
Bacterial Carrier for DNA

encoded data and Detection

Approaches for Bio-cyber attack

Bacterial Nano Communication and Security in Sequencing

Mohd Siblee Islam

Phd Thesis

Supervised by:

Dr. Sasitharan Balasubramaniam & Dr. Stepan Ivanov

Department of Computing

South East Technological University

Ireland





I would like to dedicate this thesis to my beloved wife Anjuman Ara Kali, my mom

Nasira Islam, my father Mohd Rafiqul Islam and my son Ahnaf Adib.





Declaration

I hereby declare that this material, which I now submit for assessment on the pro-

gramme of study leading to the award of Doctor of Philosophy, is entirely my own

work and has not been taken from the work of others save to the extent that such

work has been cited and acknowledged within the text of my work.

Mohd Siblee Islam

Submitted to South East Technological University, Ireland, July 2023





Acknowledgements

First, I would like to thank Almighty Allah for the blessing He bestowed upon me

that enabled the completion of my thesis. I am immensely thankful to my family

members, grand parents, other extended family members, and friends who always

encouraged me throughout the years to achieve a doctorate degree.

Few names must be mentioned, especially those without whom I could not get

this far. First, I would like to show my gratitude to my two excellent supervisors,

Sasi Balasubramanium and Stepan Ivanov. I am grateful to them as without their

constant guidance, encouragement and support, it would be quite impossible to

produce quality research and publications. These will always remain as a great

asset to me and help me in my future career.

I would like to remember my late father Mohd Rafiqul Islam, who always inspired

and encouraged me to do the best in life and taught me how to be humble, honest and

helpful. I am forever grateful to my mother for her prayers and support. Although

she always dreamed of me accomplishing a PhD degree, at the same time she helped

me to remain calm and patient throughout this long journey. Her love and advice

always kept me focused and helped me enjoy my research even in the most difficult

times. I am more than thankful to my lovely wife Anjuman Ara Kali and two

adorable sons Ahnaf and Ayaan for sacrificing countless weekends and holiday plans

to let me work on my PhD obligations.

Finally, I believe that my preparation for the PhD began even before the start

of the degree. Competence and confidence required to pursue a PhD can only be

achieved over time through learning many hard and soft skills. Small suggestions,

advice, sharing of experience, small favour, etc. can make a significant difference.

Therefore, I would like to mention few names here who helped me in such ways. I

really appreciate my cousin AFM Zakaria and Sirajum M. Fahim, my school teacher

Tapan K. Mallik, my masters thesis supervisor Mobyen U. Ahmed, my brother in

law Dr. Shah Alam, my father in law Ali Chowdhury, my sister Rukaiya Rafique, my

friend Ranadip Barua, Dr Aminur Rahman and Dr. Jai Mehta for their supports.





Abstract

Internet of Bio-nano Things is the idea of using various bio-compatible nano and

micro scale devices in the body that create networks and can connect to the existing

cyber world. In recent research, bacteria are proposed as nano scale devices for such

communication utilizing various existing characteristics of them or by introducing

new properties with the help of genetics engineering. Therefore, in the future,

bacteria can be used as information carriers, transmitters, receivers, nano devices,

sensors, etc. The major advantage of using such devices is that the devices will

be bio-compatible and no external conventional energy sources will be required to

operate them.

Bacterial traits such as mobility and conjugations have been proposed for data

transmission in the recent past. But most of the techniques involve sending one bit

at a time using diffusion of bacteria. The first contribution of this PhD research

is to propose a novel data transmission technique using bacterial mobility and bio-

luminescent properties, where we can send two bits at a time.

A common technique for bacterial data transmission is encoding the message in

bacterial DNA, especially plasmid DNA, so that the bacteria will reach the receiver

and offload the information into another bacteria by conjugation. We can assume

that to read this information, a DNA sequence will be required. Moreover, many

research studies have been performed on storing data in DNA as it shows immense

promise of data storage without requiring any external energy. Sequencing pipelines

are used in the decoding process of such stored data. In recent years, due to vari-

ous needs (e.g., COVID-19), DNA sequencing has become quite common, and the

number of applications that require DNA sequence is also growing day by day. Un-

fortunately, very little attention has been given to the possibility of vulnerabilities

and the exploitation in the DNA sequencing pipelines. This doctoral research also

contributes towards securing the DNA sequencing pipeline so that we can ensure

secure data transmission in bio-nano communication.

In a recent research, the buffer overflow vulnerability in a tool in a DNA se-

quencing pipeline can be exploited using specially designed DNA. An attacker can

attempt to insert malicious payload inside the DNA sequence in order to compro-

mise the DNA sequencing pipeline. Further investigation is necessary to validate

whether in a real world scenario, the malicious payload encoded into DNA can reach

a sequencer after placing them into live bacterial plasmids. It is also very impor-

tant to create countermeasures to detect such a sequence and use that detection

mechanism as a safeguard for the DNA sequencing pipeline. So, in our research, we
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have conducted an end to end evaluation of detecting malicious input for the buffer

overflow exploit in the DNA sequencing pipeline. A machine learning based input

control is proposed to classify every read of the sequencer machine to check if it

contains any part of the encoded malicious payload. If detected, further processing

can be terminated to protect the pipeline downstream from being hacked. For the

machine learning solution, a Case Based Reasoning (CBR) approach is proposed.

We achieved promising results where the performance improved with the increase

in the number of cases in the case library. Furthermore, wet lab experiments were

conducted to verify whether the encoded malicious payload can be sustained after

sequencing if they are inserted into living bacteria. The experiment involved bac-

teria with malicious payload inserted in plasmid DNA to be sprayed over different

materials, which were then collected for sequencing. These experimental results

demonstrated that such malicious payload can successfully reach the sequencing

pipeline.

For the buffer overflow exploit scenario, simple detection techniques, such as

CBR, can be sufficient where natural DNA sequences are expected, as the insertion

of malicious input can make the DNA sequence quite unnatural. However, to make

the detection harder, we came up with a novel scenario of Trojan based attack in the

DNA sequencing pipeline where the DNA sequence with malicious data will remain

very natural. The assumption is that, the DNA sequence pipeline tool will already

be affected by a Trojan and remain dormant. The Trojan will only be triggered with

a specific input signal and the same signal is then used to compromise the target.

The benefit of this scenario is that fragmentation, encryption and steganography can

be applied to the malicious input signal and inserted into a natural DNA. A state-

of-the-art bio-informatics algorithm was used to estimate the difference between

sequence with malicious input and the original DNA sequence for various size of

fragmentation, retention positions for steganography and various encryption keys.

In order to keep the DNA close to original, The best possible locations for fragment

insertions is chosen to control mutations. An end-to-end evaluation is also performed

for Trojan attack scenario, where deep learning based technique is proposed as a

detection method for input control mechanism. We achieved up to 100 percent

accuracy in detection using the proposed technique. Even after applying smaller

fragment size, encryption, and higher retention to make detection much harder,

the accuracy remained very high. For scenarios with encrypted malicious input,

the accuracy was higher with the knowledge of the encryption key the accuracy

compared to having no prior knowledge about the key.
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Chapter 1

Introduction

Internet of Things (IoT) connects various devices used in our daily lives to the

cyber-world with the help of advancements in Wireless Sensor Networks (WSN),

Near-Field Communication (NFC), and Radio Frequency Identification (RFID) [52],

etc. As far as processing is concerned, Cloud and Fog computing incorporates intel-

ligence into these devices in order to analyse data locally. IoT will create opportu-

nities like building smart cities, environment, health monitoring systems to name a

few [52, 4]. As far as devices that connect IoT are concerned, we are now witness-

ing a shift towards miniature devices and incorporating different technologies. For

example, nanotechnology facilitates the development of devices at nano and micro

scale. Nano devices are of such a scale that can be used sense molecules at fine

granular level. These devices will help people by collecting precise and detailed in-

formation. A new paradigm of the Internet of Nano Things(IoNT) is introduced in

[5], and incorporates nano routers and nano devices performing the tasks of basic

and simple sensors and actuators. The IoNT research area focusses on various con-

cepts required to connect these nano devices to the internet as well, e.g., proposing

system architecture, developing new algorithms and novel communication protocol

to suit the properties of these devices. In IoNT, carbon based nano electronics

devices are considered to be communicating using Electro-Magnetic (EM) signals.

Alternatively, biologically engineered cells such as bacteria can be used to produce

bio-nano devices where these devices communicate using molecular Communication

(MC)[4]. This form of device takes the concept of ”things” to a new level, where its

vision is to engineer and construct devices that use biological components. These

biocompatible devices that connect to the cyber world have led to a new paradigm

known as the Internet of Bio-Nano-Things(IoBNT)[4]. As part of IoBNT, there

is medium range communication, where molecules are produced by bacteria. As a

comparison to a typical device that connects to the internet, bacteria are consid-

ered as data packets, where the instructions and data are encoded inside the DNA

1
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plasmids. They are able to transfer this concent to another bacteria by a process

called conjugation. If we are diving deeper into the information that is encoded into

the plasmid DNA, recent research has investigated digital information storage using

these molecules. Research in DNA based storage has drawn a lot of interest as it

has shown good promises in terms of storage capacity, sustainability, as well as very

low maintenance and cost [18].

Writing information into DNA has to go through a number of specialized pro-

cesses and equipment. For example, reading will be performed through a sequencer

(e.g., using Sanger sequencing and Next Generation Sequencing) and writing is based

on DNA Synthesis techniques that combine individual nucleotides into a string. Us-

ing these kinds of methods, bit-by-bit data can be transferred from a source to

a destination. This create opportunities for integrating the concept of bacterial

nanonetworks, where bacteria communication systems are artificially created that

has the ability to store synthetic plasmids with encoded information. This provides

a number of advantages, such as novel ”all biological” DNA storage infrastructures,

where bacteria are used to transfer encoded information between cells for storage,

as well as the ability to replicate and create redundancies in the stored data. The

only challenge, which has not been addressed by the research community, is the

mechanism of automating the entire process from encoding, synthesizing the DNA

molecules, inducing uptake by the cells, and later retrieving the DNA molecules to

sequence it. However, this thesis is not focused on this challenge, but rather on an-

other key challenge that is not addressed by the research community. This challenge

is in terms of cyberbiosecurity. While there are many definitions of cyberbiosecu-

rity, we can define this as a discipline that deals with attacks that come from both

biological as well as the cyber medium [59, 63].

We have seen in the recent past that a perpetrator can synthesize a specially

design DNA for sequencing to exploit a specific type of vulnerabilities to compro-

mise machines involved in the DNA sequencing pipeline [64]. Therefore, the DNA

sequencing, which is part of the whole IoBNT system can be under the security

threats. To investigate this type of attack further and other possible attacks is

paramount important for the future success of the IoBNT. However, this goes be-

yond just IoBNT, where we also have to consider infrastructure for collecting, pro-

cessing, and storing genetic data, which today is now very wide-spread due to a

number of reasons. A very good example is the recent COVID-19 pandemic, where

PCR testings are conducted to determine if people are infected. This requires re-

moving the RNA from the virus, and perform reverse transcriptase to form the DNA

molecules that will be passed through the sequencer in order to analyze if its the

viral DNA. At the same time, we are also witnessing other verticals, such as smart

agriculture, that collect a large amount of genetic data to improve efficiency. This

2
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includes collecting genetic data of soil microbes, animal microbiomes, as well as

plant microbes.

Therefore, improving the throughput of non-DNA encoding based data transmis-

sion, investigating possible security attacks in DNA sequencing pipeline and possible

countermeasure to mitigate security issues are three broad areas investigated in this

PhD thesis as urgent requirements to address for the advancements towards the

future bacterial IoBNT. Our thesis is organized as follows. The motivation and

background of the PhD work will be elaborated in the next section of this Chapter.

The last two sections of this chapter discuss the challenges and limitations for the

PhD thesis. Relevant work towards Internet of Bio-nano things using bacteria and

related technologies considered for our work are discussed in Chapter 2. In Chapter

3, we formulate the research objectives in terms of research questions, describe the

approaches to address these questions, and describe the contributions of the the-

sis. Finally, the thesis is concluded with a summary of research contributions and

touches on the future work sections in Chapter 4.

1.1 Background and Motivation

In this section, the reasons, thoughts and main focus of conducting the PhD research

are described in further detail. This section will help us understanding the scope

of our research and elaborate on the ideas and its connection to security related to

IoBNT.

To bring revolutionary changes in the applications in health monitoring systems,

smart agriculture systems, environment monitoring, etc., where the objective is to

improve and build a better life for the global society, will require collection of data

from fine granular levels and develop actuations at that level. Collecting data and

performing necessary actions in real time and seamlessly in the micro and nano levels

will help us perform accurate, appropriate and faster decisions and take necessary

actions precisely and also in time. IoBNT is the new paradigm and discipline that

will guide us towards achieving the goal of such revolutionary changes and bring

extraordinary improvements to our lives. Indeed the miniature organisms of bacte-

ria is going to play an important role in IoBNT because of its prospects of being

engineered into a bio-compatible nano device utilizing various traits. This includes

chemotaxis motility, forming new structures such as biofilm and last but not least,

having the ability of taking in synthetic plasmid DNA. Original works in the area

of bacterial nanonetworks have investigated how single bit data transmission can

be achieved using bacterial motility and bioluminescence behaviour [47]. Unfortu-

nately, this kind of communications is super slow in nature because of the super slow

3
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stochastic bacterial mobility that depends on numerous environmental conditions.

Therefore, it is very important to discover ways to improve the transmission rate

by finding ways of sending two or more bit of data in each time-slot to improve the

overall throughout.

Figure 1.1: A targeted security attack in a DNA sequencing pipeline (through the

path 4-5-6-7-8) [36].

On the contrary, bacteria can be used as a storage device in IoBNT due to the

suitability of storing data into the DNA [18]. Moreover, data transmission by en-

coding the data in plasmid DNA of the bacteria is a complex process, but cannot

be ignored as it will provide immense opportunity of storing large dataset inside

bacteria to transfer. Although complex processes like DNA Synthesis and DNA

sequencing will be involved in writing in and reading from the DNA, over a period

of time, the technology of DNA Synthesis and DNA sequencing will be improved.

Nanopore [39, 49] is an example of such improvement that make DNA sequencing

process affordable and easy using a small device that can be connected to a lap-

top using the USB port similar to connecting an external hard disk. In addition,

with the future improvement in DNA Synthesis in mind, researchers have already

proposed using bacteria as programmable devices [45, 74, 11]. Therefore, the DNA

Synthesis and sequencing will play a vital role in IoBNT indeed. This is where a

new challenge came to our attention, and that is the possibility of compromising the

DNA sequencing pipeline with the help of specially designed and synthesised DNA

[64]. This indicates the possibility of taking control of a IoBNT system, incapac-

itate it, or cause harm by performing malicious activities by a perpetrator in the

future, where they can implant bacteria containing specially designed DNA to hack

4
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the system. Figure 1.1 is depicting an example of a targeted security attack using

the vulnerabilities of a DNA sequencing pipeline by a specially designed DNA sam-

ple. If the DNA sample is not collected directly by the hospital (path 4-5-6 shown

in Figure 1.1) then there is always a high chance of receiving a specially designed

artificially created or tempered DNA sequence. The perpetrator can take advantage

of this security risk to exploit vulnerabilities in the tools of the sequencing pipeline.

Unfortunately, according to the best of our knowledge, no end-to-end evaluations

have been performed to validate and confirm such possibilities. Moreover, it is also

very important to investigate what are the best countermeasures to remedy such

forms of attacks. In the past, we have experienced that it is quite common to keep

non-functional system requirements, especially security, to the very end to address

and this is also a very common phenomenon in many information technology driven

systems [41]. Many a times, it is a reactive approach rather than a proactive mech-

anism. This will result in a lot of re-design, re-architecture and re-implementation

of systems, tools and components and will also harm the reputation and trust of

many systems. This is further complicated when we consider bio-cyber systems in

the future, where the biological world is brought together with the cyber infrastruc-

tures. COVID-19 pandemic has shown us how there can be sudden pressure on a

particular technology and system to diagnose and study the virus [67]. Compared

to proactive approaches, reactive approaches can cost many lives and put society

in danger. Therefore, to avoid such situations in the future, it is very important to

consider the vulnerability in sequencing very seriously. This will have an impact not

only in the future IoBNT but also in many other emerging applications in the near

future.

This thesis contributes toward the future of IoBNT. As a contribution, we intro-

duce a novel trigger based Trojan attack scenario in the DNA sequencing pipeline

using a specially designed DNA. We also perform end-to-end evaluations of the state-

of-the-art buffer overflow vulnerability exploit and our novel trigger based Trojan

attack scenarios. In addition, we propose how we can identify DNA data that has

been crafted to cause a buffer overflow in the control software of a DNA process-

ing pipeline, or to trigger Trojan malware in a DNA processing pipeline. Another

contribution of the thesis is to introduce a novel data transmission technique to

increase the data transfer rate (bits/seconds) and to reduce the bit error probabil-

ity rate; especially when for the data transmission bacterial traits like motility and

bioluminescence are used, and complex data encoding into DNA is avoided.

5
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1.2 Research Scope of the Thesis

In this section, we will discuss the challenges and limitations considered in this PhD

thesis by discussing the scope.

1.2.1 Challenges

We discussed the opportunity created by using bacteria for IoBNT in the introduc-

tion section. The challenges towards achieving those opportunities considered for

the PhD thesis are given below:

• C1-Slow Nature of Communication: A significant amount of research

have been investigating the motility, chemotaxis and bioluminescence natures

of bacteria, genetic engineering on them to modify existing characteristics or

to introduce new characteristics such as bacterial conjugations and their com-

munal behaviours. Several research works have been performed on bacterial

motility and use them to transmit data. The bacterial movement is mainly a

stochastic process, and it can be described by Brownian motion. Therefore,

it is obvious that the communication process using bacterial motility will be

very slow in nature as they will take long latencies to swim from a receiver to

transmitter, which are placed a few millimetres apart. However, this form of

communication is still very important as it provides us the opportunity of con-

necting Body Area NanoNetworks [8] to the Internet in future, while avoiding

complex process of data encoding into DNA. This data transmission technique

relies on the bacterial properties that include bioluminescence, mobility, where

transmitting data uses diffusion-based techniques, which can send a single bit

similar to On-Off keying. Based on this, it is really a challenge to send more

than one bit of data at a time using bacteria while avoiding complex message

encoding in plasmid DNA.

• C2-Security Challenges of Data Encoding in DNA: Data transmission

using message encoding in plasmid DNA will require complex processes for

data encoding and decoding. Despite this, it will remain as an important

method in communication using the cells, as we can encode and send a large

amount of data in its plasmids. Moreover, the conjugation process will assist

in creating many replicas of the same message and make it more fault-tolerant.

Researchers are also working to use DNA as a storage device and have already

made significant progress toward that direction, e.g., a recent research showed

how an image or even a movie can be stored inside the DNA of a bacterial

population [85]. At the same time, DNA sequencing have become more and

more common and improved with time. As mentioned earlier, a recent work

6
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[64] has shown how we can design and build a DNA that can exploit the buffer

overflow vulnerability, a well know vulnerability of computer hardware, to hi-

jack the control of a machine in a DNA sequencing pipeline. This work reveals

that IoBNT and DNA based data storage will be at risk as DNA sequenc-

ing pipeline can face such security threats. Therefore, it is very important to

address this issue to further advance the paradigm of IoBNT.

• C3-New Emerging Cyberbiosecurity Attacks: Similar to the above men-

tioned buffer overflow vulnerability exploit threat, DNA sequencing pipeline

might also be in the risks of many other kinds of security attack, which are al-

ready available in today’s computers and networks. Yet this is still unknown to

us. Moreover, if buffer overflow attacks are considered as more like a hardware

or operating system platform level of attacks, since it utilises the limitations

of hardware and the memory management of underlying system, then in con-

trast, the attacks such as using Trojan Horse, SQL and script injections can

be considered as more like a software level attacks for cyberbiosecurity. This

is because a malicious piece of code or script will be executed here, which

does not depend on the limitation of the memory management or underlying

hardware similar to buffer overflow exploit. It is important to know the possi-

bilities of these kinds of software level attacks in the DNA sequencing pipelines

as well. Furthermore, if such an attack is possible, then the next important

question is to know the severity of such attacks. In addition, it is also im-

portant to know how sophisticated ways the payload and the attack can be

designed, as the perpetrator will have more liberty compared to the hardware

level attacks, so that the attack becomes deadly and very difficult to detect.

If the scope of designing a DNA containing malicious payload is limited, then

the solution might be very trivial, since the designed DNA is quite unnatural

(the sequence is very different from the sequence of natural plasmid DNA).

Thus, the presence of such malicious payload as DNA and occurrence of such

attack might be detected in a short period of time. On the other hand, the

solution will not be trivial in countering a sophisticated designed attack. It is

also unknown whether building DNA for such a sophisticated attack is realistic

or not. Without knowing the possibility of such an attack, the nature of such

an attack, and how the attack will work, it will be hard to prepare the remedy

for it in advance to comply with the advice ”prevention is better than cure”.

• C4-Solutions to counter cyberbiosecurity attacks: A possible attack

(buffer overflow vulnerability exploit) is already known to us [64] but we do not

know how to counter such attack as that recent research describing the attack

simply suggest to follow standard security practices rather than proposing a

solution to counter such attack. It is also unknown whether the solution can
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be part of the DNA sequencing pipeline. Moreover, the solutions should also

determine the software level attacks, for example Trojan attack, SQL injection

attacks, or script injection attacks. Again, by using the term ”software-level

attacks”, we mean that a piece of malicious code or script will be executed

which will not rely on the underlying system limitations.

1.2.2 Limitations

In our PhD thesis we consider few specific limitations, in particular, to decimate.

These limitations are related to the challenges mentioned in the last section. The

limitations are as follows:

• L1-Super slow bacterial stochastic motility: The approach of sending

data using bacterial traits such as motility is preferred over the technique of

encoding data into DNA to avoid the complexity of DNA Synthesis and DNA

sequencing for the required read and write operations. However, bacterial

motility is a stochastic process that depends on numerous parameters. As a

result, sending data bit by bit depending on the bacterial motion to a partic-

ular destination in sufficient numbers is a very slow process. This PhD work

improves this limitation of sending of just one bit at a time based on the super

slow stochastic bacterial motion, but relies on the structural formation of the

topology of the bacterial nanonetwork related to Challenge C1.

• L2-Lack of end-to-end evaluation: In the previous work [64], only a par-

ticular vulnerability is considered to demonstrate the possibility of attacks

in DNA sequence pipelines. However, there are no end-to-end evaluations to

understand the complete process and validate such attacks in a real world

scenario. In this PhD research, we consider this limitation and perform end-

to-end evaluations for two types of attack scenario. This limitation is related

to Challenge C2 and C3.

• L3-Lack of feasibility studies: It is important to understand whether such

an attack is feasible or realistic in terms of the sustainability of bacteria con-

taining specially designed DNA. To validate this, we have developed collab-

orations with wet lab experimentalists to prove our end-to-end evaluations.

This limitation is related to Challenge C2.

• L4-Difficulties of explaining ML models based solutions: The idea of

exploiting different vulnerabilities in DNA sequencing pipeline is a new field.

In this immature state of research, the detail understanding of the proposed

solution (e.g., easy to interpret the result and how the machine learning (ML)

model works) is also very important besides understand the problem in details.

Unfortunately, on many occasions we are guilty of proposing sophisticated
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solutions, e.g., black box ML models, which might also provide us with the

best results but it become really hard to explain the solution at the end.

Explainable AI solution (XAI) is an idea of using Artificial Intelligence (AI)

and ML models that are easy to interpret compared to black box type of ML

models. To overcome the limitations, initially we used Case-based Reasoning

CBR as an XAI to solve our classification problem to detect an attack in a

DNA sequencing pipeline. This limitation is related to Challenge C4.
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State-of-the-art

We consider few areas of research as primarily relevant fields to this PhD work, which

are Bacterial motility and molecular communications, Security in Biotechnology,

where we focus on two particular security attacks (Trojan Attack and Buffer overflow

exploits) and two specific machine learning models (Deep learning, and Case Based

Reasoning as an explainable AI model) as a solution to counter such attacks. In

this chapter we will provide relevant background on these relevant areas.

2.1 Bacterial Motion and Communication

Here we discuss recent works related to mobility models and molecular communica-

tions in IBoNT.

The mapping of various components of biological cells to parts of a computer

system is described in [4] to show how a biological device can act as a typical IoT ma-

chine. It describes various models and systems of molecular communications, such as

Ca2+ signaling, molecular motor communications, communications through chemo-

taxis bacterial conjugations and long-distance communication through hormones.

Various communications like short, medium and long ranges are also mapped to

classical communication theory. How biological nanonetworks inside the body based

on bacterial communication can interface with the cyber-Internet is also discussed.

Finally, various opportunities and challenges of IoBNT using molecular communi-

cation are addressed here.

The current state of theoretical models of molecular communications and exper-

imental developments of membrane nano tubes, nano tubes formation in bacteria

and artificial neural networks have been discussed in [8]. The potential opportuni-

ties from the state of the art works and challenges for the future woks have been

stated here. The vision of building Body Area NanoNetwork and how the mentioned

technologies can help in achieving that in future is also discussed, where components
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such as nano particles can be used to transport information as part of treatment

strategies in the future.

The social behaviour of bacteria and the opportunities from their co-operative

behaviours and the challenges that arise from their social behaviour are described

in [31]. The data transmission and reliability corresponding to these behaviours

and various concentrations of chemoattractant are compared here using simulations,

where the results show that the cooperative behaviour increases the reliability in

communications. This shows how inherent natural properties of bacteria can be

used to either improve or play a negative effect on the communication performance.

This thesis explores how behaviour of movement using chemotaxis can help direct

bacteria movement to a certain location to transfer bits of information.

Multi-hop directed or random protocols are discussed in [9] as two options for

molecular communications where bacteria are carrying information encoded into

the plasmid DNA. In this system, nanomachines will release the bacteria when it is

senses diseases or infections. The bacteria are delivered to the gateway, either with

or without the use of a relay nano machine in the environment for single hop or multi-

hop communications. For multi-hop and directed communications, the conjugations

process occurs inside the relay to copy codes from the plasmid DNA of the donner

cells, where other types of bacteria were inside the relay nano machine already.

In the case of multi-hop random communication, the conjugation occurs outside

while relay nodes also releases its collections of bacteria. In Multi-hop directed

nano-network, the chemoattractant is used to attract the bacteria towards the relay

nanomachines. Inside both the relay and gateway nodes, nutrients are used to

provide a friendly environment for the survival of bacteria, where antibiotics are used

in the gateways to remove unwanted bacteria that contain plasmids with undesirable

encoded information. The received bit ratio, delay, and number of conjugation are

analysed for both networks for various times and distances. While this approach

allows multi-hope communication, there are uncertainty that lies around how certain

bacteria will conjugate to help transfer the encoded information. This is a complex

stochastic process that can lead to uncertainty in the delivery of information.

A novel approach of target tracking using bacteria bio-sensor is proposed in [66]

based on directed diffusion of bacteria. The bacteria are moving inside the search

space with a certain velocity. It is assumed that the bacteria will be genetically

engineered to emit two types of molecules, attractants or repellents, and they will

move toward or move away by sensing the concentration of the attractants and

repellents, respectively. The mobility of the bacteria is modelled here based on the

Brownian movement and their chemotaxis nature. Furthermore, bacteria generally

releases repellents but will start to release attractants for a certain period of time

if they come close to the target. This way, the bacteria are spreading themselves
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using repellents and moving towards the target using attractants collectively if any

of them come close to the moving target. The work did not consider the three

dimensional movement of bacteria and multiple moving target.

Decision making of biological cells and responding to the stimuli are described as

an stochastic process in [76, 7]. The decision making of cells depends on the various

parameters of stimuli like concentration, temperature and noise in the environment.

Distortion function of Information Theory is used to estimate the cost of making

certain decision or response to certain stimuli. The result shows significant improve-

ment in error reduction. Based on the above description of using bacteria to carry

encoded plasmid DNA, there is considerable decision making based on sensing the

chemoattractant as well as controlling the motility process. These properties are

also considered in this thesis when the bacterial cells mobilizes between locations.

The above mentioned works showed the potential of using bacteria as either

nanomachines or supporting information transfer between nanomachines and how

simple communications in a very simple network can be established. Encoding of the

data inside a plasmid is proposed where we can send more than one bit of data. This

will require the insertion and alteration of the plasmids, which at times can cause

unwanted behavioural and functional changes in the bacteria. However, the system

requires other devices such as relays that in certain cases will need to embed bacteria

inside them. Beside this, it is important to address how to ensure the installation

of sufficient number of relay devices in specific locations to assist bacterial motility.

In this thesis, we address an alternative approach for transferring data by sending

more than one bit from a transmitter to receiver without data encoding inside the

plasmids.

2.2 Security in Biotechnology & DNA Sequencing

In this section, first the background of relevant security attacks considered for this

thesis, and the basics of DNA, protein and RNA sequences will be described. Then,

recent works on biohacking, cyberbiosecurity, bioethics and cryptography using the

DNA sequence will be discussed as these are relevant to this PhD thesis and will

assist in understanding the contributions of the thesis.

2.2.1 Background of Security Attacks

Buffer Overflow Vulnerability Exploit

The buffer overflow vulnerability exploit is a type of input validation attack [86] and

also very common [81], where the attacker sends input to exploit vulnerabilities. This

form of attack has increased significantly in the past few years [82] and researchers
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are actively finding solution to detect such attacks. In recent past, machine learning

algorithms are applied to detect such a problem, for example in [81] a decision tree

based ML technique using various software metrics based on data flow in the code

is proposed to detect vulnerabilities of the software. The authors also considered

other types of machine learning algorithms in their works, where using a decision

tree successfully detected vulnerabilities from software code developed in C++ and

Java programming languages. Meanwhile, we see that buffer overflow attack is also

possible in IoT devices and that they can be hijacked for remote access. The work

in [22] demonstrated how buffer overflow attack in a scenario of using IoT firmware,

which is used in popular smart TVs. Works have been done to mitigate such buffer

overflow attacks and the work presented in [82] is an example of such works where

the authors proposed a run-time solution for monitoring run-time memory space

using a table called variable record table. To figure out the vulnerability in binary

programmes and to generate exploits, a tool has been proposed in [97]. Such a tool

can be really useful as far as the buffer overflow attack is used for testing a software

in advance.

Trojan Attack

Hardware Trojan (HT ), where a Trojan is planted inside the integrated circuit to

change the behaviour of the device by delivering the payload and denying functions

when the trigger is activated, is an interesting area for malware research [70]. HT

detection strategies are broadly categorised into two types, test data generation

for validation, also called logic testing, and side channel analysis [70]. A data flow

graph from the register transfer level codes are analysed using a tool called GNN4TJ

proposed in [99] for HT detection. A game theoretic framework is proposed in [58]

for logic testing in HT detection to reduce the number of possible test inputs. The

results of side channel analysis using delay measures for HT detection are improved

by generating test data that can meet the conditions to activate the triggers [56].

Machine learning such as deep learning techniques are also applied in HT detection

for both logic testing [84] and side channel based analysis [70]. HT detection has

also been applied to the IoT. A temporal thermal information is used to detect

HT as the execution of the Trojan will increase or change the power consumption

significantly [28]. The Trojan can be implanted at both the software and hardware

levels. Malware, which can be Trojans that are implanted at the API levels, can

affect mobile software and even machine learning codes. Recent research works such

as malware detection at the API level in Windows [78], android malware detection

[46] and backdoor Trojan detection in deep learning [29] are such examples.
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2.2.2 DNA, Protein and RNA sequence

Four nitrogen based molecules called nucleotides, which areAdenine(A), Guanine(G),

Cytosine(C), Thymine(T ), form a double stranded shape known as DNA. A bond

between the nucleotides of two strands is made of a weak hydrogen bond and a

bond between consecutive nucleotides of the same strand is made of a compara-

tively stronger sugar phosphate bond [6] (see Figure 2.1). The complementary parts

of A,T ,C and G are T ,A,G and C, respectively. For example, if the nucleotide in

one strand is A then it will be bonded to T in the other strand using a hydrogen

bond. The DNA sequences are read from left to right (also called 5′ to 3′) or right
to left (also called 3′ to 5′). Two sequences from these two reads are called reverse

complements of one another [6]. If we have either of the sequences, then its reverse

complement can be derived by reversing the sequence and using the counterparts of

each nucleotide of the reversed sequence. For example, assume that the sequence

from left to right is AGTTCAGT , then the reverse complement from right to left

will be ACTGAACT . The device performing the read process is called a sequencer

and is available on the market. On the other hand, RNA is another common type

of sequence. An example of RNA application is its use for understanding disease

dynamics [98]. Different techniques are used for RNA sequencing [98, 68]. An-

other very common sequence used in bioinfomatics is protein sequences. In total,

20 amino acids are used in a sequence (Figure 2.1(a)) and it can be derived from

a DNA sequence using an asymmetric mapping table (Figure 2.1(b)). It is known

that the functionality of a gene is defined by the structure of the protein and it is

still impossible to predict the protein structure from the protein sequence [6].

Figure 2.1: A DNA snippet to depict hydrogen and sugar phosphate bonds.

In recent past, both DNA and protein sequences have been used in many research

works for diverse applications. For example, protein sequencing is used to separate

healthy and cancer sequences in [24], while a hashing and ML based classification

14



Chapter 2 – State-of-the-art

Table 2.1: Protein Symbol and DNA Protein mapping

(a) Protein symbol and corresponding Amino Acid [102]

Symbol Amino Acid Symbol Amino Acid

A Alanine C Cysteine

D Aspartic Acid E Glutamic Acid

F Phenylalanine G Glycine

H Histidine I Isoleucine

K Lysine L Leucine

M Methionine N Asparagine

P Proline Q Glutamine

R Arginine S Serine

T Threonine V Valine

W Tryptophan Y Tyrosine

(b) DNA to Protein Mapping [6]

DNA Code Protein DNA Code Protein DNA Code Protein

GCA A GCG A GCT A

GCC A TGT C TGC C

GAT D GAC D GAA E

GAG E TTT F TTC F

GGA G GGG G GGT G

GGC G CAT H CAC H

ATA I ATT I ATC I

AAA K AAG K TTA L

TTG L ATG M AAT N

AAC N CCA P CCG P

CCT P CCC P CAA Q

CAG Q CGA R CGG R

CGT R CGC R AGT S

AGC S ACA T ACG T

ACT T ACC T GTA V

GTG V GTT V GTC V

TGG W TAT Y TAC Y

techniques are used to classify proteins in [15]. DNA sequences and Convolutional

Neural Network (CNN) to detect N6-methyladenine in rice is used in [55], while

DNA sequences and deep learning are used to identify N4-methylcytosine in [94].
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An interesting process of ransomware detection using DNA sequencing is proposed

in [43]. The features will be extracted from the ransomware dataset and then the

selected features will be converted into DNA sequences. The DNA sequences will

then be converted into k−mer vectors, and then ML will be applied to categorise the

file into ”Ransomware” or ”Goodware”. The article [35] shows how DNA sequences

and few machine learning algorithms can help classifying cancer patients.

2.2.3 Bio-hacking

In short, Bio-hacking is a technique of manipulating the biological process to im-

prove human’s physical and cognitive ability[61, 101], where examples can include

quick weight lose by changing food consumption habits or enhancing the perfor-

mance of an organ in the body by implanting devices. Nutrigenomics is one type of

bio-hacking, which is based on the change in the habit of food consumption. The ar-

gument is that the food can effect certain genes. This belief comes from research that

has been shown to reduce DNA damage. [61, 73]. Another form of bio-hacking con-

siders cells as hackable devices and takes the advantages of the progress in synthetic

biology, which is most relevant to this thesis although we do not focus on changing

functionalities of the cells, but rather on how we can do cyberhacking. This is also

known as DYIbio [13]. Finally, the third form of bio-hacking technique is when

devices are implanted into the body of the citizen scientist (also called grinders).

Examples include implanting a microelectrode array in the body to control a robotic

arm, implanting thermal sensors under the armpit that can be used to monitor the

temperature of the body, and implanting RFID (Radio Frequency Identification)

devices to control other devices [101]. However, these devices are foreign agents to

the living body. Therefore, these devices are coated with materials that will not be

affected by the immune system of the body. This new interdisciplinary research of

(bio-hacking) creates plenty of opportunities and the need for more research that

link to many fields. For example, in [88], the authors proposed the concept of

”bionic manufacturing” to build new type of bionic systems for the next generation

micromotors and sentient microbots, which can help in environment monitoring for

example. Indeed biohacking will help in connecting the human body to internet,

human machine interactions(HMI ), human machine interfacing, health monitoring,

environment monitoring applications, but it will bring lot of security challenges as

well. Moreover, the devices used for bio-hacking can cause several health issues and

even lead to death. For example, Deep Brain Stimulations (DBS ) from Deep Brain

Implant (DBI ) devices are used for providing electronic stimulating to the nervous

system to treat patients of Parkinson diseases, neurological disorders, epilepsy, or

movement disorders. In [80], the authors argue that a perpetrator can hack im-
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plantable devices to generate stimulations to induce pain and that can cause death.

They have also proposed a deep learning based attack classifier for the DBS in their

research work. Therefore, we have to consider the security issue of bio-hacking very

seriously. A survey was conducted with the subject matter experts of the emerg-

ing threats of technologies, where the study concluded that bio-hacking and HMI

with significant defence incapabilities [79]. It is good that concerns are raised about

possible security threats from bio-hacking is raised. However, this area of research

has not received enough attention in terms of security vulnerability from synthetic

biology when using bacteria for bio-hacking. We should not forget that genetically

engineered bacteria has the potential to be used as bio-compatible devices and can

be considered for bio-hacking in the future and for health-related applications such

as targeted drug delivery [71].

2.2.4 Cyberbiosecurity

Cyberbiosecurity is an emerging interdisciplinary field that mainly considers the

security threats coming from the three inter related disciplines, namely, Biosecu-

rity, Cybersecurity and Cyberphysical Security [40], as depicted in Figure 2.2. This

emerging field has drawn a lot of attention recently due to economical, health and

safety and even for the national security reasons. The article [59] described why

the biopharmaceutical sector should consider cyberbiosecurity measures and how it

can be affected by security threats and economic losses. Today, the manufacturing

process such as quality control and integrity checks are all done by automations and

AI systems. Therefore, the whole process can be affected if the machines involved

are compromised. As a result, the manufacturer can end up with huge financial loss

as the production process can be interrupted or there could be waste of batches of

produced medicines due to quality issues. To understand how financially worthy the

matter is, we can consider the article [63], where the authors discuss that the bioe-

conomy of the United States is estimated at $4 trillion annually and that is nearly

25% of their GDP. Furthermore, in the worst case, pathogens can be introduced

intentionally to cause harms to patients, common citizens and even the people in

the manufacturing plants. Therefore, the authors in [63] emphasized on addressing

research, tests, education, technologies, standard practices, and policies for cyber-

biosecurity. Meanwhile, the consequences due to the culture of having open data in

the relevant research fields is described in [40]. For example, people can be black-

mailed by their medical history, or a particular pathogen can be utilised to develop

a biological weapon targeting a community, race, or nation, who are found vulnera-

ble to that particular pathogen as a whole. Therefore, risks like this can be turned

into a national level security challenge. On the other hand, we should consider cy-
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berbiosecurity for applications related to DNA Synthesis, which is the focus of this

thesis. For example, we can place an order to synthesise a DNA sequence [64] using

web applications. However, in such web applications, the ordered DNA sequences

can be manipulated by means of a man-in-the-middle attack as described in [77]

and this can end up in an order request to create pathogens instead. Although the

authors did not describe how someone can perform such an attack, it is sufficient to

understand the urgency of addressing such a issue. Furthermore, the authors also

mentioned challenges like not having relevant up to date US National health guide-

lines and the difficulties with the manual inspection of DNA, which can cause the

attacks. Unfortunately, all the above mentioned works are mainly focussing on the

security threats coming from the cyber-world to the bio-world, while we believe it is

also highly important to think about how security threats can come from bio-world

to the cyber-world. An example of this is the problem investigated in [64], where we

have seen that DNA can be synthesised to compromise a DNA sequencing pipeline.

Figure 2.2: Cyberbiosecurity is a combination of three relevant security fields [40]

2.2.5 Bioethics

The term ’Bioethics’ was first introduced by Van Rensselaer in 1970 [25]. In short,

Bioethics is a process to determine whether the activities involved in our research is

morally correct. It can be done based on answering a few ethical questions or follow-

ing a set of guidelines in dealing with biological specimens. However, this is a process

that involves theoretical frameworks, interviews, questionnaires, existing laws, pri-
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vacy policies, biotechnology, medical and health issues, etc. Recently, a number of

works have been conducted to improve the process. For example, the impact of

biotechnology on bioethics and the raised issues corresponding to this are discussed

in [91]. Another example can be the demonstration of a potential digital tools to

take moral decisions, where the authors utilized technological driven methodologies

rather than relying on empirical research only [72]. In [20], the authors introduced

experimental philosophical bioethics as an emerging discipline as they believe ex-

perimental philosophy can contribute to the improvements in bioethics research as

it did for other disciplines. A distance learning for the students based on Virtual

Reality(VR) is suggested in [30] to teach bioethics and this is by providing interac-

tive sessions and a relevant virtual world to help them to take biotechnology related

decision in situation with many dilemmas and high urgency. For example, this may

include situations like vaccinations related decision in COVID-19 pandemic situa-

tion. Bioethics related work have also been developed for DNA based applications.

For example, in [96], the authors argued that a separate dedicated bioethics frame-

work for forensic’s type work beside having the comprehensive common bioethics

framework for medical related work. The authors think that though medical and

forensic have many things in common, the purposes of each are different. For ex-

ample, medical reports are used for diagnosis, whereas forensic reports are used for

testimony purposes for victims or suspects by law enforcement agencies and judicia-

ries. The DNA plays an important role here. On the other hand, the in vitro gene

modification technique using Clustered Regularly Interspaced Short Palindromic Re-

peats (CRISPs) brings a wealth of opportunities and helps to save people’s lives,

but it also raises many ethical questions at the same time. CRISP is a process of

utilizing the existing anti-viral behaviour in bacteria to edit genes so that we can

insert our preferred DNA snippets in them for altering the existing functionalities

or to introduce new functionalities, where CAS protein play a vital role in the edit

operation. Any arbitrary data can also be stored inside DNA using CRISPR-CAS

[85]. Therefore, the challenges towards bioethics for using CRISPs are discussed

in [25]. The bioethics on the consent and privacy point of view are analysed for

commercial DNA tests and Investigative Genetic Genealogy (IGG) that uses it for

criminal investigations [17].

2.2.6 Cryptography using DNA

DNA have been considered as a storage device in recent research [18]. Ensuring the

security and integrity of the information have also become very important, which

has received considerable attention recently [83, 65]. Cryptography techniques such

as encryption and steganography are applied to DNA encoded information [69].
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Steganography is a technique to hide information of one form into another, rather

than scrambling the information to turn it into a human unreadable or non under-

standable form. An example is the process of hiding a secret text inside a picture. In

the recent past, we also saw that DNA is used in cryptography to secure information.

For example, DNA cryptography and dual hyper chaotic map are used to secure sen-

sitive and confidential medical images [3]. A technique using biological operations

has also been proposed in [42], where transcription and translation in combination

with deep learning was used for encryption and decryption. The key for the en-

cryption and decryption is generated using Needleman Wunsch (NW) algorithm.

The use of DNA-based encryption keys was proposed in [57]to conceal the cloud

storage. Interestingly, all the state-of-the-art works are considering cryptography

to protect the information from unauthorised access. However, a question we have

asked is - ”What about utilising cryptography by the hackers to dodge surveillance

that remains unidentifiable for hacking activities?” Ransomware can be considered

as a use of cryptography by the hackers, but this is more a part of the exploit rather

than using it as a tool to masquerade or cover the attack. In this thesis, we have

considered the use of cryptography in DNA by hackers to make the detection of

attacks harder, while ensuring that DNA Synthesis can still be performed.

2.3 Deep Learning

In this thesis, we also used Deep Learning to perform detection of encoded DNA that

is part of bio-hacking. Deep Learning is a machine learning algorithm that is used

in speech recognition, image classifications, autonomous driving, etc. Therefore,

it has drawn interest in solving classification problems in various areas and it is

considered as ”a de facto classification techniques” [53]. A few examples of diverse

applications are industrial defect detection [51], attack and intrusion detection in

networks [90, 16], cyber security [14] and health care [23] including radiology [100].

Unlike typical neural networks, Deep Neural Networks (DNN ) have more hidden

layers between the input and output layers. The number of nodes in the output

layers is equivalent to the number of classification items. Convolutional Neural

Net(CNN ) and Recurrent Neural Net(RNN ) are two broad categories of DNNs [16].

The main difference between RNN and CNN is that the output of each hidden layer

sends a feedback to its previous layer. RNN is good when contextual information is

necessary for correct classifications, such as in the use of language translation and

stock price prediction. In language translation, the correct translation depends on

the contexts or previous sentences. Similarly, stock price prediction also depends

on the earlier stock prices or the predicted stock prices. On the other hand, CNN
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Figure 2.3: Example architecture of a CNN model.

Figure 2.4: Example architecture of a RNN model.

can be applied when the classifications or predictions does not rely on the previous

predictions, such in applications of classifying images. The examples of typical CNN

and RNN models are presented in Figure 2.3 and 2.3, respectively.

CNN and RNN are also applied in the applications where DNA, protein, and

RNA sequences are used. For example, A CNN based model is used for protein

family classification using DNA sequences [103]. A model combining for both CNN

and RNN is used to predict DNA-binding proteins from protein sequences [33] and

to predict DNA and protein binding using the DNA sequence [104]. A similar

approach is also proposed for classifying the chromosomal DNA sequences [19] and

pre-miRNA sequences [89].

Different types of deep learning are being used for different types of malware

detection [87]. The growth of attacks in IaaS using various malware will be very

devastating as there will be a number of similar types of resources, e.g., virtual

machines, will be created in it. If one machine can get infected by a malware, then

other similar machines can easily be affected. The malware can be detected by

analysing various behaviours, such as CPU, memory, and disk space usages. Both

CNN models (e.g., [60]) and RNN models (e.g., [44]) have been proposed to detect

such malware and attacks in IaaS using those behaviours. As CNN shows promising
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results for various applications where DNA sequences are used and also to detect

security issues, hence it is considered as a detection technique for our thesis.

2.4 Case Base Reasoning(CBR)

Case Base Reasoning(CBR) is a branch of supervised machine learning, where each

case in the base is defined by a problem space and the corresponding solution space.

The basic idea behind CBR is based on the principle of ”similar problems has similar

solutions” [50]. That means that if we get a new problem, then we can solve it by

adapting the solution of a similar problem that happened in the past. In CBR, the

problem can be formulated by a set of features and the solutions can be formulated

by a single or a set of outcomes, results or classifications. The CBR cycle investigated

in [1] is shown in Figure 2.5, where the steps are retrieve, reuse, revise and retain.

In the retrieve phase, a past case will be selected from the case base based on the

highest similarity between the problem space of the new case and the past cases. The

feature is extracted from the new case first before the retrieval. A similarity function

is used to compute the similarities between the problem space of all past cases and

the new case. Example of similarity algorithms can be Euclidean distance and fuzzy

similarity. Then the solution of the top one or few cases will be considered and

used for the new problem in the step. Therefore, the step is called reuse as the past

solutions are used again. In the revise step, the reused solutions are verified to know

whether they were well enough to solve the new problem. Necessary adaptations

are performed on the past solutions to solve new problems. Last but not least step

is retain, where the learned knowledge is stored in the case base for future use. So,

the new case with its successful solution is stored in the case base in this stage. In

our research, we will mainly focus on the retrieval step of CBR.

CBR is proposed as a supervised machine learning technique for various applica-

tions like decision support system in health, diagnosis system for vehicles drivers[10],

stress diagnosis using various physiological signals[12], diabetics diagnosis[21], post

operative pain management[2], predicting recurrent status of liver cancer[75], busi-

ness workflows [62], construction management[34] and traffic controls in signalized

intersections[54]. Moreover, unlike DNN, CBR can be used as an Explainable Arti-

ficial Intelligence (XAI ) machine learning model [48, 93].

2.4.1 Summary

The state-of-the-art research show how promising bacteria are as a nano machine,

programmable device and as a data carrier by encoding it in the DNA, while they

can also be used for sending data even without encoding it inside the DNA. To
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Figure 2.5: Case Base Reasoning System [1]

help the course toward the improvement of IoBNT, we need to address how we

can send more than a single bit of data at a time, while not encoding the data

into bacterial DNA. Again, in a recent research [64], we have seen how a DNA

sequencing pipeline can be compromised using specially designed DNA. Therefore,

it has raised the alarm regarding the security threats through similar attacks in the

field of IoBNT. DNA and bacteria are very relevant to cyberbiosecurity, bio-hacking

and bioethics. Significant progress has been made in these fields, but unfortunately,

we hardly found any further research that addresses such security threats. As far as

countermeasures for such attacks are concerned, choosing the detection algorithm is

very important. In state-of-art research, we see that CNN has become very popular

to solve detection problem in cybersecurity. Moreover, DNA sequences can be used

as input data in CNN to solve detection problems, e.g., the works described in

[55] and [94]. As CNN showed promising results to solve the detection problem

using DNA data, we believe that it has the potential to play a role in the detection

mechanism in cybersecurity, where DNA will be the means of attacks. Finally, if

explainable AI is preferred as an alternative solution to CNN, then CBR can be

used, as it was previously used for many other detection problems.
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Research Summary

In this chapter, the research questions will be formulated first based on the research

scopes, challenges and limitations discussed in the previous chapter. Then the ap-

proaches to answer the research questions, the validation techniques and finally the

contributions will be presented.

3.1 Research Objectives

To address the challenges discussed, the following three research questions are for-

mulated for this thesis. The research questions are listed according to the order we

believe they should be addressed.

• RQ1. Multi-bit Data Transfer using Bacterial Nanonetworks: How

can we improve the performance of data transmission using bacteria to exploit

their traits while avoiding complex data encoding in the plasmid DNA?

• RQ2. Bio-Hacking Security attacks based on DNA Encoded Data:

What can be a new type of attack in the DNA sequencing pipeline? Will it be

possible to perform attacks without considering the limitations of the underlying

OS and hardware? How feasible and sophisticated can such attacks be?

• RQ3. Countermeasure for Bio-Hacking Security Attacks: Finally,

what can be a solution to mitigate a possible security attack in the DNA se-

quencing pipelines?

3.2 Approach

We address the research questions one by one. Our approaches to address the

research questions are given below.

• RQ1. Multi-bit Data Transfer using Bacterial Nanonetworks: To

address research questions, we proposed a multi sender and receiver based
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data transmission utilising mainly three traits of bacteria, which are motil-

ity, quorum sensing and bio-luminescent characteristics. A particular protein

called green fluorescent protein (GFP) production is required for emitting

light, which will require sufficient number of bacteria to make the light visible.

The bacteria emits a particular chemical message and also senses it to deter-

mine the population in their vicinity. If that chemical density cross a threshold

value then it triggers the GFP production and this process is called quorum

sensing. Last but not least, the bacteria will have flagellas if it has a plasmid

protein F+, which helps them to swim. Otherwise, the bacteria cannot swim,

and they remain stationary.

Figure 3.1: Distributed transmission of bacterial nanonetworks, (a) bacteria sent

from transmitter to receiver, and (b) how the sequence for GFP gene is divided [92].

Figure 3.2: Probability distribution function (PDF) of the arrival time of bacteria

for various distances in the nanonetwork [92].

Using the properties mentioned above, we come up with an idea of using ge-

netically engineered bacteria for four senders and the corresponding receivers

as shown in the Figure 3.1(a), where the bacteria will only be able to complete
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their DNA/Protein sequence required for GFP production if conjugations oc-

curs between the cells that belongs to the corresponding senders and receivers

as shown in the Figure 3.1(b). The bacteria of the senders can swim but the

cells in the receivers are stationary. This way we can send two bits at a time.

For example, if we want to send two bits, 01, then we need to release the

bacteria from the corresponding sender. The bacteria will swim and reach the

four receivers and conjugate with them but it will only complete the sequence

in the receiver 01. When there is a sufficient number of bacterial cells with a

complete gene sequence, they will start GFP production and the presence of

light will be detected and read as receiving bits 01.

Table 3.1: Simulation parameters and Results

(a) Simulation Parameters.

Parameter Name Value

Temperature 305 K

Viscosity 2.7×e-3 Pa s

Radius of the bacteria 1 micrometer

Flagella force 1 pN

Mean time to end a run 0.86

Mean time of end a tumble 0.14

The maximum tumbling angle 180 degree

BOLTZMANN constant 1.38×e-23

(b) Fitted Inverse Gaussian Parameters.

Distance (µm) Cathcment Area (µm2) ν λ

500 100 2993.37 1044.080

500 200 2971.459 1092.047

500 300 3033.642 1113.672

1000 100 5880.463 4594.112

1000 200 5726.056 4651.549

1000 300 5742.775 2532.088

1500 100 8083.802 11887.945

1500 200 8017.303 11568.980

1500 300 8126.618 11760.664

To estimate the bit transfer time and compare the performance with other

state-of-the techniques, it is necessary to compute the first passage time, which

is the time from releasing the bacteria and detecting the light in the corre-
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sponding receiver. We executed simulations using the parameters listed in

Table 3.1 (a) and (b) to estimate first passage time. A 3D simulator called

BSim [26] is used for our bacterial motility simulation. The parameters listed

in Table 3.1 (a) are related to the environment where bacteria will swim, the

force generated by the movement of the flagella, the probability of the direc-

tion of spins of the flagella, angle of every tumble motion and the constant

used in the function that define the bacterial movement. We have chosen the

default values set by the simulator for these parameters. We measure the time

to reach from a source to a target by the bacteria considering various distances

between the source and target along with the catchment area of the target.

The target is not a single point but an area with a radius. The distances

and catchment areas used in our experiment are listed in Table 3.1 (b). We

have observed that the first passage time for our data transmissions follows an

Inverse Gaussian Distribution (Figure 3.2), which can be expressed as

f(t) =

[
λ

2πt3

]1/2
exp

(
−λ(t− ν)2

2µ2t

)
, (3.1)

where the coefficients λ and ν depend on the run-and-tumble parameters of

the bacteria, the distance between the transmitters (senders) and the receivers,

and the receiver’s volume. To evaluate the performance of our proposed tech-

nique, first the first passage time is estimated for various distances and catch-

ment areas. Then using that we compute the achieved rate (number of bacteria

reached to the targeted receiver) and the bit error probability (converted from

probability of error) with respect to average transmission power per bit. The

average transmission power is the average number of bacteria released to send

single bit of data. Finally, we have compared the error rate of our proposed

model with other approaches and our results have outperformed other system

models. Further details are available in Appendix A.

• RQ2. Bio-Hacking Security attacks based on DNA Encoded Data: A

state-of-the-art work [64] showed how a DNA can be designed and synthesised

to exploit a buffer overflow vulnerability in a DNA sequencing pipeline. The

buffer overflow vulnerability exploit is a vulnerability exploit at the hardware

level and depends on the underlying hardware and memory management of

the operating system and software.

To analyse the possibility of different types of vulnerability exploits or attacks,

more specifically a vulnerability exploits or attacks at the software level, we

consider a targeted Trojan attack. The scenario considered for such an attack

is shown in Figure 3.3, where the Trojan will disguise itself in a software tool

of the DNA sequencing pipeline. Bioinformaticians will use the tool by using
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Send Sample and Hack the system
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Website

Social media
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Free download
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Advertise the tool

Social Engineering 

Figure 3.3: Social engineering scenario for a targeted Trojan attack used in bio-

hacking.
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Social Engineering. Social Engineering is a mechanism to induce and trap

people to disclose private information [32]. In our considered scenario, the

Trojan will remain dormant, and the tool will perform its usual legitimate

activities. The Trojan will be activated if and only if the tools get a specially

designed DNA sequence where the signal to trigger is encoded. This scenario

gives perpetrators the opportunity to further split the encoded message and

apply encryption and steganography techniques. The idea behind choosing

such an attack scenario is to take full advantages (as it works at the software

level) of designing an attack, where it will be so hard to detect and to trace

or identify the hacker. The detailed process of how DNA will be synthesised

to encode the Trojan payload trigger to activate it and disguise it in bacteria

and finally sent to the targeted DNA sequencing pipeline is shown in Figure

3.4.

The payload encoded into the DNA has two-fold application in our attack

scenario. It not only works as a trigger sample, but is also used to embed

the information required to connect the machine running the tool to a remote

location. This can potentially lead to transferring files from that machine

to that remote location. The example in which the information embedded

into the DNA is the IP address, web address and port number of the remote

machine. Furthermore, the payload can be fragmented and encryption and

steganography techniques can be applied to the information as described in

[37]. However, there can be error in the read process during sequencing and if

it effects a crucial nucleotide of the sequence then it can effect the success rate

of such an attack. We propose the following equation to estimate the success

rate, which is the equation used for the bit error estimation in communication

theory.

probr = (1− probe)
Np (3.2)

For a given read error probability probe, the probability of successful retrieval

of the payload is probr, where the payload size in bit is Np. The equation is

extended as follows considering the possible mutation in favour, and steganog-

raphy parameter, which is key key2 that represents the number of retention

positions.

prob′r = (1− probe)
2
3
x , where x =

2 ·Np

key2 + 1
. (3.3)

We have compared the calculated success rate estimations for various read

errors with the simulated results, which verified our estimation assumptions.

Various payload sizes, fragment sizes and retention numbers are considered for
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Figure 3.4: Steps in the Trojan attack scenario for bio-hacking: (a) trigger message

payload is encoded into DNA sequence snippet and then inserted into plasmid DNA,

(b) plasmid DNA is inserted into bacteria and (c) bacteria sample is collected by

3rd party and send for DNA sequencing and one of the Trojan infected tools in the

sequencing pipeline is activated to compromise the system [36].
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Figure 3.5: Comparing retrieval rates of the Trojan payload calculated using equa-

tion 3.3 and the simulation results considering the error rates (a) 0.0025 (b) 0.005

(c) 0.0075 and (d) 0.01 [37].

our calculations and simulations. The combination of a read error, a payload

size, a fragment size and a retention number is considered as a scenario. In

Figure 3.5, we can see the result clearly indicates that the proposed equations

are good enough to estimate the success rates of such attacks with respect to

variations in the error rates.

Figure 3.6: Trigger encoding into a DNA that includes (a) fragmentation (b) en-

cryption and (c) steganography [36].

In our proposed technique in [37], the Needleman Wunsch algorithm is used

to minimize the dissimilarity of the overall DNA in comparison to the host

after encoding the payload (e.g., a plasmid DNA that is available naturally is

encoded with the data). This process will increase the length of the overall
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DNA after insertion compared to the original length. This spoils the idea

of keeping the overall DNA sequence (containing the trigger encoded in it)

as natural as possible. To counter this, we improved our approach [36] by

applying the substitution based technique for injection. In this process, the

size of the original DNA will not increase. Moreover, our approach will try

to take the best possible substitutions to keep the overall DNA as natural as

possible, considering the insertion with the best possible Needleman Wunsch

score. The encryption and steganography techniques are also applied here to

make the detection harder. The improved injection technique is described in

Figure 3.6. Further details are available in Appendix C and D.

• RQ3. Countermeasure for Bio-Hacking Security Attacks: In the end-

to-end scenario for a Trojan attack activated by a trigger sample and buffer

overflow vulnerability exploits, the success of the attacks depends on the part

of the DNA sequence with the malicious payload in the Trojan infected tools.

Again, in a DNA sequencing process, the sequencer machine will produce a

large number of reads, which will be arranged later in the stages of the se-

quencing pipeline. We put forward that if we can detect a read containing

part of the malicious payload required for exploiting buffer overflow vulner-

abilities or activation of the Trojan, then we can stop further processing in

the downstream of the pipeline and protect it from attacks. We consider this

problem as a classification problem where we need to classify a sequence, which

will be either part of a longer sequence or from a read of the DNA sequencer,

into clean parts of the sequence (no payload contained in the sequence) or

malicious (have some part of the payload).

First, we begin our work of countering the security attacks in the DNA se-

quencing pipeline with the detection of the payload and the classification ap-

proach in the case of buffer overflow vulnerability exploit. After analysing

the recent works, where DNA or Protein sequence are used, we find the Voss

Transformation [24, 105] is the most suitable for converting the sequences into

signals. The transformation is similar to one hot encoding, i.e., 20 binary

vectors of the length equal to the length of the DNA sequence will be there

to present 20 protein bases of a protein sequence. For a protein base, in the

relevant vector, a position will have value 1 if the sequence have that protein

base in that particular position, otherwise it will be 0. Similarly, for the DNA

signal the number of vectors should be 4 for 4 nucleotides. If the signal is

’GTAACTGCCAGA’, then after Voss transformation it will be as follows:
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For nucleotide A: [0,0,1,1,0,0,0,0,0,1,0,1]

For nucleotide T : [0,1,0,0,0,1,0,0,0,0,0,0]

For nucleotide G: [1,0,0,0,0,0,1,0,0,0,1,0]

For nucleotide C: [0,0,0,0,1,0,0,1,1,0,0,0]

Sometime the sequencer machine fails to determine a nucleotide base and

then it is represented by ’N’ in the DNA sequence. In that case, we will

have 5 vectors instead of 4. The Voss transformation is followed by applying

signal processing techniques such as Discrete Fourier Transformation (DFT)

to extract features. In [24], the technique of how a distance based algorithm

can be used to classify healthy and cancerous sequences (e.g. mutations) using

the features after applying the Voss transformation and DFT is investigated.

We applied CBR, which is a classification framework in which we can also

use distances between two sequences. The idea behind the concept is ”similar

problems have similar solutions”.

Figure 3.7: Countermeasure of Trojan attack: (a) Shows the overall scenario of the

attack as well as the input control using CNN model and (b) architecture of the

CNN model used for detection [36].

Our second consideration for countering the attack in the DNA sequencing

pipeline is a software Trojan based end-to-end scenario, where it will be acti-
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vated by a payload encoded in the DNA sequence for performing the malicious

activities. In this scenario, the attack is more sophisticated as far as the detec-

tion is concerned, because the appearance of the DNA sequences with malicious

payloads are more natural. While CBR is a simple and interpretable machine

learning technique, our work on detecting the buffer overflow exploit has con-

firmed that the technique will not be good enough if the variations/mutations

in the DNA sequences are kept to a minimum. Meanwhile, Deep learning has

been proposed as a solution for classifications problems in applications using

DNA and protein sequences in recent years. Convolutional Neural Net (CNN)

is one of the deep learning techniques that works very well when the classifi-

cation does not depends on the previous performance. Moreover, CNN helps

in avoiding the implementation of the feature extraction related steps and we

can leave this to the convolutional layers [95, 27]. Therefore, as a solution, we

first proposed an input control technique using the CNN after the sequencer

to protect further downstream of the DNA sequencing pipeline, as shown in

Figure 3.7.

3.3 Validation

3.3.1 Detection of Encoded DNA for Buffer Exploit

To validate the effectiveness of the CBR algorithm as a detection technique, we have

performed our experiment in [38] using real DNA sequences. DNA sequences from

both eucaryotic and procaryotic cells are considered. For example, DNA sequences

of E. coli plasmids as well as mammary, erythrocyte, and lymphocyte cells of hu-

mans are used in our experiments. For human cells, we used 254 mammary, 104

lymphocyte, and 48 erythrocyte DNA sequences, which are collected from publicly

available data sets at the National Center for Biotechnology Information (NCBI)

database.

We have implemented CBR from the scratch using Python programming lan-

guage. Applying CBR instead of the technique used in [24] and using the same

dataset, we have reproduced the result shown in Figure 3.8(a) to successfully create

the baseline of our classification model. Our implemented CBR works based on the

distances among features of the sequences. So, a new sequence will be classified with

the classification of a existing sequence in the case library if the distance between

their features is the lowest. To illustrate how CBR work based on the minimum

distance, the ROC (Receiver Operating Characteristic) curves are also plotted for

maximum and average distances alongside the minimum distance. Interestingly, we

get 100 percent accuracy for all three kinds of distance. But unfortunately, one
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Figure 3.8: DNA similarity, extended study ROC curve for threshold-classification

between (a) Healthy/Cancer samples from [24], (b) Healthy/Cancerous mammary

and (c) lymphocyte/mammary samples from NCBI; and (d) the use of CBR cell-

type classification to identify the payload containing the malicious code [38].

Figure 3.9: CBR-based detection of malicious content in DNA fragments of human

mammary, erythrocyte, and lymphocyte DNAs [38].
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weakness of the dataset was that it is not large enough. Furthermore, we have

observed that the cancer data are clustered so tightly. Therefore, we considered a

different dataset to examine the performance of the classification approach. When

we have applied the same technique to a different but larger set of data, where we

have classified healthy and cancerous data, the results are poor (Figure 3.8(b)). In-

terestingly, we get good results if we want to distinguish between protein sequences

from various kinds of cell types (Figure 3.8(c) and (d)). The main reason is that

it requires a small amount of mutations for a healthy sequence to turn cancerous,

where the variations between the sequences will be quite high for the two differ-

ent types. From that assumption, we expect that we will get promising results in

detecting malicious payloads as the payload will introduce a larger number of mu-

tations, hence it will be easy to separate them as the distance between natural and

mutated sequences will be very high. For that experiment, first we encoded the

shell commands (using different host and port addresses) into DNA sequences for

exploiting the vulnerabilities and then insert those sequence into random places of

the collected long DNA sequences. These sequences are the malicious sequences and

the long DNA sequences without any insertion of the encoded shell commands are

the clean sequence. To create an experimental dataset, we draw equal number of

reads from the clean and malicious data considering a read size of the sequencing

machine. In clean data any read will not contain any part of malicious DNA se-

quence and on the other hand in malicious data every read will contain some part of

the encoded command. We create different experimental datasets considering dif-

ferent sequencing machine read sizes. After applying the simple CBR technique, we

obtained decent results in detecting malicious payloads. The results of the detection

accuracies for various read sizes and knowledge base sizes is shown in the Figure 3.9.

Further details are available in Appendix B.

3.3.2 Detection of Trigger Encoded DNA for Trojan Attack

For the experimental performance evaluation of the CNN based detection technique

to detect the DNA sequences with trigger message for the Trojan activation [36], real

plasmid DNA sequences were used. The sequences were collected from a repository

called Addgene. In total, 716 E. Coli plasmid DNA sequences were collected and

used for our experiment. To prepare the experimental datasets, 4356 reads (with

read size of 1000) were drawn from the collected sequences as clean samples. We

randomly select 1000 reads out of the 4356 reads. As we did not make any changes

inside the reads, so these are natural DNA. We called these natural DNA as clean

sample for our experiments. Then we generate 1000 random hostnames and port

addresses as trigger messages. Then these trigger messages were fragmented and
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encoded into DNA snippets, and those fragments were put in different places of

the clean samples. These are malicious samples for our experiments, which are

modified, so unnatural. We repeat these processes for 10 times to create a dataset

with 10,000 clean and 10,000 malicious sample. We also created malicious datasets

applying encryption and steganography technique considering various encryption

keys and retention numbers. A dataset is split into training and test dataset, where

75 percent data is used for training and rest of the 25 percent data is used for the

test. We implemented a CNN model using Python programming language, and

Tensorflow and Keras machine learning libraries.

After applying the CNN, we achieved promising results in detecting the DNA

sequences encoded with the trigger payload to activate the Trojan. As described in

Figure 3.7(b), one hot encoding [55, 104] technique is applied on the DNA sequences

to make them suitable for the input of the CNN algorithm. We found decent results

just by applying a single convolutional layer after optimising the hyper parameters.

The performance of the model in terms of accuracy is shown in Figure 3.10 for

payloads after applying various fragmentation, encryption (using various keys) and

retention numbers. More details are available in Appendix D.

3.3.3 Validation using Wetlab Experiment

In our work [38], we have considered a buffer overflow vulnerability exploit shown

in [64]. In [64], the authors only show how they have successfully synthesised a

DNA that contains a payload for such an attack. In our case, we have considered

an end-to-end evaluation scenario, where the perpetrator want to escape from any

kinds of suspicion. We investigated a scenario where the DNA will be inside a

bacterial plasmid and can be part of a nanonetwork of an IoBNT. These bacteria

can be sprayed and spread over various things, such as in a kitchen or in a forensic

scene. Let us assume that the food safety department may collect the bacteria from

these places and passes it on to a third party to conduct the sequencing. During

the process, the sequencing pipeline will be hacked by exploiting the buffer overflow

vulnerabilities present in the sequencing pipeline. So, to validate this scenario, it

is important to know the recovery rate of the synthesised DNA sequences from the

bacteria. Therefore, we have collaborated with a wetlab experimentalist to conduct

tests. First the DNA was synthesised and inserted into the plasmid and then into

bacteria as shown in Figure 3.11.

Those bacteria were sprayed on various materials, such as lab coat, gloves, as well

as work bench. The bacterial samples were then collected for DNA sequencing. The

sequences were analysed to examine whether the synthesised sequences for the buffer

overflow vulnerability exploit are retained or not. Figure 3.12 shows the recovery

37



Chapter 3 – Research Summary

Figure 3.10: CNN detection results: (a) for various retention positions and fragmen-

tation sizes but without encryption, (b) using encryption with prior knowledge of

the encryption key, and (c) without prior knowledge of the encryption key [36].
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Figure 3.11: Image from wetlab experiment: (a) depicting overall experimental

scenario, (b) code is encoded into DNA sequence and then inserted into plasmid,

(c) recombinant of plasmid, and (d) agarose gel electrophoresis image verifying the

presence of the plasmid [38].

results, which confirms the feasibility of such an attack scenario and indicates the

preferred medium for a successful attack.

Figure 3.12: Recovery results from wetlab experiment: from two different surfaces,

which are (a) bench and (b) gloves, while using dry and wet swabbing [38].

39



Chapter 3 – Research Summary

3.4 Contribution

From our above mentioned work, this is clear that our PhD thesis contributes to-

wards the future IoBNT, especially more toward the future security challenges in

addition to improving the throughput for data transmission in bio-nano communica-

tion. The achievements from the PhD thesis while addressing the research questions

are listed below.

• RQ1. Multi-bit Data Transfer using Bacterial Nanonetworks:

– A1. Recent researches have revealed the opportunities in nano commu-

nication by using various bacterial traits, e.g., bacterial motility. In our

PhD research, we have shown how we can utilise three properties, which

are motility, conjugation, and bio-luminescent to send more than one bit

of data at a time. In our work [92], we have shown this novel technique

of data communication, where we have outperformed the performance

of state-of-the-art techniques. Our approach is based on creating multi-

ple receivers that are arranged spatially, where each receiver represents

a number of different bits. This avoids the need for complex engineering

bacteria with plasmids that encode the data. The transmission of multi-

ple bacteria to spatial locations that represents different bits has shown

significant improvement over super slow bacterial nanonetwork transmis-

sion that have been previously proposed.

– A2. Another contribution of the work is that we can send more than

one bit of data while avoiding complex processes such as encoding and

decoding the message into a DNA sequence.

• RQ2. Bio-Hacking Security attacks based on DNA Encoded Data:

– A3. We have conducted the validation of an end to end scenario of buffer

overflow vulnerability exploit in the DNA sequencing pipeline [38].

– A4. We have shown how a Trojan attack is possible in a DNA sequencing

pipeline. The Trojan attack has existed as a cyber security challenge for

a number of years. However, demonstrating how it is a possible cyber-

attack in a DNA sequencing pipeline is novel. Instead of hardware Trojan,

we have considered a special case, where they will remain dormant and

will only be activated with a specially designed DNA used as a trigger

[36].

– A5. Our described Trojan attack scenario in the DNA sequencing pipeline

offers perpetrators the advantages of using cryptography to hide their
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traces as it gives the opportunity to split the trigger message into frag-

ments using techniques like encryption and steganography to make detec-

tion harder. Though aggregating the fragments might not be a difficult

process, but the final decoding process will be harder if the encryption

and steganography are applied. The success rates of this attack consid-

ering the read errors in the sequencers have also been examined (Figure

3.5). Furthermore, we consider a technique that is used in bio-informatics

to make the overall DNA sequence more natural so that the detection be-

comes harder. An additional improvement is by constructing the trigger

sample for the Trojan activation using the substitution based injection

to make the overall DNA sequence more natural.

– A6. We have collaborated with wetlab experimentalists to conduct a lab

experiments to synthesis a DNA (with trigger sample in it to activate

the Trojan) in order to examine the viability of designing the DNA. This

validates the possibility of such an attack and the ability to synthesise

the DNA.

• RQ3. Countermeasure for Bio-Hacking Security Attacks:

– A7. We developed a countermeasure for an existing buffer overflow vul-

nerability exploit in DNA sequencing pipeline. Our technique uses real

DNA sequences to discover the malicious payload used to exploit the vul-

nerability. Our results confirm the effectiveness of our proposed method,

where we were able to detect 95% malicious DNA. Moreover, rather than

using a black box type of machine learning technique, we proposed a

simple and easily interpretable technique (as like the explainable AI tech-

nique) called CBR for the a countermeasures.

– A8. We have demonstrated successfully how the payload for exploiting

buffer overflow vulnerability can be placed inside a plasmid, and this is

inserted into bacteria through wetlab experiments by means of collaborat-

ing with synthetic biologists. The bacteria were sprayed on various things

to examine the recovery rate to validate the viability of our scenario.

– A9. For the Trojan attack, we have proposed designing a DNA to encode

the trigger message for the activation process. The overall DNA will be

more natural in appearance and decoding of the trigger message will

be harder as cryptography techniques are applied. As the end-to-end

attack scenario is so complex and detection will be harder, therefore we

have proposed a countermeasure technique using CNN as in the recent

past has showed promising results in solving classification problems. The
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architecture to describe the end-to-end scenario and where the detection

solution should be presented are also described in our work.

Table 3.2 shows the relation between challenges, research questions, achieve-

ments, and the corresponding publications for this thesis.

Table 3.2: Research Achievement (with respect to challenges)

Research Q. Challenge Achievement Presented in Paper Appx.

RQ1 C1 A1, A2 [92] Appx. A

RQ3 C4 A3, A7, A8 [38] Appx. B

RQ2 C2, C3 A4, A5, A6 [37] Appx. C

RQ3 C4 A9 [36] Appx. D

Similarly, Table 3.3 shows the relation between limitations, research questions,

achievements, and the corresponding publications for this thesis.

Table 3.3: Research Achievement (with respect to limitations)

Research Q. Limitation Achievement Presented in Paper Appx.

RQ1 L1 A1, A2 [92] Appx. A

RQ3 L4 A3, A7, A8 [38] Appx. B

RQ2 L2, L3 A4, A5, A6 [37] Appx. C

RQ3 L4 A9 [36] Appx. D
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Conclusion and Future Work

In this chapter we will conclude our PhD thesis and also discuss about the possible

future works.

4.1 Conclusion

IoBNT is an idea of connecting body area network for getting data from nano and

micro level along with performing actions in such level to bring revolutionary im-

provements in health care, smart farming, environment control etc., where bacteria

will play an important role as they have the potential of being used as bio-compatible

nano devices in such scenarios. The auxiliary plasmid DNA, bacterial traits like con-

jugation and motility have already showed a lot of promise to send large amount

of data from a transmitter to receiver by encoding them into the DNA. To avoid

the complex processes of DNA Synthesis and DNA sequencing required for reading

and writing operations, few alternative techniques were proposed in the past, where

the bits are sent based on the bacterial traits like motility and their collecting be-

haviours such as bioluminescent and quorum sensing. As bacterial motility is a slow

and stochastic process, this kind of data transmission is extremely slow (bits per

second).

4.1.1 Multi-bits Data Transfer

In our research [92], we have shown a novel way of sending two bits (which can be

extended to multiple bits) at a time based on the bioluminescent and quorum sensing

traits of bacteria. It is surely a tremendous improvement over the state-of-the-

art ON-OFF key-based approach as by using our purposed technique, significantly

higher transfer rate can be achieved. In the ON-OFF key-based approach, the

presence of the bit depended only on the population of the bacteria in the receiver,

and as a result the performance in terms of bit transfer was very poor.
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4.1.2 End to End Evaluation of the Attack

From a state-of-the art research [64] it has been realised that other types of data

transmission technique using bacteria, where the data will be encoded into DNA,

can come under security threats as it is possible to exploit buffer overflow vulner-

ability in DNA sequencing pipelines. This PhD research considers this as a future

impediment towards the progress and applications of IoBNT. To avoid being guilty

of considering non-functional system requirements like security as a very last task

to do, it is necessary to investigate the possibility of such security attacks and ad-

dress them early. Furthermore, the impact of such work will be very high, as many

applications will benefit from it in the near future. Therefore, first, we have come

up with an end to end evaluation scenario considering state-of-the-art buffer over-

flow vulnerability exploitation research [64] and then we have also collaborated with

wet lab researchers to validate the feasibility of such scenario. Our considered end

to end evaluation experimental scenario demonstrated how an attacker can be dis-

guised and no suspicion will be raised as the designed DNA can be placed in the

plasmids of bacteria. Moreover, these bacteria are also sprayed on different mate-

rials considering scenarios where third parties can collect the bacterial sample from

there to send them to another organisation for the full sequencing. Our experiment

[38] has proven the possibility of constructing malicious DNA and how it is possible

for the hackers to hide their identity while performing a successful attack.

4.1.3 Novel Trojan Attack Scenario

We further investigate the possibility of other kinds of attacks in similar scenarios

and successfully demonstrated a Trojan type of attack scenario in the DNA sequenc-

ing pipelines. In the buffer overflow attack, a large portion of the DNA needs to

be muted to insert the payload required in the existing natural DNA. Therefore,

from a detection point of view, the resulted unnatural DNA sequence offers an ad-

vantage as we can assume that with the help of commonly available bioinformatics

tools or by applying a simple AI/ML technique, we can separate the unnatural DNA

sequences (potential threats) from the natural DNA sequences. That can prompt

further processing with serious caution to protect the downstream of the sequencing

pipeline from being compromised. That is why the Trojan attack scenario is cho-

sen and designed to explore the possibility of attack in DNA sequencing pipelines,

where the DNA will be kept as natural as possible to make the detection harder. To

prove such possibility, we consider a trigger based Trojan scenario, where the Trojan

software is already implanted in the DNA sequencing pipeline and doing some le-

gitimate activities. It will remain dormant in the pipeline unless it is activated by a

specially designed trigger message in the form of a DNA sequence snippet. Another
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advantage of considering such scenario is that, we can apply fragmentation and en-

cryption on the trigger message while designing and synthesizing the DNA message

required for the exploit. The small fragments of tiny trigger messages can be placed

at various places of a large and naturally available DNA sequence to minimise the

dissimilarity with the original one. The message is only reassembled and decrypted

by the Trojan. The advantage of such technique is that it needs small number of

mutations and we can reduce dissimilarity significantly by carefully choosing the

location of mutation on the original DNA sequence resulting in reduced the suspi-

cion. Furthermore, the application of encryption and steganography will make the

retrieval of the actual message harder for a countermeasure mechanism even after

successfully reassembling the fragments, which makes it very difficult to identify the

perpetrator. Our research [37] and [36] have successfully demonstrated the idea of

the above-mentioned Trojan attack scenario. Furthermore, to validate how realistic

it is to synthesis such DNA sequences, we have also performed wetlab experiments

[36]. Our research showed that this kind of attack is very possible and realistic.

The end to end evaluation was also conducted again for this Trojan type of attack

scenario.

4.1.4 Countermeasure to the Attacks

Finally, we propose solutions for these two types of attack. For two end-to-end

scenarios, we have considered different detection techniques. As we described earlier

that for the buffer overflow exploit, it requires big portion of the existing DNA

sequence to be mutated. In the process, the final DNA (for sequencing) becomes

quite artificial compared to any existing natural DNA. So, we prefer to go with

a simple explainable AI technique to detect clean and malicious DNA. CBR is

chosen as an explainable AI technique in our research [38]. We considered the DNA

sequences as the genomic signals and constructed a case base using the features after

applying FFT. Our work [38] proves that in the case of buffer overflow exploit, a

detection system using a simple technique such as CBR is good enough to detect

malicious DNA sequences. The performance depends on the size of the case base,i.e.

larger case base gives better accuracy. However in the case of Trojan attack, the

sequence will be quite similar to its natural form after the necessary minimum

mutation, So, a deep learning solution is proposed to detect malicious DNA in such

complex Trojan attack scenario. Our work [36] confirms that a deep learning based

model can achieve excellent performance in detecting the DNA sequence with a

payload of trigger messages. However, accuracy might be reduced if encryption and

stenography are applied. Overall, we have achieved very high accuracy in detecting

DNA sequences designed and synthesised for both the buffer overflow vulnerability
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exploit and the trigger-based Trojan attack.

4.2 Future Work

As IoBNT is a very new research frontier and technology is in its infancy, there is a

great deal of scope for improvement. Improving data transmission throughput and

ensuring security will play a big role in the future of this research area.

4.2.1 Data Transmission Improvement

A future work on our proposed idea of sending multiple bits of data using bacterial

quorum sensing and bioluminescence can be performed in a wetlab experiment to

validate the idea. We have successfully shown the significant improvement in the

bit transfer rate using our proposed novel technique, where the message encoding

in DNA is avoided, by our in silico experiments. However, it remains to be seen

whether the slicing of the sequence required for the production of GFP is possible in

various ways. Furthermore, it is also unknown whether the bacteria can reconstruct

the complete DNA sequence after conjugation. To validate whether such proposed

technique is realistic or not in the future, we need to perform wetlab experiments

where we can try to slice the required DNA sequences and insert them in bacteria.

Afterwards, we can reconstruct them with the help of conjugation and then finally

observe the presence of light due to GFP production. New experiments using dif-

ferent bioluminescent colours can be considered in addition to the existing available

colours to improve the data transfer rate in comparison with our proposed technique.

4.2.2 Exploring Other Attacks

The attacks on DNA sequencing pipeline will not be limited to only two types of

attacks that are considered for our work. Therefore, all other existing cyber attacks

should be considered very seriously to ensure future defences of IoBNT. For exam-

ple, script injection is a common attack available in today’s cyber world. Scripting

languages like Python and Javascript (NodeJs) are popular for building web appli-

cations and we can anticipate that many tools in the DNA sequence pipeline will be

developed using these scripting languages. Therefore, any tools in DNA sequencing

pipeline built using these scripting languages should be considered for potential vul-

nerability of script injection attacks. We might argue that input validation might be

used to protect web based applications from submitting script as a value of an input

fields. But similar to the attack scenarios considered in this thesis, if the script is en-

coded into DNA and submitted as an input, then it can bypass the input validation.
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In the later stage, it can be decoded and can take advantages of the vulnerabilities

in the backend of the system developed in Python or JavaScript to perform an script

injection attack. So, investigating the possibility of such script injection attacks and

also perform an end to evaluation of the attack are very important. Proposing a

countermeasure for such attack can also be considered as an important future work.

We can consider SQL injection attack as a possibility of another kind of attack.

DNA sequence will be stored in various databases and at the same time a DNA

itself can be used as a storage device. SQL injection is a common attack where a

SQL command can be manipulated to perform malicious activities, e.g., by passing

the authentication, and running a block of SQL code. Therefore, The possibility of

such attack in DNA sequencing pipeline should also be examined.

Besides these two attacks (Script and SQL injection), there might be other secu-

rity challenges related to DNA sequencing pipeline and DNA-based storage, which

can be considered as future works. We need to analyse and perform end to end

evaluations in other possible attack scenarios. The detection of such attacks is also

important. If we can come up with solutions for individual attacks, then it will be

a new challenge, how we can model a detection system to detect multiple types of

attacks in the DNA sequencing pipeline. So, a work on the fusion of various vulner-

ability detection, i.e. machine learning model fusions can be interesting to explore

in future research.

4.2.3 Identifying the Perpetrators

Our research has confirmed that it is very easy to hide identity while performing

an attack as the perpetrators will not order a random DNA sequence for synthesise

using a web application, rather they may use a third party to collect and send

bacterial sample instead. Furthermore, we have successfully demonstrated how to

counter such attacks based on the detection technique using machine learning. But

the question of tracing the perpetrators is still unanswered. So, proposing a protocol

for collecting samples and sequencing to avoid such situations of escaping from being

traced can be an interesting future work. Researchers must come up with a protocol

to trace the perpetrators while also considering privacy issues.

4.2.4 Possible Detection Improvements

With the continued progress on the process of DNA Synthesis, DNA sequencing

and the improvements in the applications using DNA, the use of artificial DNA

sequences will be more common, e.g., people will start to store data encoded in

DNA. Therefore, a lot of new variation of DNA due to many genetic engineering

processes can be created. In our work, we just detect malicious DNA using a binary
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classifier, i.e. in a scenario where the DNA sequence will be with sequence snippet

for malicious activity or completely clean DNA sequence. One issue with these

kinds of binary classifier is that it can only separate malicious and clean payloads.

But it will be a difficult to differentiate the clean DNA sequences and unsafe DNA

sequences if the DNA sequences have unnatural portion in them. So, we need to

consider scenarios, where the detection system can detect the DNA sequences of

three types, which are completely clean DNA, with artificial portion with security

threats and DNA with artificial portion but no security threat. Finally, another

possible future work can be the standardization of security practices with updates

and revisions considering possibility of attacks described in our works and mentioned

future works.
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List of Research Article

The list of research articles which are published as part of this research work and

also included in the thesis is given below. The published research articles are listed

in the order of published dates.

Published Articles:

• P1. D. Unluturk, M. S. Islam, S. Balasubramaniam, and S. Ivanov, “Towards

Concurrent Data Transmission: Exploiting Plasmid Diversity by Bacterial

Conjugation,” IEEE Transactions on NanoBioscience, vol. 16, no. 4. Institute

of Electrical and Electronics Engineers (IEEE), pp. 287–298, Jun-2017.

• P2. M. S. Islam, S. Ivanov, E. Robson, T. Dooley-Cullinane, L. Coffey, K.

Doolin, and S. Balasubramaniam, “Genetic similarity of biological samples

to counter bio-hacking of DNA-sequencing functionality,” Scientific Reports,

9(1), June 2019.

• P3. M. S. Islam, S. Ivanov, K. Doolin, L. Coffey, T. M. Dooley-Cullinane,

D. Berry, and S. Balasubramaniam, “Trojan Bio-Hacking of DNA-Sequencing

Pipeline,” Proceedings of the Sixth Annual ACM International Conference on

Nanoscale Computing and Communication. ACM, 25-Sep-2019.

• P4. M. S. Islam, S. Ivanov, H. Awan, J. Drohan, S. Balasubramaniam, L.

Coffey, S. Kidambi, and W. Sri-saan, “Using Deep Learning to Detect Digitally

Encoded DNA Trigger for Trojan Malware in Bio-Cyber Attacks.” Scientific

Reports, 12(1), June 2022.
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Towards Concurrent Data Transmission: Exploiting
Plasmid Diversity by Bacterial Conjugation

Bige D. Unluturk, M. Siblee Islam, Sasitharan Balasubramaniam, and Stepan Ivanov

Abstract—The progress of molecular communication is
tightly connected to the progress of nanomachine design.
State-of-the-art states that nanomachines can be built
either from novel nanomaterials by the help of nanotech-
nology or they can be built from living cells which are
modified to function as intended by synthetic biology.
With the growing need of biomedical applications of MC,
we focus on developing bio-compatible communication
systems by engineering the cells to become MC nanoma-
chines. Since this approach relies on modifying cellular
functions, the improvements in the performance can only
be achieved by integrating new biological properties. A
previously proposed model for molecular communication
is using bacteria as information carriers between transmit-
ters and receivers, also known as bacterial nanonetworks.
This approach has suggested encoding information into
the plasmids inserted into the bacteria which leads to
extra overhead for the receivers to decode and analyze
the plasmids to obtain the encoded information. Another
scheme, which is proposed in this paper, is to determine
the digital information transmitted based on the quantity
of bacteria emitted. While this scheme has its simplicity,
the major drawback is the low data rate resulting from
the long propagation of the bacteria. To improve the
performance, this paper proposes a Distributed modulation
scheme utilizing three bacterial properties, namely, engi-
neering of plasmids, conjugation, and bacterial motility. In
particular, genetic engineering allows us to engineer differ-
ent combinations of genes representing different series of
bits. When compared to Binary Density modulation and the
M-ary Density modulation, it is shown that the Distributed
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modulation scheme outperforms the other two approaches
in terms of bit error probability as well as the achievable
rate for varying quantity of bacteria transmitted, distances,
as well as time slot length.

Index Terms—Molecular communication, bacterial
nanonetworks, bit error probability, achievable rate

I. INTRODUCTION

THE field of Molecular Communication [1],
[2] aims to create nanoscale networks whose

nodes are communicating by the exchange of
molecules to accomplish sensing and actuating tasks
in macroscale where electro-magnetic communica-
tion fails to operate properly. Environments where
EM waves have trouble properly propagating, cause
detrimental effects to the environment or cannot
be feasibly maintained form the niche of MC ap-
plications such as infrastructure monitoring in air
ducts where EM waves irrecoverably attenuate [3]
or intra-body applications where EM waves cause
health hazards [11].

In this study, we focus on biomedical applications
of MC where biological components and systems
are utilized to create artificial communication sys-
tems. This new paradigm for developing communi-
cation networks could pave the way for new forms
of healthcare monitoring solutions, where artificial
communication systems are developed from biolog-
ical components and are integrated with the human
body [4], [8], [9], [11]. This could lead to an in-body
network system that provides fine granular sensing
and early detection of diseases.

Numerous models for molecular communication
have been proposed, including diffusion based sys-
tems where molecules that represent information
are diffused into the environment [12], as well
as FRET [13], and calcium signaling [14]. Be-
sides these models, another approach is utilizing
organisms as information carrier, and specifically
bacteria. Bacteria have a number of properties that
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have been used to create molecular communication.
In [22], the quorum sensing process was utilized to
transfer information. In quorum sensing, the bacteria
coordinate and signal each other by producing the
molecules known as AHL (acyl homoserine lactone)
according to their local population density. A bac-
teria population will produce AHL molecules that
diffuse and travel through the microfluidic channels
to a receiver which is another population of bacteria.
Through the quorum sensing process, the receiver
can sense the density of the population transmitting
the signal.

In [20], programmed bacteria that emit attractants
and repellants are used to localize and track targets.
Through their cooperative communication process,
the bacteria can search the environment in a timely
and efficient manner. This form of searching process
can provide new solutions towards localization of
diseased cells that are malignant. Another technique
that has been proposed is utilizing the motility prop-
erties of bacteria and their ability to hold plasmids,
which can potentially be used to encode and store
information [16]. The motility is usually achieved
through the flagella that extend from the bacteria
body, enabling the bacteria to swim in a fluidic
medium. Based on these properties, the bacteria
nanonetwork is established by having the bacteria
pick up plasmid with encoded information from a
transmitter nanomachine, and swimming towards a
receiver to unload the plasmid [18]. However, an
issue with this form of information delivery is the
process required to encode the information into the
plasmids, and engineering the receiver to decode
this information by first removing the plasmid from
the bacteria, and searching through the DNA to
find the genes that hold the encoded information.
It requires a mechanism that can read the DNA
which is not an easy task. A simpler approach is
to use bioluminescence to decode the information
by modulating the quantity of bacteria rather than
the genes carried by the bacteria. The intensity of
the bioluminescence indicates the modulation of the
bacteria. Furthermore, information transfer in bac-
terial nanonetworks create long delays. To mitigate
these delays we create parallel transmission mech-
anisms by introducing distributed receivers which
are spatially separated. Using engineering plasmids,
information carrying bioluminescence genes are
distributed among bacteria groups to create plas-
mid diversity. We use multiple transmitter-receiver

pairs, each bound to a different combination of the
distributed genes, which are distinguished by the
spatial separation, i.e., the receiver of each pair
illuminate at a different location which leads us
to create distinguishable parallel paths. Hence, the
information transfer rate can be improved by send-
ing information simultaneously from these parallel
paths, i.e., distributed receivers.

The proposed modulation technique is achieved
through different combinations of genes carried by
the bacteria that can lead to bioluminescence. In this
paper, we focus on four different combinations of
the genes on the plasmids, leading to M distributed
receivers. According to the information that are to
be transmitted the corresponding bacteria will be
released from the transmitter. Bacteria will swim
towards one of M receivers to bind and conjugate
with the non-motile bacteria that are stationary.
Upon successful binding, the genes that are trans-
ferred and combined in the receiver bacteria will
enable bioluminescence. We refer to this form of
modulation as Distributed modulation for bacterial
nanonetworks (For the rest of the article we will
only refer to Distributed modulation).

In this paper, we first simulated the bacteria prop-
agation behavior in 3D to determine the probability
distribution for the first passage time of bacteria
which is modeled as an Inverse Gaussian Function.
Then, we introduce Binary Density Modulation, M-
ary Density Modulation, and Distributed Modula-
tion schemes. We compare these schemes by evalu-
ating the performance metrics such as the bit error
probability as well as the achievable rate, where we
vary the distances between the transmitter and re-
ceivers, as well as the average transmit power which
corresponds to the quantity of bacteria released from
the transmitter. The results from our analysis show
that the Distributed Modulation scheme outperforms
the other two schemes due to the minimization of
ISI that can result from bacteria emitted during
previous time slots. This in turn leads to higher
achievable rates. The results also found that the
achievable rate changes with the time slot length,
since distinct bacteria for different symbols can be
concurrently emitted from the transmitter, leading
to smaller time slots required for each symbol
transmission.

The contributions of this paper can be listed as
• We determined of the first hitting time pa-

rameters of Brownian Motion by simulations
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conducted with BSim based on the physical
parameters of system.

• We introduced the plasmid diversity and dis-
tributed receivers concepts to create diversity
in bacterial nanonetworks.

• We proposed three modulation schemes and
derived the corresponding probability of errors
and achievable rates where distributed modula-
tion outperforms the others and stands out as a
reliable candidate for modulation.

The paper is organized as follows: Section III
introduces the system model for bacterial nanonet-
works by presenting the background information on
the genes programmed into the plasmid leading to
bioluminescence. In Section II, an extensive litera-
ture review is given. In Section III-B the propagation
model of the bacteria is presented. In Section III-C
the bioluminescence occurring upon the reception
of bacteria at the receiver is described. Section
IV presents the detailed model of the modulation
schemes, while Section V presents the performance
evaluation comparison between the three different
schemes. Lastly, Section VI concludes the paper.

II. RELATED WORK

Bacterial nanonetworks are studied in the liter-
ature from many different perspectives. In [5], the
fundamentals of bacterial networks are discussed.
The encoding and decoding of information on bac-
terial plasmid by conjugation are defined in com-
munications engineering perspective. Furthermore,
the motion of bacteria carrying plasmid messages
inside various environments is defined as the prop-
agation of the information. In [6], a simulation
model is developed to study the channel capacity
in bacterial nanonetworks. In both of these studies,
bacteria is considered to move following run-and-
tumble cycles as in our work, however, the motion
is not analytically modeled. [5] only simulates the
propagation channel but does not calculate any
other communication metric whereas [6] does not
consider the loss due to random motion of bacteria
but incorporates it as a term in delay.

Another perspective to bacterial nanonetworks is
presented in [10] where a simulation is performed
to characterize the dynamics of bacterial nanonet-
works. The BNSim is tool developed which takes
into account chemotactic movement of bacteria,
genetic circuits and intercellular interactions among

bacteria for drug delivery applications. In [9], a
mathematical model for capturing the dynamics of
bacteria populations are derived for biological ap-
plications. In [8], a statistical physics model is pro-
posed to study the dynamics of dense networks of
bacteria coupled with intercellular communication
of bacteria. These studies focus mostly on swarming
of the bacteria and how the bacteria population is
distributed into the environment and whether they
accumulate on the target.

Furthermore, in [43] a non-equilibrium statisti-
cal physics inspired model is proposed to study
biological communication defined in many levels
such as inside cell, intercellular, and interkingdom
levels. [43] proposes new metrics for information
theory where there is no definition of individual
transmitter or receiver but each cell performs both
functions. The mutual information is here defined
between the concentration of an intracellular entity
such as quorum sensing molecules and the physical
behavior of bacteria such as bioluminescence.

Another perspective considered in [44], presents
the information spreading with opportunistic com-
munications in bacterial nanonetoworks using an
epidemic approach similar to Delay Tolerant Net-
works and model analytically the number of bacteria
receiving the plasmid carrying the information in a
complex bacterial nanonetwork.

Despite all the previous efforts in the literature,
there are still many problems in determining how
to use the bacteria and their swarming capabilities
in order to create efficient biological communi-
cation networks. Prior body of work concentrates
on modelling and simulating the organization of
bacterial populations and their motion with respect
to environmental cues.

Our approach in this paper combines different el-
ements from state-of-the-art to move one step closer
to realizing bacterial nanonetworks. Our work ana-
lyzes the performance of communication systems
that can be build on top of these elements in terms
of the achievable rate. Furthermore, we devise the
novel concept of plasmid diversity and distributed
receivers which improves the information transfer
rate.

III. SYSTEM MODEL

Although previous works have proposed various
modulation schemes for molecular communications,
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Fig. 1. Illustration of genes luxA, luxB, luxC, luxD, and luxE
distributed between the bacteria. The collection of all five genes will
lead to bioluminescence.

the majority of these works were focused on diffu-
sion based systems [41], [24], [25]. The objective of
our proposed approach is to develop a modulation
scheme improving the data rate using bacterial prop-
erties. We utilize in total three different properties,
namely, engineering plasmids, motility, as well as
the conjugation process.

Engineering plasmids: Besides the chromosome,
bacteria also have a circular DNA molecule that is
known as plasmid. In Synthetic Biology, plasmids
are usually engineered with different combination
of genes that provides the bacteria new traits. One
of these traits is engineering bioluminescence in
the bacteria to emit visible light. We assume that
the transmitter and receiver bacteria acquired a
combination of lux genes by the engineering of
plasmids before being deployed in the environment.
Currently, it is very common and easy to modify
the genetic material of bacteria using techniques
like CRISPR [34]. Furthermore, the genes that we
chose for this study, namely, lux genes which en-
codes bioluminescence proteins are very thoroughly
studied in the literature and it is well-known how to
create plasmids comprising of lux genes [35] since
bioluminescence is frequently used as a reporting
mechanism of the genomic level events [36].Bacte-
rial cells produce light if they have all of the follow-
ing five genes, namely, luxA, luxB, luxC, luxD, and
luxE [28]. In the event that any of these five genes
are missing, no light will be produced. However,
the bacteria may be able to pick any of these genes
from plasmids of other organism in order to have the
full collection that will lead to light emission. This
is illustrated in Figure 1. Bioluminescence is very
common in marine bacteria such as Vibrio fishieri,
but the gene sequence responsible for luminescence
can easily be transferred to other bacteria such as E.

coli which is the bacteria considered in this study.
Motility: Bacteria are able to mobilize by uti-

lizing flagella, which are hair like structures that
extend from the body. In order to achieve motility,
the flagella will form a single body that will act as a
propeller to enable the bacteria to mobilize between
different locations [19].

Conjugation: Bacteria are able to transfer and
pass plasmids between each other. This process is
known as conjugation. During conjugation, the bac-
teria will come together and form a physical connec-
tion through the pilus that allows copies of plasmids
to be transferred [15]. Bacterial conjugation is a
natural DNA transfer mechanism for bacteria [37],
[38] which creates significantly dynamic genomes
where lots of genes can be deleted or inserted easily.
When two bacteria come close to each other they
make a physical connection by joining their pili.
Then, the plasmid of the donor bacteria gets nicked
and a single strand DNA is transferred to the recipi-
ent cell. Both cells synthesize complementary DNA
strands and both plasmids become circular again.
Conjugation may happen between both the same
species of bacteria or different species however
the plasmid transfer rate is higher between similar
strains. The plasmid transfer rate changes between
10−6 to 10−3 [39], [40].

These three different properties allow us to cre-
ate molecular communication links for bacterial
nanonetworks, which are illustrated in Figure 2.
The information is coded through the genes luxA,
luxB, luxC, luxD, and luxE that are inserted into
the plasmid of the motile bacteria contained in
the transmitter. The receiver consists of non-motile
bacteria (i.e, the flagella have been removed) which
is located at a distance d apart. We considered
that all pairs are parallel to each other as shown
in Figure 2, so that no pair has advantage over
the others. However, in a more elaborate situation
where the a priori probabilities of each symbol
are known, the transmitter-receiver distance of the
pair transferring the most probable symbol may be
smaller to increase the rate.

We assume that the time is slotted and the trans-
mitter releases N0 genetically encoded bacteria at
the beginning of each time slot which lasts Ts sec.
Furthermore, we assume that the transmitters and
receivers are perfectly synchronized. The synchro-
nization may be established using quorum sens-
ing which activates certain intracellular mechanisms
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Fig. 2. Illustration of modulation using bacterial nanonetworks
with distributed receivers. The transmitter contains motile bacteria,
while the receiver contains non-motile population. In this example,
the digital bits ”0010” is to be sent from the transmitter to the
receiver. Each population of bacteria at the transmitter and receiver
have combination of genes that will lead to bioluminescence (e.g.
for digital bits ”00”, the transmitter bacteria contain luxA, while
the receiver non-motile bacteria contain luxBCDE). (a) the motile
bacteria are initially stored within the transmitter, (b) the bacteria
are released from the transmitter, (c) the conjugation process at the
receiver between the motile and non-motile bacteria.

only when the bacteria population reaches a thresh-
old [7], or using the extracellular noise common
to all cells which induces collective dynamics [31],
or a blind synchronization algorithm which imple-
ments the non-decision directed Maximum Likeli-
hood (ML) criterion for the estimation of channel
delay [32].

A. Transmission Model
The transmitter contains compartments storing

the bacteria with different gene combinations rep-
resenting two digital bits, as illustrated in Figure
2. The transmitter can be modeled as a container
with chemical latches opening and closing to re-
lease bacteria as shown in Figure 3. The opening
and closing process of the latch can be stimulated
chemically. In order to have a reusable transmitter,
a nutrient harvesting process can be mounted into
the nutrient storage [45]. In Figure 2, the bits ”00”
consist of the transmitter motile bacteria plasmids
having luxA, while the non-motile bacteria are the
receiver having luxBCDE genes in their plasmid.
Therefore, the combination of genes for each pair of
bits between the transmitter and receiver is unique.
At the beginning of each time slot, the transmitter
releases these bacteria into the medium where they
propagate randomly.

Since the bacteria follow a Brownian motion,
bacteria will be dispersed in the environment and

Fig. 3. The transmitter model [45]

only a portion of the released bacteria will be able
to reach the receiver. In the following section we
will introduce a propagation model for the motile
transmitter bacteria.

B. Propagation Model

Bacteria can follow either a random or directed
motion. When there is no specific source of attrac-
tion, bacteria move in the environment randomly
following a Brownian motion model. When there
is a source of attraction such as nutrition, light or
magnetic field, bacteria move towards it following a
chemotactic movement model [29]. In this study, we
assume that there is no specific source of attraction
in the environment.

The Brownian motion of bacteria is governed
by a sequence of run-and-tumble process. This
means that they run straight at constant speed v
for a random time duration tr, then tumbles without
changing position for tt, and choose a new direction
with a random angle θ, and this is followed by
the run phase. Repeating this sequence, the bacteria
move randomly in the environment. To characterize
this movement, we ran 3D simulations in a confined
environment to obtain the properties of the first pas-
sage time of bacteria released from the transmitter
reaching the receiver. In particular, we performed
3D discrete time simulation of bacteria using run-
and-tumble model for ∆t time intervals.

The simulation is conducted using BSim [21]
simulator, an agent-based computational tool to
model the dynamics of bacterial population moving
in a 3D environment. For the simulation, a 3D
container of 1 mm3 size is considered, where the
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Fig. 4. Initial state of simulation environment. Fig. 5. Bacteria are released from the sender (green coloured).

Fig. 6. Bacteria are moving away from the sender. Fig. 7. Some of the bacteria reached to different receivers.

surfaces of the container are solid. As the size of
the container is quite big considering the size of the
bacteria and the velocity of the bacterial movement,
the collisions and reflections between the bacteria
and container walls can be ignored for our total
simulation time. The receivers and transmitters are
set at opposite sides from the center of the container
at equal distances. Four transmitters and four corre-
sponding receivers are placed for various distances.
Both the transmitters and receivers are circular in
shape with a very small radius. The bacteria are
considered to successfully reach the target once it
collides with that receiver. In order to determine
the impact of successfully reaching the target, the
radius of the receivers are varied for various runs.
We assume that the population of bacteria moving
inside the container will remain the same during
the transmission period due to sufficient supply
of nutrients [22]. A sample of the transmitter and
receivers locations, their initial state, the bacteria
release and movement, as well as their propagation

towards the receivers are illustrated in Figure 4,
5, 6 and 7 respectively. For our simulation, we
have considered three different distances between
the transmitters and corresponding receivers and 3
different receiver volumes. There are two states of
bacterial movement, which are running when the
flagella are rotating counter clockwise and tumbling
when the flagella are rotating clockwise. The tum-
bling angles are random values and follow a gamma
distribution. The maximum tumbling angle is set as
180 degree. Other parameters for the simulation is
listed into Table I.

Since it is known that the first passage time
of the random walk is represented by an inverse
probability distribution function [23], we compared
our simulation results with an inverse Gaussian pdf.
The distribution obtained from the simulation for
the first passage time of a bacterium at the receiver
is very similar to an inverse Gaussian distribution,
as shown in Figure 8, which is expressed as
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TABLE I
SIMULATION PARAMETERS

Parameter Name Value
Temperature 305 K
Viscosity 2.7e-3 Pa s
Radius of the bacteria 1 µm
Flagella force 1 pN
Mean time to end a run 0.86 sec
Mean time of end a tumble 0.14 sec
The maximum tumbling angle 180 degree
Boltzman constant 1.38e-23
Number of Bacteria 10000
Max. Bacteria lifetime 6 hours
Distances 500, 1000, 1500 µm
Receiver radius 100, 200, 300 µm
Simulation duration 6 hours
Timestamp 0.01 seconds

f(t) =

[
λ

2πt3

]1/2
exp

(
−λ(t− ν)2

2µ2t

)
, (1)

where the coefficients λ and ν depend on the run-
and-tumble parameters of the bacteria, the distance
between transmitter and receiver, and the receiver
volume.

By curve-fitting we compute λ and ν from our
simulation setup for a range of transmitter-receiver
distance and receiver volume (Table II). This char-
acterization of the bacterial motion enables us to
model the propagation of bacteria between different
locations.

The probability of a bacterium arriving to the
receiver in a time slot Ts is [30]

q =

∫ Ts

0

f(t)dt. (2)

If N0 bacteria are released from the transmitter
at the beginning of the time slot, we can compute
the number of bacteria arriving to the receiver, Na,
with the following binomial distribution

Na(N0) ∼ Binomial(N0, q). (3)

When the number of bacteria released from the
transmitter, N0 is large, this binomial distribution
can be approximated by a Gaussian distribution
N (µ, σ2) where the mean and variance are [41]

µ = N0q, σ2 = N0q(1− q). (4)

According to Figure 7, it is observed that the
probability distribution function for the first passage

TABLE II
FITTED INVERSE GAUSSIAN PARAMETERS

Distance (µm) RX Volume (µm3) ν λ
500 100 2993.37 1044.080
500 200 2971.459 1092.047
500 300 3033.642 1113.672

1000 100 5880.463 4594.112
1000 200 5726.056 4651.549
1000 300 5742.775 2532.088
1500 100 8083.802 11887.945
1500 200 8017.303 11568.980
1500 300 8126.618 11760.664

time has a long tail. Therefore, there will be bacteria
arriving to the receiver after the intended time
slot causing inter-symbol interference between each
symbol sent in consecutive time slots. Hence, the
total number of bacteria arriving in the current time
slot, i.e., for the current symbol, is reformulated
by adding the bacteria released in this time slot
and the remaining bacteria released in the previous
time slots causing the inter-symbol interference. If
the time slot length is very large, the ISI effects
will be lower but data rate will be slowed down
too since there is more time between consecutive
symbols. Hence, we choose the time slot length as
short as possible after which the pdf of arrival of
bacteria becomes flat. In other words, we choose
the time slot length as the point where the pdf
drops below 0.00005. In this study, for distances
d = 500, 1000, 1500 µm with a receiver volume
of 100 µm3, the time slot lengths are chosen as
Ts = 1774, 4690, 7383 seconds, respectively.

Fig. 8. Probability Distribution Functions (PDF) of the arrival time
of the bacteria for various distances (receiver volume = 100 µm3).
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When we calculate the probabilities that bacteria
released in previous slots arrive in the current time
slot, it is observed that the largest contribution
comes from the immediate previous time slot. For
example, for d = 500µm and receiver volume of
100µm3, the probability that a bacteria arrives in
the current time slot q is 0.6, whereas the probability
from the immediate previous slot qp = 0.17, and the
probability for the third and forth slots are 0.07 and
0.03, respectively. Hence, we can assume that only
the previous time slot contributes to the inter-symbol
interference. This leads us to define the total number
of bacteria arriving to the receiver as follows

NT (sc, sp) = Na(nsc) +Np(nsp), (5)

where nsc is the number of bacteria released in the
current time slot and nsp is the number of bacteria
released in the previous time slot, and the number of
bacteria released in the previous slot but arriving in
the current time slot is denoted as Np(nsp). The sc
represents the symbol sent in the current time slot
and sp represents the symbol sent in the previous
time slot.
Np(nsp) can similarly be approximated by a

Gaussian distribution N (µp, σ
2
p) where the mean

and the variance are

µp = nspqp σ2
p = nspqp(1− qp), (6)

where qp is probability of bacteria which was re-
leased in the previous time slot arriving in the
current time slot. This probability qp is expressed
as

qp =

∫ 2Ts

Ts

f(t)dt. (7)

Since Na and Np are independent Gaus-
sian random variables, the probability distribution
of NT (sc, sp) becomes also Gaussian distributed
N (µT , σ

2
T ) with mean and variance

µT = µ+ µp σ2
T = σ2 + σ2

p. (8)

The NT bacteria who arrived to the receiver will
conjugate and transfer their message to the receiver
bacteria according to the reception model discussed
in the next section.

C. Reception Model

When the motile bacteria from the transmitter
reach the receiver, they conjugate with the non-
motile bacteria in the receiver to transfer the plas-
mids, in order to create the full set of genes required
for bioluminescence. The number of conjugated
receiver bacteria Nr increases with every incoming
motile bacteria from the transmitter. Hence, the
intensity of light due to bioluminescence increases
with the number of incoming bacteria at the re-
ceiver. In this section, we denote the measured light
intensity as L(sc, sp) and we express it in terms
of the total number of bacteria released from the
transmitter arriving to the receiver NT (sc, sp).

Since the conjugation process takes a couple of
minutes [15] which is very short compared to the
propagation time in the order of hours [16], we can
neglect the time required for conjugation.

In a bacteria population, conjugation does not
take place between all the bacteria. Only a certain
ratio of motile bacteria from the transmitter will
conjugate with the bacteria at the receiver. We call
the ratio of conjugated bacteria to the organisms
released from the transmitter as transfer frequency
and it is denoted by αc. Hence, the number of
receiver bacteria which are conjugated with the
transmitter bacteria is found as Nr = αcNT . The αc
is a parameter that relates to the bacterial species as
well as environmental genetic factors [17].

When the density of conjugated bacteria reaches
a critical density, the receiver starts shining light
significantly. This phenomenon is called quorum
sensing where bacterial cells produce a small autoin-
ducer molecule which diffuses in and out of the cell
whose concentration increases with the increasing
bacterial cell density. The bioluminescence genes
are controlled by this autoinducer molecule. When
the autoinducer concentration increases above a
threshold level, the bioluminescence genes become
active and the light becomes observable.

The relation between the bacterial cell density and
the autoinducer concentration is found by [26]

dA

dt
= vANr − dAA, (9)

where A is the autoinducer concentration, vA is au-
toinducer production rate and dA is the autoinducer
degradation rate.
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The autoinducer forms a complex with bacterial
cell receptors with a probability of ρ(t). The dy-
namics of this probability is described by [27]

dρ

dt
= −κρ+ Aγ(1− ρ), (10)

where κ is the dissociation rate and γ is the complex
formation rate, and ρ represents the probability that
autoinducer forms a complex with cell receptors.

When cell receptors are bound with the autoin-
ducer, it activates the lux genes associated with bi-
oluminescence. Although the detailed biochemistry
of bioluminescence is unknown, the gene expression
can be approximated by a two-step process for the
production of the bioluminescent proteins and the
light as

dS

dt
= (b0ρ+ a0)− b1S

dL

dt
= a1S − b2L,

(11)

where L is the amount of light, S is a post-
transcriptional messenger, and b0, a0, a1, b1, b2 are
constants [27]. a0 represents the basal production
of bioluminescence proteins in the absence of au-
toinducer [28], b0 represents the production rate of
the post-transctriptional messenger in the presence
of autoinducer, a1 is the rate of light production,
b1 denotes the decay rate of the post-transcriptional
messenger and b2 denotes the decay rate of light.

At the end of the time slot, the system will come
to a steady-state where the autoinducer concentra-
tion is

As =
vANr

dA
. (12)

Accordingly, the probability of forming a complex
at steady-state is

ρs =
Asγ

Asγ + κ
. (13)

Then, the light intensity at the steady-state is ex-
pressed as

Ls =
a1(b0ρs + a0)

b1b2
. (14)

In our study, the receiver is a population of bacte-
ria whose members are noisy inherently. However,
the effect of the discrepancies and uncertainties
between each bacterium is less significant when the

response of the population is studied instead of the
response of each individual bacterium. Hence, we
assume that the noise in the reception process is
negligible compared to the noise resulting from the
propagation process which is the main source of
noise in this study.

In Section III-B, we have found that the num-
ber of bacteria arriving to the receiver NT has a
Gaussian distribution with mean µT and variance
σ2
T . Thus, the number of conjugated bacteria Nr can

be easily described also by a Gaussian distribution
with mean αcµT and variance αc2σ2

T .
Since the steady-state autoinducer concentration

A is a linear function of the number of conju-
gated bacteria Nr, the probability of the autoinducer
concentration also follows a Gaussian distribution
with mean µA = (vA/dA)αcµT and mean σ2

A =
(vA/dA)αc

2σ2
T .

According to (13), the probability distribution of
ρ is changing nonlinearly with autoinducer concen-
tration As. Hence, the pdf of ρ can be described as
follows

fρs =
fAs

(
ρsκ

γ(1−ρs)

)

γ(1− ρs)2/κ
, (15)

where fAs is the Gaussian probability distribution
of As.

Similarly, the probability distribution for the light
can be found by

fLs =
fρs (Lsb1b2/(a1b0))

a1b0/(b1b2)
. (16)

IV. MODULATION SCHEMES

In Section III, we described the bacterial prop-
agation model as well as the reception model that
will indicate a successful transfer of plasmids at the
receiver. We investigated the propagation of bacteria
from transmitter to the receiver and the reception by
bacteria located in the receiver. Based on our simu-
lation, as well as previous works, we have found that
the propagation of bacteria suffers very long delays,
which in turn will affect the end-to-end data rate
of the communication system. In order to increase
the rate of the information transfer, we suggest
two modulation schemes exploiting the engineering
plasmid property that allows us to program different
combination of genes.
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A. Modulation with a Single Receiver
In this modulation scheme, a single transmitter

and receiver pair is considered.
1) Binary Density Modulation: When the infor-

mation to be transmitted for the time slot is the
symbol 0, no bacterium is sent from the transmitter.
Since there is no transmitter bacterium arriving
to the receiver, no bioluminescence is observed.
However, when the information is the symbol 1,
N0 bacteria is released from the transmitter at the
beginning of the time slot and when they deliver the
message to the receiver bacteria by conjugation, the
receiver bacteria produce visible light. To detect the
information sent, the light intensity is compared to
a threshold above which symbol 1 is decoded and
below which symbol 0 is decoded. This modulation
scheme resembles to an ON-OFF Keying modula-
tion for conventional communication system.

We assume that the symbols for binary density
modulation si can be either 0 or 1. Also, we assume
that all symbols are equiprobable and independent
of each other. For binary density modulation, the
total probability of error can be calculated by

Pe =
1∑

sc=0

P (sc)P (ŝc 6= sc|sc) (17)

where P (sc) is the a priori probability of trans-
mitting symbol sc and P (ŝc 6= sc|sc) denotes the
probability of incorrect decoding given the current
symbol, where ŝc is the current received symbol.

Since there are ISI effects, it is necessary to
take into account the interference of the previous
symbol on the current symbol. Thus, the incorrect
decoding probabilities are expressed in terms of
previous symbol as follows

P (ŝc 6= sc|sc) =
1∑

sp=0

P (sp)P (ŝc 6= sc|sc, sp), (18)

since the transmitted symbols are independent and
the incorrect decoding probability P (ŝc 6= sc|sc, sp)
depends on the current and previous symbols.

If we set the threshold for light intensity to τL,
the incorrect decoding probabilities become

P (ŝc = 1|sc = 0, sp) = P (Ls(sc, sp) > τL|sc = 0, sp) (19)

P (ŝc = 0|sc = 1, sp) = P (Ls(sc, sp) < τL|sc = 1, sp) (20)

The light intensity Ls(sc, sp) is found by replac-
ing the number of released bacteria for the current

and previous symbols nsc and nsp for NT (sc, sp) in
(5) with

nsi =

{
N0, if si = 1
0, if si = 0

(21)

The threshold depends on the camera system
used to measure the light and might change with
the experimental setup, i.e., the sensitivity of the
camera, ambient light, growth conditions of the
bacteria and the bacteria species.

Since all the symbols are equally likely the error
probability can be calculated by

Pe =

=
1

4




1∑

sp=0

FLs(1,sp)(τL) +
1∑

sp=0

(1− FLs(0,sp)(τL))


 .

(22)

where FLs(sc,sp) is the cumulative density function
of the pdf of Ls(sc, sp) derived in (16).

2) M-ary Density Modulation: In M-ary density
modulation, instead of using two symbols, we can
introduce M symbols, i.e., M levels of bacterial
density representing log2(M) bits. By thresholding
the bioluminescence intensity at the receiver with
M − 1 thresholds, one of these M levels can
be decoded. This modulation scheme resembles to
an Amplitude Shift Keying (ASK) modulation from
conventional communication system.

We consider the case M = 4 representing 2
bits of information where transmitted symbols are
{0, 1, 2, 3} corresponding to {0, N0/3, 2N0/3, N0}
released bacteria at the transmitter, respectively. For
the rest of the text, M-ary density modulation refers
to the modulation with M = 4. We further assume
that all symbols are equally likely and independent
from each other.

For M-ary density modulation, the total probabil-
ity of error can be calculated by

Pe =
3∑

sc=0

P (sc)P (ŝc 6= sc|sc) (23)

where P (sc) is the a priori probability of trans-
mitting symbol sc and P (ŝc 6= sc|sc) denotes the
incorrect decoding probability given sc, where ŝc is
the current received symbol.

To take into account the effect of ISI, we further
elaborate (23) by conditioning it with the previous
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symbol sp. We express the incorrect decoding prob-
abilities given sc when sp ∈ {0, 1, 2, 3} as

P (ŝc 6= sc|sc) =
3∑

sp=0

P (sp)P (ŝc 6= sc|sc, sp), (24)

since the current and previous symbols are indepen-
dent of each other.

To detect the 4 transmitted levels, 3 thresholds are
needed. If we set the thresholds for light intensity to
τL0 , τL1 , τL2 , where τLi

differentiates between ŝc = i
and ŝc = i+ 1, the incorrect decoding probabilities
become

P (ŝc 6= sc|sc = 0, sp) =

P (Ls(sc,sp) > τL0|sc = 0, sp)
(25)

P (ŝc 6=sc|sc = 1, sp) =

P (Ls(sc,sp) < τL0 or Ls(sc, sp) > τL1|sc = 1, sp)
(26)

P (ŝc 6=sc|sc = 2, sp) =

P (Ls(sc,sp) < τL1 or Ls(sc, sp) > τL2|sc = 2, sp)
(27)

P (ŝc 6= sc|sc = 3, sp) =

P (Ls(sc,sp) < τL2|sc = 3, sp)
(28)

The light intensity Ls(sc, sp) is found by replac-
ing the number of bacteria released for current and
previous symbols nsc and nsp in NT (sc, sp) in (5)
with

nsi =





N0, if si = 3
2N0/3, if si = 2
N0/3, if si = 1
0, if si = 0

(29)

The incorrect decoding probabilities given in
(25), (26), (27), (28) can be found by using the pdf
of Ls given in (16).

If all the symbols are equally likely, the proba-
bility of error can be expressed as

Pe =
1

16




3∑

sp=0

(1− FLs(0,sp)(τL0))

+
3∑

sp=0

(FLs(1,sp)(τL1) + 1− FLs(1,sp)(τL0))

+
3∑

sp=0

(FLs(2,sp)(τL2) + 1− FLs(2,sp)(τL1))

+
3∑

sp=0

FLs(3,sp)(τL2)




,

(30)

where FLs(sc,sp) is the cumulative density function
of the pdf of Ls(sc, sp) derived in (16).

B. Modulation with Multiple Receivers
In this section, we introduce a novel modulation

scheme called distributed modulation using bacte-
rial nanonetworks where multiple transmitter and
receiver pairs are used. Since the detection of the
light is realized by a camera, the light intensity
at different location in an image can be measured.
Hence if we place M receivers in the environment
spatially separated from each other, we can create
a new modulation scheme where the transmitter
between each pair no longer represents one bit but
log2(M) bits as shown in Figure 2. In this study,
we consider that M = 4, i.e., but the analysis
can easily be extended to include more receivers.
When an information 00 is to be sent, the associated
transmitter releases bacteria which propagate in the
environment reaching the complementary receiver.

Each transmitter-receiver pair is associated with
one of the following symbols {0, 1, 2, 3} and only
one transmitter-receiver pair is active at each time
slot. Since we assume that the a priori probabilities
of symbols are not known, we place the pairs such
that transmitter-receiver distance is the same for all
pairs. If it is known that a symbol has a higher
probability, then the transmitter and the receiver of
the corresponding pair can be positioned closer to
increase the rate. Since we have 4 different trans-
mitters and receivers, there are 4 light intensities
to measure corresponding to each receiver which
we denote as Ls,i for ith receiver. Each receiver is
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assumed to have the same threshold τL. If the light
intensity of a receiver is above τL, the corresponding
symbol will be received. We assume that all symbol
are equally likely and independent of each other.

The total probability of error for this modulation
scheme can be calculated by

Pe =
3∑

sc=0

P (sc)P (ŝc 6= sc|sc) (31)

where Psc(sc) is the a priori probability of trans-
mitting symbol sc and P (ŝc 6= sc|sc) denotes the
incorrect decoding probability given sc, where ŝc is
the current received symbol. Since all 4 transmitter-
receiver pairs are parallel P (ŝc 6= sc|sc) is the same
for all symbols, i.e, for all tx-rx pairs. Hence, (31)
becomes

Pe = P (ŝc 6= sc|sc). (32)

To incorporate the effects of ISI, we condition
the incorrect decoding probability with the previous
symbol sp and express it as

P (ŝc 6= sc|sc) =

=
∑

sp 6=sc
P (sp)P (ŝc 6= sc|sc, sp, sp 6= sc)

+P (sp = sc|sc)P (ŝc 6= sc|sc, sp, sp = sc),
(33)

where the first term corresponds to the case where
the previous symbol is not equal to the current
symbol, i.e., the previous symbol was sent from
a different transmitter. One source of error in this
case is that remaining bacteria from the previous
symbol activating the receivers for the other sym-
bols than the current one. The other source of error
is that there is not enough bacteria released from
the transmitter of the current symbol to activate the
corresponding receiver. The second term of (33)
represents the case where the previous symbol is
equal to the current symbol. In this case, the number
of bacteria from the previous symbol is added to the
number of bacteria for the current symbol. The only
source of error is that there is not enough bacteria to
activate the intended receiver. There is no possibility
that the other receivers will be activated since there
is no remaining bacteria from the previous slot for
them.

If we set the thresholds for the light intensity to
τL for each pair, the incorrect decoding probabilities
are expressed as

P (ŝc 6= sc|sc, sp, sp 6= sc) =

= P (L(sp 6=sc)
s,sp > τL|sc, sp, sp 6= sc)

+ P (L(sp 6=sc)
s,sc < τL & L(sp 6=sc)

s,sp < τL|sc, sp, sp 6= sc),
(34)

P (ŝc 6= sc|sc, sp, sp =sc) =

= P (Ls,sc
(sp=sc) < τL|sc, sp, sc = sp).

(35)

L
(sc,sp)
s,sc is found by replacing nsc and nsp in

NT (sc, sp) in (5) with nsc = N0 and with

nsp =

{
N0, if sc = sp
0, if sc 6= sp

(36)

L
(sc,sp)
s,sp is found by replacing nsc and nsp in

NT (sc, sp) in (5) with nsc = 0 and with

nsp =

{
0, if sc = sp
N0, if sc 6= sp

(37)

The incorrect decoding probabilities (34, 35) can
be found by using the probability distribution of Ls
given in (16).

If all the symbols are equally likely, the proba-
bility of error can be expressed as

Pe =
3

4

(
1− F

L
(sc 6=sp)
s,sp

(τL) + F
L

(sc 6=sp)
s,sc

(τL)FL
(sc 6=sp)
s,sp

(τL)

)

+
1

4
F
L

(sc=sp)
s,sc

(τL);

(38)

where FLs,i(sc,sp) is the cumulative density function
of the pdf of Ls(sc, sp) derived in (16).

C. Achievable Rate

We define the achievable rate R that maximizes
the mutual information between the transmitted
symbol and the received symbol as follows

R =

= max
τL

I(X;Y )

= max
τL

∑

X

∑

Y

P (X, Y )log2

(
P (X, Y )

P (X)P (Y )

)
.

(39)
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Fig. 9. Probability of error for different modulation schemes for varying distances (a) Binary Density Modulation. (b) M-ary Density
Modulation. (c) Modulation with Distributed Receivers.

V. PERFORMANCE EVALUATION

In this section, to compare the performance of
the three different modulation schemes we evaluate
the probability of bit error and achievable rates
against the average transmission power per bit for
each type of the modulation that we proposed in
Section IV. In this paper, the transmission power is
defined as the number of bacteria released from the
transmitter. For fair comparison between modulation
schemes, the average transmission power per bit, i.e,
average number of bacteria released per bit is used.
Firstly, we use the simulations from Section III-B
to observe the arrival times of bacteria for varying
transmitter-receiver distances. The inverse Gaussian
model that we fitted to the simulation for the arrival
time shows that the arrival probability does not
change significantly after a certain time due to its
long flat tail. Hence, we chose d = 500, 1000, 1500
µm with a receiver volume of 100 µm2, the time
slot lengths are chosen as Ts = 2557, 6159, 9095
seconds, respectively as discussed in Section III-B.

Using these Ts values, the probability of error
and achievable rate of the three different modulation
schemes are evaluated for optimum thresholds val-
ues which are found by minimizing the probability
of errors for varying transmission powers. In Figure
9, the probability of errors for each modulation
scheme are shown for varying transmitter-receiver
distances. For all modulation schemes, probability
of error is decreasing significantly with the increas-
ing average transmission power per bit, i.e., the
number of bacteria released from the transmitter
which is expected. When the number of bacteria
released from the transmitter increases, the number
of bacteria arriving the receiver in- creases in turn
increasing the correct detection probability. This
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Fig. 10. Bit Error Probability comparison between Binary Density,
M-ary Density, and Distributed Modulation schemes.

decrease in probability of error is less significant for
M-ary density modulation since increasing transmis-
sion power increases the separation between symbol
levels while also contributing to the ISI where the
residual bacteria from the previous symbol cause
errors. Furthermore, as seen from Figure 9, the
distance has a considerable effect on probability of
error for all three modulation schemes. Since the
bacteria propagate randomly, it is harder to reach the
receiver when they have to travel longer distances
which results in an increase in probability or error.

To compare the probability of errors of the
proposed modulation schemes, the probability of
errors are converted to bit error probability for fair
comparison. In Figure 10, bit error probabilities
for d = 500µm are plotted versus the average
transmission power per bit. Distributed modulation
and the binary density modulation perform very
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modulation.

similarly, the probability of error decreases with
the increasing transmission power per bit. How-
ever, for M-ary density modulation, increasing the
transmission power does not ameliorate the bit error
probability.

In this study, we considered M-ary modulation
with M = 4, transmitting log2(M) = 2 bits per
symbol. The achievable rates comparison between
binary and M-ary modulation with M = 4 is
illustrated in Figure 11. For M-ary modulation,
the achievable rate increases very quickly with
increasing transmission power whereas for binary
modulation, the achievable rate requires a lot of
power for a small increase in rate.

Similarly, the achievable rates of M-ary den-
sity modulation and distributed modulation schemes
are compared in Figure 12. Asymptotically, both
schemes reach the rate of 2 bits per/slot as ex-
pected. However, to attain the same rate, distributed
modulation requires larger quantity of less trans-
mission power than the M-ary density modulation.
Considering the distributed modulation’s lower error
probability and higher rate, it can be considered as
an efficient modulation scheme.

Another factor influencing the achievable rate is
the length of time slot. To examine its effect, the
achievable rate versus time slot length is presented
in Figure 13 for various transmission powers. When
the duration of the time slot increases, there are
more bacteria reaching the receiver and delivering
its message. Hence, the rate per time slot increases.
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Fig. 12. Achievable rate for m-ary density and distributed modula-
tion.

500 1000 1500 2000 2500

Time Slot Length

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
c
h

ie
v
a

b
le

 R
a

te
 (

b
it
s
/s

e
c
)

×10
-3

M-ary, N
0
=5

M-ary,N
0
=50

Dist., N
0
=5

Dist., N
0
=50

Fig. 13. Achievable rate for m-ary density and distributed modula-
tion.

However, when the time slot becomes too large, this
rate is divided by the large time slot length which
in turn decreases the rate per second.

VI. CONCLUSION

Bacterial nanonetworks is one proposed model
for molecular communication that utilizes bacteria
as information carriers between the transmitter and
receiver. While this bio-compatible approach can
allow information to be transmitted up to millime-
ter distances, there are numerous complexities in
developing encoding techniques of the plasmids at
the transmitter, as well as decoding at the receiver.
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A simpler approach could be achieved through ON-
OFF keying where the population of the bacteria
represents the digital bits that are to be transmit-
ted. However, the long propagation period of the
bacteria leads to low data rate. In order to improve
the performance, this paper proposed incorporating
another property which is the encoding of different
combination of genes into the plasmid, where the
different combinations can represent a series of bits.
The transmitter motile bacteria will swim towards
the non-motile bacteria at the receiver to conjugate
and transfer the plasmids with the encoded genes.
This will lead to the non-motile bacteria at the
receiver to receive a full set of genes that will lead
to bioluminescence. Through these different com-
bination of genes, parallel transmission of bits can
be achieved, and this in turn will lead to lower bit
error probability as well as higher achievable data
rate. The performance evaluation compared the dis-
tributed modulation scheme presented in this paper
with the Binary Density Modulation as well as the
M-ary Density Modulation scheme, and found that
the performance improvement can be established
for varying distances, quantity of bacteria emitted,
as well as time slots. This proposed approach has
shown how incorporating other known cellular func-
tions, such as engineering different combination of
genes into the plasmids, can be incorporated into
bacterial nanonetworks to further improve their per-
formance. This would, therefore, lay the foundation
for incorporating other functionalities and properties
in the future to further improve the performance
and open up new opportunities for novel healthcare
applications.

REFERENCES

[1] I. F. Akyildiz, F. Brunetti, and C. Blazquez, “Nanonetworks:
A New Communication Paradigm,” Computer Networks, June
2008.

[2] T. Nakano, M. Moore, F. Wei, A. T. Vasilakos, and J. W. Shuai,
“Molecular Communication and Networking: Opportunities and
Challenges,” IEEE Transactions on NanoBioscience, vol. 11, no.
2, pp. 135-148, June 2012.

[3] N. Farsad, et al., “A comprehensive survey of recent advance-
ments in molecular communication,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 3, pp. 1887-1919, 2014.

[4] M. Sitti, “Miniature devices: Voyage of the microrobots,” Nature,
vol. 458, no. 7242, pp. 1121-1122, 2009.

[5] M. Gregori, et al. “Physical channel characterization for medium-
range nanonetworks using flagellated bacteria.” Computer Net-
works 55.3 (2011): 779-791.

[6] L. C. Cobo, and I. F. Akyildiz, “Bacteria-based communication
in nanonetworks,” Nano Communication Networks, vol. 1, no. 4,
pp. 244-256, 2010.

[7] S. Abadal and I. F. Akyildiz, “Bio-inspired synchronization for
nanocommunication networks,” in Proc. 2011 Global Telecom-
munications Conference - Wireless Networking Symposium, pp.
15.

[8] G. Wei, P. Bogdan and R. Marculescu, Bumpy Rides: Modeling
the Dynamics of Chemotactic Interacting Bacteria, in IEEE
Journal on Selected Areas in Communications, vol. 31, no. 12,
pp. 879-890, December 2013.

[9] P. Bogdan, G. Wei and R. Marculescu, Modeling Populations
of Micro-robots for Medical Appli- cations, in Proc. of the
2nd IEEE International Workshop on Molecular and Nanoscale
Communications, Ottawa, Canada, June, 2012.

[10] G. Wei, P. Bogdan, and R. Marculescu, Efficient Modeling and
Simulation of Bacteria-based Nanonetworks with BNSim, IEEE
Journal on Selected Areas in Communications - 2013 Special
Issue on Emerging Technologies in Communications, 2013.

[11] I. F. Akyildiz, M. Pierobon, S. Balasubramaniam, and Y. Kouch-
eryavy, “Internet of BioNanoThings,” IEEE Communications
Magazine, vol. 53, no. 3, pp. 32-40, March 2015.

[12] M. Pierobon, and I. F. Akyildiz, “A Physical End-to-End Model
for Molecular Communication in Nanonetworks,” IEEE Journal
of Selected Areas in Communications, vol. 28, no. 4, pp. 602-
611, May 2010.

[13] M. Kuscu, and O. B. Akan, “A Communication Theoretical
Analysis of FRET-Based Mobile Ad Hoc Molecular Nanonet-
works,” IEEE Transactions on Nanobioscience, vol. 13, no. 3,
pp. 255-266, September 2014.

[14] M. Barros, S. Balasubramaniam, B. Jennings, and Y. Kouch-
eryavy, “Transmission Protocols for Calcium-Signaling-based
Molecular Communications in Deformable Cellular Tissue,”
IEEE Transactions on Nanotechnology, vol. 13, no. 4, pp. 779-
788, 2014.

[15] F. Bonhoeffer, “DNA transfer and DNA synthesis during bac-
terial conjugation,” Zeitschrift fr Vererbungslehre, vol. 98, no. 2,
pp. 141-149, 1966.

[16] S. Balasubramaniam, and P. Lio, “Multi-hop Conjugation based
Bacteria Nanonetworks,” IEEE Transactions on NanoBioscience,
vol. 12, no. 1, pp.47-59, March 2013.

[17] P. Trieu-Cuot, et al., “Plasmid transfer by conjugation from
Escherichia coli to Gram-positive bacteria,” FEMS Microbiology
Letters, vol. 48, no. 1-2, pp. 289-294, 1987.

[18] V. Petrov, D. Moltchanov, S. Balasubramaniam, and Y. Kouch-
eryavy, “Incorporating Bacterial Properties for Plasmid Delivery
in Nano Sensor Networks,” IEEE Transactions on Nanotechnol-
ogy, vol. 14, no. 4, 2015.

[19] K. M. Passino, “Biomimicry of bacterial foraging for distributed
optimization and control,” IEEE Control Systems, vol. 22, no. 3,
pp. 52-67, 2002.

[20] Y. Okaie, T. Nakano, T. Hara, K. Hosoda, Y. Hiraoka, and S.
Nishio, “Cooperative Target Tracking by a Mobile Bionanosen-
sor Network,” IEEE Transactions on Nanobioscience, vol. 13,
no. 3, pp. 267 - 277, Sept. 2014.

[21] T. E. Gorochowski, et al., “BSim: an agent-based tool for
modeling bacterial populations in systems and synthetic biology,”
PloS one, vol. 7, no. 8, e42790, 2012.

[22] B. Krishnaswamy, et al., “When bacteria talk: Time elapse com-
munication for super-slow networks,” Communications (ICC),
2013 IEEE International Conference on, 2013.

[23] J. L. Folks, and R. S. Chhikara, “The inverse Gaussian distribu-
tion and its statistical application–a review,” Journal of the Royal
Statistical Society Series B (Methodological), pp. 263-289, 1978.

[24] M.U. Mahfuz, D. Makrakis, and H.T. Mouftah, “On the char-
acterization of binary concentration-encoded molecular com-
munication in nanonetworks,” Nano Communication Networks
Journal, Elsevier Science, vol. 1, pp. 289-300, 2010.



1536-1241 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNB.2017.2706757, IEEE
Transactions on NanoBioscience

16

[25] P. C. Yeh, et. al., “A new frontier of wireless communication
theory: diffusion-based molecular communications,” IEEE Wire-
less Communications, vol. 19, no. 5, 2012.

[26] L. You, et al. “Programmed population control by cell-cell
communication and regulated killing,” Nature, vol. 428, no.
6985, pp. 868-871, 2004.

[27] J. Mller, C. Kuttler, and B. A. Hense, “Sensitivity of the quorum
sensing system is achieved by low pass filtering,” Biosystems,
vol. 92, no. 1, pp. 76-81, 2008.

[28] E. A. Meighen, “Genetics of bacterial bioluminescence,” An-
nual review of genetics, vol. 28, no. 1, pp. 117-139, 1994.

[29] A. Guney, B. Atakan, and O. B. Akan, “Mobile ad hoc
nanonetworks with collision-based molecular communication,”
IEEE Transactions on Mobile Computing, vol. 11, no. 3, pp.
353-366, 2012.

[30] T. Nakano, et al., “Channel model and capacity analysis of
molecular communication with brownian motion,” IEEE com-
munications letters, vol. 16, no. 6, pp. 797-800, 2012.

[31] T. Zhou, L. Chen, and K. Aihara, “Molecular communication
through stochastic synchronization induced by extracellular fluc-
tuations,” in Physical Review Lett., Oct. 2005.

[32] H. ShahMohammadian, G. G. Messier, and S. Magierowski,
“Blind synchronization in diffusion-based molecular communi-
cation channels,” IEEE communications letters, vol. 17, no. 11,
pp. 2156-2159, 2013.

[33] N. C. Darnton, et al., “On torque and tumbling in swimming
Escherichia coli,” Journal of bacteriology, vol. 189, no. 5, pp.
1756-1764, 2007.

[34] L. Cong, et al., “Multiplex genome engineering using
CRISPR/Cas systems,” Science, vol. 339, no. 6121, pp. 819-823,
2013.

[35] M. K. Winson, et al., “Construction and analysis of luxCDABE-
based plasmid sensors for investigating N-acyl homoserine
lactone-mediated quorum sensing,” FEMS microbiology letters,
vol. 163, no. 2, pp. 185-192, 1998.

[36] E. A. Meighen, “Bacterial bioluminescence: organization, reg-
ulation, and application of the lux genes,” The FASEB journal,
vol. 7, no. 11, pp. 1016-1022, 1993.

[37] D. B. Clewell, ed., Bacterial conjugation, Springer Science &
Business Media, 2013.

[38] S. J. Sorensen, et al., “Studying plasmid horizontal transfer in
situ: a critical review,” Nature Reviews Microbiology, vol. 3, no.
9, pp. 700-710, 2005.

[39] L. Simonsen, et al., “Estimating the rate of plasmid transfer:
an end-point method,” Microbiology, vol. 136, no. 11, pp. 2319-
2325, 1990.

[40] D. M. Gordon, “Rate of plasmid transfer among Escherichia
coli strains isolated from natural populations,” Microbiology, vol.
138, no. 1, pp. 17-21, 1992.

[41] M. S. Kuran, et al., “Modulation techniques for communication
via diffusion in nanonetworks,” Communications (ICC), 2011
IEEE International Conference on, 2011.

[42] E. A. Codling, M. J. Plank, and S. Benhamou. ”Random walk
models in biology.” Journal of the Royal Society Interface 5.25
(2008): 813-834.

[43] N. A. Ruhi and P. Bogdan, Multiscale modeling of biological
communication, 2015 IEEE International Conference on Com-
munications (ICC), London, 2015, pp. 1140-1145.

[44] G. Castorina, L. Galluccio, and S. Palazzo, “On Modeling
Information Spreading in Bacterial Nano-Networks Based on
Plasmid Conjugation,” IEEE Transactions on NanoBioscience,
vol. 15, no. 6, pp. 567-575, 2016.

[45] S. Balasubramaniam, et al. ”Exploiting bacterial properties for
multi-hop nanonetworks.” IEEE Communications Magazine 52.7
(2014): 184-191.

[46] Gorochowski, Thomas E., et al. ”BSim: an agent-based tool for
modeling bacterial populations in systems and synthetic biology.”
PloS one 7.8 (2012): e42790.



Appendix B

Genetic similarity of biological

samples to counter bio-hacking of

DNA sequencing functionality

Journal Title Scientific Reports, Nature

Article Type Regular

Complete Author List Mohd Siblee Islam, Stepan Ivanov, Eric Robson,
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Genetic similarity of biological 
samples to counter bio-hacking of 
DNA-sequencing functionality
Mohd siblee Islam1, stepan Ivanov  2, eric Robson2, tríona Dooley-Cullinane3, Lee Coffey3, 
Kevin Doolin2 & sasitharan Balasubramaniam2,4

We present the work towards strengthening the security of DNA-sequencing functionality of future 
bioinformatics systems against bio-computing attacks. Recent research has shown how using common 
tools, a perpetrator can synthesize biological material, which upon DNA-analysis opens a cyber-
backdoor for the perpetrator to hijack control of a computational resource from the DNA-sequencing 
pipeline. As DNA analysis finds its way into practical everyday applications, the threat of bio-hacking 
increases. our wetlab experiments establish that malicious DNA can be synthesized and inserted into 
E. coli, a common contaminant. Based on that, we propose a new attack, where a hacker to reach the 
target hides the DNA with malicious code on common surfaces (e.g., lab coat, bench, rubber glove). 
We demonstrated that the threat of bio-hacking can be mitigated using dedicated input control 
techniques similar to those used to counter conventional injection attacks. this article proposes to use 
genetic similarity of biological samples to identify material that has been generated for bio-hacking. We 
considered freely available genetic data from 506 mammary, lymphocyte and erythrocyte samples that 
have a bio-hacking code inserted. During the evaluation we were able to detect up to 95% of malicious 
DNAs confirming suitability of our method.

In recent years, the field of bioinformatics has undergone a noticeable transformation due to the advancements 
in both genomics and DNA-sequencing equipment. On one hand, current knowledge of DNA structures con-
tributes immensely to a variety of biological and medical applications from disease screening1 to plant2 and ani-
mal3 breeding, to forensics4. On the other hand, radical new approaches such as DNA-based data storage5 have 
extended the use of DNA-related technologies. The arrival of the MinION sequencer6 and its associated technol-
ogies has also significantly increased the accessibility of DNA-analysis to the general public, and in the future will 
become an essential hardware for a range of industrial applications.

A recent study7 has demonstrated a new form of vulnerability that DNA-sequencing can be susceptible to. 
The study shows how an adversary can insert a malicious payload from a computer script into a DNA sequence 
of a biological sample. The inserted payload takes advantage of a specific binary vulnerability of software 
used in the DNA-sequencing pipeline. The pipeline assembles the DNA-structure of a sample from the out-
put of a DNA-sequencing instrument (i.e. FASTQ files). Then, the payload creates and opens a reverse shell to 
a remote address and port for the adversary to seize control of computational resources hosting the affected 
software. Though hosted separately from the sequencing instrument, the pipeline is an essential part of the 
DNA-sequencing process. Control of the pipeline will allow the attacker to eavesdrop on and even sabotage 
future DNA analyses. This may lead to consequences including misdiagnosis of illnesses, use of wrong DNAs 
for criminal forensics investigations, or suboptimal animal and plant breeding. In this paper we consider (i) a 
new scenario of attack on DNA sequencing pipeline, and (ii) input-control for detecting the DNA with encoded 
malicious code that is used for hacking. The following sub-sections will provide a brief introduction to each of 
these contributions.
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physical transport of Malicious DNA
In this article we consider an end-to-end execution of the attack on the DNA-sequencing pipeline, starting from 
generation of malicious DNA, to its delivery to the intended target and finally sequencing. The delivery takes 
the form of spraying the DNA containing malicious code onto different materials, such as a lab coat, glove, or a 
lab bench. Figure 1 presents an example of our attack scenario where the malicious DNA is injected into E. Coli 
plasmids, which in their raw form or injected into E. Coli bacteria are sprayed on a common surface (e.g. in a 
restaurant kitchen). The surface is swabbed by a third-party (e.g. during a routine health-and-safety inspection) 
and the swabs are sent for analysis to an external DNA-sequencing service (e.g. to detect the exact E. Coli strains 
present). The DNA-sequencing service is the intended target for the attack. Such scenarios will become more and 
more prevalent in the future. Due to advances in Cyber-Security, it will become increasingly difficult to gain con-
trol over a remote service using software-only vulnerabilities. Therefore, hackers will resort to more sophisticated 
approaches, such as the attacks we consider in this paper, where malicious code is delivered via DNA samples. 
These attacks represent a biological version of the injection practices used by hackers today.

Input-Control for Detecting Bio-Hacking
Computer Science has been dealing with injection attacks for some time. Thus, Ron et al.8 present an overview 
of injection attacks on NoSQL data-storage systems. Similarly, Tsoutsous and Maniatakos9 review the attacks 
on Embedded Systems. To neutralize the threat identified in7, computer science offers a number of solutions. 
As demonstrated in10, certain hardware functionality (e.g. Intel Memory Protection Expansion) may be suc-
cessfully used to address some of the underlying memory-access issues. However, such solutions are naturally 
hardware-specific and, therefore, cannot be applied across-the-board. Alternatively, memory-access can be 
tightened at the Operating System’s level11. While this loosens hardware-dependency of such solutions, their 
applicability is still limited. Finally, at the application level, injection attacks are successfully countered by the 
input-control techniques. For example12, uses input-control as a countermeasure to an injection-based attack 
on a system managing an electrical grid13. Runtime Application Self-Protection described in8 is an input-control 
technique proposed for NoSQL systems. Though built for a particular application, these techniques are compat-
ible with multiple configurations of hardware, middleware, and operating systems. This property is particularly 
important for protecting a DNA-sequencing pipeline that may consist of a number of diverse computational 
resources.

In this paper, we evaluate the suitability of using input-control techniques against malicious DNA-injections 
(Fig. 2). As the main purpose of this article is to establish suitability of input-control, the evaluation is done only 
for a limited variety of samples. While this is sufficient for the problem at hand, the techniques can be readily 
extended to account for other samples (see the last paragraph in Section 2.2). We propose an input-control tech-
nique that tightly aligns with the typical stages of the DNA-sequencing process, namely Reading DNA-Fragments 
and DNA-assembly14. During the first stage a complete DNA sample is divided into multiple fragments that are 

Figure 1. Synthesis of DNA with encoded malicious code, physical transport of the malicious DNA to the 
targeted remote sequencer.

Figure 2. Input control to detect DNA-injections.
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sequenced individually to speed up the overall process. As the result of this step, the chemical structure of each 
fragment is represented as a string of the “A”, “C”, “T”, “G” letters representing DNA’s corresponding nucleic 
acids. During the second stage the fragments are assembled into the complete DNA-sequence that describes the 
structure of the entire DNA sample. The two stages present two distinct points where an injection of malicious 
DNA-content can be detected. The detection algorithm will stop any further processing of the malicious sample, 
and this is one of the contributions of this paper.

Methodology
Methodologically, the study presented in this article can be separated into two stages. During the first stage we 
demonstrate the reality of the threat of bio-hacking. We conducted a series of wetlab experiments to prove that E. 
coli bacteria can be successfully used as a viable carrier for malicious code that is encoded into its DNA plasmid. 
E. coli bacteria can be used to host, multiply and preserve the code within the environment and/or transport the 
code to its intended target as part of the physical transport. During the second stage we showed that insertion of 
malicious code into a DNA sequence reduces its genetic similarity with other organisms from the same biological 
specie. We used this fact to propose a screening algorithm to detect malicious code in DNA.

Biohacking as a valid threat. We conducted a series of wetlab experiments to prove the ability of E. coli 
bacteria to serve as malicious code carriers. Specifically, we considered the stability of E. Coli plasmid DNAs. It 
has been shown that certain E. Coli plasmids can be used as the media for long-term data storage (e.g. up to 20 
days in Accelerated Aging Conditions with temperature of 65C15). However, E. Coli plasmids with encoded mali-
cious code do not portray the typical characteristics seen in bacterial hosts nor has their stability been confirmed 
over multiple repetition studies. Furthermore, even minor sequencing errors (e.g. incorrect base-calling) have the 
potential to alter the malicious-code and render it non-functional (e.g. introduce spelling mistakes into the shell 
code). These errors may occur due to reasons stretching from exposure to UV, heat, chemicals16 to phasing effect 
and other sequencing problems17. Therefore, the stability of malicious payload recovery from the manipulated 
E. Coli plasmids requires additional confirmation. To do so we reproduced possible steps of a hacker trying to 
attack a DNA-sequencing service. We first produced E. Coli plasmids with malicious code integrated into their 
DNA. Next we evaluated the recovery of malicious DNA from various services sprayed by the hacker as part of 
the physical transport mechanism.

Figure 3(a) shows a high-level overview of the experimental design. We successfully inserted via ligation the 
code from7 as a DNA sequence into the plasmid (pEX-A128, see Fig. 3(b)) and designated the final recombinant 
plasmid as pMal1. This DNA sequence was synthesised by Eurofins Genomics, Germany. The plasmid DNA 
material was then successfully transformed into a population of E. coli cells (Novablue strain (Novagen)) as shown 
on Fig. 3(c). Plasmid DNA (prepared using the Monarch Plasmid MiniPrep kit (New England Biolabs)) and 

Figure 3. Wetlab Experimental Setup. Gel-Lane content on subfigure (c) Lanes: 1 - NEB 1Kb DNA-ladder; 2 - 
Promega 100 bp DNA-ladder; 3 - pMal1, complete plasmid; 4 - malicious segment isolated.
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recombinant E. coli containing the plasmids were separately inoculated onto three surfaces: wooden lab bench, 
nitrile disposable glove (both non-absorbent) and cloth/labcoat (absorbent). The study aimed to establish if the 
malicious DNA material could be recovered through swabbing from surfaces several hours past spraying if a 
hacker was to transport the DNA. In doing so, we model physical malicious code delivery by either live E. coli or 
residual plasmids of non-viable bacteria that remained on various surfaces. Controls were carried out to ensure 
integrity of the wet lab experiments. Negative controls consisted of sterile ultrapure water being added to identical 
surfaces. That was done to ensure that only DNA material introduced during the experiments would be detectable 
by our methods. Standard E. Coli plasmid DNA samples were used as positive controls to confirm credibility of 
the DNA recovery through swabbing. During controls and core experiments of the study, samples were left on the 
surface for 24 hours and dried completely before swabbing.

To each surface, 500 ng of plasmid DNA or 1 µl of cell suspension @ O.D.600 = 12.5 (approximately ten million 
cells calculated using Agilent Genomics BioCalculator) were inoculated to a 1 cm3 area. Both dry and wet swabs 
(swabs pre-moistened with sterile TE buffer) were used to recover plasmid DNA and E. coli bacteria from each 
surface using the cross hatch swabbing technique. The swabs were resuspended in TE buffer and all DNA prepa-
rations were quantified using the Qubit3™ Fluorometer and Qubit™ dsDNA BR kit (Thermo Scientific), with 
cell suspensions measured using a NanoDrop ND-1000™ at an optical density of 600 nm. The isolated material 
was also subjected to PCR to detect the presence of the DNA material injected with malicious code i.e. pMal1. 
Oligonucleotides (pEX-For and pEX-Rev) were supplied by Eurofins, MWG operon, Germany. PCR conditions 
used to amplify Malcode 1 were as follows; each 15 μL PCR reaction mixture contained 7.5 μL Q5® High-Fidelity 
DNA Polymerase Master Mix (NEB), 15 pmol of each primer and 15 ng pMal1 plasmid DNA. PCR conditions 
include: 1 cycle of 95 °C for 5 min, 30 cycles of 95 °C for 1 min, 66 °C for 1 min, 72 °C for 30 s, 1 final extension 
stage of 8 minutes. PCR amplification limits were tested by adding decreasing amounts of pMal1 plasmid DNA to 
reactions via serial dilution of template. PCR products were analyzed by agarose gel electrophoresis. Figure 2(d) 
presents complete pMal1 plasmid DNA (lane 3) and PCR amplification of a segment from pMal1 DNA contain-
ing the malicious code sequence (lane 4). Sequencing of plasmid insert was carried out in triplicate using the 
vector-specific primers pEX-For and pEX-Rev, with all sequencing carried out by GATC Biotech, Germany.

Genetic similarity as a counter-measure. During the genetic similarity analysis we made extensive use 
of Genetic Signal Processing (GSP) techniques. For an organism (e.g. E. coli bacterium), GSP works with the 
string representation of the DNA structure. The structure is presented as a sequence of “A”, “C”, “T” and “G” 
symbols corresponding to the 4 DNA nucleic acids. The sequence is transformed into a continuous signal (often 
referred to as Genetic Signal) that is then analysed using various Signal Processing techniques. This research 
used the Voss transformation18 to obtain Genetic Signals from DNA strings. The transformation had previously 
proven efficient in multiple studies on similarities of DNA within biological types, classes and families19. Results 
of the Voss transformation were subjected to Discrete Fourier Transform (DFT). Results of DFT formed the 
features (specifically Energy Values of DFT’s Frequency Spectrums obtained for DNA Voss transform as pre-
sented in the Appendices) that we used to establish dissimilarity between the original and injected DNAs (proven 
technique, same as in20). See Appendix A of the Supplementary Material. The overall transformation represents 
an arbitrary DNA sequence (may be rather large in length) as a tuple of 20 floating-point numbers. This rep-
resentation significantly reduces complexity of distance-wise comparisons between DNA sequences. Consider a 
distance between two DNA sequences whose lengths are m and n. Then, complexity of traditional methods such 
as Needleman-Wunsch (part of popular BLAST framework) estimated as O(nm), while complexity of calculating 
Euclidean distance in R20 (used in this article) is only O(1). This reduction is particularly important when such 
comparisons may consider multitude of species and their variations.

DNA Robustness to malicious injections. Similarity of Voss genetic signals was used to evaluate the effect of mali-
cious code injection of various DNA structures. Thus, initially, the robustness of DNA from mammary, erythro-
cyte and lymphocyte cells of humans was considered. The three DNA-types are significantly larger in comparison 
to that of E. coli plasmids and, therefore, have a larger potential to camouflage the injected malicious code DNA 
sequences. Therefore, the ratio between the original and malicious DNA codes is lower for human cells, making 
it harder to identify the injected DNA sequences. This is particularly relevant as our analysis heavily relied on 
Fourier Spectral Energy values, which tend to overlook smaller fluctuations in signals. Subsequently, results of 
those analyses were confirmed for E. coli plasmids.

When investigating robustness of DNA to code injections, we first obtain string representations of real 
DNAs for each type that we analyze: DNA of E. coli plasmids as well as mammary, erythrocyte and lympho-
cyte DNAs of humans. Thus, for the human cells we used 254 mammary, 104 lymphocyte and 48 erythrocyte 
DNAs obtained from individuals, stored and made publicly available by NCBI database (see Appendix B of the 
Supplementary Material). For each of the cell-types the DNAs included equal numbers of cancerous mutations 
and their cancer-free counterparts. For each cell types its DNA strings were modelled with injection of malicious 
code, where sub-sequence of the original DNA were substituted with malicious DNA sub-sequences similar to 
that proposed in7. Each malicious sub-sequence was generated for a particular shell-command designed to hijack 
control of the DNA-sequencer. Full list of the commands can be found in the Supplementary Material, Appendix 
C of the article. Each command was first represented by the binary code of its characters. From the binary code 
the malicious DNA sub-sequence was then derived by using a simple coding technique, where ‘00’ is substituted 
with ‘A’, ‘01’ with ‘C’, ‘10’ with ‘T’, and ‘11’ with ‘G’. The ACTG encodings were inserted into the existing DNAs. In 
each of the DNA a partition of the same size as the encoding is randomly selected, the partition is substituted with 
the encoding. All of the original DNA and their injected counterparts were amalgamated into a single DNA-pool.

To establish robustness in identifying malicious code injections of DNAs, Case Based Reasoning (CBR), a 
renowned Data Mining technique was applied. CBR is a technique that mimics the decision-making process of 
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humans such that when an individual needs to make a decision they will first intuitively try to call upon their pre-
vious similar experiences21, which is continually extended depending on the results caused by each decision. In 
the exact same way, CBR maintains and updates a collection of previous cases that have been put to it. For genetic 
similarity assessment, we considered two DNA classes: Original and Injected. For each class and each DNA-type, 
we randomly selected a subset of original and injected DNAs from the DNA-pool. The subset would serve as 
CBR’s previous experience. Euclidean closeness to one of the previous experience cases was used as the basis for 
classification. Performance of the CBR classification was evaluated for the available DNAs other than those used 
as previous experience. While this study is only concerned with suitability of input-control techniques, successful 
use of any classifier is sufficient. However, some of the specific features of CBR are particularly attractive in the 
context of classification of an arbitrary DNA. CBR does not have an explicit training stage but solely relies on its 
previously known cases. Therefore, introduction of additional species will only require the cases to be appended 
with the species’ representative samples. For detailed description of CBR and its use in this study see Appendix E.

Results and Discussion
Following the methodological stages of this research, the two subsections below present results that we obtained 
while validating Biohacking as a Valid Threat and using Genetic Similarity as a Counter-Measure.

Biohacking as a valid threat. To prove that E. coli may be used during physical transport of malicious 
DNA, 500 ng of E. coli plasmid DNA and approximately 10 million E. coli bacteria were inoculated to the three 
surfaces under investigation (i.e. lab bench, glove and lab coat), as described in the previous section. When using 
wet-swabs to recover dried plasmid DNA from non-absorbent surfaces, 97% of inoculated material was recover-
able (see Fig. 3). Using dry swabs, 26% and 16% of dried plasmid DNA was recovered from the bench and glove 
sites, respectively. When using wet-swabs to recover dried E. coli bacteria from on-absorbent surfaces ~65% of 
cells were recoverable. Using dry swabs, 9% of the dried E. coli population was recovered from the lab bench and 
glove sites. DNA sequencing of all of the recovered material allowed correct reconstruction of the manipulated 
DNA. No errors were encountered during sequencing. Neither E. coli plasmid DNAs nor E. coli bacteria were 
recoverable from the absorbent surfaces (i.e. labcoat) to quantifiable levels, regardless of dry or wet swabbing. The 
detection limits using standard quantification for plasmid DNA and bacteria cells were 1 ng/µl or O.D.600 = 0.001 
respectively.

While the results in Fig. 4 paint a picture of relative safety offered by absorbent surfaces, lowering the PCR 
detection level of the swabbing results did yield some DNA material from the injected E. coli plasmids and bacte-
ria. Even though, in this case the level of contamination was much lower than what’s required for standard quan-
tification, the amount of manipulated DNA allowed for error-free sequencing and was sufficient to contaminate 
and compromise a DNA sequencer. To prove that we used a series of E. coli plasmid dilutions, which were sub-
jected to PCR amplification, as little as 0.1 pg of plasmid DNA as template per 15 µl PCR reaction yielded amplifi-
cation. As the plasmid used in this study (pEX-A128) is 2,450 bp in size and contains a malicious insert (297 bp), it 
can be calculated that 0.1 pg of plasmid DNA contains 3.5 × 104 plasmid molecules. Using a conservative estimate 
of 200 plasmid molecules per cell, only 1,750 cells from the 10 million inoculated on surfaces are needed to yield 
amplifiable amounts of the malicious DNA. Therefore, it can be concluded that both E. coli plasmid DNA and E. 
coli bacteria possess sufficient capabilities to contaminate and compromise DNA sequencing equipment regard-
less of the surface type or swabbing method. The persistence, and therefore, stability of cells as a malicious DNA 
carrier/source of infection would be further augmented if spore-forming cells were used22.

Figure 4. Recovery Rates for Malicious DNA material from non-absorbent surfaces using wet and dry 
swabbing.
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Genetic similarity as a counter-measure. Results of previous studies have shown the use of Fourier 
Spectrum Energy representation of Voss Transformation for DNA classification. Thus20, reports on a particular 
arrangement for DNA sequences of Healthy and Cancerous samples of human mammary tissue (see Appendix 
D Fig. 9), where all Healthy DNAs belong to a single tight cluster that all Cancerous DNAs lay strictly outside 
of. However, as results of20 are based on a small selection of DNAs, conclusions of20 require further validation. 
Figure 5(a–c) evaluate (via ROC-analysis) threshold-based separation between Healthy and Cancerous DNA 
using Average, Minimal or Maximal distance to the remainder of Cancerous/Healthy samples. The arrangement 
reported in20 results in exceptional ROC curves with AUC equal 1 (Fig. 5(a)). This does not quite hold for a larger 
set of DNAs obtained from the NCBI database (Fig. 5(b,c)). Both figures noticeably differ from the results of20 
in cases of Average and Maximal distances. Both distances express a fairly low predictive capacity (AUC close to 
0.5 due to chance), which contradicts one cluster arrangement of Healthy mammary DNAs. However, good pre-
dictive capacity of the Minimal Distance (i.e. AUC close to 1 or 0) is an indication of some cluster-like structure 
amongst the DNAs. This was further confirmed by sufficiently high CBR-classification accuracy obtained for the 
NCBI’s DNA samples (Fig. 5(d)).

The structure re-established by Fig. 5 further re-affirms the validity of CBR for identification of DNAs with 
malicious code injections. As cancerous mutations (which typically affect very small DNA-partitions) are suffi-
cient to distinguish Cancerous from Healthy DNAs, much larger code injections should be detectable using the 
same methods. To confirm that, we first conducted a series of experiments trying to determine if the original 
malicious code proposed in7 could be detected via CBR. Figure 6 presents results for the malicious code injections 
in mammary, lymphocyte and erythrocyte DNAs. Similar to other figures, Fig. 6(a,b) evaluates the predictive 
capacity of the three distances. This evaluation closely aligns with the conclusions from Fig. 5. Subsequently, 
Fig. 6(c) shows results of the CBR classification showing the levels of correct detection increasing up to approx-
imately 90%. While this detection rate may seem low, it is anticipated that higher detection rate will be achieved 
in a practical setting. The presented results were obtained for various sizes of previously known genetic material 
exploited by the CBR. To protect a real DNA sequencer, the most complete CBR knowledge (close to 100%) will 
be used. In our experiments up to 90%-complete CBR knowledge was used, as a portion of known DNAs were 
required to evaluate the detection itself.

Figures 5(d) and 6(c) provide additional insight in relation to the impact of the set of biological species within 
which the malicious DNA is detected. The CBR-classification is better for the lesser specie-sets (i.e. “Mammary 
and Lymphocyte” set in Fig. 5(d) and “Lymphocyte” set in Fig. 6(c)) when compared to their extended versions 
(i.e. “Mammary, Lymphocyte and Erythrocyte” set on both figures). Due to the increased DNA-variability of the 
extended sets CBR knowledge of a particular size is likely to capture more of the DNA-variability of a lesser 
specie-set. At the same time, for any specie-set, larger CBR knowledge captures more of the DNA-variability 
and thus shows better detection accuracy. This can be also seen in Figs 5(d) and 6(c) where all of the detection 
accuracies increase with increase of knowledge size. However, as the accuracy-growth is naturally bounded, the 
difference in detection accuracy between lesser and extended specie-sets diminishes with the increase of CBR 
knowledge size. This will impact on the practical use of the proposed CBR-based detection of malicious DNAs. 
To ensure adequate detection-accuracy, applications dealing with heterogeneous DNA-sources will require larger 
CBR knowledge compared to their specialized counter-parts (e.g. Human Lymphocyte-only samples).

Figure 5. DNA similarity, extended study ROC curve for threshold-classification between (a) Healthy/Cancer 
samples from20, (b) Healthy/Cancerous mammary and (c) lymphocyte/mammary samples from NCBI; (d) CBR 
cell-type classification.
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Figure 7 summarizes the impact of variability in the malicious code on the detection accuracy. 5 to 11 (see 
Supplementary Materials) different malicious code samples were injected into DNAs of lymphocyte, erythrocyte 
and mammary cells. The shape and values on Fig. 7 are noticeably close to those on Fig. 6, which leads us to 
believe that code variability had little or no impact on the CBR performance. This supports the hypothesis orig-
inated from the analysis of Fig. 5. Malicious code exceeds cancerous mutations in size and should be detectable 
by CBR.

Figure 8(a) investigates the use of CBR for injection classification based on DNA fragments that would be 
typically formed at the end of the first stage of DNA sequencing. Figure 8(a) looks at how accurate a single 
DNA-fragment can be identified as coming from a genuine or injected DNA. Note that depending on the DNA 
sequencer and associated chemistry (e.g., Sanger versus Illumina sequencing or amplicon versus genome sequenc-
ing), its user can specify or predict the size of DNA fragments (also called reads, amplicons or fragments to be 
sequenced) that the original DNA will be assembled into the complete sequence23. From the information-security 
viewpoint, detecting malicious code injections from fragments presents a stronger counter-measure for DNA 
hacking. Detecting a malicious injection from fragments will preclude any further analysis of the fragments, 
guarding DNA assembly code from its own binary vulnerabilities. However, the quality of such detection will 
depend on the size of the DNA fragments. On one hand, for smaller fragments the length ratio between the orig-
inal and injected components is expected to be higher (compared to larger fragments or full DNA), potentially 
simplifying the detection. On the other hand, from the perspective of combinatorics, we know that the numbers 
of all possible “ACTG” string-representations is fewer for shorter fragments. This complicates the detection. This 

Figure 6. DNA similarity, injection of malicious code from7: ROC curves for threshold-classification of 
injected DNA for (a) lymphocyte and (b) mammary, lymphocyte and erythrocyte cells; (c) CBR classification.

Figure 7. CBR-based detection of diverse malicious DNA in (a) lymphocyte and (b) lymphocyte, mammary 
and erythrocyte cells.

Figure 8. CBR-based detection of malicious content: (a) in DNA fragments of human mammary, erythrocyte 
and lymphocyte DNAs; (b) in E. Coli Plasmid DNA.
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is confirmed in Fig. 8(a), where general classification accuracy increases as the fragment length (or read size) 
increases. Yet the increase is bounded. Even for fragments of 4 bp, the detection accuracy is higher than that of a 
full DNA (Figs 6–8). Therefore, the optimal read size is limited, but should not be below 24 bp.

Finally, we investigated the use of CBR to detect malicious code injections into the DNA plasmid material of E. 
coli bacteria. Figure 8(b) shows the growth of the detection accuracy with the increase of the knowledge size. As it 
can be seen from the figure, the growth is more rapid for E. coli rather than humans. This can be explained by the 
lower complexity of E. coli DNA, leading to a lesser representation required to describe the underlying structure 
of genuine and injected DNAs.

Conclusions
In this article we have investigated the threat of bio-hacking for modern DNA-sequencers. We have shown that 
simple organisms such as E. coli bacteria can be used to transport malicious DNA code to its destination. To 
protect against this threat, we have proposed a counter measure. We have shown that it is possible to use the exist-
ing DNA-similarity of biological species to identify the presence of malicious code within DNA of a particular 
sample. With the example of lymphocyte, erythrocyte and mammary DNA of humans, we have shown how Voss 
Transformation and CBR can be used for that identification. The accuracy of the identification increases as more 
DNA structure information becomes available to the CBR model. Code injections appear to be substantially dif-
ferent to natural mutations of DNA, and variability of the malicious code has lower impact on its identification 
accuracy. It is beneficial to use DNA fragments to increase the accuracy of identification, where there is an opti-
mal fragment-length to be used. We have also demonstrated a new form of transport for the DNA with encoded 
malicious code, and that is through various types of materials (e.g., lab coat, glove, or lab bench). This demon-
strates that hackers in the future can transport the DNA with the encoded malicious code and swab the samples 
once they get close to the DNA sequencer, or spread the samples in an environment that will be potentially be 
swabbed. Experiments have shown that recovery was achievable for materials such as glove and lab bench, but 
was not very good for cloth.

Data Availability
All data used during the study presented in the manuscript is freely available in the public domain. The man-
uscript’s Methodology (e.g. Section 2) outlines the origin of the data. Furthermore, for the convenience of the 
reader we provide supplementary material that (Appendixes B and C) lists the DNAs and injection codes used.
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ABSTRACT
The article focuses on the information security risks that arise from
the use of dubious software as part of a DNA-sequencing pipeline.
We show how the perpetrator can use a biologically engineered
sample that contains the remote machine’s IP address and port
number to trigger Trojan spyware previously dormant, and create a
connection to the remote machine. The spyware is then used to ei-
ther steal sensitive data processed by the pipeline (e.g. DNA-sample
of crime suspect) or manipulate its control-flow (e.g. via opening a
backdoor). To avoid detection the spyware can accept and expect
required payload in fragments, which are also hidden inside the
sample in a distributed manner. We show how the adversary can
use cryptographic tools such as encryption and steganography to
make such detection even harder while limiting the footprint that
either identifies the attacker or makes the trigger-sample substan-
tially different from its biological species. Therefore, we prove the
viability of the attack and further stress the need to account for
attacks being launched from the physical, rather than cyber-world.
Furthermore, DNA sequencing error can hinder the successful de-
livery of a payload, hence the success of such attacks. We estimate
the success rates for different sequencing error rates, where the
calculated results are also verified with corresponding results from
simulations.
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1 INTRODUCTION
Nowadays one can hardly overstate the importance of DNA-analysis
in our society. Once a matter from the domains of science-fiction
and blue-sky research, today applications of DNA-analysis include
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disease diagnostics [9], animal [15] and plant breeding [14], crimi-
nal forensics [7] and even data-storage [3]. Meanwhile, this rather
substantial application range is set to increase even further. The
increase is mainly attributed to the improved accessibility of DNA-
sequencing due to the arrival of miniature DNA-Sequencing tech-
nologies such as MinION [11]. The miniature size and moderate
costs of the MinION device allow for the DNA-sequencing to be per-
formed by any individual and in any location. This is a significant
improvement of the conventional methodology where sequencing
of a biological sample has to be done by a trusted third-party on
their premises.

As DNA-analysis is used more and more and becoming com-
mercially available, cyber-security issues of the typical software
used as part of the analysis come to light. Thus, a recent study
[13] uncovers a binary vulnerability of the typical DNA-sequencing
pipeline, an essential part of the DNA-sequencing process. The
study shows an attack where a biological sample is genetically en-
gineered in such a way that its sequencing allows the perpetrator
to hijack the control-flow of the pipeline’s operation, and subse-
quently either steal confidential DNA-data and/or alter results of
the DNA-sequencing. To achieve this the DNA sequence of the
engineered sample includes a malicious payload, which is a com-
puter script that opens a reverse shell in a form of a backdoor for
the perpetrator to gain control of the pipeline. Depending on the
context, the attack can have severe consequences, such as manipu-
lation of disease diagnosis or using false DNA-forensics in criminal
investigations. Memory corruption, the underlying issue that al-
lows execution of the payload for the attack, is a well-known and
studied software vulnerability that can be addressed by a number of
existing techniques. For example, [4] describes the use of hardware
strengthening of memory access (i.e., Intel MPX technology) [1],
which utilizes a technique that operates at the Operating System
level. Routine inclusion of these techniques in software/hardware
configuration of DNA-sequencing pipeline will diminish the threat
posed by the attack. The attack demonstrated in [13] demonstrates
the first kind of bio-cybernetic attack.

In this article we propose an alternative bio-cybernetic attack
on the DNA sequencing pipeline. The attack is executed by a dor-
mant Trojan spyware installed by a user unaware of its intended
purpose. The spyware may be supplied together or as part of a
wider bio-informatics software package incorporating a variety of
bio-informatics tools, some of which may be genuine. Fooled by the
appearance of the toolbox with its genuine components, as well as
targeted social engineering efforts (e.g., positive recommendations
from colleagues and other trusted members of the society), the user
installs the entire package including the spyware. Immediately after
installation the spyware remains dormant for a period of time, and
this allows the spyware to (1) avoid security counter measures such
as sandboxing, and (2) continue building user-confidence in the
toolbox up to the point of the spyware activation. The trigger for the
spyware, however, will come remote attacker’s address (port and IP
address) that is encoded into a DNA. Once the DNA is sequenced,
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the spyware will search for the encoded address in the DNA and cre-
ate a remote connection to the attacker’s computer. The uniqueness
of our proposed attack is the hybrid combination of the spyware as
well as a genetically engineered DNA trigger-sample.

The paper is organized as follows. Section 2 describe the en-
visaged scenario of bio-cybernetic attack. Section 3 describes the
technique for generating of the trigger sample for the attack. In
Section 4 and Section 5 our experiments and results are discussed.
Finally the paper is concluded in Section 6.

2 THE ATTACK SCENARIO

DNA	of	
Payload	parts	

Inject	DNA
into	Bacteria

Plasmid	DNA Collecting	
DNA	sample

Spyware	in	
downstream	analysis

DNA
Sequencer

Spraying	
injected	Bacteria

The	Attacker Third	Party Sequencing	Service

Figure 1: Spyware activation; Synthesis, Delivery and Se-
quencing of the Trigger Sample

In this section, we present our view of how a Trojan based bio-
cybernetic attack on a DNA sequencing pipeline can be carried out.
As described in the Introduction, the Trojan spyware is already
embedded into the pipeline, and remains dormant while awaiting
for the corresponding trigger which will come through the DNA
samples. We skip the details of how this can be achieved, as it is
anticipated that the attacker will use some of the already existing
techniques proven for the conventional spyware. Instead, we delib-
erately focus on the novel hybrid bio-cybernetic component of the
attack, namely spyware activation.

To activate the dormant spyware, the attacker will execute a num-
ber of steps presented in Fig. 1. The attacker begins by engineering
the trigger-sample. The sample presents a genetic modification
of an existing baseline specie. While the attacker may choose the
baseline specie from a wide range of organisms, in this article we
consider the use of E.Coli bacteria. A common contaminant fre-
quently found in various environments is the E.Coli bacteria and it
is used extensively in DNA-based synthetic biology experiments.
Easily manipulated and then sequenced, the E.Coli are frequently
used in range of applications including DNA data storage [5] and
bacterial communications [12]. Thus, it is with relative ease that the
attacker may engineer an E.Coli bacterial sample that would include
a particular payload, the information necessary for the Trojan’s
activation and its subsequent operation. The information may vary
depending on the purpose and functionality of the Trojan. In Fig. 1
the attacker inputs the payload into the E.Coli plasmid DNA (as
described in Section 3) that is then inserted via ligation into the
E.Coli bacteria themselves. In this article we consider a spyware
that creates a connection to a remote machine that belongs to the
hacker. This communication will require a network address and a
port number to communicate the data. Naturally, for this scenario
the payload will comprise of the address and the port number.

Once the trigger sample is generated the attacker needs to de-
liver it to the intended target, a specialist DNA sequencing facility,

laboratory, medical practice or other. During the analysis of the
sample, the payload will be extracted and passed on to the spy-
ware. To deliver the trigger sample, we envision that the attacker
would spray it at various locations that would be then swabbed by
a third-party and subsequently sent for analysis. With E.Coli being
a common and well known contamination agent, it is anticipated
that presence of the bacteria is unlikely to be treated as suspicious
by either the third-party of the sequencing service. This will mask
the attack, while the use of a third-party will protect the attacker’s
physical identity.

3 TRIGGER SAMPLE: PAYLOAD INJECTION
With the attacker’s physical identity shielded by the third-party, the
payload information injected into the DNA of the trigger sample
will become the only forensic link to the attacker. Therefore, to avoid
possible repercussions it is in the attacker’s best interest to inject
the payload in a way that significantly complicates its discovery
by anybody apart from the attacker or the Trojan spyware. This
motivates us to utilize a technique known as Steganography, which
allows a user to hide (i.e. inject to prevent unintended discovery)
information in a wide variety of data. For example, [10] describes a
technique to hide text messages inside other non-related text-data.
Over the years, a number of techniques have been proposed to hide
information in DNA data [8], [6], and in this article we build on top
of the existing DNA-steganography techniques to ensure secrecy
of the payload injection.

Wet	lab
sequencer

Wet	Lab	Computer	
Using	Trojan

Remote	
computer	1

Remote	
Computer	2

Fasta	File	1

Fasta	File	2

Parts	of	Host	and	Port	of	Remote	computer	1

Steganography	Process

Steganography	Process

Parts	of	Host	and	Port	of	Remote	computer	2

Plasmid	DNA	2

Plasmid	DNA	1

Figure 2: Payload injection bymeans of DNA-steganography

Specifically, we adapt the state-of-the art DNA-steganography tech-
nique developed in [6] to inject the payload into the plasmid DNA
of E.Coli bacteria. Given a generic text, the technique transforms it
into a sequence of ’ACTG’ nucleotides that is then inserted into a
DNA plamid, also known as the carrier DNA. The transformation
consists of two phases, where first the text is padded with specialist
symbols (in this article we use ’#’ and ’_’) marking the beginning
and the end of the payload. The padded text is then represented as
binary version of its ASCII code. Each binary pair from the code
is then mapped to ’ACTG’ nucleotides, with ’00’, ’01’, ’10’ and ’11’
being replaced by ’A’, ’C’, ’G’ and ’T’, correspondingly. As this encod-
ing scheme is rather common (e.g. used in [13]) and, hence, may be
easily uncovered, [6] may also include an element of encryption as
the second phase of the DNA-steganography technique. We provide
a more detailed scenario-based description of the operation below.
However, while the two steps of the technique provide an ’ACTG’
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Figure 3: Fragment-Based payload injection: first phase

sequence that is cryptographically protected, the sequence may not
follow structural patterns typical to the carrier DNA’s structure.
Large payloads may completely change the DNA-appearance of the
trigger sample, making it unnatural and suspicious. To avoid this,
we propose splitting the payload into fragments and insert into the
plasmid DNA, as illustrated in Fig. 2.

3.1 Fragment-Based Payload Injection
To illustrate the mechanics of the proposed algorithm, consider an
attack where the attacker intends to make a remote connection
using networking addresses a.wit and b.lab via ports 1753 and 8492,
respectively. The attacker needs to engineer an E.Coli plasmid DNA
with a.wit:1753b.lab:8492 inserted into the sequence. Fig. 3 and
the description below presents the steps that the attacker takes to
produce the plasmid with the insert payload as the trigger sample.

Step 1: Payload will be divided into fragments of size Sizef r . In
Fig. 3, Sizef r is 4.

Step 2: Each fragment is appended with its sequence number (used
by the spyware to re-assemble a payload from the frag-
ments) that is separated from the fragment’s text by ’,’.
The result is padded with the start (’#’) and the end (’_’)
markers.

Step 3: Each padded fragment is represented as sequence of ASCII
values of its symbols.

Step 4: Each integer value for the ASCII is converted into binary.
Step 5: Binary value are encoded into nucleotide bases, where ’00’,

’01’, ’10’ and ’11’ are converted into A’, ’C’, ’G’ and ’T’,
respectively.

Step 6: Steps 2 to Step 5 are repeated for each of the fragments.
Step 7: ’ACTG’ encoding for each of the fragments is inserted into

a carrier DNA.

As part of the second phase, Step 4 can be extended with a two-
key encryption process. In this case, a symmetric primary key (key1)
is used for encryption/decryption of the padded fragments, while a
secondary key (key2) is used to introduce additional bits and thus
hide the key1-encrypted fragments. Fig. 4 depicts the additional
steps and their descriptions is as follows:

Step 4a: XOR operation is performed first between the binary
value of key1 and the binary of the least significant char-
acter of the fragment. In Fig. 4, the key1 is 60. The output
binary is used for next the XOR operation with the binary
value of the next least significant character. The process
continues until all characters are encoded.

Step 4b: A cover DNA string is considered next, and it can be any
arbitrary DNA string of a sufficient length. The number
of cover bits is determined by the secondary key (key2).
In Fig. 4, key2 is 3, i.e. one bit from Step 4a is going to be
covered by 3 bit from the Cover DNA.

Step 4c: Cover DNA gets converted into binary format.
Step 4d: Bits from the cover DNA are embedded with bits from

Step 4a. The output is then used as the input for Step 5
that is described above.
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Figure 4: Fragment-Based payload injection: second phase

3.2 Payload Inflation due to Fragment Padding
While payload fragmentation allows the attacker to avoid prolonged
sequence injections into the carrier DNA, and thus makes the in-
jected DNA appear more natural, fragmentation also results in
negative effect. As each fragment is padded individually with its
sequence number and a separator symbol, fragmentation increases
the overall length of the payload that needs to be injected into
the carrier DNA. This is because the additional padding will result
in the overall length of all fragments exceeding the length of the
payload. Thus, consider a payload of Sizep characters divided in
fragments of length not greater than Sizef r . In this case the number
of fragments generated will be:

Nf r = ceil(Sizep/Sizef r ), (1)
where ceil is the function that returns the least integer value exceed-
ing the argument. As each of the fragments is required to be padded
with the fragment start and end markers, its sequence number, and
the separator symbol, the combined length of all fragments equates
to:

Nch = Sizep + Nf r · (Sstm + Sedm + Ssep + So∗), (2)
where Sstm , Sedm denotes the length of the fragment start and end
markers; So∗ and Ssep denotes the character-length of the fragment
sequence number and its separator. As the length of each ASCII-
character is 1-byte (8 bits), its nucleotide encoding will require
4 nucleotide bases (each symbol being either A’, ’C’, ’G’ and ’T’
encoding 2 bits), leading to the overall length of injected-DNA
being:

Np = 4 · Nch, (3)
which, if the second phase is also used, will be extended to:

N ′
p = (8 · Nch + 8 · Nch · key2)/2. (4)

The (1)-(4) helps us gain a numerical insight into the payload
inflation. Thus, using fragments of smaller size Sizef r will increase
their number Nf r (see (1)), which, due to padding (second term
in (2)), will require larger number of nucleotides for the encoding
regardless if the first (see (3)) or both phases (see (4)) are used as
part of the payload injection.

3.3 Sequencing Errors and Payload Retrieval
While DNA-sequencing has become rather advanced, and modern
techniques typically provide stable and accurate detection, errors in
DNA-sequencing may still occur. Poor and contaminated samples
may result in low-quality output of the DNA-Sequencing Instru-
ment leading to Incorrect Base Calling (i.e. errors in nucleotide
structure of the DNA). Therefore, there is an inherent probability
probe for each nucleotide of the trigger sample to be detected in-
correctly during the sequencing process. If these errors are found
in the payload, will result in profound effects on the performance
of the Trojan spyware, which will either fail to recognise particu-
lar fragments (e.g. due to fragment start marker missing) or read
the network address/port incorrectly. Meanwhile, given probe , the
probability probr of correct retrieval of payload size Np can be
calculated using the formula for bit error rate calculation in data
communication, and is represented as follows:

probr = (1 − probe )Np (5)
In the case of steganography, the nucleotides appended for the

key2 should be ignored, except for the least significant nucleotide as
it is related to the least significant bit of the payload. To further clar-
ify this point, let us assume that our payload contains a nucleotide
’C’, which is 01, and let’s consider the key2 is 3 and the arbitrary bits
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Sequence	1:	AAGAAACCAATTGTCCATATTGCATCAGACATTGCC
Sequence	2:	AAGAAACCGAAATTGTCCATATTGCATCAGAGCCAGCATTGCC

Match
Gap

Figure 5: Match and Gap to compute NWscore

using key2 are 101 and 111. This will result in the values 1010 and
1111, after applying steganography. From these 1010 and 1111, 10
and 11 is important and this will create two nucleotides ’T’ and ’G’.
Therefore, in the case of encryption, one nucleotide directly related
to payload will be split into two nucleotides. However, the error in
that nucleotide will not directly affect the retrieval as we can see
that the least significant bit is important in 10 and 11. Therefore,
if ’T’ is read with an error as ’A’, then the least significant bit will
be same but will be different for ’C’ and ’G’. This means that the
mutation favouring the retrieval is 1/3 and the remaining 2/3 is
only important for the calculation. So (5) can be modified to the
following:

prob ′r = (1 − probe )
2
3 x , Where x =

2 · Np

key2 + 1 . (6)

Similar to the previous section, (5) and (6) helps us gain further
insight into the effect of fragment padding. The increased size of all
of the fragments combined (i.e. Np or N ′

p ) will have a decremental
effect on the payload retrieval probabilities (i.e. probr and prob ′r ),
thus, reducing chances for the attack to be carried out successfully.

4 EVALUATION: METHODOLOGY AND
PARAMETERS

As has been mentioned previously, this article mainly concentrates
on secretly insert payload into plasmid DNA of E.Coli bacteria so a
trigger sample can be created that will be captured by a spyware,
but will not be easily detected by any other security algorithm. The
sample needs to resemble the natural E.Coli plasmid DNA as much
as possible in order to avoid detection. When it comes to measuring
similarity of DNA, Bioinformatics offers a number of solutions, and
theNeedlemanWunsch (NW) global alignment score (NWscore )
is by far the most popular. The score is included in a wide range
of various bioinformatics tools boxes, including BLAST, which is
developed and supported by NCBI[2]. To obtain the score, two DNA
sequences are aligned as shown in Fig. 5, then the weighted values
of the length of matching and miss-matching intervals of the two
sequences, as well as length of the gaps is added to form the score.
In this article. we use the NW score to evaluate the secrecy of the
payload insertion into the carrier DNA. As the global alignment
score NWscore for any DNA with itself is a non-zero number (i.e.
weighted length of the DNA due to perfect matching), we strive to
minimise the change in the NWscore between the carrier DNA and
its injected version compared to the self-NWscore of the carrier
DNA. Our aim is to evaluate the minimum change can be for various
sizes of payloads, fragments, secondary key, and other parameters
of the proposed algorithm. Additionally, we evaluate the impact of
those parameters of the payload retrieval probability for various

basecall error probabilities. The parameters that we consider in this
article are as follows:

Parameter Name Values
Carrier Size 100, 200, 300, 400, 500
Payload Size 10, 20, 30, 40, 50

Fragment Sizes 2, 4, 6, 8, 10
key2 3, 5, 7, 9, 11
probe 0.0025, 0.005, 0.0075, 0.01

For each scenario (a scenario consists of a combination of above
mentioned parameters), we keep the probe static and execute 100
simulation runs using randomly generated DNA carrier sequences
and randomly generated payload as well as insertion of payload
fragments during each execution in order to compare the result
with the calculatedprobr . After mutating random nucleotides of the
Target DNA Sequence considering a static probe , we try to retrieve
the payload using the Trojan spyware. The retrieval probability is
the percentage of successful retrievals from the 100 simulations.
The retrieval becomes successful if the payload is not affected by the
probe . Results obtained for the simulated probr are then compared
to probr values calculated using 20 real DNA sequences as carriers.
All are plasmid DNA sequences and the number of nucleotide bases
are 7181, 3781, 8464, 3931, 3956, 3851, 5764, 6106, 5934, 5200, 3015,
6134, 5822, 3504, 3669, 3829, 3725, 10668, and 6706. This will result
in 3000 total number of scenarios.

5 RESULTS AND DISCUSSION
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Figure 6: Nucleotides required to build payload considering
(a) no encryption, (b-d) encryption.

The first result analyses the variations in the Np with respect to
payload hiding using only the first phase of the algorithm (Fig. 6(a),
no encryption, carrier size of 100, Sizef r = 2), both phases (Fig. 6(b),
encryption with key2 = 3, carrier size of 100, Sizef r = 2), and also
for different key2 values (Fig. 6(d), encryption with various key2,
carrier size 100, Sizef r = 2, Sizep = 50) while using both phases
of the algorithm. Fig. 6(c) (encryption with key2 = 3, carrier size
of 100, Sizep = 50) shows that with the increments in Sizef r , the
Np also decreases. This is due to the longer fragment size having
an effect on less number of fragments, which also results in less
number of additional start and end characters, as well as order
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Figure 8: Retrieval probability, with carrier sizes of (a) 100
(b) 200 and (c) 300, where error rate is 0.005

numbers and separators. This means that using large Sizef r is ideal
in order to reduce the number of fragments. We can observe from
the graphs that the second phase encryption process results in a
linear increase of Np . We can also observe that the size increases
further when higher values of key2 are used, which means that a
low key2 value should be used. That means shorter domain names
and smaller port numbers will keep the Np size reasonably low.

As described earlier, the NW Global alignment score (NWscore )
provides us with an idea on how close two sequences are aligned.
Higher scores represents closer alignments between two sequences
and the score depends on the number of pattern matches, as well as
the gaps and number of gap lengths. Our calculated scores are cross
checked using BLAST, a widely renowned tool available online
[2]. Fig. 7 presents the NWscore for different range of parameters.
As long as the payload size increases, the gap will also increase
and small fragment sizes will increase the number of parts (i.e.,
increments in the number of gaps with little increments in the
total gap length will result in few more extra markers and order
number characters). Since encryption will result in an increase
in the nucleotide number, the score will be changed significantly
compared to the non-encrypted payload since the gap size will be
quite large. Therefore, if our objective is to minimize the changes to
the score, we should prefer the non-encryption approachwith larger
fragment size so that the DNA does not change significantly when
comparing the target DNA sequence with the alignment database.

The results shown in Fig. 8 are from our analysis for both ran-
domly generated and real DNA cover sequences. It is clear that the
retrieval probability does not depend on the carrier size, and this
is understandable given that the equations used for the probr does
not consider the Sizec . The retrieval probability depends mainly on
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Figure 9: Correlations between retrieval probability and
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payload, (c) carrier size and (d) fragment size
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Figure 10: Calculated and simulated retrieval probabilities
comparison for error rate (a) 0.0025 (b) 0.005 (c) 0.0075 and
(d) 0.01 using randomly generated carrier.

the Sizep and also varies with the Sizef r , as a higher Sizef r means
a lower Nf r . This is because the lower number of nucleotides for
the payload will result in higher probr . For the encryption, the
probr decreases slightly and is very negligible for increasing value
of key2. Therefore, to ensure higher retrieval probability, we should
select a non-steganography technique. In the case where we have
the flexibility of making a compromise with probr , then it is ap-
propriate to choose the additional steganography technique using
any number of key2 values. However, the payload size should be
as small as possible with higher fragments. Results shown in Fig. 8
are further confirmed by Fig. 9. From Fig. 9 we see that the probr
is highly correlated with the Np for the non-encryption case (See
Fig. 9(d)). Correlation in the number of Np is slightly less for the en-
cryption case (Fig. 9(b)) compared to the non-encryption approach
(Fig. 9(a)). This is because in encryption, the reading errors for many
nucleotides are irrelevant in the sequencer. Correlation with the
carrier DNA size is also very low (Fig. 9(c)), and this is due to the
probr having no dependence on the carrier size.

As we measured retrieval probabilities with respect to various
basecall error probabilities and per scenario basis (where a scenario
is a combination of parameters, e.g. payload size, fragment size, car-
rier size and key2 value if steganography is applied), we compared
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Figure 11: Calculated and simulated retrieval probabilities
comparison for error rate (a) 0.0025 (b) 0.005 (c) 0.0075 and
(d) 0.01 using real carrier

the calculated results for the probr with the simulated results. The
results are shown individually for all of the evaluated scenarios (i.e.
scenario number as the horizontal axis). Fig. 10 shows that the cal-
culated results are very close to the simulated results and it stands
for all four different probe values (Fig. 10(a-d)). This indicates that
the equations are sufficient for estimating the retrieval probabilities
considering parameters as fragment size, payload size, key2 values,
etc.

Fig. 11 shows the results by repeating the experiments using
real DNA sequences and the result is similar to Fig. 10, where the
calculated and simulated probr are quite similar. Similar to the
previous figure, the results are shown individually for all of the
evaluation scenarios. For both real and simulated carriers, we see
repeated patterns (Fig. 10 and Fig. 11). As we have already seen
that probr does not depend on carrier size Sizec , so the pattern
is repeating for each carrier. We find the number of repeats are 5
and 20 times in Fig. 10 and Fig. 11, respectively, as the number of
carriers used is also 5 and 20, respectively.

6 CONCLUSION
We have shown how perpetrators can take advantage of Trojan
spyware in a DNA-sequencing pipeline by triggering it only with
specially engineered DNA sample leaving behind bare minimum
footprints. Reveling such footprints can become more difficult by
applying a state-of-the art steganography technique and that can
allow the spyware more time before a security algorithm traces
the payload inside the target DNA sample. We have shown the
possibility of a successful attack considering error rates from the
sequencer reading process by using both randomly generated and
real DNA samples. In the future, we intend to perform wetlab
experiments to validate the feasibility of such attacks and to perform
an End-to-End evaluation.
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Using deep learning to detect 
digitally encoded DNA trigger 
for Trojan malware in Bio‑Cyber 
attacks
M. S. Islam1*, S. Ivanov1, H. Awan4, J. Drohan3, S. Balasubramaniam2, L. Coffey3, 
S. Kidambi5 & W. Sri‑saan2

This article uses Deep Learning technologies to safeguard DNA sequencing against Bio‑Cyber attacks. 
We consider a hybrid attack scenario where the payload is encoded into a DNA sequence to activate 
a Trojan malware implanted in a software tool used in the sequencing pipeline in order to allow the 
perpetrators to gain control over the resources used in that pipeline during sequence analysis. The 
scenario considered in the paper is based on perpetrators submitting synthetically engineered DNA 
samples that contain digitally encoded IP address and port number of the perpetrator’s machine in 
the DNA. Genetic analysis of the sample’s DNA will decode the address that is used by the software 
Trojan malware to activate and trigger a remote connection. This approach can open up to multiple 
perpetrators to create connections to hijack the DNA sequencing pipeline. As a way of hiding the data, 
the perpetrators can avoid detection by encoding the address to maximise similarity with genuine 
DNAs, which we showed previously. However, in this paper we show how Deep Learning can be used 
to successfully detect and identify the trigger encoded data, in order to protect a DNA sequencing 
pipeline from Trojan attacks. The result shows nearly up to 100% accuracy in detection in such a novel 
Trojan attack scenario even after applying fragmentation encryption and steganography on the 
encoded trigger data. In addition, feasibility of designing and synthesizing encoded DNA for such 
Trojan payloads is validated by a wet lab experiment.

Genetic sequencing has become an essential tool for analyzing numerous DNAs that are used in the field of medi-
cine, agriculture, as well as forensics. Numerous systems have been developed over the years to increase accuracy, 
such as throughput shot-gun sequencing technologies (e.g., vector-borne pathogens detection in  blood1, food 
authentication and food fraud  detection2, or even molecular data to be transported through artificial biologi-
cal  networks3,4). Recent developments in sequencing technology have also been miniaturized to allow mobile 
sequencing and one example is the Minion5. We have recently witnessed the importance of timely sequencing 
from oral samples due to the COVID-19 pandemic, which continues to apply pressure on the health care  system6. 
The clear benefits of expanded COVID-19  testing7 calls for an expansion of the existing testing (e.g.  STEMI8) 
approaches. The importance of sequencing can also be seen in detecting and tracking mutations in other types 
of infectious diseases, where examples include Lassa  Fever9 or other prevalent  pathogens10, such as seasonal  flu11 
or bacterial infections where new strains resistant to existing antibiotics can be  identified12,13.

As the genetic sequencing will inevitably introduce additional pressure on the already overburdened health-
care services, it is likely that the genetic analysis may be outsourced to private sequencing services. Similar 
approaches have already been successfully adopted for other testing programmes (e.g. Cervical Screening Pro-
gramme in  Ireland14). The services will act as an on-demand genetic-testing infrastructure that receives and 
analyses samples on behalf of the hospitals, medical practices and other healthcare organizations. While this 
approach alleviates pressure on the healthcare system, the system is vulnerable to Bio-Cyber  Hacking15.

OPEN

1VistaMilk Research Centre, Walton Institute, South East Technological University, Waterford, Ireland. 2School 
of Computing, University of Nebraska-Lincoln, Lincoln, NE, USA. 3Pharmaceutical and Molecular Biotechnology 
Research Centre, South East Technological University, Waterford, Ireland. 4Munster Technological University, Cork, 
Ireland. 5Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 
USA. *email: sibleeislam@gmail.com



2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9631  | https://doi.org/10.1038/s41598-022-13700-5

www.nature.com/scientificreports/

Our definition of Bio-Cyber Hacking refers to an attack that is hybrid between ICT systems and biological 
mediums. From the ICT system side, we assume that the pipeline of the sequencing service uses a DNA-analysis 
toolbox infected with Trojan Software. Malware, such as a Trojan, can be implanted at the API  levels16, within 
mobile  software17 and even in machine learning  models18. Trojans can also be implanted into  hardwares19–21 of 
computers, as well as IoT  devices22. In our scenario, the Trojan contains an empty slot for the IP address and 
port number for remote connections to an external machine. On the biological side, an attacker encodes the IP 
address and port number into DNA strands. Using DNA-steganography, the attacker devises synthetic DNA 
that contains the payload and still maintains resemblance with natural DNAs. We will explain the process in 
Fig. 1, where we will first explain a sequencing process for normal DNA (steps 1–3) and then explain a hack-
ing situation (steps 4–8). In (Fig. 1 (1–2)), the service uses one of the state-of-the-art sequencing techniques, 
e.g. shotgun sequencing, to analyze DNA materials extracted from each of the samples (e.g. E. coli Plasmid and 
Cellular DNAs). The machine randomly splits DNA molecules into multiple fragments or reads of a predefined 
length, then it concurrently sequences each read to establish its nucleotide structure. The original DNA is then 
assembled from the reads (Fig. 1 (3)). This is a computationally complex process that often involves the use of 
dedicated resources, often called DNA-sequencing  pipeline23. Let us now consider an attack situation. Initially 
the Trojan remains dormant, while the toolbox performs the legitimate DNA-analysis. The trigger sample is 
collected by the hospital (i.e., by swabbing) and sends the samples to the sequencing service for analysis (Fig. 1 
(4)). The samples are then analyzed by the sequencer (Fig. 1 (5)). There the sample is fragmented, sequenced and 
assembled (Fig. 1 (6)). During the assembly, the DNA toolbox retracts the payload and wakes the Trojan (Fig. 1 
(7)), and this happens is when the DNA sample that contains the web address and port number of a remote 
server controlled by the attacker is detected by the digital DNA data that is passed from the sequencer to the 
computer that contains the DNA-analysis toolbox infected with the Trojan. The Trojan establishes a connection 
with the remote server (Fig. 1 (8)), where the Trojan either opens a cyber backdoor, transfers files, or executes 
commands from the attacker. Either of these actions presents a substantial threat to the integrity of DNA-analysis 
and patient diagnostics.

In this article, we develop a solution that is complementary to the existing general-purpose techniques. The 
solution builds on our previous work that only focused on steganography techniques to hide IP address and port 
numbers into DNA  strands24 and investigates the use of input control (Fig. 1 (9)) as a countermeasure to the 
Trojan Bio-Cyber attacks. The input control is an intermediary between the DNA-sequencer and the pipeline. 
With the help of a specially designed and trained Deep Neural Network (DNN), the control assesses each DNA 
read generated by the sequencer to establish whether the read comes from a trigger sample. Absence of suspicious 
reads assures cybersafety of further DNA-assembly, but a detection of a trigger sample terminates its further 
processing. This prevents activation of the Trojan software and limits the pipeline’s exposure. In recent times, 
there is a lot of interest in the use of deep learning for malware  detection25,26,27. Deep learning techniques are also 
applied to Trojan  detection19,28 in conventional cyber attacks. To the best of our knowledge exploiting the Buffer 
overflow vulnerability in DNA sequencing pipeline using a specially designed DNA was first demonstrated  in15. 
To detect DNA sequences containing the payloads for buffer overflow exploit, we proposed Case-based Reasoning 
(CBR)24, where we found that such payloads results in sequences that are quite different from the DNA sequences 
which are naturally available. Moreover, we investigated the recovery rate of the DNA sequences containing the 
malicious payloads that was inserted into bacteria after spraying them on various types of surfaces. In another 
article we have shown how a Trojan Attack is possible in a DNA sequencing  pipeline29, but the possibility of 
creating such sequence was not validated by conducting any wet lab experiments or detecting the trigger, which 
is what we have investigated in this work. In both of our previous work, we did not consider keeping the natural 
appearance of the DNA while designing the payload to make the detection harder. In this article we improved 
our algorithm of making the payload harder to detect and proposed a CNN based detection technique.

Figure 2 illustrates the construction of the payload that is embedded into a DNA sequence, and in this specific 
example we focus on a bacterial plasmid. We re-designed the construction of the payloads to make it similar to 

Figure 1.  Hybrid Trojan Bio-Cyber Hacking Attack. Steps 1–3 indicate a typical genetic sequencing operation 
for patients. Steps 4–6 indicate a situation where a hacker has embedded their IP address and Port number into 
a DNA that will trigger a remote connection from a Trojan-horse infected software tool leading to a connection 
to the attacker in Step 8. Our proposed approach utilizes Deep-Learning to detect Trojan payload in digital data 
using encoded into DNA strands that can prevent the attack. (The image is drawn using draw.io).
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a natural DNA sequence in order to increase detection difficulty. The construction of the DNA is based on the 
sequence used  in29.

Methods
In this section, various terms used in the article will be defined and then the steganography techniques will be 
described, which is applied on the payload used for malicious activities as a means of secrecy of operations. Fol-
lowing that we will describe the injection method of the payload into a host DNA. This is followed up with the 
description of the deep learning model proposed as a detection method to counter the Trojan attacks.

Trojan payload. The payload DNA for triggering the Trojan malware will be encoded into a DNA sequence 
and will be referred simply as ‘payload’ in the rest of the article. The payload will be hidden inside a longer DNA 
string, which is considered as ‘host DNA’. In order to prevent detection, the content of the payload will be first 

Figure 2.  Trojan Bio-Cyber Hacking: Payload Preparation and Attack Scenario example using DNA plasmids. 
(a) A Trojan payload (using encryption and steganography) is encoded into a DNA sequence which is developed 
and inserted into the plasmid DNA. Antibiotic resistant gene sequences will also be inserted into the plasmid 
DNA in a similar way. (b) The DNA plasmid and the bacteria will be transferred into rich media so that the 
bacteria can uptake these  plasmids24. Bacteria resistant to the antibiotic will survive and be transferred into a 
spray. (c) The bacteria can now be sprayed on hands or gloves and provided to a third party which can collect 
samples (from hand or gloves). The third party will then send these samples to the company for sequencing. 
When the sequence will be processed by the tools having the Trojan, it will be activated to perform the malicious 
activities. (The image is drawn using draw.io).
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divided into smaller parts and then encoded into smaller DNA sequences, which will be called as ‘fragments’ and 
this process will be known as ‘fragmentation’. The fragments can be inserted in a random order and at random 
positions of the host DNA. Substitution technique, i.e., replacing a nucleotide of the host DNA with a nucleotide 
of the payload DNA or fragment DNA (if fragmentation is applied), is considered as an insertion technique. 
‘Retention’ is the process of skipping a particular number of nucleotide positions of the host DNA to substitute 
by the nucleotide of the encoded/fragment DNA while performing the insertion. Both encryption and retention 
will be considered when steganography is applied, where the encryption process will be performed before the 
retention. The details of the processes including encryption will be described in the subsequent sections of the 
article. After completing the insertion process, the obtained DNA string is considered as the ‘resultant DNA’.

In general the host DNA string will be significantly larger compared to the encoded DNA for the payload. 
Therefore, the Trojan software needs to perform processes such as identifying those fragments, applying decryp-
tion and decoding techniques before merging and rearranging them in order to activate the malware process 
to trigger the hacking operation. As a result, the Trojan software should apply these processes to integrate the 
substrings to create the full DNA string as an additional task beside performing its normal functional tasks. 
The caveat of such an approach is that the computational complexity will be significantly high and the Trojan 
software might be under suspicion straight away as it will take significantly higher time and consume higher 
memory. To prevent this suspicious behaviour, the Trojan software will need to efficiently determine the location 
to perform decryption and decoding and this will be achieved through ‘tags’. The tags are tiny snippets of chosen 
DNA sequences that indicate the start and end of the fragments that will be searched by the Trojan software, and 
we refer to this process as ‘tagging’.

One of the critical challenges in packaging the Trojan payload is the delivery system which can act as the car-
rier for the DNA materials. To this extent, liposomes and lipid-based nanoparticles have been extensively used 
for targeted gene delivery to various coordinates. Liposomes, also referred to as vesicles, are extremely versatile 
carriers that have been studied and utilized extensively for drug delivery applications including gene and mRNA 
due to their ease of creation, large protective hydrophilic inner cavity for encapsulation, high degree of freedom 
for exterior customization, and controllable drug release kinetics. Recent success of mRNA vaccines for COVID 
is attributed to such lipid based platforms as a delivery vehicle for mRNA. These can be extended to packaging 
the Trojan payload to enhance the stability of the DNA and also establish targeting capabilities to target specific 
locations for Cyber-hacking. Furthermore, there are innovative and robust platforms that can integrate these 
lipid nanoparticles embedded within substrate and matrix based on polymer based films that can control the 
release of these Trojan payloads and extend their  stability30. Also this platform can also facilitate hiding these 
Trojan payloads from detection and embed multiple payloads. This platform provides ways to transport the 
Trojan Payload into the targeted region beyond security measures by embedding them into entities including 
clothes, skins, pens or papers as examples.

Steganography. In this article we consider a scenario where the perpetrator encodes the attack details 
(i.e., web address and port number) into a DNA, which are used as a trigger sample. To avoid the detection of 
this sample and cover the identity of the attacker, the encoding uses an extension of the DNA Steganography 
technique proposed  in29.

The extended steganography technique proposed in this article has five steps and this includes fragmentation, 
encryption, encoding, tagging and retention. First, the web address and port number injected into the DNA are 
divided into fragments of a predefined length. Since each fragment is shorter than the original address, this will 
increase the difficulty in the detection process post injection. Next, the binary of the fragment is XOR-encrypted 
using a predefined key. This is followed up by encoding with four basic nucleotides, i.e., “00” bit-pairs are encoded 
as “A”, “01” as “C”, “10” as “G” and “11” as “T”. The ACTG-encoding (represent four nucleic acids, which are 
Adenine, Cytosine, Thymine and Guanine) is enclosed in the nucleotide brackets where the ACTG tags mark 
the beginning and the end of the injection within the DNA. These tags are selected so that the natural DNAs are 
unlikely to include both the start and end tags separated by a number of nucleotides that is required to encode a 
malicious fragment. The tags need to be sufficiently short in order to reduce the footprint of the injected fragment 
as well as increase the similarity with the host DNA and avoid detection. Finally, the retention stage expands 
the result of the tagging using the symbol “*” (see Eq. 1). The expansion is performed in a way that a predefined 
number of retention symbols is inserted between each of the two consecutive nucleotides. The positions of the 
retention symbol determine that the nucleotides of the host DNA will remain unchanged as a result of the mali-
cious code injection. Thus, for a retention number equal to 2, only the first of each 3 consecutive nucleotides of 
the host DNA will be replaced. The second and third nucleotides will remain unchanged. This is done to increase 
the similarity between DNA of the trigger sample and the host DNA.

Injection methods. In this article we consider substitution as the preferred method of injecting the Trojan 
payload into the host DNA. Consider the case when the Trojan payload dload (with encoded nucleotides and 
retention symbol “*” after applying encryption and steganography as described above) is injected into the DNA, 
dhost , at position i . The result of the injection will present a nucleotide string inj , having the length equal to the 
length of dload . The length of the dhost and dload strings is determined by a function called len , which reflects 
the number of characters in both strings. The nucleotide at position j ∈ [0, len(dhost)) of inj will be the inser-
tion position i and based on dload

[
j
]
 . If the value of j does not fall between the range required for the injection 

position, which is from i to i + len(dload)− 1 as this location is required for the payload injection, then the 
actual nucleotide of host dhost

[

j
]

 will be used, i.e. inj
[

j
]

= dhost
[
j
]
 . Otherwise, the value of  inj

[

j
]

 will depend on 
dload

[

j − i
]

, since the value 
[

j − i
]

 determines the index of the dload  and this has to be considered when it starts 
from 0 (for the very first substitution point j = i ) up to len(dload)− 1 . If the dload

[

j − i
]

 contains a retention 
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symbol “*”, i.e. (dload [j−i] == “*” then inj
[
j
]
= dhost

[
j
]
 (this means the original nucleotide is used for retention) 

otherwise inj
[
j
]
= dload

[
j − i

]
 . This substitution procedure can be defined as:

We define elementary domain domELM that consists of all the possible positions for a Trojan payload injec-
tion. Naturally, such a substitution can be carried out only from the position i onwards and is represented as:

which is referred to as the injection domain and refers to the indices (i.e., values of i  ) of dhost . We use 
inj(dhost , dload , i) to denote the substitutions in domELM . Similarly, to denote the substitutions carried out on 
subdomain dom ⊂ domELM , we use injdom(dhost , dload , i) . This subdomain introduces additional restrictions 
that may be required to preserve particular areas within the host DNA. Figure 3 presents the five stages/steps 
involved in the DNA steganography technique used in this article.

Note that in this article we only consider payloads that consist of a web address (represented by a Tiny URL) 
and port number of a remote server controlled by the attacker (For payloads used in the analysis, please see: 
https:// bitbu cket. org/ sible eislam/ bio- cyber- hacki ng). The payload has the following semantics:

< prefix : character string > . < suffix : character string > :< port number :string of digits > 
As mentioned above, the fragmentation (Fig. 3a) is the first stage of the DNA steganography. First, the pay-

load is rearranged so that the address prefix is followed by the port number and then the address suffix. This 
representation allows the reduction in the auxiliary “.” and “:” characters from the payload, and therefore, size 
reduction of the entire payload. Subsequently, the rearranged payload is divided into fragments, substrings of a 
predefined length (e.g. 2 characters as shown in Fig. 3). Each of the fragments is attached with its serial number 
as a prefix. As only tiny URLs are used in the tojoan payload address, we assume that no more than 16 fragments 
can be formed. If we want to consider a web address with subdomains then the top level domain will be the suffix 
and the rest of the part of the domain name will be the prefix.

The next step after frangementation is encryption, where each fragment is encrypted and nucleotide-encoded 
as illustrated in Fig. 3b. At this stage, the fragment is represented as a bit-array where the first 4 bits represent the 
fragment’s serial number, followed by a series of 8-bit representations of fragment characters. Each character is 
represented by the binary of its ASCII code. The bit-array is then XOR encrypted using a predefined key (e.g. 60 
as depicted in Fig. 3b). This results in a sequence of bit-pairs, which are then encoded into nucleotides strings 
that represent the DNA.

The next step after encryption is encoding as shown in Fig. 3c. The nucleotide-encoding of the fragment is 
attached with a start and end tag as prefix and suffix, respectively. The resultant string is then expanded so that a 
predefined amount of retention symbols is added between each two consecutive nucleotides (e.g., 2 symbols as 
in Fig. 3c). The expanded string is then injected into the host DNA using MaxNW procedure, which is described 
next.

MaxNW technique. Needleman-Wunsch, or NW score is one of the most popular methods to assess the 
similarity between two DNA samples. This score considers the string-based nucleotide representation of the 
DNA molecules and calculates the number of symbol substitutions, gaps (i.e., symbol insertion or deletion) and 

(1)inj
�

j
�

=







dhost
�

j
�

if j < i or j ≥ i + len(dload),
dhost

�

j
�

if j ∈ [i, i + len(dload)) and dload
�

j − i
�

= “ ∗ ”,

dload
�

j − i
�

if j ∈ [i, i + len(dload)) and dload
�

j − i
�

∈ {A,C,T ,G}.

(2)domELM = [0, len(dhost)− len(dload)+ 1],

Figure 3.  DNA Steganography, Workflow: (a) payload fragmentation, (b) fragment encryption and encoding, 
(c) tagging, retention and host injection. (The image is drawn using draw.io).
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their expansions (i.e., continuation of gaps) required to align two strings. Depending on the circumstances, a 
specific penalty system is applied to each of the operations as well as matches between DNA nucleotides. The 
system is constructed in a way to favor certain alignment patterns. As in the experiments performed in this 
work, injecting payload typically constitutes not more than 10% of the host DNA string size, therefore we use 
PAM10 substitution scoring  matrix31 as the cost matrix for nucleotide substitution. Following this methodology 
outlined  in32, we set the costs for the gap opening and extension to 15.79 and 1.29 for the PAM10 substitution, 
respectively.

In this article, we use NW scores to measure the similarity between dhost and inj(dhost , dload , i) . Based on the 
penalties defined above, the NW score increases as similarity between dhost and inj(dhost , dload , i) increases and 
reaches its maximum if dhost and inj(dhost , dload , i) are equal. In other words, the injected payload fits into the 
dhost naturally at position i . Lets assume the NW score is maximum when the insertion position (the value of i ) 
is imax . To emulate the attacker, the malware NW score, MaxNWdom , is defined as:

where

when multiple payloads for malicious activity injections Dload =
{

dload,1, . . . , dload,n
}

 are introduced into the 
same host DNA, dynamic programing is used to determine the optimal positions for the injections. The technique 
employs a recursive procedure, where at each step the best insertion is sought amongst all possible positions. So, 
initially inj(dhost , dload , i) and domELM are considered for the substitution and the domain for the substitutions for 
each of the payloads. Then the injection position of the payload having maximum NW Score will be considered 
for that particular payload injection and that portion of the injection will be restricted for further injections. 
For further steps, the subdomain dom and injection for subdomain injdom(dhost , dload , i) will be considered as 
the restriction is applied. Lets assume, the maximum NW Score and the indices considering subdomain are 
MaxNWdom∗ and , i∗ respectively. The injection process will be repeated until all the payloads are injected. Thus, 
this recursive procedure can be described as:

where

Deep learning. Various machine learning algorithms and even regular expression based classification tech-
niques might be useful to detect the presence of trigger samples in the DNA sequence as the tags will express 
a pattern. However, the tag will be unknown to the detection subsystem and the number of available tags will 
grow exponentially with the number of nucleotides used for the tags (please see Fig. 5a). Therefore, a machine 
learning algorithm will be a better option as the regular expression will need to consider a huge number of pos-
sible tags. Again, a big challenge of machine learning algorithms (e.g. Random Forest Support Vector Machine, 
K nearest Neighbors etc.) is feature extraction and feature selection. Very large number of features can be applied 
using these techniques. The success of the prediction technique mainly depends on finding appropriate feature 
extraction and feature selection  techniques33. To extract the feature, Natural Language Processing (NLP)33 is 
applied to a DNA sequence or DNA is considered as a time series or genomic signal and then signal processing 
techniques like Discrete Fourier Transform (DFT)34 and Discrete Wavelet Transform (DWT)35 are applied. RNN 
is good for sequential data or time series data and also where the context, especially the previous classification, 
is  important33. In our classification problem, each classification is independent. However, it is interesting to see 
how to feed the sequence and get intermediate classifications in the hidden layer and then get the final classifica-
tion. On the other hand, in CNN the convolutional layers part of the architecture does the feature extraction 
and selection for us and the flat layers followed by the convolutional layers does the  classifications33,36. This is the 
reason we have selected the use of CNN. In this article, we use a 1-Dimensional Convolutional Neural Networks 
(1D CNNs) to identify the Trojan payload within the natural DNAs. This section will provide a brief overview 
of the CNNs we utilized for this work. An overview of various Deep Learning methods, including CNNs, used 
in genetics analysis can be found  in37.

Figure 4 depicts the typical architecture of a 1D CNN. Similar to any other neural network, the 1D CNN 
consists of neurons organized in layers. The architecture proposed in this article uses the following layers: input, 
convolution, pooling, and dense.

The first layer represents the input of the network. Here, each of the DNA sequences’ classification is trans-
formed into the set of primary features, i.e., inputs of the network. Each nucleotide of the DNA is represented 
by a vector of 5 boolean indicator values. The first 4 values indicate whether the nucleotide are found to be 
equal, whereas the 5th value indicates whether the nucleotide can be determined (i.e. N—undetermined). As 
an example, A-nucleotides of the DNA will be represented by (1,0,0,0,0) indicator vectors, C-nucleotides will 
be represented by (0,1,0,0,0), and undetermined nucleotides will be represented by (0,0,0,0,1). To formulate the 
primary features of the entire DNA, indicator vectors for all its nucleotides are concatenated in the order of the 
pattern that is found in the original DNA.

The input layer is followed by a number of CONV1D layers as shown in Fig. 4. At each layer, multiple filters are 
applied to the kernels of a particular size. The resultant product is then subjected to ReLU activation. CONV1D 

(3)MaxNWdom(dhost , dload) = inj(dhost , dload , imax),

(4)imax = Arg
(

maxi∈domNW
(

dhost , inj(dhost , dload , i)
))

.

(5)MaxNWdom(dhost ,Dload) = MaxNWdom∗

(

MaxNWdom

(

dhost , dload,i∗
)

,Dload/dload,i∗
)

,

(6)i∗ = Arg
(

maxj∈[0,len(Dload))NWdom

(

dhost , dload,j
))

.
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layers are followed by 1 MaxPool, one dense layer with ReLU activation function, and finally 2-neuron SoftMAX 
layer, the output of which provides the certainty of the sample to be determined if it contains the address infor-
mation. In this article, we consider networks with varying numbers of CONV1D layers, the size of their kernel 
and the number of filters used. We also investigated the impact of the kernel size of the MaxPool layer and the 
size of the ReLU dense layer. Each network is trained for 3000 epochs using 75% of all available DNA samples. 
The remaining 25% of the samples are used to test the performance of the trained network.

Results and discussion
For the Trojan infected softwares, the secrecy of operation is of paramount importance. The longer the Trojan 
remains undetected, the more extensive the damage it can cause. For the Bio-Cyber hacking attack considered in 
this article, it is of vital importance for the attacker to maintain a natural appearance of the trigger sample con-
taining the address details. If we use an unnatural DNA structure as a part of the hybrid attack it can be flagged 
as suspicious not only by the detection method proposed in this article, but also by the similar less sophisticated 
versions of this system proposed in previous  works24.

In this section we begin the discussion by evaluating the possible actions of an attacker to design a natural 
trigger sample. We follow this up by investigating the accuracy with which these trigger samples can be detected 
by a CNN. Finally, we describe the wet lab experiments that were used to produce the DNA with the address, in 
order to validate the potential of creating such a DNA sequence that is used as the trigger sample for our attack.

Trigger sample design. For this article we propose the use of E. coli plasmids that will encode the address 
of the attacker. Escherichia coli bacteria have been sufficiently studied in literature and their plasmids can be 
synthesized and modified with relative ease. Once the attacker identifies a suitable DNA structure, E. coli plas-

Figure 4.  1-Dimensional Convolutional Neural Network (1D CNN): Architecture. (The image is drawn using 
draw.io).

Figure 5.  Trigger Sample Design with the use of DNA-Steganography: (a) nucleotide tag selection; (b) the 
impact of fragmentation.
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mids can be readily synthesized in various laboratories across the globe such as EuroFins Genomics and Twist 
BioScience24. In this section, we present the design of the plasmid DNAs that contains the Trojan payload that 
will maintain the original E. coli plasmids sequence. Specifically, we evaluate the use of DNA steganography (as 
described in the Methodology section) for injecting the address payload into an E. coli plasmid (host) DNA to 
maximize similarity between the resultant inj and host DNAs dhost.

This evaluation requires 1000 bps reads randomly sampled from the plasmid DNAs made available via 
AddGene repository. The sampling serves two purposes. First, it mimics the operation of a DNA-sequencer 
(e.g., Roche 454 FLX + 38) that may be specifically targeted by the attacker. In this case, a higher number of DNA-
reads produced by the sequencer (i.e., 700–1000 bps) will provide better cover for the Trojan address payload 
and, thus, increase the chances for the hybrid attack to be successful. Secondly, the sampling can significantly 
increase the amount of DNA-data used in the evaluation, where we draw 4356 reads from 716 E. coli plasmid 
DNAs stored in the AddGene repository.

Since the steganography technique has five key steps, the encoding step is fixed and cannot be varied, but the 
attacker is free to finetune the tagging, fragmentation, encoding, retention, and encryption steps. In Fig. 5 we 
show the impact of different parameter combinations, e.g. size of the fragment, number of retention positions, 
and value of the encryption keys.

Figure 5a depicts the relationship between the length of nucleotide tags and their availability. The tags mark 
the start and the end of the Trojan payload injections into a plasmid DNA. These tags that mark the start and the 
end of the Trojan payload are two potentially different nucleotide sequences of the same length. The sequences 
are selected in a manner that a host DNA is unlikely to include both tags separated by nucleotides. Note that 
the number of these nucleotides are obtained directly from the fragment size and the retention (i.e. retention of 
host nucleotides) parameters of the steganography technique. The results in Fig. 5a correspond to various values 
of these two parameters. From these results we learn that a predictable growth of tag availability is associated 
with the increase in tag length. As the number of all possible nucleotide sequences grows exponentially, it can 
overcome the number of unique sequences in genuine DNA reads for 4-nucleotide tags. We also realize that 
any further increase in the tag length (i.e., 5 and beyond) will make the number of unique sequences negligible, 
leaving the attacker with ample choice of nucleotide tags. The strength of this effect is such that it can be seen for 
all fragment sizes and retention values. As a result of this observation, we use a minimum 5-nucleotide tags for 
the remainder of this article as this is the lowest length that allows for the substantive tag availability.

In Fig. 5b we study the impact of the fragment size selection on the similarity between the host DNA before 
and after the injection of Trojan payload. This similarity is assessed by using Needleman-Wunsch (NW) scores 
(described in Methodology). The system is designed in such a way that the Needleman-Wunsch score grows as 
the similarity between the two DNAs increases. The value of this score is absolute maximum (i.e. MaxNW) when 
either the DNAs are identical, or the Trojan payload address is inserted into the host DNA naturally. Since due 
to tagging this is not possible we use the maximum (i.e. the NW score between host the DNA and itself) value 
to benchmark the score reduction due to the payload injection. Furthermore, in order to ensure the optimal 
payload injection, the steganography uses MaxNW technique (described in Methodology). To demonstrate the 
efficiency of this technique, Fig. 5b presents a comparison of performance with two alternative techniques, i.e., 
Random and MinNW. Random technique injects the payload at an arbitrary position through uniform distribu-
tion, whereas MinNW is a dynamic programming technique that seeks the worst possible injection position for 
a payload. This means that MinNW is a mirror-image of MaxNW which can minimize the score between the 
host and injected DNAs. This phenomenon is reflected in Fig. 5b, where MaxNW results in significantly lower 
score reduction compared to MinNW, whereas the score reductions by Random technique lies approximately in 
the middle of those produced by MaxNW and MinNW. From this we conclude that the MaxNW and MinNW 
techniques can show the whole range of score reductions that may occur due to payload injections. This also 
reaffirms that MaxNW is the best technique amongst all three possible techniques. In addition, a closer inspection 
of the results for the MaxNW technique also clarifies the impact of payload fragmentation. We realize that using 
a larger fragment size in the host DNA can effectively reduce the similarity between the host and injected DNAs.

Next in Fig. 5a,b we investigate the impact of different retention as well as encryption choices of the attacker. 
The results are presented only for MaxNW which is the optimal injection technique we have selected. For both 
the retention of host nucleotides or payload encryption, we realize that there is no significant effect on the NW 
score. In particular Fig. 6a shows no change in the NW score reduction can be attributed to different retention 
numbers for various fragment sizes for payload encrypted with a key equal to 50. Figure 6b shows similar results, 
where payload fragments of 1 and 5 characters are injected using 1 and 5 retention numbers. For this case, we also 
observe no change in the NW scores when encription keys are utilized. Based on these results, we can conclude 
that neither retention nor encryption are likely to disguise the trigger sample. Although we note that neither of 
these two steps can help the payload appear more naturally, however they still remain an essential part of the 
steganography process. This is because these steps play a key role in maintaining the anonymity of the attacker as 
they are designed to protect the payload (i.e. network address and port number), which may identify the attacker. 
For the case when a trigger sample is identified, the retraction of the payload will require knowledge of both the 
retention number and the encryption key used by the attacker.

DNN detection accuracy. The DNA sequences of 716 E. coli plasmid DNAs are collected from the 
AddGene repository using web scraping. The Selenium Webdriver is used to crawl and collect the pages con-
taining the DNA sequences. The page was parsed using a python script to get and store the DNA sequences. In 
total, 4356 reads with read size of 1000 were drawn from the DNA sequences.

Although the natural appearance of the trigger sample is necessary to disguise the hybrid attack and avoid 
detection by less sophisticated methods (e.g. NW comparison with known DNAs), the Trojan payload address 
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injection may still be discoverable with the help of other techniques. In this section, we will explore this by evalu-
ating the detection of trigger samples using a state-of-the-art Deep Learning approach. From 4356 reads, where 
the read size is 1000 nucleotide bases, 1000 reads are picked randomly. These are clean or natural samples. 1000 
web addresses were considered for creating the malicious samples. A web address is rearranged, fragmented and 
then expressed as nucleotides and then inserted into the clean sample using the substitution method and using 
the technique described in the “Injection Methods” subsection in “Methods” section based on best NW Scores. 
The whole process is repeated 10 times to create 10 datasets. The idea is to execute 10 CNN model training and 
evaluations and take the average. However, if we consider 5 different fragmentations, 5 retentions and 5 encryp-
tions then for all combinations it will be a huge number of evaluations. Furthermore, for the hyperparameter 
optimization there will be more scenarios to consider. Therefore, for every scenario we combine all 10 clean 
datasets into one and 10 malicious datasets into one. From 10,000 clean and 10,000 malicious data we pick 7500 
(75%) data randomly from each as training dataset and remaining 2500 (25%) data from each as testing dataset. 
For training the model using the training dataset, we take a batch size of 100 at a time. We run the training for 
3000 epochs with a learning rate of 0.001. In each epoch, 10 percent of the training data was used for validation, 
so that we can examine the learning (accuracy and loss comparison for training and validation over epochs) to 
avoid overfitting. Moreover, after every layer a dropout layer is also added to avoid the overfitting. Early stop 
monitoring is also used to avoid unnecessary continuation of the model training if it is reached to its optimal 
accuracy. The trained model is then evaluated by the corresponding test dataset. We achieve this by investigating 
the performance of a 1-Dimensional Convolutional Neural Networks (CNN). The results in Fig. 7a,b summarize 
the performance of various CNNs topologies with respect to the four hyper-parameters considered in this article. 
This includes, (i) the number of hidden layers (1 and 2), (ii) the sizes of the filter (4, 8 and 16), (iii) size of the 
kernel (3, 5 and 8), and (iv) size of the maxpool (2 and 4) used in the network. The results are then obtained for 
trigger samples obtained from natural DNA using 0-retention and no payload encryption. This means that we 
can establish a baseline predictive capacity of CNNs and determine the most suitable network topology. This 
suitable topology is then further tested to evaluate the ability to cope with additional uncertainties introduced 
by nucleotide retention and payload encryption.

For this purpose, we simulated 180 scenarios for 36 combinations of hyper parameters and for 5 different 
fragment sizes, with no retention and no encryption. We obtain the best accuracy (99.9–100%) for all 5 frag-
ment sizes when we have 1 hidden layer, kernel size 16, 16 filters and 4 × 4 max pool size (Fig. 7a). Similarly, we 
obtain the best accuracy for the case we have an additional layer (2 hidden layers), 16 filters, kernel size 5 and 4 
× 4 max pool (Fig. 7b). These features are mainly learned by the kernel, so larger kernels and higher number of 
filters result in achieving the best accuracy. However, in this article we prefer to use a smaller number of required 
hidden layers to increase the execution time performance. Therefore, for the rest of the experiment we consider 
the CNN topology with 1 hidden layer, kernel size 16,16 filters and 4 × 4 max pool.

Next in Fig. 8 we analyze the impact of the fragment size, retention values and encryption on the Trojan 
address detection. In particular, Fig. 8a presents the detection accuracy for the highest and lowest fragment size 
values (1 and 5), and all the retention numbers (1–5), when no encryptions are applied. We made an assumption 

Figure 6.  Trigger Sample Design, the use of DNA-Steganography: (a) retention of host nucleotides; (b) payload 
encryption.
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that if we split the payload into an increasing number of fragments it will be relatively easy to escape the detec-
tion. In such a case it will be comparably difficult to locate the complete Trojan payload address and, therefore, 
be relatively harder to make sense out of a more tinier part of the payload. Furthermore, as shown and explained 
in the previous section (Fig. 6a,b), the DNA sequences remain much more natural for smaller fragment sizes. 
Based on this knowledge, a potential hacker might prefer to choose a smaller fragment size. However in reality 
this approach will leave more tags as low fragment size translates to increase in number of tags. Therefore, this 

Figure 7.  DNN-based detection of trigger samples amongst genuine E. coli plasmids: hyper-parameter 
optimization (no encryption or retention) using (a) 1 and (b) 2 hidden layers.

Figure 8.  DNN-based detection of trigger samples amongst genuine E. coli plasmids: the impact of nucleotide 
retention (a) without encryption and (b) with encryption and with prior knowledge of the encryption key. 
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approach can support the CNN model, which can learn from the tag patterns and the result in Fig. 8a illustrates 
this.

On the other hand, in a real world scenario it will be a significant challenge to design an optimal model which 
can account for many variations of tags. Interestingly, we observe that for higher fragment sizes, the accuracies 
deteriorate very slightly until there is a higher retention number as well (Fig. 8a). This indicates that the model 
proposed in the article does not completely rely on learning the tag patterns. Furthermore, the higher retention 
number means more number of nucleotides (from the original sequence inside the tags) which will result in 
more variations and harder detection. However, we note that for fragment size 1 the accuracies are very high 
for all retention numbers. Overall, the accuracies start to deteriorate significantly for the higher fragment sizes 
with higher retention numbers (Fig. 8a). To analyze the impact of encryption on the Trojan address payload 
detection, we consider fragment size 1 with no retention and retention size 1 as we obtain the best accuracy for 
these options. We apply encryptions with various key values (keyǫ{10, 20, 30, 40, 50}) . In Fig. 8b, the results show 
that there is no significant change in accuracy when applying various encryption keys. Please note that both the 
training and test data are using the same key value for encryption.

We will now further analyze the impact of encryption in detection. In Fig. 9 we present the detection accu-
racies where the rojan payload address in the test data is encrypted with a different key. The model is trained 
with a particular key which is tested by all the data encrypted by the remaining keys. For example, the model 
trained by the data encrypted using key = 10 will be tested by all the test data that are encrypted by other keys, 
i.e. keys = {20, 30, 40, 50}. Similarly, the model for key value 20 will be tested by all the test data encrypted by the 
keys = {10, 30, 40, 50}. In Fig. 9 we plot the average accuracy against the different key values used for training 
the model. From this result, we conclude that a higher accuracy can be achieved for encrypted payloads without 
retention even if the key is unknown. However, the accuracy will deteriorate if we apply retention along with 
encryption. This is because the higher retention will result in the DNA sequence having a more natural pattern, 
which makes it more difficult to detect.

Wet lab experiments. In the previous sections of this article, we have described how we can disguise the 
address payload for a Trojan attack to make the payload insert indistinguishable compared to a natural DNA 
sequence. Furthermore, applying encryption and steganography techniques will make it harder to detect the 
hybrid Trojan attack. However, it is also important to address how practical it is to synthesize such a DNA 
sequence. In our wet-lab, we constructed the Trojan payload sequences both without and with encryption and 
steganography (Figs.  A.1 and A.2) via commercial gene synthesis with ease. These sequences were prepared 
and received already ligated into bacterial plasmid vector. These plasmids, pNOSTEG and pSTEG, were easily 
cloned into E. coli cells, propagated and purified in abundance (Fig. A.3). The Trojan payloads in both plasmids 
were both DNA sequenced completely and with 100% accuracy, with a sample chromatogram from pNOSTEG 
shown in Fig. A.4. We can assume that constructing natural DNA sequences will be easier and more achievable 
compared to synthesizing artificial DNA with unnatural sequences, due to possible runs and repeats of DNA 
bases that may cause problems in the synthesis reaction. As a result, there will be a need to construct a DNA that 
can allow multiple fragment inserts with the target information of the IP address and port number of the remote 
hacker’s machine. With various techniques emerging for generating, producing or inserting multiple DNA 
sequences into carrier or expression systems, e.g., in-fusion cloning, gene assembly or multiple fragment clon-
ing, hackers can bypass any gene synthesis issues by using a combination of these techniques to generate their 
final Trojan attack sequence. As such, our work presents valuable detection against very feasible attack scenarios.

Data availability
All data used in the manuscript are available in the Addgene repository (https:// www. addge ne. org/), where the 
DNA sequences of type plasmid of E. coli bacteria are collected for our experiments using web scraping. This 
data is also available as a supplementary document (all_plasmid_dna.txt). The Programming code developed to 

Figure 9.  DNN-based detection of trigger samples amongst genuine E. coli plasmids: the impact of nucleotide 
retention, no knowledge of the encryption key.
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conduct the experiments (also the scripts for the data collection from Addgene) is freely available in the publicly 
available git repository at the following URL: https:// github. com/ sible eislam/ trojan- malwa re- in- bio- cyber- attac 
ks. For any further query related to data availability please contact using the email of the primary author (siblee-
islam@gmail.com) of the manuscript.
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