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Abstract 

On-garment intelligence influenced by artificial neural networks and neuromorphic computing 
is emerging as a research direction in the E-textile sector. In particular, bio-inspired Spiking 
Neural Networks (SNN) mimicking the workings of the brain show promise in recent ICT 
research applications. Taking such technological advancements and new research directions 
driving forward the next generation of E-textiles and smart materials, we present a wearable 
µBrain capable of event-driven artificial spiking neural network computation in a fabric based 
environment. We demonstrate a wearable µBrain SNN prototype with multi-layer computation, 
enabling scalability and flexibility in terms of modifications for hidden layers to be augmented 
to the network. The wearable µBrain provides a low size, weight and power (SWaP) artificial on-
garment intelligent wearable solution with embedded functionality enabling offline adaptive 
learning through the provision of interchangeable resistor synaptic weightings. The prototype 
has been evaluated for fault tolerance, where we have determine the robustness of the circuit 
when certain parts are damaged. Validations were also conducted for movements to determine 
if the circuit can still perform accurate computation. As one potential application, we have 
interfaced the  wearable µBrain to live neurons to demonstrate how pressure sensors on the 
surface can lead to stimulation of neurons. This demonstrates the potential of the wearable 
µBrain that can be interfaced directly to the brain in the future to stimulate neural circuits due 
to patients suffering from neurodegenerative diseases, such as stroke or nerve compression that 
have resulted in the loss of physical sensation in a patient’s extremities (lower arm). 
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1 Introduction 

Bio-inspired neural networks bring together the convergence of neuroscience, computer science and 
engineering to create artificial intelligence (AI) that can support applications in human health (Ser et 
al., 2019). Principles of AI are governed by theoretical neuroscience that is combined with biophysics 
of the brain to explore novel models for advancing AI, and this is pursued through artificial neural 
networks (ANN). While diverse applications exist for AI (e.g., autonomous vehicles), applications in 
health care are increasingly common. This includes applications of AI in medical image processing as 
well as hardware for wearable sensors (Ker et al., 2017). However, numerous challenges exist in AI 
and this includes high power consumption, low computing capability and speed of transmission (Covi 
et al., 2021). These challenges are core to the next generation of AI hardware, and in particular for 
Neuromorphic processors (Indiveri, 2021).  

    Taking inspiration from the working functions of the human brain and the nervous system, emerging 
neuromorphic computing architectures are attempting to replicate more efficient brain-inspired neural 
networks to develop realistic SNN that emulates the manner in which a neuron fires in a biological 
neuronal network. Neuromorphic chips such as Intel’s Loihi (Davies et al., 2018)(A.L et al., 2018), 
lava software framework and IBMs TrueNorth (Cheng et al., 2017) have driven advancements in this 
area. Intel’s Loihi2 chip facilitates the capability to house one million “neurons” in a chip half the size 
of its predecessor Loihi1with 131,072 “neurons” (Davis et al). Such hardware developments are 
producing new architectural designs and methods enabling scalability and enhanced performance, 
while reducing energy and cost. From a SNN architectural design perspective, neuromorphic chips are 
utilizing intelligent memory enabled resistor  components, also known as memristors (Mehonic et al., 
2020), along with the cross bar array design (Innocent et al., 2021) to mimic a biological neuronal 
network structure. Currently, there is a lack of dynamic SNN devices. Ongoing research is investigating 
the development of large scale memristive arrays where such cross bar array structures adopt a 2D, 
vertically 3D layered or stacked architectural design allowing for efficient flow of data between each 
layer (Covi et al., 2021).  

Neuromorphic computing provides a level of advanced AI, such as learning from limited data and 
adaptive architecture, while also providing computations with low latency. (Stuijt et al., 2021) detailed 
a µbrain CMOS digital chip that offers ultra-low power and always-on neuromorphic computing that 
provides reduced latency and energy consumption. Applications using neuromorphic computing are 
still in their infancy but such devices are envisioned to impact multiple sectors such as biomedical 
applications, smart neuromorphic biosensors and point-of-care diagnostics (Tuchman et al., 2020). The 
healthcare sector could benefit from enhanced drug delivery systems (Jayaraman 2020), intelligent 
prosthetics using flexible neuromorphic electronics (Park, Lee et al., 2020), more efficient data use of 
image processing tools and technologies driving the next generation of neuromorphic vision sensors 
(Liao et al., 2021). 

The smart materials and E-textiles sector have recently provided new forms of patient monitoring, but 
such advancements have not been developed towards integrating AI for on-garment intelligence. 
Healthcare based E-textile solutions currently focus on technologies to remotely monitor patients in 
their home environment allowing for early intervention. How E-textiles can support such real time and 
remote unobtrusive monitoring in order to assess the state of the wearer’s condition and also to 
effectively manage their health is an important challenge that needs to be met by smart garment and 
novel applications in this space. There has been advancements using artificial neural networks across 
many healthcare applications (Shahid et al., 2019). (Mokhlespour et al., 2019) focused on the 
classification of physical activities using ‘smart garments’, where they validated the accuracy of the 
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smart textile system that featured a smart undershirt and smart socks to assess their accuracy in several 
postures and activity related movements. In order to classify the various types of physical activities, a 
number of classification models were utilised and this includes K-nearest neighbour (K-NN), linear 
discriminant analysis (LDA), and ANN. In recent years, SNN healthcare applications are emerging as 
this technology advances. (Pang et al., 2020) completed a feasibility analysis into the adaptation of 
SNN for a structural health monitoring (SHM) system and (Garain et al., 2021) investigated the 
simulation of SNN and its application for classification  of chest CT scan images for COVID and non-
COVID cases. Such advancements are still very much standalone applications. Within the E-textile 
domain, more emphasis and research into how such on-garment intelligence can be embedded into a 
fabric-based environment needs to be completed.   

Condition-specific smart garments are becoming more important to patients who suffer from chronic 
or life threating illnesses and who are required to be monitored or self-monitor their condition on a 
daily basis. Neuromorphic computing and SNN have the potential to deliver new innovative solutions 
to meet such needs in a textile based smart garment environment. Wearable artificial neural network 
computing is gaining traction with research emerging that is investigating the development of a 1D 
multi-synaptic device to support neural networks in an E-textile environment (Ham, Kang et al. 2020). 
Wearable memories and computing research as well as applications are focussing on the possibility of 
embedded and integrated electronic systems in our everyday clothing that interacts with our on-body 
sensors, near-body mobile devices and even our brain (Rajan et al., 2018). 
This paper introduces a brain-inspired wearable µBrain adopting elements of neuromorphic computing 
architecture and design, to implement a SNN in a textile environment. The wearable µBrain 
architecture incorporates a SNN to emulate a natural network existing in a biological brain, where each 
neuron can fire independently of the others by sending pulsed signals to other neurons. It is inspired 
by the key elements of neuromorphic computing, and this includes 1) the synaptic device, 2) the 
neuronal circuit 3) the crossbar array and 4) an interconnected communication layered structure used 
in neuromorphic architecture. Usability is demonstrated through a health focused use case linked to 
lack of sensation /numbness in the forearm because of nerve compression, a stroke or a 
neurodegenerative disease. The wearable µBrain processes data inputs coming from the embedded 
textile pressure sensors in the sleeve textile garment that artificially detect forearm skin sensations 
based on applied pressure points on the forearm. Despite progress in neuromorphic computing and 
SNN, there is a lack of current research focused on how such computing advancements can be 
incorporated into a textile environment enabling a next generation of embedded brain-inspired textile 
intelligence. 

The rest of the paper is organized as follows: Section 2 discusses the materials and methods in detail. 
Section 3 gives detail around the hardware implementation of the Wearable µBrain. Section 4 gives 
experimental results and performance insights. Section 5 details application area examples. Section 6 
is the final section that concludes the paper and provides insights into future potential work.  

2 Materials and Methods  

Let us now consider the key architectural elements and methods defined in order to progress towards 
the development of a wearable µBrain. Taking a brain inspired approach, it is important to understand 
the workings of a biological SNN that will be used to design and develop the wearable µBrain.  

Biological neural networks have the capability to process complex inputs, such as electrical impulses, 
utilizing their structural components consisting of synapse, dendrites, neuron cell body (soma) and also 
the axon. It is estimated that there is 100 billion neurons in a human brain along with a quadrillion 
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synapses (Herculano-Houzel 2009). The neural networks interconnection process involves the 
dendrites receiving signals from other neurons which in turn is aggregated in the soma and transmitted 
by the axon to other cells. As neurons become electrically excitable, the action potential electrical 
pulses that are propagated in the cell and axon cause depolarization of neighboring cells, resulting in a 
change in the neighboring cell’s electric charge distribution ( Kadir et al., 2018). This in turn causes 
the neighboring neuron to become engaged through the synapse transmission. 

SNN brings the promise of low power consumption and energy efficiency when implementing a neural 
network, as well as analog computation and event driven processing (Pfeiffer and Pfeil 2018). Such 
SNN properties along with their more accurate representation of the biological neuronal network, make 
it favorable for low power efficient computational applications driven by event-based inputs and 
outputs. This opens up opportunities for neuromorphic computing and SNN design architectures and 
applications to be linked to the E-textiles and the wearable sensor domain. Such applications enable 
further investigation around embedded on-garment SNN wearable intelligence providing enhanced 
healthcare and biomedical solutions with event driven, low power and energy efficient properties, 
within the healthcare sector. This following section details the core modular artificial biological 
elements and fabric design-based methods required to create and implement a wearable µBrain 
application, inspired by state-of-the-art neuromorphic computing and SNN models [Fig 1].  

2.1 Wearable µBrain Architecture 

Taking inspiration from the biological neural network, in particular the electrochemical neuronal 
communications of the brain, here we detail an overview of the modular elements that constitute the 
wearable µBrain and how these form the overall architecture. Both design features and properties of 
neuromorphic computing and SNN are advancing and in the wearable µBrain we incorporate elements 
such as, 1) neuronal circuit, 2) synaptic device, 3) neuromorphic crossbar array, and 4) 3D vertically 
stacked layered approach. How these elements can be incorporated into a textile environment to 
support the development of a wearable µBrain SNN architecture will now be discussed further. 
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2.1.1 Artificial Neuron 
To artificially mimic a neuron using electronic components we need to replicate its biological 
functionality (excited state, inhibited state) and integrate this into a wearable fabric-based substrate. 
The wearable µBrain demonstrates a SNN using a simple neuron replication model limiting the amount 
of physical electrical components required to be integrated into a fabric environment. To minimize the 
overall wearable µBrain SNN size in a fabric environment we also use small miniature surface mount 
device (SMD) components (Molla et al. 2017), which will be elaborated in section 3. 

Electrical equivalent circuit models of spiking neurons currently exist (McCulloch-Pitts, Integrate-and-
Fire, Hodgkin-Huxley), which contain attributes such as binary inputs, synaptic weights, defined 
threshold and outputs. We focused on the integrate and fire (IF) (Burkitt 2006) model towards the 
creation of a wearable µBrain. This has been in existence for many years (Lapicque 1907) and is a 
simple model using an electronic resistor and capacitor (RC) circuit that incorporates a threshold to 
mimic the generation of action potential in artificial neurons. The RC circuit is one of the most popular 
and simple neuronal models as its captures the most important neuronal properties [Fig 2]. It was 
necessary to create a network of integrate and fire unit neural nodes that could generate a wearable 
µBrain SNN model that artificially demonstrate neurons’ features and functionality. We selected the 
integrate and fire model to replicate the neuron activity in the wearable µBrain due to the fact that it 
could integrate synaptic inputs and create a spike when the voltage threshold was reached.  

2.1.2 Artificial Synapse 
The strength of the connection between each node in a SNN and how we incorporate this into the 
wearable µBrain is a key element of the architecture to ensure we enable interchangeable synaptic 
weight capability, enabling adaptive learning in the neural network. Depending on the type of SNN, a 
neural node can have multiple connected synaptic weights. Our defined neural network has one Fabric 
Hidden Layer (FHL) with 3 input synaptic weights to each neural node and a second FHL with 4 input 
synaptic weights to each neural node [Fig 3]. It is important to include in the overall architecture design 
the capability to have modifiable weights, as in a biological neural network each neuron can have 
multiple synapses connected to a neuron all with varying triggering levels that can either excite or 
inhibit the neural node. To accomplish this in the wearable µBrain, we looked at current state of the art 
neuromorphic architectural designs linked to SNN. 

Neuromorphic computing moves away from the traditional method of separate data storage and 
computing. Core to the neuromorphic architecture is memory enabled synaptic devices such as the 
synaptic memristor (Yao et al., 2020) 2) and synaptic transistor (Wan et al., 2020), that both store and 
compute hence eliminating the Von Neumann bottleneck (Park 2020). For the implementation of the 
SNN, we had to consider the synaptic weights required as connection strengths between the neural 
network nodes. The synaptic weights and their strength levels play an important role in the SNN as 
they mimic the firing impact one neuron can potentially have on another neuron (Herzfeld, Beardsley 
2011). To simulate the weight connections, we used SMD resistors of varying electrical resistance 
(Ohms) for each input connection to each neural node.  

2.1.3 Neuromorphic Inspired Crossbar Array Architecture 
To implement a fully connected SNN, the neuromorphic crossbar array-like architecture consisting of 
rows and columns has been used in hardware implementations of ANN’s (Xia et al., 2019)(Balaji et 
al., 2019). Memristor artificial synapse device advancements are also driving the adoption and use of 
memristive crossbar arrays enabling low power memory computing and highly scalable architectures. 
(Ji et al., 2016) demonstrated a 1 transistor, 1 resistor crossbar array architecture to eliminate undesired 
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cross talk. (Lee et al., 2020) details the use of a hybrid memristor and transistor, known as 
memtransistors that acts as dual gates for the traditional crossbar array sneak current problem. Taking 
this neuromorphic crossbar array row and column design structure, we have incorporated it into a 
wearable µBrain structured design, to accommodate a functioning neural network layout with an inbuilt 
high density of synapses using SMD resistors [Fig 2]. Circuit theory for the crossbar array utilizes a 
combination of Ohms law and Kirchoff’s Voltage law supporting the crossbar array electrical 
computations.  

It is worth noting here the sneak path cross bar array issue which limits accurate sensing. The crossbar 
array structure creates sneak path currents through the array’s rows and columns. Various techniques 
have been investigated and used to try to eliminate this issue, these include transistor gating (Yuan et 
al., 2021), diode gating (Seufert et al, 2021), row grounding technique (Fouda et al,. 2019), multistage 
reading (Sun et al., 2020). To address this issue in the wearable µBrain cross bar array fabric design 
we will adopt and use the row grounding technique. Here unselected input rows in the wearable µBrain 
will be grounded directing sneak path currents to ground. From a component and textile point of view, 
no additional components are required to implement this solution and hence it suits the design direction, 
limiting the number of physical components to create the wearable SNN.  

                                  

 

2.1.4 3D vertical stacked layered wearable µBrain SNN 
The novelty of the wearable µBrain SNN exists in its 3D vertically stacked FHL design structure. 3D 
integrated system design in neuromorphic computing (An, 2019) [Fig 3] and artificial intelligence 
hardware applications are generating more sophisticated and scalable systems acting as key enablers 
driving adoption (Yang et al, 2018) (Koyanagi et al., 2001). Such design flexibility and scalability 
properties provide a more modular, cost effective and energy efficient (Xia et al., 2019) design 
methodology suitable for the wearable µBrain. To accommodate this layered and vertically stacked 
FHL approach, careful consideration was given to 1) the required communication interconnections 
between the fabric hidden layers, 2) the design and placement of fabric patch artificial neural nodes on 
the FHL, and 3) the interconnection of rows/columns supporting a crossbar array layout [Fig 3].  
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Interconnections to support the communications from FHL to FHLn using snap connectors were placed 
at set points parallel to the artificial RC neural nodes, allowing ease of connection and assessment of 
the voltage output (Vout) measurements readings from neural nodes in FHL1 to its connecting FHLn 
[Fig 3]. Placement of the artificial spiking neural network nodes on the FHL were split based on their 
hidden layer location in the neural network structure [Fig 3]. Fabric based patch neural nodes were 
created to house the crossbar array row/column conductive thread connections and also to house the 
artificial synaptic SMD resistor weights and RC neural nodes. Each Fabric patch node has the 
capability to be easily removed, replaced or updated adopting a modular design approach to the overall 
wearable µBrain all the while accommodating offline adaptive learning through SMD resistor weight 
selection updates as required. 

As part of the multi-layer fabric topology, it is important to include functionality to dynamically 
interchange the resistor weights that replicate the synapse weight in a biological neural network. 
Depending on the desired output, a selected SMD resistor weight was connected to the array column 
conductive thread line that fed into the RC circuit artificial neural node [Fig 3]. The adopted design 
approach using fabric node patches on the FHL, allowed for ease of interchange of the SMD resistor 
weightings as desired, using conductive thread stitching and also provided clear structured recognition 
of the defined neural nodes in the FHL’s which supported performance assessment and validation.  

 

Advantages of the 3D vertical stacked fabric layered approach include: 

• A modular design methodology enabling scalability and extendibility of the prototype for future 
reconfiguration requirements.  

• Provision of enhanced energy efficiency due to the 3D vertical stacked FHL’s with reduced power 
dissipation.  

• Interchangeable node fabric patches in the adopted SNN layered design approach, with offline 
adaptive weight selection allowing SMD resistors of varying resistance levels to be interchanged 
depending on the application use case. 

• Limited cost to implement in a fabric environment (low-cost fabric, SMD devices and conductive 
thread) with reduced area size, applicable for varying application-based use cases. 
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2.1.5 Interchangeable SNN Weights 
For the majority of SNN, current learning methods base themselves on the adjustment of the synaptic 
weights. The provision of three optional SMD resistor weights for each neural node in the network 
(N1-N8 and X, Y) [Fig 4 (a)(b)] allows us to directly implement an offline adaptive interchangeable 
synaptic weight learning method for the wearable µBrain SNN by selecting our preferred SMD resistor 
weight. The actual desired output is acquired, through selective adjustment of the weights. For our 
wearable µBrain SNN we have created a dedicated logic truth table based on 3 inputs and 2 outputs 
(X, Y) [Fig 4(c)]. Adopting this logic truth table, it supported the offline adaptive learning of the 
wearable µBrain using the iterative adaptive interchangeable weight selection process to acquire the 
desired outputs (X, Y).  

The wearable µBrain SNN not only has the flexibility to interchange connected weights to modify the 
workings and outputs of the SNN, but SMD resistors of varying resistance levels can be added and 
removed as required through simple replacement and soldering of the required SMD resistors into the 
patches fabric tape row lines [Fig 4(b)]. Having such an easily modifiable wearable µBrain SNN, 
makes the prototype extendable and capable of facilitating such changes producing varying output 
results and hence a variety of truth table use case applications. A basic example of this is demonstrated 
in [Fig 4(a)] where a change of SMD resistors for output node X and Y results in a change in the outputs 
results for inputs 010 and 101 for wearable µBrain SNN which can be see through the desired output 
change in the logic truth table [Fig 4(c)].  
 
Such flexibility allows for varying desired truth table output options (X, Y) to be considered and 
implemented using the wearable µBrain SNN framework, where a dedicated truth table aligned to a 
specific health related application can be adopted and implemented. SMD resistor resistance levels that 
act as node synapse connectors in the FHL 1 and FHL 2 can also be altered to further modify the 
outputs from the logic truth table in order to alter the wearable µBrain applications and use cases. 
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2.1.6 Key systematic modules of the Wearable µBrain Architecture 
As the IF model RC circuit was used to simulate the neuron properties and the event driven processing 
functionality of the SNN, an architecture was defined that replicated this electrical circuit functionality 
in order to build out a working wearable SNN. Key architectural specifications are summarized as 
follows.  

• Use of SMD based RC circuitry simulating the functionality of a neural nodes. These RC node 
circuits were utilised in the architectural design to implement a network of event driven spiking 
artificial nodes to create the wearable µBrain SNN.  

• The use of SMD resistors as artificial synapse connectors to the neural nodes acting as the required 
node interconnection weights. 

• Each neural node electrical circuit structure to be integrated in a fabric environment using fabric 
patches to represent nodes. 

• Each hidden neural network layer to have its own fabric layered surface area, allowing additional 
FHL’s to be added or removed depending on the application and level of complexity of the 
wearable µBrain. This replicates a 3D design element, similar to design structures appearing in 
neuromorphic architectural designs, enabling customizability within the wearable µBrain design. 

• Interconnection of the FHL’s of the fabric based Wearable SNN using snap connectors, allowing 
flexibility to easily deconstruct and construct variations of the wearable µbrain SNN. This 
introduces a high level of flexibility and modularity to the overall architecture design. 

• The architecture is designed in a manner to accommodate SWaP AI (low size, weight and power) 
in a fabric-based application. 

3 Hardware Implementation 

To implement a hardware version of the wearable µBrain SNN, we had to consider 1) the method of 
incorporating SMD resistor and capacitor components of the defined architecture into a fabric 
environment 2) Development of a scalable wearable µBrain SNN, with complex hidden multi-layer 
on-garment intelligence. This section will provide an overview of the prototype hardware 
implementations completed.  

3.1 SMD components in Fabric environment. 

Taking the defined SNN topology in section 2.1, how to apply this into a fabric environment needed 
to be considered. In order to reduce the overall size of the fabric based wearable µBrain SNN, surface 
mount devices were used in the design and construction phase. Adding surface mount devices to a 
fabric environment was not an easy task, as they are predominantly manufactured for mounting on 
printed circuit boards and not for embedding in fabric environments. (Molla et al, 2017) present a 
stitched method of fabricating E-textiles with SMD light emitting diodes (LED) devices. This process 
to incorporate SMD resistors and capacitors was not viable for our SNN application hence the 
following process was trialled and used to embed the SMD into a fabric environment.  

SMD package type 0805 for the required resistors and capacitors components (3.6KΩ, 33KΩ, 680KΩ, 
220nf) were selected. SMD 0805 components have a dimension of (2.0 x 1.3) millimetres. To create 
the synapse resistor weight interconnections for each node, one end of the SMD was soldered to a 
conductive nylon fabric tape. The nylon conductive fabric tape can be bent and twisted and has an 
adhesive backing, so this provides the flexibility required in order to add SMDs to the wearable 
material fabric environment. The corresponding end of the SMD, required the capability to connect to 
a conductive thread-based circuit connection (Madeira HC12 Conductive thread, Resistance: < 
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100Ω/m) in order to support the synapse weight SMD resistor selection and implementation of the 
offline adaptive learning process of the SNN. Here a 3mm Jump Ring (Silver Plated) was soldered to 
the end of the SMD components, providing a circular ring attachment to stitch the conductive thread 
to[Fig 5(b)]. This allowed us to implement a flexible and changeable sewable SMD connection limiting 
the dependency solely on soldering techniques. For the wearable µBrain, we implemented a FHL 
neural network containing 8 hidden neural nodes (N1-N8) using the IF model RC circuit to replicate 
the artificial nodes in the SNN.    

Depending on the number of nodes in a FHL, a fabric node patch-based approach was incorporated 
into the design where a single fabric patch represented a single neural node and its interconnecting 
SMD resistor weights. Multiple patches positioned in parallel on the FHL created the hidden neural 
node components for the selected FHL [Fig 5(c)].  

To implement the RC neural node components, 2 parallel lines of nylon conductive fabric tape were 
used and the SMD devices were soldered directly to the fabric tape to create the connections [Fig 5(a)]. 

Once the RC node component elements were prepared separately, they were then secured to the FHL 
surface area material and interconnections completed using conductive thread. The conductive thread 
based interconnections implemented the cross-bar array architecture with defined rows and 
columns.[Fig 5(c)] . Ten RC node components (N1-N8, X, Y) were created along with 108 individual 
SMD resistors and 8 fabric node patches. The individual modules were then amalgamated together to 
form the wearable µBrain [Fig 5,6,7].  A threshold of 2.3 Volts was set, determining the state of the 
output logic (<2.3Volts = ‘0’, ≥2.3Volts = ‘1’). During validation an input power supply of 5 Volts 
was utilized to simulate the inputs (A, B, C) as required to correspond to the truth table inputs. 

3.2 Multilayered Spiking Neural Network. 

Each hidden neural network layer was placed on a separate FHL during the construction phase with 
RC circuit-based node fabric patches containing artificial SMD resistor weight synapses. Network 
layer 1 (N1 to N4) on FHL1 and SNN Hidden layer 2 (N5 to N8) on FHL2 [Fig 6 (a)(b)], adopted a 3D 
vertically stacked layered architectural fabric design approach, that could be scaled as required to 
include further fabric hidden neural network layers.  

This FHL fabric based layered design approach enables each neural network hidden layer to be easily 
detached, reconnected or a newly modified additional hidden layer, with varying interconnected 
synapse weights to be incorporated. The neuromorphic crossbar array design was incorporated, using 
conductive thread to stitch the interconnections (rows and columns). On each fabric node patch a 
vertical conductive thread line was stitched enabling interconnection of the desired SMD resistor 
weights to the RC circuit neural node [Fig 6(a)]. Snap fasteners (7mm) were used to support the 
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communication interface from FHL1 to FHL2 [Fig 6(b)].  The ability to easily manipulate the fabric 
environment from a flat 2-dimensional fabric layer to a stacked 3D vertical multilayer, with hidden NN 
layering dimensionality, enhances the functionality and scalability of the wearable µBrain SNN 
allowing a flexible and dynamic hidden NN layer interconnection capability.  

  

Following completion of the multilayered prototype, it was decided that placement of the wearable 
µBrain would be located on the arm of a garments sleeve. Two possible placement options 1) upper 
arm 2) lower arm were considered [Fig 7]. The wearable µBrain with an approximate size of 15cm in 
length and 11cm in width was sewn onto a sleeve made from lycra fabric. An opening at the front of 
the sleeves arm location was included allowing the top layer of nodes (N5 to N8 and output X, Y) to 
appear through, allowing measurements to be obtained during the validation testing phase.  
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4 Results  

This section presents the results obtained from the experiments focusing on the operational 
functionality of the wearable µBrain SNN on a sleeve and observing and comparing the actual wearable 
neural network outputs with the expected outputs [Fig 4 (a)(c)]. Utilizing the Integrate and Fire model 
in the wearable µBrain neural network to replicate the functional dynamics of a spiking neuron 
regulated by resistor synaptic weights [Fig 2], we will validate the offline adaptive learning approach 
adopted through manipulation of the weights to decrease the errors to achieve the desired output. The 
tests performed on the wearable µBrain fully connected multiple hidden layer SNN network, includes 
(1) Fault tolerance testing, and (2) Wearability and usability performance results. 

4.1 Fault Tolerance Testing  

As with any wearable or fabric-based material, it is open to the electronic elements and, hence, the 
possibility of fraying, ripping or damage to the fabric environment needs to be considered. As part of 
the testing, we investigated wear and tear from a fault tolerance perspective. Taking into consideration 
the design and layout of the wearable µBrain, we divided the visible surface area up into fault testing 
zones (Zone 1 to Zone 4), as shown in [Fig 8]. Fault tolerance tests were simulated through the 
disconnection of specific conductive thread links located on the border area of the fabric node patches, 
in order to fully observe the potential impact if such fraying or ripping was to occur. 

 
 
Observations from the simulated fault tolerance tests shown in [Fig 8, 9(a)] can be summarized as 
follows 
• Patch N5: Row 1 SMD resistor disconnected: For input ‘010’ when SMD resistor 3.6KΩ was 

disconnected, this demonstrated a decrease of approximately 16 -17% in the voltage output reading 
for both X, Y outputs, whereas for input ‘101’ there was an increase of around 14% to 24 % in X, Y 



 

 
13 

outputs. Patch N5 demonstrated an increase of 65% to 67% for input 001 and 101, while it 
demonstrated a decrease of 27% to 32% across inputs 010 and 011. 

• Patch N5: Row 4 SMD resistor disconnected: Disconnecting 680KΩ SMD resistor on Row 4 Patch 
N5 resulted in a decrease of 28% voltage across patch N5 input 100. This also led to an increase in 
the range of 7 to 9% for patch N6 and N7 inputs  (001,011 and 110). 

• Patch N5: Row 1 SMD and Row 4 SMD disconnected: Disconnecting both the SMD resistors 3.6KΩ 
(row 1) and the 680KΩ (row 4) on patch N5, resulted in a similar output result to just removing the 
3.6KΩ resistor, but with slight differences in the output voltage readings. 

• Patch N8: Row 1 SMD resistor disconnected: When disconnecting patch N8, it showed a 25% 
increase in output X (101) and a 27% decrease in output Y for input (011). Patch N8 showed 
fluctuation increase of 38-39% for inputs (001,101) and showed a decrease of 21 to 23% for inputs 
010 and 011. 

• Patch N8: Row 4 SMD resistor disconnected: Upon disconnecting the 680KΩ SMD resistor from 
Row 4 patch N8, this resulted in an increase to input 001 by 31% and a decrease to its corresponding 
N7 by 37%. This in turn led to an increase in output 001 X output by 28% and 101 by 18%. Input 
010 demonstrated a decrease across both X, Y outputs between 11 to 16%.  

• Patch N8: Row 1 and Row 4 disconnected: Disconnecting both resistors, demonstrated a clear 
increase in 001, 100 and 101 output readings coming from X within the range of 25-34%. Decrease 
for output Y were displayed (range 14-25%) for inputs 010 and 011. Disconnection showed a spike 
increase of 50-58% for both N5 and N8 (input 001), in contrast a decrease of 51% can be seen for 
N7(input 101). 

In general, when these simulated fault tolerance use cases on the wearable µBrain prototype were 
completed, the core operational functionality of the prototype remained mostly intact. The current 
redistribution amongst the nodes in the SNN impacted mainly the output readings obtained from the 
triggered inputs 010 and 101. The main reason here was due to fluctuation of the output X, Y results 
around the set threshold level of 2.3 Volts, following the fault tolerance connection modifications. 
Overall good functionality remained intact with limited impact on the expected outputs results and the 
workability of the prototype.   
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Figure 1  a)Fault tolerance results simulating potential impact of fabric fraying across Zone 2 
to Zone 4. b) Fault tolerance results simulating disconnection of patch for Node 5 and Node 8. 

To demonstrate and test the impact of removing the dedicated fabric node patches has on the prototype, 
we focused on the disconnection of 1) Patch N5, and 2) Patch N8 in zone 4 [Fig 9(b)]. In the prototype 
we could easily simulate the failure of these nodes through the disconnection of the communication 
layer snap connector coming from FHL1 to FHL2. We first disconnected patch N5 and tested the 
resulting output voltage readings and secondly, we then disconnected Patch N8 and again tested the 
output voltage readings coming from X, Y on the prototype.  
 
With the defined set threshold of 2.3 Volts, we could then complete a corresponding truth table based 
on the obtained output results and map this to the original truth table to assess the impact that loss of 
certain node functionality would have on the prototype. [Fig 9(b)] conveys the output voltage readings 
obtained following the disconnections. We also present the corresponding truth tables, highlighting the 
changes incurred following the disconnection. It was observed from the results that the truth table 
outputs for inputs 010,100,101 were altered, because of the fabric node patch disconnections altering 
the desired outputs expected for the SNN. Such a  drastic alterations to the prototype through the 
complete lack of functionality of a neural node (in our case N5 and N8) did have more of a negative 
operational impact on the working of the prototype, but this was expected as removal or disfunction of 
a neural node in a SNN will alter the desired and expected output.     

4.2 Wearability and Usability performance results  

E-Textiles and smart garments often adopt a user centric design approach ensuring relevant end user 
usage scenarios are considered. Performance assessment and the reaction of the prototype under such 
user centered scenario constraints need to be considered. Based on the placement location of the 
wearable µBrain on the lower arm, we specifically focused on the analysis of lower arm movement 
assessing the impact on the wearable µBrain sleeve prototype and the output results obtained. Such 
performance and usability tests involved movement of the arm in a walk-like motion while the sleeve 
with the prototype was worn by an individual.  

To test the level of endurance the prototype had under such motion-based conditions, we increased the 
intensity level of the arm walking movement motion from normal pace to fast pace and obtained output 
voltage measurements from X, Y on the wearable µBrain. The following use cases were trialed and 
tested: 1) normal - no arm motion, 2) 6 walking iteration arm movements at normal pace, and 3) 32 
walking iteration arm movements at a fast pace. Data readings coming from these use cases allowed 
for cross comparison against the expected output results when the wearable prototype was in a static 
state. Setup required the wearable µBrain to be added to the fabric sleeve and the sleeve worn by an 
individual to simulate the walking paced arm movement. The outputs X, Y from the wearable µBrain 
prototype were connected to oscilloscope probes allowing the max (Vmax, the highest value in the 
waveform display), min (Vmin, the lowest value in the waveform display) and mean (the arithmetic over 
the entire waveform) voltage values of the output results to be displayed, saved and visualised on the 
oscilloscope. An accelerometer was attached on the side of the arm to track the arm movement 
iterations as shown in [Fig 10(a)]. 
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Figure 2 a) Setup configuration to test the Wearable µBrain while on the sleeve and connected 
via probes to the oscilloscope, with an accelerometer attached to side of the arm to track arm 
movement, b) VMax, VMin, mean boxplots conveying voltage variance for each of the three trial 
test scenarios, and c) comparison of the output voltages across the three defined scenarios to 
cross compare all the max, min and the mean levels. 

Resulting output voltage readings were taken at defined intervals mid-way through the selected 
scenario under test. The max, min, mean values obtained from the oscilloscope measurement readings 
are represented in boxplot shown in [Fig 10(b)] when varying truth table inputs were applied. Only 
slight variations were present in the voltage readings obtained when the scenarios were implemented 
with measurements taken. Fluctuations could be seen in the output voltage for X, Y when the inputs 
110,111 and 011 were applied. 

• For Input 010 (X), taking the mean output voltage reading for a stationary scenario produced an 
output voltage of 2.59 Volts. Readings obtained from 6 walking iterations to 32 walking iterations 
showed a slight decrease from 2.68 Volts to 2.53 Volts.  

• For input 101(Y), a slight increase in the mean voltage reading from 2.08 Volts (6 iteration walking) 
to 2.65 Volts (32 iteration waking) was observed. In general, the observed and measured readings 
during the movement iterations did not impact negatively on the operational functionality of the 
wearable µBrain. 

A cross comparison of the Vmax readings across the three scenarios highlights a slight decrease of ~ 0.2 
Volts between normal and 32 walking iterations scenarios for inputs 011 (X) and 011 (Y).  A cross 
comparison of the Vmin demonstrated a drop in voltage from 4 Volts to 3.8 Volts for input 110 (X) and 
a decrease from 4.4 Volts to 2.6 Volts for input 110 (Y).Overall, the most noticeable difference was the 
output voltage readings taken for 110 (Y), 111 (Y), 011 (Y) where slight voltage drops occurred for the 
6 and 32 fast paced walk iteration results, as shown in [Fig 10(c)].  
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Based on the fault tolerance, wearability and usability testing performed on the wearable µBrain on a 
fabric sleeve environment, the outcome following the tests was of an acceptable level where the impact 
of the tests did not greatly alter the operational functionality of the prototype. It was noted that the 
threshold level set for the overall wearable µBrain architecture, was an important element to consider, 
as fluctuations seen in the operational level of the prototype mainly impacted output voltage readings 
that were within this set threshold level (e.g. 010, 101), as observed measurements randomly shifted 
above and below this set threshold voltage value.  

4.3 Wearable µBrain Applications  

Health conditions such as strokes, neurodegenerative diseases or even nerve compression can cause 
numbness or loss of sensation in parts of the human body (Jang,Yeo., 2017) (Balaji 2021). Numbness 
is where an individual cannot feel pain or even light touch. Lack of temperature along with lack of 
sense of positioning of the arm can impact the users’ balance and coordination. The capability to feel 
sensations is directly linked to the skin receptors sensory nerve fibers that pass detected signals through 
the spinal cord into the brain stem and to the cerebrum in the brain, where the signals are interpreted 
and processed as shown in [Fig 11(a)] and [Fig 13(c)]. 

4.3.1 Wearable µBrain Forearm touch sensation simulation Application 

To demonstrate an application of the wearable µBrain, we focused on a use case where there has been 
compression or damage to the lateral cutaneous nerve in the forearm (Wu et al, 2019). This nerve is 
responsible for the skin sensation and touch receptors in the forearm. As a result of the nerve 
compression and damage, the patient suffers from numbness in the forearm. The wearable µBrain acts 
as an intelligent integrated garment based SNN that can classify haptic sensing coming from artificial 
pressure sensors embedded into a garments sleeve aligned to the lower elbow, mid forearm and base 
of thumb. This enables embedded computation through the wearable SNN to decipher which part of 
the forearm has been touched with the end conceptual goal of relaying an alert (based on the sensing 
triggered data) back to the cerebrum in the brain for processing. 

The artificial pressure sensors were constructed using a combination of 2 layers of plain fabric, 2 layers 
of conductive fabric (EeonTex NW170-PI fabric) and 2 layers of velostat, which is a pressure sensitive 
conductive material that reduces in resistance once pressure is applied. The textile pressure sensors 
were stitched into the lower part of the garments sleeve. Their exact location and placement in the 
sleeve matched to the sensing points that aligned to the lateral cutaneous nerve, as shown in [Fig 11(a)]. 
Tests were completed to observe the output voltage increase, when pressure was applied to the sensors 
based on the defined truth table input combinations. A standard 5 Volts power supply was used as an 
active input when required based on the truth table triggered inputs. 
[Fig 12] demonstrates the output voltage increase once the corresponding input A, B, and C sensors 
were pressed. When a touch pressure was applied to the textile pressure sensor, the resistance in the 
velostat fabric pressure sensor decreased. This caused an increase in the voltage output from the 
sensors, which simulated a touch sensation. This voltage range acted as a trigger for the wearable 
µBrain inputs where the embedded SNN completed the on-garment intelligent computation. The output 
voltage readings obtained from the wearable µBrain were recorded and cross compared with the 
desired range levels of the defined truth table. Output voltage readings from nodes N5 to N8 and output 
X, Y are displayed in [Fig 12], highlighting the increase from pre to post output voltage ranges once 
the varying input sensor combination (A, B, C) on the sleeve were selected and pressed. 
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To showcase the benefit of the wearable µBrain sleeve prototype from an end user point of view, 
selected real-life use case scenarios were identified and detailed in [Fig 11(b)]. Through the selected 
placement and integration of the fabric pressure sensors into the sleeve garment, we focused on 
scenarios where these pressure points would be utilized in the everyday tasks of a human being. This 
application demonstrated that the wearable µBrain SNN prototype has the ability to act as a functioning 
wearable intelligent alert notification device for health scenarios where the human body has sensing 
limitations in their forearm. 
 



 

 
18 

Testing was completed and voltage output measurements obtained for each individual scenario. Slight 
fluctuations randomly occurred for expected outputs linked to the truth table inputs 010 and 101. This 
again was mainly due to the set threshold level of 2.3 Volts to differentiate between a logic ‘1’ and 
logic ‘0’. It was observed during testing that the slight fluctuation in the obtained output voltage would 
increase or decrease slightly above or below this set threshold level and, hence, impact the desired 
output for these two truth table inputs. This issue can be rectified by altering the SMD weight resistor 
values in the neural network to ensure the desired output voltage reading range is not in close proximity 
to the set threshold level and, hence, any small fluctuations do not impact the end desired result. 
  
4.3.2 Wearable µBrain stimulation of Acute Brain Slices  
Inspired by the biological neural network of the human brain, the overriding concept envisions an 
application where the wearable µBrain acts as an intelligent artificial SNN fabric based wearable 
µBrain that has the potential to compute on-garment intelligence and relay signals from the wearable 
SNN back to the human brain (cerebrum) as shown in [Fig 13(a)(b)]. This vision would involve 
triggered outputs coming from the wearable µBrain connected via the spinal cord back to the brain’s 
cerebrum for processing as shown in [Fig 13(c)]. This conceptual application envisions the use of the 
wearable µBrain specifically for health focused scenarios where the patient has a severe impediment 
that limits any forearm sensation or sense of awareness of the forearm location. Direct connection and 
relaying of information coming from the wearable µbrain sleeve application to a human brain for 
processing is not within the scope of this paper. Instead, we have focused initially on assessing the 
application and capability of the wearable µBrain to act as a trigger to stimulate acute brain slices using 
the wearable µBrain prototype and its SNN computational voltage output as a trigger for the 
stimulation.  

4.3.2.1 Experimental protocol 
A 4-months-old FVB wild type mouse was culled by cervical dislocation and decapitated using 
scissors. The head was immediately immersed in semi-frozen cutting artificial cerebrospinal fluid 
(aCSF) [CaCl2 0.5mM; glucose (C6H12O6) 25mM; MgSO4 7mM; NaH2PO4 1.25mM; KCl 2.5mM; 
NaHCO3 25mM; NaCl 87mM; sucrose (C12H22O11) 75mM] for a few seconds. The brain was then 
rapidly removed from the skull, using fine dissections tools, and placed in ice-cold cutting aCSF 
bubbled with 95% oxygen (O2) / 5% carbon dioxide (CO2), while applying glue to a mounting block. 
The cerebellum and olfactory cortex were then removed using a razor blade, and the brain was cut 
along the midsagittal plane into two hemispheres. Both hemispheres were glued to the mounting block, 
with the parietal lobes facing upwards, and transferred to a vibratome bath (Campden Instruments 
7000smz-2) containing hyper-oxygenated ice-cold cutting aCSF. 400µm thick parasagittal 
hippocampal slices were cut at a slow speed (0.1mm/s) and placed in a holding chamber with hyper-
oxygenated recording aCSF [CaCl2 2.5mM; glucose (C6H12O6) 11mM; MgSO4 1mM; NaH2PO4 1mM; 
KCl 2.5mM; NaHCO3 26.2mM; NaCl 119mM] at room temperature (RT) for one hour. One 
hippocampal slice was subsequently transferred to a recording chamber and perfused with oxygenated 
recording aCSF (95% O2 / 5% CO2) at a stable speed of 3ml/min and maintained at 35ºC for the 
duration of the recordings. 

4.3.2.2 Experiment Execution  
Hippocampal CA1 pyramidal cells were identified using infrared DIC microscopy. The Shaffer-
collateral commissural pathway was stimulated using a bipolar tungsten electrode placed 
approximately 50μm from the cell body layer of the CA1 hippocampal region. Evoked post-synaptic 
responses were recorded using a glass micropipette (Harvard Apparatus, Massachusetts, USA) filled 
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with recording a CSF and placed 60-80mm from the cell body layer. Multi-clamp 700B amplifier 
interfaced with a Digidata 1550B and pCLAMP 11 software (all from Molecular Devices, CA, USA) 
were used. Events were low pass filtered at 2 kHz and sampled at 10 kHz.  

To evoke synaptic responses from the brain slice, a “111” truth table input 5 Volts trigger from the DC 
power supply was connected to the wearable µBrain garment, which was interfaced with the TTL input 
of a DS3 isolated current stimulator (Digitimer, Letchworth, UK). The output voltage of the wearable 
garment was ~3 Volts, and 3.2mA current at 10 kHz was delivered to the brain slice for approximately 
11 secs. 

4.3.2.3 Experiment Results  
Once this stimulation phase trigger occurred, we expected to see a trace showing an activation period 
,there the trace measurements fluctuated and were recorded showing cell stimulation coming from the 
brain slice. A trace detailing the brain slice cell stimulation in the hippocampus regions (CA1) was 
obtained from the experiment [Fig 13(e)]. From the trace we can clearly see the initiation point when 
the stimulation commenced, the timeframe of ~11 seconds when we can see the brain slice being 
stimulated and then the disconnection of the wearable µBrain and ceasing of the stimulation of the 
brain slice. The experiment executed as expected , with the output results being the trace demonstrating 
the stimulation period of the brain slice when the wearable µBrain was connected.  

 

 

5 Discussion  
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ICT computational processing technologies and methods such as SNNs and neuromorphic computing 
are inspiring advancements in the next generation of E-textiles. The E-textiles and smart materials 
research domain is primed to take such technological advancements and maximize the potential impact 
through new innovations and applications The promise of E-textile based smart garments with 
embedded on-body intelligent neural network computing capabilities stem an exciting era especially 
within the healthcare domain. This paper focused on the design, development and validation of a 
wearable µBrain artificial SNN successfully incorporating key architectural design elements emerging 
from the neuromorphic driven research sector. The wearable µBrain with its modular, scalable and 
flexible properties can be applied across many sectors where textile based wearable applications exist. 
We successfully applied a SNN methodology to a textile-based fabric environment and validated its 
operational functionality linked to a focused healthcare use case. Our results show that such a prototype 
SNN demonstrator operates efficiently within a fabric-based environment.  

The wearable µbrain offers a low size, weight and power (SWaP) solution that aligns with key 
architectural elements coming from the state-of-the-art neuromorphic processing vision. The overall 
size of the wearable µBrain architecture is reduced due to the use of SMD’s as weights. A reduced size 
is also adopted through the modular multi-layered and scalable design approach adopted during 
implementation. From a textile application point of view this can greatly reduce the size of the wearable 
µBrain in a fabric environment. This was demonstrated via a wearable µBrain Sleeve garment. From 
a computational point of view, we have successfully implemented the capability to interchange weights 
and reduce or decrease the number of hidden layers in the wearable µBrain SNN. We conform to the 
low power requirement, as the wearable µBrain is an event driven SNN prototype. This enables the 
consumption of low power in comparison to other artificial neural network methods.  

The overall conceptual vision to utilize the wearable µBrain to sense, compute and send triggered 
stimulation to the brain for processing was demonstrated through a focused use case where the 
wearable µBrain and its voltage output acting as a trigger, was incorporated into the protocol of 
stimulating acute brain slices.  

Key findings of the study include  

• Creation of a SNN/neuromorphic inspired architecture that enables bio-inspired on-garment 
computational intelligence in a fabric environment. 

• Using off-the shelf easily obtainable SMD components to produce a wearable SNN with event 
driven artificial intelligence in a garment fabric environment. Development of a new method to 
add SMD devices to a fabric environment while also actively reducing the overall circuitry size. 

• Design and development of a multilayer fabric hidden layer (FHL) neural network in a fabric 
environment. 

o A complex 3 input, 2 hidden layer, 2 output wearable SNN demonstrated through a 
wearable sleeve application connected to fabric pressure sensors in the garment. 

o The implementation of a multi-layered fabric design with hidden layers on separate 
fabric layers that can be connected / disconnected/ added to / reduced as required, 
enabling the prototype to be scalable, flexible and extendable.   

• Implement an adaptive offline learning approach for the wearable µbrain SNN, through the use 
of interchangeable SMD resistor connector weights to the nodes in the artificial SNN.  

• Creation of a wearable µBrain that meets current SWaP AI properties, low (size, weight and 
power). 
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Our proposed research drives the next generation of E-textiles, where textiles and bio inspired AI 
meet to create new and innovative SNN driven on-garment intelligence and computing research. 
This could usher in a new age of Internet of Bio-Nano Things for brain interface, where cyber 
systems are connected to neural cells for communications control (Bernal et al,.2021) 
(Balasubramaniam et al,. 2018). Future research will investigate the potential to develop a more 
enhanced wearable µBrain design, investigating further elements of SNN and neuromorphic 
technologies along with brain inspired methodologies to develop a next iteration prototype. 
Specific attention and further research will build on the current core elements of the wearable 
µBrain expanding out the research aspects linked to its robustness, fault tolerance, usability and 
performance. Also, further research will be investigated around the application of the wearable 
µBrain concept across other health focused use cases (for example stroke rehabilitation and 
epilepsy) , assessing its extendibility and potential to impact such critical conditions is a beneficial 
manner.   
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