p+1, j, i2) represents the next forwarding node for
the same flow.

92 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

Fig. 4.9 The SUMO simulation for the intersection in Dublin, Ireland.

4.3.3 Cluster cohesion probability

In order to use the mobility of slow moving vehicles in our favor, it is crucial to incorporate
mobility awareness in the infrastructure model. There are many ways to predict the mobility
patterns of a group of vehicles. Here we consider all nodes that have a higher probability to
chose a similar road segment (Si), based on their historical mobility patterns, to be candidates
for the cluster. We assume that each RSU maintains a table of known vehicle nodes, with
their probability of taking a particular road segment (say S1) at the next intersection. Vehicles
that do not have entry in the table, but are willing to offer their resources, can be added to
the table. However, they would be assigned the average road exit probabilities of known
vehicles, with a low confidence score. As the history of a given vehicle builds up with time,
its road exit probabilities are updated and its confidence score increases.

We have calibrated the microscopic car-following model, using the macroscopic vehicle
flow data from the Dublin intersection based on the flow model in §3.2.1. For simulations,
we extract the Dublin intersection road network, as depicted in Fig. 4.9, using Open Street
Map (OSM) and calibrate the simulation using the real-world Dublin traffic dataset. We
generate the calibrated traffic in the Simulation for Urban Mobility (SUMO) simulator.

A =

S1 S2 S3 S4

P(t1,t2)(car1) car 1

0.5 0.4 0.1 0 car 2

0.4 0.6 0 0.1 car 3

0 0 0.9 0.1 car 4

0.5 0.5 0 0 car 5

0.6 0.4 0.2 0 car 6

4.3 Service Scaling and Placement Scheme with Multi-hop Clusters 93

The transition matrix stores the mobility behaviour of every candidate vehicle, for a
particular time period. This table can be updated over time to increase the accuracy of
mobility awareness. Each RSU thus has many tables stored for different time stamps during
the day. We model the mobility of vehicles as a Markov Model, where each road segment
is a state. As mentioned in [Maglaras and Katsaros, 2016], the vehicle node that moves
from one road segment to the other represents a transition in the Markov process. But
instead of considering the detailed trajectory of a single vehicle, the matrix stores all possible
probabilities for a vehicle to stay at the segment or take another road segment with a certain
probability. Thus, every intersection in the service zone maintains the probability of a vehicle
that follows Markov memory-less property, wherein the node transitions from state i to i+1
and is independent of state i-1. Based on the mobility patterns, different vehicle clusters can
be formed for the service execution. In this paper, we only consider the nodes with a high
probability of going from road segment A to C (in Fig. 3.1), as continuing to belong to the
cluster. Therefore, the CCP of a given vehicle node is the probability of that node going
straight ahead at the next intersection.

4.3.4 Service Placement Cost

To incorporate the mobility of hosting nodes, we scale the resource capacity of each node
in the vehicle cluster with a weighting factor, i.e., the probability of a node to stay with the
cluster for the duration of service execution, i.e., from time t1 to t2, which is given as P(t1,t2)(i).
This is because a node with enough resource capacity might not have a high probability of
staying with the vehicle cluster, so this needs to be considered when placing TIs on that node.
Placing TIs on such nodes can waste computation and bandwidth resources if the node leaves
the cluster prematurely, and can also cause the service to fail. Thus, we scale the vehicle
node capacity with its CCP, such that the higher the CCP (probability of staying with the
cluster), the lower the costs of TI execution on that node. The Node Cost is given as:

NodeCost(i1) = ∑
∀i1,i2;i1 ̸=i2

(1−P(t1,t2)(i1)).(Dp j,k/Ck(i)).M(p, j, i) (4.16)

where M(p, j, i) is the mapping function of TI sp j to node i, with node resource capacity
of Ck(i). To add the costs, we consider the ratio of required node capacity (Dp jk) with the
available node capacity (Ci(k)).

Similarly we scale the link capacity of any two nodes with data-dependent TIs, with the
joint probability of the two nodes to stay together for the duration of service execution (t1 to

94 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

t2), given as P(t1,t2)(i1, i2). The total link cost for service execution is given as:

LinkCost(i1, i2) = ∑
∀i1,i2;i1 ̸=i2

(1−P(t1,t2)(i1, i2)).

(F(p1, p2)/B(i1, i2))
(

m(p, p+1, j1, i1).m(p, p+1, j2, i2)

+M(p, j1, i1).M(p, j2, i2)
) (4.17)

where m(p, p + 1, j1, i1).m(p, p + 1, j2, i2) ∈ {0,1} is an indicator that two nodes
that form part of the path joining two TIs of task sp1 j and s(p+1) j type. Similarly
M(p1, j, i1).M(p2, j, i2) indicates that two nodes, one hosting TI sp1 j at node i1 and the
other TI sp2 j at node i2, have a direct link between them. For adding up the link cost and the
operating cost on each node, we use the ratio of required bandwidth resource (F(sp1 j,sp2 j))

with the available bandwidth (B(i1, i2)) at each link that forms part of the service placement.

4.3.5 Bi-objective Optimisation Function

The problem is formulated as a bi-objective optimisation. We hierarchically solve the
optimisation with the first objective:

4.3.5.1 Adjacency TI placement

When placing tasks on nodes, it is more efficient to ensure that the placement plan takes
account of both task dependencies and of inter-node network distances. For example, if
sp2 depends on sp1 , it is advisable to ensure that each is placed either on the same node or
on nodes that are one hop away from each other. However, this requirement could make it
difficult to find a feasible placement. Hence, we seek to ensure that the network distance
between any two selected nodes with data dependency is minimised for efficient service
placement. The hop count between two placed TIs is minimised when:

∀i1 ∈ {1, . . . ,I′(p1 j)(p2 j)}; i2 ∈ {1, . . . ,I′(p1 j)(p2 j)}; i1 ̸= i2H(i1, i2) = ∑
∀p1,p2

m(p1, p2, j, i),min H(i1, i2)),

(4.18)

where H(i1, i2) is the hop count between two nodes i1 and i2 for the flow F(sp1 j,sp2 j) between
tasks sp1 and sp2 . In the model, mapping variable m(p1, p2, j, i) applies to a forwarding node
i along the path between TIs j of type p1 and p2, in cases where there is no direct link
between the nodes hosting these TIs.

4.4 Results for Service Placement for the Bi-objective Service Placement Problem 95

4.3.5.2 Total Cost of Service Placement

We then solve the model for the next objective function, which minimises the Total Cost
spent on service execution:

min ∑
∀i1,i2;i1 ̸=i2

λ1LinkCost(i1, i2)+λ2NodeCost(i1) (4.19)

where λi are non-negative and sum to 1. When evaluating our model, we set λ1 = λ2 = 0.5,
i.e., we give equal weight to node and link cost for simplicity. To come to this decision, we
carry out sensitivity analysis and generate random values for λ1 (λ2 = 1 - λ1), and plot total
cost for the same resource-poor and resource-rich clusters. In the event of low node capacity
or low link capacity, the optimisation takes care of the number of TIs deployed, with the
objective of minimising total cost. Thus, as depicted in Fig. 4.10, we get total cost values in
a similar range for almost every weight. We chose both λ1 and λ2 = 0.5, as it gives lower
cost in both cases and other values do not significantly affect cost. Also, in hierarchical
optimisation, the first objective function effectively gets a higher priority than the next. We
give an explanation of this choice in Section 4.4.2. Thus, minimising the hop counts is the
first priority of the optimisation and then equal priorities are given to both node and link cost.

4.4 Results for Service Placement for the Bi-objective Ser-
vice Placement Problem

4.4.1 Application Types

We highlight two different application types that are suitable for the model described in
this paper. The type-based service for distributed video analytics is given as an input to the
service placement problem. The service is described as a linear chain, with one task of Type
1 type, that is mapped to a vehicle with a dash camera or smart camera installed on it and the
user is willing to lease their vehicle resources in exchange for some incentive. This data is
streamed to a nearby vehicle that hosts a task of Type 2, followed by another vehicle hosting
a task of Type 3. Such tasks execute lightweight video pre-processing like data compression
or sub-sampling that reduces the size of the video data, based on the application requirement.
Some examples include:

• Modality-based pre-processing [Ang et al., 2019]: multimedia data may have more than
one modality, e.g., video data with image and speech. This requires data separation.

• Data cleaning: only frames that have the required data can be separated from other
redundant frames, especially in the case of more than one source of video data. This is

96 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

0.090.10.20.30.40.5 0.80.9
Lambda1 (1): Resource poor cluster

0

100

200

300

400

500

600

700
To

ta
l C

os
t

0.090.10.20.30.40.5 0.80.9
Resource rich cluster

0

100

200

300

400

500

600

700

Fig. 4.10 Sensitivity analysis for resource-rich and resource-poor clusters, we get total cost
values in a similar range for almost every weight. We chose both λ1 and λ2 = 0.5, as it gives
lower cost in both cases and other values do not significantly affect cost.

relevant for a Fog computing scenario, where the computation and storage capacity is
limited.

• Data Reliability: Other applications like detecting video from unreliable data sources
which are not subscribed to the service can also be detected and filtered at this stage.

Once the processing is complete at the cluster, this data is then sent to the CN which
forwards the data to the edge/cloud for further high computational processing, like vision-
based processing for video crowd-sourcing applications and traffic density estimation using
convolutional neural networks, etc. We specify two different applications, with different
resource requirements, that we place together on the vehicle cluster:

4.4.1.1 Application I: High-processing video streaming applications

The first application is a pedestrian detection application that can be used to study the
popularity of a coffee shop or a gas station, based on the number of pedestrians detected
in the stream of video data. This data is collected by vehicles standing at a traffic light
or an intersection, close to the coffee shop, say. This data has local relevance/scope and

4.4 Results for Service Placement for the Bi-objective Service Placement Problem 97

On Camera
Capturing/
Processing

(CP)

Data
Cleaning/

Redundancy
elimination

Data Fusion

Type 2 Type 3 Type 4Type 1

Facial and
Body

Localization/
Pedestrian
Counting

Fig. 4.11 Sample application for pedestrian detection

hence, most of this data should be processed locally, based on the available resources on the
vehicle cluster. For this application, 1 to 6 camera or Type 1 TIs are used in the Evaluation
section (4.4.2), because more camera instances increase the richness of contextual data. The
Type 2 TIs aggregate and process this video stream from different Type 1 TIs as depicted in
the Concept Diagram of the application in Fig. 4.11. This TI can aggregate the data from
different sources based on content or location similarity. The functionality of Type 3 and
Type 4 TIs is application-specific. In the compute-intensive application, lightweight video
processing is performed on the video stream to transform it into other forms, e.g., capturing
specific frames with license plates, or highlighting pedestrians or other objects of interest in
each scene. We assume that the data is reduced to 40-50% of its size, by Type 2 instances
and to 20% of its original size after processing by Type 3 TIs. This pre-processed data is then
sent to the CN, which forwards it to the RSU.

To validate the service model, we implement these applications on an existing simulator
called Yet Another Fog Simulator (YAFS) [Lera et al., 2019]. It is a python-based discrete-
event simulator that supports resource allocation and network design in Cloud, Fog or Edge
Computing systems. We chose the simulator because it supports the mobility of entities,
which can act as both sources of data, called workloads or processing nodes. The simulator
also provides a Distributed Data Flow based application model that allows task replicas and
dynamic placement of tasks. The applications are represented as directed acyclic graphs
(DAGs), where nodes represent service modules and links represent data dependency between
modules. The simulator also incorporates strategies for dynamic service selection, placement
and routing.

In Fig. 4.12, we consider the average node utilisation in the placement of service described
as Application I. As suggested by the authors in [Lera et al., 2019], we calculate the node
utilisation as the sum of the service times at each node divided by the total simulation time.
We compare the average node utilisation between:

• Cloud placement: all tasks placed in Cloud

• Edge/RSU placement: all tasks placed on edge/RSU

98 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

3 6
Number of Type 1 instances

0

10

20

30

40

50

60

70

80

Av
er

ag
e

no
de

 u
til

iza
tio

n
Cloud placement
Edge/RSU placement
Mobile node/vehicle placement(unreplicated tasks)
Mobile node/vehicle placement(replicated tasks)

Fig. 4.12 Comparing different placement techniques using the average node utilisation in
the case of cloud placement, edge/RSU placement, mobile node/vehicle placement (without
replicating task instances), mobile node/vehicle placement (with replicated task instances:
our case) for Application I.

• Mobile node/vehicle placement (unreplicated tasks): all tasks placed on mobile
nodes/vehicles (without replicated TIs)

• Mobile node/vehicle placement (replicated tasks) (our approach): all tasks placed as
multiple TIs on mobile nodes/vehicle

In Fig. 4.12, for variable workloads that are generated using custom temporal distributions,
we compare placement for three and six video collection TIs of Type 1. For three Type 1
TIs, only mobile node placement with unreplicated tasks results in better node utilisation,
compared to our approach. For six Type 1 TIs, our approach of replicating processing TIs
of Type 2 and Type 3 on different mobile nodes, results in lesser average node utilisation
compared to all the other approaches. This validates that our service model of replicating
tasks is efficient from a node utilisation point-of-view, as compared to other placement
approaches.

4.4.1.2 Application II: Low-processing video streaming application

Application II uses vehicles as moving sensors for video collection. Applications of
this category include measuring the traffic density at an intersection in real-time, or

4.4 Results for Service Placement for the Bi-objective Service Placement Problem 99

surveying road conditions for road traffic mapping. Generally, the focus is on passive video
collection; most processing does not happen in the cluster. Such applications perform
minor pre-processing tasks on data in the vehicle cluster. Such pre-processing includes data
sampling, segmentation or encoding and is carried out on Type 2 and Type 3 instances. Thus,
the data is reduced to 80% of its original size before being sent to the cloud for executing
compute-intensive tasks, possibly applying complex machine learning to the data.

4.4.2 Evaluation

We solve the constrained optimisation problem using the Gurobi Optimiser, which is a
powerful mathematical solver, on an Intel i7-6500U dual-core processor running at 2.50 GHz.
The solver uses a Linear Programming (LP) based branch and bound algorithm to solve the
Mixed Integer Programming (MIP) problem.

We place Applications I and II together on a vehicle cluster with 10 nodes, since more
nodes in a cluster increase the time and space complexity of the problem. The cluster is a
directed, connected graph, where each node has either video capturing or data processing
functionality. We consider two types of resource states of the cluster, based on the mix of
vehicles with one of three resource profiles: 1) Large node type: 5 CPUs, 500Mb disk, 6MB/s
bandwidth; 2) Medium node type: 3 CPUs, 250Mb disk, 4MB/s bandwidth; and 3) Small
node type: 2 CPUs, 100Mb disk, 2MB/s bandwidth. A resource-rich cluster has 50% large,
25% medium and 25% small resource vehicle nodes. A resource-poor cluster has 25% large,
50% medium and 25% small vehicle nodes. We consider a service chain with 2 processing
instances, which makes the chain length = 3, including Type 1 instances and the CN. We
ran the optimisation for the longer chain length, which takes a much longer time to find a
solution, especially for a higher number of video generating instances, with a higher data
rate. The worst-case scenario was for a service chain of length 6 with 5 Type 1 instances,
which took more than 5 hours to find a solution.

The ’type graph’ is scaled as an ’instance graph’, with data dependency and resource
requirements. We use a service chain description similar to [Dräxler et al., 2018], without
making it bidirectional. We impose multi-tenancy in the model, as it is beneficial to share TIs
between applications, especially when more than one task replica is placed on the vehicle
cluster.

For this chapter, we consider that all nodes stop at an intersection and the RSU first
selects a CN, which is one hop away from the RSU and is well connected to more than
70-80% of the nodes in the cluster. This CN needs to have ample communication and
computation resources to manage the resource and cluster state. We also assume that the

100 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

mobility behaviour, in terms of the CCP is based on the mobility pattern of each vehicle,
collected over its previous trips in this area. We derive the CCP by running the calibrated
SUMO simulator, using the real vehicle density data from Dublin traffic, as explained in
§4.3.3. We have broadly classified cluster states as stable and unstable. The stable clusters
are formed when many vehicles follow a single trajectory, along with the CN. We consider
two cluster states: stable with a CCP in the range [0.4,0.8] and unstable with a probability
distribution between [0.2,0.6].

4.4 Results for Service Placement for the Bi-objective Service Placement Problem 101

2 3 4 5 6
Number of Type 1 instances

0
50

100
150
200
250
300
350
400
450

No
de

 C
os

t

Unstable Cluster
Stable Cluster (a)

(a) Case A:Node cost for resource-constrained
cluster and low data rate

2 3 4 5 6
Number of Type 1 instances

0
50

100
150
200
250
300
350
400
450

No
de

 C
os

t

Stable Cluster
Unstable Cluster

(b)

(b) Case B:Node cost for resource-rich cluster
and low data rate

1 2 3 4 5 6
Number of Type 1 instances

0

100

200

300

400

500

No
de

 C
os

t

Stable Cluster
Unstable Cluster

(c)

(c) Case C:Node cost for resource-rich cluster
and high data rate

1 2 3 4 5 6
Number of Type 1 instances

0

50

100

150

200

250

300

350
Lin

k
Co

st

Stable Cluster
Unstable Cluster

(d)

(d) Case A:Link cost for resource-constrained
cluster and low data rate

2 3 4 5 6
Number of Type 1 instances

0

50

100

150

200

250

300

350

Lin
k

Co
st

Stable Cluster
Unstable Cluster

(e)

(e) Case B:Link cost for resource-rich cluster
and low data rate

1 2 3 4 5 6
Number of Type 1 instances

0
50

100
150
200
250
300
350
400
450

Lin
k

Co
st

Stable Cluster
Unstable Cluster

(f)

(f) Case C:Link cost for resource-rich cluster
and high data rate

Fig. 4.13 Node and Link Cost for Case A,B & C.

102 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

Table 4.1 Table of Notation.

Notation Representation
sp Task of type p
sp j Task instance of type p and count j
I No. of nodes available for the formation of vehicle cluster
i ∈V i is the index of a vehicular node with resources to be used

by the task instances to be placed on this node total set of V
nodes

k One of K types of resources: CPU, memory, sensing
Ck(i) Available capacity of each vehicle node i for resource type k
(i1, i2) ∈ E directed edge of the graph represents the link between any

two vehicle nodes i1 and i2
B(i1, i2) Link capacity between two nodes i1 and i2
P(t1,t2)(i1) Cluster Cohesion Probability of a single vehicle node i1 from

time t1 to t2
P(t1,t2)(i1, i2) Joint Cluster Cohesion Probability of two nodes i1 and i2 to

stay together from time interval t1 to t2
Nsp Number of task instances for a task sp
S Set of all SCs
Dp jk minimum demanded amount of Dp jk units of resource type

k for task instance sp j
F(p1, p2) Flow demand between task sp1 and sp2

C(F(sp1 j,sp2 j)) Processing requirement for the flow from task instance sp1 j
to sp2 j

M(p, j, i)

 1, if the task instance sp j,
is placed at (mapped to) node i

0, otherwise

m(p1, p2, j, i)

1, if the node i is mapped to be a

forwarding node for data flow
between instance sp1 j to sp2 j

0, otherwise
I′(p1 j)(p2 j) is the set of all nodes on the path between task instances sp1 j

and sp2 j
C(sp2 j) is the processing capacity of task instance sp2 j
F ′(sp1 j,sp2, j) represents the flow that has been processed at task instance

sp1 j or is forwarded from sp1 j specifically for processing
(not forwarding).

αp j represents the data reduction/processing factor for a task
with Type p resource.

H(i1, i2) is the hop count between two nodes i1 and i2 for the flow
F(sp1 j,sp2 j) between tasks sp1 and sp2

4.4 Results for Service Placement for the Bi-objective Service Placement Problem 103

Table 4.2 Simulation parameters.

Parameters Range

Node Density 10-50
Service Cluster Pmin Threshold 0.5
Vehicle Node Resource Profiles Small(S),Medium(M),Large(L)
Resource Profile Mix 50% L, 25% M, 25% S
Number of Application Instances 5, 7

Table 4.3 Resource profiles by size.

Resource Profile vCPU vDisk vBandwidth
Mb Mb/s

Large 5 500 6
Medium 3 250 4
Small 2 100 2

104 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

We consider three use cases for solving the optimisation. For Case A, we take a resource-
constrained cluster with low data rates of streaming video and compare the node processing
cost for stable and unstable cluster probabilities. We vary the number of Type 1 instances
from 2 to 6, to study the effect of the amount of data on service placement and resource usage.
When we use lower video data rates, we see that the stable cluster uses fewer resources than
the unstable cluster. For Case B, a resource-rich case (Fig. 4.13b) with lower data rates,
the node cost is significantly less, compared to Case A (Fig. 4.13a), as it is easier to place
more than one TI on nodes having more processing resources, for both stable and unstable
cluster, resulting in better resource utilisation. But in this case, the stable cluster still used
less resources than the unstable cluster. The solution time is also significantly less for a
resource-rich cluster: to find the optimal placement for Case B takes an average of 86s,
versus a resource-constrained cluster (Case A: 300.7s). We also observed that weighting
both objectives (adjacency TI placement and total cost of service placement) equally solves
the problem faster than hierarchical solving, but the resulting placement uses more network
resources.

For link cost, the resource-constrained cluster (Case A) has significantly higher resource
usage (Fig. 4.13d). The nearby nodes might not have enough processing capacity, so
dependent TIs need to be placed on farther nodes, leading to more link utilization. The link
capacity is also less in the resource-constrained cluster which adds to the cost. The Link Cost
in the resource-rich cluster (Case B) (Fig. 4.13e) is significantly less and, in both cases, stable
clusters outperform unstable clusters. The variability in link cost is more in this case, as the
amount of video data processing in both applications is significantly different. Application I
reduces the data to approx. 20% whereas Application II reduces the data to 80%. Hence, the
link cost varies based on the number of Type 1 TIs in each application. But as we double the
data rate of the video data in a resource-rich cluster (Case C), the unstable cluster utilises
much more computation resources (Fig. 4.13c). The difference between stable and unstable
cluster node costs increases significantly as the Type 1 instances increase from 1 to 6. The
unstable cluster uses slightly more resources, compared to the stable cluster in the low data
rate case (Case B: Fig. 4.13b). For the link cost in this case (Fig. 4.13f), for fewer Type 1
TIs, stable and unstable clusters incur almost the same cost. The variability increases as the
number of video instances increases.

4.4.3 Penalty Function

We introduce a Penalty function to reflect the cost of nodes hosting TIs leaving the cluster.
This penalty is related to both link and node costs. If a TI-hosting node leaves the cluster,
the node cost incurred by it does not contribute to the service requirement. In case of

4.4 Results for Service Placement for the Bi-objective Service Placement Problem 105

2 3 4 5 6
Number of Type 1 SCIs

0

50

100

150

200

250

Pe
na

lty
 C

os
t

Unstable cluster
Stable cluster

(a) Penalty cost.

2 3 4 5 6
Number of Type 1 instances

0

5

10

15

20

25

Ho
p

Co
un

t

Stable Cluster

(b) Total hop count.

0 50 100 150 200 250
Time (seconds)

10 4

10 3

10 2

10 1

100

Ba
nd

wi
dt

h
Ef

fic
ie

nc
y

Data flow for Type 1 (480p)
Data flow for Type 1 (240p)
Data flow at RSU

(c) Bandwidth efficiency at Type 1 TIs and RSU.

Fig. 4.14 Penalty cost, total hope count and bandwidth efficiency at Type TIs and RSU.

service reconfiguration, the leaving node will have to send the service state back to the
CN, which requires bandwidth usage. We penalise placements where TIs are placed
on nodes with a probability lower than the threshold probability (0.6). There will be
another added cost on re-configuring the failing service, but we do not consider service
reconfiguration costs in our current model. The Penalty Function for placing a TI on
a node with a Probability less than a pre-decided threshold probability (PT hreshold) is given as:

P(t1,t2)(i1) ≤ PT hreshold

(P(t1,t2)−PT hreshold) ≤ 0
−P(t1,t2)(i1) ≤ −PT hreshold

The Penalty function for selecting two nodes with a joint probability (to stay with the
cluster) less than the threshold probability is given as:

P(λ(i1,i2)) = λ (P(t1,t2)(i1, i2)−PT hreshold) (4.20)

106 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

where λ can take values like 5,10,..,100, based on how strongly we want to penalise task
placement on nodes with lower CCP. As shown in Fig. 4.14a, for a resource-constrained
cluster (Case A), the penalty cost added to the objective function for an unstable cluster
is higher than the penalty for a stable cluster. For the resource-rich cluster (Case B), the
model places very few TIs on nodes with low CCP, and hence the additional penalty cost
is zero, in almost all the resource-rich test cases, for both stable and unstable clusters. This
suggests that the model considers mobility in an intuitive way. We also plot the best and worst
case hop count (Fig. 4.14b), for the same resource-constrained cluster (Case A), when the
total hop count is first minimised for service selection. It is observed that the hops increase
significantly as the number of Type 1 TIs increases.

4.4.4 Mininet-WiFi Simulation

We emulate the scenario of a vehicle cluster with 10 nodes for Application II. We simulate
two video streaming nodes that send 4 minutes long videos in different resolutions (240p
and 480p) and at different data rates. We use a SUMO-Mininet-WiFi [Dos Reis Fontes et al.,
2017] set-up, where the RSU receives a service monitoring request at the same intersection
in Dublin and forwards the request to the CN. We use the SUMO simulator to generate urban
mobility at a busy intersection. Mininet-WiFi maps the cars to an emulated, software-defined
network with virtualized WiFi stations and access points. The video stream is forwarded to a
participating node that aggregates the data before sending it to a CN that forwards it to the
RSU. We monitor the bandwidth usage for the two collected streams and compare it to the
bandwidth efficiency of the processed stream received at the RSU. As depicted in Fig. 4.14c,
we get significantly better bandwidth efficiency at the RSU because of the data aggregation
in the model.

4.5 Service Scaling and Placement Plan Procedure

In this section, we explain our procedure for service scaling and placement. As presented
in Algorithm 4.1, the placement procedure first take the mobility parameter of vehicles as
the CCP (Pi(t1, t2)), the available capacity for hosting service at every node i (Ck(i))and
bandwidth limit between the two nodes (B(i1, i2)). The linear service chain or the Type graph
is also given as an input to the procedure. The Type graph is composed of several tasks that
are scaled to TIs according to the demand of the service. The minimum resource requirement
to host a TI of Dp jk units and the flow demand between two tasks F(sp1,sp2) is also given as

4.5 Service Scaling and Placement Plan Procedure 107

an input to the service placement procedure. The service is placed by placing each TI in the
order specified by the Type graph.

Algorithm 4.1 Service Scaling and Placement
Input: Mobility and resource state of vehicles: Pi(t1, t2),
Ck(i), B(i1, i2), Linear service chain: Dp jk,
C(F(sp1 j,sp2 j)), F(sp1 ,sp2), C(sp2 j)
Output: Service placement plan with minimized hop count and service placement cost

1: procedure SERVICE SCALING
2: Place Type 1 TIs on vehicles with data collection capability
3: for each vehicle pair i1,i2 in cluster do
4: for each TI Type n to Type m in Task order do
5: if Type n is placed then ▷ Call service placement procedure to check capacity and service-level

constraints
6: H(i1, i2), Cost = Service Placement()
7: else if Unplaced then
8: Scale new TI of Type n
9: H(i1, i2), Cost = Service Placement()

10: if Type n is placed then
11: total_hop += H(i1, i2)
12: total_cost += Cost
13: if Type n to Type m placed then
14: if H(i1, i2) ≤ min_hop && Total Cost ≤ min_cost then
15: min_cost = total_cost
16: min_hop = total_hop
17: return New service placement plan
18: else
19: Continue to find placement until all nodes of the cluster are explored
20: procedure SERVICE PLACEMENT(Pi(t1, t2), Ck(i), B(i1, i2), Dp jk, C(F(sp1 j,sp2 j)), F(sp1 ,sp2), C(sp2 j))
21: if node and link capacity constraints are met then
22: if service level constraints are met then
23: Place Type n on node i2
24: Calculate H(i1, i2)
25: Calculate Cost = λ1 Link Cost(i1, i2) +
26: λ2 NodeCost(i1)
27: return Cost,H(i1, i2)
28: else
29: return Unplaced TI

The service scaling procedure first checks if a TI of a certain task type is already placed
on the vehicle cluster (line 5). If a TI is placed then the service placement procedure is called
to check the infrastructure and service-level constraints (in lines 20-29) on the TI and the
node hosting it. If a TI is not already placed or the constraints are not met on the placed TI, a
new TI is scaled on line 8 and the service placement procedure is called on line 9. As each
TI is placed, the total hop count and the cost are added in lines 10-12. If all TIs of Type n to
m is placed, the total hop count and the total cost are compared to the minimum hop count

108 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

and minimum total cost of an existing service placement plan to find the placement with the
lowest objective value in lines 13 to 19.

4.5.1 Comparison of MIP with baseline approaches

1 2 3 4 5 6
Number of Type 1 instances

0

50

100

150

200

250

300

No
de

 C
os

t

Optimized
Naive(highest data rate)
K-means cluster:random

Fig. 4.15 Comparison of node cost in the optimal, naive scheme and a clustering scheme for
Case A:resource-constrained cluster and low data rate.

2 3 4 5 6
Number of Type 1 instances

0

50

100

150

200

250

300

Lin
k

Co
st

Optimized
Naive(highest data rate)

Fig. 4.16 Comparison of link cost in optimal v/s naive scheme for Case A:resource-
constrained cluster and low data rate.

4.5 Service Scaling and Placement Plan Procedure 109

We compare the optimal solution of our model to an autonomous vehicular edge computing-
based naive solution introduced in [Feng et al., 2017] and a clustering-based solution intro-
duced in [Hu et al., 2021]. The work in [Feng et al., 2017] is very similar to our concept
of using the highly dynamic vehicular environment for deploying services. The solution
selects combinations of nodes with the intention of minimising latency, i.e., they have the
lowest processing time and transmission time. As we focus on data collection services, we
do not focus on the time needed to send results to the requesting node (typically the CN). As
described in [Zhu et al., 2019], they preferentially select nodes with the highest available link
and node capacities.

The clustering-based approach in [Hu et al., 2021], uses graph-based services, similar to
our service model, and generates Herds or clusters using the K-means clustering algorithm.
To make the approach comparable, we use parameters like available resources (Ci(k) in
our model), CCP, and vehicular speed to form clusters. As depicted in Algorithm 4.2, the
mobility and resource state of the cluster are collected from all participating vehicle nodes
(lines 2-4). The first centroid is selected randomly, the remaining k-1 centroids are selected
based on the maximum squared distance from the nearest centroid (lines 5-9). The classical
k-means clustering is used to form k clusters (line 10). The intra-cluster squared distance
(ICD) is calculated for each cluster and the cluster with the smallest ICD is selected for
service placement. As a baseline, the nodes are randomly selected from the generated cluster
to offload and process the tasks. However, this approach introduced in [Hu et al., 2021]
only considers the processing cost, and hence, we only use the node cost to compare their
clustering approach to other approaches.

Algorithm 4.2 KMeans Clustering
Input: Mobility and resource state of vehicles: M[t1, t2] =
<vehicle_speed, CCP, Ci(k)>

Output: Selected vehicle cluster
1: procedure CLUSTER FORMATION ▷ Using K-Means Cluster
2: for each vehicle node i do
3: Collect Mi[t1, t2]
4: Collect dataset of all available nodes I M[t1, t2] = [M1,M2...MI]

5: for j from 2 to k do
6: for each vehicle i do
7: Calculate di = max ||xi−C j||2

8: u j = argmax(di)
9: Get k initialized cluster centers: u = [u1,u2, . . .uk]

10: Clusters = KMeans(u)
11: for each cluster in Clusters do
12: ICDk = ∑(||di,Centk||2)
13: Selected cluster = min(ICDk)

110 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters

As seen in Fig. 4.15, the node cost for the naive approach increases significantly as the
number of Type 1 instances increases. Similarly, the node cost for the clustering approach
increases linearly as the number of TIs of Type 1 increases. We get a similar result for link
cost in Fig. 4.16 where the cost doubles for the naive approach for 5 and 6 Type 1 TIs, in
comparison to the optimal solution. The naive approach results in less latency compared to
the optimal approach but does not take account of node mobility, so is more likely to fail. By
contrast, our objective reduces the cost of service execution and select more reliable nodes
that reduce the need for service reconfiguration. Of course, the delay is a crucial parameter
for safety-related services like lane changing, accident prevention, and autonomous driving.
However, delay can also be reduced by adding more resources and using them judiciously:
by shortening service chains and placing many processing TIs of the same type in parallel.

4.6 Conclusion

This chapter focuses on the concept of scaling and placement of distributed services on
vehicle clusters, harnessing the knowledge of mobility patterns. The novelty of the work
is in considering the mobility pattern of urban road traffic and utilising moving vehicles as
a potential site for deploying services. The services are made adaptable for the dynamic
vehicular environment and can be scaled dynamically, based on the resource and mobility
state of the vehicle cluster. We introduced two detailed mathematical models for the mobility-
aware scaling and placement of distributed services based on resource-rich and resource-poor
as well as stable and unstable cluster states. The first model introduced in Section 4.2, uses
single-hop communication between different vehicles in the cluster and uses constraints
like anti-collocation to distribute placed TIs on different nodes to ensure a resilient service
placement. Similarly constraints like adjacency and cohesiveness ensure that the nodes
with placed TIs are not very far from each other in-terms of network distances. Thus,
this service placement model ensures distributed service placement without increasing the
communication resources available in the vehicle cluster. This service placement aims to
find an optimal service placement plan ensuring full deployment of the distributed service.
In Section 4.2.5, the service placement plan is evaluated using the percentage of successful
service placements and the ratio of bandwidth usage for the placement.

In Section 4.3, a more realistic service model and system model is introduced. Different
from the model introduced in Section 4.2, this service placement model considers multi-
hop clusters. This service placement model introduces service level constraints that ensure
the TI’s are placed in order and the data flows are processed at each TI mentioned in the
service model. This service placement model optimises the service placement cost which is

4.6 Conclusion 111

Table 4.4 Comparison of two service placement schemes introduced in the chapter.

Service placement plan
with single-hop clusters
(Section 4.2)

Service placement plan
with multi-hop clusters
(Section 4.3)

The model considers single-hop
clusters and focuses on anti-collocation,
adjacency, full deployment type
constraints. The service placement
focuses on a balanced service placement
in terms of distribution of tasks without
over-utilising available resources.

This model considers multi-hop
clusters. This service placement
model considers mobility as an
an intrinsic part of the model by
minimising the resource, weighted
by the CCP of the vehicular node.
Thus, the model does not only consider
available resources but also the availability
of the resources based on
their historic mobility pattern.

The model does not consider service-
level constraints.

This model considers more sophisticated
service-level constraints that ensure the
TI’s are placed in order and the data flows
are processed at each TI mentioned in the
service model. Such a model is crucial for
deploying futuristic services that are
deployed in a distributed manner
and require real-time scaling.

defined as resource utilisation weighted by the CCP. The two service placement schemes are
compared in Table 4.4.

In Section 4.4, first two applications types are introduced, one with low processing
requirements and the other with high processing requirements and both type of applications
are placed on the vehicle cluster to promote multi-tenancy in the model. Then, very detailed
simulation results are presented for the introduced placement scheme by considering different
mobility states of the vehicle cluster including stable and unstable vehicle clusters based
on the CCP of the participating vehicles. The experiments also consider different resource
profile of vehicle clusters classified as "Small", "Medium" and "Large" vehicle node types.
The two types of applications are placed simultaneous to evaluate the performance of the
service model in terms of node and link costs. In Section 4.5.1, our approach is compared to a
naive solution introduced in [Feng et al., 2017] and the clustering-based approach introduced
in [Hu et al., 2021] significantly. Our approach outperforms both the baseline approaches in
terms of both node and link cost.

Chapter 5

Placement of Distributed Video
Processing Applications on Moving
Vehicle Clusters

5.1 Introduction

The increasing amount of data generated from Internet of Things (IoT) devices has resulted
in isolated sources of data that are not fused with other data sources and hence are not
fully utilised. On the other hand, the emergence of powerful machine learning and deep
learning algorithms requires large amounts of data to make accurate inferences. Most of the
surveillance carried out on roads or other public places is through static cameras that send
most of the collected data to the back-end server [Rathore et al., 2021]. This approach leads
to increasing operational costs in deploying dedicated hardware as well as using expensive
bandwidth to send this data to the cloud through dedicated links.

The concept of vehicular fog computing (VFC) [Ning et al., 2019] is derived from using
the available and under-utilised vehicular resources, like in-built sensors, processors, dash-
board cameras, advanced onboard units (OBUs), etc., for both crowdsensing and processing
data. The VFC paradigm aims to make computation more efficient by leveraging the process-
ing and communication capacity of the vehicles, instead of offloading computation to the
edge servers or the cloud [Lee and Lee, 2020]. VFC extends the intelligence of mobile edge
computing [Zhao et al., 2019], [Chen and Hao, 2018] and fog computing [Yousefpour et al.,
2019] to the vehicular network, in an attempt to increase the processing capacity to meet
the resource requirements for vehicular and infotainment applications. This novel system
of distributed service deployment reduces the traffic at the core network, saves the network

114 Placement of Distributed Video Processing Applications on Moving Vehicle Clusters

bandwidth in sending local and contextual data to the cloud, and also reduces end-to-end
latency [Yadav et al., 2020], [Zhu et al., 2018].

VFC also reduces the need for installing infrastructure to facilitate Intelligent Transport
Systems, for improving vehicular flows and reducing congestion, for recording data for road
condition monitoring to detect potholes, accidents, etc., and increasing commuter safety,
which has been theorized for more than a decade but has not been implemented [Thakur and
Malekian, 2019]. The use of Roadside Units (RSUs) or edge servers for meeting the demands
of vehicular applications has also been explored, but it has limitations due to the mobility
of vehicles. These RSUs have limited coverage on the highways and have limited sojourn
time with moving cars. Thus, provisioning services on RSUs can increase the control cost of
service migration between different RSUs. On the other hand, the OBUs on self-driving cars
have evolved in their processing capability and their ability to communicate with neighboring
vehicles and keep open connections with edge or cloud servers. These vehicles also have
a full System on a chip (SOC), for example, a Tesla car has 4 LPDDR4 RAM chips, with
complete redundancy to have failure resistance for any system on board [MEOLA, 2020].

Many recent studies on VFC have focused on latency-sensitive applications that are
safety-critical [Ho et al., 2020], [Du et al., 2020]. In this study, we look at a novel use-case
of making opportunistic vehicle clusters in urban sections of the city and leveraging the
resources on these vehicles to collect and process data. Most of the existing works on VFC
either use very simplistic mobility models [Zhou et al., 2020], like considering a straight
road segment with constant speed or consider only parked vehicles [Lee and Lee, 2020].
Many works also consider taxis and buses as potential fog nodes as their trajectories are more
predictable [Ge et al., 2020]. We, however, want to focus on using the embedded sensors
on any vehicle whose owner is willing to contribute the data. Another problem is that many
existing works on VFC consider a static and composite service template, which is not suitable
for the dynamic vehicular environment. We introduce distributed and flexible services that
can be adapted according to the resource requirement, are suitable for the heterogeneous and
distributed resources on vehicles, and can be reconfigured easily. Instead of optimizing only
computation or communication resources, we jointly optimize both link and processing costs.
To select vehicular nodes that are more probable to stay together, we introduce a vehicular
node selection scheme and a mobility-aware service placement heuristic.

For this system to operate properly, we first introduce a distributed, graph-based service
model where each component or task can be scaled to multiple task instances based on the
amount of data collected. We also leverage the mobility pattern of vehicles, stuck in high
density/congested traffic to estimate the ongoing availability of these vehicles to perform
tasks. The distributed services we propose are scaled in real-time and deployed on the vehicle

5.1 Introduction 115

cluster such that we get a robust initial placement with less need to reconfigure services. Our
model can support many applications using crowdsourced data from opportunistic clusters
including sensing applications like pedestrian detection to understand human engagement
with coffee shops, gas stations, and other locations. The collected data can also be used to
detect congestion and study usage patterns of roads, as part of building Smarter cities[Kanaka
Sri Shalini et al., 2019].

In this chapter, the following contributions are made to introduce a distributed and
scalable service model that can be effectively placed on a group of closely moving vehicles
by leveraging their historic mobility patterns:

• A mathematical formulation leveraging the mobility-awareness of infrastructure and a
novel and distributed service model is introduced. The scaling and placement of the
services are modelled as a bi-objective, constrained optimization problem with the
objective being efficient utilization of communication and computation resources.

• Instead of focusing on widely researched latency-sensitive applications, we introduce a
novel use case of initiating opportunistic clusters to collect and process data using just
macroscopic vehicular density data. We study how traffic reaches congestion levels at
different occupancy rates and other traffic patterns. We then calibrate our microscopic
mobility model using the real vehicle density data. The mobility model is built from
our extensive work on studying the predictability of vehicular flows and estimating
the computation and communication capacity of vehicle clusters in our previous work
[Sharma et al., 2021].

• We introduce a service model where each application is made of interrelated tasks.
Each task can also be scaled to multiple task instances to increase resilience in the
service in case of node or link failures. Two such applications are profiled in this
chapter to understand the resource usage of such applications.

• We leverage a community-detection-based node selection scheme to study the col-
lective availability of vehicular nodes in a cluster. We then introduce an effective
graph-theory-based heuristic that promotes placing task instances optimally within
the vehicle clusters. Our approach outperforms an integer linear program solution,
and a baseline, first-fit approach. Our approach also results in reduced service latency
compared to mobile edge computing-based placement.

The chapter is organised as follows: section §5.2 presents the system model for selecting
a well-connected cluster and managing the placement of the services on the vehicular cluster.

116 Placement of Distributed Video Processing Applications on Moving Vehicle Clusters

Preferred cluster
trajectory

Rejected cluster
trajectory

Cluster
Initiation

Cluster Re-
initiation

Fig. 5.1 Vehicle cluster’s lifecycle. The figure represents the preferred and rejected trajectories
of vehicles.

§5.3 introduces two distributed application types considered in this work. We then give
details on the network topology and distributed service model along with the notations used
for the mathematical modelling. Section §5.4 covers the service scaling and placement
constraints and the infrastructure constraints. The section also details the mobility model and
the objective function of the constrained optimisation problem. Section §5.5 describes the
community-detection-based node selection for cluster formation and the graph-based service
placement heuristics. Section §5.6 has a detailed evaluation of the introduced technique
compared to the ILP and first-fit solution. We also show the performance of our schemes
through service time and the state of the selected nodes in a cluster over time. The chapter is
concluded in section §5.7 where future work has also been suggested.

5.2 System Model 117

Type 1 Type 2 Type 3 CN

Type 1 TI

Type 1 TI

Type 1 TI

Type 1 TI

Type 1 TI

Type 2 TI

Type 2 TI

Type 2 TI

Type 2 TI

Type 3 TI

Type 3 TI

Type 4 TI

CN

Type 1 Type 2 Type 4 CN

Scaling

Type graph for two services:

Instance graph:

Fig. 5.2 Type graph of two services are presented. The service model depicting tasks and their
inter-dependencies. The colour coding represents the scaling of a task to its corresponding
TIs.

5.2 System Model

This section details the proposed model for selecting a well-connected cluster and managing
the placement of the services on the vehicle cluster. This placement is managed with the
coordination of the cluster’s CN and the RSUs. The RSU receives requests from clients to
deploy services. The client could be a one-off vehicle node moving along with the cluster
or a surveillance request from traffic authorities. In this chapter, we assume that the service
request is received and decomposed by the RSU in the form of a linear chain of tasks. As
depicted in Fig.5.1, the RSU detects the presence of vehicles that have previously subscribed
to a brokerage service and hence are prepared to lease their resources for service provisioning.
The RSU also stores and updates the database of the mobility patterns of these vehicles. Each
vehicle has a probability of taking a certain trajectory based on its historic mobility pattern.
Based on the preferred trajectories of the cluster, each vehicle node has a certain probability
of following the cluster trajectory. A weighted graph is created where each link is weighted
by the probability of two nodes staying together for a duration of time, called the CCP. Based

118 Placement of Distributed Video Processing Applications on Moving Vehicle Clusters

on this graph, the most well-connected cluster is selected, and the vehicular node with the
highest connectivity is elected as the CN, based on a centrality measure.

Once the vehicle cluster and the CN are selected the process of service placement begins.
The RSU sends the linear Type graph to the CN in the form of docker images. The CN also
collects the updated resource information from the vehicular cluster. Initially, the minimum
number of instances of each task is placed on the cluster, to process multiple data flows in
parallel. Based on the number of video task instances (TIs) and the amount of processing
required, the heuristic scales to more processing TIs by requesting TI images from the CN.
If there are no more potential nodes left to place new TIs, the collected data is sent to the
nearest RSU with the remaining TIs in the linear chain left to be placed for processing. The
RSU can request a re-initiated cluster to place the remaining processing TIs on it.

The system model presented in this work augments the system model introduced in
Chapter 3 by adding more detailed application types, instead of assuming black boxes of
tasks with certain data processing requirements. In this section, we introduce the resource
usage profiles of the two applications. We also present a more concise set of constraints that
achieve an optimal placement without increasing the complexity of the ILP.

5.3 Model

5.3.1 Application Type

We consider a linear chain of video collection and processing tasks. We place multiple video
collection TIs to increase the scale of video collection which results in better accuracy for
object detection applications. To process multiple video streams, we scale all the processing
tasks to multiple TIs, to utilize the limited processing capacity of vehicles. The multiple TIs
also increases the resilience of the service in a dynamic vehicular network where mobility of
vehicles increases node and link failures. We present two distributed services that follow our
distributed service model:

Data Collection service : For this kind of service, an initiated cluster acts as "moving
sensors" and only pre-processing and compression is carried out at the cluster. Most of
the application-specific processing is carried out on more powerful edge computing
nodes at RSUs. As an example, we take an application where Type 1 is a video
capturing TI, Type 2 is a video pre-processing TI. Type 3 is a video compression TI.

To profile this application, at Type 1 TI, we first capture the video using OpenCV. At
Type 2 TI, the video is pre-processed using Gaussian blur and simple thresholding. For

5.3 Model 119

Video format
converted, image

enhanced
Sensed data

Sensor data
 captured and

collected
Type 1 Type 2

ROI-based Compression

Type 3

RSU

Video preprocessing

Sensor data
 captured and

collected
Type 1 Type 3 Type 4

RSU

Type 2

Video preprocessing Frame extraction
Pre-trained CNN
local detection

The location and
count of detected
objects is sent to

RSU/CN

Key frame extraction:
Uses frame difference

method to subtract
adjacent frame. Key
frames extracted and

sent for detection

Information
flow of the
application:

Fig. 5.3 Two types of applications of chain lengths 3 and 4.

Table 5.1 Task function, techniques and commonly-used algorithms for the data collection
application’s tasks.

Task type Task function Task techniques Algorithms

Type 1 Real-time video captur-
ing.

Type 2 Video preprocessing. Image enhancement,
Noise reduction

Gaussian blur, Sim-
ple thresholding.

Type 3 Video compression. Non RoI-based com-
pression, RoI-based
compression

Huffman encoding.

Type 3 TI, the images are compressed using RoI-based image compression. The task
function, techniques and commonly-used algorithms are tabulated in Table 5.1 for this
data collection application.

This collected data is sent to the mobile edge for an application that requires specific
data over time like traffic monitoring and traffic management. Similarly, a large
amount of data can also be collected for applications that require inference from
more sophisticated Deep Neural Network (DNN) models that demand powerful cloud
computing devices. For example, multiple 3D road maps can be generated from
multiple sources of video data. This kind of application requires real-time and local
information. Our service model sends pre-processed and compressed data, reducing
the overhead of data transmission, for the data-intensive map generation task that can
then be executed on mobile-edge computing devices.

120 Placement of Distributed Video Processing Applications on Moving Vehicle Clusters

Table 5.2 Task function, techniques and commonly-used algorithms for application the object
detection application’s tasks.

Task type Task function Task techniques Algorithms

Type 1 Video collection
Type 2 Video pre-processing Image enhancement/

Noise reduction
PCA tranformation
noise removal using
Wiener filter.

Type 3 Feature Extraction Regularization/ Dimen-
sionality reduction.

Independent compo-
nent analysis.

Type 4 Object detection Local, pre-trained model
for object detection.

Faster R-CNN,
YOLO, tinyYOLO.

Object Detection application : The aim of building this distributed object detection ap-
plication is to deliver a prompt and communication-efficient data processing service
leveraging the resources available in moving vehicles. For this kind of application, all
the processing of the collected data is executed on the vehicle cluster. Such applications
have local context and scope, for example, using object-detection techniques to identify
vulnerable pedestrians and alerting drivers in the vicinity. The Type 1 TIs for this
application are of video collection type. The Type 2 TIs are the same pre-processing
TI as Type 2 in application I. Type 3 TI is a frame extraction type that transforms
video stream to images based on an extraction rate. For slow-moving pedestrians, the
extraction rate is low which reduces the computation intensity of the task. For Type
4 TI, we use a pre-trained object detector called YOLO [Redmon and Farhadi, 2018]
which determines if the object of interest is in the frame, from a detectable object pool.
The task function, techniques and commonly-used algorithms are summarised in Table
5.2 for this application type.

If the Type 4 TI finds unknown objects, the images can be transmitted to back-end
servers, which can thereby update the inference model of local detectors, but the global
knowledge and cloud involvement are not in the scope of the applications we are
defining for local detection.

We use the linear model described in [Zhu et al., 2019] to determine the memory usage
for video streaming. For the case of video streaming the memory usage ranges between
110-220 MB. The data size for each frame is given in the range of 2.7-33.7 KB for five
different video resolutions (1920 * 1080, 1280 * 960, 960 * 720, 640 * 480, 320 * 240). For
the object detection application, we ran pre-trained YOLOv3 [Redmon and Farhadi, 2018]
model on an Linux OS system with 8GB RAM and i7-6500U running at 2.50 GHz and got

5.3 Model 121

a processing latency of 7.417 seconds. The detection has 16-18% of CPU usage. We also
ran Tiny YOLOv3 and got a processing latency of 0.31277 seconds with lower confidence
scores. The detection uses 4-5% of CPU and can be used on resource constrained on-board
units for non-safety related applications that can afford lower accuracy.

5.3.2 Network Topology

The network topology consists of moving nodes that halt at an intersection and the roadside
unit (RSU) that receives application requests from clients. The cluster is initiated by selecting
nodes based on their mobility pattern and resource availability. This information of vehicles
willing to lease their resources is stored and updated at the RSU. A vehicle cluster is initiated
by detecting a density of I nodes subscribed to provide their onboard computing and camera
resources. The RSU represented as IRSU collects mobility and resource information from the
I subscribed nodes. The mobility of each node is presented as the CCP, represented as pI ,
which is the probability of the node staying at a particular road segment in a time interval
from [t1, t2]. We also derive the communication link probability between two vehicles as the
joint CCP for two vehicles to communicate over a period of time [t1, t2].

The selected cluster of vehicles is represented as a directed graph G(V,E). Each node of
the graph i ∈V has K resource types. The available processing capacity, for each resource
type k, is represented as Ck(i). Each node i has a probability of staying on a road segment
for a time period [t1, t2], represented as P(t1,t2). The CCP of the RSU is equal to 1 as it is
stationary and is always available from the viewpoint of mobility. The available link capacity
between two nodes i1 and i2 is represented as B(i1, i2) Kb/s. The joint probability between
two nodes i1 and i2 depicts the probability of both nodes to stay together in a road segment
for a period of time [t1, t2] and is represented as Pt1,t2(i1, i2). This is crucial for placing TIs
that depend on other TIs for input data for task completion.

5.3.3 Distributed Service Model

The service model is composed of tasks, denoted as sp, each with a different processing
function or type, represented as p. Due to the limited resource capacity in each vehicle node,
a service is composed in a distributed manner as a linear chain of tasks. Due to the dynamic
nature of the vehicular network, each task can be scaled to multiple TIs, represented as sp j

where p represents the type of each TI and j represents the number of TIs. The number of
TIs for each task sp is Nsp and the maximum number of allowed TIs for each type is given as
Nsmax

p . The objective of scaling tasks to instances is to increase the robustness in the service
model, especially because of the link and node failure due to the wireless connectivity and

122 Placement of Distributed Video Processing Applications on Moving Vehicle Clusters

vehicle mobility. The resource requirement of type k for each task type p is represented as
Dkp, where k ∈ {1,2,3,4} for CPU, memory, GPU and video camera. The incoming flow
from task types sp1 to sp2 is given as F(sp1,sp2).

The objective of this optimization is to find nodes that have a higher probability of staying
together over a period of time. We then place two services of varying chain lengths (3 and
4), as described above. We model the mobile infrastructural resource constraints and the
constraints required for placing a flexible and scalable service on the infrastructure. We then
optimize resource usage in the service placement on the vehicular cluster through node and
link cost, which is the sum of processing resources on vehicles and the communication cost
for the data flow between the distributed tasks. The resource utilization is normalized to total
available resources and weighted by the CCP to take into account the mobility of vehicle
clusters.

5.4 Service Scaling and Placement Constraints

We define the service scaling and placement problem as a constrained optimization problem.
We first define the constraints for the distributed service scaling, which are given as:

5.4.1 Flow capacity constraint

The processing requirement for a flow from TI sp1 j to sp2 j is given as C(F(sp1 j,sp2 j)). The
constraint 5.1 ensures that each TI has enough processing capacity for the incoming flow.
The constraint is given as:

∀i2 ∈ {1, . . . ,I};

∑
∀p1, j;p2;p1 ̸=p2

M(sp2, j, i2)C(F(sp1 j,sp2 j))≤C(sp2 j)
(5.1)

where C(sp2 j) is the available processing capacity at TI sp2 j. Here, M(sp2, j, i2) is a binary
mapping variable which is 1 when the TI sp2 j is mapped to node i2 and is 0 otherwise.

5.4.2 In-network processing constraint

Constraint 5.2 ensures that the flow is processed at each TI before being sent to the CN. To
ensure that, we calculate the ratio of incoming to outgoing flow which should be equivalent
to the data processing factor of each TI. The processing factor is given for each task type p

5.4 Service Scaling and Placement Constraints 123

and is given as αp. The constraint is presented as:

∑
∀p, j;

F(sp j,s(p+1) j)αp ≤ F(s(p+1) j,s(p+2) j) (5.2)

where 0≤ αp≤ 1 . The data processing factor is 1 for forwarding nodes as it does not process
the incoming data flow. The incoming flow from sp j to s(p+1) j is given as F(sp j,s(p+1) j).
The outgoing flow from s(p+1) j to s(p+2) j represents the flow that has to be processed at the
TI s(p+2) j.

5.4.3 Service Scaling constraint

The constraint 5.3 ensures that the TIs are scaled to the maximum number of TI specified for
each task type p. This constraint also ensures that there is at least one TI for for each task
type. This constraint is given as:

∀p Nspmin ≤ Nsp ≤ Nspmax (5.3)

where Nsp is the number of TI of task type p. The maximum allowed TIs for the task type p
is given as Nspmax and the minimum number of TIs for task type p is given as Nspmin which is
set to 1 for our model.

5.4.4 Infrastructure constraints

The infrastructure constraints ensure the the node and link placement meets the resource
constraints for the service placement. The infrastructure constraints are given as:

5.4.4.1 Node Resource constraint

The resource requirement for a TI is represented as Dpk where p is the type of task and
k is the resource type where k = 1 is CPU cycles requirement, k = 2 is memory capacity
requirement, k = 3 is video camera resource requirement and k = 4 is the GPU availability. A
decision variable M(p, j, i) is used if TI sp j is mapped to node i. The node resource capacity
ensures that there is enough available capacity at a node to support a TI sp j. The constraint is
given as:

∀i ∈ {1, . . . ,I},k ∈ {1, . . . ,K}, ∑
∀p, j

M(p, j, i)Dp j,k ≤Ck(i) (5.4)

where Ck(i) is the available capacity at node i for resource k.

124 Placement of Distributed Video Processing Applications on Moving Vehicle Clusters

5.4.4.2 Bandwidth constraint

The bandwidth constraint ensures that the bandwidth requirement between two TIs, given as
F(sp j,s(p+1) j), is less than the available bandwidth capacity over the entire path between two
task instances sp j and s(p+1) j. The path between two nodes i1 and in is a list of bandwidth of
variable length. It stores available capacity over all forwarding nodes between i1 and in, if
there is no direct link between the two nodes and the available bandwidth link between the
two nodes if they are directly connected. The bandwidth capacity of the path is represented
as path[B(i1, i2), . . . ,B(in−1, in)]. We enable this to support multihop clusters for cases where
nodes might not be connected through a direct path but are connected over multiple hops.
The constraint is given as:

∀i1 ∈ {1, . . . ,I}; i2 ∈ {1, . . . ,I}; i1 ̸= i2

∑
∀p1, j1;p2, j2;p1 ̸=p2

M(p1, j1, i1)F(sp j,s(p+1) j)M(p+1, j2, in)

≤min(path[B(i1, i2), . . . ,B(in−1, in)])

(5.5)

5.4.5 Mobility modeling

Each vehicle node has a certain probability of choosing a road segment based on its historic
mobility pattern. The mobility history for each vehicle node is stored in the RSU along
with the time stamp. We aim to select vehicles with the highest probability of staying at
the selected road segment which is RS j in our case, depicted in Fig. 5.4. A transition
probability matrix stores the mobility probability for different road segments for all the
vehicles registered to lease their resources and participate in the crowdsourcing service. New
vehicles registering for the first time are also added to the table.

For discovering participating vehicles for the service deployment, the RSU broadcasts
probe messages for participation requests. If already registered vehicles with known transition
probability responds, they are given a priority over newer vehicles that want to participate.
The newest participants are given the least confidence score. The confidence score is not
issued according to the performance of the deployed task. It is a simple measure of updating
confidence score if the vehicles follows its historic mobility trajectory. The confidence score
is updated as the number of times the vehicle followed a preferred trajectory, over the total
number of trips registered by the vehicle. Once the RSU updates its participants list, the RSU
then runs the community detection-based node selection algorithm on a group of participants
with a confidence score above a pre-decided threshold value.

We consider each road segment to be a Markov state. The vehicle transitions in the
Markov process when moving from one road segment to the next. The vehicles follow a

5.4 Service Scaling and Placement Constraints 125

Markov memory-less property, wherein the node transitions from state n to n+1 and are
independent of state n-1. We record the transition of a vehicle from state RSi to RS j as the
number of times a vehicle transitions to segment RS j given the vehicle was at RSi in its
previous state. The probability is given as:

RSi

RSk

RSl

RSj

RSn

RSo

RSm

Fig. 5.4 Mobility modelling for selected road segments at intersections.

Pt1,t2(i){V Sn+1 = RS j|V Sn = RSi}

=
#(RSi to RS j)

#(RSi)

(5.6)

where [t1, t2] is the time interval selected based on the traffic state of the selected road
segments. If the traffic is in a free-flow state, the time is chosen to be a 5-minute interval,
and if there is queuing and the road is congested, the time interval is taken as 10 minutes.
These values are inferred from our detailed experiments based on studying the predictability
of vehicular flows at the Dublin intersection in our previous work [Sharma et al., 2021]. To
make the microscopic model more realistic, we use the macroscopic data from Transport
Infrastructure Ireland Traffic Data1 to calibrate the microscopic probabilities for each vehicle
at the selected Dublin intersections, using the SUMO simulator.

1https://trafficdata.tii.ie/publicmultinodemap.asp

126 Placement of Distributed Video Processing Applications on Moving Vehicle Clusters

5.4.6 Objective Function

We use node and link utilization cost as a measure to analyze the quality of placement of
tasks on mobile vehicle nodes from the point of view of resource utilization. We aim to
minimize the node and link utilization cost which is defined as:

5.4.6.1 Obj1: Node Utilization Cost

This is defined as the ratio of total used computational capacity to the total available computa-
tional capacity for the service placement. The ratio is weighted by the CCP of the node. This
considers mobility of nodes rather than placing tasks on nodes with high processing capacity
but with very low CCP to stay with the other vehicles in the cluster. The node utilization cost
is given as:

NodeCost(i) = ∑
∀i, j,p;

(1−P(t1,t2)(i)) · (Dp j,k/Ck(i)) ·M(p, j, i)
(5.7)

where P(t1,t2)(i) is the CCP of the node with the TI sp j placed on it. As the CCP of a node
increases, the cost of placing the TI on that node decreases.

5.4.6.2 Obj2: Link Utilization Cost

The link utilization cost is defined as the ratio of total used link capacity to the total available
link capacity. This ratio is weighted by the CCP of the link. The CCP of the link defines
the joint probability of two nodes to stay together during the time window [t1, t2]. The link
utilization cost is given as:

LinkCost(i1, i2) = ∑
∀i1,i2;i1 ̸=i2

(1−P(t1,t2)(i1, i2))·

(F(p1, p2)/∑ path[B(i1, i2)])
(

M(p, j1, i1) ·M(p, j2, i2)
) (5.8)

where P(t1,t2)(i1,i2) is the joint CCP of two nodes to stay together and path[B(i1, i2)] is a list
of available bandwidth on the path between two nodes i1 and i2 with placed TIs. The total
bandwidth is summed over the path between nodes i1 and i2.

5.4.6.3 Obj3: Chain length/hop count

The number of hops for the distributed service can have a significant impact on both commu-
nication overhead and service reliability. To keep the hops between two placed TIs to the

5.5 Heuristic-based Solution 127

minimum, we make sure to minimize the length of path between two nodes i1 and i2 with
placed TIs. The network distance between two placed TIs is given as:

∀i1 ∈ {1, . . . ,I′(p j)((p+1) j)}; i2 ∈ {1, . . . ,I′(p j)((p+1) j)}; i1 ̸= i2

H(i1, i2) = ∑
∀p1,p2

M(p, j, i1),M((p+1), j, i2)

len(path[B(i1, i2)]),

(5.9)

where H(i1, i2) is the hop count between two nodes i1, i2 with placed TIs.

5.4.6.4 Overall objective function

The multi-objective function aims to minimize Obj1, Obj2, and Obj3. Each objective is
weighted by λ1, λ2 and λ3 such that λ1 + λ2 + λ3 totals to 1 and each objective is weighted
equally (but this can be changed to reflect operational requirements). The objective function
is given as:

min ∑
∀i1,i2;i1 ̸=i2

λ1H(i1, i2)+λ2LinkCost(i1, i2)+λ3NodeCost(i1) (5.10)

where H(i1, i2) is the hop count between two nodes i1, i2 with placed TIs.

5.5 Heuristic-based Solution

Due to the nature of vehicular networking, it is required to scale services and find efficient
service placement in a very short time, compared to the time required to solve the full integer-
linear program (ILP). Consequently, we propose a node selection and service placement
heuristic solution. We first leverage the historic mobility patterns of vehicles to select a group
of vehicles that are more probable to stay together for a period of time using the principles of
community detection.

The mobility of vehicle nodes is constrained by the underlying road topology. We model
the available vehicle cluster as a graph with their joint CCP as the edge weight for each edge,
depicting how probable are two nodes to stay together in the next time segment. The use
of community detection using mobility behavior helps in identifying the most connected
vehicular nodes that play a crucial role in the successful deployment of our service model
with data-dependent TIs. Due to the mobility of nodes, the services can fail because of link
and node failures due to vehicles leaving the cluster. The identification of communities helps
in reducing service failures and subsequent service reconfiguration, by selecting a group
of closely connected vehicles. Even if nodes or links fail within the selected community,

128 Placement of Distributed Video Processing Applications on Moving Vehicle Clusters

Algorithm 5.1 Service Placement
Input: LG Linear type graph, Vehicle cluster graph
Input: (ULTypei+1,LLTypei+1): Upper and lower limit for number of Type i+1 TI
Output: Successful/Unsuccessful service placement

1: procedure SERVICEMAPPING(LG,VC) ▷ The g.c.d. of a and b
2: while Type1 do ▷ For all Type 1 instances
3: for (Type1,CN) ∈ TI_pairs do
4: for i ∈ TI_pairs(Type1,CN) do ▷ Ensures placement of full chain for each Typei+1 instance
5: TI_placement(i,VC,(ULTypei+1 ,LLTypei+1))
6: if placement is successful then
7: Success
8: procedure TI_PLACEMENT(i,VC,((ULTypei+1 ,LLTypei+1)))
9: while (i) do ▷ for all available Type1 TCI

10: for (Typei,Typei+1) ∈ i do
11: node1← location of Typei
12: if Typei+1 instances exist on VC then ▷ To re-use instances
13: node2 ← List of location of Typei+1
14: for j in node2_location_list do
15: if resource at j ≥ resource required for Typei+1 then
16: pathtonode2 ← Get path from Typei to Typei+1

17: sorted path← sorts path based on path length
18: for k in sorted path do
19: if required_datarate ≤ min(k_path_datarate(i, j)) then
20: place Typei+1 on node2
21: return TI Typei+1 placed
22: break
23: else
24: if length(node2_location_list) ≥ULTypei+1 then
25: return Not enough resources on vehicle cluster
26: else
27: CNlocation ← location of CN
28: paths← weighted path from Typei+1 to CN
29: sorted_paths← sort paths from highest to lowest path weight
30: for i in sorted_paths do
31: if requireddatarate ≤ min(i_path_datarate(x,y)) then
32: while nodes available in i do
33: v← next node on i
34: if resource on v ≥ resource required by Typei+1 then
35: Place Typei+1 on v
36: break
37: if no node available on path(Typei,CN) then
38: return Unable to place TI on cluster

5.5 Heuristic-based Solution 129

there will be alternate paths available within the community. The chances of a complete
breakdown between any two nodes in the community are low.

5.5.1 Vehicular Node Selection

The first step of the service placement problem requires selecting vehicular nodes that are
more probable to stay together for a certain period of time. This is quantified using the CCP
of the vehicles. At this stage, the scheme does not consider the available computation or
communication capacity. We aim to find a sub-group of vehicles that have similar mobility
patterns and follow a similar trajectory. We use community detection, which is the process of
discovering cohesive groups or clusters in a network, to determine vehicular nodes that have
better connectivity between them than the rest of the network. Using community detection
algorithms, we partition the vehicular network graph into communities and, the biggest
community is chosen for service placement. Due to the data-dependency between TIs in the
service model, all TI’s are promoted to be placed in the same community of nodes. Even if
nodes leave or link fails within the selected community, there are alternate paths available in
a well-connected community.

We analyze two community detection algorithms for selecting a vehicular cluster for the
service placement i.e., Girvan and Newman algorithm and the Louvain algorithm. We use
vehicular nodes and nodes interchangeably in the text. We aim to compare a modularity-
score-based community detection algorithm with a method that focuses on calculating edge
betweenness at each iteration of the algorithm. We first use the modularity score-based
Louvain algorithm [Blondel et al., 2008] that initially starts with |V | communities where
each vehicular node is considered to be a community in the first iteration. Modularity is
defined as the density of edges inside the community with respect to edges outside the
community. In each iteration, every node is moved to its neighbouring community and the
gain in modularity is calculated. If the gain is positive, the node does not return to its previous
community. The iterations of the heuristic stop when the modularity gain between any two
iterations, does not exceed a specified threshold value. The algorithm has the complexity
of O(V logV) where V is the number of nodes in the graph. Thus, the algorithm does not
depend on the number of edges in the graph. This is especially useful for the vehicular
network where a node may be connected to multiple nodes in the cluster via wireless links.
We simulate microscopic vehicular trajectories in a selected intersection using the SUMO
simulator to compute the edge weights of the vehicular cluster, which is the CCP in our case.
In our experiment, the modularity obtained in a cluster of 30 vehicles was 0.1428.

We also considered the hierarchical clustering-based Girvan and Newman algorithm
[Newman, 2004] which derives a community tree or a dendrogram with a specified depth

130 Placement of Distributed Video Processing Applications on Moving Vehicle Clusters

[Lera et al., 2019]. The connectivity of a community increases as the depth of the derived
dendrogram increases. The method first removes the edge with the highest edge betweenness
centrality. The edge betweenness centrality is the sum of the fraction of the shortest paths
that cross the edge. Each iteration splits every existing community into two new communities.
The disconnected sub-graphs undergo the same procedure until the entire graph is split into
isolated nodes. The complexity of the algorithm is O(E2V), where E is the edges of the graph
and V represents the nodes. The modularity score for the same graph using this method is
0.00186. We, therefore, prefer the Louvain method as it results in a higher modularity score,
which is more useful in this context, and Louvain’s computational complexity is also lower
and the complexity does not depend on the number of edges in the graph. Thus, the strongest
selected community is the vehicle cluster that is used for the service placement problem.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Louvain method

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Girvan and Newman method

Fig. 5.5 Using two different methods for community/cluster detection.

5.5.2 Service placement heuristic

After the vehicle cluster is selected based on the CCP of nodes using the community detection
method, we then place the TIs by utilizing a graph-based heuristic. We first give as input, 1)
the selected vehicular cluster which is the strongest detected community, 2) the linear type
graph to be placed and 3) the upper (ULTypei) and lower limit (LLTypei) for the number of
TIs of each type to be placed. The LL for all the tasks is 1 as we want to make sure at least
one TI of each type is placed. The UL for each TI is equal to the number of video sources or
Type 1 TIs, ensuring each stream gets one processing TI, in case the available processing
capacity at individual nodes is very low.

5.5 Heuristic-based Solution 131

TI 1 CN

0.5 0.5 Total CCP: 0.5 * 0.5 = 0.25

TI 1 CN
0.2 0.05 0.9

Total CCP: 0.2 * 0.05 * 0.9 = 0.009

Path 1

Path 2

Path 3 TI 1 CN
0.5 0.07

Total CCP: 0.5 * 0.07 = 0.035

Fig. 5.6 Joint CCP-based path selection for service placement.

We modify a heuristic algorithm inspired by the work of [Dräxler and Karl, 2017], where
VNFs are placed along the shortest path with the smallest bottleneck value. Instead of placing
TIs on the shortest path, we consider the joint CCP of the path from a source TI (of Type 1)
to the CN, as depicted in Fig.5.6. We then place TIs along the path with the highest joint
CCP. As we intend to place a long chain of TIs along this path, choosing a longer chain
increases the possibility of placing most TIs on the path to the CN. The heuristic may also
randomly choose the shortest path, in terms of hop count, if the combined CCP of the path is
the highest. From the three example paths shown in Fig.5.6, the heuristic will choose path 1
as it has the highest combined CCP, even though it is shorter than path 2. Choosing path 2
will result in placing TI on two nodes linked by very low CCP, 0.05 in this case. Path 3 is the
same length as Path 1 but has lower joint CCP in comparison.

The heuristic is described in Algorithm 5.1. Similar to [Dräxler and Karl, 2017], we
place TIs in a pairwise way, as the service model has dependent TIs. In our model, every TI
of any type has a common endpoint as the CN. In line 3, we iterate over all TI pairs from
Type 1 to the CN. In line 5, each TI pair is sent to the TI_PLACEMENT function along with
the UL and LL for the TI. In line 11, the location of the Type 1 instance is detected. On line
12 it is checked if the next TI, of type Typei+1, exists on the vehicle cluster. If it exists, say
at node j, and the resource capacity at node j meets the capacity constraint for TI Typei+1,
all the paths from Typei to Typei+1 are stored in the list sortednode2. In line 18, all the
available paths are iterated over and the bottleneck edge capacity for each path is compared
to the required available capacity between the two TIs. If the constraint is met, Typei+1 TI is
reused for the flow. If Typei+1 does not exist on the cluster, it is checked if the upper limit
for the TI type is met (on line 24).

If the upper limit is not reached, all the paths are explored from Typei to CN of the cluster.
All the paths are sorted based on the path weight, which in our case is the total CCP of the
path. In line 31, all the paths are iterated over, and the bandwidth capacity requirement

132 Placement of Distributed Video Processing Applications on Moving Vehicle Clusters

Table 5.3 Optimality gap percentage for the link utilisation cost for different number of Type
1 TIs.

Number of Type 1 instances Optimality gap (%)

1 0
2 0
3 11.03
4 13.05
5 10.997
6 17.83

is checked for the path. If the bandwidth requirement is met and the resource capacity
requirement for the node is met, then Typei+1 is placed on the node v. If there are no more
available nodes on the path to the CN, a failed placement is registered. Thus, this approach
aims to send the collected data to the CN and tries to place processing TIs in-network when
possible.

5.6 Evaluation

In this section, we evaluate the performance of the Mixed Integer-linear Program (MIP),
the proposed heuristic, and the first-fit approach through resource utilization metrics for
bandwidth (link) and processing (node). We also compare the MIP, the first-fit, and the
heuristic for the total optimal value. We then evaluate the average chain length and the total
instances that the heuristic scales to analyze the performance of the heuristic in terms of not
overprovisioning resources. We then use total response time as a Quality-of-Service measure
and compare our placement approach to a static mobile-edge computing approach, which
does not use task replication in the form of multiple instances of the same task. We also
evaluate the performance of the selected vehicular cluster using centrality measures. We
use vehicular mobility on a Fog-computing-based simulator, to study the evolution of the
selected cluster through its lifetime.

We first use Gurobi, a standard MIP solver to solve the multiple objectives, constrained
optimisation problem. We find an optimal solution for placing both service types of different
chain lengths on a selected vehicle cluster. We evaluate the solution for the node utilisation
cost, link utilisation cost, and the total objective value for placing multiple applications of
chain lengths 3 and 4. We vary the number of video instances from 1 to 7 to evaluate the
scalability of the experiment. The applications are defined in Section 5.2, where the ‘data
collection application’ type is rich in data flow and has low processing requirements, whereas

5.6 Evaluation 133

the ‘object detection’ application type is more compute-intensive and has less bandwidth
requirement. The applications are of variable chain length. We use the first fit approach as
the baseline approach. It sorts all the available paths from the data collecting TI to the CN
and sorts them based on the highest available resource capacity. It then places TIs on all the
available vehicle nodes on that path.

We first place two applications of the first type on the selected vehicular cluster. For the
case of the 3 task chain, our heuristic gives better node utilization cost as compared to both
optimal and first-fit solutions, as shown in Fig.5.7a. Our heuristic gives comparable link
utilization cost in comparison to the optimal solution for 1-3 Type 1 TIs, but it becomes less
efficient for a higher number of Type 1 TIs, as shown in Fig.5.7b. This is due to prioritizing
paths with higher CCP which may result in selecting longer routes between dependable TIs.

134 Placement of Distributed Video Processing Applications on Moving Vehicle Clusters

1 2 3 4 5 6 7
Number of Type 1 instances

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
ta

l n
od

e
ut

iliz
at

io
n

co
st

Optimized Heuristic First-fit

(a) 3 task chain: Total node utilization cost.

1 2 3 4 5 6 7
Number of Type 1 instances

0.00

0.05

0.10

0.15

0.20

0.25

To
ta

l l
in

k
ut

iliz
at

io
n

co
st

Optimized Heuristic First-fit

(b) 3 task chain: Total link utilization cost.

1 2 3 4 5 6 7
Number of Type 1 instances

0

500

1000

1500

2000

2500

To
ta

l o
bj

ec
tiv

e
va

lu
e

Optimized Heuristic First-fit

(c) 3 task chain: Comparison of the total objec-
tive value.

1 2 3 4 5 6 7
Number of Type 1 instances

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
ta

l n
od

e
ut

iliz
at

io
n

co
st

Optimized Heuristic First-fit

(d) 4 task chain: Total node utilization cost.

1 2 3 4 5 6 7
Number of Type 1 instances

0.00

0.05

0.10

0.15

0.20

0.25

0.30

To
ta

l l
in

k
ut

iliz
at

io
n

co
st

Optimized Heuristic First fit

(e) 4 task chain: Total link utilization cost.

1 2 3 4 5 6 7
Number of Type 1 instances

0

500

1000

1500

2000

2500

3000

3500

To
ta

l o
bj

ec
tiv

e
va

lu
e

Optimized Heuristic First-fit

(f) 4 task chain: Comparison of the total objec-
tive value.

Fig. 5.7 Total node utilisation cost, total link utilisation cost and total objective value for task
chain of lengths 3 and 4.

5.6 Evaluation 135

For the second case, we place both applications of chain length 3 and 4 TIs for both
services. The ILP solver fails to give a solution in a reasonable time for applications with a
longer chain length. We get a solution from the solver in seconds for 1-2 Type 1 TIs. But
as the number of Type 1 TIs increases, the solver does not converge to a solution even after
hours. We, therefore, compare our heuristic solution to the baseline approach. Our heuristic
performs better than the baseline approach for any number of Type 1 TIs (from 1 to 7), as
shown in Fig.5.7d. The baseline approach outperforms the heuristics solution for the link
utilization cost for the second case, as shown in Fig.5.7e. This is due to choosing paths
that have higher joint CCP, to increase the robustness of the service placement. This results
in more bandwidth utilization as a tradeoff to selecting more robust paths. Our approach
outperforms in minimizing the total objective value as compared to the first-fit approach, as
depicted in Fig.5.7f. The baseline approach fails in minimizing the total objective for the
higher number of Type 1 TIs.

As our heuristic solution does not select the shortest path but the most reliable path, it
might select very long paths with multiple hops between the Type 1 and the CN TIs. We
present both the aggregate hop count and the total number of scaled processing TIs (of Type
2, 3 and 4) corresponding to the number of Type 1 TI, presented in Fig.5.8a. For any number
of TIs, the hop count of all the paths between Type 1 TI and CN ranges between 5 and 6. The
total number of processing TIs for each placement is also plotted in the same figure and it
ranges from 4 to 15.

To compare the number of scaled processing TI’s, we run the optimization problem with
the objective of minimizing the number of processing TIs, to analyze the least number of
processing TIs required for meeting the application demands. We calculate the minimum
number of Type 2, 3, and 4 TIs required for a successful service placement without any
TI being rejected a placement on the vehicular cluster in Fig.5.8b. We compare this to the
number of TIs scaled by our heuristic, plotted in Fig.5.8c. As shown, our heuristic scales are
close to the minimum number of required TIs. It places 2-4 more TIs in comparison to the
least number of required TIs. But the heuristic chooses more reliably connected nodes to
place the TIs.

136 Placement of Distributed Video Processing Applications on Moving Vehicle Clusters

of Type 1 TIs

1 2 3 4 5 6 7 8 Total #
 of processin

g TI

4
6

8
10

12
14

Ag
gr

eg
at

e
ho

ps

0
1
2
3
4
5
6

(a) Comparison of total number of scaled,
processing TIs and aggregate hops for the
3 TI chain placement corresponding to the
number of Type 1 TIs.

1 2 3 4 5 6 7
of Type 1 TIs

0

2

4

6

8

10

12

14

of

 p
ro

ce
ss

in
g

in
st

an
ce

s

TI types

Type 2
Type 3
Type 4

(b) Minimum number of required process-
ing TIs to meet the service demand corre-
sponding to the number of Type 1 TIs.

1 2 3 4 5 6 7
of Type 1 TIs

0

2

4

6

8

10

12

14

of

 p
ro

ce
ss

in
g

in
st

an
ce

s

TI types

Type 2
Type 3
Type 4

(c) Total number of processing TIs scaled
by our heuristic corresponding to the num-
ber of Type 1 TIs.

3 4
Service Chain Length

2000

4000

6000

8000

10000

12000

14000

M
in

 se
rv

ice
 ti

m
e

Edge placement
Moving node placement

(d) Minimum service time for different
chain length.

3 4
Service Chain Length

20000

40000

60000

80000

100000

M
ax

 se
rv

ice
 ti

m
e

Edge placement
Moving node placement

(e) Maximum service time for different
chain lengths.

0 50 100 150 200 250 300
Simulation time (seconds)

12
13
14
15
16
17
18
19
20

Nu
m

be
r o

f v
eh

icl
es

 in
 a

 c
lu

st
er Louvain

Girvan-Newman

(f) Cluster state through the simulation.

Fig. 5.8 Different performance metrics to evaluate the performance of the proposed heuristics,
service time comparison for the proposed approach with edge placement and evaluation of
the cluster state throughout the states of the simulation.

5.6 Evaluation 137

5.6.1 Comparison of placement techniques in terms of service time

We have evaluated our placement approach from a resource utilization point of view. We
now look at a QoS-based metric to compare our approach to a mobile-edge computing-based
solution. The service demands are still generated by moving vehicles, but the mobile-edge
computing approach places all the TIs on static edge servers. For the real-time performance
of the vehicle cluster, we use a fog computing simulator called Yet Another Fog Simulator
(YAFS) [Lera et al., 2019] for modeling the mobility and estimating the real-time performance
of the selected cluster. YAFS is a python-based discrete event simulator that supports resource
allocation policies in fog, edge, and cloud computing. The simulator has a distributed data
flow application model that could be easily adapted to our use case. The simulation provides
dynamic service selection, placement, and replacement of services that we have customized
for our requirements. The support of mobility of nodes, which can also be treated as
processing nodes makes the simulator a good fit for our case.

We consider the service time as the total time it takes for a service to execute, including
both processing and link latency. We observe the minimum and maximum service time for
the two services of different chain lengths for the mobile-edge placement versus our approach
of placing multiple TIs on a moving vehicle cluster. We observe that the minimum service
time is significantly less for the cloud placement, in comparison to our approach, in Fig.5.8d.
Our approach places multiple TIs on different vehicles, thus the delay in the execution of
one TI can result in a significant delay in service execution time. For the case of maximum
service time, as can be seen in Fig.5.8e, the mobile-edge placement is significantly high. This
is because of the delay in sending all the collected data from moving vehicles to the edge
server or RSU. The service time is also higher for the chain length of 4 for the mobile edge
placement approach. In comparison, our approach approximately takes the same time for a
chain length of 3 or 4 in the worst-case scenario as the minimum service time in Fig.5.8d.
Thus, even if an optimal placement is not achieved, on average our approach performs better
in terms of service time, in comparison to the mobile-edge placement approach.

5.6.2 Evaluation of the selected cluster over time

We also analyse the performance of the selected cluster by evaluating the number of nodes in
the cluster that stay together over a period of time. For the two community, detection-based
node selection approaches, out of the 20 selected nodes, 12 to 14 nodes make it till the end
of the simulation, as depicted in Fig.5.8f.

We then evaluate the quality of the selected cluster in terms of the nodes that stay till
the end of the simulation by using a resilience score. We use the betweenness centrality as

138 Placement of Distributed Video Processing Applications on Moving Vehicle Clusters

a measure to check the importance of a node, in terms of connectivity in the graph. The
betweenness centrality calculates the shortest weighted path between every pair of nodes in a
graph. Each node gets a betweenness centrality score (BCS) based on the number of shortest
paths that pass through the node. The resilience score is calculated as the total BCS for all the
nodes that made it till the end of the service time upon the total BCS of all the nodes in the
selected cluster. The higher resilience score shows that nodes with higher BCS stayed with
the cluster, thereby reducing the need for rerouting flows or re-configuring service chains due
to the absence of a forwarding node or a path between two data-dependent TIs. We evaluate
the communities detected for two community sizes, of 15 and 30, using the Girvan-Newman
and the Louvain approaches. We observe a higher resilience score for the Louvain approach
for communities of either size, as depicted in Fig.5.9.

15 30
Cluster size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
sil

ie
nc

e
Sc

or
e

Girvan-Newman Louvain

Fig. 5.9 Calculated betweenness centrality score for the two community-detection approaches.

We observe a higher resilience score for the bigger cluster, of 30 nodes, as we observe
more number of nodes with higher BCS stay with the cluster till the end of the simulation
time. However, this might not always be the case. A bigger cluster may not always end
up being more resilient than a smaller cluster. The resilience score depends on the BCS,
which is based on the importance or the role of a node in the graph in terms of the flow of
communication. For example, the BCS of any vertex in a complete graph is zero since no
vertex lies on the shortest path, as every node is connected to the other by a unique edge.

5.7 Conclusion 139

5.7 Conclusion

The chapter aims to solve the problem of placing video collection and object-detection
applications on moving vehicle clusters. The first application executes pre-processing
tasks on the vehicle cluster whereas the second application executes a pre-trained local
object-detection service, which is computation-intensive. We then model the problem as a
multi-objective, constrained optimization problem. We introduce a vehicular node selection
and service placement problem with the novelty of placing scalable and distributed services
on mobile infrastructure.

We also evaluate the performance of the service placement heuristic using other resource
utilization measures like the number of scaled TIs and the average hop-count for placing
the distributed services. We then consider a QoS-level parameter called service time to
analyze how our approach performs compare to a mobile-edge placement approach. We also
emulate the service placement using a Fog simulator. We analyze how the node selection
approach performs in terms of the life of the selected cluster. We introduce a betweenness
centrality-based resilience score to evaluate the performance of the chosen cluster, in terms
of the quality of nodes that make it to the end of the execution time.

Our approach outperforms the integer linear program because it generates placement
plans more quickly but with similar resource costs, and outperforms the baseline first-fit
solution, because the mobility-aware strategy ensures that the cluster cohesion is higher,
increasing the resilience of the system. We also compared our vehicular fog computing
approach to edge computing, where the vehicles are not used for processing and just forward
the data to the RSU and cloud for processing. Our placement technique results in better
worst-case performance, with a much lower maximum service time which is a measure of
the time taken in service execution, including both processing and link latency.

Chapter 6

Video Data from the MLK Corridor

This chapter aims to use data from an intersection-based testbed to implement a realistic
application in the template introduced in this work. So far, the thesis focuses on the efficient
placement of services that are spread out to TIs to increase resilience in the service. At
the same time, the number of TIs is bounded to an upper limit, which ensures that the
computational and communication resources available on vehicles are not over-provisioned
thereby not utilising the resources efficiently. Thus, the introduced optimisation tries to
strike a balance between a widely spread versus an effectively narrow service placement.
This chapter focuses on the practical implementation of the distributed data collection and
processing application. We specifically deploy an object detection application that utilises
video data collected from multiple sources at a road intersection.

To make a realistic estimate of the resource usage and performance of the video collection
and processing application, we use video data from an intersection-based testbed in the Centre
for Urban Informatics and Progress (CUIP), Chattanooga, Tennessee. The testbed, presented
in Fig. 6.1 is a 1.2-mile, real-world sandbox that comprises 11 poles fitted at intersections.
The poles are equipped with air quality sensors, cameras, LIDAR, RADAR, audio recording
and networking capabilities. To use the concept of collecting video data from multiple
video data sources, we consider video from three video cameras projected on poles at an
intersection. The use of video cameras provides more information about the environment
with high resolution and textual information in comparison to other sensors such as LIDARs,
radars and ultrasonic devices etc. The data collected from the video cameras can not only
help in assessing the usage requirements of a video processing application, it can also help in
the realistic implementation of the applications suggested in this work.

We specifically focus on an object detection application used to first classify cyclists,
pedestrians and vehicles. The application is further used to detect vulnerable pedestrians
and cyclists that are jaywalking or are in a vulnerable position. This kind of application is

142 Video Data from the MLK Corridor

challenging to deploy as video data collected from moving cameras results in reidentification
of objects. We also aim to collect video data from multiple cameras, which will result in
more pre-processing of data to avoid redundancy in frames. Our service model also has the
advantage of using vehicles as ad-hoc sensors based on the requirement of the application.
The collection of video data from multiple sources can be extended to collect multi-modal
data for more accurate scene understanding application. Our model can also be used to
study the traffic flows at an intersection more thoroughly. This can help in detecting usage
patterns and especially the traffic conditions at different times of the day to improve traffic
efficiency. Different from traffic-related applications, an estimate of vehicular traffic can
help in initiating data collection for applications related to surveying, recording accidents or
crimes in a neighbourhood, and studying the usage pattern of roadside gas stations, libraries
and cafes.

This chapter first highlights the object detection techniques that we have used on our
custom dataset in §6.0.1. The section describes two state-of-the art techniques used commonly
for object detection including YOLOv2 and Faster R-CNN. We then introduce a Federated
Learning [Li et al., 2020b] based object detection scheme that can be used to collect and
process data at the edge of the network in §6.1.1. This section introduced both centralised
and decentralised federated learning model [Saha et al., 2021] that can be used where the
aggregator is either centralised or deployed as many different local aggregators. §6.1.2
presents the system architecture of the standard FL framework and the proposed distributed
FL framework. We then present the preliminary results and the future direction of the
research in §6.2. The conclusion is then presented in § 6.3.

6.0.1 Object detection techniques

We first test the standard object detection algorithms like YOLO and Faster R-CNN Resnet-
50 FPN. We then introduce a distributed federated learning scheme that has an objective
of reducing the number of communication rounds in the model, making it more resource
efficient.

1. YOLO: You Only Look Once is a state-of-the-art, real-time, deep learning-based
object detection system consisting of a Convolutional Neural Network (CNN) and
an algorithm for post processing outputs from neural network. A CNN is a deep
learning algorithm which can take in an input image and assign importance (learnable
weights and biases) to various aspects/objects in the image and be able to differentiate
one from the other. Instead of training data to learn the filters and the characteristics
of the input data, CNNs have the ability to learn these filters. Unlike other region

143

Fig. 6.1 The CUIP testbed corridor.

proposal classification networks, like Fast RCNN, that perform detection on various
regions in an image, YOLO architecture passes the image once through the CNN
and outputs the prediction. In the YOLO architecture, a single convolutional network
simultaneously predicts multiple bounding boxes and class probabilities for those
boxes. This results in YOLO being a faster system compared to competing system that
implement region-based CNN.

Fig. 6.2 Detected objects using YOLO.

YOLO is an ideal candidate for distributed object detection used in the case of Fog
computing. In our case, the edge or fog node is used to both collect and resize or
pre-process the original images. This results in effectively reducing the amount of data

144 Video Data from the MLK Corridor

that is transferred to the cloud. The distributed application can also result in reduced
communication resource usage and latencies by using pre-trained models received
from the cloud at the edge node. We use YOLO algorithm on our dataset to detect
classes from three videos captured in overcast condition at the same intersection from
the testbed. The prediction on one of the frame is depicted in Fig. 6.2. The confidence
scores for the image are: traffic light: 98%, traffic light: 97%, traffic light: 91%, traffic
light: 65%, traffic light: 55%, car: 97%, truck: 99%, car: 99%.

2. Faster R-CNN Resnet: is an object detetion model that improves the Fast R-CNN
model by using the region proposal network (RPN) along with the CNN model. The
Faster R-CNN model introduces a RPN that shares full-image convolutional features
with the detection network, thus providing nearly cost-free region proposals [Ren
et al., 2015]. The RPN and Fast R-CNN are merged into a single network by sharing
their convolutional features: the RPN component tells the unified network where to
look. As a whole, Faster R-CNN consists of two modules. The first module is a deep
fully convolutional network that proposes regions, and the second module is the Fast
R-CNN detector that uses the proposed regions. Fig. 6.3 represents the prediction in
three different frames using the Faster R-CNN Resnet model. Fig. 6.4 represents the
training and validation loss for the model.

Fig. 6.3 Detected objects using Faster R-CNN Resnet.

6.1 Federated Learning based Object Detection 145

0 5 10 15 20 25
Epochs

0.15

0.20

0.25

0.30

0.35

Lo
ss

Test loss
Train loss

Fig. 6.4 Training and validation loss for Faster R-CNN Resnet.

6.1 Federated Learning based Object Detection

We devise a method to use the massive amount of informative training data collected at the
network’s edge. Sending this data to the cloud can be very expensive and slow. Most of
this data is location and context-specific, with very low latency requirements, specifically
for safety-related, vehicular applications. We use Federated Learning, where each client
performs a few local Stochastic Gradient Descent (SGD) updates using its own data, and the
resulting models are aggregated at the central server. One of the critical features of FL is
that the data collected by client devices are heterogeneous in size and can also be collected
asynchronously. The computational capacity of the clients is also heterogeneous, which
varies the computational speed of training data.

6.1.1 Federated Learning

Federated Learning is a form of distributed machine learning, where the data is trained
on different devices or clients. After training different data on different devices with the
same model their weights are sent to the central server, where weights are aggregated using
different techniques. After aggregation, the global weights are again sent to the clients and
the training is carried out on the client devices. This approach is beneficial from the point of
view of data privacy as well as removes the need to send collected data to a central server. The
approach also helps in identifying client-specific features and results in improving the global
model weights. The research in FL has led to different architectures based on the requirement

146 Video Data from the MLK Corridor

of the use case. For resource-constrained IoT devices, the focus of the architecture is on
communication efficiency. Similarly, most of the client devices are not available for training
at a given time, which results in asynchronous training of the FL model. We first list the
different ways in which FL architectures are classified.

• Centralized federated learning: The process of federated learning is coordinated by a
global aggregator. The global aggregator selects, coordinates, and configures all the
participating nodes. This can become a single point of failure or a bottleneck that can
affect the quality of the global model.

• Decentralized federated learning [Saha et al., 2021]: In distributed federated learning,
many local aggregators participate in the learning process. The distributed federated
learning approach can leverage from the Fog computing paradigm where different
nodes with different computation capacities are assigned the role of the client with
local training of the model, and for the role of local and global aggregators. The global
model is only updated in this model after several local aggregations and communication
rounds, which reduces the communication cost in the proposed framework.

6.1.2 System architecture

We consider I video cameras, generating video streams that will be used for object detection
for pedestrian and cyclist safety. We consider a cluster of n nodes that are willing to participate
as local processors and aggregators. The RSU acts as an edge device for global aggregation.
The clients locally update the model parameter x. Each training dataset is split into the input
and desired output, represented as (Xk,Yk). The loss function for each data sample is given
as l(Xk,Yk,Wk). We assume that each participating node has D1 to DN local datasets. The
local loss function at the i-th client is defined as:

Fi(x) =
1
|Di| ∑

∀η∈Di

f (x;η) (6.1)

where |Di| is the local dataset for the i-th client. The local aggregation parameter xl after
t epochs is given as:

xl =
∑

ns
i nixi(t)
∑

ns
i |Di|

(6.2)

where ni is the number of local clients under the local aggregator and ns is the total
number of local aggregators. Typically the global objective is the weighted average of local
objective in proportion to the size of the data at the i-th client and is given as:

6.1 Federated Learning based Object Detection 147

Fig. 6.5 Standard FL framework.

Fig. 6.6 Proposed, distributed FL framework.

148 Video Data from the MLK Corridor

F(x) =
m

∑
i=1

PiFi(x) where Pi =
|Di|

∑
m
i=1 |Di|

(6.3)

The goal of the model is to find x such that F(x)is minimized. The local loss parameter
for each client i is represented as xi and is calculated as:

xi(t) = xi(t)−η∇F(xi(t,Bi)) (6.4)

where η > 0 is the learning rate, where t = 1...N and represents the number of iterations
and Bi represents the mini-batch size. Thus, each client locally takes one step of gradient
descent on the current model using the local data whereas the global model takes a weighted
average of the client models. The number of local updates is given as ui = Ei

ni
B , where Ei is

the number of training passes the i-th client makes on its local dataset on each round and B is
the local mini-batch used for client updates, and ni = |Di|.

6.2 Preliminary Results and Future Direction

Fig. 6.7 Training and test loss and accuracy of the centralised FL model.

We first used a centralised FL framework trained on our custom dataset to study the
model’s performance. In Fig. 6.7, the training and test loss of the model is presented against
the number of communication rounds. The classification output’s loss is considered on the
test and train datasets. The figure also represents the test accuracy of the model, which
reaches 0.903 by the end of 100 communication rounds in the model. The accuracy is
calculated as the ratio of correct predictions to the total number of predictions for all classes.
We also used the distributed FL framework on our custom dataset to study the model’s

6.3 Conclusion 149

performance. We observed lower global test accuracy in the model of 0.614. We aim to now
make the distributed model more accurate by optimising the number of local aggregators
used in the distributed model. We also aim to study the total network usage in deploying
the distributed model compared to the centralised FL model. We can estimate the trade-off
between a less accurate model that is more resource efficient compared to the centralised FL
model.

6.3 Conclusion

This chapter aims to address RQ4. introduced in § 1.1. The question focused on developing
a FL-based scheme to deploy a distributed object detection application using video data from
a testbed. The aim of this chapter is to introduce a realistic application as an extension of our
proposed service model, network model and the service placement problem introduced in this
dissertation. The FL-scheme can be deployed in the service template introduced in this work.
FL is a popular distributed learning approach that focuses on enhancing data privacy while
collaboratively training the model, learning a shared prediction model. The centralised FL
model suffers from communication overhead and high computational requirement. To make
the model adaptable for the resource-constrained Fog devices, we prosed a decentralised FL
model with local aggregators.

We were able to gather video data from a 1.2 mile long, road-intersection testbed in
Chattanooga, Tennessee. Using the data we explored the performance of different standard
object detection techniques introduced in the literature. We used YOLO and R-CNN Resnet
on our custom data to study the accuracy of the predictions. We then introduced both
centralised and decentralised federated learning architectures. We then introduce the system
architecture for the FL architecture and present the preliminary results for both centralised
and decentralised models on our custom dataset. We also highlight the future directions that
we will take to improve the accuracy of the proposed decentralised FL model.

Chapter 7

Conclusions and Future Work

The aim of the dissertation is to introduce methods to utilise the sensing, processing and
communication resources in moving networks. The utilisation of moving networks requires
novel service models and the knowledge of mobility patterns of vehicles. To understand
the historic mobility patterns of vehicles, we identified a gap in existing vehicle mobility-
related research where the relative mobility of a group of moving vehicles has not been
studied. In our work, we find a means to bridge this gap using available macroscopic mobility
models and simulating calibrated microscopic mobility models. We also introduce distributed
and flexible service models that are adaptable to the dynamics of the moving networks.
Similarly, we introduced mobility as an intrinsic part of the infrastructure as it directly affects
the availability of the service. Our work aims at increasing the probability of successful
placement and execution of services without over-utilising resources. Our work has presented
a way to extend the mobile edge computing resources further to VFC, thereby providing
more sensing, processing and communication resources to the service providers.

This chapter focuses on first summarising the research work and technical results achieved
in this dissertation. In Section 7.1, a short summary of each chapter is presented. In
Section 7.2, we present the short-term and long-term future research directions of this work.

7.1 Summary

Chapter 1 of the dissertation introduces the core research idea of VFC where vehicles are
proposed to be used as infrastructure. It highlights the motivation behind using the under-
utilised sensing, processing and communication capacity of vehicles in urban traffic. The
chapter also briefly highlights the tools required to leverage the moving vehicular network
for service provisioning. The chapter outlines the research hypothesis and the breakdown of

152 Conclusions and Future Work

the research objective into four research questions. The chapter maps each research question
to a contribution and describes the organisation of the dissertation.

In the next chapter, Chapter 2, we first present in-depth background of technologies like
vehicular computing, fog and MEC. The chapter highlights the evolution of VANETs as a
network for disseminating safety information to the IoV ecosystem today that is envisioned
as a platform for service deployment. The chapter presents the VFC architecture and urban
scenarios where services can be deployed on moving infrastructure. We also present key
challenges involved in application deployment on the IoV. The chapter also presents the state-
of-the-art in fog computing, VCC, VFC, programming models for future internet applications
and task allocation and scheduling schemes in vehicular fog. The chapter then presents the
key challenges and limitations identified in leveraging vehicles as sensing and processing
infrastructure, after a detailed review of the recent works. We identified gaps in the literature
and mapped each research gap to a corresponding research question.

Chapter 3, focuses on the mobility behaviour of vehicles in urban traffic conditions to
support the service placement decision on these moving vehicular clusters. The chapter aims
to address RQ1 and focuses on novel methods to leverage the mobility patterns of vehicles
to make the service placement more robust. This study is crucial to utilise moving vehicles
for efficient resource utilisation. We first highlight the predictability of vehicular flow using
an MVLR model that accurately predicts vehicular flow at intersections. We compared the
accuracy of our model to competing schemes like random forest and the ARIMA model for
time-series forecasting. The chapter highlights the motivation behind using moving vehicles
as infrastructure with a special study on the predictability and density of vehicles using real
vehicular traffic data. We also introduced methods to calculate the aggregate communication
and computation capacity of such clusters. To the best of our knowledge, our work is one of
the first few attempts to study the relative mobility states of vehicles with the objective of
distributed service placement. In the next part of the chapter, the terminology of the system
model, the network topology and the distributed service model used in the rest of the research
work are introduced. Instead of placing static services, our work focuses on scaling tasks to
multiple task instances placed on nearby vehicle nodes. This model thus not only handles the
processing of multiple video streams but also provides a reliable service placement in case
links and nodes fail due to the dynamic vehicular network.

The fourth chapter aims to answer RQ2 by introducing the methodology to scale and place
distributed services on vehicle clusters, using the knowledge of mobility patterns of vehicles.
To use moving vehicles as a potential infrastructure, we first introduce the distributed service
model where services are broken down into multiple data-dependent tasks. Each task is
modelled to be scaled to multiple TIs to increase the resilience of the service and to deploy

7.1 Summary 153

more processing resources to process the collected video from multiple sources. We also
modelled the service placement problem as a bi-objective, constrained optimisation problem
to optimise resource usage in service placement. We intrinsically formulated mobility as part
of the model by using CCP as a parameter to weigh the vehicle node’s resources while making
the service placement plan. This results in selecting those vehicles for service deployment
that have a historic mobility pattern to follow the chosen trajectory. This selected cluster
of vehicles is chosen to stay together for the duration of service execution till completion.
Selecting those vehicular nodes that are less probable to stay with other vehicles for the
duration of service execution will result in service failure and reconfiguration, resulting in
more overhead costs. The chapter then presents detailed simulation results of placing two
applications with different resource profiles on the vehicle cluster. We present our results
for resource-rich and resource-poor vehicle clusters with stable and unstable mobility states.
Our approach outperforms a naive solution and a clustering-based solution in the literature.

The fifth chapter, addresses RQ3 by providing a more detailed service placement model
along with heuristic based solution for node selection, service scaling and placement. We
first introduce two distributed applications using the distributed service template introduced
in our work. The first application is a data collection service where vehicles act primarily
as ’moving sensors’ and carry out pre-processing and compressing the collected data. The
processed data is then sent to edge or cloud servers for more complex processing. These
novel applications can be used to collect data regarding traffic conditions and to analyse the
usage pattern of roadside cafes, libraries and gas stations by different commuters. The second
application is an object detection application focusing on detecting vulnerable pedestrians.
This kind of application carries most of the data processing on the vehicle cluster as the
application requires near real-time decision-making. As such applications have local context
and scope, we suggest that such applications should not offload the processing of data to
edge or cloud servers.

The chapter then introduces a more detailed service placement optimisation problem, with
constraints related to flow capacity and flow order for the distributed applications. We then
introduce a community-detection-based vehicular node selection and graph-based service
placement heuristics for vehicular cluster selection and service placement. We evaluate the
performance of the service placement heuristic using other resource utilisation measures
like the number of scaled TIs and the average hop count for placing the distributed services.
We then consider a QoS-level parameter called service time to analyse how our approach
performs compared to a mobile-edge placement approach. We also emulate the service
placement using a Fog simulator. We analyse how the node selection approach performs
in terms of the life of the selected cluster. We introduced a betweenness centrality-based

154 Conclusions and Future Work

resilience score to evaluate the performance of the chosen cluster, in terms of the quality of
nodes that make it to the end of the service execution time.

Our approach outperforms the ILP because it generates placement plans more quickly
but with similar resource costs, and outperforms the baseline first-fit solution, because the
mobility-aware strategy ensures that the cluster cohesion is higher, increasing the system’s
resilience. We also compared our VFC approach to edge computing, where the vehicles are
not used for processing and just forward the data to the RSU and cloud for processing. Our
placement technique results in better worst-case performance, with a much lower maximum
service time which is a measure of the time taken in service execution, including both
processing and link latency.

In the last chapter, we use video data collected from an intersection-based testbed in
Chattanooga, Tennessee to apply object-detection applications similar to the ones proposed
in the study. This chapter aims to solve RQ4. We test two different object detection schemes
including YOLO and Faster R-CNN Resnet to detect different classes of objects including
cars, trucks, pedestrians and cyclists. We then introduce a distributed FL-based scheme,
analogous to the service model presented in our work. The distributed FL scheme focuses
on reducing the communication rounds during the model’s training by introducing local
aggregators, thus making it more resource-efficient.

7.2 Future Works

To conclude the dissertation, we present some future directions of the research work. We first
highlight some immediate future research direction that is a direct and effective extension of
the current research. We then highlight some long-term goals that we aim to achieve in the
future.

7.2.1 Next steps of research

Service Reconfiguration We first aim to add reconfiguration of services when tasks or
services fail in the service placement model. Instead of re-configuring the entire service,
only those tasks that fail are replaced in the linear service instance graph. The re-
configuration cost can be minimised using our mobility modelling for service selection
wherein new vehicular nodes can be selected for service replacement. We aim to use
deep learning-based approaches where an agent can learn the best resource allocation
schemes that can migrate failed tasks to new nodes and find data communication paths
to these new nodes.

7.2 Future Works 155

Decentralised control As we consider moving vehicle clusters for service provisioning,
instead of coordinating the lifecycle of services using a central controller, we aim for
leaving vehicle nodes to themselves offload tasks to the nearest nodes in the cluster.
This will reduce the cost of managing and re-configuring services. As an extension of
this work, service reconfiguration and service-state take-back scheme can be added to
Algorithm 5.1.

Relevant QoS metrics for dynamic networks We have aimed at introducing measures to
detect the quality of vehicular nodes that made it till the end of service execution
using measures like resilience score. The resilience score checks for how many well-
connected vehicular nodes are still part of the selected cluster using a betweenness
centrality of nodes in the graph. Other measures can be introduced to assess the
performance of such moving networks and the services deployed on these moving
networks. For example, Quality of Information (QoI) can be used to analyse the
quality of data collected from such services. Similarly, from a business point of view,
the historical performance of vehicles can be studied using measures like accepting
and successfully completing services. Such measures can add a confidence score to
each participating vehicular node. The confidence score will help in making better
node selection decisions. The node selection will not be based on just the historical
mobility patterns of vehicles but also on the number of times the vehicles delivered the
service successfully. The successful service completion is based on both the available
communication and processing resources as well as if the vehicles takes the predicted
trajectory each time, similar to its historic mobility pattern. This score can be used by
clients/agents requesting the vehicles to collect and process data to make more efficient
offloading decisions.

Improved Federated Learning-based application for pedestrian counting : We aim to
make the distributed federated learning-based framework for pedestrian detection,
introduced in Section 6.1, more accurate. The distributed federated learning-based
framework follows the template of the distributed service model introduced in Sec-
tion 3.7.3. The FL-based frameworks often require high communication and computa-
tion capacity. We thus introduced the concept of distributed FL where several local
aggregators are used instead of a centralised server for global aggregation. While the
distributed FL framework will be resource efficient, it is not as accurate as the classic
FL schemes and other object detection schemes mentioned in our work. We aim to
improve the training efficiency and model accuracy by optimising the number of local
aggregators and communication rounds required for local and global updates. We

156 Conclusions and Future Work

also aim to improve the object detection application by collecting more data from the
intersection-based test-bed mentioned in Section 6. Collecting more data on vulnerable
pedestrians, cyclists and jaywalkers, the object detection application can be tested for
detection accuracy.

7.2.2 Longer-term research direction

Multiple RSUs to manage the lifecycle of the CN and the vehicle cluster In this work,
we consider a single RSU that receives requests from clients and manages the state of
the cluster. This work can be extended to multiple RSUs that can manage the lifecycle
of both the CN and the vehicle cluster as the cluster moves along a freeway or road
segment. This would require the handover of the vehicle cluster and service states
between different RSUs, but will also help in making the service deployments more
robust.

Multiple clusters for developing a vehicular fog marketplace This research can be ex-
tended to initiate and manage multiple clusters for executing multiple services. This
will give clients and agencies that want to offload service deployment on the vehicle
clusters an option to choose from the multiple clusters based on the cost, the confidence
scores of participating vehicles and the quality of the data collected. This will lead to
the formation of a vehicular fog marketplace where services can be advertised to users
and service providers. With the requirement of using big data in AI and ML algorithms,
there are not many open datasets available for vehicular sensor data. The collection
of such data will lead to new cross-sectorial services, to actualise the goal of smart
cities including safer roads and energy-efficient means of transport. There have been
some works in literature, introducing the concept of vehicular big data marketplace
[Pillmann et al., 2017]. This concept can be extended to include both data collection
and processing service’s marketplace.

More applications related to autonomous driving This work can be extended to other
novel applications like the management of self-driven cars that can share information
with neighbouring cars to make driving safer. For example, the generation of a 3D
road map for autonomous cars, can be shared and made more accurate by collecting
data from a fleet of autonomous vehicles moving together. These vehicular clusters
can also be used for surveillance purposes with different sense-process-actuate cycles,
according to the use case.

Bibliography

Aazam, M. and Huh, E. (2015). Fog computing micro datacenter based dynamic resource
estimation and pricing model for iot. In 2015 IEEE 29th International Conference on
Advanced Information Networking and Applications, pages 687–694.

Aazam, M. and Huh, E. N. (2016). Fog computing: The cloud-iot/ioe middleware paradigm.
IEEE Potentials, 35(3):40–44.

Aazam, M., Zeadally, S., and Harras, K. A. (2018). Fog computing architecture, evaluation,
and future research directions. IEEE Communications Magazine, 56(5):46–52.

Abbas, N., Zhang, Y., Taherkordi, A., and Skeie, T. (2018). Mobile edge computing: A
survey. IEEE Internet of Things Journal, 5(1):450–465.

Abboud, K., Omar, H. A., and Zhuang, W. (2016). Interworking of dsrc and cellular
network technologies for v2x communications: A survey. IEEE Transactions on Vehicular
Technology, 65(12):9457–9470.

Abuelela, M. and Olariu, S. (2010). Taking vanet to the clouds. In Proceedings of the 8th
International Conference on Advances in Mobile Computing and Multimedia, MoMM ’10,
page 6–13, New York, NY, USA. Association for Computing Machinery.

Al-Heety, O. S., Zakaria, Z., Ismail, M., Shakir, M. M., Alani, S., and Alsariera, H. (2020).
A comprehensive survey: Benefits, services, recent works, challenges, security, and use
cases for sdn-vanet. IEEE Access, 8:91028–91047.

Alghamdi, T., Elgazzar, K., Bayoumi, M., Sharaf, T., and Shah, S. (2019). Forecasting traffic
congestion using arima modeling. In 2019 15th International Wireless Communications
Mobile Computing Conference (IWCMC), pages 1227–1232.

Ang, L., Seng, K. P., Ijemaru, G. K., and Zungeru, A. M. (2019). Deployment of iov for
smart cities: Applications, architecture, and challenges. IEEE Access, 7:6473–6492.

Author, U. (2020). An Introduction to the Calfornia Department of Transportation Per-
formance Measurement System (PeMS). https://pems.dot.ca.gov/. [Online; accessed
05-April-2022].

Barcelo, M., Correa, A., Llorca, J., Tulino, A. M., Vicario, J. L., and Morell, A. (2016).
Iot-cloud service optimization in next generation smart environments. IEEE Journal on
Selected Areas in Communications, 34(12):4077–4090.

https://pems.dot.ca.gov/

158 Bibliography

Benkerdagh, S. and Duvallet, C. (2019). Cluster-based emergency message dissemination
strategy for vanet using v2v communication. International Journal of Communication
Systems, 32(5):e3897. e3897 dac.3897.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008.

Bonomi, F., Milito, R., Natarajan, P., and Zhu, J. (2014). Fog Computing: A Platform for
Internet of Things and Analytics, pages 169–186. Springer International Publishing, Cham.

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog computing and its role in
the internet of things. In Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC ’12, page 13–16, New York, NY, USA. Association for
Computing Machinery.

Boukerche, A. and Grande, R. E. D. (2018). Vehicular cloud computing: Architectures,
applications, and mobility. Computer Networks, 135:171 – 189.

Chen, J., Mao, G., Li, C., Liang, W., and Zhang, D. (2018). Capacity of cooperative vehicular
networks with infrastructure support: Multiuser case. IEEE Transactions on Vehicular
Technology, 67(2):1546–1560.

Chen, M. and Hao, Y. (2018). Task offloading for mobile edge computing in software defined
ultra-dense network. IEEE Journal on Selected Areas in Communications, 36(3):587–597.

Chen, X., Jiao, L., Li, W., and Fu, X. (2016). Efficient multi-user computation offloading for
mobile-edge cloud computing. IEEE/ACM Transactions on Networking, 24(5):2795–2808.

Dai, Y., Xu, D., Maharjan, S., Qiao, G., and Zhang, Y. (2019). Artificial intelligence empow-
ered edge computing and caching for internet of vehicles. IEEE Wireless Communications,
26(3):12–18.

de Mendonça, F. F., Kokkinogenis, Z., Dias, K. L., d’Orey, P. M., and Rossetti, R. J. (2022).
The trade-offs between fog processing and communications in latency-sensitive vehicular
fog computing. Pervasive Mob. Comput., 84(C).

Dos Reis Fontes, R., Campolo, C., Esteve Rothenberg, C., and Molinaro, A. (2017). From
theory to experimental evaluation: Resource management in software-defined vehicular
networks. IEEE Access, 5.

Dräxler, S. and Karl, H. (2017). Specification, composition, and placement of network ser-
vices with flexible structures. International Journal of Network Management, 27(2):e1963.
e1963 nem.1963.

Dräxler, S., Schneider, S., and Karl, H. (2018). Scaling and placing bidirectional services
with stateful virtual and physical network functions. In 2018 4th IEEE Conference on
Network Softwarization and Workshops (NetSoft), pages 123–131.

Du, H., Leng, S., Wu, F., Chen, X., and Mao, S. (2020). A new vehicular fog computing
architecture for cooperative sensing of autonomous driving. IEEE Access, 8:10997–11006.

Bibliography 159

Feng, J., Liu, Z., Wu, C., and Ji, Y. (2017). Ave: Autonomous vehicular edge computing
framework with aco-based scheduling. IEEE Transactions on Vehicular Technology,
66(12):10660–10675.

Ge, S., Cheng, M., and Zhou, X. (2020). Interference aware service migration in vehicular
fog computing. IEEE Access, 8:84272–84281.

Gerla, M. (2012). Vehicular cloud computing. In 2012 The 11th Annual Mediterranean Ad
Hoc Networking Workshop (Med-Hoc-Net), pages 152–155.

Giang, N. K., Blackstock, M., Lea, R., and Leung, V. C. (2015). Developing iot applications
in the fog: A distributed dataflow approach. In 2015 5th International Conference on the
Internet of Things (IOT), pages 155–162.

Goudarzi, M., Wu, H., Palaniswami, M., and Buyya, R. (2021). An application placement
technique for concurrent iot applications in edge and fog computing environments. IEEE
Transactions on Mobile Computing, 20(4):1298–1311.

Grossglauser, M. and Tse, D. (2001). Mobility increases the capacity of ad-hoc wireless net-
works. In Proceedings IEEE INFOCOM 2001. Conference on Computer Communications.
Twentieth Annual Joint Conference of the IEEE Computer and Communications Society
(Cat. No.01CH37213), volume 3, pages 1360–1369 vol.3.

Gu, L., Zeng, D., and Guo, S. (2013). Vehicular cloud computing: A survey. In 2013 IEEE
Globecom Workshops (GC Wkshps), pages 403–407.

Gu, Y., Chang, Z., Pan, M., Song, L., and Han, Z. (2018). Joint radio and computational
resource allocation in iot fog computing. IEEE Transactions on Vehicular Technology,
67(8):7475–7484.

Hagenauer, F., Sommer, C., Higuchi, T., Altintas, O., and Dressler, F. (2017). Vehicular
micro clouds as virtual edge servers for efficient data collection. In Proceedings of the 2nd
ACM International Workshop on Smart, Autonomous, and Connected Vehicular Systems
and Services, CarSys ’17, page 31–35, New York, NY, USA. Association for Computing
Machinery.

Higuchi, T., Dressler, F., and Altintas, O. (2018). How to keep a vehicular micro cloud intact.
In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pages 1–5.

Ho, I. W., Chau, S. C., Magsino, E. R., and Jia, K. (2020). Efficient 3d road map data ex-
change for intelligent vehicles in vehicular fog networks. IEEE Transactions on Vehicular
Technology, 69(3):3151–3165.

Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., and Koldehofe, B. (2013a).
Mobile fog: A programming model for large-scale applications on the internet of things.
In Proceedings of the Second ACM SIGCOMM Workshop on Mobile Cloud Computing,
MCC ’13, page 15–20, New York, NY, USA. Association for Computing Machinery.

Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., and Koldehofe, B. (2013b).
Mobile fog: A programming model for large-scale applications on the internet of things.
In Proceedings of the Second ACM SIGCOMM Workshop on Mobile Cloud Computing,
MCC ’13, pages 15–20, New York, NY, USA. ACM.

160 Bibliography

Hou, X., Li, Y., Chen, M., Wu, D., Jin, D., and Chen, S. (2016). Vehicular fog computing: A
viewpoint of vehicles as the infrastructures. IEEE Transactions on Vehicular Technology,
65(6):3860–3873.

Hu, P., Dhelim, S., Ning, H., and Qiu, T. (2017). Survey on fog computing: architecture, key
technologies, applications and open issues. Journal of Network and Computer Applications,
98:27–42.

Hu, S., Li, G., and Shi, W. (2021). Lars: A latency-aware and real-time scheduling framework
for edge-enabled internet of vehicles. IEEE Transactions on Services Computing, pages
1–1.

Huang, C., Lu, R., and Choo, K.-K. R. (2017). Vehicular fog computing: Architecture, use
case, and security and forensic challenges. IEEE Communications Magazine, 55(11):105–
111.

Hussein, M. K. and Mousa, M. H. (2020). Efficient task offloading for iot-based applications
in fog computing using ant colony optimization. IEEE Access, 8:37191–37201.

Intharawijitr, K., Iida, K., and Koga, H. (2016). Analysis of fog model considering computing
and communication latency in 5g cellular networks. In 2016 IEEE International Con-
ference on Pervasive Computing and Communication Workshops (PerCom Workshops),
pages 1–4.

Jang, I., Choo, S., Kim, M., Pack, S., and Dan, G. (2017). The software-defined vehicular
cloud: A new level of sharing the road. IEEE Vehicular Technology Magazine, 12(2):78–
88.

Kanaka Sri Shalini, C. M., Roopa, Y. M., and Devi, J. S. (2019). Fog computing for smart
cities. In 2019 International Conference on Communication and Electronics Systems
(ICCES), pages 912–916.

Keshari, N., Singh, D., and Maurya, A. K. (2022). A survey on vehicular fog computing:
Current state-of-the-art and future directions. Vehicular Communications, page 100512.

Khan, A. u. R., Othman, M., Madani, S. A., and Khan, S. U. (2014). A survey of mobile cloud
computing application models. IEEE Communications Surveys Tutorials, 16(1):393–413.

Lee, S.-S. and Lee, S. (2020). Resource allocation for vehicular fog computing using
reinforcement learning combined with heuristic information. IEEE Internet of Things
Journal, 7(10):10450–10464.

Lera, I., Guerrero, C., and Juiz, C. (2019). Availability-aware service placement policy in fog
computing based on graph partitions. IEEE Internet of Things Journal, 6(2):3641–3651.

Lera, I., Guerrero, C., and Juiz, C. (2019). Yafs: A simulator for iot scenarios in fog
computing. IEEE Access, 7:91745–91758.

Li, L., Fan, Y., Tse, M., and Lin, K.-Y. (2020a). A review of applications in federated
learning. Computers & Industrial Engineering, 149:106854.

Bibliography 161

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020b). Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60.

Li, X., Huang, X., Li, C., Yu, R., and Shu, L. (2019). Edgecare: Leveraging edge computing
for collaborative data management in mobile healthcare systems. IEEE Access, 7:22011–
22025.

Liang, J., Zhang, J., Leung, V. C., and Wu, X. (2021). Distributed information exchange
with low latency for decision making in vehicular fog computing. IEEE Internet of Things
Journal, pages 1–1.

Lienert, P. (2015). 12 million driverless cars to be on the road by 2035 -study. https://
www.reuters.com/article/autos-bcg-autonomous-idUSL1N0UN2GQ20150108. Accessed:
2021-09-30.

Lin, D., Kang, J., Squicciarini, A., Wu, Y., Gurung, S., and Tonguz, O. (2017). Mozo:
A moving zone based routing protocol using pure v2v communication in vanets. IEEE
Transactions on Mobile Computing, 16(5):1357–1370.

Liu, Y. and Wu, H. (2017). Prediction of road traffic congestion based on random forest. In
2017 10th International Symposium on Computational Intelligence and Design (ISCID),
volume 2, pages 361–364.

Liu, Z., Dai, P., Xing, H., Yu, Z., and Zhang, W. (2021). A distributed algorithm for task
offloading in vehicular networks with hybrid fog/cloud computing. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, pages 1–14.

Ma, X., Zhao, J., Li, Q., and Gong, Y. (2019). Reinforcement learning based task offloading
and take-back in vehicle platoon networks. In 2019 IEEE International Conference on
Communications Workshops (ICC Workshops), pages 1–6.

Maglaras, L. A. and Katsaros, D. (2016). Social clustering of vehicles based on semi-markov
processes. IEEE Transactions on Vehicular Technology, 65(1):318–332.

Mao, G., Lin, Z., Ge, X., and Yang, Y. (2013). Towards a simple relationship to estimate
the capacity of static and mobile wireless networks. IEEE Transactions on Wireless
Communications, 12.

MEOLA, A. (2020). How 5g & iot technologies are driving the connected smart vehi-
cle industry. https://www.businessinsider.com/iot-connected-smart-cars?r=US&IR=T.
Accessed: 2021-09-30.

Misra, S. and Saha, N. (2019). Detour: Dynamic task offloading in software-defined fog for
iot applications. IEEE Journal on Selected Areas in Communications, 37(5):1159–1166.

Mohd Zaini, K., Mohd Shariff, A. R., and Shi, Z. (2016). A calculation of wlan dwell
time model for wireless network selection. JOURNAL OF TELECOMMUNICATION,
ELECTRONIC AND COMPUTER ENGINEERING, 8:73–76.

Naha, R. K., Garg, S., Georgakopoulos, D., Jayaraman, P. P., Gao, L., Xiang, Y., and Ranjan,
R. (2018). Fog computing: Survey of trends, architectures, requirements, and research
directions. IEEE Access, 6:47980–48009.

https://www.reuters.com/article/autos-bcg-autonomous-idUSL1N0UN2GQ20150108
https://www.reuters.com/article/autos-bcg-autonomous-idUSL1N0UN2GQ20150108
https://www.businessinsider.com/iot-connected-smart-cars?r=US&IR=T

162 Bibliography

Nazmudeen, M. S. H., Wan, A. T., and Buhari, S. M. (2016). Improved throughput for power
line communication (plc) for smart meters using fog computing based data aggregation
approach. In 2016 IEEE International Smart Cities Conference (ISC2), pages 1–4.

Newman, M. E. J. (2004). Analysis of weighted networks. Phys. Rev. E, 70:056131.

Ni, J., Zhang, A., Lin, X., and Shen, X. S. (2017). Security, privacy, and fairness in fog-based
vehicular crowdsensing. IEEE Communications Magazine, 55(6):146–152.

Ni, J., Zhang, K., Yu, Y., Lin, X., and Shen, X. S. (2018). Providing task allocation and
secure deduplication for mobile crowdsensing via fog computing. IEEE Transactions on
Dependable and Secure Computing, pages 1–1.

Ni, L., Zhang, J., Jiang, C., Yan, C., and Yu, K. (2017). Resource allocation strategy
in fog computing based on priced timed petri nets. IEEE Internet of Things Journal,
4(5):1216–1228.

Ning, Z., Huang, J., and Wang, X. (2019). Vehicular fog computing: Enabling real-time
traffic management for smart cities. IEEE Wireless Communications, 26(1):87–93.

Ning, Z., Huang, J., Wang, X., Rodrigues, J. J. P. C., and Guo, L. (2019). Mobile edge
computing-enabled internet of vehicles: Toward energy-efficient scheduling. IEEE Net-
work, pages 1–8.

Noorani, N. and Seno, S. A. H. (2018). Routing in vanets based on intersection using sdn
and fog computing. In 2018 8th International Conference on Computer and Knowledge
Engineering (ICCKE), pages 339–344.

Oueis, J., Strinati, E. C., and Barbarossa, S. (2015a). The fog balancing: Load distribution
for small cell cloud computing. In 2015 IEEE 81st Vehicular Technology Conference (VTC
Spring), pages 1–6.

Oueis, J., Strinati, E. C., Sardellitti, S., and Barbarossa, S. (2015b). Small cell clustering
for efficient distributed fog computing: A multi-user case. In 2015 IEEE 82nd Vehicular
Technology Conference (VTC2015-Fall), pages 1–5.

Phan, L.-A., Nguyen, D.-T., Lee, M., Park, D.-H., and Kim, T. (2021). Dynamic fog-to-fog
offloading in sdn-based fog computing systems. Future Generation Computer Systems,
117:486–497.

Pillmann, J., Wietfeld, C., Zarcula, A., Raugust, T., and Alonso, D. C. (2017). Novel common
vehicle information model (cvim) for future automotive vehicle big data marketplaces. In
2017 IEEE Intelligent Vehicles Symposium (IV), pages 1910–1915.

Qiao, G., Leng, S., Zhang, K., and He, Y. (2018). Collaborative task offloading in vehicular
edge multi-access networks. IEEE Communications Magazine, 56(8):48–54.

Rathore, M. M., Paul, A., Rho, S., Khan, M., Vimal, S., and Shah, S. A. (2021). Smart traffic
control: Identifying driving-violations using fog devices with vehicular cameras in smart
cities. Sustainable Cities and Society, 71:102986.

Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv.

Bibliography 163

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object
detection with region proposal networks.

Report, T. (2009). Intelligent transport systems (its);vehicular communications;basic set of
applications;definitions. https://www.etsi.org/deliver/etsi_tr/102600_102699/102638/01.
01.01_60/tr_102638v010101p.pdf. Accessed: 2021-09-30.

Saha, R., Misra, S., and Deb, P. K. (2021). Fogfl: Fog-assisted federated learning for
resource-constrained iot devices. IEEE Internet of Things Journal, 8(10):8456–8463.

Salahuddin, M. A., Al-Fuqaha, A., and Guizani, M. (2015). Software-defined networking
for rsu clouds in support of the internet of vehicles. IEEE Internet of Things Journal,
2(2):133–144.

Sarkar, S., Chatterjee, S., and Misra, S. (2018). Assessment of the suitability of fog computing
in the context of internet of things. IEEE Transactions on Cloud Computing, 6(1):46–59.

Sarkar, S. and Misra, S. (2016). Theoretical modelling of fog computing: a green computing
paradigm to support iot applications. Iet Networks, 5(2):23–29.

Shah, S. A. A., Ahmed, E., Imran, M., and Zeadally, S. (2018). 5g for vehicular communica-
tions. IEEE Communications Magazine, 56(1):111–117.

Sharma, K., Butler, B., and Jennings, B. (2021). Scaling and placing distributed services on
vehicle clusters in urban environments. arXiv.

Sharma, K., Butler, B., and Jennings, B. (2022a). Graph-based heuristic solution for placing
distributed video processing applications on moving vehicle clusters. IEEE Transactions
on Network and Service Management, pages 1–1.

Sharma, K., Butler, B., and Jennings, B. (2022b). Scaling and placing distributed services on
vehicle clusters in urban environments. IEEE Transactions on Services Computing, pages
1–1.

Sharma, K., Butler, B., Jennings, B., Kennedy, J., and Loomba, R. (2018). Optimizing the
placement of data collection services on vehicle clusters. In 2018 IEEE 29th Annual Inter-
national Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),
pages 1800–1806.

Shi, H., Chen, N., and Deters, R. (2015). Combining mobile and fog computing: Using coap
to link mobile device clouds with fog computing. In 2015 IEEE International Conference
on Data Science and Data Intensive Systems, pages 564–571.

Shi, L., Butler, B., Botvich, D., and Jennings, B. (2013). Provisioning of requests for virtual
machine sets with placement constraints in iaas clouds. In 2013 IFIP/IEEE International
Symposium on Integrated Network Management (IM 2013), pages 499–505.

Singh, P. K., Nandi, S. K., and Nandi, S. (2019). A tutorial survey on vehicular com-
munication state of the art, and future research directions. Vehicular Communications,
18:100164.

https://www.etsi.org/deliver/etsi_tr/102600_102699/102638/01.01.01_60/tr_102638v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/102600_102699/102638/01.01.01_60/tr_102638v010101p.pdf

164 Bibliography

Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., and Leitner, P. (2017). Optimized iot
service placement in the fog. Service Oriented Computing and Applications, 11(4):427–
443.

Skarlat, O., Schulte, S., Borkowski, M., and Leitner, P. (2016). Resource provisioning for
iot services in the fog. In 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA), pages 32–39.

Sookhak, M., Yu, F. R., He, Y., Talebian, H., Sohrabi Safa, N., Zhao, N., Khan, M. K.,
and Kumar, N. (2017). Fog vehicular computing: Augmentation of fog computing using
vehicular cloud computing. IEEE Vehicular Technology Magazine, 12(3):55–64.

Suh, J., Chae, H., and Yi, K. (2018). Stochastic model-predictive control for lane change
decision of automated driving vehicles. IEEE Transactions on Vehicular Technology,
67(6):4771–4782.

Tan, K., Feng, L., Dán, G., and Törngren, M. (2022). Decentralized convex optimization for
joint task offloading and resource allocation of vehicular edge computing systems. IEEE
Transactions on Vehicular Technology, pages 1–15.

Tang, C., Xia, S., Li, Q., Chen, W., and Fang, W. (2021). Resource pooling in vehicular fog
computing. Journal of Cloud Computing, 10(1):1–14.

Teo, H. M. and Kadir, W. M. W. (2006). A comparative study of interface design approaches
for service-oriented software. In 2006 13th Asia Pacific Software Engineering Conference
(APSEC’06), pages 147–156.

Thakur, A. and Malekian, R. (2019). Fog computing for detecting vehicular congestion, an
internet of vehicles based approach: A review. IEEE Intelligent Transportation Systems
Magazine, 11(2):8–16.

Ucar, S., Ergen, S. C., and Ozkasap, O. (2016). Multihop-cluster-based ieee 802.11p and
lte hybrid architecture for vanet safety message dissemination. IEEE Transactions on
Vehicular Technology, 65(4):2621–2636.

Wang, D., Liu, Z., Wang, X., and Lan, Y. (2019). Mobility-aware task offloading and
migration schemes in fog computing networks. IEEE Access, 7:43356–43368.

Wang, D., Zhang, Q., Wu, S., Li, X., and Wang, R. (2016). Traffic flow forecast with urban
transport network. In 2016 IEEE International Conference on Intelligent Transportation
Engineering (ICITE), pages 139–143.

Wang, P., Liu, S., Ye, F., and Chen, X. (2018). A Fog-based Architecture and Programming
Model for IoT Applications in the Smart Grid. arXiv e-prints, page arXiv:1804.01239.

Xiao, X., Hou, X., Chen, X., Liu, C., and Li, Y. (2019). Quantitative analysis for capabilities
of vehicular fog computing. Information Sciences, 501:742–760.

Xiao, X., Hou, X., Wang, C., Li, Y., Hui, P., and Chen, S. (2019). Jamcloud: Turning traffic
jams into computation opportunities – whose time has come. IEEE Access, pages 1–1.

Bibliography 165

Xu, J., Palanisamy, B., Ludwig, H., and Wang, Q. (2017). Zenith: Utility-aware resource
allocation for edge computing. In 2017 IEEE International Conference on Edge Computing
(EDGE), pages 47–54.

Yadav, R., Zhang, W., Kaiwartya, O., Song, H., and Yu, S. (2020). Energy-latency tradeoff
for dynamic computation offloading in vehicular fog computing. IEEE Transactions on
Vehicular Technology, 69(12):14198–14211.

Ye, D., Wu, M., Tang, S., and Yu, R. (2016). Scalable fog computing with service offloading
in bus networks. In 2016 IEEE 3rd International Conference on Cyber Security and Cloud
Computing (CSCloud), pages 247–251.

Yerabolu, S., Kim, S., Gomena, S., Li, X., Patel, R., Bhise, S., and Aryafar, E. (2019).
Deepmarket: An edge computing marketplace with distributed tensorflow execution
capability. In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 32–37.

Yi, S., Hao, Z., Qin, Z., and Li, Q. (2015). Fog computing: Platform and applications. In
2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb),
pages 73–78.

Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J., and
Jue, J. P. (2019). All one needs to know about fog computing and related edge computing
paradigms: A complete survey. Journal of Systems Architecture, 98:289 – 330.

Yu, R., Xue, G., and Zhang, X. (2018). Application provisioning in fog computing-enabled
internet-of-things: A network perspective. In IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications, pages 783–791.

Zeng, D., Gu, L., Guo, S., Cheng, Z., and Yu, S. (2016). Joint optimization of task scheduling
and image placement in fog computing supported software-defined embedded system.
IEEE Transactions on Computers, 65(12):3702–3712.

Zhang, J., Huang, X., and Yu, R. (2020). Optimal task assignment with delay constraint for
parked vehicle assisted edge computing: A stackelberg game approach. IEEE Communi-
cations Letters, 24(3):598–602.

Zhang, W., Zhang, Z., and Chao, H.-C. (2017). Cooperative fog computing for dealing with
big data in the internet of vehicles: Architecture and hierarchical resource management.
IEEE Communications Magazine, 55(12):60–67.

Zhang, Y., Li, C., Luan, T. H., Fu, Y., Shi, W., and Zhu, L. (2019a). A mobility-aware
vehicular caching scheme in content centric networks: Model and optimization. IEEE
Transactions on Vehicular Technology, 68(4):3100–3112.

Zhang, Y., Wang, C.-Y., and Wei, H.-Y. (2019b). Parking reservation auction for parked
vehicle assistance in vehicular fog computing. IEEE Transactions on Vehicular Technology,
68(4):3126–3139.

Zhao, J., Li, Q., Gong, Y., and Zhang, K. (2019). Computation offloading and resource allo-
cation for cloud assisted mobile edge computing in vehicular networks. IEEE Transactions
on Vehicular Technology, 68(8):7944–7956.

166 Bibliography

Zhou, Z., Liao, H., Wang, X., Mumtaz, S., and Rodriguez, J. (2020). When vehicular fog
computing meets autonomous driving: Computational resource management and task
offloading. IEEE Network, 34(6):70–76.

Zhu, C., Pastor, G., Xiao, Y., Li, Y., and Ylae-Jaeaeski, A. (2018). Fog following me: Latency
and quality balanced task allocation in vehicular fog computing. In 2018 15th Annual
IEEE International Conference on Sensing, Communication, and Networking (SECON),
pages 1–9.

Zhu, C., Pastor, G., Xiao, Y., and Ylajaaski, A. (2018). Vehicular fog computing for
video crowdsourcing: Applications, feasibility, and challenges. IEEE Communications
Magazine, 56(10):58–63.

Zhu, C., Tao, J., Pastor, G., Xiao, Y., Ji, Y., Zhou, Q., Li, Y., and Ylä-Jääski, A. (2019). Folo:
Latency and quality optimized task allocation in vehicular fog computing. IEEE Internet
of Things Journal, 6(3):4150–4161.

	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Research Hypothesis
	1.1.1 RQ 1. How feasible is it to use vehicle clusters for service execution? How to estimate the aggregate computation and communication capacity of these vehicle clusters?
	1.1.2 RQ 2. How can closely moving vehicles be used for service provisioning?
	1.1.3 RQ 3. How to resolve the vehicle cluster selection, service scaling, and service placement problem using community detection and graph-based algorithms?
	1.1.4 RQ 4. Can a federated-learning-based scheme be introduced to deploy a distributed object detection service using video data from multiple video sources?

	1.2 Research Contributions
	1.3 Dissertation Organisation

	2 Background
	2.1 Evolution of VANET to the Internet of Vehicle Ecosystem
	2.2 Vehicular Fog Computing Architecture
	2.2.1 Applications with different level of processing on the vehicular fog

	2.3 Suitability of Service Placement on a Vehicular-Fog Ecosystem
	2.3.1 Urban Scenarios:
	2.3.2 Distributed service placement on mobile nodes
	2.3.3 Mobility models for mobility prediction of vehicles
	2.3.4 Flexible Programmability:
	2.3.5 Vehicular radio access technologies (V-RATs)
	2.3.6 Communication Management

	2.4 Literature Review
	2.4.1 Fog Computing Architecture, Feasibility and Use Cases
	2.4.2 Vehicular Cloud and Fog Computing
	2.4.3 Programming model for Future Internet Applications
	2.4.4 Feasibility of using vehicles as infrastructure
	2.4.5 Task Allocation and Scheduling in Vehicular Fog
	2.4.6 Latency-sensitive applications
	2.4.7 Data-centric applications

	2.5 Summary: Challenges and Limitations

	3 Macroscopic and Microscopic Mobility Modelling
	3.1 Introduction
	3.2 Motivation
	3.2.1 Predictability of vehicle flows
	3.2.2 Comparative mobility models

	3.3 Aggregate Communications and Computation Capacity Estimation
	3.4 Mobility Patterns of Vehicles
	3.5 Microscopic and Macroscopic traffic trajectory data
	3.6 Vehicular Fog Marketplace
	3.7 Service Scaling and Placement Scheme
	3.7.1 System Model
	3.7.2 Network Topology
	3.7.3 Service Model: Task and Task Instances

	3.8 Summary

	4 Scaling and Placement of Linear Service Chains on Moving Vehicular Clusters
	4.1 Introduction
	4.2 Service Scaling and Placement Scheme with Single-hop Cluster
	4.2.1 Node Resource Constraints
	4.2.2 Link Constraints
	4.2.3 Optimization
	4.2.4 Video Streaming Application for Pedestrian Detection
	4.2.5 Simulation and Evaluation

	4.3 Service Scaling and Placement Scheme with Multi-hop Clusters
	4.3.1 Infrastructure Constraints
	4.3.2 Distributed Service Model Constraints
	4.3.3 Cluster cohesion probability
	4.3.4 Service Placement Cost
	4.3.5 Bi-objective Optimisation Function

	4.4 Results for Service Placement for the Bi-objective Service Placement Problem
	4.4.1 Application Types
	4.4.2 Evaluation
	4.4.3 Penalty Function
	4.4.4 Mininet-WiFi Simulation

	4.5 Service Scaling and Placement Plan Procedure
	4.5.1 Comparison of MIP with baseline approaches

	4.6 Conclusion

	5 Placement of Distributed Video Processing Applications on Moving Vehicle Clusters
	5.1 Introduction
	5.2 System Model
	5.3 Model
	5.3.1 Application Type
	5.3.2 Network Topology
	5.3.3 Distributed Service Model

	5.4 Service Scaling and Placement Constraints
	5.4.1 Flow capacity constraint
	5.4.2 In-network processing constraint
	5.4.3 Service Scaling constraint
	5.4.4 Infrastructure constraints
	5.4.5 Mobility modeling
	5.4.6 Objective Function

	5.5 Heuristic-based Solution
	5.5.1 Vehicular Node Selection
	5.5.2 Service placement heuristic

	5.6 Evaluation
	5.6.1 Comparison of placement techniques in terms of service time
	5.6.2 Evaluation of the selected cluster over time

	5.7 Conclusion

	6 Video Data from the MLK Corridor
	6.0.1 Object detection techniques
	6.1 Federated Learning based Object Detection
	6.1.1 Federated Learning
	6.1.2 System architecture

	6.2 Preliminary Results and Future Direction
	6.3 Conclusion

	7 Conclusions and Future Work
	7.1 Summary
	7.2 Future Works
	7.2.1 Next steps of research
	7.2.2 Longer-term research direction

	Bibliography

