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Abstract

Artificial Intelligence (AI) has become a cornerstone of modern technological ad-

vancements, deeply intertwined with neuroscience and transforming into an essential

part of daily life. AI has reshaped various industries, enhancing problem-solving ca-

pabilities and impacting societal norms. Originally inspired by the brain’s functions,

such as neurons and synapses, AI has continually integrated neuroscience findings

to improve systems’ sophistication and efficiency. This includes understanding brain

plasticity and neuronal communication. Moreover, as AI has progressed, the focus

has expanded from conventional neural networks to exploring neuromorphic archi-

tectures, including both silicon-based and biological systems, to enhance hardware-

based AI solutions.

Although the integration of AI with silicon-based computing has significantly

transformed society by enhancing efficiency and automating tasks across various

sectors with minimal human input, this combination faces challenges such as high en-

ergy demands, complexity, adaptability, and biocompatibility. Therefore, this thesis

explores the potential of bacteria as a living biocomputing platform. It begins with a

macroscopic examination of bacterial communities’ collective behaviors and compu-

tational dynamics at the biome and population levels, which provides insights into

their information processing, decision-making, and communication strategies. The

focus then shifts to the single-cell level, specifically on the gene regulatory network

(GRN) that drives bacterial computation. This investigation into the GRN reveals

the cellular logic behind bacterial computing and paves the way for evaluating the
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reliability, energy efficiency, and practicality of bacterial systems for computational

tasks like regression and classification. Highlighting the ultra-low energy dynamics

of bacterial metabolism offers a solution to the energy limitations of silicon-based

systems. Furthermore, the scalability, adaptability, and biocompatibility of bacte-

rial populations address challenges in generalizing biological systems. The thesis

aims to integrate these biological computing properties into conventional computing

challenges, envisioning a transformative approach to AI and neuromorphic engineer-

ing through bacteria-based wet-neuromorphic systems, which could blend biological

and computational intelligence.
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Chapter 1

Introduction

The inception of Artificial Intelligence (AI) was significantly inspired by the intrinsic

mechanisms of the brain, including neurons, synapses, and neural circuits [1]. This

inspiration stems from a desire to emulate the brain’s remarkable capabilities in

problem-solving, learning, and memory. As AI has evolved, the field has continued

to draw from neuroscience, incorporating insights on brain plasticity, the complex

structure of dendrites, and the ways neurons communicate through electrical and

chemical signals. The interplay between AI and neuroscience not only enhances our

understanding of human cognition but also propels AI towards more sophisticated

and versatile systems, capable of tackling tasks with better efficiency.

The significance of AI in society with its deep-rooted connection to neuroscience

has formed one of the foundational pillars of the modern era’s technological ad-

vancements. This has led the transition of AI from a fascinating concept to a cru-

cial component of our daily lives, reshaping industries, enhancing problem-solving

capabilities, and significantly impacting societal norms [2]. This, in turn, led to

groundbreaking applications that are vital for numerous sectors including, manufac-

turing, automobile, finance and healthcare [3, 4].

With the expansion of conventional Neural Networks (NNs) as the most crucial

subset of AI, researchers have started exploring the potential of hardware-based sys-
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CHAPTER 1. INTRODUCTION

tems, specifically neuromorphic architectures. However, this thesis extends beyond

merely silicon-based solutions, encompassing biological entities as well, including

brain organoids and in particular cells like bacteria.

1.1 Background and Motivation

This section lays the groundwork and rationale for the research conducted in this

thesis. It begins by delving into the evolution of AI technologies in Section 1.1.1.

Next, Section 1.1.2, highlights the importance of innovative approaches that inte-

grate contemporary AI with attributes such as energy efficiency, biocompatibility,

and generalizability setting the stage for the thesis’s central premise. Finally, Section

1.1.3 focuses on the paradigm shift towards neuromorphic computing.

1.1.1 Evolution of Neural Approaches to AI

The genesis of NNs and AI can be traced back to the mid-20th century, driven by

the ambition to emulate the information-processing capabilities of biological systems.

The seminal work during this period started with the McCullock-Pitts neuron model

in 1943 [5], introducing a basic computational view of neurons, followed by the

establishment of Hebbian learning as the first rule for updating NNs in 1949 [6],

and notably, the introduction of the perceptron by Frank Rosenblatt in 1958 [7, 8].

These milestones were pivotal in laying the groundwork for the evolution of AI.

Dendrites
(Inputs)

Axon

Nucleus ...

Output

Input

Figure 1.1: Illustration of the fundamental idea of the perceptron.

The artificial perceptron operates on the principle of simulating the basic func-
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CHAPTER 1. INTRODUCTION

tionality of a biological neuron, by aggregating input signals, applying weights to

signify the strength of each input, and then passing the sum through an activation

function to generate a binary output, analogous to the neuron’s firing mechanism

as shown in Fig. 1.1.

As the discipline advanced, NN models encompass diverse network structures,

activation functions, learning strategies, and information propagation techniques.

Additionally, this growth began to emphasize on aspects such as energy efficiency

and biocompatibility and that led to drastic improvements of both software and

hardware, showcasing the evolutionary journey of AI from conceptual foundations

to the sophisticated architectures of today.

Figure 1.2: Illustration of the evolution of AI technologies.

A notable advancement in the field is the increasing complexity of NN architec-

tures. In contrast to simpler models, a deeper NN architecture comprising multiple

layers of neurons stacked together was designed and introduced [9], where each layer

progressively reduces the feature set while transforming the data into a more abstract

representation, facilitating the extraction of complex patterns and features essential

for various deep-learning applications. In comparison to Frank Rosenblatt’s simple

single-layer perceptron model, the architectural complexity of NNs has dramatically

evolved to this day, culminating in models such as GPT-4, which boasts up to 1.7
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CHAPTER 1. INTRODUCTION

trillion parameters. This evolution is depicted in Fig.1.2.

The following list explains each step of the timeline briefly.

• 1943: The introduction of McCullock-Pitts model of neuron [5].

• 1949: Hebbian learning as the first rule for updating NNs [6].

• 1958: The idea of the perceptron was established [7, 8].

• 1980s: Advent of the Backpropagation algorithm, enabling the training

of multi-layer perceptrons and deepening NN architectures [10].

• 1981: Neuromorphic computing began with Caltech’s creation of analog sili-

con retina and cochlea devices, inspired by neural paradigms.

• 1989: Birth of Convolutional Neural Networks (CNNs) with the LeNet

architecture, designed for image recognition tasks [11].

• Late 1990s: Introduction of Recurrent Neural Networks (RNNs), en-

hancing the processing of sequential data [12].

• Late 1994: DNA computing was first proposed by Leonard Adleman, through

his Science article ”Molecular Computations of Solutions to Combinatorial

Problems” published in November 1994 [13].

• 1997: Emergence of Long Short-Term Memory (LSTM) networks, a

variant of RNNs, tackling the challenge of learning long-term dependencies

[14].

• 2013: Introduced engineered synthetic analog gene circuits can perform com-

plex computational functions within living cells [15].

• 2017: Introduction of the Transformer model, revolutionizing natural lan-

guage processing with attention mechanisms [16].

4



CHAPTER 1. INTRODUCTION

• 2018: Introduction of GPT-1 and subsequent iterations, marking significant

advancements in NN capabilities and applications [17].

• 2019: The concept of tinyML, introduced in 2019, revolutionized the field of

machine learning by enabling the deployment of advanced models on highly

resource-constrained devices [18].

• 2022: DishBrain employs human and mouse brain cells, utilizing a micro-

electrode array as the interface, to learn playing the game Pong [19].

• 2022: Development of synthetic neuromorphic system using Escherichia coli

cell [20].

• 2023: An AI hardware development leveraging the adaptive reservoir compu-

tation capabilities of biological neural networks within a brain organoid [21].

Each of these milestones not only showcases the evolving complexity and capa-

bilities of NNs but also reflects the expanding diversity of applications they enable.

However, the determination of the number of layers, their types (e.g., convo-

lutional, recurrent), connections between nodes and other parameters is a crucial

task that requires extensive expertise. The Network Architecture Search (NAS)

is a cutting-edge field in machine learning focuses on automating the discovery of

architectures that maximize performance omitting the traditional trial-and-error

approach. The development of NAS techniques demonstrated that reinforcement

learning could identify high-performing architectures [22, 23], while Real et al. [24]

showed that evolutionary strategies also offer similar potential. By leveraging these

techniques, NAS has the potential to uncover innovative NN designs that outperform

manually engineered models, significantly advancing the field of AI which further

influence the methodology of this thesis.

However, three significant deviations from this base timeline can be observed

with the introduction of neuromorphic computing, DNA computing, and organoid
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computing. Neuromorphic computing refers to a hardware-based platform that mim-

ics the neural networks of the human brain. DNA computing views DNA as a

fundamental unit of computation, leveraging its biological processes for comput-

ing tasks. Organoid computing involves the use of biological organoids, such as

brain organoids and proteonoids, for computational purposes. The convergence of

neuromorphic and DNA computing represents a transformative step in synthetic

biology, leading to the exploitation of cells that operate on neuromorphic principles.

Neuromorphic computing, emphasizes efficient, parallel processing with low power

consumption, while DNA computing utilizes the molecular properties of DNA for

data storage and complex computations. This integration enables the development

of living cells that can perform intricate computations and adapt in real-time, with

applications ranging from medical diagnostics to environmental monitoring. Syn-

thetic biology further leverages living cells to perform human-defined computations,

often using the ”genetic circuit” metaphor similar to silicon-based computers [25].

The immense potential of these advancements to revolutionize biological and com-

putational problem-solving is one motivation for this thesis.

1.1.2 Drive Towards Energy-Efficient and Sustainable AI

The drive towards energy-efficient and sustainable AI is motivated by the need

to minimize the substantial energy demands of current AI systems’ training and

operational phases. For example, training a single expansive language model, such

as ChatGPT-3, can utilize as much as 10 gigawatt-hours (GWh) of power, while

processing hundreds of millions of daily queries may incur operational energy costs

of approximately 1 GWh each day [26]. In contrast, the human brain consumes only

about 20W to perform computations at the rate of 1 exaFLOPS (estimated), in

stark contrast to a supercomputer, which requires approximately 21 MW to achieve

the same computational performance [27]. The following compares the energy use

or production of various computational entities, ranging from biological brains to
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complex simulations, providing a comprehensive overview of the differences in energy

requirements among natural systems and computational models of varying scales.

Description Energy Consumption (Watt)
Mouse brain 1 × 10−3

Human brain 2 × 101

Laptop 1 × 102

Mouse cortex section simulation 1 × 105

Mouse brain simulation, scaled 1 × 107

Human brain simulation, scaled 1 × 109

Chat GPT model training 1 × 109

Mouse brain simulation, scaled & time corrected 1 × 1011

Human brain simulation, scaled & time corrected 1 × 1015

8 million human brains, scaled & time corrected 1 × 1020

Table 1.1: Energy consumption comparison [26, 27, 28].

TinyML is an advancement towards energy-efficient AI, focusing on deploying

machine learning algorithms on low-power microcontrollers. This approach enables

several key capabilities, such as supporting energy-harvesting edge devices to run

learning models efficiently, using battery-operated embedded edge devices, and of-

fering scalability to accommodate numerous sensors in cost-effective embedded de-

vices. TinyML models are also compact enough to be stored within a few kilobytes

of on-device RAM.

TinyML works by optimizing machine learning algorithms to operate within the

hardware constraints of microcontrollers, which typically have limited processing

power, memory, and energy availability. Techniques such as model quantization,

pruning, and efficient data handling help adapt models to run effectively in such

environments. The use of specialized frameworks like TensorFlow Lite for Micro-

controllers allows developers to compress models without significant loss in perfor-

mance, enabling the execution of tasks like sensor data analysis, speech recognition,

and anomaly detection on low-power devices[29, 30].

Further, in this pursuit of energy-efficient and sustainable AI, neuromorphic sys-

tems emerge as a promising solution, drawing inspiration from the efficiency of the

human brain [31, 32]. These systems process through specialized hardware that sim-
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ulates neurons and synapses [33], thereby significantly reducing power consumption

compared to traditional computing architectures.

Techniques beyond tinyML and neuromorphic computing include model prun-

ing, quantization, knowledge distillation, and low-rank factorization. Model pruning

removes redundant weights or neurons, reducing model size and computational load

while maintaining accuracy. Quantization reduces parameter precision, typically

converting 32-bit to 8-bit, which decreases memory use and speeds up computation

with minimal performance loss. Knowledge distillation trains a smaller model (stu-

dent) to mimic a larger model (teacher), retaining much of the performance while

reducing complexity. Low-rank factorization approximates weight matrices using

lower-rank versions, reducing parameters and computational requirements, particu-

larly in CNNs.

However, challenges including maintaining accuracy during extreme compression,

improving training efficiency, and minimizing model size and energy consumption

remain. Addressing these is crucial for scalable, efficient AI deployment.

1.1.3 Paradigm Shift Towards Neuromorphic Computing

As AI continues to evolve, a paradigm shift is necessitated by the current challenges

in AI, such as the high energy consumption of training large NNs and the need

for more intuitive, context-aware processing. Neuromorphic computing, with its

potential for low-power operation and real-time learning and adaptation, could lead

to the development of AI that is not only more powerful but also more integrated

with the natural environment. Key characteristics of neuromorphic computing can

be elaborated as follows,

• High parallelizability: Neuromorphic computers operate on an inherently

parallel architecture, allowing neurons and synapses to function simultane-

ously, yet the computations they perform are relatively simple compared to

those in parallelized von Neumann systems.
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• In memory computing: Neuromorphic hardware eliminates the traditional

separation between processing and memory, blending these functions within

neurons and synapses that both process information and store values. This

integration mitigates the von Neumann bottleneck, which slows down through-

put due to processor-memory separation, and reduces energy consumption by

avoiding frequent data accesses from main memory typical in conventional

computing systems.

• Event-driven computating: Neuromorphic computers utilize event-driven

computation, where neurons and synapses are activated only in the presence of

data, specifically spikes, and rely on temporally sparse activity. This approach

enables highly efficient computation as work is performed only when necessary,

and spikes, the primary data events in these networks, occur infrequently.

Examples of this transformative approach include IBM’s TrueNorth and Intel’s

Loihi, which represent significant steps toward realizing brain-like processing capa-

bilities, demonstrating the ability to perform complex computations more efficiently.

Conversely, researchers have developed biocomputing approaches including brain

organoids and proteinoids as alternatives to silicon-based neuromorphic systems,

• Brain organoids

Brain organoids present a pioneering approach in the development of neu-

romorphic systems using biological neural networks, simulating the brain’s

structural and functional complexities on a microscale. These 3D cellular

models emulate specific aspects of the human brain’s architecture, offering a

dynamic platform for studying NNs and computational strategies inherent to

brain function [34, 35, 36]. The application of brain organoids in neuromor-

phic computing involves leveraging their biological fidelity to understand and

replicate neural processing mechanisms, potentially leading to advancements
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in AI that are closer to human cognitive capabilities.

• Proteinoids Proteinoids, synthesized polymers resembling natural proteins,

represent an innovative frontier in neuromorphic systems, venturing beyond

traditional silicon-based approaches. These polymers offer a unique platform

for simulating neural functions, leveraging the inherent properties of proteins

for information processing and storage. The advantage of proteinoids lies in

their biomimetic properties, allowing for the creation of systems that more

closely replicate the biological processes of neural tissue, potentially leading

to advances in computing power and efficiency [37, 38].

However, integrating proteinoids and brain organoids into functional computing

systems introduces complexities, including the challenge of interfacing biological

and electronic components effectively. Moreover, the stability and scalability of

these systems under varying environmental conditions remain concerns.

Focusing on these challenges, the next section explores bacterial cells as promis-

ing candidates for biocomputing.

1.1.4 Bacteria for Biocomputing

Bacterial cells exhibit astonishing sensitivity to their environment, processing infor-

mation through gene expression, engaging in complex communication with neighbor-

ing cells, and interacting with other extracellular entities. This intricate network of

sensing, information processing, and actuation bears a resemblance to the workings

of a neuromorphic computing system.

Sensing

Bacteria possess remarkable abilities to detect external stimuli and initiate a di-

verse array of responses [39, 40]. They interpret external signals, which encompass

molecules communicated by other microbes, as well as fluctuations in environmental
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Figure 1.3: Abstraction of the bacterial biocomputing components.

conditions such as temperature or pH levels [41]. By continuously monitoring these

extracellular cues, bacterial cells adjust their gene expression in response, leading to

the regulated production of proteins [42].

Bacterial cells possess the capability to detect a variety of environmental signals,

such as,

• Nutrients: Bacteria can detect sugars, amino acids, and other essential nu-

trients, which helps them to find food sources for growth and survival. Sensing

nutrients allows bacteria to move towards favorable environments through pro-

cesses like chemotaxis [43].

• Toxic Compounds: The ability to sense harmful chemicals or antibiotics

enables bacteria to avoid or neutralize threats, contributing to their resilience

in hostile environments [44].

• Quorum Sensing Molecules (Autoinducers): These molecules are used

by bacteria to communicate with each other, coordinating activities such as

biofilm formation, virulence, and resistance mechanisms. Quorum sensing is

critical for bacterial communities to function as a collective, rather than as

individual cells [45].

• pH Levels: Sensing acidity or alkalinity allows bacteria to maintain internal

pH homeostasis and adapt to or colonize different environments, which is vital

for their metabolic processes [46].
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• Temperature: Bacteria can sense changes in temperature, enabling them to

seek out optimal conditions for growth or to induce stress responses that may

protect them from heat or cold shock [47].

• Metal Ions: The ability to sense concentrations of various metal ions, such

as iron, is crucial for bacterial nutrient acquisition and regulation of metal

homeostasis, impacting their growth and pathogenicity [48].

• Light (Phototaxis): Some bacteria can sense light, enabling them to move

towards or away from light sources, which can be important for photosynthetic

bacteria or those using light as a cue for environmental changes [49].

Communication

Bacteria inhabit virtually all environments, existing within complex ecosystems

where they interact with one another. From the standpoint of MC, these bacterial

communities form intricate networks of communication, with individual bacteria

functioning as transmitters, receivers, or both. For instance, P. aeruginosa features

three distinct Quorum Sensing (QS) systems—Las, Rhl, and PQS (Pseudomonas

Quinolone Signal)—dedicated to communication. The signaling molecules utilized

include 3-oxo-C12-HSL in the Las system, C4-HSL in the Rhl system, and 2-heptyl-

3-hydroxy-4(1H)-quinolone (HHQ) in the PQS system [50, 51, 52]. Analogously, the

functional roles and behaviors of bacterial cells in these networks can be likened

to various electronic components utilized in silicon-based technology networks, un-

derscoring the sophisticated nature of bacterial communication. These sensing and

communication capabilities are crucial for bacteria to understand and adapt to their

environment, a key aspect explored in this thesis.
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Gene Expression

Bacterial cells meticulously monitor extracellular conditions to regulate gene expres-

sion and, consequently, protein synthesis. This regulatory mechanism is highly com-

plex and consists of a multitude of elements such as mRNA, activators, repressors,

the genetic information encoded within DNA, RNA polymerase, and protein-binding

sites [53, 54, 55]. This sophisticated process steers cellular behavior to enhance sur-

vival, often likened to a form of decision-making. Moreover, it can be viewed as a

chemical-based computational activity, processed through the intricate pathways of

the GRN. Within this network, numerous molecular signals are transduced, leading

to gene expressions in both parallel and sequential fashions. These operations are

orchestrated by genetic circuits, which can comprise anywhere from about 100 to

over 11,000 genes, depending on the organism. For instance, Sorangium cellulosum

strain So0157-2 is noted for possessing the largest known genome in this context [56]

[57].

To summarize, the inherent computing capabilities of bacterial cells, such as

their sophisticated sensing, intricate communication networks, and regulated gene

expression, make them viable candidates for biocomputing. These cells exhibit a

remarkable ability to process information and adapt to their environments through

biochemical interactions, resembling the principles of neuromorphic computing sys-

tems. The exploration of these capabilities underscores the potential of bacteria to

revolutionize biocomputing, offering a sustainable and efficient alternative to tradi-

tional silicon-based technologies.

1.2 Research Scope of the Thesis

This section outlines the scope of the doctoral research detailed in this thesis. It

begins with Section 1.2.1, which highlights the challenges associated with contempo-

rary silicon-based computing systems, setting the stage for the main research focus.
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Following this, Section 1.2.2 delineates the research objectives, providing a clear

roadmap for the investigation undertaken.

1.2.1 Challenges

The intertwining of AI with silicon-based computing has marked a significant soci-

etal shift, revolutionizing industries and embedding efficiencies into our daily lives,

propelling advancements across numerous sectors, automating tasks and enhanc-

ing decision-making with minimal human input. Despite these strides, the union

of AI and silicon technology faces challenges, including energy demands and bio-

compatibility. In addition, existing biocomputing platforms exhibit better energy

efficiency and biocompatibility, but the generalizability is limited. Additionally, the

dependence on silicon highlights the need for alternative innovations toward global

sustainability goals.

Therefore, this section is dedicated to examining some of the crucial challenges

associated with existing AI methodologies, as outlined below:

• C1: Energy efficiency and physical scale - One of the paramount chal-

lenges facing the field of AI systems today concerns their energy efficiency and

physical scalability. Traditional AI systems, particularly those based on sili-

con computing architectures, consume significant amounts of power, especially

as they scale up to handle complex tasks and larger datasets. This not only

poses sustainability concerns but also limits the practical deployment of AI

solutions in energy-sensitive environments. On the other hand, neuromorphic

systems, designed to emulate the brain’s energy efficiency and computational

prowess, offer a promising avenue for reducing energy consumption. However,

the physical realization of such systems at a scale that matches or exceeds the

capabilities of current AI technologies remains a significant technical hurdle.

The challenge lies in designing neuromorphic hardware that can operate at

the low power levels characteristic of the human brain while still delivering
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the computational speed and capacity required for advanced AI applications.

Overcoming these limitations in energy efficiency and physical scalability is

crucial for the next leap forward in AI and neuromorphic computing, paving

the way for more sustainable, powerful, and widely applicable cognitive com-

puting solutions.

• C2: Biocompatibility - The biocompatibility of silicon technologies

presents a notable challenge, particularly as the integration of electronic de-

vices with biological systems becomes increasingly desirable for medical and

research applications. Silicon, the cornerstone of contemporary electronics,

poses several biocompatibility issues that complicate the deployment of silicon-

based devices in long-term implants or sensors intended for monitoring or ther-

apeutic purposes within the human or animal body. While silicon’s electrical

properties and manufacturability have made it a material of choice in the

electronics industry, its integration into biologically interactive applications

necessitates careful consideration. This is especially the case if we consider

interactions with living tissues. Addressing these biocompatibility challenges

is essential for advancing silicon technologies in biomedical fields, requiring

innovative approaches to materials science and device engineering to ensure

both the functionality and safety of silicon-based bioelectronic systems.

• C3: Generalizable Biocomputing - The generalizability of biocomputing

approaches stands as a formidable challenge within the realm of computa-

tional biology and bioinformatics. Biocomputing integrates biological prin-

ciples with computational techniques to solve general computing, inherently

faces the hurdle of transferring findings and methodologies across different

biological systems and scales. Biocomputing addresses a range of problems,

including computationally hard problems using biological substrates. Exam-

ples include temporal computing with brain organoids, where electrical sig-
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nals serve as inputs and outputs; bacterial computing, where metabolites are

inputs and phenotypes are outputs; and using slime mold to find optimum

routes. Inputs for biocomputing can include biological data like DNA se-

quences or metabolic profiles, while outputs are predictions, simulations, or

optimized solutions. These models can be trained using both conventional

and unconventional methods. For example, brain organoids adapt to stimuli

using their plasticity, while bacterial computing involves offline model train-

ing followed by engineering genetic circuits. However, these approaches face

many limitations when it comes to generalizability due to immense diversity

of biological organisms and the complexity of biological processes, which can

vary significantly even within the same species. The ability to create models

and algorithms that are universally applicable or at least broadly generaliz-

able across various computing tasks is a critical yet difficult objective. This

difficulty is compounded by the necessity to accurately model the intricate,

nonlinear interactions within biological systems, which often involve a level of

detail and specificity that resists straightforward generalization. Overcoming

these challenges is essential for the advancement of biocomputing, as it seeks

not only to provide insights into specific biological phenomena but also to

develop tools and approaches that have wide applicability.

1.2.2 Research Objectives

In response to the multifaceted challenges in silicon-based technologies including

contemporary AI and neuromorphic systems, and other biocomputing systems em-

phasized in Section 1.2.1, this thesis investigates the potential of bacteria as a wet-

neuromorphic solution.

The concept of leveraging bacteria as computing systems presents a fascinat-

ing yet challenging frontier in the realm of biocomputing. Despite the intriguing

computational capabilities demonstrated by bacterial communities, such as infor-
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mation processing, decision-making, and network communication, there remains a

significant gap in our understanding of the underlying mechanisms that enable these

biological processes. This lack of comprehension presents considerable challenges in

harnessing bacteria for practical computing applications. The inherent limitations

in predictability, reliability, and control over bacterial computing processes further

compound these obstacles. Unlike traditional silicon-based systems, where behavior

can be precisely defined and outcomes reliably predicted, bacterial systems operate

with a level of stochasticity and environmental sensitivity that can be difficult to

model and harness. Moreover, the unique properties of bacterial natural computing,

such as the ability to adapt and evolve over time, while advantageous in biological

contexts, introduce variables that challenge the consistency and repeatability re-

quired of conventional computing systems. Consequently, while the potential for

using bacteria as a basis for computing systems opens up exciting possibilities for

bio-inspired computing architectures, the path forward is hindered by our incom-

plete understanding of their internal natural computing capabilities. Addressing

these knowledge gaps and developing methods to reliably integrate and control bac-

terial computing activities are crucial steps toward realizing the full potential of

bacterial systems in computing applications.

This thesis seeks to harness the inherent computing capabilities of bacterial sys-

tems, viewing them not just as biological entities but as components in a living,

bio-computational network. Initially, understanding the collective behaviors and

computational dynamics at the biome and population levels provides insights into

how bacterial communities process information, make decisions, and communicate.

This macroscopic perspective sets the stage for a deeper investigation into the com-

putational properties at the single-cell level, focusing on the GRN as the fundamental

mechanism driving bacterial computation.

By examining the GRN, we delve into the cellular logic that underpins bacterial

decision-making and information processing, revealing a complex, yet potentially
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harnessable system for computing tasks. This thesis paves the way for assessing

the reliability, energy efficiency, and practical applicability of bacterial systems for

general computing tasks, such as regression and classification. The unique energy

dynamics of bacterial metabolism offer a model for ultra-low-energy computing, ad-

dressing one of the critical limitations of silicon-based systems. Moreover, the inher-

ent scalability and adaptability of bacterial populations, coupled with their natural

biocompatibility, present a solution to the challenges of genaralizability with biolog-

ical systems. By translating these biological computing properties into a framework

that can be applied to conventional computing challenges, the vision of bacteria-

based wet-neuromorphic computing systems holds the promise of revolutionizing

our approach to AI and neuromorphic engineering, offering a symbiotic blend of

biological and computational intelligence.

Therefore, this thesis is structured around three core research questions designed

to thoroughly investigate the inherent computing capabilities of bacterial cells as

explained below. These questions specifically focus on natural communication pro-

cesses, gene regulation-based cellular functions, and their potential applications from

a computing perspective, exploring how these biological mechanisms can be har-

nessed for advanced biocomputing solutions.

• RQ 1: How can communication of bacterial multi-species computing

be used to understand population network structures? The research

question investigates the intricate communication mechanisms within bacte-

rial ecosystems and how these interactions shape the overall network dynamics.

Bacteria naturally thrive in diverse ecosystems, engaging in complex commu-

nication through molecular signaling, and cross-feeding. These signaling pro-

cesses allow bacteria to detect and respond to environmental cues and signals

from other bacterial cells or different cell types. This MC facilitates a co-

ordinated response, enabling bacterial communities to adapt their metabolic

activities to optimize survival and function within their environment. By
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studying these interactions, researchers aim to understand how bacterial pop-

ulations self-organize into network structures, maintaining ecological balance

and resilience.

When bacteria alter their metabolic activities in response to environmental

signals, it leads to compositional changes within the ecosystem, thereby in-

fluencing the community’s collective behavior. This dynamic adaptation not

only optimizes resource utilization but also enhances the community’s abil-

ity to withstand environmental stresses. The study of multi-species bacterial

communication can reveal how these alterations in metabolic activities drive

the formation of complex population network structures. Understanding these

principles can also provide valuable applications in biotechnology, medicine,

and environmental management by harnessing the natural adaptability and

resilience of bacterial ecosystems.

• RQ 2: Can gene regulation networks be used to discover artificial

neural networks for biocomputing? Observations of bacterial metabolic

activities and adaptations at the network structure level suggest a complex

computational behavior originating at the single-cell level. To explore this

phenomenon further, the second research question is formulated.

Bacteria exhibit natural computing abilities through their gene expression pro-

cesses, where GRNs function as intricate, complex graph networks. These

networks manage gene activity in response to various stimuli, effectively pro-

cessing information in a manner akin to computational systems. This thesis

aims to harness the inherent computing capabilities of bacteria by using their

GRNs to infer and operate artificial NN for biocomputing purposes.

This approach involves using bacterial cells themselves as the hardware for

biocomputing, capitalizing on their natural regulatory mechanisms to perform

computational tasks. The goal of this RQ is to create a biocomputing frame-
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work where bacterial cells act as non-silicon processors, potentially leading to

revolutionary advances in computing efficiency, biocompatibility and general-

izability.

• RQ 3: How can the bacterial computing diversity be expanded by

exploiting cellular plasticity? This thesis focuses on harnessing the inher-

ent computing abilities of bacteria without genetically engineering the cells.

To fully exploit these capabilities, it is essential to evaluate the generalizability

of bacterial computing. As previously discussed, specific GRN sub-networks

can perform designated computational tasks. However, to achieve a broader

range of computing functions, it is necessary to expand the search space for

these GRN sub-networks. This approach involves identifying and utilizing

the natural variability and adaptability of bacterial cells, known as cellular

plasticity, to increase the diversity of computational tasks they can perform.

Cellular plasticity refers to the ability of bacterial cells to adapt and reconfig-

ure their gene expression profiles in response to different environmental con-

ditions and stimuli. By studying and exploiting this plasticity, the RQ aims

to identify a wider array of GRN sub-networks capable of performing diverse

computing tasks. This approach not only enhances the computing diversity of

bacterial cells but also leverages their inherent flexibility, making it possible to

develop robust biocomputing systems that can dynamically adjust to different

computational needs without the need for genetic modifications.

• RQ 4: Can mathematical and pattern recognition applications be

realized through bacterial neural networks? Bacterial gene expression

responds intricately to environmental conditions, creating a rich dataset of bio-

logical responses that can be analyzed and modeled mathematically. This RQ

aims to identify specific mathematical functions from these gene expression

patterns that can be harnessed to perform generic regression computing. By
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decoding how bacterial GRNs respond to varying stimuli, it is possible to con-

struct mathematical models that predict outcomes based on input conditions,

effectively utilizing bacteria’s natural computational processes for regression

tasks.

Additionally, this research question investigates the bacterial cell’s potential

to recognize and classify complex patterns within data, akin to how artificial

neural networks operate. By studying the gene expression responses and regu-

latory mechanisms, the RQ seeks to develop biocomputing framwork that can

perform pattern recognition tasks.

Ultimately, this research aims to demonstrate that bacterial neural networks

can be effectively utilized for both mathematical regression and pattern recog-

nition, providing a novel and bio-inspired approach to computational problem-

solving.

• RQ 5: What search algorithms can be developed to discover nat-

ural GRNN for biocomputing applications? Bacterial GRNs exhibit

event-driven computing properties due to the specificity of gene regulation in

response to environmental stimuli. The question lies with identifying rele-

vant sub-networks within the larger GRN that can effectively perform desired

computational tasks.

To address this challenge, this RQ focuses on developing search algorithms

capable of extracting functional sub-networks from the full GRN. These sub-

networks are critical as they pinpoint the chemical inputs and outputs neces-

sary for executing bacterial computing processes.

1.3 Summary

The contemporary computing faces observable limitations, particularly in areas

where energy efficiency (C 1) and biocompatibility (C 2) are crucial. While biocom-
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puting approaches show promise in addressing these challenges, effectively tackling

both energy conservation and compatibility, they still grapple with the issue of gener-

alizability (C 3). This remains a significant hurdle, as achieving broad applicability

across various contexts without compromising performance.

In summary, thesis explores the potential of bacterial cells for biocomputing by

addressing several key research questions. Firstly, it investigates how communica-

tion within multi-species bacterial communities can elucidate population network

structures and optimize computing responses to environmental changes (RQ 1).

Secondly, it examines whether bacterial gene regulation networks can be used to de-

velop a novel bacterial biocomputing concept, leveraging their natural computational

capabilities (RQ 2). Thirdly, it explores how cellular plasticity can be harnessed

to expand the diversity of bacterial computing tasks, enhancing the generalizability

and adaptability of biocomputing systems without genetic modifications (RQ 3).

Fourthly, it seeks to determine if mathematical regression and pattern recognition

tasks can be realized through bacterial neural networks by analyzing their complex

gene expression patterns (RQ 4). Lastly, the research aims to design algorithms for

extracting specific sub-networks from bacterial gene regulatory networks to identify

key chemical inputs and outputs for effective bacterial computing (RQ 5). To-

gether, these questions form a comprehensive investigation into the capabilities and

applications of bacterial cells as natural computing units.

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 introduces the biolog-

ical background and the state-of-the-art laying the foundation for biocomputing

approaches. Next, Chapter 3 discusses methodologies used for the studies in this

report starting from the designing of simulation tools/computational models to an-

alytical models. Chapters 5 to 10 present publications associated with this thesis.
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State-of-the-art

As this thesis focuses on introducing bacteria as a novel wet-neuromorphic com-

puting platform, this chapter discusses state-of-the-art biocomputing solutions. Ini-

tially, Section 2.1 presents an overview of biocomputing, mainly focusing on DNA

Computing (Section 2.1.1) and organoid intelligence(Section 2.2.1). Next, Section

2.3 is dedicated to one of the key approaches of biocomputing, which is Bacterial

computing as it is the focal point of this thesis. This section discusses state-of-

the-art methods that use consortia (Section 2.3.1) of cells and whole-cell computing

(Section 2.3.2). Finally, section 2.4 summarizes the key insights of biocomputing

and current challenges that need further attention.

2.1 Overview of Biocomputing

Biological components exhibit an extraordinary ratio of computing power to physi-

cal scale and energy efficiency. This was exemplified in 2013 when it took the world’s

fourth-largest supercomputer 40 minutes to simulate merely 1 second of 1% of hu-

man brain activity [58]. Additionally, the brain’s storage capacity is estimated at

about 2,500 terabytes owing to its 86–100 billion neurons forming over a quadrillion

(more than 1015) synaptic connections, showcasing the immense computational and

storage capabilities inherent in biological systems [27]. Consequently, researchers are
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blending biology with computer science to harness biological mechanisms for com-

putational tasks, leading to the burgeoning field of biocomputing. Prominent among

these approaches are those that leverage DNA, proteins, and cells for generic comput-

ing tasks. These methods provide significant benefits over conventional silicon-based

computing, particularly in terms of energy efficiency, biocompatibility and parallel

processing capabilities.

2.1.1 DNA Computing

DNA computing has been a revolutionary research field under the domain of bio-

computing for decades [59, 13, 60, 61]. Similarly to binary data encoded using zeros

and ones, DNA strands are encoded with four nucleotides (A, T, C, G), offering

a unique method of data storage. These nucleotides are positioned every 0.35 nm

along the DNA, enabling an extraordinary data density of one bit per cubic nanome-

ter, allowing for the storage of approximately 455 billion GB of data per gram [62].

DNA’s base pair complementarity introduces two essential computing elements: (1)

a processing unit comprising enzymes that can manipulate DNA through actions like

cutting, copying, and pasting, and (2) a storage unit within the sequences of the

DNA strands themselves. This setup allows DNA computing to execute operations

in parallel across multiple DNA strands, significantly enhancing its computational

power. Notably, DNA replication in bacteria can occur at a rate of approximately

500 base pairs per second, far surpassing the replication speed in human cells and

effectively translating to a data processing rate of about 1000 bits per second. With

multiple replication enzymes working concurrently, this rate can exponentially in-

crease, reaching up to 1 terabits per second after 30 replication cycles, showcasing

the immense potential for memory capacity and parallel processing in DNA com-

puting [63].

Utilizing the well-established programmability of DNA fueled by base sequence

designing capabilities, one innovative DNA system termed as DNA droplets was de-
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veloped in 2023. This approach combines the dynamic, fluid-like properties with the

computing capabilities of DNA creating a hybrid approach that facilitates in pow-

erful designing tool for intelligent and dynamic cell-like machinery [64]. Another

highlighted achievement is by Elowitz and Liebler, who engineered an E. coli strain

with a synthetic network that causes it to oscillate, producing green fluorescent

protein in periodic cycles [65]. Later, Gardner and colleagues constructed a ge-

netic toggle switch in bacteria, capable of flipping between stable states in response

to specific chemical or thermal stimuli [66], Furthermore, using DNA’s computing

principles, researchers have designed automata [67], logic circuits [68, 69], neural

networks [70] and DNA-based programmable gate arrays [71], showcasing their ca-

pability in molecular information processing and the creation of synthetic intelligent

devices.

It is important to note that DNA computing approaches significantly depend on

genetic engineering techniques resulting in a range of limitations. The scalability and

integration are key issues, where adding more genetic circuits increases metabolic

load and can cause unforeseen interactions, leading to system inefficiencies. Stability

and robustness are also concerns, as genetic mutations and environmental factors

can alter circuit functions, affecting consistency and reliability. Containment and

biosafety risks arise from the potential environmental release of genetically modified

organisms, necessitating robust containment measures and regulatory compliance.

Furthermore, the complexity of designing predictable genetic circuits is compounded

by biological noise and the intricate interactions within cellular systems, making the

design process both complex and resource-intensive.
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2.2 Wet-Neuromorphic Systems

2.2.1 Organoid Intelligence

Organoid Intelligence (OI) is a pioneering approach in biocomputing, using brain

organoids derived from human stem cells to mimic learning and memory functions.

This field seeks to blend bioengineering with scientific advancements within an ethi-

cal framework, potentially surpassing silicon-based computing in efficiency and pro-

cessing power [27].

One interesting example is the “DishBrain”, a revolutionary system that con-

nects biological neural networks (BNNs) with silicon technology, using neurons’

natural electrical communication. It grows cortical cells from rodent embryos on

microelectrode arrays in a nutrient-dense setup for extended periods. DishBrain

operates in a closed-loop feedback system, dynamically interacting with neural cul-

tures by “reading” and “writing” sensory data, allowing neural actions to influence

sensory inputs in real-time. This setup is designed to study learning effects in BNNs

within a virtual environment. An early experiment with DishBrain successfully sim-

ulated the arcade game “Pong” using inputs across eight electrodes, demonstrating

its foundational capabilities [19].

Another fascinating study introduces “Brainoware”, an AI hardware utilizing 3D

biological neural networks from mature human brain organoids as a dynamic, living

network for computing. It processes information through spatiotemporal electrical

stimulation on a multielectrode array, demonstrating learning abilities and handling

complex tasks like solving non-linear equations. Employing human brain organoids

for dynamic, unsupervised learning and feature engineering, it effectively turns tem-

poral inputs into computational solutions with its unique physical reservoir traits,

such as nonlinear dynamics and spatial processing [35].

On the contrary, there are a few key challenges associated with organoid com-

puting that can be identified. Keeping the organoid alive is a critical challenge that
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requires developing advanced artificial blood vessels that can deliver the required nu-

trients. Further, the natural brain comprises various types of cells, that are vital for

enhanced learning and memory capacities. Adopting this diversity with cell types

like oligodendrocytes and astrocytes, and optimizing culture conditions to promote

learning and memory are still considered limitations. Additionally, the introduction

of next-gen 3D microelectrode arrays and innovative input devices is critical for the

real-time control and complex recording methods needed in organoid intelligence

research [27].

2.2.2 Proteinoid Computing

Proteinoids are created through thermal polycondensation of amino acids at

160–200°C under inert conditions. In an aqueous medium, these hollow micro-

spheres can swell and exhibit dynamic electrical activity, including spontaneous

electrical potential bursts, known as flip-flops, and smaller potential fluctuations

during their inactive phases, suggesting a complex behavior similar to biological

neurons [72, 73]. These proteinoids are durable and resistant, withstand extreme

environments and catalyze reactions, demonstrating the ability to self-assemble into

more complex structures, reflecting a significant step towards understanding early

cellular life forms and synthetic biology applications [37, 74].

Proteinoids, also called proto-neurons due to the intriguing characteristic of

maintaining a membrane potential of 20 to 70 mV without external stimulation and

displaying oscillatory electrical potentials. These oscillations, lasting days or weeks,

underline their potential as neuromorphic computing devices. This study explored

leveraging proteinoid microspheres’ unique electrical behaviors for unconventional

computing applications, suggesting a novel approach to biomimetic technology de-

velopment [75, 76, 38].

Based on the unique voltage patterns that align with various logical outputs of

proteinoids, the researchers have identified four types of logical gates: AND, OR,
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XOR and NAND [74]. Similarly, another research group was able to utilize reservoir

computing properties of proteinoids with colloidal mixtures of ZnO, the possibility to

conduct logical operations [77]. However, the computing potential of the proteinoids

spans further exhibiting high-level characteristics including learning, memory and

forgetting by modifying current response influenced by the previous signals. [38].

Further, proteinoid microspheres, as the foundational elements of networks, en-

able rudimentary communication for computational capabilities. With network ex-

pansion, these microspheres form complex structures, leveraging molecular connec-

tivity for enhanced functionalities, setting them apart from traditional computing

that depends on external connections. This reveals a proteinoid microsphere nervous

system, providing a model for understanding their interaction and organizational

structure [78].

While proteinoid computing demonstrates impressive computational abilities, ex-

ploring proteinoid communication remains significantly unrevealed [79]. Addition-

ally, the synthesis process of proteinoids consists of five-step synthesis stages heating,

water treatment, centrifugation, dialysis, and lyophilization [80]. This complexity

poses hurdles for practical applications and scalability.

2.3 Bacterial Computing

Bacterial computing is one of the emerging fields under the domain of biocomputing

that has gained attention in recent years. This field explores engineering computing

circuits on cells and populations. [81].

2.3.1 Consortium Computing

In bacterial consortium computing, the principles from distributed computing have

been innovatively applied within multicellular systems through the alteration of

cell-cell communication pathways [82, 83].
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A study by Sarkar et. al developed cellular devices acting as artificial neuro-

synapses in bacteria that process input chemical signals through a combination of

linear and non-linear functions to generate fluorescent outputs. The creation of these

devices involved establishing a set of rules that link truth tables, ANN equations,

and the design of cellular devices. This approach, which integrates design directly

from mathematical models without needing traditional circuit diagrams, marks a

departure from conventional cellular computing methods [84].

Inspired by the similarities between artificial neural networks and cellular net-

works, another team developed a system for pattern recognition using bacterial con-

sortia. This system uses quorum sensing for communication between receiver and

sender bacteria, where chemical inducers create input patterns that prompt senders

to emit signaling molecules at programmed levels, serving as adjustable weights.

A gradient descent algorithm was also created for optimizing these weights, and

tested on recognizing 3x3-bit patterns. This approach highlights the potential for

sophisticated computing within microbial communities [85].

2.3.2 Whole-Cell BioComputing

In contrast with multi-cellular computing systems, whole-cell computing approaches

are being suggested, focusing mainly on their remarkable survival skills in harsh envi-

ronments by making complex decisions based on information processing that involves

memory, sensing, feedback, and communication within a single bacterial cell. An

E. coli bacterium as a whole cell consists of around 4.6 million base-pairs [86], and

possesses a memory capacity equivalent to 9.2 megabits, enabling it to code for up

to 4300 different polypeptides controlled by hundreds of promoters. Subsequently,

synthetic systems leveraging whole-cell interactions present promising avenues for

broadening the scope of computational tasks achievable with living systems [25].

Researchers have explored the potential of genetic engineering to replicate the

functionality of silicon semiconductors, termed ’silicon mimicry,’ that aims to har-
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ness the sophisticated processing powers of microorganisms to emulate the opera-

tional principles of silicon-based devices [87].

Another key study proposed ”Ribocomputers”, de-novo devices that transform

key circuit functions into RNA-RNA interactions, detectable through toehold switch

mechanisms, facilitating RNA-based computational processes within cells. They op-

erate at the RNA level, centralizing all components for sensing, computation, and

output into one complex platform, enhancing efficiency and reliability. As demon-

strated in E. coli, these devices can effectively execute complex logic functions, such

as two-input logic with significant dynamic ranges and scalable to more sophisti-

cated configurations like four-input AND, six-input OR, and 12-input expressions

[88].

Another pivotal study showcased the development of a genetic toggle switch

in E. coli, forming a bistable gene-regulatory network. This design, based on two

interlocking repressible promoters, can switch between stable states with precise

chemical or thermal triggers [66]. Further, Green et. al introduced a novel synthetic

network called the repressilator, utilizing three transcriptional repressor systems not

found in natural biological clocks to create oscillations in E. coli [65].

In contrast to the bacterial logic gate operations, in 2022, a study designed

a neural network inside a single E. coli cell. First, they trained a neural network

offline to adjust the connections between neurons for specific input-output responses.

This trained network was then simulated in silico using Gro language to program

bacterial cells, observing their behavior at various times. Then, this neural network

was translated into a genetic network inside a plasmid utilizing the Cello platform

and Verilog language [40].

The introduction of ”perceptgene” can be identified as one of the most promising

approaches in recent discoveries of bacterial computing. This perceptron operates

in the logarithmic domain, facilitating the creation of devices that can calculate

minimum, maximum, and average values from analog inputs. Innovations include
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Table 2.1: Evaluation of challenges and limitations of state-of-the-art approaches
where, C1:Energy efficiency and scale, C2: Biocompatibility, and C3: Generalizabil-
ity.

SOTA C1 C2 C3

N
on

-b
ac

te
ri

al

Organoid
Intelli-
gence/
Proteinoid
Computing
Intelligence

Energy efficient
and smaller in size.

End-to-end system
is not biocompati-
ble.

Capable of general
computing.

B
ac

te
ri

a

Consortium
Computing

Less energy effi-
cient and larger in
size compared to
whole-cell comput-
ing.

As most ap-
proaches use en-
gineered cultures,
the biocompatibil-
ity has limitations.

Can only perform
limited computing
tasks.

Whole-cell
computing

Energy efficient
and smaller in size.

As most ap-
proaches use en-
gineered cells, the
biocompatibility
has limitations.

Can only perform
limited computing
tasks.

multi-layer circuits capable of executing soft majority functions, analog-to-digital

conversion, and ternary switching. Additionally, a programmable perceptgene cir-

cuit has been engineered to switch between OR and AND logic functions through

small molecule induction. This approach also opens avenues for optimizing circuits

using artificial intelligence algorithms, marking a significant leap in bacterial com-

puting capabilities [20].

2.4 Summary: Challenges and Limitations

This section outlines the challenges and limitations of cutting-edge research, pri-

marily focusing on the biocomputing domain. Although organoid-based computing
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approaches are energy-efficient and compact, they significantly struggle with viabil-

ity and scalability in enhancing computational power. Additionally, they depend on

external inputs, leading to biocompatibility concerns. Similarly, genetic engineering-

based computing methods are also energy-efficient and small-scale, yet their com-

putational abilities are severely restricted by the limitations of genetic engineering

techniques. Moreover, bacteria-based computing, which employs fixed-engineered

genetic circuits, lacks adaptability and generalizability. Consequently, this thesis

aims to explore the inherent computing capabilities of bacteria to address these

limitations.
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Research Summary

RA 2: Introducing the novel concept of 

GRNN.

RA 3: Development of graph neural 

network-based MC model for 

population-based computing.

RA 4: Utilizing cell plasticity-driven 

dynamic weights of GRNNs to expand 

computing diversity. 

Bacterial 

Biocomputing

Challenges Research Questions Research Accomplishments

RA 1: Exploring influence of MC on 

the bacterial network structures that 

alter the ecosystem’s metabolism.

RA 5: Performing simple linear to 

multiple polynomial regression tasks 

using GRNN.

Research Focus

RA 6: Introducing application-specific 

GRNN sub-network search algorithm 

and performing image classification.

C3: Generalizable 

Biocomputing

C2: 

Biocompatibility

C1: Energy efficiency 

and Complexity 

RQ1: How can communication of bacterial 

multi-species computing be used to 
understand population network structures?

RQ2: Can gene regulation networks be 

used to discover artificial neural networks 

for biocomputing?

RQ3: How can the bacterial computing 

diversity be expanded by exploiting cellular 

plasticity? 

RQ4: Can mathematical regression and 

pattern recognition applications be realized 

through bacterial neural networks?

RQ5: What search algorithms can be 

developed to discover natural GRNN for 

biocomputing applications? 

Figure 3.1: An overview of the research plan and the mappings between the chal-
lenges, research questions and research accomplishments.

This chapter outlines the Research Accomplishments (RAs) aligning with the

Research Questions (RQs) as shown in Fig. 3.1. As depicted in this figure, this

thesis highlights three key challenges in the field of computing. The first two chal-

lenges, energy efficiency (C1) and biocompatibility (C2), have been investigated

extensively. Biocomputing approaches are suggested in the literature as potential

solutions for (C1) and (C2). However, the generalizability of these biocomput-

ing solutions (C3) is still insufficient. Therefore, this thesis focuses on “Bacterial

33



CHAPTER 3. RESEARCH SUMMARY

Biocomputing” as a solution for the three identified challenges. First, Section 3.1

analyzes bacterial MC under RA 1 in order to understand its role in population-

level computing (RQ 1). Subsequently, Section 3.2 dives deep into the intrinsic

computing behaviors governed by the GRN under RA 2 and introduces the con-

cept of Gene Regulatory Neural Networks (GRNNs) as solutions for RQ 2. Further,

purely focusing on GRNN computing, Section 3.3 evaluates the structural and algo-

rithmic complexities and energy consumption under RA 2 to find more solutions for

RQ 2. The influence of the cell-cell communications on computing dynamics of the

GRNN is investigated as research questions in RQ 1 and RQ 2, which is explored

in Section 3.4 as RA 3. Subsequently, RA 4 in Section 3.5 and 3.6 analyzes how

cell plasticity influences GRNN computing targetting RQ 3. Next, RA 5 seeks

to determine if GRNN can perform mathematical regression by analyzing complex

gene expression patterns to answer RQ 4 in 3.6. Finally, in the same section, RA

6 aims to design algorithms for extracting application-specific sub-networks from

GRNN and perform classification tasks aligning with RQ 5.

3.1 Bacteriome MC Analysis

Bacteria engage in sophisticated communication and interaction mechanisms across

various contexts, including interactions between bacteria themselves, different bac-

terial populations, non-bacterial cells (e.g., epithelial cells), and viruses. Although

the literature highlights that bacteria use electrical pulses for communication, MC is

the primary mode of interaction among bacteria. These MC-based interactions are

viewed from two main perspectives: Quorum Sensing (QS), which governs collective

behavior based on population density, and cross-feeding interactions, highlighting

the metabolic exchanges and influences between different bacterial species and other

organisms. This multifaceted communication network underscores the versatility

and sophistication of bacterial interactions within their ecosystems. These sophis-
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ticated communication and interaction systems are crucial for the decision-making

processes of bacteria, which can be interpreted as a form of population-based com-

puting mechanism that influences their survivability, and ecological equilibrium.

This thesis initially concentrates on the MC mechanism to explore its impact on

population dynamics aligning with RQ1. As the use-case for this research task, the

analysis focuses on the human Gut Bacteriome (GB).

The human GB is an extensive bacterial ecosystem within the human gut, often

regarded as a virtual organ that plays crucial roles in the host’s metabolic functions

through molecular interactions. It hosts approximately 100 trillion microorganisms

that form intricate networks by exchanging metabolites with the host and other

bacterial populations [89] performing essential tasks like nutrient extraction and

metabolite absorption, including amino acids, vitamins, bile acids, and short-chain

fatty acids (SCFAs). Distinct metabolic pathways in bacterial species contribute to

their varied roles within the human GB. These pathways, documented in databases

like Metacyc [90] and KEGG [91, 92, 93], alongside literature on the metabolic ac-

tivities of prevalent genera under different conditions [94], facilitate the development

of a molecular interaction model in this thesis. The human GB is envisioned as a

collection of numerous sub-networks that undertake vital functions such as SCFA

production, culminating in a complex molecular interaction network with numerous

nodes and interactions across diverse molecular species.

Gut microbiome databases like MicrobiomeDB [95] offer insights into bacterial

compositions, in which the majority of the microbiome belongs to several phyla

such as Firmicutes, Bacteroidetes, and Actinobacteria. Further, the human GB’s

composition is influenced by genetics, dietary habits, and age, while external factors

like toxins, drugs, antibiotics, and certain diseases can lead to dysbiosis, disrupting

metabolite production and impacting health [96]. Conditions linked to dysbiosis

include inflammatory bowel disease, type-2 diabetes, obesity, and cancers [97, 98].

Resources like the Disbiome database [99] provide data on imbalances related to
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various health conditions. Subsequently, the next sections present a theoretical

framework under RA 1 to analyze the dynamics of human GB from the perspectives

of communications and computing aligning with RQ1.

3.1.1 Theoretical Framework

There are many studies that aim to identify the underlying causes of microbial be-

havioral changes and their health implications [100, 101]. Motivated by these stud-

ies, this work introduces a communication model (termed Virtual Gut Bacteriome -

VGB) to better understand the interactions within the human GB’s populations and

resulting computing behaviors. The VGB model represents the human GB through

a two-tiered framework focusing on metabolite-based MC between bacteria in order

to understand their interactions and behaviors as shown in Fig. 3.2.

The upper layer - “Bacterial Population Graph Layer” simplifies the GB into a

graph where bacterial populations are nodes linked by edges representing metabo-

lite exchanges, encapsulating the metabolic functions of bacterial cells within each

population. This includes considering the molecular interactions between the host

and bacterial populations, as well as within the bacterial communities themselves,

through the intake and emission of molecules. These interactions transform this

layer into a directed multi-graph network that governs the metabolism.

The bottom layer - “MC layer” where nodes act as receivers or transmitters

depending on their role in the MC network and the edges represent MC channels

facilitating molecular signal transport between nodes (bacterial populations) via

diffusion.

The model explores how molecular signals’ changes impact the bacterial popu-

lation graph layer, emphasizing the interconnectedness of the two layers. Factors

influencing network node performance include molecule size, ligand-receptor attrac-

tion, binding noise, and detection thresholds. After receiving signals, nodes process

them internally, potentially resulting in new signal production, modeled through
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Figure 3.2: Illustration of a two-layer system model designed to explore molecular
interactions within a simulated virtual GB.

Signal Processing Performance (SPP). This process is detailed down to a single bac-

terial cell level, considering metabolite reception, encoding/decoding processes, and

secretion, thereby illustrating the complex interplay within the GB.

3.1.2 VGB Simulator

Investigating bacterial MC behaviors with high-dimensional, longitudinal datasets

is crucial. Various computational methods exist for realistically modeling bacterial

interactions within ecosystems, each with specific strengths and limitations. Over-

coming existing challenges and catering to specific data extraction needs of this

research task, a new simulation tool is developed in this research thesis. This tool

can interpret ecosystem dynamics through MCs, design metabolic pathways, process

data in parallel, and generate high-dimensional data. This simulator utilizes C++

and the CUDA platform to enhance simulation performance through parallel pro-

cessing, reflecting the concurrent activities of bacterial populations. Each bacterial

cell is represented by a GPU block, with threads within the block handling the cell’s

intracellular functions as illustrated in Fig. 3.3.

To model bacterial interactions accurately, the simulator employs metabolic flux

to depict molecule exchange in a diffusive medium. It features a 3D environment con-
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Figure 3.3: Illustration of GPU block and thread utilization where te is the thread
assigned for the gene GEe. The memory array assigned for each GPU block contains
placeholders for the specific location of the 3D environment in x, y and z coordinates.

Figure 3.4: Illustration of the voxel architecture of virtual GB.

structed with voxel architecture, enabling detailed data extraction for each metabo-

lite and bacterial cell as shown in Fig. 3.4. The voxel architecture is designed

to store the concentration of each molecular species (denoted as m1,m2, . . . ,mj)

required for a simulation. This capability is crucial for accurately simulating the

diffusion of molecules enhancing the simulation’s ability to mimic complex biolog-

ical environments. Further, it enables simulating the consumption or secretion of

metabolites by bacteria which is vital for investigating computing capabilities. Sub-

sequently, this voxel architecture further helps in dividing the 3D space into layers

corresponding to different molecular types as shown in Fig 3.5, in order to investigate

the role of each molecular type in isolation.

This simulator additionally offers the flexibility to introduce new bacterial species

by simulating their unique metabolic pathways and physiological traits, including
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Figure 3.5: Depiction of the simulation environment, highlighting that molecular
interactions for each species are organized into distinct layers

motility, shape, and size. This adaptability makes the simulator ideal for exploring

a variety of scenarios, from studying different microbial ecosystems and metabolic

functions to focusing on specific behaviors such as QS across diverse habitats. Ad-

ditionally, it is equipped to track and log data related to metabolite consumption,

production, accumulation, and bacterial growth, providing a comprehensive tool for

detailed analysis of microbial interactions and behaviors.

3.1.3 In-silico Experiment and Results

In the initial study using this simulator, we focused on a specific segment pertinent

to the production of SCFAs within the human GB. To configure the simulator accu-

rately, we utilized data concerning the composition and metabolic activities of the

human GB. The abundance data critical for determining the average human GB

composition was sourced from data in microbiomeDB [102]. The calculated relative

abundances are shown in Fig 3.6.

Subsequent to gathering metagenomic and metabolomic data from various

sources and databases, including Oliphant et al. [94], KEGG [92, 91, 93], NJS16

[103], and MetaCyc [90], has allowed us to create species level network as shown in

Fig 3.7. Further, the SCFA network is extracted and scaled up to the genera level

which is elucidated in Fig. 3.8. The results indicate that Bacteroides dominate

39



CHAPTER 3. RESEARCH SUMMARY

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 110 115

SampleID

1.0

0.8

0.6

0.4

0.2

0.0

R
el

at
iv

e A
bu

nd
an

ce
Bacteroides
Faecalibacterium
Ruminococcus
Roseburia

Eubacterium
Bifidobacterium
Alistipes

Parabacteroides
Blautia
Agathobacter

Subdoligranulum
Odoribacter
Lachnospira

Monoglobus
Phascolarctobacterium
Escherichia

Bifidobacterium
Streptococcus
Lactobacillus

1.0

0.8

0.6

0.4

0.2

0.0 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235
SampleID

SampleID

R
el

at
iv

e A
bu

nd
an

ce

240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350

1.0

0.8

0.6

0.4

0.2

0.0

R
el

at
iv

e A
bu

nd
an

ce

Figure 3.6: Illustration of relative abundances of 352 gut bacteriome samples used in
the case study for SCFA production in the human GB. This data was collected from
the MicrobiomeDB[102]. Please note that these figures show the collective species
RA for that particular genus.

the composition of the gut bacteriome compared to all other genera. Additionally,

Faecalibacterium, Alistipes, and Parabacteroides are observed as the next most abun-

dant genera. Although numerous genera are present in the human gut bacteriome,
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Figure 3.7: Illustrates a subgraph of the human GB only considering species of nine
genera related to SCFA. The nodes are color-coded according the degree ranking,
where the darker color indicates higher number of inward and outward interactions
while nodes with lesser number of interactions are with lighter color.

their relative abundance is comparatively low.

Subsequently, two primary sets of experiments are conducted, as illustrated in

Fig. 3.9. The first experiment examines how the system’s inputs affect the connec-

tivity structure of the VGB, while the second set alters the VGB’s composition to

study changes in metabolite production within our MC network.

Analysis 1 - Input Impact on Human GB Structure

In order to investigate how the input affects the human GB structure, the first

in-silico experiment is designed by varying the inputs to the VGB and observing

the outputs. Here, the study focuses on the effect of glucose on three bacterial

populations within the SCFA-producing subset of the virtual Gut Bacteriome. Fig.

3.10a visualize the sub-network associated with glucose intake and subsequent figures

maintaining the same color coding. Figures 3.10b and 3.10c display changes in

edge weight and population sizes, relative to an average human GB network, in
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Figure 3.8: Representation of the phylum-level subgraph within the human GB
associated with SCFA production.

Figure 3.9: Illustration of the study’s analytical framework, where Analysis 1 exam-
ines the impact of inputs on the graph structure, while Analysis 2 investigates the
response of graph output to structural deviations.

response to variations in glucose input rates. These changes impact the interactions

involving acetate and lactate, which are essential for the growth of Faecalibacterium

and Eubacterium, respectively. Fig. 3.10b further delves into how these input rate

variations indirectly affect the growth dynamics of these bacterial populations. It

notes a steady increase in Eubacterium growth with glucose inputs up to double the

standard level, while the other two populations stabilize. This pattern is attributed

to the metabolic conversion stoichiometry, with acetate and lactate production from

glucose impacting the growth of Escherichia and Faecalibacterium directly.

This, in turn, alters the overall structure of the network as shown in Fig. 3.11,

where the variation graph structure is relative to the average human GB. When

glucose is lower than the standard (1.0) level, the graph shows a significant deviation.

Conversely, when glucose levels exceed the standard, the graph still deviates but
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Figure 3.10: Variations in population sizes of Faecalibacterium, Eubacterium, and
Escherichia from baseline levels in response to differing glucose concentrations,
where a) subgraph depicting glucose consumption, b) edge weight dynamics of in-
termediate interactions, and c) patterns of population growth.

Figure 3.11: Dynamics of overall graph weights in response to variations in input
types and their concentrations.

less dramatically than with lower levels. This indicates that the human GB is more

sensitive to low glucose concentrations.

Further, these structural changes influence metabolite intake, intermediate

metabolism, and resulting molecular outputs, which can be interpreted as modi-

fications to the computational architecture of population-based bacterial computing

systems. This relationship is investigated under RQ 1, leading to RA 1. By exam-

ining how these metabolic adjustments impact the overall computing structure, we

can gain insights into optimizing bacterial populations for enhanced computational

efficiency and adaptability in response to environmental changes. This investigation

bridges the gap between biological processes and computational frameworks, high-

lighting the potential of bacterial systems in advanced biocomputing applications
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across various fields, including therapeutics.

Analysis 2 - Impact of Human GB Structure on Molecular Output

This analysis involves manually adjusting the sizes of bacterial populations within

the virtual Gut Bacteriome and monitoring the corresponding changes in metabolite

production.

Figure 3.12: Responses of SCFA production to different Bacteroides population
sizes: (a) subgraph illustrating Bacteroides population interactions, (b) dynamics
of edge weights, and (c) SCFA production levels.

Fig. 3.12 elucidates how varying the Bacteroides population size affects SCFA

production as an output in the human GB. Fig. 3.12a shows the associated SCFA

subnetwork, while Fig. 3.12b and Fig. 3.12c follows the same consistency in color

coding as Fig. 3.12a. While keeping other inputs and population sizes constant, the

Bacteroides population is adjusted from none to 2.2 times its standard size. Fig.

3.12b illustrates the effect of these changes on connections leading from Bacteroides

to other populations, Faecalibacterium, Eubacterium and Roseburia, mediated by

acetate and lactate. Fig. 3.12c highlights the direct correlation between the Bac-

teroides size and SCFA production levels, with acetate and propionate production

showing linear increases alongside Bacteroides growth. Furthermore, the analysis in-

dicates a plateau in butyrate production as Bacteroides exceed 80% of their standard

population size, suggesting a limit to the benefit of increasing Bacteroides numbers

on butyrate output. This analysis under RA 1 reveals that the structure of the hu-

man GB significantly affects its output underscoring the dynamics of the computing
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process of a bacterial ecosystem. These results show the role of communication of

bacterial computing (RQ 1).

This experiment is repeated for all the populations and extracted the relationship

between the human GB composition and the output molecular signal production.

Figure 3.13: Pearson correlation heatmap showing the impact of nine bacterial pop-
ulations on the production of three output molecular signals.

Figure 3.13 illustrates the correlation between each bacterial population and

SCFA abundance in the gut. While Bacteroides are the major producers of SCFAs,

they show a weaker correlation with SCFA levels compared to other producers like

Alistipes and Parabacteroides. This suggests that decreased glucose consumption

by Bacteroides may increase other bacterial populations, thereby enhancing SCFA

production. However, despite this boost from other bacteria, overall SCFA produc-

tion remains low in the absence of Bacteroides. The heatmap also reveals a strong

negative correlation between Faecalibacterium and Roseburia with acetate, as they

consume this SCFA. Interestingly, it shows Escherichia switching from producing to

consuming high concentrations of acetate. Similarly, Ruminococcus switches from

consuming fucose to glucose when fucose is scarce, leading to decreased production

of intermediate metabolites and reduced butyrate production. Further information

on the above analysis can be found in Chapter 5.

From a computing perspective, these findings highlight the intricate and dynamic

nature of bacterial metabolic networks, emphasizing the potential for leveraging such

biological systems for computational tasks. Mapping of biological data into compu-

tational frameworks can drive advancements in synthetic biology and bioinformatics,

offering innovative solutions to complex computational problems.
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3.1.4 Bacterial Communication Network Reliability

In order to gain deeper insights into the MC of bacteria within-population dynamics

resulting from internal computing mechanisms, it is crucial to investigate bacterial

communication networks. Bacterial ecosystems consist of complex Bacterial Molec-

ular Communication Networks (BMCN) with redundant pathways that transmit

signals through a shared medium, leading to the accumulation of diverse molecules.

BMCN are characterized by their cascading networks with parallel paths, where

multiple network segments perform similar functions. This redundancy can enhance

the ecosystem’s resilience, as one segment’s failure can be compensated by others,

maintaining network performance.

Epithelial
Cells

Bacteroides
Alistipes

Ruminococcus

Parabacteroides

Bifidobacterium
Escherichia

Faecalibacterium
Rosuburia

Eubacterium

Memory

Host

Figure 3.14: The bacterial cascading system for SCFA production that includes an
environmental memory component. Transmitted signals for glucose, acetate, and
lactate are denoted as Stx(glu), Stx(ace), and Stx(lac), respectively. Correspond-
ingly, received signals for glucose, acetate, lactate, and butyrate are represented as
Srx(glu), Srx(ace), Srx(lac), and Srx(bte). These signals are influenced by noise
originating from the memory component.

This analysis employs information and MC theories to explore the influence of

Cooperative Amplification (CA) on InterSymbol Interference (ISI) within BMCN.

Additionally, this analysis examines how information traverses these networks, fo-

cusing on a cascading, parallel structure where various molecules serve as signals.

Here, butyrate is considered the end product within a cascading BMCN featuring

nine bacterial genera associated with the SCFA network as shown in Fig. 3.14.

These genera are chosen based on their metabolic functionalities and ancestral ori-

gins. The butyrate production pathway begins with glucose entering the human

GB, and is structured into four layers: 1) host cells acting as glucose transmitters,
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2) acetate/lactate-producing bacteria that consume glucose, 3) butyrate-producing

bacteria that utilize acetate/lactate, and 4) epithelial cells that receive butyrate.

Bacteroides, Alistipes, Parabacteroides, Bifidobacterium, Ruminococcus, and Es-

cherichia genera are responsible for converting glucose into acetate, while Faecal-

ibacterium and Roseburia genera convert acetate into butyrate, and Eubacterium

utilizes lactate for butyrate production. Epithelial cells serve as the final receivers

of butyrate. In this analysis Mutual Information (MI) is employed to gauge the

flow of information through the network, providing insights into how CA influences

communication efficiency and reliability within the system.

Employing the same simulation introduced previously, the experiment is initial-

ized with the relative abundance of each genus, derived from species-level RA data

from MicrobiomeDB [102] and Disbiome [99] databases. This approach was also

applied to Disbiome database samples to outline the average compositions associ-

ated with autism and Parkinson’s disease. The simulation introduces twenty distinct

single-pulse glucose inputs, varying from 0.259 µmol/m3s to 2.594 µmol/m3s, across

three human GB compositions: control, autism, and Parkinson’s. These input am-

plitudes are chosen to match the bacterial cell counts in the simulator, ensuring

observable information flow changes, whereas the inputs outside this range did not

yield significant results. The simulation duration was set to 500 minutes, accom-

modating the dynamics of the strongest (glucose) and weakest (lactate) signals,

ensuring all vital signal changes occurred within this timeframe. To enhance result

accuracy against system stochasticity, each scenario was repeated 50 times, with

molecular consumption and production data for each bacterial population collected

at every time step.

In response to the glucose pulse-like inputs of varying concentrations into the

average network, subsequent SCFA signal levels are measured. The resulting cas-

cading signal flow is depicted in Fig. 3.15, demonstrating how these inputs propagate

through the system.
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Figure 3.15: Representation of the simplified MC network with plots illustrating
link behaviors for different compositional changes. Please note that glu, ace, lact
and bte stands for glucose, acetate, lactate and butyrate respectively

Initially, the input signal entropy and conditional entropies of the cascading

BMCN for each scenario are calculated. The analysis of conditional entropy is

performed in three stages for the nine bacterial genera shown in Fig. 3.14. The

first stage involves calculating the conditional entropy for Bacteroides, Alistipes,

Parabacteroides, Bifidobacterium, Ruminococcus, and Escherichia, focusing on their

response to glucose inputs. The second stage assesses the conditional entropy for

Faecalibacterium and Roseburia based on acetate reception, and the third stage

evaluates Eubacterium’s response to lactate and epithelial cells’ butyrate reception.

These steps are crucial for assessing the MI through the full system. These MI

results are presented in Fig. 3.16.

The findings, detailed across Figures 3.16a, 3.16b, and 3.16c, reveal variations

in information flow through the network corresponding to compositional changes.

The estimated MIs show significant differences in the first layer across the three

compositions, with lesser variations in the second layer, and epithelial cells’ MIs
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Figure 3.16: Estimated MI values for each bacterial population and epithelial cells
across (a) control human GB, (b) Parkinson’s GB, and (c) autistic GB. The sizes of
the nodes reflect the MI values, measured in bits.

displaying similar values in all scenarios. Notably, Bacteroides exhibits the highest

MI in all setups, indicating its dominance. The study highlights that, in systems

with redundant paths and cooperative transceivers, an increase in information flow

can be observed.

Subsequently, these results underscore the significance of CA in ensuring reliable

information flow through BMCN by exploiting another aspect of RQ 1. Further

description and additional results can be found in Chapter 6.

3.2 Introducing Gene Regulatory Neural Net-

works

The population-wide behavior of bacteria stems from the decision-making processes

of individual cells. Therefore, this section explores the internal computing mech-

anisms within each cell that drive their cellular functions and contribute to the

overall dynamics of the bacterial population. By understanding these mechanisms,

we can better comprehend how individual cellular decisions aggregate to influence

population-level behaviors and enhance our ability to utilize bacterial systems for

biocomputing applications.

Despite lacking neural structures for computation, bacteria’s gene regulatory

network (GRN) empowers them to strategize and adapt across varying conditions.

This adaptability not only results in the production of molecules that influence
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other cells, fostering complex social interactions and motility towards more favorable

environments, but also in significant physiological state changes. These complex

behaviors provide sufficient evidence for an existence of natural computing power

inside bacterial GRN. Investigating the inherent computing capabilities of bacteria

under RQ 2, enhances our understanding of their behavior, paving the way for

innovative approaches in programming cells for novel treatments and laying the

groundwork for future bio-computing systems.

3.2.1 From Gene Regulatory Networks to Gene Regulatory

Neural Networks

The literature explains the GRN guiding bacterial decision-making encompasses a

structure reminiscent of a hidden neural network [104, 105]. Typically, the GRN

only offers information about the presence of interactions and their types (activa-

tion or repression). However, investigation of transcriptomic data reveals a ’weight’

behaviours that determines the influence magnitude of one gene on another. This

behaviour emerges from the binding affinity of transcription factors (TFs), and el-

ements like thermoregulators and enhancers/silencers [106, 107]. The presence of

activator TFs and sigma factors leads to enhanced gene expression [108, 109], akin

to higher positive weights in neural networks. Conversely, repressors and anti-sigma

factors, which dampen gene expression, are likened to larger negative weights. The

non-linear aspect of GRNs is similar to the rectified linear unit (ReLU) activation

function in NNs, especially since gene expression cannot fall below zero despite po-

tentially negative weighted sums. This research task introduces a weight extraction

mechanism that quantifies the gene-gene interaction in the form of weights. This

weight extraction transforms the GRN into a pre-trained neural network. Hence,

this novel concept is introduced as Gene Regulatory Neural Networks (GRNNs)

and addresses RA 2, opening avenues to explore genetic regulation through the lens

of neural network theory.
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The weight extraction process starts by constructing the GRN as a graph de-

picting gene-gene interactions, where the expression of each gene is predominantly

influenced by TF signals from adjacent genes or occasionally the same gene.

RegulomePA
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Ecocyc

Gene-perceptron

Gene Activation Function

# of transcriptomic records.   

Training Process...

Random weights
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Computed Output Experimental value

Converged weights

GEO

Induction

Repression

Unknown

Self induction Self repression

Type of inte-genic interactions

Experimental value

(a) (b) (c)

Creating GRN Gene-perceptron characterization Extracting Weights

Figure 3.17: Depiction of the GRNN extraction process, where a) involves construct-
ing a GRN structure showcasing diverse gene interactions sourced from databases,
b) dissects the GRN into gene-perceptrons utilizing ReLU activation functions, and
c) describes the weight extraction for gene-perceptrons, fine-tuning edge weights to
minimize the Mean Squared Error (MSE) between calculated (TF ′(gz)) and exper-
imental (TF (gz)) gene expression levels.

Elaborating on this, Fig. 3.17a outlines the construction of the GRN graph,

incorporating five types of regulatory influences based on data from RegulonDB

[110] (specific to P. aeruginosa), KEGG [111, 112, 113], and Ecocyc [114] databases.

Subsequently, this network is broken down into sub-graphs, each centered around a

target gene and its regulatory genes, mirroring a single-layer perceptron’s structure

with ReLU activation, as demonstrated in Fig. 3.17b, thereby designating the target

gene as the ”gene perceptron.”

Although the exact biophysical definition of weights for these gene perceptrons

has remained uncharted, the proposed approach extracts the weights similar to

a single-layer perceptron’s training mechanism. This involves adjusting initially

random weights based on the MSE between calculated and observed gene expression

data to minimize the discrepancy. The optimal weights, indicative of the regulatory

impact on the target gene, are identified at the point of least MSE, detailed in

Fig. 3.17c. This process essentially converts the GRN into a pre-trained random
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structured neural network, hence a GRNN.

The extracted weight matrix is denoted as,

W =

g1 g2 ... gP






g1 w(1,1) w(1,2) ... w(1,P )

g2 w(2,1) w(2,2) ... w(2,P )

...
...

...
. . .

...

gP w(P,1) w(P,2) ... w(P,P )

, (3.1)

where w(i,j) is the weight of the interaction between ith and jth gene with i : j =

{1, 2, .., P}. The w(i,j) is the weight in the case of self-regulation.

Next, the computational output is modeled as, O(t+1) at t + 1 using weight W

as,

O(t+1) = max(W · (I(t) + Ñ) + B), (3.2)

where It is the input matrix, while B is the bias matrix and Ñ is the added Gaussian

noise (Ñ = N(0, 0.1)) extracted based on the iterative experiments [115] (GEO

accession number GSE215300). For the next time step, the input matrix It+1 = Ot+1

and Ot+2 is computed as,

O(t+2) = max(W · (I(t+1) + Ñ) + B). (3.3)

3.2.2 Pseudomonas aeruginosa GRNN

First, the weights extraction method explained in Section 3.2.1 is applied to the P.

aeruginosa GRN which encompasses 2851 genes and 4903 interaction links. The

transcriptomic data utilized for this weight extraction process is obtained from the

GEO database [116]. Following extensive preprocessing of this data, 80% is allocated

for weight extraction of the gene perceptrons, with the remaining portion reserved for

validation purposes. The extraction process is started by initializing the P. aerug-
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inosa single-layer gene perceptrons with random weights. For the training process,

the learning rate and the number of epochs are set to 10−6 and 109, respectively.

The accuracy of the extracted GRNN weights is then evaluated by using the

remaining 20% of the dataset. The results are depicted in Fig. 3.18, revealing that

most data points closely align with the 45-degree line, suggesting a high level of

prediction accuracy. These results were published as presented in Chapter 7.
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Figure 3.18: Comparison of measured expression levels for 2,851 genes across 217
transcription records against gene expression values calculated by the fully extracted
GRNN.

3.2.3 E. Coli GRNN

Utilizing the same methodology, the GRNN of E. coli K-12 strain CSH50 is con-

structed. This process begins with the acquisition of the GRN dataset in [117],

which is categorized into various interaction types, including TF to gene, TF to

operon, TF to Transcription Units (TU), TF to TF, sigma factor to gene, SF to

TU, and small RNA to gene. By amalgamating these interactions, a comprehensive

GRN for E. coli is constructed as a directed graph, comprising 3,175 gene nodes

and 9,678 interaction edges.
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Figure 3.19: Comparison of measured expression levels for 3175 genes across 43
transcription records against gene expression values calculated by the fully extracted
E.coli GRNN.

The next phase involves the extraction of the weights and biases, utilizing tem-

poral transcriptomic data from [115] (GEO accession number GSE65244) and inte-

gration back into the GRN, effectuating its transformation into GRNN.

The accuracy of the E. coli GRNN is assessed in Fig. 3.19 by comparing predicted

gene expression levels against those measured in wet-lab experiments. In Fig. 3.19,

the dashed line inclined at 45◦ serves as a benchmark, indicating perfect alignment

between predicted and experimental values. The close proximity of most data points

to this line suggests a high level of agreement between the model’s outputs and

empirical observations. These results were published as presented in Chapter 7 and

9.

Three critical insights emerge from these observations:

1. The results affirm the feasibility of quantifying complex gene-gene interactions

through computational means, specifically in the form of weights and biases

within the model.
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2. The cross-genome applicability of the introduced weight extraction model as

proven by the accuracies of extracted P. aeruginosa and E. coli GRNNs.

3. The performance of the GRNN model in mimicking biological gene regulatory

mechanisms is substantiated, underscoring the model’s potential as a valu-

able tool for biological research and its compatibility across different bacterial

genomes.

3.3 GRNN Computing

This section, aligning with RA 2, explores GRNN computing with a focus on its

capabilities for generalized computing targeting RQ 2. It begins by assessing the

structural and algorithmic complexities of GRNN, which is crucial for determining

its suitability for general computing applications. Further, this section evaluates the

energy consumption of GRNN.
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Figure 3.20: A comparison of structural (Sc) and algorithmic (Ac) complexity be-
tween Fully Connected Neural Networks (FCNNs) and GRNNs is presented. a) and
b) examine how Sc and Ac change with the number of nodes in both network types,
whereas c) explores Ac in relation to the number of edges.
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3.3.1 Structural and Algorithmic Complexities

Structural complexity relates to the network’s architecture, including the number of

nodes/edges and the overall topology, which significantly influences the network’s

computational power. Algorithmic complexity, on the other hand, refers to the com-

putational demands of the training and inference processes in NNs. Thus, this study

undertakes a comparative analysis of the structural and algorithmic complexities of

GRNNs against conventional fully connected NNs. The calculation of the structural

and algorithmic complexities are detailed in Chapter 9.

Fig. 3.20a demonstrates a comparison between the structural complexities as a

function of the node count in fully connected NN and GRNNs. The analysis reveals

that GRNNs, characterized by their random structure, exhibit lower structural com-

plexity due to the presence of power-law properties, in contrast to fully connected

NNs. Furthermore, an investigation into algorithmic complexity, as depicted in

Figure 3.20b, indicates that GRNNs display reduced complexity relative to fully

connected NNs. This reduction is attributed to a decreased number of edges for a

comparable node count. However, within the edge range of 2000 to 10000, GRNNs

exhibit a higher algorithmic complexity than their fully connected counterparts, as

illustrated in Figure 3.20c. This observation suggests that specific configurations of

GRNNs can achieve complex computational tasks while simultaneously enhancing

interpretability over fully connected NNs.

Further, inward and outward degree distributions of GRNNs, exhibit a few cru-

cial characteristics portraying them as suitable candidates for general computing

tasks. This argument is supported by using the E. coli GRNN as a use case. This

GRNN contains approximately 68.45% of gene-perceptrons that receive input from

more than one inward edge, facilitating the processing of multiple inputs simultane-

ously (Figure 3.21a).

Furthermore, the outward edge distribution illustrated in Figure 3.21b demon-

strates the presence of hub gene-perceptrons capable of influencing up to 92.12%
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(a) (b)

Figure 3.21: Degree distribution of the E. coli GRNN is illustrated, with a) dis-
playing the frequency of inward degrees and b) showcasing the frequency of outward
degrees.

of terminal nodes. This structure enables the base-GRNN to effectively handle a

variety of computational problems. For example, the gene b3067 is connected by

1703 outward edges, with 91% leading to terminal nodes. Activation of this gene-

perceptron triggers a broad spectrum of expression levels in these terminal nodes,

thus showcasing the system’s computational diversity. Consequently, this power-

law distribution exemplifies the base-GRNN’s potential as a comprehensive source

of diverse, pre-trained sub-GRNNs.

Further, this research task focuses on exploring the diversity of GRNN sub-

networks by analyzing the configurations of input, intermediate hidden layers, and

output gene-perceptrons. Starting with sets of 100 input gene-perceptrons and pro-

gressively increasing to 500, the research tracks the connections and depth (up to 10

layers) of these subnetworks, iterating the process 100 times for each set size to aver-

age the number of gene-perceptrons per layer. This methodical exploration reveals

that with an initial setup of 100 input nodes, the network can expand to approxi-

mately 500 output nodes by the sixth layer, offering a vast array of combinations (up

to 8.9× 1026) for configuring output nodes tailored to specific applications as shown

in Fig. 3.22. This grows exponentially with more input candidates, reaching up to

5.9 × 10297 combinations, illustrating the GRNN’s capability to adapt and provide

highly customizable solutions for diverse applications. Further expanding the input
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Figure 3.22: Illustrations of the number of output node variations given the number
of input nodes and the depth of the GRNN subnetwork.

layer to 500 nodes increases the output layer to about 2,500 nodes, thereby broaden-

ing the adaptation possibilities (up to 9.3 × 1033 configurations for 10 outputs) and

underscoring the significant impact of input layer size on the network’s versatility

and applicability across various domains.

3.3.2 Energy Profiling of GRNN

Aligning with RA 2, this section focuses on the energy consumption aspect of the

GRNNs. This comparative analysis of energy consumption across various computing

platforms strictly focuses only on the energy expended for computational activities,

deliberately excluding the energy requirements for auxiliary or ’housekeeping’ func-

tions.

In this investigation, the energy efficiency of GRNN is evaluated against four

other computing processors, across 200 model sizes, each differentiated by its al-

gorithmic complexity. This analysis involves adjusting the number of nodes for

each model size on both traditional von Neumann architectures and neuromorphic

computing platforms. The outcomes of this comparative study are presented in

Fig. 3.23.

A striking observation from this analysis is the GRNN’s remarkably low power
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Figure 3.23: Comparison of power consumption between GRNN, von Neumann,
and neuromorphic computing systems, focusing on a) algorithmic complexity and
b) structural complexity.

consumption. As depicted in Fig. 3.23a, the peak energy usage of GRNN does

not exceed 0.05 picowatts (pW), even when subjected to the highest algorithmic

complexity challenges. This is in stark contrast to the energy consumption observed

in other computing platforms, where power requirements span from 109 pW to 1012

pW for models of comparable neuron counts. This contrast underscores the GRNN’s

superior energy efficiency, particularly in high-complexity computational tasks.

Recognizing the intricate computing architecture akin to a wet-neuromorphic

system within bacterial cells, which will be further explored in the subsequent sec-

tion, this study views them as natural computing powerhouses. Here, the GRN

functions as the core computing mechanism.

These results exhibit that the GRNN-based computing can cater generalizability

while maintaining high energy efficiency. Therefore, bacterial cells with GRNN-base

computing capabilities can be placed as a novel wet-neuromorphic computing system

due to its physical architecture, computing diversity and energy efficiency.
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3.4 MC Model for Computing

Previous chapters investigated the MC of bacterial population behaviors and their

internal computing mechanisms separately. However, this chapter aims to under-

stand the interplay between MC and gene regulation-based computing at the single-

cell level. This integrated approach will provide a more comprehensive understand-

ing of how these processes work together to drive bacterial behavior and function-

ality.

3.4.1 MC and GRNN Integration

Bacteria’s remarkable ability to sense molecular signals from other microbes and

environmental shifts, such as temperature or pH changes, enables dynamic regula-

tion of their gene expression and protein production prolonging their survivability.

This intricate process not only enhances bacterial survivability by driving adaptive

behaviors but also represents a form of chemical-based computing as abstracted in

Fig. 3.24.

Extracted GRNNGRN

Biofilm
Gene-Perceptron

Weighted
summation

Activation
function

Figure 3.24: Depiction of a biofilm and the process of extracting GRNN from bac-
terial cells within it.

In Section 3.1 aligned with RA 1, the thesis showed the influence of intercellular
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communication on population-level computing dynamics. In contrast, this section

explores the influence of intercellular communication on the dynamics of GRNN

aligning with RA 3 by employing graph neural networks to mimic cell-cell commu-

nication, capturing elements like the random spatial distribution of cells, molecular

diffusion dynamics from cell to cell, and the modulation of cellular responses to

molecular signals.

(Gene expression profile of bacterial cell B1 at time step t+1)

QS Diffusion
(Inter-cellular signalling)

(a)

(Gene expression profile of bacterial cell BP at TS= t+1)

+

+

Computing Output

GRNN

Aggregation

Computing
(Update function)

Computing ouptut
(Updated FV)

(b)

Figure 3.25: Illustration of a) the graph neural network model of the MC in bacterial
population and b) the mechanism of the outputs from one GRNN is conveyed to
another GRNN as molecular messages.

As shown in Fig. 3.25a, in the construction of the bacterial ecosystem as a graph

network, each node represents a cell (B1, B2...B7). The corresponding feature vector

(FV
(t)
P ) contains the GRNN gene expression profile of the cell BP at time t as shown

in Fig. 3.25b. The edges in this figure symbolize diffusion-based communication of

various molecular species (m1,m2, ...mQ) between cells are treated according to a

message-passing protocol of the graph neural networks. Further in Fig. 3.25b, the

incoming signal vector, nutrient concentrations at the location of the cell and the

accumulated intra-cellular molecular concentrations are denoted by R
(t)
P , K

(t)
P and

IM
(t)
P respectively.

A cell’s receipt of molecular signals is represented through an aggregation func-
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tion, while the GRNN embedded in each node acts as the update function, process-

ing aggregated signals to alter gene expression patterns and, consequently, the cell’s

feature vector as depicted in Fig. 3.25b.

3.4.2 Use Case model

In this research task, P. aeruginosa single species biofilm is utilized as a use case

to explore the impact of cell-cell communication on GRNN computing based on

the methodologies explained in Section 3.2 and 3.4. This focus is primarily due

to P. aeruginosa’s extensive research background, driven by its association with

significant health issues such as pneumonia, blood infections, and infected wounds.

Notably, P. aeruginosa produces pyocyanin (PYO), a toxin that impairs human cell

functions, further underscoring its relevance in medical research and public health.

Single Cell GRNN Model

Chorismic Acid

phenazine-1-
carboxylic acid

5-methylphenazine-1-
carboxylic acid betaine

PYO

Phosphate

Phz1 Phz2 PhzM PhzM

Intra-cellular diffusion

Input QS molecules
Output

QS molecules

Figure 3.26: Depiction of the computational process for incoming cell-cell commu-
nication molecules and the transformation of chorismic acid into PYO, mediated by
GRNN outputs in reaction to phosphate input.

Fig. 3.26 illustrates the impact of extracellular nutrient signals and QS signals

exert a wide range of regulatory effects on bacterial gene expression associated with

PYO production.

Therefore, as the next step, the sub-GRNN is extracted from the full P. aerug-

inosa GRNN using shortest path analysis, focusing on genes associated with PYO

62



CHAPTER 3. RESEARCH SUMMARY

production, QS-related genes and the two-component system (TCS) PhoR-PhoB,

which regulates genes activated by phosphate intake (phZ1, phz2, phzS, and phzM)

that are crucial for enzyme production essential for PYO synthesis.

This model is embedded with another metabolic interaction layer which is es-

sential for molecular uptake but can be kept as a separate layer as shown in Fig.

3.27.

C4- 
RhlR

3OC-
LasR

PQS-
PQSR

HHQ-
PQSR

3OCC4

PqsH
HHQ

PqsRLasRRhlR
PQS

Figure 3.27: Depictions of intracellular metabolite interactions, highlighting how QS
molecules interact with response regulators to form complexes.

PYO Sub-GRNN

Figure 3.28: Illustration of the PYO production sub-GRNN before the weight ex-
traction process.

In this context, RhlR, a key transcriptional regulator in P. aeruginosa, binds

to its cognate inducer C4-HSL, serving as an input to the GRNN. Similarly, the

LasR and PqsR transcriptional regulators, when bound to 3-oxo–C12 –HSL (3OC),

PQS, and HHQ, respectively, also provide inputs to the GRNN. Concurrently, en-

vironmental chorismic acid (C10H10O6) is transformed by P. aeruginosa through a
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series of reactions mediated by the GRNN products phz1, phz2, phzS, and phzM.

This process begins with the conversion of C10H10O6 into phenazine–1-carboxylic

acid via enzymes from Phz1 and Phz2 genes, followed by its conversion into 5-

methylphenazine-1-carboxylate, and ultimately, PYO, through the actions of PhzM

and PhzS. Thus, GRNN computing plays a crucial role in converting C10H10O6 into

PYO, as depicted in Fig. 3.28.

3.4.3 Mutagenesis Analysis to Reveal the MC Impact on

GRNN Computing

Next, the mutagenesis analysis is conducted by altering the GRNN structure to ob-

serve the resulting changes in gene expression and PYO production. The analysis

is carried out under two phosphate conditions: high phosphate (HP) and low phos-

phate (LP), to assess the impact of phosphate levels as well as network alterations

due to mutations on the GRNN’s computing behavior. Therefore, this subsection

focuses on RA 3 aligning with RQ 1 and RQ 2.

Eight simulation experiments are designed as follows: 1) wild-type bacteria with-

out mutations (WD) under LP, 2) lasR mutant (∆lasR) under LP, 3) phoB mutant

(∆phoB) under LP, 4) lasR and PhoB double mutant (∆lasR∆phoB) under LP,

5) WD under HP, 6) ∆lasR under HP, 7) ∆phoB under HP, and 8) ∆lasR ∆phoB

under HP. In this setup, the WD condition utilizes the entire PYO sub-GRNN. The

∆lasR mutation involves removing the lasR node, the ∆phoB mutation excludes the

PhoB node, and the double mutant (∆lasR∆phoB) removes both the lasR and phoB

genes respectively, as depicted in the GRNNs of Fig. 3.29. These mutations induce

structural changes in the GRNN, affecting computational outputs as evidenced by

variations in gene expression and PYO production levels.

In the mutagenesis studies described, we compare GRNN-computed PYO pro-

duction values against wet-lab data from [118], observing the molecular output be-

haviors of different GRNN structures in P. aeruginosa biofilms. The findings reveal
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Figure 3.29: Analysis of mutagenesis to explore the effects of structural variations
in GRNN on PYO production. This study illustrates gene expression changes and
subsequent PYO outputs under low phosphate (LP) and high phosphate (HP) con-
ditions for four different GRNN structures: (a) wild type (WD), (b) ∆lasR, (c)
∆phoB, and (d) ∆lasR∆phoB. Genes within red circles are omitted from the
GRNN across the various structural models to highlight the network’s structural
alterations, thereby demonstrating the computational shifts in PYO production.

higher PYO levels in low phosphate (LP) conditions across all cases, with the ∆lasR

mutation showing the most significant increase, and the ∆phoB mutation the least.

This pattern primarily results from the repressive effect of the phoB gene on key

genes, where higher phosphate levels lead to increased phoB expression, consequently

repressing other genes crucial for PYO production.

The lasR mutation amplifies this effect, with the mvfR gene identified as criti-

cal in this context. The mvfR gene, which enhances the expression of seven other

genes, results in increased PYO production, especially in LP conditions due to di-
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minished rhlR expression. This scenario highlights the GRNN’s enhanced sensitivity

to phosphate levels through the lasR mutation.

Conversely, the smallest difference in PYO production between LP and HP con-

ditions in the ∆phoB case is attributed to the GRNN’s reduced phosphate sensitivity

due to the absence of the phoB gene. The combined ∆lasR∆phoB mutation shows a

greater difference between LP and HP PYO production compared to ∆phoB alone,

illustrating the compound effects of both mutations on PYO production. This study

underscores the variability in GRNN’s response to environmental conditions and the

potential for designing application-specific GRNNs by manipulating gene expression

and interactions.

Furthermore, these results elucidate the GRNN computing variability in response

to the network structure changes. Additionally, more information and results re-

garding this analysis were published as presented in Chapter 7.

3.4.4 Inferring Cluster-scale Collective Perceptrons

Interestingly, the output patterns of individual cells’ GRNNs within the biofilm

collectively demonstrate that bacteria generate a series of non-linear output func-

tions over space and time through cell-cell communication. This process is explored

more using the same graph neural network-based P. aeruginosa PYO model. This

section investigate the non-linear output properties of various biofilm regions and

time points, resulting from clusters of cells each equipped with a GRNN. The in-

vestigation focuses on understanding these dynamics through the lens of a sigmoid

activation function S(x),

S(x) =
L

1 + e−(kx−x0)
. (3.4)

where the parameters L, k, and x0 in the model govern the maximum value,

steepness, and horizontal shift of the curve, respectively, as illustrated in Fig. 3.30.
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Figure 3.30: Depiction of the parameters L, k, and x0, which respectively determine
the height, steepness, and horizontal shift of the sigmoid curve.

The PYO production within the biofilm is examined across three designated

regions (depicted in Fig. 3.31) over three time intervals (TS = 20, TS = 25, and TS

= 30), from which we derive a solution space comprising various sigmoid activation

function variants.

Region 2

Region 1

Region 0

Figure 3.31: Illustration of the three layers within a biofilm analyzed for computing
reliability and solution space exploration, where ”Region 2” represents the outer
layer with the greatest nutrient access. ”Region 1” serves as the intermediate layer,
and ”Region 0” constitutes the core layer, characterized by the least access to nu-
trients.

This analysis includes evaluating their dynamics in relation to QS influences.

Research indicates that employing modified activation functions such as scaled sig-

moid, penalized Tanh, and bounded ReLu can enhance performance for specific

computational tasks. It has been demonstrated that these improved versions of

standard non-linear activation functions outperform in the context of application-
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specific problems [119, 120, 121]. Consequently, a biological system featuring a

diverse array of non-linear functions offers significant benefits for computational

applications, including adaptive classification or analog to digital conversion, by

providing increased specificity and adaptability.

In region 1, QS levels are lower due to reduced nutrient accessibility, as these

bacterial cells reside deeper beneath the surface. At TS = 20, QS concentrations

in region 1 are similar to those in region 2 at TS = 25, leading to comparable

sigmoid parameters. However, region 1 at TS = 20 exhibits more noise in its 3D

sigmoid plot, indicative of higher computing uncertainty—mirroring the lower MI

values observed compared to region 2. This uncertainty escalates in region 0, where

the sigmoid function plot shows significant distortion and noise.

Despite these challenges, regions 2 and 1 present a series of sigmoid curves that

form a dependable solution space. Additionally, environmental phosphate levels

act as a fine-tuning element, with each 3D sigmoid plot exhibiting slight variations

in shape related to phosphate concentration changes. These results further eluci-

date the importance of MC for computing as under RA 3 that provide a better

understanding of the RQ1.

3.5 GRNN Plasticity

This section discusses RA 4, which focuses on RQ 3 and extends the GRNN com-

puting diversity by delving into their remarkable cellular plasticity from the ANN

perspective as shown in Fig. 3.33. It is important to emphasize that this study

introduces two types of plasticites; input-dependent plasticity, which refers to

the cell’s adaptive response to varying environmental stimuli, and temporal plas-

ticity, denoting the cell’s ability to modify its behavior over time in response to

sustained changes in its surroundings.
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Figure 3.32: Depiction of a biofilm sigmoid function diversity, showcasing non-linear
behavior variations across different locations (columns) and over time (rows). The
diagram is structured into layers, each illustrating QS signal variations, sigmoid pa-
rameters, and curve changes specific to biofilm regions. QS plots highlight percent-
age differences in 3OC, HHQ, and C4 signal concentrations, while plots of sigmoid
parameters detail adjustments in the curve’s height (L), steepness (k), and horizon-
tal shift (x0).
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Figure 3.33: Within the GRNN framework, gene-perceptrons function akin to per-
ceptrons in ANNs, processing inputs through weights shaped by multi-omic layer
interactions. Bacterial cells display input-dependent plasticity through distinctive
gene expression pathways that vary with diverse inputs. Furthermore, they exhibit
temporal plasticity by adjusting the interaction weights of GRNN subnetworks over
time.

3.5.1 Input-dependent plasticity

This phenomenon emerges from the genes’ selective reaction to particular input

chemicals, as detailed by Zhang et al. in [122]. Similar to the input layer in ANNs,

genes situated at the GRNN’s periphery display heightened sensitivity to specific

chemical effectors. This sensitivity orchestrates the activation of particular gene

subsets in response to the presence of these chemicals. Consequently, the GRNN

adeptly modulates information flow, engaging only pertinent expression pathways

and leaving other genes in a state of quiescence. Such selective activation facilitates

the employment of distinct GRNN subnetworks tailored to the chemical inputs, a

process depicted in Fig. 3.33, thereby bolstering the cellular gene regulatory mech-

anism’s energy efficiency.

3.5.2 Temporal plasticity

Conversely, temporal plasticity pertains to the dynamic adjustments in gene inter-

actions over time, as explored by Rivera et al. in [123]. This adaptation mirrors the

concept of weight plasticity within neural networks, adjusting the strength of gene
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influences to cultivate an optimal response to the environment under unchanged in-

put conditions. This aspect of plasticity underscores the cell’s capability to refine its

behavior through internal regulatory modifications, ensuring survival and efficiency

in fluctuating environmental contexts.

Section 3.6.2 elucidates experimental results on employing GRNN plasticity to

increase the computing diversity.

3.6 GRNN Computing Applications

This section represents RA 5 and RA 6, exploring the practicality of employing

GNNs for general computing tasks exploiting RQ 4 and RQ 5 from another per-

spective. It begins by assessing the potential of GRNNs in performing regression

tasks and examining their effectiveness and adaptability. Following this, the focus

shifts to exploring how GRNNs can be applied to classification tasks.

3.6.1 GRNN Application in Regression

Mathematical regression techniques have long served as a cornerstone in data mining

applications, as evidenced by numerous studies [124, 125]. Subsequently, this section

is dedicated to analyzing the GRNN for a spectrum of regression problem types as

shown in Fig. 3.34 utilizing previously extracted E. coli GRNN.

Regression

Simple Multiple

Linear Non-linear Linear Non-linear

Figure 3.34: Illustration of sub-categories of regression problems.

While this approach provides the freedom of choosing any gene-perceptron as the

input, this research task begins with linear regression analysis using E. coli gene-

perceptron b3067 as the input, due to its capability of influencing 1703 other gene-
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perceptrons. Gene-perceptron b3067 is stimulated with 25 varying concentration

levels, while other gene-perceptrons start at minimal expression values based on

existing datasets. This setup is repeated 10 times for each concentration level to

ensure accuracy.
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Figure 3.35: Depiction of simple linear regression utilizing E. coli GRNN: a) presents
the distribution of regression slopes for all genes against their corresponding r2

scores, b) demonstrates three regression lines corresponding to three output gene-
perceptrons, and c) showcases the sub-GRNN designed for these linear regressions.

Figure 3.35a reveals the diversity in linear regression slopes for E. coli GRNN,

with the highest slopes identified as 0.36 (positive) and -0.50 (negative) when b3067

is the input gene-perceptron. Figure 3.35b exemplifies three gene-perceptrons with

varying slopes, and Figure 3.35c displays their corresponding sub-GRNNs, highlight-

ing the network’s parallel computing ability. This illustrates the GRNN’s versatile

linear regression capability, enabling tailored mapping of gene-perceptrons for spe-

cific applications.

The GRNN’s outputs, as previously discussed, are further analyzed for quadratic

polynomial regressions. Figure 3.36a displays the quadratic and linear coefficients

of each gene perceptron, color-coded by the RSS (the residual sum of squares)
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value, indicating the fit quality. The highest RSS values correspond to quadratic

coefficients ranging from -2 to 2 and linear coefficients from -1 to 0.5.
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Figure 3.36: Visualization of non-linear quadratic regression via E. coli GRNN: a)
depicts the distribution of quadratic and linear coefficients for all genes, with color
coding based on the RSS value, b) presents three sample regression curves, and c)
features the sub-GRNN linked to these sample regression curves.

Figure 3.36b highlights the diversity in quadratic regressions with examples from

genes b0124, b2487, and b3751, showcasing varying quadratic coefficients. Corre-

sponding sub-GRNNs for these genes are shown in Figure 3.36c, indicating that dif-

ferent output gene-perceptron combinations can transition from linear to quadratic

regressions, all with b3067 as the input gene-perceptrons.

Similarly, the analysis is extended to cubic polynomial regressions for E. coli

GRNN. Figure 3.37a presents the cubic coefficients, with Figure 3.37b showcasing

example curves, and Figure 3.37c displaying the corresponding sub-GRNNs. Cu-

bic coefficients with RSS > 0.7 span from 0 to 13, indicating limited variation in

higher-degree polynomial regressions and suggesting a potential limitation in ex-

ploring complex functions. However, this analysis, centered around the input gene-
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perceptron b3067, hints at a broader solution space achievable through diverse input

configurations.
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Figure 3.37: Depiction of non-linear cubic regression with E. coli GRNN: a) portrays
the distribution of cubic, quadratic, and linear coefficients across all genes, with a
color-coding scheme based on the RSS value, b) provides three examples of cubic
regression curves, and c) visualizes the corresponding sub-GRNNs for these three
cubic regression instances.

The GRNN-based regression tasks are further analyzed by exploring multiple

regression in E. coli GRNN with input gene-perceptrons b3067 and b3357. The

study varies expression levels from 0 to 0.5 to create 625 configurations, using RSS

to gauge model variance.

Coefficient variations are detailed in Figure 3.38a, with significant outcomes for

output b3090 shown in Figure 3.38b. The corresponding sub-GRNN configuration is

visualized in Figure 3.38c. This approach highlights the capacity to generate diverse

modeling solutions by varying input and output gene-perceptron pairs.

Multiple polynomial regressions, such as those estimating ”Affective States” in
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Figure 3.38: Illustration of multiple-linear regression through E. coli GRNN with
gene-perceptrons b3067 and b3357 as inputs: a) illustrates the distribution of the
first and second coefficients for all genes, color-coded according to the RSS value,
while b) and c) display the example plane for the output gene-perceptron b3090 and
the associated sub-GRNN, respectively.

humans, are next analyzed using gene-perceptrons b3067 and b3357 as inputs. For

this analysis a generic regression model is defined as follows,

f(x1, x2) = d1x
2
1 + d2x

2
2 + d3x1x2 + d4x1 + d5x2 + d6, (3.5)

where coefficients d1 to d6 correspond to the inputs and interactions of b3067

and b3357.

Results showcased in Fig. 3.39 illustrate the capability to derive complex multi-

variable polynomial models. Coefficients d1 and d2 indicate the model’s quadratic

nature, affecting its curvature based on input concentrations, with distributions

ranging notably in skewness. The cross-term d3 reflects the combined input ef-
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Figure 3.39: Illustration of multiple non-linear regression employing E. coli GRNN
with gene-perceptrons b3067 and b3357 as inputs: a) displays the coefficient distri-
butions related to the equation (3.5), b) and c) illustrate example curves character-
ized by positive and negative coefficients for coef. 1, respectively. Following this,
d) reveals the sub-GRNNs corresponding to the regression examples depicted in b)
and c).

fect, whereas d4 and d5 influence the curve’s vertical displacement. The constant

d6 determines the curve’s baseline position. Figures 3.39b and 3.39c present dis-

tinct examples of multi-variable polynomial regressions, highlighting the diversity

of outcomes possible with this modeling approach.

In summary, this comprehensive analysis underscores the GRNN’s ability to

model a range of regression tasks, from linear to cubic polynomial regressions,

through strategic stimulation of specific input gene-perceptrons. The findings reveal

the network’s adaptability and potential for application in diverse computational

biology scenarios, offering a foundation for future explorations of gene-regulatory
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networks in E. coli and beyond. Further information and results associated with

this analysis was published as presented in Chapter 9.

3.6.2 GRNN Applications in Regression with Plasticity

This section presents a use case of regression to elucidate how cell plasticity theo-

retically broadens computing diversity focusing on the E. coli GRNN as a use case

model.

Figure 3.40 demonstrates the variance in regression outcomes for a GRNN, at-

tributing to temporal cell plasticity. It shows box plots for the coefficients of 2,875

gene-perceptrons across different weight configurations (wi), highlighting substan-

tial diversity in quadratic coefficients and, by extension, the curvatures of regression

models. This variation underscores the expansive solution space available for specific

applications, with linear regressions emerging when quadratic coefficients equal zero.

Linear coefficients generally show negative values, whereas intercepts fall within a

more confined range, particularly between 0 and 2.

Figures 3.40b and 3.40c showcase regression curves for the gene-perceptron b1013

across various timesteps, with five different quadratic coefficients indicating changes

from linear to more curved regressions under different weights. This illustrates how

temporal plasticity enriches the solution space beyond static weight configurations,

enabling multiple regression models for each output gene-perceptron, as opposed to

a single model per gene-perceptron in static scenarios.

In conclusion, this section highlights how cell plasticity enhances the computing

diversity of the E. coli GRNN through regression modeling. The analysis demon-

strates significant variance in gene-perceptron coefficients across different weight

configurations, expanding the solution space for various applications. Temporal

plasticity further enriches this diversity, allowing multiple regression models per

gene-perceptron, thereby enhancing the GRNN’s computational flexibility and ap-

plication potential in computational biology.

77



CHAPTER 3. RESEARCH SUMMARY

0.00
0.05
0.10
0.15
0.20
0.25
0.30

O
ut

pu
t E

xp
 L

ev
el

s

Input Exp. levels
0.0 0.1 0.2 0.3 0.4 0.5

Weight Set ID

C
oe

ffi
ci

en
t V

al
ue

s (
A

.U
.)

-5

0

5

10

15
Lin. Coef
Quad. Coef

Intercept

(a)

(c)

Gene b1013
Weightset ID Regression

(b)

Figure 3.40: The regression analysis, utilizing b3067 as the exclusive input gene-
perceptron, encompasses a) examination of quadratic and linear coefficients, along
with intercepts, across various weight configurations to delineate the solution space;
b) regression coefficients for b1013 ; and c) the corresponding regression curves.

These results were published as presented in Chapter 8.

3.6.3 GRNN Application in Classification

Contrary to the regression capabilities of GRNN explored previously, this study

delves into the feasibility of using GRNN for classification tasks, with a specific

focus on image recognition applications.

Acknowledging that GRNNs are essentially randomly structured pre-trained

NNs, solving problems utilizing GRNNs necessitates the identification and extrac-

tion of the suitable sub-GRNN. Consequently, this thesis proposes a tailored al-

gorithm aimed at facilitating the search for application-specific sub-GRNNs in the

next section.
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Application-specific sub-GRNN Search Algorithm for Classification

The search algorithm employs a random permutation method to identify the optimal

sub-GRNN for specific problems, aiming for precise classification.

The algorithm first identifies suitable candidates for the input layer focusing on

each gene’s inward and outward degrees, as shown in Fig. 3.41 (Step 1). Gene-

perceptrons with an inward degree close to zero, minimize the influence of unneces-

sary incoming signals aside from the problem-specific inputs. Moreover, the input

gene-perceptrons with a higher outward degree can pass information to mere sec-

tions of the GRNN allowing complex computing capabilities. This filtration process

employs graph theoretical degree distribution to create a set of gene-perceptrons for

the input layer, denoted as G(Trimmed). The G(Trimmed) set contains P ′ genes,

where P ′ is less than the total number of genes P in the GRNN.

Since G(Trimmed) comprises P ′ gene-perceptrons and the problem involves K

features, the number of possible input layers that can be generated is P ′PK =

P ′!
(P ′−K)!

. Given the immense number of potential sub-GRNNs, a heuristic search

algorithm might be more efficient. However, because exploring such algorithms is

beyond the scope of this study, we employ a random permutation-based algorithm

instead.

Further in Step 1, the algorithm randomly selects G(InJ), a set of K inputs for

the J th permutation, where J = 0, 1, 2, ..., P ′PK and K represents the number of

input features for the problem. To mimic the base behavior of the cell at t = 0

(the initial time of the computing process), a base-TF array is created using the

expression levels at the zero timestep from the transcriptomic data used for weight

extraction [115] (GEO accession number GSE65244) before encoding the search

dataset into expression levels (Fig. 3.41 - Step 2). This step is essential to ensure

that the cell’s functions align with the environmental conditions at the start of the

process.

Next, in order to create the input matrix I(t=0), the base-TF array is then mod-
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Figure 3.41: Illustration of the proposed application-specific sub-GRNN search al-
gorithm for One-vs-All classification includes several key steps. Step 1 selects input
gene-perceptrons (G(Trimmed)) based on degree distributions and chooses a subset
(G(Inj)) for the application’s input features (K). The search dataset is then con-
verted into an expression-level input matrix (I(t=0)), and the corresponding output
matrix (O(t=T )) is calculated using the base-GRNN model in Step 2 and 3. A set
of gene-perceptrons demonstrating significant expression variance between classes
and minimal within-class variance is identified for class pooling based on expression
levels in Step 4. In Step 5 and 6, the algorithm optimizes expression thresholds for
each class to enhance accuracy and Step 7 performs a MI analysis to prune insignif-
icant input gene-perceptrons, streamlining the network.

ified to encode the inputs of search dataset. This matrix contains input TF arrays

I
(t=0)
v , where v = 0, 1, 2, ..., V . For a digital search dataset, state ”1” represents the

highest expression level of the corresponding gene, while state ”0” represents the

lowest value. In the case of an analog search dataset, the values are normalized and

mapped to concentrations based on the highest and lowest expression levels of the

relevant gene. Following the decoding of all input records with the expression levels

in Step 2, the output expression levels are computed in Step 3 using the mathemat-

ical model described in (3.2) and (3.3). This subseqently produces an expression

matrix, O(t=T ), with output arrays O
(t=T )
v , where v = 0, 1, 2, ..., V corresponds to

each class.
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Step 4 performs a variance analysis to identify gene-perceptrons suitable for

representing each class at the output layer of the sub-GRNN. A gene-perceptron is

considered a good candidate to represent a class ci if it expresses at a higher level for

the corresponding input I(t=0) of that class, while maintaining low variance within

the same class and higher variance between different classes. Therefore, we search

for gene-perceptrons for all classes in ”Region 4” (as shown in Fig. 3.41 - Step 4),

where the variance between classes is high and the variance within records of the

same class is low. This results in a set of output gene-perceptrons.

To assign a gene-perceptron gi to class cl in Step 5, it must meet the condition

y(gi, cl) > y(gi, cm)∀m < |c|,m ̸= l, where y(gi, cl) is the mean expression level for

class cl. This process is carried out for all gene-perceptrons in ”Region 4”. Finally,

the gene-perceptron with the highest mean expression level and the largest gap from

the others is chosen to represent each class.

Step 6 focuses on identifying the threshold for each gene-perceptron using an

accuracy-maximizing approach. We first determine the true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN) for each class using

an arbitrary threshold value Th = a. The accuracy for class cl is then calculated as

follows:

Acc(cl, Th = a) =
TP + TN

TP + TN + FN + FP
.

In order to determine the optimal threshold for class cl, this calculation is re-

peated for various thresholds a, ranging from zero to one in 0.05 increments. The

threshold is identified by:

Th = arg max
a

Acc(cl, Th = a).

This process is iteratively performed for all classes involved in the problem. Next,

this process is repeated multiple times (< P ′PK), ranking the sub-GRNNs based on
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accuracy to select the best candidate.

Following the selection of a suitable application-specific sub-GRNN, a

perturbation-based MI analysis is conducted in Step 7 to optimize the network.

During this step, all inputs of the extracted sub-GRNN are subjected to signals fluc-

tuating from zero to one, and the outputs are recorded from the gene-perceptrons

at the output layer. The MI between the input and output nodes is calculated as:

I(gx; gy) =

∫
f(x, y) · log

(
f(x, y)

f(x) · f(y)

)
dxdy

where gx and gy are the input and output nodes, respectively, and f(x, y) is

the joint probability density function of gx and gy expressions. The amount of

information flow from input nodes to output nodes is indicated by these MI values.

Input nodes with lower MI values can be disregarded, leading to a reduced and more

efficient network.

Digit Classification Use case

This section outlines the experimental setup for digit classification using a proposed

sub-GRNN search algorithm and evaluates the performance of GRNN computing.

To simplify the analysis, the study employs 4× 4 images, totaling 16 pixels, and

a search dataset, comprising five digit classes (”0”, ”1”, ”2”, ”6”, and ”7”) with 10

distinct pattern augmentations as shown in Fig. 3.42, resulting in a dataset size of

50 × 16 alongside a 50 × 1 label matrix.

Utilizing the search algorithm explained previously, the GRNN sub-network de-

picted in Fig. 3.43 is extracted. Next, the suggested perturbation-based MI analysis

is performed on the identified application-specific sub-GRNN. This process involves

applying fluctuating input signals, ranging from zero to one, to all inputs of the sub-

GRNN. The responses from five output gene-perceptrons, specifically b2436, b0613,

b0675, b2417, and b3902, are then recorded.

Based on the MI values, an optimal network is derived, that only contains b0080,
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Figure 3.42: 4×4 pixel images representing five digit classes and their corresponding
augmentations.

b4401, b0889, b2217 and b3905 as the input layer gene-perceptrons.

The study subsequently evaluates the computing accuracy of the sub-GRNN,

comparing its performance before and after network reduction. The aim is to as-

sess the impact of reducing input quantity on network effectiveness, with results

presented in Fig. 3.44.

Findings indicate that the optimized sub-GRNN maintains accurate comput-

ing capabilities comparable to its prior configuration, despite a simplified structure

with fewer input nodes. This simplification potentially leads to lower ATP energy

requirements for computational processes and reduces noise leading to enhanced

reliability.

3.7 Summary

This thesis explores the computational capabilities of bacterial systems by integrat-

ing MC and GRNNs, while aiming to understand the underlying mechanisms of

bacterial behavior and functionality, providing insights into the potential applica-

tions of bacterial biocomputing.

The initial phase of the thesis investigates the MC mechanisms within bacterial

populations, specifically focusing on the human GB. The human GB is a complex

ecosystem of bacteria that interact through metabolite exchange, significantly influ-
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Figure 3.43: Illustration of perturbation-based MI analysis conducted on the input
and output layers of the extracted sub-GRNN.

encing host metabolic functions. This intricate network of interactions, documented

in databases like Metacyc and KEGG, plays a crucial role in nutrient extraction,

metabolite absorption, and overall health. Dysbiosis in the GB, caused by various

factors such as diet, genetics, and external agents, can lead to health issues including

inflammatory bowel disease, diabetes, and cancers. To model these interactions, a

VGB simulator was developed, employing a two-tiered framework to represent the

GB’s metabolic and communication processes. The upper layer simplifies the GB

into a graph of bacterial populations exchanging metabolites, while the lower MC

layer models the molecular signals facilitating these exchanges.

In-silico experiments using the VGB simulator further validate the theoretical

models. These experiments focus on SCFA production within the GB, exploring how

changes in bacterial population sizes and metabolite inputs affect the overall sys-

tem dynamics. The findings highlight the intricate relationships between bacterial

composition, metabolite production, and computational efficiency, offering insights
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Figure 3.44: Comparison of the extracted sub-GRNN’s accuracy before and after
reducing the number of inputs, with darker columns indicating class accuracies prior
to reduction and lighter columns showing accuracies post-input minimization.

into optimizing bacterial systems for enhanced biocomputing applications.

Following the exploration of MC, the research delves into GRNNs to understand

their computational capabilities at the cellular level. GRNNs mimic the biological

gene regulatory networks, allowing the quantification of complex gene-gene inter-

actions through computational models. The study constructs GRNNs for different

bacterial species, including E. coli and P. aeruginosa, validating their accuracy

against experimental data. The results demonstrate the feasibility of using GRNNs

to replicate biological processes, highlighting their potential for cross-genome appli-

cations and the possibility of performing biocomputing.

The integration of MC with GRNNs provides a comprehensive understanding of

natural bacterial computing. By simulating bacterial ecosystems as graph networks,

the research captures the dynamic interactions between cells and their molecular

environment. This approach reveals how intercellular communication influences the

dynamics of GRNNs, enhancing our understanding of bacterial adaptive behaviors

and survivability. This is an essential analysis in order to place bacteria as a viable

biocomputing solution.

The study also evaluates the energy efficiency and computational complexity

of GRNNs compared to traditional computing platforms. The results indicate that

GRNNs exhibit remarkably low power consumption, particularly in high-complexity

tasks, making them highly efficient for biological computing applications. This en-
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ergy efficiency, combined with the GRNN’s structural complexity, underscores their

suitability for general computing tasks and their potential for functioning as a neu-

romorphic computing platform.

The dissertation also delves into the development of an application-specific sub-

GRNN extraction algorithm, which is pivotal for identifying GRNNs to specific

computational tasks. This algorithm extracts suitable sub-networks from the larger

GRNN, optimizing them for tasks such as regression and classification.

The feasibility analyses of these tasks demonstrate the practical applicability of

GRNNs in solving real-world problems. For regression, the study evaluates various

types, including linear, quadratic, and cubic regression models, using the extracted

sub-GRNNs. These models effectively predict gene expression levels based on input

variables, showcasing the accuracy and versatility of GRNNs in handling complex,

non-linear relationships.

Similarly, the classification feasibility analysis underscores the potential of

GRNNs in distinguishing between different classes based on gene expression pro-

files. By applying the sub-GRNN extraction algorithm, the research identifies the

most significant gene-perceptrons that contribute to accurate classification. This ap-

proach enhances the precision and efficiency of GRNNs in categorizing data, which

is crucial for applications in medical diagnostics, environmental monitoring, and

synthetic biology. The successful analysis of regression and classification tasks high-

lights the robustness and adaptability of GRNNs.

Overall, this dissertation advances our understanding of bacterial biocomputing,

demonstrating the potential of integrating MC and GRNNs to model and harness

the computational power of bacterial systems. The research provides a founda-

tion for future studies in energy-efficient, biocompatible and generalizable bacterial

computing platforms.
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Chapter 4

Conclusion and Future Work

This chapter presents the conclusion in Section 4.1, which addresses the three re-

search questions. This is followed by the future work outlined in Section 4.2.

4.1 Conclusion

AI has become a cornerstone of modern technological advancements, transforming

from an intriguing idea into an essential part of everyday life. It has revolutionized

industries, improved problem-solving abilities, and significantly influenced societal

norms, leading to groundbreaking applications across various sectors, including man-

ufacturing, automotive, finance, and healthcare.

In contrast to AI’s capabilities, a key challenge is the high energy demand re-

quired for training and functional phases, especially in deep learning and large

language models. Numerous efforts to address this issue focus on hardware opti-

mization, with neuromorphic systems emerging as a promising solution due to their

better energy efficiency. However, neuromorphic computing faces certain challenges

when it comes to the general-purpose applications. While biocomputing platforms

offer energy efficiency and biocompatibility, their limited generalizability presents

significant obstacles for widespread adoption.

Therefore, this thesis aims to explore the inherent computing capabilities of bac-
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teria to address these limitations and introduce them as a novel, energy-efficient,

biocompatible and generalizable computing platform. Initially, the thesis formulated

first RQ; ”How can communication of bacterial multi-species computing

be used to understand population network structures?” that explores how

bacterial communication through molecular signaling and cross-feeding shapes pop-

ulation network structures. By studying these interactions, the goal is to understand

how bacterial communities adapt and self-organize, enhancing their resilience and

ecological balance. In order to model these interactions, focusing on the human GB,

a VGB simulator is developed as one of the contributions of this thesis. In addition,

a two-tiered framework is introduced with the upper layer representing bacterial

populations exchanging metabolites and the lower MC layer modeling molecular

signals. In-silico experiments using the VGB simulator, particularly on SCFA pro-

duction, validate the theoretical models and provide insights into the involvement

of MC and compositional changes in altering bacterial behaviors.

This thesis next targets the RQ 2: ”Can gene regulation networks be used

to discover artificial neural networks for biocomputing?” that aims to lever-

age bacterial GRN to derive ANN-like sructures, positioning bacterial cells as bio-

computing hardware for efficient, biocompatible, and generalizable computational

tasks. Subsequently, the thesis introduces the novel concept of GRNNs that resem-

bles a random-structured, pre-trained NN by examining the gene expression-based

computational capabilities at the cellular level. GRNNs are extracted by quantify-

ing gene-gene interactions using transcriptomic data, and their accuracy is validated

against experimental data for bacterial species such as E. coli and P. aeruginosa.

Additionally, combining MC with GRNNs provides a comprehensive understanding

of natural bacterial computing by modeling bacterial ecosystems as graph networks.

This reveals how intercellular communication affects GRNN dynamics and improves

our knowledge of bacterial adaptive behaviors and survivability. Further, this the-

sis found that, using GRNN analysis, it is possible to extract secreted molecular
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species from bacterial populations, such as biofilms, that can act as mathemati-

cal functions, particularly modified sigmoid functions. The features such as height,

steepness, and shift of biofilm-based sigmoid functions can be fine-tuned by regulat-

ing environmental conditions. The ability to harness and modify these biofilm-based

functions extends the versatility of bacterial population-based computing, allowing

for sophisticated control over computational processes within a living AI system.

Moreover, the bacterial adaptability explored in this thesis focusing on RQ 3:

”How can the bacterial computing diversity be expanded by exploiting

cellular plasticity?” introduces a new form of plasticity to the AI world in terms

of dynamic weights. These cells can dynamically adjust their internal states in re-

sponse to external stimuli, allowing for real-time, context-aware modifications to

their computational processes. This, in turn, leads in a more flexible and resilient

form of biocomputing paradigm. Moreover, the incorporation of dynamic weights

expands the computing diversity massively, enabling a broader range of applications

and more robust performance across various tasks. It allows for the development of

living AI systems that are capable of learning and adapting on the fly. This new

approach opens up possibilities for more sophisticated, adaptive AI solutions that

can handle real-world variability with greater ease and precision, pushing the bound-

aries of what current AI technologies can achieve. Further, posibility of regulating

weights can be exploited in the future.

Further, this thesis assesses the energy efficiency and computational complex-

ity of GRNNs compared to traditional computing platforms. The findings elucidate

that GRNNs have remarkably low power consumption, especially in high-complexity

tasks, making them highly efficient for biological computing applications. This effi-

ciency, combined with their structural complexity and analog computing capabilities

highlights their potential as a wet-neuromorphic computing platform. Additionally,

targeting the RQ 4: ”Can mathematical and pattern recognition applica-

tions be realized through bacterial neural networks?” a feasibility analysis
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on regression revealed the potential for bacterial computing systems to perform

tasks ranging from simple linear to complex multiple polynomial regression, demon-

strating high generalizability. This capability could be applied in-situ in medical

diagnostics for environmental monitoring for predicting pollutant dispersion and ac-

curately modeling disease progression. These practical applications highlight the

versatility of bacterial computing in handling diverse regression tasks across various

fields.

Finally, RQ 5 ”What search algorithms can be developed to discover

natural GRNN for biocomputing applications?” results in an application-

specific sub-GRNN extraction algorithm that optimizes sub-networks for classifi-

cation tasks, enabling bacterial computing systems to perform molecular pattern

recognition. This innovation allows bacterial cells to be used in future practical

applications such as disease identification, specific environmental condition identifi-

cation, or even generic image classifications.

In addition to positioning bacterial-based computing as an energy-efficient and

generalizable novel computing approach, it is embeddes with the unique property

biocompatibility. The biocompatibility is particularly advantageous in contexts

where implantable devices are essential, such as health monitoring, drug delivery,

smart diagnostics and even in environmental monitoring. Silicon-based devices,

while advanced, often face significant biocompatibility challenges, leading to issues

such as immune rejection, inflammation, and long-term stability problems within

the body. In contrast, bacterial cells used in the proposed computing approach

can integrate seamlessly with biological tissues, minimizing adverse reactions and

enhancing compatibility with the human body.

Furthermore, by combining bacterial computing with MC, it is possible to a

develop biological devices that can be controlled using external signals or retrieve

information from their environment. This integration enables the creation of respon-

sive living AI machines capable of precise control over therapeutic interventions,
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real-time monitoring of physiological conditions, and advanced diagnostics. These

machines will not only passively monitor or release molecules to environment, but

also perform complex context aware computing tailored to specific applications. This

capability positions them as a new class of AI-based living implantables. These ad-

vanced systems can dynamically interpret and respond to biological signals, making

real-time decisionsFurther, these biological devices could be engineered to respond

to specific molecular cues or environmental changes, providing a highly targeted and

efficient approach to medical treatment and diagnostics.

4.2 Future Work

The new bacteria-based biocomputing avenue explored in this PhD thesis opens up

several paths for future studies. This section lists three main potential research

directions that can be taken forward into the future.

• Heuristic application-specific GRNN sub-network search algo-

rithms. This thesis introduced a random permutation application-specific

GRNN sub-network search algorithm, demonstrating the feasibility of extract-

ing suitable GRNN sub-networks as a proof of concept. The algorithm suc-

cessfully identified potential sub-networks, but the vast number of variables

and their associated ranges make random searches impractical for large-scale

applications. As a result, future research focused on heuristic search methods

is essential to improve the efficiency and effectiveness of GRNN sub-network

search. This advancement will significantly enhance the field of bacterial-based

biocomputing, enabling more practical and scalable applications.

• Distributed computing architectures with bacterial populations con-

sist of multiple species. This thesis began by exploring the role of MC in

the behavior of bacterial ecosystems. This initial phase focused on how MC

methods could model and predict interactions within bacterial communities,
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providing insights into their complex dynamics. In subsequent phases, the

thesis examined the impact of MC on the computing properties of GRNNs

at the single-cell level, revealing how these networks operate within individual

bacterial cells. The thesis then highlighted the computational diversity present

within a single E. coli cell.

By combining insights from these analyses, the research suggests the poten-

tial for creating distributed computing systems. Such systems could not only

replicate the same GRNN within a single species bacterial population but also

utilize GRNNs from multiple species GRNNs working together with the help

of MC. This approach would leverage the inherent variability and adaptabil-

ity of bacterial systems, leading to more flexible and efficient biocomputing

solutions. Further, this advancement represents a significant improvement in

the field, opening new possibilities for the development of sophisticated, dis-

tributed biocomputing networks that can tackle complex computational tasks

with greater efficiency and resilience.

• Bio-hybrid approaches The bacterial biocomputing approach explored in

this thesis focused on considering the cell or the population as a complete

computing platform. This method demonstrated the potential of bacterial

systems to perform complex computational tasks by leveraging their natural

processes and interactions. However, there is significant room for improvement

by integrating silicon components and designing bio-hybrid systems.

Embedding silicon into these bacterial systems could enhance their computa-

tional capabilities, making them more generalized and compatible with existing

technologies. This integration would allow for a seamless interface between bi-

ological and traditional electronic computing systems, combining the strengths

of both. Silicon components could provide precise control, faster processing

speeds, and better scalability, while bacterial systems offer unique advantages

92



CHAPTER 4. CONCLUSION AND FUTURE WORK

in adaptability and energy efficiency.

These hybrid systems can introduce hybrid intelligent biocomputers with en-

ergy efficiency and real-time adaptability, develop dynamic agricultural sensors

for optimized resource use, and create wearable health monitors for continuous

and precise health tracking. Overall, incorporating silicon into bacterial bio-

computing systems represents a promising direction for future research, aiming

to create advanced, integrated computing platforms that leverage the best of

both biological and electronic worlds.
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A Graph-based Molecular Communications Model
Analysis of the Human Gut Bacteriome

Samitha Somathilaka, Student Member, IEEE, Daniel P. Martins, Member, IEEE, Wiley Barton, Orla O’Sullivan,
Paul D. Cotter, Sasitharan Balasubramaniam, Senior Member, IEEE

Abstract—Alterations in the human Gut Bacteriome (GB)
can be associated with human health issues, such as type-2
diabetes and obesity. Both external and internal factors can
drive changes in the composition and in interactions of the
human GB, impacting negatively on the host cells. This paper
focuses on the human GB metabolism and proposes a two-layer
network system to investigate its dynamics. Furthermore, we
develop an in-silico simulation model (virtual GB), allowing us to
study the impact of the metabolite exchange through molecular
communications in the human GB network system. Our results
show that regulation of molecular inputs strongly affects bacterial
population growth and creates an unbalanced network, as shown
by shifts in the node weights based on the produced molecular
signals. Additionally, we show that the metabolite molecular
communication production is greatly affected when directly
manipulating the composition of the human GB network in the
virtual GB. These results indicate that our human GB interaction
model can help to identify hidden behaviours of the human GB
depending on molecular signal interactions. Moreover, the virtual
GB can support the research and development of novel medical
treatments based on the accurate control of bacterial population
growth and exchange of metabolites.

Index Terms—Biological network systems, graph analysis,
molecular communications, human gut bacteriome, metabolic
interactions.

I. INTRODUCTION

THE Gut Bacteriome (GB) is an ecosystem of a massive
number of bacterial cells which play a vital role in

maintaining the stability of the host’s metabolism [1]. The
bacterial populations of the GB build complex interaction
networks by exchanging metabolites with the host and/or
other bacterial populations [2], resulting in the production of
new metabolites, such as Short Chain Fatty Acids (SCFAs),
proteins, and other molecules [3].

External factors such as the availability of nutrients, an-
tibiotics, and pathogens can affect this interaction network
[4]. These factors mainly alter the compositional balance
of the human GB, subsequently disrupting the metabolite
production [5]. In humans, these GB changes have a significant
impact on the host’s health and may lead to many diseases,
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including inflammatory bowel disease, type-2 diabetes, obe-
sity and cancers [6], [7]. Although studying complex causal
metabolic networks is challenging [8], several studies have
been undertaken to precisely identify the causes for microbial
behavioural alterations and their consequent health effects
in humans and animals [9], [10]. For example, Yang et
al. [11] performed a cross-sectional whole-genome shotgun
metagenomics analysis of the microbiome and proposed a
combinatorial marker panel to demarcate microbiome-related
major depressive disorders from a healthy microbiome. From
a different perspective, Kim et al. introduced a split graph
model to analyse the microbial compositions of healthy or
Crohn’s disease microbiome compositions [12]. Inspired by
these works, we propose a novel tool to further characterise
the interactions among the bacterial populations often found
in the human GB.

In this paper, we propose a two-layer interaction model sup-
ported by the exchange of molecular signals, i.e. metabolites,
to model the human GB. Here, we identify the interactions
between bacterial cells as Molecular Communications (MC)
systems and their collective behaviour as a MC network.
MC aims to model the communication between biological
components [13] using molecules as information [14], [15] and
it is fundamental to characterise the exchange of metabolites
in our two-layer interaction model.

In the graph network, bacterial populations act as nodes
while the edges represent the interactions between them. This
interpretation allows quantifying the behaviours of the human
GB using graph theoretical incorporating MC analysis to un-
derstand impacts from distances between different graph states
and variations of node/edge weights. Moreover, conducting
in-vivo or in-vitro experiments on the human GB to extract
data related to each interaction of the network often requires
a significant number of resources and time. On the other hand,
calculating them theoretically using Flux Balance Analysis
(FBA) is extensively complex due to the large number of
variables that prompt the same number of equations to be
solved (see in Section IV for further details). On top of that,
FBA is known as a static approach that fails to capture the
stochastic nature of biological networks. Hence, we designed
an agent-based simulator (henceforth named virtual GB) to
simulate the human GB, which produces the same set of data
that we expect by conducting in-vivo or in-vitro experiments
or FBA calculations. The virtual GB performs the behaviours
of the human GB considering natural characteristics. Hence,
the generated data represents bacterial behaviours that are
influenced by the aforementioned stochastic parameters.
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(a) (b)

Fig. 1: Illustration of the system model. (a) We recreated the human GB functionalities on virtual GB using voxel architecture
and parallel processing dedicating one GPU block for each bacterial cell to produce quantitative data on the MC layer, and
(b) we propose a two-layer system model to investigate the molecular interactions simulated in the virtual GB.

Our main contributions are as follows:
• Design of a two-layer interaction model of the human

GB: The collective gut bacteria metabolism forms a
complex interaction network among the different bacterial
populations. Hence, in this study, we design a layered
interaction model to investigate the dynamics of the
human GB based on the exchange of metabolites.

• Analysing molecular communication impact on the
human GB graph structure: Deviations of bacterial
populations’ metabolism cause alterations in molecular
interaction within the human GB, which may impact
the graph layer structure. We analyse this relationship
between the MC measures and the graph structure of the
human GB in terms of graph nodes and edges behaviours.

• Development of a human GB simulator to perform
in-silico experiments: We design and utilise an in-silico
simulation model of the human GB to investigate the di-
rect and hidden interactions among bacterial populations
based on the exchange of metabolites.

In the next sections, we detail our approach to model the
human GB and assess its network performance. In the section
II, we describe the basics of the human GB and highlight
the existent gaps that this research aims to address. Our
proposed model is detailed in Section III. Then, the metrics
considered in this paper are introduced in Section IV, and our
analysis results are presented in Section V. Further, in Section
V-A, we introduce the simulation environment built to utilise
metagenomics data and perform in-silico experiments with the
human GB. Finally, our conclusions are shown in Section VI.

II. BACKGROUND ON THE HUMAN GB MODEL

The human GB is the bacterial ecosystem residing inside
the human digestive system, comprising approximately 1000
species interacting with each other and carrying out crucial
functions such as nutrient metabolism and immunomodu-
lation of the host [16]. These bacteria utilise products of
host metabolism, metabolites produced by other bacteria or
dietary components from the gastrointestinal tract to convert

into various products essential for the host through different
metabolic pathways [17]. Bacteria in the human GB manifest
their cellular functions by exhibiting various social behaviours
such as commensalism [18], and competition by interacting
with other populations mainly using molecules (e.g., proteins,
metabolites and quorum sensing) rather than individual entities
[19]. We identify these interactions as MC system and assert
that the communication process in the GB is quite similar
to routing and relaying information in a conventional network
system which has inspired different network models (including
ours) of the human GB interactions. For example, Naqvi
et al. used a network-based approach to characterise the
human gut microbiome composition and analysed healthy vs
diseased states using network statistics [20]. Another study
focuses on the use of Boolean dynamic models that combines
genome-scale metabolic networks to determine the metabolic
deviations between community members, which was used to
characterise their metabolic roles of interactions [21].

The composition of the human GB is a crucial driver for
the processing of metabolites (i.e., small molecules produced
and used in metabolic reactions) in the lower intestine, which
significantly impacts the health of the host [22]. Human
GB composition differs among individuals, and it depends
on various factors, including dietary patterns, gut diseases,
exercise regimes, antibiotic usage, age, and genetic profiles
[23].

III. TWO-LAYER HUMAN GB INTERACTION MODEL

In this paper, we represent the metabolic interactions of
select representative bacterial genera of the human GB as
a two-layer interaction model, as shown in Figure 1. First,
the compositional and behavioural data on the human GB is
extracted from the databases and literature and implemented
the virtual GB (Figure 1a), see Section V-A for further details.
The virtual GB then simulates the human GB functionalities
according to various experimental setups (later explained in
section V), producing data on bacterial, molecular and gut
environmental behaviours. The produced data is analysed

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2022.3148672

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

CHAPTER 5. JOURNAL PAPER: A GRAPH-BASED MOLECULAR
COMMUNICATIONS MODEL ANALYSIS OF THE HUMAN GUT
BACTERIOME

96



SUBMITTED TO IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 3

according to the introduced two-layer interaction model as
shown in Figure 1b.

The upper layer of this model, which is the bacterial pop-
ulation graph layer, defines the interconnections and overall
structure of the human GB, where we model the bacterial
populations and host as nodes and interactions between them
as edges. To minimize the complexity of the model, this graph
layer considers bacterial genera as nodes, as species in the
same genus share a common ancestral origin and the data
availability. Further, the edges of the network represent the
direct connections between the nodes that produce a particular
metabolite and the nodes that consume the corresponding
metabolite. In this layer, we can investigate the network
topology of the human GB.

The bottom layer consists of the cascading molecular
communications systems created by the bacterial populations
to establish their exchange of metabolites and support their
network structure. Here, each node is viewed as a molecular
transceiver, and the edges are the communications channels
interconnecting the nodes. Furthermore, this model extends
to the molecular signals that reach the human GB from the
environment, as well as, the ones that are output from the
human GB and return to the environment. The interactions
represented in this layer are dynamic and will depend on
several environmental conditions, such as media characteristics
and human GB composition. Please note that this is the layer
where we initially observe the impacts of any alterations on
the human GB composition (we further model and analyse this
effect in Section IV-A). The upper layer and the bottom layer
are further described in the following sections.

A. Upper Layer - Bacterial Population Graph Layer

Bacteria display a wide variety of social behaviours, and this
can lead to processes such as the metabolism of molecules or
coordinated biofilm formation [24]. The bacteria’s ability to
consume and produce multiple metabolites results in dense
interaction patterns that can lead to challenges in the analysis.

Our human GB interaction model aims to provide a better
global view of the functionality of the human GB, leading to
the understanding of the causes and effects of its imbalance
and to propose precise alterations to fix such issues. Therefore,
we model the human GB as follows. We first consider that
all bacterial cells bBk of a bacterial population Bk (where k
is the bacterial population identifier) perform the same series
of metabolic functions to process the metabolite inputs in
the human gut. Each node of the proposed graph layer is a
bacterial population, and each edge is an interaction between
two bacterial populations through metabolite exchange. The
nodes of this layer comprise the collective metabolic functions
of all cells within the corresponding population. Let Ω be the
set of all agents in this study, i.e. host cells and bacterial
populations, Ω = {host, Bk}. In this case, the molecular
intake of particular bacterial population Bk′ from Ω, C(Ω,Bk′ )

is considered C(Ω,Bk′ ) '
∑
c(Ω,bBk′ ) where C represents pop-

ulation interactions, c represents the intercellular interactions
and c(Ω,bBk′ ) is the molecular reception of bacterial cell bBk′

(a cell from the bacterial population Bk′ ) from a Ω source.

In the same way, molecular emission of the population is
considered the combined molecular emission of all bacterial
cells of the particular population, C(Bk′ ,Ω) '

∑
c(bBk′ ,Ω),

where C(Bk′ ,Ω) is the molecular emission from population
Bk′ to any receiver (host or other bacterial populations),
and c(bBk′ ,Ω) is the molecular emission of a single bacterial
cell of the population Bk′ to any receiver. Additionally, the
metabolite consumed by the bacterial cell bBk′ , MCon(bBk′ )
is obtained as MCon(bBk′ ) = c

(Ω,bB
′
k )
− c

(bB
′
k ,Ω)

. Hence the
metabolite consumption of a bacterial population is defined as
MCon(Bk′) '∑MCon(bBk′ ).

Next, we map the interactions between bacterial populations
to a directed multi-graph network, Γ = (B,C,Bs, Bd,M),
where B is the set of all bacterial populations, C is the set
of all interaction in the human GB, Bs ∈ B is the bacterial
population interaction sources, Bd ∈ B is the bacterial popu-
lation interaction destinations, and M is the set of metabolites.
In this work, we consider SCFAs production as the use case
for our model on the bacterial population interactions.

B. Bottom Layer - MC System

As detailed in the previous section, the metabolism of
nutrients by the human GB involves the reception, processing,
production of metabolites. These activities are fundamental
for the maintenance of the human GB, and this is modelled as
the MC layer shown in Figure 1b. Our aim of having the two-
layer model is to determine how the changes due to molecular
signals of the metabolites will affect the relationship of the
bacterial population graph layer. Therefore, any changes in the
bottom layer directly affect the upper layer and vice-versa.

Here, we define the metabolites as the molecular signals that
are exchanged by the nodes, which can assume different func-
tions depending on the MC network structure. For example,
when the node receives molecular signals, we model it as a
receiver, and when processing and secreting molecular signals,
we define them as transmitters based on the MC paradigm. The
edges of the proposed MC network are represented as the MC
channels to model the physical transport of molecular signals
between the nodes by diffusion. Figure 1b shows a visual
representation of the proposed bottom layer and its relationship
with the upper layer.

The diffused molecular signal is received by the nodes
which have the membrane receptors that will allow the
metabolites to bind. The performance of this network node
function (i.e., molecular reception) relies on many factors such
as molecule size [25], ligand-receptor maximum attraction
length and bond equilibrium [26], binding noise due to the
Brownian motion of molecules near the receptors [27], and
the minimum required concentration to be detected [28]. After
receiving the molecular signals, the node will process them
internally, which may result in the production of a new
molecular signal to be transmitted to the next node (focus
of this paper).

Received molecular signals are processed through signalling
pathways and produce different metabolites that will be trans-
mitted to the next node [29]. Even though we only focus
on the genus level, the signal processing occurs in each
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Fig. 2: Illustration of the analysis structure of this study.
Analysis 1: Influence of inputs on the graph structure and
Analysis 2: Behaviours of graph output against structural
deviations.

bacterial cell. Accordingly, we present the signalling process
performance of a bacterial cell bBk related to any metabolite
Mj as SPPbBk (Mj). Let’s assume that the cell bBk pro-
duces Mj by consuming another metabolite Mj′ . Then the
signal process performance SPPbBk (Mj) can be modelled by
considering the metabolite Mj′ reception process (defined as
RbBk (Mj′)), the encoding/decoding process from metabolite
Mj′ to Mj (defined as EbBk (Mj′ ,Mj)), and Mj metabolite
secretion process by the cells in the bacterial population bBk

(defined as LbBk (Mj)). Hence, we represent the signal process
performance as follows,

SPPbBk (Mj) = f(RbBk (Mj′), EbBk (Mj′ ,Mj), LbBk (Mj)).
(1)

Therefore, the SPP of the populations Bk can be modeled as
follows,

SPPBk
(Mj) =

∑
SPPbBk (Mj). (2)

Since the output of the molecular signal processing is the
emission of a particular molecular signal, it is fair to say,

SPPBk
(Mj) = Cr

(Bk,Ω)(Mj) (3)

where Cr
(Bk,Ω)(Mj) is the rate of molecule Mj production by

the bacterial population Bk to any node (either other bacterial
populations or host cells).

IV. SYSTEM DYNAMICS

We investigate the system dynamics of the human GB
through a series of simulations using the virtual GB and
propose a two-layer human GB model. First, we recreate the
digital form of the human GB on the simulator, which is
explained in depth later in Section V-A. Then we perform
two main sets of experiments, as depicted in Figure 2. In the
first set, we analyse the impact of the system’s inputs on the
connectivity structure of the virtual GB, and in the second set,
we manipulate the composition of our virtual GB to investigate
the impact on the metabolite production of our MC network.
Through this second set of experiments, we aim to identify
the nodes that can play a pivoting role in the GB imbalances.

In our analyses, first we define a standard graph state S0,
which represents the functionality of an average healthy human
GB with the intention of quantifying structural changes and
behavioural deviations relative to the standard structures. The
average composition, interactions, and metabolite production
dynamics were mainly considered in defining the S0. The

average composition and the interactions of S0 for the case
study of this paper is presented in Section V

A. Molecular input impact on the human GB structure

Due to the variety of bacterial behaviours induced by the
exchange of molecules, some of the molecular input signals
have a significant impact on the structure of the human GB
(our focus), while others are directly converted into output
metabolites. In this section, we detail how the molecular
input signals impact the structure of our MC network. As the
structural deviations of the graph is a crucial measurement
in understanding the deviation of the human GB behaviour,
the structural deviation is evaluated in terms of edges and
nodes weight using the rates of the interaction of the nodes.
Hence, we explain how the interaction rates can be calculated
theoretically using FBA and are represented as follows,

F[k×q] · ~C = ~MCon(Bk) (4)

where F[k×q] is the stoichiometric matrix of k number of
bacterial populations and q number of interactions based
on the flux of metabolites between the nodes in the MC
network. Here ~C = [Cr

1 , C
r
2 , ..., C

r
q ]1×q and Cr

q is the rate
of interactions for Cq . We can solve (4) as follows,







B1 a1,1 a1,2 ... a1,q

B2 a2,1 a2,2 ... a2,q

...
...

...
. . .

...
Bk ak,1 ak,2 ... ak,q

·







Cr
1

Cr
2
...
Cr

q

=







dMCon(B1)
dt

dMCon(B2)
dt
...

dMCon(Bk)
dt

(5)

where, ak,q is the stoichiometry of the interaction Cr
q for

bacterial population Bk.
Based on (5), we can extract the relationship between rates

of interactions starting from the node Bk using Mass Balance
Equation (MBE), which is based on the following relationship

dMCon(Bk)

dt
=
∑

q

a(k,q)C
r
q . (6)

On the other hand, the rate of molecular consumption can be
modeled as follows [30],

dMCon(Bk)

dt
= −U1

(
µk

MCon(Bk)

MCon(Bk) +KS1

)
NBk

(7)

where NBk
is the bacterial concentration, µk is maximum

growth rate, KS1 is the half-saturation constant of the bacteria,
and U1 is an utility parameter. Hence,

−U1

(
µk

MCon(Bk)

MCon(Bk) +KS1

)
NBk

=
∑

q

a(k,q)C
r
q . (8)

By solving the series of MBEs, all the interaction rates can
be calculated. This is a highly complex calculation due to
the massive number of nodes, edges of the network, and
a large number of parameters associated with the structural
connections. The introduced virtual GB produces data on the
rates of interactions avoiding complex FBA calculations.

The extracted rates of interactions are then used to quantify
the graph structural changes in two ways. First, we investigate
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the graph structural changes considering the behaviours of
the node weights. Here, the statistical distances between the
weights of the same node in different graph states are mea-
sured. The node weight, Bw

k (Sg) of the bacterial population
Bk in the graph state Sg is considered as the collective SPP
and can be evaluated as follows,

Bw
k (Sg) =

∑

j

SPPBk
(Mj). (9)

Alternatively, using (3) we compute the node weight as
follows,

Bw
k (Sg) =

∑

j

Cr
(Bk,Ω)(Mj). (10)

Based on this, d(Bw
k : Sg, S0) represents the distance of node

Bk between the two graph states S0 and Sg is evaluated as
follows,

d(Bw
k : Sg, S0) = Bw

k (Sg)−Bw
k (S0). (11)

Next, we quantify the structural deviation of the graph
using the interaction changes. In this study, we consider static
snapshots of different graph states that can enable the use of
the Hamming Distance to evaluate graphical distances for two
states [31] among other techniques. The Hamming distance
dh(S0, Sg) between the graph states Sg and the standard
state S0 is defined as the difference of two adjacent matrices
corresponding to the two graph states. First, we define the
adjacency matrix of the graph state Sg as follows,

B1 B2 ... Bk





B1 Cw
(B1,B1) Cw

(B1,B2) ... Cw
(B1,Bk)

B2 Cw
(B2,B1) Cw

(B2,B2) ... Cw
(B2,Bk)

...
...

...
. . .

...
Bk Cw

(Bk,B1) Cw
(Bk,B2) ... Cw

(Bk,Bk)

(12)

where Cw
(∗,∗) is the weight of the interaction C(∗,∗). Note that

the weights of interactions in the main diagonal of the above
matrix represents the interactions that take place within the
same bacterial population, which is a type of interaction that
cannot be observed in the metabolic network we considered
in this study. Further, we define the weight of the interaction
C(Bk,Bk′ )(Mj) between any bacterial population Bk and B′k
through metabolite Mj as follows,

Cw
(Bk,Bk′ )(Mj) =

Cr
(Bk,Ω)(Mj)∑

k C
r
(Bk,Ω)(Mj)

·
Cr

(Ω,Bk′ )(Mj)∑
k′ Cr

(Ω,Bk′ )(Mj)
.

(13)
Moreover, from released molecules by a bacterial population,
only a fraction is consumed directly by the other populations
and the rest will get accumulated in the environment. This
means the most significant portion of molecular consumption
by the bacterial populations is from the environment. We
define this process with the help of a memory component
concept as depicted in Figure 3. Since the metabolites are
accumulated in the environment, we consider it a memory, then
model the metabolite accumulation as an interaction starting
from a bacterial population that releases the metabolites and

Fig. 3: Illustration of the environment working as a memory
of molecules.

ending with the memory, C(Bk,Mem). In the same way, the
metabolite consumption from the environment is modelled as
an interaction starting from the memory and ending with a
bacterial population that consumes the particular metabolite,
C(Mem,Bk). Hence, we modify (13) by applying the memory,
which is represented as follows,

Cw
(Bk,Bk′ )(Mj) =

Cr
(Bk,Mem)(Mj)C

r
(Mem,B′

k)(Mj)∑
k C

r
(Bk,Mem)(Mj)

∑
k′ Cr

(Mem,B′
k)(Mj)

.

(14)

Then, the Hamming distance, dh(S0, Sg) can be represented
as,

dh(S0, Sg) =
∑

k,k′

|Cw
(Bk,Bk′ )(Sg)− Cw

(Bk,Bk′ )(S0)| (15)

where, Cw
(Bk,Bk′ )(Sg) and Cw

(Bk,Bk′ )(S0) are the weights of
interaction C(Bk,Bk′ ) in graph states Sg and S0 respectively.

B. Human GB structure impact on the molecular output

This analysis explores the impact of interaction variations
of the human GB on the output. Here, we keep the inputs
at an optimal level and manually alter the graph structure
by changing the population sizes, which leads to variations
in the SPP of the nodes. Then the output of the system is
measured in different graph states and the weights of the edges
are calculated using (13) to determine the molecular output of
the MC layer using graph theory.

The ratio between the three SCFAs can be identified as
a critical measurement to evaluate the metabolite production
accuracy of the bacteriome. We adopt the signal to noise ratio
(SNR) to evaluate the consistency of the output signal ratios.
In this analysis, we calculate SNR of any signal SNR(Mj),
considering the other output signals, Mj′ as noise. This SNR
value directly indicates the ratio between the molecular signal
Mj and other metabolite signals Mj′ . Then SNR(Mj) is
calculated as follows,

SNR(Mj) =
∑

k

C(Bk,host)(Mj)∑
j′ C(Bk,host)(Mj′)

. (16)

Moreover, some bacterial populations do not produce spe-
cific SCFAs, but have an indirect influence on them. For
example, Bacteroides cells do not produce butyrate, but the
acetate produced by the Bacteroides cells is a substrate for the
butyrate production by Faecalibacterium and Roseburia cells.
Hence, the Bacteroides population indirectly influences the
butyrate production. Considering the above mentioned effect,
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a correlation matrix is generated for variation of node weights
vs the collective SCFA output of the human GB to analyse the
impact of various bacterial populations in SCFA production.
Here, we denote the rate of SCFA Mj output by all the
bacterial populations as Or(Mj) where

Or(Mj) =
∑

k

Cr
(Bk,host)

(Mj). (17)

Then, the correlation coefficient r(Bk) of node weight Bw
k

versus the collective output of Mj is calculated as follows.

r(Bk) =
∑

g

Bw
k −Bw

k (Sg)(Or(Mj)−Or(Mj))√
(Bw

k −Bw
k (Sg))2

√
(Or(Mj)−Or(Mj))2

(18)
where, Or(Mj) is the standard collective output rate for Mj

by all the bacterial populations and Bw
k is the weight of the

node Bk in the standard state S0.

V. ANALYTICAL RESULTS

In this section, we describe the development of the virtual
GB and the results from our analysis that is based on the
models presented in Section IV.

A. Virtual GB Design

We developed the virtual GB using metagenomic data to
characterise the bacterial populations signalling interactions
and their impact on the network relationships. The virtual
GB is inspired by the BSim agent-based cell simulator [32].
The virtual GB is written in C++ with CUDA platform for
parallel processing to increase the simulation performance
and most importantly, mimic the parallel processing typically
executed by the bacterial populations. We dedicate one GPU
block for each bacterial cell, and the threads of that block to
intracellular functions of the corresponding cell. To simulate
the bacterial interactions, we model the exchange of molecules
using metabolic flux in a diffusive media. The simulator has
a 3D environment with voxel architecture (Figure 1a), which
provides the ability of extracting data on each metabolite and
bacterial cell separately. Moreover, we can introduce any new
cell type by creating their internal metabolic pathways and
other physiological characteristics such as motility, shape, size,
etc. Therefore, the simulator can be used for a range of setups
including other metabolic functions, microbial ecosystems
in different habitats or targeting specific bacterial behaviour
like quorum sensing. Further, the simulator can log data
on the metabolite consumption/production/accumulation and
bacterial proliferation. In this study, we setup the virtual GB
to simulate the SCFA production using metagenomic and
metabolomic data obtained in [29], KEGG [33]–[35], NJS16
[36], and MetaCyc databases [37].

Here, we present a series of analyses conducted on SCFA
production within the human GB using the two-layer model.
First, we defined the average composition of the human GB
using the average relative abundance (RA) (see Table I)
calculated based on data extracted from 352 samples of the
MicrobiomeDB [38].

Fig. 4: Representation of the subgraph, ΓSCFA considered in
the case study which contains the nodes and edges related to
SCFA production.

Fig. 5: Combined and simplified SCFA production pathway of
converting fucose and glucose, into SCFAs.

TABLE I: Average RAs of bacterial populations

Genus Average RA
Bacteroides 0.4899173
Alistipes 0.05960802
Faecalibacterium 0.04329791
Parabacteroides 0.04096428
Ruminococcus 0.03320183
Roseburia 0.01039938
Eubacterium 0.0093219
Bifidobacterium 0.00179366
Escherichia 0.00185639

Using these RA data along with the extracted interaction
data from the databases mentioned earlier, we created a
graph network for SCFA production, ΓSCFA following the
definitions presented in Section III-A. We only considered nine
bacterial populations based on their RA, their metabolic activ-
ities, and data availability. We include Bacteroides, Alistipes,
Faecalibacterium, Parabacteroides, and Ruminococcus in the
model as they are the most abundant bacterial genera. To add
further metabolic diversity to the network, we include other
bacterial genera used in this study as they perform different
metabolic functions compared to the most abundant bacterial
genera. Figure 4 illustrates the ΓSCFA where node sizes
indicate the RAs of the respective bacterial genera shown in
Table I. Furthermore, the edges are colour-coded to highlight
the strengths of the interactions which are quantified using
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TABLE II: Parameters utilised in Section V-B and V-C.

Parameter Value Description
Standard setup
Bacteroides cell count 7.3×105

Calculated based on the RA (see Table I) and to keep the total cell count
lesser than 1.5× 106 (maximum number of cells was limited by the memory
availability of our GPU server).

Alistipes cell count 8.9×104

Faecalibacterium cell count 6.4×104

Parabacteroides cell count 6.1×104

Ruminococcus cell count 4.9×104

Roseburia cell count 1.5×104

Eubacterium cell count 1.3×104

Bifidobacterium cell count 1.5×103

Escherichia cell count 1.5×103

Maximum GPU blocks utilised 1.7×106 Calculated based on number of voxels.
Maximum threads per utilised per block 24 Calculated based on number of metabolites used in the simulations.
Analysis 1: Molecular input impact on the human GB structure
Glucose input rate (min-max) 0.000-16.605µmol/m3s Calculated the using the number of cells and the stoichiometry

of metabolic pathways [37], [39].
All bacterial population cell count Fixed at standard values Values are same as the standard setup.
Analysis 2: Human GB structure effect on the graph outputs
Glucose input rate 6.642µmol/m3s (Fixed) Obtained from simulations to match SCFA production of average human GB.
Bacteroides setup
Bacteroides cell count (min-max) 0-1.6×106 Calculated using the stoichiometry of metabolic pathways of Bacteroides

and the number of cells to obtain results range with significant changes [37].
Other bacterial population counts Fixed at standard values Values are same as the standard setup.
Faecalibacterium setup
Faecalibacterium cell count (min-max) 0-1.4×105 Calculated using the stoichiometry of metabolic pathways of Faecalibacterium

and the number of cells to obtain results range with significant changes [37].
Other bacterial population counts Fixed at standard values Values are same as the standard setup.

(13).
For illustration purposes, we combine the metabolic pro-

cesses executed on different bacterial cells and simplify the
SCFA pathway to focus on the most important steps that
leads to the production of the three most abundant SCFAs in
the human GB, namely acetate, butyrate and propionate (see
Figure 5) [40]. The parameters utilised in V-B and V-C are
presented in Table II. As we explained earlier, the bacterial
cell counts for the standard setup are calculated based on
the calculated RA and to keep the total cell count less than
1.5×106. The number of GPU blocks equals to the number of
voxels in the system and the maximum number of threads per
block calculated based on the number of metabolites in the
environment. Further, the glucose input rate is extracted by
an array of iterative experiments to match the ratio of SCFA
abundance of an average human GB. Please note that in a
typical human GB, SCFA abundance ratios range from 3:1:1 to
10:2:1 [41]. The maximum glucose input rate of the Analysis
1, and the maximum Bacteroides and Faecalibacterium cell
counts of the Analysis 2 are fixed at certain values to obtain
results with significant behaviours. Beyond those maximum
values, the results only continue the trends without significant
changes.

B. Analysis 1: Molecular input effects on the graph structure

Here, we present the results for the analyses mentioned
in Section IV-A. The analyses are conducted by regulating
the input glucose rate Cr

(host,Mem)(Mglu) and fucose rate
Cr

(host,Mem)(Mfse) from the host cells to the system that
contains the memory of existing metabolites and evaluating the
human GB compositional changes. The simulation for these
experiments only contains growth dynamics of Faecalibac-
terium, Eubacterium and Escherichia bacteria as their growths

are supported by the metabolites involved in the same SCFA
production. Further, with the data availability, the model can
be extended to analyse the growth dynamics of other bacterial
genera as well.

Figure 6 illustrates the impact of glucose on the three
bacterial populations based on Γglu (Γglu ⊆ ΓSCFA), shown
in Figure 6a. The colours used in Figures 6b and 6c follow
the same colour scheme as in Figure 6a. Figures 6b and
6c shows the behaviours of edge weight and variation of
population sizes as a fraction of that in S0 due to the
changes in Cr

(host,Mem)(Mglu) respectively. The variations
of the input rate Cr

(host,Mem)(Mglu) alters the intermedi-
ate interaction from any bacterial population Bk to other
population Bk′ through acetate, C(Bk,Bk′ )(Mace) and lac-
tate C(Bk,Bk′ )(Mlact), which are required for the growth of
Faecalibacterium and Eubacterium, respectively. Figure 6b
explains the graph theoretical behaviour of indirect influence
on the growth dynamics of the respective bacterial populations.
The growth of Eubacterium keeps increasing steadily until
the Cr

(host,Mem)(Mglu) is twice the standard level, while the
growths of the other two bacterial populations converge to the
standard static level. This is due to the stoichiometry of the
metabolite conversion, where an acetate molecule is produced
by one glucose molecule while a lactate molecule requires two.
The growth of Escherichia and Faecalibacterium are directly
altered by the variations of glucose inputs and the behaviours.
We calculated the maximum Mean Standard Error (MSE) as
0.03374 for any metabolite by iterating the experiment 20
times.

Deviations of a bacterial population concentration refer to
deviations in node weights according to the (2) and (9).
Figure 7 represents the node weight deviation compared to
standard graph state S0 due to the variability in inputs. This
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(a) (b) (c)

Fig. 6: Deviation of population sizes of Faecalibacterium, Eubacterium and Escherichia from the standard levels due to different
input concentrations of glucose: (a) subgraph for the glucose consumption, (b) edge weight behaviours of the intermediate
interactions, and (c) population growth behaviours.

Fig. 7: Changes of node weights due to the variations in
molecular signal inputs.

Fig. 8: Behaviours of overall graph weights against the
changes in inputs and their concentrations.

analysis reveals the impact of different input conditions on the
molecular signal performance SPP of bacterial populations.

While Figure 7 explains the node weight variations, Fig-
ure 8 focuses on the overall interaction weight behaviours
compared to S0. This graph provides an insight into how the
structure is being modified by the input variability. When the
Cr

(host,Mem)(Mglu) is low compared to the standard level, the
graph deviates significantly from the standard level, and when
the Cr

(host,Mem)(Mglu) exceeds the standard level, the graph
starts to deviate again from the standard structure, but with a
lesser magnitude compared to a weaker signal (the standard
level is 1.0). This reveals that the human GB is more sensitive

to low glucose concentrations. The experiment is repeated for
the fucose input rates Cr

(host,Mem)(Mfse) as well, but the
impact is minimal compared to Cr

(host,Mem)(Mglu).

C. Analysis 2: Human GB structure effect on the graph
outputs

In this section, we analyse the direct and indirect impacts
of the human GB compositional changes on the network be-
haviours. The analyses are conducted by altering the bacterial
population sizes manually on the virtual GB and extracting the
metabolite production data with respect to each alteration. The
resulting behaviours of the MC layer are explained using the
graph analyses. Although we conduct similar experiments for
all the nine populations, we only show results on Bacteroides
(Figure 9) and Faecalibacterium (Figure 10) populations as
they provide a better understanding of the metabolite produc-
tion dynamics of the human GB.

Figure 9 shows the impact of Bacteroides population size
variation on the human GB SCFA production. In this ex-
periment, we focus on the graph ΓBct (ΓBct ⊆ ΓSCFA)
considering only the interactions that are related to the Bac-
teroides population, as shown in Figure 9a. The colour scheme
used in Figures 9b and 9c follow the same colour scheme
as in Figure 9a. The metabolite inputs to the graph and the
population sizes are maintained fixed at the standard level
except for the Bacteroides population size. We modify the
population size of Bacteroides (|BBct|) from zero cells to
2.2 times the standard population size. Figure 9b explains
the behaviours of the intermediate links from Bacteroides
to Faecalibacterium node through acetate, Bacteroides to
Eubacterium populations through lactate, and Bacteroides to
Roseburia populations through acetate, while Figure 9c shows
SCFA production behaviours in the MC layer due to changes
in the population size. From Figure 9c, it is evident that
all the SCFAs have strong positive relationships with the
population size of Bacteroides. Acetate and propionate are
direct products of Bacteroides cells. As a result of that, acetate
and propionate outputs show steady trends against the increase
of Bacteroides population sizes. Moreover, the edge weight
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(a) (b) (c)

Fig. 9: Behaviours of SCFA production for various in Bacteroides population sizes: (a) subgraph of Bacteroides population
interactions, (b) edge weight behaviours, and (c) SCFA output.

(a) (b) (c)

Fig. 10: Behaviours of SCFA production for various in Faecalibacterium population sizes: (a) subgraph related to the interactions
of Faecalibacterium population, (b) edge weight behaviours, and (c) SCFA output.

(a) (b)

Fig. 11: Simulation results for SNR of three output signals
with the changes in population sizes of Bacteroides and
Feacalibacterium. (a) SNR results for Bacteroides population
and (b) SNR results for Feacalibacterium population.

variations are shown in Figure 9b justify the butyrate signal
behaviour in the MC layer shown in Figure 9c. To be more
precise, the butyrate output curve starts to become flat when
the Bacteroides population size |BBct| is greater than 0.8
times the standard value. The graph theoretical quantification
of links also shows the same trend in Figure 9b, emphasizing
that the graph theoretical measures can be used to explain the
metabolite production behaviours.

In the same way, Figure 10 illustrates the results for a sim-
ilar experiment on Faecalibacterium population. Figures 10a,
10b and 10c represent the subgraph ΓFae (ΓFae ⊆ ΓSCFA),
edge and the MC layer behaviours, respectively. Similarly

to the previous analysis, we modify the population size of
Faecalibacterium |BFae| ranging from zero cells to 2.2 times
the standard population size. As the Faecalibacterium cells
consume acetate and produce butyrate, the rate of acetate
consumption from the environment increases when the |BFae|
is increased. Hence, the weight of interaction between environ-
ment and Faecalibacterium population increases, which can be
observed in Figure 10b, and the resulting reduction in acetate
output is visible in Figure 10c. Moreover, since Faecalibac-
terium population is one of the key butyrate producers, there
is a clear positive relationship evident between |BFae| and
butyrate. Due to the smaller population size of the Roseburia
population, the influence on the metabolite production is
relatively low, which can be observed from Figure 10b. For all
the graphs, the maximum MSEs are calculated below 0.03087.

The MC layer results presented for the two analyses on
Bacteroides and Faecalibacterium populations (Figures 9c and
10c) are then interpreted in terms of SNR in Figure 11.
In the plots of this figure, SNR values are shown as ratios
of the SNR value at the standard state of the human GB,
and the bacterial population sizes are increased similar to
the previous analyses. Here, we show the three SNRs of
acetate, propionate, and butyrate of two bacterial populations:
Bacteroides and Faecalibacterium. Figure 11a shows the SNR
behaviours of the three SCFAs against the |BBct|. It is clearly
evident that the acetate production is higher compared to the
other two SCFAs when the |BBct| is increased. This means,
when the composition of human GB is changed as the |BBct|
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Fig. 12: Pearson correlation heat map of the impact on the three output signals by nine bacterial populations.

increases, the output of the GB also loses balance and tends
to produce more acetate compared to the other two SCFAs.
On the contrary, the propionate production rate reduces when
the |BBct| increases. When the population size of Bacteroides
|BBct| is smaller than the standard level, the system tends
to produce molecular signal with higher deviated ratios, but
when |BBct| is greater than the standard level, the deviation
is relatively low. Figure 11b shows the SNR behaviours of the
three SCFAs against the |BFae|. Since Faecalibacterium is
the main butyrate producer of this network, the butyrate SNR
increases with the |BFae| increment. Hence, compositional
imbalance related to Faecalibacterium causes a significant
imbalance in output molecular signal ratios. Furthermore, due
to the acetate consumption of Faecalibacterium, the acetate
signal becomes weaker, resulting in the acetate SNR deviating
from the standard level.

Figure 12 explains the correlation between each bacterial
population and the SCFA abundance in the gut environment.
Although Bacteroides are the biggest producer of all the SC-
FAs, it has a weak correlation with SCFAs compared to other
producers such as Alistipes and Parabacteroides. This reveals
that the reduction of glucose consumption by Bacteroides
increases the other bacterial population, resulting in boosted
SCFA production. Note that, even the SCFA production of
the other bacterial population is boosted in the absence of
Bacteroides, the overall production is low. Since the Fae-
calibacterium and Roseburia consume acetate, the heat map
shows a strong negative correlation with acetate. Interestingly,
this heat map indicates metabolic switching by Escherichia,
from a SCFA producer to a high acetate concentration con-
sumer. This is the same for the Ruminococcus when the fucose
concentration is not sufficient for the increased population, it
switches from fucose to glucose consumption reducing the
intermediate metabolite production, which causes a reduction
in butyrate production.

VI. CONCLUSION

The gut bacteriome has been largely investigated due to its
importance to the human health. We contribute to this research
topic by introducing a two-layer GB interaction model to
investigate the impacts of bacterial population compositional
changes on the overall structure of the human GB utilising
data collected from MicrobiomeDB and NJS16 databases. Our
proposed human GB interaction model combines a bacterial
population graph layer, which models the structure typically
found in the human GB (i.e. bacterial populations genus and
sizes), with a molecular communications layer, which models
the exchange of metabolites by the bacterial populations in

this structure. Supported by these models, we also developed a
virtual GB to simulate the metabolic interactions that typically
occurs in the human GB. These simulations allowed us to
study the impacts caused by the metabolite exchanges on
the human GB structure (i.e. nodes weight and hamming
distance). Through our analyses, we found that the molecular
inputs affect the bacterial populations in the human GB
differently by modifying the nodes and edges weights of our
GB interaction model. Our results also show that modifications
in the human GB structure, specifically changing the sizes
of Bacteroides and Faecalibacterium populations can lead to
improvement/reduction in the production of SCFA, which may
result in metabolic diseases in humans. Based on our results,
we also infer that there is an intrinsic relationship between the
investigated bacterial populations sizes, the increase/decrease
of specific metabolites (SCFAs), and the overall balance of
the human GB. These results can support the development
of novel strategies to treat unbalanced human GB, and can
provide insights on the role of other metabolites and molecules
on the maintenance of a healthy gut bacteriome.
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Abstract—Bacterial ecosystems are integrated with cascading
molecular communications networks that contain redundant
paths transmitting molecular signals through a shared medium,
resulting in accumulation of diverse molecules. Due to a range
of factors, including residual noise and channel attenuation, the
information flow between bacterial populations can be affected.
Although the cooperative transceiver bacterial populations in
parallel paths of the network amplify molecular signals to
overcome channel attenuation, it further minimises the residual
noise by absorbing higher signal molecules resulting in reliable
information flow through the network. In this study, using
information and molecular communications theory, we investigate
the impact of Cooperative Amplification (CA) on InterSymbol
Interference (ISI) in Bacterial Molecular Communication Net-
works (BMCN) with redundant paths. Moreover, we analyse the
information flow through a cascading and parallel molecular
communications system that uses different molecules as signals.
We first show the effect of CA on the ISI and then the reliability of
bacterial molecular networks using a vital metabolic functionality
of the Human Gut Bacteriome (HGB), which is Short Chain
Fatty Acids (SCFA) production. The analysis on the CA shows
that the performance of the network can be enhanced up to a
certain level by increasing the number of cooperate transceivers.
Finally, the estimated Mutual Information (MI) for each bacterial
population for three different networks using the data generated
from simulations, indicates that the molecular communication
network with redundant paths can support reliable information
flow despite significant molecular residual noise.

Index Terms—Molecular communication, Bacterial networks,
Mutual information, Residual noise, Parallel communications
channels, Metabolic pathways, Cooperative amplification.

I. INTRODUCTION

The Human Gut Bacteriome (HGB) is the bacterial ecosys-
tem residing in the human gut and considered as a virtual
organ [1] due to its involvement in critical metabolic tasks
of the host through molecular interactions [2]. This results
in formation of a complex molecular interaction network
containing a large number of nodes and interactions through
various molecular species, as illustrated in Figure 1. Hence, we
identify this network as a Molecular Communications (MC)
network that contains the interactions of a massive amount of
channels with numerous molecular species. MC is an emerging
field with a plethora of novel applications, especially in the

Input

Output

Bacterial  
Populations

 Epithelial  
cells

Fig. 1: The figure illustrates how the HGB receive molecular
inputs and convert them into output signals. Finally, the output
signal is being received by the host’s epithelial cells.

biological field, such as biosensing and biocomputing [3],
[4]. Some of the characteristics of HGB environment contrast
the behaviors of MC from the conventional communication
system, such as the production of residual noise. This process
occurs due to the incomplete utilization of molecular species
found in HGB environments [5]. Therefore, the residual noise
has been modelled in MC systems as ISI, where a molecular
signal emitted in a specific time slot will interfere with the
decodification of the next [6]. Moreover, this effect has an
enlarged impact in cascading MC networks due to the number
of parallel transmitters sending molecular signals towards a
single receptor.

In addition to the residual noise, the exchange of molecules
in the HGB can also suffer from Brownian noise due to
molecular displacement [7]. Therefore, it is crucial to inves-
tigate the dynamics of the communications that support the
bacterial networks in HGB when subjected to such types of
noise. To this day, many studies have investigated the effects
of noise in diffusive communications channels. For instance,
an analysis of diffusion-based noise source that affects end-to-
end MC systems was developed in [8]. Further, Moore et al.
[9] modelled residual noise and introduced two approaches
for noise reduction in order to achieve higher information
rates. The effect of molecular noise on the channel capacity
has been analysed by Nakano et al. [10], where they consid-
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Fig. 2: Bacterial cascading system of SCFA production with the environment memory component. Stx(glu), Stx(ace), Stx(lac)
are the transmitted and Srx(glu), Srx(ace), Srx(lac) and Srx(bte) are the received glucose, acetate, lactate and butyrate signals
respectively that are affected by the noise from the memory.

ered a nanomachine transmitter placed in a one-dimensional
molecular communication channel (they assumed that the
molecular propagation via Brownian motion would degrade
over time) [10]. In a different direction, molecular noise
analysis targeting specific application such as drug delivery
systems have also been proposed. For example, Chahibi and
Akyildiz [11] conducted a noise analysis of the nano-particle
propagation based on a long-term drug distribution throughout
the body. Here, we extend these works to investigate the effects
of both residual and Brownian noises on a Bacterial Molecular
Communication Network.

This paper investigates the reliability of BMCN considering
parallel molecular signal transceivers as cooperative ampli-
fiers, which are identified as multiple nodes coordinating and
transmitting the same signal and amplifying it to improve
the range of transmission [12]. Although CA is a solution
to overcome the channel attenuation [13], it may increase
the residual noise and ISI, reducing the performance of the
BMCN. To investigate this phenomenon, we use a sub-network
of HGB, where cascading communications are required for the
production of Short Fatty Chain Acids - SCFA (SCFA is one
of the most important metabolic functions of the HGB [14])
as shown in Figure 2. The bacterial populations represented
in Figure 2 were selected after a careful investigation on
real data obtained from MicrobiomeDB [15]. Furthermore, we
investigate the performance of our proposed cascading MC
system through the evaluation of the MI (using a method
inspired by [16]) for each one of the communications links
involved in this sub-network. Our model also takes into
account the accumulation effect that occurs in an MC channel
when multiple sources produce a large number of molecules,
approximating our investigation to the real production of
SCFA by the bacterial populations in HGB.

The rest of the paper is organized as follows. Section II
explains the system dynamics of the considered cascading sub-
network of the HGB, and Section III focuses on the analysis
conducted on the mentioned system. Next, in Section IV we
discuss the final results and conclude the paper in Section V.

II. CASCADING MOLECULAR COMMUNICATION SYSTEM

The MC interaction network of the HGB is a collection
of numerous metabolic paths. Each path consists of multiple
bacterial populations (i.e., molecular transceivers or nodes)

that can receive molecular signals from a node, process them
and release another type of molecular signal to the next node.
The molecular signal processing can be described as follows,

M1 +M2

kf−⇀↽−
kr

M3 where M1, M2 and M3 are the molecules,

kf and kr are the forward and reverse reaction rates. If the
reaction is non-reversible, kr = 0.

The molecular propagation between two nodes in the HGB
environment is affected by various factors such as molecular
noise [8]. In cascading molecular communication systems, the
magnitude of noise impact is expanded with the progression
through cascading layers as each layer has its own noise
component. If the cascading channels use the same type of
molecules, the issue becomes more significant as the diffusion
medium facilitates increased accumulation. Nevertheless, this
study focuses only on a BMCN that uses different types of
molecules for cascading layers, as shown in Figure 2.

In diffusion based MC channels, only a certain portion
of emitted molecules reach the particular receiver within a
respective time frame. The rest of them accumulate in the
environment and act as residual noise (Figure 3) causing ISI.

III. INFORMATION FLOW ANALYSIS

The analysis on the bacterial MC network of this study is
structured to investigate the impact of CA on residual memory
and the reliability of the network in terms of information
flow. First, we analyse how the CA changes the residual
memory resulting in alterations of ISI. Later, MI is calculated
to understand the information flow through the network.

A. Intersymbol interference analysis

As shown in Figure 2, the considered system contains
parallel paths that transmit the same signal through the system.
This phenomenon can be identified as CA [13], and it can
affect the ISI levels experienced by the investigated system.
To investigate this relationship, we first use a generic setup that
contains multiple bacterial nodes cooperating to amplify the
molecular signals. Then, we apply the obtained results to the
evaluation of the SCFA production. Here, we measure the ISI
by calculating the interference signal to total signal strength
ratio [6], as follows.

ISI =

∑K
k=0

∑A0

a0=1 q
rx
(Bk,a0)∑K

k=0

∑A0

a0=0 q
rx
(Bk,a0)

+
∑K
k=0

∑A1

a1=0 q
rx
(Bk,a1)

(1)
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Fig. 3: Cascading communication system with channel memories causing residual noise

where qrx(Bk,a0) and qrx(Bk,a1) are the number of molecules
received by the bacterial population Bk (k = 0, 1, ...,K) for
ath0 bit (a0 = 0, 1, ..., A0) and ath1 bit (a1 = 0, 1, ..., A1) for
“0” and “1” symbols, respectively.

B. Mutual information analysis

In addition to investigating the relationship between CA and
ISI, this study explores the information flow capabilities of
BMCN in the HGB. Here, we estimate the MI of the cas-
cading BMCN for the butyrate production for three different
scenarios (control, Autism, and Parkinson’s disease average
compositions). Butyrate is one of the most important SCFA,
and it can be considered as the primary energy source for
the colon epithelial cells. Further, it has the properties for
immunomodulation and anti-inflammation [17].

We model the butyrate as the final product of a cascading
BMCN containing nine bacterial genera, and this selection
of bacterial populations takes into account their similarities
between metabolic functionalities and ancestral origins. The
butyrate production starts from the glucose input into the HGB,
as illustrated in Figure 2, and we can identify four layers in
this system: 1) host - glucose transmitters, 2) acetate/lactate
producers - consume glucose and produce acetate/lactate,
3) butyrate producers - consume acetate/lactate and produce
butyrate, and 4) epithelial cells - butyrate receivers. For such
configuration, the Bacteroides, Alistipes, Parabacteroides, Bi-
fidobacterium, Ruminococcus and Escherichia genera receive
glucose and transmit acetate. Moreover, the Faecalibacterium
and Roseburia genera receive acetate, and Eubacterium re-
ceives lactate to produce butyrate. Finally, the epithelial cells
receive butyrate signals produced by the bacterial populations.
This bacterial ecosystem is implemented (as shown in Figure
2) on our simulations by combining the literature curated data
on metabolism and compositional data from MicrobiomeDB.

We can break down the nine bacterial genera (i.e., nodes)
into a combination of series and parallel communications links
and investigate the interactions between pairs of nodes. This
combination is our cascading BMCN model, which can be
seen in Figure 3 (representation of one of the communications
links required for the butyrate production). Considering one
channel between two bacterial genera, i.e. pair p, in the
cascading system that uses a Mi molecule as the signalling
molecule, we calculate the MI of this interaction Ip as follows,

Ip = H(Stxh )−H(Stxh |{SrxBk(t), t0 ≤ t ≤ tmax}). (2)

where H(Stxh ) is the estimated entropy of the input signal, Stx

from the host and H(Stxh |SrxBk) is the estimated conditional
entropy of input signal Stxh given the received signal SrxBk by

the bacterial population Bk, where tx and rx are the identifiers
for the transmitted and received signals, respectively.

We generate data for different input concentrations cj , j =
1, ..., J of the input signal Stx. For each concentration, the
simulator iterated R times with T number of time steps. We
utilise the data obtained from these iterations to compute the
entropy of the glucose input signal H(Stxh ) using a histogram
approach [18], [19] as follows,

H(Stxh ) = −
J∑

j=1

pStxh (cj) log2

(
pStxh (cj)

wStxh

)
(3)

where pStxh (cj) = 1/J is the probability of each input
concentration cj , J is number of input concentrations, and

wStxh =
max(cj)−min(cj)

J
, (4)

is the sample interval for the input signal. Using (3)-(4), we
compute the conditional entropy as follows

H(Stxh |{SrxBk(t), t0 ≤ t ≤ tmax}) =
−
∑

NBk,t0

∑

NBk,t1

· · ·
∑

NBk,tmax

pSrxBk
(α)

·
Sα∑

s=1

pStxh |α(cj) log2

(
pStxh |α(cj)

wStxh α

) (5)

where α = {crxBk,t}
tmax
t=0 is the set of concentrations of the

received signal Srx through out the considered simulation time
steps, NBk,tn is the number of bins of the received signal SrxBk
used to generate the multi-dimensional histogram pSrxBk

(α),
Vα is the number of histogram bins used to generate the
multi-dimensional histogram pStxh |α(cj) while wStxh ,α which
is calculated as,

wStxh ,α =
max(cj)−min(cj)

Vα
. (6)

Moreover, NBk,tn is calculated as follows to the nearest
integer [19],

NBk,tn = 1 + log2(U) + log2

(
1 +

gβ
σgβ

)
(7)

where β = crxBk(tn) is the concentration of the received signal
by Bk at time tn of , U = J ·R is the number of simulation
runs, and gβ is estimated skewness of the distribution of PSrxBk
while σgβ is calculated as,

σgβ =

√
6(U − 2)

(U + 1)(U + 3)
. (8)
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Fig. 4: Impact of the CA on the residual memory and ISI

Using the same approach to calculate the number of bins of the
received signal in (7), we calculate the number of histogram
bins for the input signal Vα to the nearest integer, which is
represented as,

Vα = 1 + log2(I) + log2

(
1 +

gcj
σgcj

)
, (9)

where gcj is estimated skewness of the distribution of cj and,

σgcj =

√
6(I − 2)

(I + 1)(I + 3)
. (10)

IV. RESULTS

In this section, we show the analytical results for ISI against
CA and results for the MI of the investigated BMCN. We
generated data for these analyses using a bacterial ecosystem
simulator that we developed based on real data collected from
several microbiome databases available online, such as Micro-
biomeDB and NJS16 [5]. The simulator is used to conduct in
silico experiments and generate data on bacterial interactions.
It has a 3D environment (dimensions: 150 × 150 × 150µm)
with a static medium where molecules propagate via dif-
fusion. Mainly, this diffusion induces the stochastic nature
of the system. The simulator utilises a voxel architecture to
discretise the environment for precise data generation on the
transmission and reception for each molecular species. Further,
the simulator was fined tuned by using an array of iterative
experiments to match the average production behaviours of
SCFA in human GB (for further details on the extraction
of the average behaviour, please refer [20]). We utilise this
configuration to approximate our simulation to in vivo or in
vitro experiments on SCFA production/consumption in the
HGB.

A. Intersymbol interference vs cooperative amplification

In order to investigate the impact of multiple transceivers on
the signal amplification and how it affects the residual memory
indirectly, we use a generic setup with six experiments. The
first setup only contains one transceiver and developed the
other five setups by increasing the number of cooperate
transceivers up until six. We used the same input signal with
four “1” bits (where bit “1” represented by the transmission
of molecules and bit “0” by not transmitting any molecule)
of molecule type-I from TX with a fixed amplitude for each

setup. The transceivers receive type-I molecules and transmit
type-II signal to the receiver RX . Figure 4 shows the results
of the signal behaviours due to CA. When the number of
cooperative transceivers increases in the environment, they
absorb more molecules resulting minimised probability of
molecular accumulation. Reduction of accumulation reflects
in ISI. When there is only one transceiver in the environment,
Figure 4 shows the accumulation of Type-I molecules is high,
and similarly, ISI is also high. With the increment of the
cooperative transceivers, it is clearly evident that the amount
of Type-I residual memory decreases and the ISI of Type-I
also reduces. Therefore, it can be concluded that in MC, CA
can be considered as a solution for ISI.

Further, we extended the analysis to evaluate the signal re-
ception behaviour by an individual transceiver, signal strength
of cooperative transmission and the received signal strength at
the end of the system. As shown in Figure 5, here we only
focus on a single pulse to clearly observe the variations. In
Figure 5a it is evident that when the number of transceivers
increases in the environment the possibility of signal reception
of each node degrades. Nevertheless, the transmitted signal
from the transceivers collectively amplifies until a certain
concentration of transceivers in the environment (in this setup,
the maximum strength of the transmitted signal is in the setup
with four transceivers) as shown in the Figure 5b. Hence,
Figure 5c explains there is a maximum strength that can be
expected by increasing the number of cooperative transceivers.

B. Analytical results for information flow

BMCNs in the HGB suffers from the same noise impact
we discussed in previous sections, but they are equipped
with redundant paths through parallel transceiver bacterial
populations that can be considered as cooperative amplifiers.
The composition of the HGB differs for each individual, and
the scale of CA relies on the compositions as well. Therefore,
we estimated the information flow for the control, autistic and
Parkinson’s HGBs average compositions.

We initiate the simulator with the Relative Abundance (RA)
of each genus, which is calculated based on the species level
RA found in the data analysed from MicrobiomeDB and Dis-
biome [21] databases. We followed the same procedure on the
sample data from the Disbiome database to define the average
compositions related to two diseases, autism and Parkinson’s
disease. Next, we introduce twenty single pulse glucose inputs
with different concentration ranging from 0.259µmol/m3s
to 2.594µmol/m3s to start the production of molecules in
the second layer of our cascading MC model for all three
setups (control, autism and Parkinson’s). The amplitudes of
the molecular inputs were selected based on the number of
bacterial cells we implemented on our simulator to get results
with clear changes in the information flow. Above and below
that range, results does not indicate any significant changes.
The simulation duration was set to 500 minutes by observing
the strongest (glucose input) and the weakest (lactate input)
signal behaviours in order to have all the significant changes of
signals within the mentioned time frame. Further, each setup
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Fig. 5: Illustration of CA by simultaneous transceivers where (a) Number of type-I molecules received per transceiver, (b) total
number of type-II molecules produced of q number of transceivers and (c) number of type-II molecules received by the end
receiver.

iterated for 50 arbitrary times to increase the accuracy of the
results over the system stochasticity and collected the data
of molecular consumption and production of each bacterial
population for all time steps.

Figure 6 depicts the behaviours of all the four input sig-
nals. Figure 6a shows the ten out of twenty single pulse
glucose inputs to the system, while Figure 6b exhibits the
combination of the acetate transmission by Bacteroides, Al-
istipes, Parabacteroides, Bifidobacterium, Ruminococcus and
Escherichia, which is several times weaker than the glucose
signal. The strength of the signal transmitted by these bacteria
genera relies on the number of acetate-producing bacterial
cells and the quality of signal reception by the next layer of
this cascading MC system. Compared to the acetate signal,
lactate and butyrate signals are significantly weaker, but with
a preserved waveform as shown by Figures 6c and 6d. These
signals are used to compute the performance of the information
flow on this cascading BMCN.

First, we compute the input signal entropy and conditional
entropy of the cascading BMCN using (3) and (5) respec-
tively for each setup. Then, the conditional entropy for all
nine bacteria genera were estimated in three steps for each
setup. First, the conditional entropy for the Bacteroides, Al-
istipes, Parabacteroides, Bifidobacterium, Ruminococcus and
Escherichia genera were computed considering glucose input
signals. Then, the conditional entropy for Faecalibacterium
and Roseburia genera were evaluated based on the data gener-
ated for their acetate reception. Finally, conditional entropy for
lactate channel of Eubacterium genera and butyrate reception
by epithelial cells were also computed. This step is required
for the evaluation of the MI for these bacterial interactions.
MI for each bacterial interaction is calculated using (2) and
the results for each bacterial population is shown in Figure 7.

The results in Figure 7a, 7b and 7c, elucidate that, with
the compositional changes, information flow differ through
the network. The set of glucose receivers is considered the
first layer of cooperative amplifiers and the acetate and lactate
receivers as the second layer of cooperative amplifiers in this
cascading system. The estimated MIs of first layers of three
compositions differ significantly. The estimated MIs in the
second layer show a lesser variation compared to the first layer,
and at the end, MI of epithelial cells have close values for all
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Fig. 6: Input signal behaviours for the considered time frame
of (a) glucose, (b) acetate, (c) lactate and (d) butyrate signals
for all the glucose input concentrations. Note that (c) and (b)
are with a lower scale compared to (a) and (b).

three setups. The maximum value of MI is from Bacteroides in
all setups, as it dominates the ecosystems RA-wise. Interest-
ingly, transceivers’ MIs of a layer tend to have higher values
compared to those of the previous layer. This highlights, in
systems with redundant paths through cooperative transceivers,
higher information flow can be expected.

These results show that the use of CA is an important mech-
anism to support a reliable information flow through BMCN.
This opens up possibilities to utilise concepts and techniques
currently applied to multi-path wireless communications to
improve the performance of cascading MC systems.

V. CONCLUSION

Similarly to conventional communications systems, the per-
formance of MC systems can suffer from ISI. In a BMCN,
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Fig. 7: Estimated MI values for each bacterial population and epithelial cells for (a) control HGB, (b) parkinson’s HGB and
(c) autistic HGB. Sizes of nodes represent the corresponding MI values in bits.

such as the one created in the HGB to metabolise SCFA, this
is translated into multiple cascading molecular noises. Hence,
in this study, we have considered this effect to investigate the
information flow through a cascading MC system required
for butyrate production. Here, we show that the problem of
residual noise can be addressed up to a certain content using
CA. At the same time, we also could observe, through the MI
results, that the natural architecture created in HGB to produce
butyrate makes this cascading BMCN more robust against such
molecular noises. Furthermore, the MI results highlight that
multipath communication with CA is an important mechanism
to maintain the performance of a cascading BMCN in the
HGB, which opens the possibility of implementing wireless
techniques associated with indoor propagation to improve such
MC systems. The obtained results contribute to the future
design of a more reliable cascading BMCN that can send
and receive information from the body. Reliable information
transmission from/to the body is essential in smart drug
delivery and smart diagnostics systems.
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ABSTRACT Bacteria are known to interpret a range of external molecular signals that are crucial for sensing environmental
conditions and adapting their behaviors accordingly. These external signals are processed through a multitude of signaling
transduction networks that include the gene regulatory network (GRN). From close observation, the GRN resembles and ex-
hibits structural and functional properties that are similar to artificial neural networks. An in-depth analysis of gene expression
dynamics further provides a new viewpoint of characterizing the inherited computing properties underlying the GRN of bac-
teria despite being non-neuronal organisms. In this study, we introduce a model to quantify the gene-to-gene interaction dy-
namics that can be embedded in the GRN as weights, converting a GRN to gene regulatory neural network (GRNN). Focusing
on Pseudomonas aeruginosa, we extracted the GRNN associated with a well-known virulence factor, pyocyanin production, us-
ing an introduced weight extraction technique based on transcriptomic data and proving its computing accuracy using wet-lab
experimental data. As part of our analysis, we evaluated the structural changes in the GRNN based on mutagenesis to deter-
mine its varying computing behavior. Furthermore, we model the ecosystem-wide cell-cell communications to analyze its
impact on computing based on environmental as well as population signals, where we determine the impact on the computing
reliability. Subsequently, we establish that the individual GRNNs can be clustered to collectively form computing units with
similar behaviors to single-layer perceptrons with varying sigmoidal activation functions spatio-temporally within an
ecosystem. We believe that this will lay the groundwork toward molecular machine learning systems that can see artificial
intelligence move toward non-silicon devices, or living artificial intelligence, as well as giving us new insights into bacterial
natural computing.

INTRODUCTION

Bacteria are well known for their capabilities to sense
external stimuli and adapt into a wide range of re-
sponses (1,2). The interpretation of external signals in-
cludes molecules communicated from other microbes
as well as changes in environmental conditions (e.g.,
changes in temperature or pH levels) (3). Bacterial cells
continuously monitor the extracellular cues to regulate

gene expression accordingly and, subsequently, protein
production. The regulation mechanism is impressively
complex and contains a massive number of compo-
nents, including mRNA, activators, repressors, informa-
tion stored in genes, RNA polymerase, and protein-
binding regions (4,5). This process drives the cell's
behavior to prolong its survivability and this is often
identified as a decision-making process. However, this
can also be identified as a chemical-based computing
process that is computed as it traverses through the
branches of the gene regulatory network (GRN) (6),
where a large number ofmolecular transduction signals
result in parallel and sequential gene expressions. This
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WHY IT MATTERS The increasing importance of artificial intelligence (AI) is weaving into numerous disciplines,
providing us with new discoveries and levels of knowledge that were previously inaccessible. However, the increased
development in AI technology is also providing us with a new opportunity of using it as a concept in understanding
natural phenomena. This is the aim of this study, where we intend to use AI as a tool in characterizing the computational
capabilities of bacterial cells. Besides improving our understanding through an AI model that is mapped onto the gene
regulatory network, our study can also lead to new opportunities for future bio-computing.
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is governed by genetic circuits that contain approxi-
mately 100 to more than 11,000 genes. For example,
the largest genome identified belongs to Sorangium
cellulosum strain So0157-2 (7,8).

Despite the absence of neural structures for
computing, the GRN allows the bacteria to strategize
and adapt through varying conditions, and this results
in molecular production to influence other cells, which
leads to complex social interactions, motility to favor-
able environmental conditions, or physiological state
changes. Exploring the natural computing properties
of bacteria can lead to a better understanding of their
behavior and open new opportunities for programming
sensing and actuation functionalities into the cells for
novel treatments (9), as well as creating new opportu-
nities for future bio-computing systems (10).

The world of artificial intelligence (AI) is now trickling
into our lives, increasing our reliance on numerous fac-
ets that play a role in our daily activities. Inspired by
theworkings of the brain, the core of artificial neural net-
works (ANN) is a graph structure that abstracts commu-
nication and computing in biological neuronal networks
(11). This has allowed ANN algorithms to be pro-
grammed into various devices to support numerous
applications, such as image recognition (12) and
autonomous systems (13) However, neuromorphic
computing is also inspired by the naturally evolved bio-
logical neural circuits differentiating it from conven-
tional computing architectures (14). SpiNNaker (15),
Neurogrid (16), Loihi (17), and TrueNorth (18) are exam-
ples of well-known neuromorphic processors that have
been implemented. These approaches allowed for miti-
gating the bottlenecks of the von Neumann by having
physical memristors in the system (19,20). In addition,
neuromorphic architectures are capable of performing
massively parallel computing that can outperform con-
ventional computing in terms of efficiency (21). In
contrast to designing bio-inspired silicon architectures,
the programming of AI into computing devices has now
extended to non-silicon machines, for example biolog-
ical cells, and this has resulted in molecular machine
learning systems (22,23). However, from a natural bio-
logical system perspective, it has been suggested that
the computational process through the GRN that drives
the bacterial cell's decision-making comprises a hidden
neural network-like architecture (24,25). This indicates
that, even though bacterial cells are categorized as
non-neural organisms,wecanuse theneural network ar-
chitecture representation of the GRN to characterize
their computing capabilities. Through this representa-
tion, several ANN components can be identified in
GRNs,wheregenesmaybe regardedascomputingunits
or activation nodes and transcription factors (TF) as
incoming signals to the computing unit and their degree
of influence asweights/biases. Owing toa largenumber

of genes and weighted relationships in a GRN, it is
possible to infer sub-networks with neural network be-
haviors, which we term gene regulatory neural networks
(GRNNs).

Although a number of studies have optioned toward
engineering cells to create molecular machine learning
(26), in this study we focus on the discovery and extrac-
tionofGRNNsub-networks fromGRNs. Even though the
GRN incorporates the influence of intergenic interac-
tions, it lacks a layer of information on the magnitudes,
which, from an neural network paradigm, represents the
weights. In a typicalNN, aperceptron is the fundamental
computing element that can take multiple inputs,
multiply them by a corresponding weight, and combine
them through a summation process. This weighted
summation is then passed through an activation func-
tion as shown in Fig. 1. The non-linearity observed be-
tween the gene expression patterns and the weighted
summation of incoming TF signals of a gene can be
mapped as the property of a perceptron. This non-line-
arity canbebetter representedbyanactivation function.
By applying an activation function for each node in the
GRN and using the single-layer perceptron model, we
extract the weights of each edge of the GRN to recreate
a GRNN. Further, using graph theoretical path analysis,
we extract a sub-network fromPseudomonas aeruginosa
GRN for pyocyanin (PYO) production to analyze the
GRNN's computing behavior.

The contributions of this study are discussed here.

� Extracting a GRNN: As discussed earlier, past
research has manifested evidence of neural-like be-
haviors inherited in isolated components, but no
research has studied a complete GRNN of a bacte-
rial cell to date. A gene perceptron with multiple in-
puts can be considered a single-layer perceptron,
and transcriptional data provide input and output
expression rates for each gene perceptron. Based
on this, we developed an algorithm to extract
weights for each edge of the GRN in a single-layer
perception model. The accuracy of the extracted
GRNN is then proved in the transcriptomic layer us-
ing a comparison of gene expression dynamics be-
tween wet-lab data and the model predictions.
Subsequently, we employ this algorithm to extract
the GRNN of the model species P. aeruginosa to
investigate the cell's computing properties.

� Impact of cell-cell communication on the GRNN
computing: The GRNN only represents single-cell
activities, whereas bacteria usually live in complex
ecosystems (27) where cell-cell communication
heavily influences their behaviors (28). Hence, we
focus on a biofilm use case to understand the intri-
cate cell-cell communication that influences varying
spatio-temporal behaviors. We establish this by
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creating a graph neural network of the bacterial pop-
ulation with each cell embedded with the GRNN. The
diffusion-based communication between the bacte-
rial cells in the biofilm is then encoded as the mes-
sage-passing protocol of the graph neural network.
This complete model is then used to further prove
the accuracy of the extracted GRNN model utilizing
a mutagenesis analysis of various GRNN structures
that compare the GRNN-driven PYO production with
experimental data. We also explore inherited bacte-
rial computing properties further in terms of diver-
sity and reliability.

� Bacterial clusters as collective single perceptrons
for bio-computing: The individual GRNNs, facili-
tated by the cell-cell communication, form collective
behaviors essential for the population's survivabil-
ity. Factors such as molecular diffusion dynamics
within the environment of a bacterial ecosystem
lead to variations in this collective behavior. Owing
to that, we discover diversity in computing proper-
ties with respect to bacterial clusters of an
ecosystem where cells in each cluster collectively
resemble a single-layer perception with a non-linear
activation. Consequently, we analyze the properties
of these collective perceptrons spatio-temporally to
extract a solution space demonstrating the in-
herited computation diversity.

BACKGROUND

Past studies have explored natural bacterial computing
from a number of approaches, such as using probabi-

listic Boolean networks (29) and logic circuits (30). All
of these models mainly infer that the bacterial cells
do computing not just based on the single input-output
combinations but they can integrate several incoming
signals to produce outputs. Moreover, recent research
has demonstrated promising cell engineering ap-
proaches (31–35), especially application-specific syn-
thetic biological circuits with neural network
properties (36–38). However, the state of the art has
pointed out that the process of genetic circuit
designing and implementation with the possibility of
performing specific tasks is a relatively complex and
costly process due to the requirement of developing
tools, expertise, and use of specialized materials
and equipment (39,40) compared to an approach
that harnesses existing circuits within the GRN. In
contrast, our alternative view focuses on revealing
the natural neural network structure that exists
within the GRN stemming from a series of multi-stage
biochemical reactions within the gene expression
sequence. In this section, we first explore the NN-
like properties of GRN, and this is followed by deter-
mining how the GRN can be influenced by cell-cell
communications.

Neural network properties of GRN

There are key properties commonly associated with
NNs, such as interconnected nodes with a non-linear
activation function that processes a weighted summa-
tion of input signals. A parallel relationship can also be
found in the GRN, where its weight emerges from the

FIGURE 1 Illustration of a biofilm and the
extraction of GRNNs from within the bacterial
cells.
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properties of the TFs that induce gene expressions, as
well as the affinity of the TF-binding site and machin-
eries such as thermoregulators and enhancers/si-
lencers (41,42). The weighted summation for GRNs
is dependent on multiple TFs (positive or negative
weights) combined to regulate gene expression based
on an activation concentration. This is illustrated in
Fig. 2 a, which depicts a set of factors such as the
relative concentration of sigma factors, anti-sigma
factors, TFs, repressors, enhancer-binding TFs, and
silencer-binding TFs. As shown in Fig. 2 b, higher bind-
ing affinities of the promoter region and enhancers
induce the expression of the gene, whereas that in
the operator region and silencers do the opposite.
We identify this in terms of the weight of positive
and negative regulations. Further, the concentrations
of activator and enhancer TFs and sigma factors
contribute to increased gene expression (43,44), which
can be represented with higher positive weights.
Conversely, the repressors and anti-sigma factors
reduce the gene expression, which can be identified
as larger negative weights. The non-linearity arises
from the upper and lower bounds of gene expression
levels, where the expression itself cannot be negative,
despite the possibility that a weighted summation
may result in a negative value. This non-linear relation-
ship between the incoming weighted summation of
TFs and the output gene expression resembles the
rectified linear unit (ReLU) activation function. There-
fore, with these characteristics, we highlight the possi-
bility of identifying the GRN as a pre-trained NN.

Since we are deriving the GRNN from the GRN, the
sub-network structure is random, with nodes that
contain heterogeneous inward and outward degrees.
This results in networks as well as computing diversity
and this can be regulated by a single or multiple TFs.
For instance, a simple graph analysis reveals genes
such as PA3477 can be regulated by up to 15 TFs,
whereas PA0576 can involve regulation of 749 genes.
This heterogeneity increases the probability of mining
a large number of pre-trained GRNN sub-networks.

Influence of cell-cell communication on GRNN
computing

The concentrations of molecular-input signals from
the extracellular environment influences the bacterial
activities at the cellular as well as the ecosystem
levels (45). Apart from the extracellular signals from
nutrients, it has been found that the quorum sensing
(QS) input signals have a diverse set of regulative
influences on bacterial gene expressions (46,47) as
they are highly versatile and can respond to external
bio-stress cues, providing the cell with flexibility in
controlling the expression of virulence genes (48).
Although the QS signals are produced by the bacteria
itself, they work as inputs to the GRN similar to other
external molecules, as shown in Fig. 3 a. Furthermore,
Fig. 3 b shows the genes associated with the QS sys-
tems are connected to many other genes, indicating
that the role of QS in GRNN computing is bidirectional,
where the QS systems are influenced by various
cellular activities and also regulate a range of cellular
activities simultaneously. Moreover, past studies have
identified that these QS gene expression pathways are
interconnected and they can mutually regulate the ac-
tivities of each QS system. For example, P. aeruginosa
is known to have four QS systems, namely Las, Rhl,
Pqs, and Iqs, where many mutual interactions can be
observed. Among them, regulation of the Rhl, Pqs,
and Iqs QS systems by the Las system and bidirec-
tional regulation between Rhl and Pqs systems can
be highlighted (49). Therefore, the computing GRNN
of an isolated cell or a cell lacking QS-related genes
is different from a cell within a population, and this
is evident through a series of mutagenesis in silico
experiments discussed in subsequent sections.

METHODS

In this section, we first explain the GRNN extraction
mechanism using a single-layer perceptron model.
Our aim is first to show how we can extract a
computing view by mapping the GRN to GRNN. Since
bacteria live in complex ecosystems, we want to
explain the dynamics of computing behavior and

a

b

FIGURE 2 Illustration of gene expression regulators that are
considered the weight influencers of the edges of GRNNs. Here,
(a) shows the aðsÞ , að�sÞ , aðTFÞ , aðRepÞ , aðeTFÞ , and aðsTFÞ are relative con-
centrations of sigma factors, anti-sigma factors, TFs, repressors,
enhancer-binding TFs, and silencer-binding TFs, respectively. More-
over, bðPromÞ , bðOpÞ , bðEnhÞ , and bðSilÞ are the binding affinities of the pro-
moter, operator, enhancer, and silencers regions, respectively,
whereas (b) elaborates the impact of these influencers for negative
(red arrow) and positive (blue arrow) weights of the suggested
model.
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how these change as the cells interact with each other
and also with respect to environmental conditions. An
appropriate complex ecosystem is biofilms, where
cell-cell communication varies at different locations
as they communicate differently. This communication
affects GRNN-based computing heavily in cells, even
drawing similarities to multicellular organisms
(50,51). Therefore, we dedicate the second part of
this section to exploring the influence of cell-cell com-
munications within bacterial ecosystems on GRNN-
based computing.

Extracting GRNN from GRN

As we consider the GRN as a pre-trained network, the
key idea of this approach is to quantify the gene-gene
interaction dynamics of the GRN and interpret them as
weights. Here, we first construct the GRN as a graph
network of gene-gene interactions. Expression of an
individual gene is mainly driven by the incoming TF
signals (52) from neighboring genes and, in some
cases, from the same gene. Expanding on this notion,
Fig 4 a explains the creation of the graph network of
GRN that contains five regulatory influence types us-
ing data from sources such as RegulonDB (GRN
database specific to the P. aeruginosa) (53), Kyoto
Encyclopedia of Genes and Genomes (54–56), and

Ecocyc (57). Next, we disassemble this graph network
into sub-graphs that consist of a target gene with its
set of regulatory source genes. This sub-network is
analogous to the structure of a single-layer perception
with the activation function of ReLU as shown in Fig. 4
b, hence we call the target gene the gene perceptron.
However, to date, there have not been any known
methods to define weights in the gene perceptron.
Therefore, in our proposed weight extraction tech-
nique of this study, we create in silico perceptrons
with the same number of inputs for all target genes
(gene perceptrons) in the GRN. Similar to a training
process of a conventional single-layer perceptron,
gene perception of this model also aims to modify
the randomly assigned weights at the zeroth epoch
of the gene perception based on the mean squared er-
ror (MSE) between the computed and experimental
gene expression data, minimizing TF 0ðgyÞ and TFðgyÞ.
In this training process, the point with the least MSE
gives the weights that best represent the quantifica-
tion of the influence of each interaction on the target
gene, as illustrated in Fig. 4 c. We then compute the
perception output as follows,

TF 0
�
gy
� ¼ max

 
0;
XI

i

TF
�
gxi

�
:wðxi ;yÞ

!
; (1)

a

b

FIGURE 3 Illustration of cell-computing
model of PYO production network where
(a) depicts the computing process of the
incoming cell-cell communication molecules
and the conversion of chorismic acid to PYO
that is driven by the GRNN outputs in
response to phosphate input, whereas (b)
shows the PYO production sub-GRNN before
the weight extraction process.
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where TFðgxi Þ is the experimental expression values of
the gene gxi . Moreover, TF 0ðgyÞ is the computed percep-
tion output based on the given input expression
values from transcriptomic data. This model aims to
train the perception until the MSE between the
computed and experimental gene expression data,
TF 0ðgyÞ and TFðgyÞ, is minimized. In this training pro-
cess, the point with the least MSE gives the weights
that best represent the quantification of the influence
of each interaction on the target gene, as illustrated
in Fig. 4 c.

To extract the weights associated with all gene per-
ceptrons of P. aeruginosa, we use transcriptomic data
from the GEO database (58). After multiple stages of
preprocessing of the collected transcriptomic data,
80% of it is used to extract the weights of all the
gene perceptrons, whereas the remaining data are
used for validation. We initialize the single-layer
gene perceptrons of P. aeruginosa with random weight
values and train them, as explained earlier. In the
training process, the learning rate and the maximum
number of epochs are set at 10� 6 and 109. With the
extraction of the gene-gene interaction weights, the
GRN is converted to a GRNN.

Graph neural network modeling of cell-cell
communication influence on GRNN computing

Background on graph neural networks

Graph neural networks have emerged as a prominent
approach for analyzing systems with underlying graph
structures and require permutation-invariant informa-
tion processing. Literature shows that graph neural net-
worksarebeingused inmanyapplications, including the
prediction of protein functions (59) and identifying po-
tential drug-target interactions (60).Another application

lies in genomics, where graph neural networks have
been utilized to predict gene expression patterns and
identify regulatory relationships among genes (61).

Graph neural networks contain four main compo-
nents: feature vectors, message-passing protocol, and
aggregate as well as update functions. A feature vector
is a representation of the attributes or properties of indi-
vidual nodes in a graph, whereas the message-passing
protocol, on the other hand, determines information
flow specific to the application. For instance, diffusion
properties can be embedded in the message-passing
protocol of a molecule-based communication system.
Next, to combine incoming information from neigh-
boring nodes as messages, graph neural networks
employ aggregation functions, which can be another
application-specific function ranging from a simple
summation toacomplex function.Theaggregated infor-
mation is then processed through the update functions,
whichprocess andcombine the aggregated information
with the existing node attributes. These functions
collectively contribute to the effective modeling and
analysis of complex systems.

Graph neural network model for GRNN computing through cell-
cell communications

Since our aim is to extract a neural network property
through the cell's GRN, we also want to determine a
computing solution space of the cells' activation func-
tions within a population. To model and understand
the dynamics of this solution space, we need a frame-
work that will enable us to model and simulate the
communication between the cells and how this is
computed by the GRNN, subsequently producing
output molecules that influence neighboring cells. To
achieve this, we model cell-cell communication using
graph neural networks that have structural and func-
tional similarities such as the random spatial

a b c

FIGURE 4 Illustration of GRNN extract steps where (a) is the creation of GRN structure with various interaction types between genes that is
extracted from databases, (b) shows disassembling of the GRN into gene-perceptions with ReLU as the activation function, and (c) shows the
weight extraction process of gene perceptrons where weights of each edge are fine-tuned by minimizing the MSE between computed ðTF 0ðgzÞÞ
and experimental ðTFðgzÞÞ gene expression levels.
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distribution of cells, cell-to-cell molecular diffusion dy-
namics, and modulation of cellular activities in
response to incoming molecular signals.

The bacterial ecosystem is first created as a graph
network where each node is a representation of a
cell and the corresponding feature vector holds the
computational output, which is the gene expression
profile of the GRNN at a given time. The edges
between the two nodes represent diffusion-based
cell-cell communication (62,63) and are modeled as
a message-passing protocol of the graph neural
network. The summation of incoming molecular sig-
nals received by a cell is then modeled as the aggrega-
tion function. Finally, the GRNNs are embedded in
each node as the update function, where the aggre-
gated incoming molecular signals are computed,
varying the gene expression patterns. This, in turn, up-
dates the feature vector of the corresponding cell.
With the embedded properties, the bacterial popula-
tion represented as a graph neural network can allow
an understanding of the complex interplay between
cells, as well as the exchange of signaling molecules
that influence cellular behavior. Ultimately, this model
offers a powerful approach to unraveling the impact of
cell-cell communication on bacterial behavior and
uncovering underlying inherited computing properties.

As cell-cell communication plays a vital role in the
computing diversity within the ecosystem depending
on the cellular spatial distribution, we first define the
matrix ED that reflects the Euclidean distances be-
tween the bacterial cells in the population as follows,

ED ¼
B1

B2

«
Bp

0BBBB@
B1 B2 / BP

dð1;1Þ dð1;2Þ / dð1; pÞ
dð2;1Þ dð2;2Þ / dð2; pÞ

« « 1 «
dðP;1Þ dðP;2Þ / dðP;PÞ

1CCCCA: (2)

Here, dði;jÞ is the Euclidean distance between the ith

and jth cells where i; j ¼ f1;2;.;Pg and dði;jÞ ¼ 0
when i ¼ j.

Moreover, the diffusion properties of the molecules
also influence the cell-cell communication dynamics
resulting in variation of input signals to the GRNN.
For simplicity, we define a static diffusion coefficients
vector D as,

D ¼ �
Dm1 ;Dm2 ;.;DmQ

�
; (3)

where DmQ is diffusion coefficient of molecular type
mQ.

If we consider a cell Bi as a transmitter, we then ex-
press the molecular concentration received by cell BP

that is located at dðP;iÞ after time T using the Green's
function as,

g
�
DmQ ; dðP;iÞ; T

� ¼ 1�
4pDmQT

�3
2

exp

 
� d2

ðP;iÞ
4DmQT

!
: (4)

To calculate the incoming signals from all the cells
in the network at BP , we define a matrix Yi that is rep-
resented as,

YP ¼ 1
�! �

½Q�1� � EDP ; (5)

where EDP is the Pth row of the matrix ED, which rep-
resents the distance between BP and other cells. We

use a 1
�! �

½Q�1� to adjust the dimension of Yi for the
next iteration.

We then create the matrix bgPðDu;Y; tÞ, which con-
tains molecular diffusion between the BP and the
rest of the cells using Eqs. 4 and 5, which is repre-
sented as follows, bgPðDu;Y; tÞ ¼2666664
g
�
Dm1 ; dðP;1Þ; T

�
g
�
Dm1 ; dðP;2Þ; T

�
. g

�
Dm1 ; dðP;PÞ; T

�
g
�
Dm2 ; dðP;1Þ; T

�
g
�
Dm2 ; dðP;2Þ; T

�
. g

�
Dm2 ; dðP;PÞ; T

�
« « 1 «

g
�
DmQ ; dðP;1Þ; T

�
g
�
DmQ ; dðP;2Þ; T

�
. g

�
DmQ ; dðP;PÞ; T

�

3777775:
(6)

Since the cells secrete heterogeneous molecule
types, we also need to consider the messaging
signals between the cells as illustrated in Fig. 5
a. We represent the messaging matrix MSGðtÞ

for the molecular secretion of the cells at time
t as,

MSGðtÞ ¼
B1

B2

«
Bp

0BBBBBBBBBBB@

m1 m2 / mQ

msgðtÞð1;m1Þ msgðtÞð1;m2Þ / msgðtÞð1;mQÞ
msgðtÞð2;m1Þ msgðtÞð2;m2Þ / msgðtÞð2;mQÞ

« « 1 «

msgðtÞðP;m1Þ msgðtÞðP;m2Þ / msgðtÞðP;mQÞ

1CCCCCCCCCCCA
;

(7)

wheremsgðtÞðP;mQÞ is the secreted concentration of mole-
cule type mQ produced by cell BP .

Now, we define the incoming signal vector Rðtþ1ÞP for
the bacterial cell BP , which contains the concentra-
tions of all the molecule types at time TS ¼ t þ 1,
using Eqs. 6 and 7 as follows,
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R
ðtþ1Þ
P ¼ diag

�bgðDu;Y; tÞ � MSGðtÞ
�
¼
	
rðtþ1ÞðP;mQÞ



1�Q

;

(8)

where rðtþ1ÞðP;mQÞ is the received mQ signal by the cell BP .
Despite the GRNN of BP receiving molecular signals

from the peer cells, the nutrient in the extracellular
environment and accumulated molecules in the cyto-
plasm also act as inputs of the same GRNN. Therefore,
we further define the accumulated intra-cellular molec-
ular concentrations IM at time t as,

IMðtÞ ¼

B1

B2

«

BP

im1im2.imQ
0BBBBBBBBB@

CðtÞð1;im1Þ CðtÞð1;im2Þ . CðtÞð1;imQÞ
CðtÞð2;im1Þ CðtÞð2;im2Þ . CðtÞð2;imQÞ

« « 1 «

CðtÞðP;im1Þ CðtÞðP;im2Þ . CðtÞðP;imQÞ

1CCCCCCCCCA
;

(9)

where CðtÞðP;imQÞ is accumulated concentration of mole-
cule type mQ in the cytoplasm of cell P.

Further, we integrate our single-cell GRNN and cell-
cell communication model into a 3D environment to
incorporate the external molecular inputs. The environ-
ment of the simulation is designed as a 3D grid of vox-
els that can store precise information on external
nutrients (based on our previous model in (64)). The
diffusion of nutrient molecules through the medium is
modeled as a random-walk process (27).

In the environment, the nutrient concentrations at
the location of cell BP at time TS ¼ t, KðtÞP , is denoted
as,

K
ðtÞ
P ¼

n
K ðtÞP:m1

;K ðtÞP:m2
;.;K ðtÞP:mQ

o
¼¼

h
K ðtÞP:mQ

i
1�Q

; (10)

where K ðtÞðP:mQÞ is concentration of the molecular type
mQ in a specific location.

As the next step, we define the aggregation array SðtÞP
that contains the summation of all the molecules
received by cell P as,

S
ðtÞ
P ¼ R

ðtÞ
P þK

ðtÞ
P þ IMðtÞP

¼
	
rðtþ1ÞðP;mQÞ þ K ðtÞðP:mQÞ þ CðtÞðP;imQÞ



1�Q

; (11)

which is further illustrated in Fig. 5 b.
The aggregated signals are then computed through

the GRNN of each node, where the output is observed
in the updated gene expression profile or the feature
vector of the corresponding node. This is expressed
as follows,

FV
ðtþ1Þ
P ¼ GRNN

�
S
ðtÞ
P

�
; (12)

where FV ðtþ1ÞP is the cell BP 's array of computed gene
expression levels by the GRNN upon the reception of

S
ðtÞ
P . This mathematical expression explains a bacterial

cell's behavior of adaptive gene expression dynamics
with respect to the incoming molecular signals.

Finally, the matrix FVðtÞ that is obtained by Eq. 12,
which denotes the population's computational output
at TS ¼ t in terms of gene expression levels, is repre-
sented as,

FVðtÞ ¼

B1

B2

«

BP

g1g2.gL
0BBBBBBBB@

bðtÞð1;g1Þ bðtÞð1;g2Þ . bðtÞð1;gLÞ

bðtÞð2;g1Þ bðtÞð2;g2Þ . bðtÞð2;gLÞ
« « 1 «

bðtÞðP;g1Þ bðtÞðP;g2Þ . bðtÞðP;gLÞ

1CCCCCCCCA
;

(13)

where bðtÞðP;gLÞ is the expression level of the gene gL of
the cell BP at the same time slot.

The significance of this modeling approach is to
allow us to characterize dynamics of GRNN computing
of bacterial cells in the ecosystem and to understand
how they compute in parallel within the community.
As a population, this results in a large parallel process-
ing framework. To reflect this, we use the python-cuda
platform to mimic our model as close to the parallel
processing architecture of the biofilm, where we dedi-
cate a graphics processing unit block for each bacterial
cell and the threads of each block for the matrix multi-
plication of the GRNN computation. Additionally, due
to the high number of iterative components in the
model, the computational power demand faces signifi-
cant challengeswith serial programming,making paral-
lelization the best match for the model.

RESULTS

In this section, we conduct simulations of the bacterial
ecosystem within a biofilm for the extracted GRNN
computing to determine its accuracy and its dynamics
based on the framework described in the previous sec-
tion. We first describe the simulation setup of the
GRNN as well as the biofilm model. This is followed
by analyzing the accuracy of the extracted GRNN
and its computing behavior by comparing to wet-
lab experimental data. This includes analyzing the
network structure of the GRNN based onmutagenesis,
followed by the reliability of individual GRNN and
bio-computing models of the biofilm as bacterial

8 Biophysical Reports 3, 100118, September 13, 2023

CHAPTER 7. JOURNAL: REVEALING GENE REGULATION-BASED
NEURAL NETWORK COMPUTING IN BACTERIA

121



cluster-based perceptrons and the dynamics of their
sigmoidal activation based on temporal and spatial
position.

Simulation setup

The species P. aeruginosa has been extensively stud-
ied as it is known for posing serious health problems
such as pneumonia, blood infections, infected
wounds, and especially the production of PYO, which
is a toxin that affects human cell functions. Thus,
our study focuses on the GRNN computing that re-
sults in PYO production.

Genetic model

The literature provides information on the genetic
network that incorporates PYO production, including

the genes that are affected by phosphate intake and
QS signaling (65). First, we extract the PYO sub-
GRNN using the shortest path analysis that defines
a network for the interactions of QS-related genes
and the two components system (TCS) PhoR-PhoB
that governs genes expressed from the phosphate
intake (phZ1, phz2, phzS, and phzM), which are respon-
sible for the production of enzymes that are essential
for PYO production.

In this computational model, we identify another
layer of metabolic interaction that plays a role in
PYO production, which is shown in Fig. 6. Since our pri-
mary goal is to explore the neural network behaviors of
GRNs, we model these inter-cellular metabolic interac-
tions as a separate layer from the GRNN. Here, RhlR is
a transcriptional regulator of P. aeruginosa and forms
a complex by getting attached to its cognate inducer

a

b
FIGURE 5 The process of one GRNN out-
puts reaching another GRNN as molecular
messages where (a) illustrates how the
GRNN output of one cell influences the others
and (b) explains how the graph neural net-
works are utilized to model the computing of
bacterial cells.
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C4-HSL, which in turn works as an input to the GRNN
(66). Similarly, LasR transcriptional regulator protein
and 3-oxo-C12-HSL (3OC), and PqsR with PQS and
HHQ, form complexes that also act as inputs to the
GRNN (67,68). In parallel to this process, chorismic
acid, C10H10O6 in the environment, are converted by
the P. aeruginosa cells through multiple steps using
the phz1, phz2, phzS, and phzM products of the
GRNN. First, the C10H10O6 is converted into phena-
zine-1-carboxylic using the enzymes produced from
Phz1 and Phz2 genes that are outputs of the GRNN.
In the next step, the phenazine-1-carboxylic gets
converted into 5-methylphenazine-1-carboxylate, and
finally, 5-methylphenazine-1-carboxylate into PYO by
the GRNN outputs PhzM and PhzS, respectively (69).
Therefore, the GRNN computing will in turn modulate
and convert the C10H10O6 into PYO, as illustrated in
Fig. 3 a.

Biofilm model

One of the key differences between cell-cell communi-
cation within a biofilm and a collection of planktonic
cells is caused by the diffusivity of extra polymeric
substances (EPSs). This, in turn, creates interesting
cell-cell communication patterns that lead to
computing variations in a biofilm, which we show
through the mutual information showing the uncer-
tainty in information flow during computing changes.
The internal availability and consumption of the nutri-
ents transform the bacterial communication process,
and this, in turn, changes the computing behavior.
Therefore, in this study, we consider a P. aeruginosa
single-species biofilm as an ecosystem to investigate
the role of inter-cellular communication in GRNN
computing. We model a completely formed biofilm
and disregard the forming, maturation, and dispersion
stages, which are out of the scope of this study. In
our model, we consider the biofilm as a static 3D struc-
ture of bacterial cells. We first place bacterial cells
randomly in a paraboloid-shaped structure using the
equation, z < x2

5 þ y2

5 þ 20, where x, y , and z are the com-
ponents of 3D Cartesian coordinates. This paraboloid
shape is chosen to make the spatial arrangement of

the cells close to a real biofilm and keep the cell place-
ment process simple. Within this 3D biofilm structure,
we model the diffusivity based on DB=Daq ¼ 0:4,
which is the mean relative diffusion (70), where DB

and Daq are the average molecular diffusion coeffi-
cients of the biofilm and pure water, respectively. To
start the simulation at a stage where the biofilm is
fully formed with established communication between
the cells, we filled the graph neural network internal
memory vector of each cell with the average molecular
level at the initial time slot. Each bacterial cell will use
the initial signals from the internal memory and apply
it to the GRNN to compute and update the feature vec-
tor for the next time slot. Table 1 presents the param-
eter descriptions and values used for the simulation.
As shown in Table 1, the model runs for 150 time slots,
generating data for a range of functions in the system.
These functions can produce data on the graph neural
network feature vector of each cell, communication
between cells, molecular consumption of the cells,
secretion of molecular output to the environment,
and nutrient accessibility of cells for each time slot.

Validating the GRNN accuracy for PYO production

The accuracy of the extracted weights is validated by
predicting output expression levels for each gene per-
ceptron using the transcriptomic data from publicly
available experimental data in the GEO database (58).

The first analysis is to determine the accuracy of the
full GRNN, which contains 2851 genes and 4903 inter-
action links. In calculating the weights, we used 217
transcriptomic data records (58). Using the weights
that are allocated to each link of the gene expression
relationship, we predict the output expression levels
of each gene using Eq. 1 and compare them to the
measured values. The results of this analysis shown
in Fig. 7 show that the majority of the data points lie
close to the 45� line, indicating an accurate prediction.
Note that the deviated points may reflect the variability
of the weights, which is not investigated in this study.

Moreover, we further investigate the accuracy of the
extracted GRNN through a mutagenesis analysis by

FIGURE 6 Illustrations of intra-cellular
metabolite interaction where the QS mole-
cules form complexes with response regula-
tors.
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doing modifications to the GRNN structure and
observing the corresponding gene expression and
PYO production outputs. This simulation experiment
is performed for two levels of phosphates (high phos-
phate (HP) and low phosphate (LP)). Besides the
different levels of phosphate, we also aim to analyze
how changes in the network structure due to muta-
tions can affect the computing behavior. We conduct-
ed eight simulation experiments with the following
setup: 1) wild-type bacteria with no mutations (WD)
in LP, 2) lasR mutant (lasR D) in LP, 3) phoB mutant
(phoB D) in LP, 4) lasR and PhoB double mutant
(LasR D PhoB D) in LP, 5) WD in HP, 6) lasR D in HP,
7) PhoB D in HP, and 8) LasR D PhoB D in HP. Although
the WD uses the complete PYO sub-GRNN, lasR D re-
sults in removal of the node lasR, the GRNN of phoB
D is modified by removing the PhoB, and the double
mutant (LasR D PhoB D) is modified by removing
both lasR and PhoB genes, as shown in GRNNs of
Fig. 8 a–d, respectively. This mutation results in struc-
tural changes of the GRNN that alter the computa-
tional outputs, which can be observed through the
gene expression and PYO production levels.

For the mutagenesis cases described above, we will
compare the computed values through the GRNN with
wet-lab experimental data from (73) for the PYO pro-
duction and show the molecular output behavior of
the corresponding GRNN structures. The computa-
tional output of PYO level in the P. aeruginosa biofilm
is high in LP compared to HP for all the four cases
(Fig. 8 a–d), where the highest difference is in lasR D
case and the lowest in phoB D, as shown in Fig. 8 b
and c respectively. This is mainly due to the negative
impact of the gene phoB on the other genes, where an

increased expression of the gene phoB due to higher
phosphate condition represses the expression of
genes, including rhlR (with the weight, wðphoB;rhlTÞz �
0:31) and phZ1 (with the weight, wðphoB;phz1Þz �
0:33), which in turn reduce the overall gene expression
levels of the GRNN.

This effect is magnified by lasR mutation, as shown
in Fig. 8 b, and we identify that the gene mvfR plays a
crucial role in PYO production output in this case. The
gene mvfR positively expresses seven other genes in
this network and, in turn, a higher expression of mvfR
results in increased PYO production. In this particular
case, expression of the gene mvfR is increased in LP

TABLE 1 Parameters utilized in the system development

Parameter Value Description

No. of cells 2000 the number of cells is limited due to the
memory availability of the server

No. of genes 26 the network only consists of the gene are
directly associated with QS, PhoR-PhoB

TCS and PYO production
No. internal memory molecules 16 molecules involved in QS and PhoR-PhoB

TCS and PYO production
No. messenger molecules 4 number of molecules that were exchanged

between cells in the sub-network
Dimensions of the environment 20 � 20 � 20 mm the dimensions were fixed considering the

average sizes of P. aeruginosa biofilms
and computational demand of the model

Duration 150 TSs the number of TSs can be modified to
explore the cellular and ecosystem level
activities. For this experiment, we fixed a

TS to represent 30 mins
No. iterations per setup 10 considering the stochasticity ranging from

the gene expression (71,72) to
ecosystem-wide communications, the
experiments were iterated 10 times

FIGURE 7 Comparison between measured expression levels of
2851 genes for 217 transcription records and gene expression
values computed by the extracted full GRNN.

Biophysical Reports 3, 100118, September 13, 2023 11

CHAPTER 7. JOURNAL: REVEALING GENE REGULATION-BASED
NEURAL NETWORK COMPUTING IN BACTERIA

124



as evident in the gene expression plot of Fig. 8 b due to
the reduced level of rhlR expression (which represses
the mvfR with the weight wðrhlR;mvfRÞz � 0:05) as a
result of lacking lasR (which induces the gene rhlR
with the weight wðlasR;rhlRÞz0:23). This mutation can
be considered an improvement of GRNN's sensitivity
to environmental phosphate concentrations.

In contrast, the lowest difference in LP and HP PYO
production of case phoB D occurs as a result of
GRNN's direct insensitivity to phosphate variations
formed by the removal of the gene phoB, which is
the two-component response regulator associated
with phosphate intake. This insensitivity contributes

to maintaining a fixed gene expression level in the
GRNN despite the environmental phosphate varia-
tions. Moreover, the difference between the PYO pro-
duction in LP and HP of the LasR D PhoB D case is
high compared to PhoB D, as shown in Fig. 8 d, which
can be explained as a combined impact of lasR D and
PhoB D cases on PYO productions where lacking gene
phoB reduces the phosphate sensitivity of GRNN
and lacking gene lasR does the opposite. These
results emphasize the heterogeneity in the weight
distribution of edges and the importance of nodes
that is advantageous in extracting application-specific
GRNNs in the future.

a

b

c

d

FIGURE 8 Mutagenesis analysis to investigate the impact of GRNN structural deviation on the PYO production. The gene expression vari-
ations and resulting PYO production are shown in LP and HP for four GRNN structures of (a) WD, (b) DlasR, (c) DphoB, and (d) DlasRDphoB. The
genes highlighted in the red circles are removed from the GRNN for the different structure types we consider to show the structural changes in
the network, which in turn shows how computing changes in the PYO production.
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Our comparison to the wet-lab experimental data to
analyze the GRNN computing behavior (73) is based
on the ratios of HP to LP for PYO production, as shown
in Fig. 9. The differences between the PYO production
predicted from GRNN in HP and LP conditions for all
four setups in Fig. 9 are relatively close to the wet-
lab experimental data. Even though the absolute per-
centages are not the same between wet-lab and simu-
lated values, the ratios between them are significantly
close. We believe deviation of the absolute values is
caused by the lack of interactions with gene expres-
sion outside our sub-network having an influence on
the GRNN. Although the overall comparison in Fig. 9
is considered accurate, we believe this can be further
improved with increased association to genes that
neighbor the sub-network and increasing the accuracy
of the weight calculations using increased transcrip-
tomic data. The modified GRNN structures based on
gene mutants for accuracy testing also lay the founda-
tion for us to modify network structures through ge-
netic engineering to create an neural network that
fits our target problem for bio-computing applications.

GRNN computing reliability

Biological systems such as bacterial ecosystems are
influenced by many stochastic factors, such as molec-
ular diffusion generated from diverse molecules (74).
As a population of cells within the biofilm, this affects
the computational paths along the GRNN of each cell.
The nutrient molecular diffusion within the biofilm is
the first observed using a 3D environment layer. The
EPS is known to provide extra protection to the biofilm
and it has been proved that it also resists nutrient
penetration toward the core of the structure (75).
This results in a gradient that reflects the nutrient
accessibility variations in the biofilm, which is illus-
trated in Fig. 10. The cells in the core of the biofilm
have lower nutrient accessibility compared to the cells
at the periphery, and this is due to variations in
diffusion between the environment and the EPS.
Fig. 10 a compares the flow of nutrients with respect

to time and concentration for low input concentration,
whereas Fig. 10 b is for high input concentrations. As
shown in the figures, when an LP concentration is
introduced, access to the nutrients is significantly
limited. This variability in nutrient accessibility plays
a significant role in the reliability of the GRNNs and
the diverse computing behavior in the biofilm. This,
in turn, enables us to take control over the computing
dynamics up to a certain extent, which is beneficial in
tailoring GRNNs to specific applications.

To analyze the reliability and functionality of the
GRNNs, we usemutual information (MI) to statistically
measure the dependency between the input and
output gene expressions in the GRNN, which reflects
the network's computing reliability. As the expression
levels of the input and output genes are continuous
variables that show the GRNN's analog computing
behavior, we use the Gaussian kernel density-based
MI estimation with the well-known Silverman's rule
for kernel bandwidths selection that is presented in
Algorithm 1. Although the diffusion dynamics within
the EPS form a continuous nutrient gradient toward
the biofilm core, we discretize it into three regions (re-
gion 0, the core; region 1, the middle layer; and region
2, the outer layer). An increased number of regions can
result in extracting more layers of variations, but, at
the same time, it will be challenging to measure or
use for computing tasks in practice due to the phys-
ical scale of the system. In contrast, the minimized
number of regions can provide improved differentia-
tion between the behaviors of each layer. To measure
the variations in computing, we estimate the MI of
the GRNN in three layers of the biofilm as shown in
Fig. 11 and for three time slots (TS ¼ 20, TS ¼ 25,
and TS ¼ 30).

Fig. 12 presents the MI results with respect to
three regions of the biofilm and time slots. Here, we
only focus on the MI behavior of the following five
GRNN edges, which includes phob-rhlR, rhlR-phz1,
phoB-phz1, phoB-lasI, and bqsR-pqsC. The significance
of these five edges is the information flows through

FIGURE 9 Evaluation of the model accuracy by comparing HP to
LP PYO production ratio with wet-lab data from (73).

a b

FIGURE 10 The nutrient accessibility variations of cells is ex-
pressed in two different environment conditions: (a) LP and (b) HP
concentrations.
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the expressions of these gene pairs, which have the
highest variance and the largest MI values. Further,
these edges are highlighted with different colors where
the thickness corresponds to their MI value. In the
considered GRNN, the involvement of the QS signals
is clearly visible, as all four edges with the highest MI
values except for the edge between bqsR-pqsC genes
are associatedwith theQSsystems. It is evident that re-
gion 2, which is the outer layer of the biofilm, has the
GRNNswith better information flow indicated by signif-
icantly higher MI values than the other regions. This re-
flects the high reliability of the GRNN computing since
the outputs have a strong dependency on the inputs.
However, over time, the MI diminishes gradually with
the nutrient reduction of the environment due to the
consumption by the bacteria. This is evident in region
1, where the diminished nutrient accessibility results
in lower MI values, showing higher uncertainty in the
computing process. The uncertainty in the computing
process is further amplified in region 0, which has
the lowest MI values as the information flow of GRNN

Algorithm 1 Estimating MI using Gaussian kernel density estimation

Input :Two continuous variables X and Y , and a set of N samples ðxi ;yiÞ, i ¼ 1;.;N
Output The mutual information IðX;YÞ
:
1 Function SilvermanBandwidthSelection X:
2 n ¼ jXj;number of data points in;
3 s ¼ standard deviation of X;

4 h ¼ 1:06$s
n1=5 ;

5 return h;
6 Function GaussianKDE ðX;hÞ:
7 kde ¼ empty array;
8 for x˛X do

9 kdeðxÞ ¼ 1
n$h

P
xi ˛X exp

�
� ðx� xiÞ2

2h2

�
;

10 end
11 return kde;
12 Function GaussianJointKDE ðX;Y ;hX ;hY Þ:
13 kde ¼ empty array;

14 KðuÞ ¼ 1ffiffiffiffi
2p
p e

� u2
2 ;

15 for x˛X do

16 kdeðxi ;yiÞ ¼ 1
n

Pn
j¼1

1
hXhY

K
�
xi � xj
hX

�
K
�
yi � yj
hY

�
;

17 end
18 return kde;
19 hX ¼ SilvermanBandwidthSelectionðXÞ;
20 hY ¼ SilvermanBandwidthSelectionðYÞ;
21 fXY ¼ GaussianJointKDEðX;Y ;hX ;hY Þ;
22 fX ¼ GaussianKDEðX;hXÞ;
23 fY ¼ GaussianKDEðY ;hY Þ;
24 Function MutualInformation ðfXY ; fX ; fY Þ:
25 MI ¼ 0;
26 for xi ˛X; yi ˛Y do;

27 MI ¼ MI þ fXY ðxi ;yiÞ$log2
�

fXY ðxi ;yi Þ
fX ðx1Þ$fY ðyi Þ

�
;

28 end
29 return MI;

FIGURE 11 Illustration of three layers considered in the biofilm to
investigate the computing reliability and the solution space, where
region 2 is the outer layer, which has the most access to nutrients.
Region 1 is the middle layer, and region 0 is the core with the least
nutrient access.
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is more dependent on the stochasticity of gene
expressions over incoming nutrient signals in this
region. In region2, atTS ¼ 20, theMI value between ex-
pressionsof genes phoBand rhlR is the sameas that be-
tween genes rhlR and phz1. However, as we consider
different time points and regions, it becomes evident
that the MI between genes phoB and rhlR is reduced
more compared toMI between gene rhlR and phz1, indi-
cating that the impact of phosphate on the RHLQS sys-
tem is stronger. This shows that theMI analysis can be
used in the future to identify reliable sub-networks for
bio-computing applications.

The analysis indicates a high reliability of GRNN
computing near the surface of the biofilm, where the
output response exhibits a strong dependence on the
input signals compared to other regions. This suggests
that the computing outputs of the cells closer to the bio-
film core are highly stochastic and fluctuate at a higher
rate during decision making. The impact of the net-

work's reliability on the outputs can also be observed
in the analysis in the next section, when we investigate
the cells cooperating to form collective perceptrons.

Cluster-scale collective perceptrons

The output patterns of the GRNNs of individual cells
revealed that, in the biofilm, bacteria collectively
form a set of non-linear output functions spatio-
temporally with the help of cell-cell communication,
which we modeled through the graph neural network.
Hence, in this section, properties of the output non-
linearity of regions and time points of the biofilm
that resulted from the cluster of cells with GRNN in
each is investigated in terms of a sigmoid activation
function SðxÞ,

SðxÞ ¼ L
1þ e�ðkx� x0Þ ; (14)

FIGURE 12 Illustration of MI of the solution space in three regions and time steps. The colors of the MI bar plots are mapped to the colors of
the corresponding edges. The widths and the arrows of the edges represent the MI values and direction of information flow, respectively. The
nodes in the yellow color are considered the outputs as they produce enzymes related PYO production, whereas the pink nodes represent the
input nodes associated with phosphate and QS molecule intake.
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where the parameters L, k, and x0 control the
maximum, steepness, and horizontal shift, respec-
tively, as shown in Fig. 13.

The Hill function is also used in the literature to
represent biological activities such as gene expres-
sions and chemical reactions. However, the Hill func-
tion is almost indistinguishable from the sigmoid
function when the Hill coefficient is greater than 1
for the proper choice of parameters (76). Nevertheless,
from the neural network computing perspective, sig-
moid functions are widely used, especially in artificial
perceptrons. Therefore, we explore the output non-
linearity of the collective perceptron with sigmoid
functions.

The PYO production of the biofilm is analyzed in the
same three regions (shown in Fig. 11) for three time

slots (TS ¼ 20, TS ¼ 25, and TS ¼ 30) and extract
a solution space with a set of sigmoid activation func-
tion variations. Further, we analyze their dynamics
based on the role of QS. Literature shows the attempts
to use modified versions of activation functions such
as scaled sigmoid, penalized Tanh, and bounded ReLu
can be tailored for specific computational tasks (77).
Subsequently, it has been proved that the improved
versions of the standard non-linear activation function
comparatively perform well with respect to the appli-
cation problems (78–80). Therefore, a biological entity
that contains a diverse set of non-linear functions can
be advantageous in computing applications such as
adaptive classifications or analog to digital conver-
sions with more specificity and adaptability.

We used the curve-fitting approach presented in Al-
gorithm 2 to determine the parameters of Eq. 14 and
how it, as well as the QS molecules, dynamically
changes with respect to variations in the phosphate
input. We analyze these values for each region, which
is presented in Fig. 14. The top row of Fig. 14 shows
the collective non-linear properties in region 2 of the
biofilm outer layer, where the nutrient accessibility is
relatively high. The higher nutrient availability is posi-
tively reflected in the high QS levels in the region
compared to region 1 and region 0. This, in turn, re-
sults in a higher k value of SðxÞ, which governs the
steepness of the sigmoid function. Over time, the QS
concentration gets significantly reduced, and the
steepness k subsequently increases. In contrast, the
parameter x0, which governs the horizontal shift of

FIGURE 13 Illustration of L, k, and x0 parameters that determine
the height, steepness, and horizontal shift of the sigmoid curve,
respectively.

Algorithm 2 Curve fitting with least squares method

Input: Data points ðxi ; yiÞ for i ¼ 1; 2;.;n
Output:Optimized parameter values
1 Function CurveFitting ðX;YÞ:
2 Initialize the set of parameter values P ¼ ðL;k;x0Þ;
3 repeat
4 Compute the predicted valuesbY ¼ MSigmoidðX;PÞ;
5 Update the parameter values

P ¼ LeastSquaresðX;Y ; bY Þ;
6 until convergence;
7 return P;
8 Function MSigmoid ðX;PÞ:
9 Extract parameter values L; k; x0 from P;
10 Compute the predicted values bY using the sigmoid

function: bY ¼ L
1þe�ðkX� x0 Þ;

11 return bY ;
12 Function LeastSquares ðX;Y ; bY Þ:
13 Compute the residual vector R ¼ Y � bY :
14 Compute the Jacobian matrix J with partial derivatives of the logistic function w.r.t. the parameters;
15 Compute the parameter updates DP using the least squares formula: DP ¼ ðJuJÞ�1JuR;
16 P ¼ Pþ DP;
17 return P;
18 P ¼ CurveFitting ðX;YÞ;
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FIGURE 14 Illustration of a sigmoid function-based solution space found in biofilms, where variations in non-linear behavior are shown with
respect to location in each column and time in each row. Each layer of the diagram consists of QS, sigmoid parameter, and sigmoid curve
variation plots corresponding to the regions of the biofilm. The QS plots show the percentage differences of 3OC, HHQ, and C4 QS signal con-
centrations and sigmoid parameters plots show the changes in the height ðLÞ, steepness ðkÞ, and horizontal shift ðx0Þ of the function.
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the curve, has a negative relationship with the QS con-
centration. The highest k and the lowest x0 can be
observed in region 2 at TS ¼ 20 as a result of the high-
est concentration of QS. It is important to notice that,
with the increment of the phosphate concentrations,
there is only a slight increase in QS concentrations.
Hence, it is clear that the QS concentrations have
the most significant impact on the sigmoid shape.

Fig. 14 shows that, in region 1, the QS concentra-
tions are comparatively low compared to region 2, as
the bacterial cells are located significantly below the
surface, minimizing nutrient accessibility. At TS ¼
20, the QS concentrations in this region are fairly
close to that in region 2 at TS¼ 25. Hence, the sigmoid
parameters are also close in these two periods. How-
ever, careful observation reveals that region 1 at
TS ¼ 20 has more noise in the 3D surface plot of
the sigmoid series. This effect was demonstrated in
the previous section, where the lower MI values were
witnessed in region 1 compared to region 2, increasing
the uncertainty of the computing process. This is
more evident in region 0, where the sigmoid function
plot is severely distorted, exhibiting a noisy output.
Despite the noise, region 2 and region 1 contain a se-
ries of sigmoid curves creating a reliable solution
space. Further, the influence of the phosphate concen-
tration in the environment can be considered a fine-
tuning factor, as each 3D sigmoid series plot shows
slight shape variation with respect to the phosphate
concentration.

Fig. 15 compares the sigmoid function variations
with respect to the location and time slot, showing
the diversity of the solution space. Fig. 15 a shows
four different sigmoid function variations in region 2.
The sigmoid function of this region at TS ¼ 15 has
the largest L value of 0.97, creating the highest upper
bound, whereas the lowest is at TS ¼ 30. This trend
of the upper bound is repeated in the other locations
as well. Although the sigmoid behavior in terms of L
and k values of region 1 is relatively close to region

2, the parameter x0 varies from 0.70 to 0.11, which is
different from the range of 0.55–0.07 in region 2.
This, in turn, leads to a slight decrease in the steep-
ness of the sigmoid functions in region 1 compared
to region 2, which results in a sharper decision bound-
ary. These sigmoid fluctuations further elucidate the
computational diversity of the collective bacterial
layers as perceptrons. In contrast, as we observed
earlier, region 0 contains a set of noisy sigmoid curves
that do not have a distinct decision boundary to pro-
duce a reliable output.

Therefore, the spatio-temporal variation drives the
nutrient availability for cells in the biofilm, which in
turn regulates cell-cell communication leading to
computational diversity. The consequent variations
of bacterial GRNN-based computing collectively
form a diverse solution space of sigmoid function
variations.

CONCLUSIONS

In this study, we introduce a method to quantify the
gene-to-gene interactions that converts the GRN into
a GRNN to facilitate in-depth analysis of inherited
computing properties at an individual cell as well as
biofilm ecosystem levels. We specifically focused on
P. aeruginosa as the model species and extracted a
GRNN using GRN structural and transcriptomic dy-
namic data. Further, we utilized a graph neural
network structure to model the cell-cell communica-
tion in a bacterial ecosystem, which heavily influences
the computing properties. Using mutagenesis effects
that result in GRNN with modified network structures,
we prove the accuracy of the extracted weights by
comparing the simulated and wet-lab experimental
data. In addition, the graph neural network model
with embedded GRNN as computing components
further reveals the neural network properties of an in-
dividual cell's GRNN and spatio-temporal computing
variations within a biofilm ecosystem. Another set of

a b c

FIGURE 15 Variations of the sigmoid activation function in (a) region 2, (b) region 1, and (c) region 0 based on inputs of phosphate and cho-
rismic acid. Each plot contains four time slots: TS ¼ 15 in blue, TS ¼ 20 in orange, TS ¼ 25 in green, and TS ¼ 30 in red. The table of each
plot gives the ranges of each parameter for the corresponding region.
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analyses is conducted on the collective computing di-
versity of cell clusters in terms of sigmoid activation
function, which have varying decision boundaries
with respect to the location in the biofilm ecosystem
as well as time. This proves the possibility of extract-
ing sigmoid activation function solution space that is
driven by the nutrient flow of the environment in com-
bination with cell-cell communication. The varying
shapes of the sigmoid activation function that is
spatially and temporarily placed in the biofilm can
lead us to a parallel computing process using a con-
tained bacterial population. Further, we explore the
reliability of GRNN computing through MI analysis,
which reveals that cell-cell communication and nutri-
ents flow heavily influence the input-to-output
computing reliability. This elucidates that higher
nutrient accessibility positively reflects on cell-cell
communication leading to more reliable computing,
whereas limited communication between cells in-
creases higher uncertainty of information flows be-
tween gene expressions within the network. The
findings from this study contribute to new viewpoints
on bacterial decision making and also lay the ground-
work for AI-based bio-computing using bacteria.
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ABSTRACT
In our earlier work, we introduced the concept of Gene Regulatory
Neural Network (GRNN), which utilizes natural neural network-
like structures inherent in biological cells to perform computing
tasks using chemical inputs. We define this form of chemical-based
neural network as Wet TinyML. The GRNN structures are based
on the gene regulatory network and have weights associated with
each link based on the estimated interactions between the genes.
The GRNNs can be used for conventional computing by employing
an application-based search process similar to the Network Archi-
tecture Search. This study advances this concept by incorporating
cell plasticity, to further exploit natural cell’s adaptability, in order
to diversify the GRNN search that can match larger spectrum as
well as dynamic computing tasks. As an example application, we
show that through the directed cell plasticity, we can extract the
mathematical regression evolution enabling it to match to dynamic
system applications. We also conduct energy analysis by comparing
the chemical energy of the GRNN to its silicon counterpart, where
this analysis includes both artificial neural network algorithms
executed on von Neumann architecture as well as neuromorphic
processors. The concept of Wet TinyML can pave the way for the
new emergence of chemical-based, energy-efficient and miniature
Biological AI.
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1 INTRODUCTION
TinyML aims to execute machine learning algorithms with mini-
mum size to conserve energy consumption and deployment into
devices with limited computational capacity [25]. Achievements in
TinyML include implementation of code sizes down to 1 KB [11] and
energy consumption of the algorithm as low as 25 mW [1], enabling
deployment in miniature devices such as in-body implantables[4].
However, embedding TinyML codes in environments that cannot
accomodate silicon-based devices poses a challenge, necessitating a
new design paradigm that adheres to TinyML’s goals of low-energy
consumption and compact coding. This paper tackles this issue by
shifting the focus from silicon technologies to exploring natural
processes that mimics Artificial Neural Network (ANN) functions
in biological cells, where we can use this to perform conventional
computing tasks.

Our prior research delved into the computational aspect of bio-
logical cells, demonstrating that Gene Regulatory Networks (GRNs)
serve as fundamental computational entities within cells, aiding in
decision-making processes in response to environmental cues [19].
This entails the reception of extracellular molecules, their process-
ing via GRNs, and the subsequent production of output molecules
such as proteins. Nonetheless, our examination was confined to
the static behaviour of cells, which does not reflect their natural
adaptability.

However, further investigation on natural cell adaptability along
with their learning capabilities, have prompted the question: "how
can non-neuronal organisms that display traits of intelligence through
plasticity be used to develop non-silicon-based neural networks?". In
turn, this study extends our previous work towards a new concept
ofWet TinyML that is constructed from the gene regulation process
and explore the impact of cell plasticity on GRN based computing.
We refer to this component of Wet TinyML as Gene Regulatory
Neural Networks (GRNNs), where we transform a GRNwith estab-
lished weights based on the relative gene expression. In the GRNN,
genes can receive molecules known as Transcription Factors (TF)
frommultiple other neighboring genes [9], akin to how perceptrons
receive external inputs. The influence of one gene on another acts
as the ’weight’ in this analogy. The cumulative impact of molecular
signals from neighboring genes and their intensities collectively
regulate the expression of a target gene, analogous to the weighted
summation in ANN processing. Furthermore, a gene is expressed
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Figure 1: Wet TinyML based on GRNNs extracted and
searched in a bacterium to perform computing. Input
chemicals trigger selective activation of relevant GRNN-
subnetworks, rendering the GRNN a composite of many sub-
networks. Gene products, diffusing into the cytoplasm form-
ing cellular memory system that contributes to cell plasticity.

only if the cumulative influence of the transcription factors exceeds
a certain threshold [20], mirroring the role of activation functions
in ANNs. In a number of ways, the GRNN can be associated to a
chemical-hardware version of a neuromorphic computing system.

Research indicates that gene expression is selectively influenced
by input chemicals, suggesting that the GRNN can be viewed as a
large collection of pre-trained GRNN sub-networks and each is trig-
gered depending on its chemical input such as nutrient molecules
(Fig. 1). Each GRNN subnetwork comprises an input layer, inter-
mediate nodes that are akin to the hidden layer, and an output
layer. The products of the transcription and translation processes
resulting from natural computing are diffused into the cytoplasm
as depicted in Fig. 1 and interact with other biological components
such as ribosomes [17]. Further, as Fig. 2 elucidates, the accumu-
lated molecules in the cytoplasm can act as a memory module that
induces feedforward and feedback signals in optimizing GRNN
subnetwork switching and adjusting weights over time.

The GRNN, as a pre-trained network, allows bypassing the con-
ventional ANN training phase by directly selecting an appropriate
GRNN sub-network for specific tasks[18], similar to the way Net-
work Architecture Search (NAS)[2] using supervised data. Subse-
quently, this research examines expanding this GRNN sub-network
search space by accounting cellular plasticity and assesses energy
consumption compared to existing neuromorphic systems. Finally,
the study utilizes GRNN-subnetworks to derive various mathemati-
cal regression models.

This paper is organized as follows: Section 2 introduces ’Wet
tinyML’, explaining the inherent computing power of natural bio-
logical cells driven by GRNNs. Section 3 compares GRNN’s energy
efficiency with traditional von Neumann and neuromorphic sys-
tems, focusing on algorithmic and structural complexities, and
discusses how natural cell plasticity can enhance computing di-
versity. The applications of GRNN are detailed in Section 4, and
Section 5 concludes the study.

2 BACKGROUND OF GRNN AND CELL
PLASTICITY

This section introduces the elements of GRNN for Wet TinyML,
building upon our earlier research [18, 19].

Transcription
Translation

PPI

X

X X

Input dependent

cell
 plast

icit
y

Temporalcell plasticityCytoplasm (Memory)

Figure 2: In GRNN framework, gene-perceptron operate sim-
ilarly to ANN perceptrons, processing inputs with weights
influenced by multi-omic layer interactions (*), and time(t).
Bacterial cells exhibit input-dependent plasticity by unique
gene expression pathways varying with different inputs. Ad-
ditionally, cells demonstrate temporal plasticity by altering
GRNN subnetwork interaction weights over time.

2.1 Gene-perceptrons and Weights
As discussed in Section 1, several characteristics of genes in their
complex regulatory process exhibit similarity to an artificial neu-
ron. In ANNs, a perceptron processes multiple inputs by applying
weights and summing them, followed by an activation function.
This process finds parallels to genetic circuit operations, where a
gene receives TF molecules that leads to a combinatorial regulation
of a gene’s expression.

In ANNs, the output from the weighted summation is modulated
by activation functions, such as sigmoid, tanh, or Rectified Linear
Unit (ReLU ), which introduces non-linearity to the computing. This
concept is mirrored in gene regulation, where a gene can be in an
‘on’ or ‘off’ state, depending on the regulatory impact of the TFs.
The combined influence of TFs acts like the weighted summation,
translating into binary gene expression states (‘on’ or ‘off’), very
similar to a sigmoid function’s output.

However, when considering the time dynamics of gene expres-
sions, we showed in our previous work [18] the ReLU activation
function is more compatible than the sigmoid function, as it accom-
modates the linear relationship between the TF influence and gene
expressions over time. Further observation reveals that prokaryotic
genes exhibit ‘ground states’, where RNA polymerase can bind to
promoters in the absence of activators or repressors, suggesting an
addition of a bias term to the weighted summation of each gene.
Given these gene properties that behave as an ANN perceptron, we
introduced the term gene-perceptron in the GRNN [18, 19].

2.2 GRN-to-GRNN Conversion
The GRNN is considered a pre-trained graph-strucured neural net-
work that is inferred by assigning weights to gene-gene interactions
of a GRN, based on relative gene expression levels, which we detail
in this section. The weight extraction for each gene-perceptron
is conducted iteratively using network modules comprising the
target gene-perceptron and its associated source gene perceptrons,
structurally akin to single-layer perceptrons.

The weight extraction for each gene-perceptron module involves
a process similar to training a single-layer perceptron and involves
the use of transcriptomic data as shown in Fig. 3a. In this figure,
𝑦
(𝑡 )
𝑖 is the expression level of gene 𝑔𝑖 at timestep 𝑡 ,𝑤 (𝑡,𝑇+1)

𝑖,𝑝 is the
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Figure 3: Illustration of the weight extraction process where
a) elucidates the utilization of transcriptomic data consider-
ing gene 𝑔𝑃 as a target single-layer gene-preceptron and b)
depicts the training process of minimizing the MSE between
predicted and experiment expression levels.

weight of the interaction between gene 𝑔𝑖 and 𝑔𝑝 in the time in-
terval 𝑡 to 𝑇 + 1, and 𝑏𝑃 is the bias (the ground state) of the gene
𝑔𝑝 . Initially, random weights are introduced with the experimental
transcription data at the levels of source gene-perceptrons. The
target gene-perceptron’s predicted transcription level is then calcu-
lated by passing the weighted summation of experimental source
gene-percepton levels and weights through a ReLU function. The
weights are then refined based on adjusting the differences between
the predicted and experimental transcription levels of the target
gene-perceptron by using learning rate as 0.001 with 105 epochs.
This iterative adjustment continues across all experimental tran-
scriptomic data until the error is minimized as shown in Fig. 3b.
Repeating this procedure estimates weights for all gene-perceptron
modules, which are then applied to the GRN, transforming into a
GRNN. More details on this weight extraction can be found in [18].

2.3 Input-dependent and Temporal Plasticity
Bacteria are renowned for their remarkable adaptability in various
environments, a trait crucial for their survival [24]. In observing
bacterial cells as natural computational entities, we analyze this cel-
lular plasticity through the lens of ANNs, identifying two primary
features: input-dependent plasticity and temporal plasticity.

Input-dependent plasticity is driven by the selective responsive-
ness of genes to specific input chemicals [24]. Genes at the periphery
of the GRNN, akin to the input layer in an ANN, are particularly
sensitive to certain chemical effectors. In nature, this sensitivity
leads to the expression of a specific subset of genes in response
to the abundance of these chemical molecules. The GRNN, thus,
selectively channels information flow, activating only the relevant
expression pathways, while keeping other genes largely idle. This
results in the utilization of specific GRNN subnetworks based on
the chemical input, as illustrated in Fig. 2. This in turn enhances
energy efficiency during the gene regulatory process of the cells.

On the other hand, temporal plasticity involves alterations in
the influence of one gene on another over time [16] to achieve
the optimal behavior for an given environment, which resembles
weight plasticity within the same input conditions.

In previous works [18, 19], we focused on a static GRNN to search
application-specific GRNN subnetworks. However, this study fo-
cuses on harnessing these natural plasticities to expand the diversity

of searching for the optimal applications specifc GRNN subnetwork.

3 ENERGY AND COMPUTING DYNAMICS OF
GRNN

3.1 Energy vs Computing Complexity
The scale and energy efficiency of ANNs are critical factors in the
miniaturization of algorithms and neuromorphic hardware designs.
Biological systems, such as cells and neurons, which operate at
the micrometer scale, demonstrate exceptional energy efficiency in
natural computing processes. For example, the human brain, despite
its immense computational capacity, has a remarkably low energy
consumption of only 20W [7]. Similarly, the expression of a single
gene-perceptron, a complex task in itself, consumes a mere 0.01
fW [12]. This observation leads to the consideration of the energy
profile of GRNNs as a potential full-scale computing platform.

3.1.1 GRNN Structural and Algorithmic Complexity. Taking into
account that the GRNN is a randomly structured network with
power-law degree distributions, we will analyze the estimated al-
gorithmic and structural complexities. The algorithmic complexity
reflects the information diffusion, failure propagation, and resilience
through the network [13]. It is defined by the Kolmogorov com-
plexity, which is approximated using the Coding Theorem Method
[22]. Understanding the algorithmic complexity, which reflects on
the complex nature of the network structure, can provide avenues
for interpretability of the model [5]. The structural complexity, on
the other hand, is determined by the betweenness centrality and
relative degree of gene-perceptrons in the network [8]. Although
our previous work analyzed the structural and algorithmic com-
plexity in GRNNs [18], in this paper we use these two measures
to determine the relationship to the energy consumption of the
GRNN. Further information regarding the use of the structural and
algorithmic complexiy in GRNNs can be found in [18].

3.1.2 GRNN Energy Analysis. We will now determine how the
algorithm and structural complexities of the GRNN and comparison
to ANN play a role on the energy consumption. The total energy
consumption for the 𝑖𝑡ℎ GRNN, denoted as 𝑃𝑡𝑜𝑡𝑎𝑙 (𝑖), is computed
by summing the energy used in the transcription and translation
processes, given by 𝑃𝑒𝑥 (𝑖) + 𝑃𝑡𝑟𝑎 (𝑖). Here, 𝑃𝑒𝑥 (𝑖) represents the
peak power for gene expression in the 𝑖𝑡ℎ GRNN, and 𝑃𝑡𝑟𝑎 (𝑖) is
the power required for its translation process. The transcription
power is calculated as 𝑃𝑒𝑥 (𝑖) = |𝐺𝑅𝑁𝑁𝑖 | ·𝑝𝑒𝑥 , where 𝑝𝑒𝑥 is the per
gene-perceptron transcription power and |𝐺𝑅𝑁𝑁𝑖 | is the number of
gene-perceptrons in the 𝑖𝑡ℎ GRNN. As mentioned earlier, 𝑝𝑒𝑥 = 0.01
fW for a medium-sized prokaryotic cell such as Escherichia coli [12].
However, studies show that approximately 75% of a cell’s energy
dissipation is attributed to translation processes, while a mere 2% is
utilized for transcription [10]. Subsequently, using this 2:75 power
ratio between 𝑃𝑡𝑟𝑎 and 𝑃𝑒𝑥 , the total power 𝑃𝑡𝑜𝑡𝑎𝑙 (𝑖) is calculated.

In parallel, the energy consumption of silicon-based computing
units is calculated as 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑁 · 𝑝 , where 𝑁 is the number of neu-
rons in the system and 𝑝 is the unit power. According to literature,
the unit power consumption of a neuron for different processors, 𝑝 ,
are listed as follows: Spikey at 1.49x10−06, R2600X at 9.62x10−04,
Intel mobile at 3.37x10−04, and RTX2070 at 3.18x10−05 [15].
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Figure 4: Power comparison between GRNN vs von Neumann
and neuromorphic computing systems with respect to a)
algorithmic complexity and b) structural complexity.

We emphasize that the energy consumption across various com-
puting platform focuses solely on the energy used for computing,
excluding housekeeping energy requirements. We first compare
the energy consumption of GRNN with four other processors men-
tioned above with respect to the algorithmic complexity of 200
different model sizes. This evaluation involved varying the number
of nodes within each model across four Von Neumann and neu-
romorphic platforms. The results of this analysis are presented in
Fig. 4. Notably, the GRNN’s maximum power consumption does
not surpass 0.05 pW, even at the highest level of algorithmic com-
plexity, as shown in Fig. 4a. In contrast, the other platforms register
energy usage ranging from 109 pW to 1012 pW for models with an
equivalent number of neurons. The less sparse connectivity and
low diameter in the GRNN typically contribute towards minimized
algorithmic complexity. While the heterogeneity in the weights can
increase the algorithmic complexity, this increase still results in
low energy consumption due to the chemical energy used by the
gene-perceptrons [23].

Furthermore, a similar comparison is conducted to examine en-
ergy dissipation with respect to the structural complexity, depicted
in Fig. 4b. The results uncover patterns of energy consumption
similar to those observed in the energy dissipation with respect
to the algorithmic complexity. It is important to highlight that the
small-world network structure of the GRNN exhibits notably lower
structural complexity compared to others. Small-world networks,
known for their high clustering and short path lengths, have a more
orderly structure, which lowers their structural entropy [6, 14] and
this can be observed in Fig. 4b.

The additional housekeeping energy of GRNN computing de-
pends on a range of factors including administration of chemical
inputs and extraction method of outputs, which will be explored in
our future research.
3.2 Non-Plasticity Search Space of GRNNs
This section first assesses the sparsity of GRNN by analyzing gene
expression levels during two key growth stages: exponential growth
and the stationary phase, using data sourced from [21]. As illus-
trated in Fig. 5a, on average, a cell utilizes only about 10% of its
genes at the considered two growth phases of bacteria, which are
the idling and rapid growing phases, respectively. This observa-
tion indicates that the cell possesses a broader range of options
for transitioning between GRNN subnetworks to adapt to diverse
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Figure 5: Illustrations of a) the sparsity of gene expression
and b) number of output node variations given the number
of input nodes and the depth of the GRNN subnetwork.

environmental conditions. The inherent sparsity in the GRNNs fur-
ther contributes significantly to massively parallelized computing.
This explains how bacteria in nature process signals in a parallel
manner, regulating multiple metabolic pathways simultaneously.
Such natural parallels further underscore the capacity of GRNNs
for parallel computing.

We investigate the diversity of GRNN subnetworks by focus-
ing on the size of input, intermediate hidden layer, and output
gene-perceptrons. By selecting 100 random input gene-perceptrons
and tracking their connections through the network, we analyzed
the structure up to 10 layer depths. This process is repeated 100
times with varying input sets aiming to average the count of gene-
perceptrons per layer. The experiment is conducted with input
sets increasing by 100, up to 500 gene-perceptrons, to ensure a
comprehensive assessment.

It is evident from Fig. 5b that with a relatively small sized network
with the input layer comprising 100 nodes, which is capable of
processing inputs for 100 features, the maximum output node count
reaches approximately 500 when the network depth is close to 6.
This GRNN subnetwork diversity allows the selection of a certain
number of output nodes, up to 500, tailored for a given application.
For instance, in an application requiring 10 output nodes, the GRNN
offers approximately 8.9×1026 combinations of output node choices.
It is important to note that this abundance of options results from
the initial choice of 100 nodes in the input layer. Considering only
1000 suitable candidates for the input layer, the permutations for
100 input nodes increases to 5.9 × 10297. This astronomically large
number of combinations underscores the GRNN’s possibility of
facilitating the identification of a suitable GRNN subnetwork for
specific applications exhibiting generalizability.

Furthermore, Fig. 5b reveals that increasing the number of nodes
in the input layer to 500 results in the expansion of the output
layer to approximately 2,500 nodes. This provides 9.3×1033 options
for applications requiring 10 outputs, when the network depth is
around six. This demonstrates the significant impact of input layer
size on the diversity and adaptability for the network’s output.

3.3 Search Space Expansion with Cell Plasticity
In this section, we examine input-dependent and temporal cell
plasticity using the weight extraction algorithm from our previous
study [19], and data sourced from the GEO database [3] to evaluate
their impact on gene expression within the GRNN.
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Figure 6: Environmental Conditions and Cellular Plasticity:
(a) Weight changes under conditions of low temperature, sta-
tionary phase, and high osmolarity, with 𝑑 indicating the
distance from the no weight change line. (b) Plasticity likeli-
hood related to weight adjustments across various inputs.

3.3.1 Input-dependent Cell Plasticity. We study input-dependent
cell plasticity using transcriptomic time series data from three envi-
ronmental settings: low temperature, high osmolarity, and station-
ary phase. Weight changes across inputs are calculated by determin-
ing the geometric shortest distance between extracted weights for
each condition and a line connecting (0,0,0) to (1,1,1). This line indi-
cates no changes in the gene expression for the three conditions. Fig.
6a illustrates that while some weights align with the no change line,
the majority exhibit varying degrees of change. Fig. 6b depicts the
probability of weight plasticity across all three conditions, showing
a left-skewed Beta density curve indicating that most weights have
probabilities less than 0.5 for undergoing changes. Furthermore,
our analysis in Table 1 explores how individual condition changes
influence weight alterations across all conditions, revealing that
approximately 2 − 5% of the total weights have changed between
distinct input conditions. This pattern emerges from selective gene
activation by environmental factors, rather than affecting all genes
universally. This analysis showcases the GRNN’s capacity to adapt
weights selectively in response to new input conditions, without
affecting all weights uniformly.
3.3.2 Temporal Cell Plasticity. In this section, we analyze the tem-
poral weights change within the GRNN. To analyze this, we utilize
the transcriptomic data (GSE65244), which encompasses gene ex-
pression levels recorded at 10-minute intervals within the range
of 0 to 420 minutes. We segment this dataset with respect to time
into equal-sized partitions, each containing 30 expression levels
collected at 30 different time points. The weights extracted for
each of these time periods are represented as𝑊0,𝑊10, ...,𝑊130,
as depicted in Fig. 7(a). We compute the correlation coefficient
between the weights extracted for the initial time period (0-290
minutes), serving as the reference (𝑊0), and the weights from each
subsequent time period. Fig. 7(b) illustrates the deviation of this
computed correlation from the ideal positive correlation of 1. The
deviation gradually rises to 0.1 between the time period 10-300 and
60-350 minutes at a gradual pace, before increasing rapidly. This
suggests that applying identical input conditions for an extended
duration prompts the GRNN to update its weights, contributing
to the cell’s survival as part of its plasticity process. As a result of
this deviation from the positive correlation, we attain GRNNs with
different weights over time, thereby expanding the search space
for the GRNN sub-networks to suit an application. Since weight
changes occur primarily in specific parts of the global GRNN, we

Table 1: Frequency analysis of altered weights across differ-
ent experimental conditions.

Exp. replicate # of Weights Showing Higher
Probability of Plasticity Ratio (%)

All Conditions 466 8.08
Low temperature 372 5.06
High Osmolarity 130 2.42
Stationary phase 241 4.63
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Figure 7: Temporal plasticity a) data partitions, b) deviation
from positive correlation and c) correlation of gene expres-
sion between 0-290 and 130-420 minutes time intervals.

can extract sub-networks featuring both dynamic and static weights.
Tailoring input conditions over specific time periods allows us to
derive the desired set of weights suited for the application.
3.3.3 Correlation Analysis of Gene Expression Temporal Dynamics
in the GRNN. The analysis of temporal gene expression dynamics
aims to assess the influence of the temporal weight changes, pre-
viously addressed, on the gene expression within the GRNN. We
compute correlation coefficients for gene expression levels between
the time intervals of 0-290 and 130-420 minutes for each gene. Fig.
7c presents this results and shows that roughly 80% of genes within
the GRNN display negative correlation, with correlation coefficients
predominantly distributed between 0 and -1, while around 20% of
the total genes exhibit positive correlation. This correlates with the
results in Fig. 7c, where majority of weights undergo significant
changes over time and this results in variations in the expression
of most genes within the GRNN.

4 GRNN APPLICATION FOR REGRESSION
Unlike traditional ANNs, bacterial GRNNs was introduced with a
specialized algorithm to search relevant subnetwork omitting the
conventional ANN training, identifying input/output genes and the
optimal time window based on supervised application data. This
section elucidate a use case of regression to show the contribution of
cell plasticity in expanding the search space theoretically. Although,
the weight extraction method discussed in Section 2.2 and [18] can
be used for any temporal transcriptomic and GRN data, this study
uses E. coli as the model species.

This analysis utilizes seven distinct time-based weight config-
urations (W𝑖 , where 𝑖 = {0, 10, 20, . . . , 130}) as shown in Fig. 7a
to assess the diversity in regression functions. To sharpen our fo-
cus, we select a single gene-perceptron as the input and focus only
on quadratic regressions. Gene b3067 is chosen as the input layer
gene-perceptron for its impact on 1702 gene-perceptrons to get a
larger solution space. This gene-perceptron is stimulated with five
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Figure 8: The regression analysis, using b3067 as the sole
input gene-perceptron, includes: a) analysis of quadratic, lin-
ear coefficients, and intercepts across weight configurations
outlining the solution space; b) the regression coefficients of
b1013; and c) the associated regression curves.
input concentrations (0.1 to 0.5). Based on ten iterations per setup
to capture the stochastic behaviour, the output gene-perceptrons’
expression levels are averaged. Expression levels are recorded at
each timestep in different weight setups𝑊𝑖 and using curve fit-
ting for quadratic functions, quadratic and linear coefficients, and
intercepts of gene-perceptrons are determined.

Fig. 8 illustrates the regression diversity of the GRNN with re-
spect to the temporal cell plasticity. For each weight configuration
𝑤𝑖 , Fig. 8a displays the variations in quadratic and linear coeffi-
cients, as well as intercepts. Each box plot in the figure represents
the coefficients for 2,875 gene-perceptrons. Notably, there is a sub-
stantial variation in quadratic coefficients across all weight configu-
rations, resulting in a range of regressions with varying curvatures.
In turn, each box plot emphasizes the diversity in the solution
space for a given application. Moreover, the distribution of these
quadratic coefficients highlights the potential for deriving linear
regressions in cases where the quadratic coefficient equals zero.
However, the linear coefficients of curves linked to the chosen input
gene-perceptrons (b3067 ) tend to exhibit predominantly negative
values. Conversely, the intercepts are confined to a narrower range,
in particular between 0 and 2.

Fig.8a and Fig.8b illustrate five regression curves and their plots
for a single output gene-perceptron, b1013, at various timesteps.
Fig.8a presents five quadratic coefficients for the gene-perceptron
b1013 under different weight configurations: 0 for𝑊10, -0.13 for
𝑊40, 1.10 for𝑊70, 1.17 for𝑊100, and 1.17 for𝑊130. Notably, un-
der the𝑊10 configuration, gene-perceptron b1013 exhibits a linear
function, while the subsequent configurations result in regression
lines with increasing curvatures. These results show how temporal
plasticity can expand the solution space. Our previous study [18],
presented regressions for output gene-perceptrons based on a static
weight configuration, allowing only a single regression function
per output gene-perceptron. However, with the introduction of
temporal plasticity weights, numerous regression curves can be
derived for output gene-perceptrons.

It is important to note that the evolution of the regression curve
influenced by weight plasticity in GRNN computing is gradual. This
means that systems requiring static weights can only operate in a
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Figure 9: Illustrations of a) estimated per-minute gene ex-
pression differences, and b) PCA clustering of experimental
replicates, showing that similar environmental setups have
close expression patterns, reinforcing reliable computing.

certain period to guarantee stable computing results. Additionally,
an analysis of read count change showed that cells can achieve a
maximum value of -2,649.76 as shown in Fig. 9a, ensuring signifi-
cantly fast computing for a biological entity. We further conduct
a principal component analysis of expression levels from tempo-
ral experiment replicates as shown in Fig. 9b, where each cluster
of replicates, consistent across different conditions, confirms this
reliability. Additionally, the concept of temporal plasticity offers a
promising approach for addressing dynamic systems, a focus for
our future research.
5 CONCLUSION
Consistent with the vision of TinyML to establish miniature ma-
chine learning algorithms that can fit into low-powered devices,
we extend our previously introduced GRNN concept towards a new
paradigm with chemical-based ML algorithms found in biological
cells. This new paradigm called Wet TinyML will transform a gene
regulatory process into a GRNN that can compute similarly to a
conventional ANN. Using the concept of bacterial cell plasticity, we
show that the weights of the GRNN can be modified, opening new
opportunities to map to diverse applications. Simultaneously, we
estimate the energy consumption of GRNN subnetworks and find
that they use less energy compared to traditional Von Neumann
and Neuromorphic platforms. Our future research will evaluate
the impact of noise in the GRN, cell reusability based on plasticity,
computing speed analyzed from wet-lab experiments. The wet lab
experiments will explore input genes that can easily be stimulated
and engineering reporter genes in the output layer to determine the
correct GRNN computing in the subnetwork. The concept of Wet
TinyML can expand the paradigm of miniature machine learning
algorithms based on using its natural chemical reactions, which will
take Biocomputing to a new level. This can result in new healthcare
implantables that embed engineered cells or Bio-hybrid computing
systems, where computation is performed in synergy between the
biological cells and silicon technologies.
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Analyzing Wet-Neuromorphic Computing Using
Bacterial Gene Regulatory Neural Networks
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Abstract—The vision of biocomputing is to develop computing
paradigms using biological systems, ranging from micron-level
components to collections of cells, such as organoids. This
paradigm shift exploits hidden natural computing properties,
developing miniaturized wet computing devices deployable in
harsh environments, and exploring designing novel energy-
efficient systems. Parallelly, we witness the emergence of AI
hardware including neuromorphic processors aiming to improve
computational capacity. This study brings together the concept
of bio-computing and neuromorphic systems by focusing on the
Bacterial gene regulatory networks and their transformation into
Gene Regulatory Neural Networks (GRNNs) that can be used
for biocomputing. We explore the intrinsic properties of gene
regulations, map this to a gene-perceptron function, and propose
an application-specific sub-GRNN search algorithm that maps
the network structure to match a problem. Focusing on the
model organism Escherichia coli (E. coli), the base-GRNN is
initially extracted and validated for accuracy. Subsequently, a
comprehensive feasibility analysis of the derived GRNN confirms
its computational prowess in classification and regression tasks.
Furthermore, we discuss the possibility of performing a well-
known digit classification task as a use case. Our analysis and
simulation experiments show promising results in offloading com-
putation to GRNN in bacterial cells, advancing wet-neuromorphic
computing using natural cells.

Index Terms—Biocomputing, Neuromorphic Computing, Bac-
teria, Gene Regulatory Network.

I. INTRODUCTION

Bacterial computing is an emerging field within the broader
discipline of biocomputing [1]. The inherent computing prop-
erties of bacteria enable them in particular to sense their
environment, make decisions, and adapt to changing condi-
tions [2], with remarkable efficiency [3]. These characteristics,
along with bio-compatibility, parallelism, self-sustainability
[1], communication capabilities [4], [5], as well as storage of
data [6] tend to provide bacterial computing an edge over con-
ventional silicon-based computing architectures. Furthermore,
the concept of neuromorphic computing is gaining traction,
inspired from the workings of the neurons, showing promise
compared to Von Neuman computing architectures [7]. By
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integrating natural biocomputing into neuromorphic systems,
researchers are now exploring wet-neuromorphic computing,
where living cells are used in tandem with silicon technology.
This has resulted in new paradigms such as organoid intelli-
gence [8], one of which is the brain organoid. The ”Dishbrain”
is one example of many approaches to such systems, which is
a brain organoid that harnesses the inherent adaptive compu-
tation of brain neurons within a structured environment that
is capable of learning and performing complex tasks such as
playing a game of Pong [9].

Past research has extensively analyzed the functional com-
ponents of natural bacterial computing, revealing a complex
interplay of molecular processes that results in their decision-
making and adaptive behaviors [10]. Signal transduction mech-
anisms facilitate adept extracellular information reception,
followed by the complex orchestration of transcription and
translation processes, resulting in a sophisticated computa-
tional architecture within bacterial cells using their Gene
Regulatory Networks (GRNs). The synergy between these
processes emphasizes the profound complexity of bacterial
computing, underscoring its potential as a model for advanced
bio-inspired computing paradigms within the confines of a
single bacterial cell.

Synthetic biology has enabled researchers to use conven-
tional computing theories that is engineered into cells by
altering and modifying biological components precisely [11],
[12]. While the feasibility of using biological substrates for
computing has been established since Adleman’s seminal work
in 1994 [13], a number of proposals has been made in using
bacterial cells for comptuing. One example is Levskaya et al.,
who proposed bacterial cell as a programmable computational
device [14]. Expanding on this concept, Baumgardner et al.
successfully programmed Escherichia coli (E. coli) with a
genetic circuit using DNA segments [15]. This breakthrough
has resulted in bacteria solving classical problem in artificial
intelligence —the Hamiltonian problem. Theoretical mod-
els, such as the application of bacteria to solve the ”burnt
pancake problem” [16] have also reinforced the notion that
bacteria possess computing capabilities that extend beyond
traditional electronic systems. Furthermore, it is possible to
witness biocomputing in multiple dimensions such as at the
gene, metabolic and population levels. Exemplifying gene-
level computation, researchers created encoding devices at
the genetic level by altering the parameters of genes [7].
In addition, the computing capabilities in metabolic circuits
are proved in whole-cell and cell-free environments in [17]
that signify the metabolic-layer biocomputing, while [18] uses
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Fig. 1. Illustration of the discovery and development of Gene Regulatory
Neural Network (GRNNs). Step 1 is the conversion of gene regulatory network
to the GRNN by extracting weights and biases of the gene-gene interaction.
Step 2 is the search process of the biocomputing application-specific sub-
GRNN and Step 3 is the optimizing stage of the sub-GRNN.

bacteria consortia for pattern recognition giving an example
for population-level biocomputing. All these approaches are
based on engineering the cells. However, the challenges as-
sociated with engineered bacteria limit their practical use for
computing. To this day, it is burdensome to design large-scale
genetic circuits without stessing the cell, negatively affecting
the circuit dynamics and overall reliability [19]. Moreover,
the cross-talks between signaling expression pathways also
narrows down the possibility of complex genetic circuit design
[20]. This is also impacted by the gene regulatory mechanism
that competes for expression resources, which further creates
unintended cross-talks [21]. Ensuring the long-term stability
of engineered cells is also challenging under the altered gene
expression pathways as the modifications may affect cell
viability and growth rates [19]. This motivates us to explore the
possibility of using the inherent computing functions within
the cells through external chemical control, without modifying
the cells’ internal genetic system.

Acknowledging the complex computing architecture similar
to a wet-neuromorphic system inherent in bacterial cells (that
is further explored in the next section), this study considers
them as natural computing powerhouses where the GRN serves
as the central computing mechanism as shown in Fig. 1.
Owing to the remarkable computing diversity embedded in
the GRN, we claim that it is possible to search and extract
computing layer suitable for various application problems. In
order to test this, we first use an improved version of a pre-
viously introduced framework for quantifying the gene-gene
interactions [22] that returns a weighted directional network
with nodes as genes and edges as expression interaction with
the capability of processing the incoming regulatory factors.
This network is analogous to a random structured Neural Net-
work (NN), hence, we termed this Gene Regulatory Neural
Network (GRNN) [22]. We then propose an algorithm to
extract application-specific sub-networks (sub-GRNNs) from

the GRNN as depicted in the second and third steps of Fig. 1 to
do application specific computing. The computing application
that we will focus in this paper is performing mathematical
regression as well as classification tasks using E. coli GRNNs.

The contributions of this article are as follows:

• Modeling the E. coli GRNN for in-silico experiments:
Our previous studies proved the existence of GRNN [22]
using experimental gene expression data. We extend this
model in this study, by focusing on the GRNN of E. coli
and proves its accuracy with the intention of exploring
their natural computing capabilities to solve computer
science problems.

• Introducing application-specific sub-GRNN search al-
gorithm: As we discussed earlier, GRNNs are considered
pre-trained NNs leading to significant differences in the
application pipelines. Therefore, we introduce a search
algorithm tailored to GRNNs that includes extractions
of sub-GRNNs by mapping to an application problem.
In this approach, we only use a random permutation-
based approach as our main goal is to check the GRNN
computing feasibility.

• Feasibility analysis on performing computing on re-
gression and classifications: We evaluate the feasibility
of performing conventional computing tasks such as
regression (including linear, multiple variable linear, 2nd

and 3rd degree polynomial regressions) and classification
(including binary and multi-class) using the extracted
E. Coli GRNN. Further, we solve a digit classification
problem and evaluate its accuracy as a case study.

The rest of the manuscript is structured as follows. Section II
explores the background of GRN computing properties using
the literature, subsequently, the existence of GRNN. The next
section creates the E. coli GRNN using experimental transcrip-
tomic data and proves its accuracy. Further, the same section
conducts a structural analysis and introduces an algorithm for
application-specific sub-GRNN. Section IV and V conduct
feasibility analyses on performing regression and classification
problems including a digit classification use-case problem.
This is followed by a discussion and conclusions in Section
VI.

II. BACKGROUND

We identified that the natural computing of a bacterial cell is
manifested within the domain of gene regulation. The bacterial
cell’s genome serves as a repository of encoded information
and its dynamic regulation is through the transcription, trans-
lation, and post-translational modifications, which constitutes
a complex computing network.

A. Gene as a Computing Unit

The expression process of a gene can be considered in-
tra/extra cellular information computing that results in func-
tional gene products, such as proteins or non-coding RNAs
[23]. Prokaryotic genes are often organized into operons,
clusters of genes transcribed as a single mRNA molecule with
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Fig. 2. Gene expression Pearson correlation coefficients between the source
and target genes with only one inward and no outward edges. These results
indicate the expression levels of the source-target gene pairs have linear
relationships.

a shared promoter. Transcription is regulated by specific DNA-
binding proteins near the promoter, influencing RNA poly-
merase activity. The transcribed mRNA, complementary to the
DNA template, undergoes translation in the ribosomes, which
is composed of rRNA and proteins. This tightly regulated and
coordinated process is vital for the cell to execute specific
functions and respond to environmental cues.

Many characteristics of genes in this complex regulatory
process exhibit similarity to an artificial neuron. The inherent
computing capabilities of genes have been investigated in past
decades gradually paving the path toward using biological en-
tities for computing. Since the pioneering work of DNA com-
puting in 1994 [13], the field has been relentlessly advancing
as an alternative to conventional computing methods. Among
many diverse approaches, utilizing genes as perceptrons [24]
holds a special position due to the crucial role Artificial
Neural Networks (ANNs) play in today’s computing world.
An artificial neuron can accept multiple inputs, which are then
weighted and summed, before passing through an activation
function. Similarly, a gene can receive multiple Transcriptional
Factors (TFs) that lead to the combinatorial regulation of
the target gene [25]. Further, properties of the TFs including
the affinity of the TF-binding site and mechanisms such as
thermoregulators/enhancers/silencers [26], [27] and lifetime of
a DNA-TF complex [28] can determine the magnitude of the
source TFs’ impact on the target gene resulting in expression
level regulation.

In an ANN, the weighted summation of an artificial neuron
is then passed through an activation function such as sigmoid,
tanh, ReLU, etc., that introduces non-linearity to the comput-
ing. Similar behavior can also be witnessed in genes from
two perspectives. First, a gene is considered a switch that is
either in the ”on” state or ”off” state that is determined by the
regulatory influence of the TFs. Here, the combined influence
of the TFs as the weighted summation is converted into the
two-state output as the ”on” or ”off” state of the transcription
[29], exhibiting sigmoid-like gene expression dynamics.

However, in order to observe the gene expression behaviors
beyond the sigmoidal properties, this study conducted a simple
correlation analysis on the temporal expression dynamics
utilizing an E. coli dataset (accession number GSE65244)

from the GEO database [30]. Here, we used 827 target genes
with single inward and no outward edges to observe the
correlation clearly. Based on our analysis, 95.40% of the
considered target genes have a correlation coefficient greater
than 0.9, while 4.11% of genes have a coefficient less than
-0.9, demonstrating that there are strong linear relationships
between the expressions of the source and the target genes.
Further, only 0.49% of source-target gene pair expressions
have correlation coefficients within the range of -0.9 and +0.9.
This analysis reveals that most of the source and target genes
have linear relationships as shown in Fig. 2. This emphasizes
that the relationships between the source and target genes
can be converted to a single value (a.k.a weight) and the
suitability of the ReLU activation function over sigmoid to
represent a gene’s expression behavior in the time domain.
Nevertheless, there is a biophysical boundary for the maximum
gene expression rate, which emphasizes the requirement of
using Bounded Rectify Linear (BReLU) activation function.
This argument is proved in Section III-A using the accuracy
of the extracted GRNN, where the gene expression behavior
is considered to follow BReLU.

Moreover, a further investigation into the gene expression
properties explains that the prokaryotic genes have ”ground
states” as the RNA polymerase can access almost any pro-
moter without the presence of activators or repressors [31].
Considering this property, we improve our previous weight
extraction mode by accompanying each gene-perceptron with
a bias representing the ground state as shown in Fig. 3

B. Existence of GRNN

Interactions between genes driven by the functional pro-
teins produced by the transcription/translation process form a
complex network that is part of the GRN. This collectively
involves operons, modules, and motifs, that together achieves
coordinated and integrated gene expression [32]. An operon is
a set of co-regulated and expressed genes that share a common
promoter and produce a single mRNA molecule. A module is
a group of operons that are regulated by the same TF or signal.
A motif is a recurring pattern of interactions among regulators
and genes that has a specific function, such as feedback loops
and feedforward loops [33]. A GRN can process and trans-
mit information through these structures, forming a cascade
of signals that modulate the activity of downstream genes.
Transcription patterns along with the topologies of the GRNs
that drive the decision-making process of bacterial cells [34]
hint at the existence of complex computing properties.

With the aim of revealing these computing properties in-
herent in bacterial cells, we introduced a framework for
quantifying the dynamics of gene-gene interactions [22]. This
framework was designed by perceiving the GRN as a random
structured graph network where genes act as nodes and gene-
gene interaction as edges. Using the relative transcriptomic
data, we quantified the influence of a source gene on a
target gene. The GRN with weighted interactions can be
considered a gene regulation-based random structured NN,
which is when we transform it into a GRNN. This, further
reflects our perception of the genetic regulatory processes in

CHAPTER 9. JOURNAL: ANALYZING WET-NEUROMORPHIC
COMPUTING USING BACTERIAL GENE REGULATORY NEURAL
NETWORKS

146



4

... ......... ...
...
...

Ground state

...

Pred. Exp.

Fig. 3. Illustration of the gene-perceptron model of gene gp, where weighted
summation of source gene (g0, g1,...,gP ) expression levels at timestep t passes
through the activation function BReLU and produces an expression level at
timestep t + 1 corresponding to the input. This figure also elucidates the
weight extraction mechanism, where we use temporal transcriptomic records
to refine the weights between the predicted and expressed genes, as well as
the biases.

bacterial cells, acknowledging their complexity and suggesting
a parallel with the computational principles observed in ANNs.

III. BASE-GRNN CREATION AND APPLICATION-SPECIFIC
SUB-GRNN EXTRACTION

In this section, the improved version of the GRN to GRNN
conversion framework from [22] is first explained. Subse-
quently, we delve into the essential components of GRNNs,
encompassing network structures as well as their analog and
parallel computing capabilities. Furthermore, as highlighted
previously, the conventional NN learning stage has been sub-
stituted by the network architectural search in the context of
GRNN-based computing, which we will present in this section.

A. GRN-to-GRNN Conversion

The GRN represents a distinctive gene-gene interaction
network specific to each species. Publicly accessible GRN
databases covering various species or strains such as E. coli
can be found in [35]. Typically, these GRNs only contain
data on the existence and type of interactions between static
features such as genes, operons, TFs (including Sigma Factors
- SFs). The absence of quantitative properties including the
magnitude of the impact of one element on another hinders
the extraction of accurate natural computing capabilities of
biological cells. To overcome such obstacles, we previously
introduced a GRN-to-GRNN conversion method [22] to quan-
tify the influence of TFs on the regulation of a target gene.

The previously proposed GRN-to-GRNN conversion
method consists of multiple stages that include GRN
modeling as a graph network, dividing of the GRN to
gene-perceptron, pre-processing of the transcriptomic data,
and weight extraction [22]. Initially, the GRN is reconstructed
as a directed graph network in which genes are modeled
as nodes and their interactions as edges. This GRN is then
divided into sub-networks associated with each gene that has
at least one inward edge. These sub-networks are similar in
structure to the single-layer perceptron since they contain
a target gene (the gene with at least one edge) and a set
of source genes that regulate its expression. Subsequently,
these sub-networks are termed single-layer gene-perceptrons.

The transcriptomic data, on the other hand, consists of the
expression levels of both the source and target gene(s) in
each gene-perceptron, which can be leveraged to assess the
strengths of the interactions between the source and target
gene(s). There is evidence suggesting that gene-perceptron
expressions in the temporal domain exhibit BReLU properties,
as previously described in Section II.

Here, we employ a mechanism akin to the training process
of the single-layer perceptron to quantify the interactions
between source and target genes as shown in Fig. 3. As
explained earlier, prokaryotic genes tend to have a ground
state, which is identified as the bias of the gene-perceptron
model. Therefore, the current study improves the GRN-to-
GRNN conversion mechanism by embedding a bias for gene-
perceptrons with the intention of extracting the dynamics of
gene-gene interaction. The gene-perceptron of this study is
depicted in Fig. 3 and its functions represented as follows

ŷt+1
p = max

(
P∑

i=1

yt(i,p)w(i,p) + bp

)
, (1)

where ŷt+1
p is the computed output of the target gene gp at the

time step t, yt(i,p) is the output of the gene gi at time step t,
w(i,p) is the weight of the interaction between gene gi and the
target gene, and bp is the bias or the ground stage. We also
consider the impact of source gene expression levels of time-
step t on the expression level of the target gene at the time-
step t+1. As the initial step, the weights of gene-perceptrons
are initialized with random weights and are subsequently
adjusted with an iterative process of minimizing the Mean
Squared Error (MSE) between the predicted (from the gene-
perceptron) ŷt+1

p and measured (from the transcriptomic data)
yt+1
p expression, which is represented as follows

MSE(gp) =
1

T

T∑

t=0

(ytp − ŷtp)
2 (2)

where T is the last time step. This process is iterated for all the
gene-perceptrons to extract the weights of all the interactions
within the GRN.

B. E. Coli Base-GRNN

The GRN-to-GRNN conversion method explained in Sec-
tion III-A is now applied to E. coli k-12 strain CSH50 to
extract its base-GRNN that is used for all the analysis in this
study. In the first stage of the conversion, the GRN data is
obtained from [35] under multiple categories including TF -
gene, TF - operon, TF - Transcription Units (TU), TF - TF, SF
- Gene, SF - TU and sRNA - gene. Merging the interactions
in each category, the complete GRN of E.coli is created as a
directed graph network that consists of 3175 genes as nodes
and 9678 interactions as edges.

As the next step, the GRN is divided into single-layered
gene-perceptrons that contain corresponding source genes and
initialized with random weights. For the weight/bias extrac-
tion phase, temporal transcriptomics data [30] (GEO acces-
sion number GSE65244) that contains interpolated expression
records for 43 time-steps is used after normalizing. However,
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we only use 34 expression records which is around 80% of
the total records for the weight/bias extraction, while the rest
of the transcription records are used to evaluate the accuracy
of the extracted weights and biases. The learning rate and the
number of epochs are then set to 10−5 and 109, respectively,
and the weights and biases for all the gene-perceptrons are
extracted iteratively. Finally, the extracted weights and biases
are incorporated with the GRN converting it into the base-
GRNN.

The extracted weight matrix is denoted as,

W =

g1 g2 ... gP





g1 w(1,1) w(1,2) ... w(1,P )

g2 w(2,1) w(2,2) ... w(2,P )

...
...

...
. . .

...
gP w(P,1) w(P,2) ... w(P,P )

, (3)

where w(i,j) is the weight of the interaction between ith and
jth gene where i : j = {1, 2, .., P}. The w(i,j) is the weight
of self-regulation interaction when i = j.

Next, we model the output of the GRNN, O(t+1) at t + 1
using weight W as,

O(t+1) = max(W · (I(t) + Ñ) +B), (4)

where It is the input matrix B is the bias matrix and Ñ is the
Gaussian noise Ñ = N(0, 0.1) extracted based on the iterative
experiments [30] (GEO accession number GSE215300). For
the next time step, the input matrix It+1 = Ot+1 and Ot+2

is computed as,

O(t+2) = max(W · (I(t+1) + Ñ) +B). (5)

The accuracy of the extracted E. coli base-GRNN is eval-
uated by comparing the predicted gene expression with the
real values from the data set [30] (GEO accession number
GSE65244). The predicted gene expression rates are plotted
against the wet-lab values in Fig. 4a, where the 450 degree
dashed line represents the predicted and wet-lab gene ex-
pression values are the same. According to the plot, most
of the predicted and wet-lab expression values lie close to
the 450 line. Further, a histogram of the Mean Squared Error
(MSE) between the predicted and wet-lab expression levels
is shown in Fig. 4b, statistically elucidating that more than
90% of the gene-perceptrons have less than 0.1 MSE. This
evidently establishes three key points. 1) the possibility of
converging multi-stage gene-gene interactions to a quantitative

(a) (b)
Fig. 5. Network degree distribution of the E. coli GRNN, where a) and b)
show inward and outward degree frequency, respectively.

value (a.k.a weights and biases), 2) the proposed single-layered
gene-perceptron-based [22] weight extraction model is cross-
genome compatible (as this method is applied on P. aeruginosa
in [22], while this study employs it on E. coli), and lastly 3)
the extracted base-GRNN of E. coli perform similarly to the
gene regulation mechanisms of a biological cell.

The structural and algorithmic complexity behaviors of the
E. coli base-GRNN is analyzed in the next section.

C. GRNN Structural and Algorithmic Complexity
The base-GRNN consists of a graph topology with a power-

law distribution that contains a few hub nodes and a significant
number of terminal nodes as evident in Fig. 5. Withing the
E. coli GRNN, 68.45% of the gene-perceptrons have more
than one inward edge (Fig. 5a) with the ability of computing
multiple inputs together. Moreover, the distribution of the
outward edges as shown in Fig. 5b proves the existence of
hub gene-perceptrons that can influence around 92.12% of
terminal nodes. This feature contributes to making the base-
GRNN suitable for a range of problems. For instance, the gene
b3067 has a total of 1703 outward edges, of which 91% are
terminal nodes. Activation of this particular gene-perceptron in
turn results in a wide range of expression values in the terminal
nodes. Therefore, this power law distribution positively reflects
the computing diversity. This allows the base-GRNN to be
recognized as an extensive repository of diverse pre-trained
sub-GRNNs.

An important factor of NN is their structural and algo-
rithmic complexities. We will also need to analyze GRNN
for their structural and algorithmic complexities and compare
this to the conventional NNs to determine its performance.
Structural complexity pertains to the network’s architecture,
encompassing factors such as the number of neurons/edges,
and topology. This complexity has a direct impact on the
network’s computational capabilities, while the algorithmic
complexity corresponds to the computational requirements
of the training and inference processes in NNs. Therefore,
in this study, we conduct an analysis of the structural and
algorithmic complexities of GRNNs, comparing them with
those of conventional fully connected NNs. The calculation of
the structural entropy Sc begins by computing the betweenness
centrality of all the gene-perceptrons, where we denote the
betweenness of the ith gene-perceptron l(i) as follows

l(i) =
∑

1⩽i⩽N,s̸=i̸=t

σs,p(i)

σs,p
(6)
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Fig. 6. A comparison of structural (Sc) and algorithmic (Ac) complexity
behaviors between Fully Connected Neural Networks (FCNNs) and GRNNs.
a) and b) compare the Sc and Ac variations against the number of nodes in
the two types of NNs, while c) focuses on Ac against the number of edges.

where σs,p is the total number of shortest paths between the
source gs and target gp genes, while σs,p(i) is the number of
shortest paths through gene gi between the source gene gs and
target gene gp.

Further, we define the relative degree pi of the ith node as,

pi =
Degree(i)

∑N
i=1 Degree(i)

, (7)

and qi as the nonextensive parameter which is defined based
on the betweenness l(i) as follows,

qi = 1 + (l(max)− l(i)), (8)

where l(max) = max[l(i), (i = 1, 2, 3, ..., N)].
Finally, structural complexity Sc is calculated as follows

Sc =
N∑

i=1

(
pqii∑n
i=1 p

qi
i

)
log

(
pqii∑n
i=1 p

qi
i

)
. (9)

This study uses the Kolmogorov complexity (K-complexity)
approximated by the Coding Theorem Method (CTM ) to
determine the algorithmic complexity Ac, which is considered
the basis for the network complexity [36]. CTM is calculated
based on the Laplacian matrix L, and due to the large
dimensions, we also employ the Block Decomposition Method
(BDM ) as follows

Ac ≈ BDM(L) =
P∑

i=1

CTM(bi) + log2|bi|, (10)

where bi is the ith row of L and more information on
estimating the CTM of bi can be found in [37].

Fig. 6a compares the behavior of the structural complexity
with respect to the number of nodes in a fully connected NN
versus GRNN. It is evident that the power-law properties in
the random structured GRNNs compared to fully connected
NN result in lower structural complexity. We also found lower
algorithmic complexity in GRNN structures which is shown
in Fig. 6b due to a minimized number of edges compared
to a fully connected NN with a similar number of nodes.
Moreover, GRNNs comprising edges ranging from 2000 to
10000 exhibit greater algorithmic complexity compared to
fully connected NNs as depicted in Fig. 6c. This reveals certain

GRNN structures are capable of complex computing, while
maintaining an improved interpretability compared to fully
connected GRNNs.

D. Application-specific sub-GRNN Search Algorithm for Clas-
sification

Owing to the fact that GRNNs are considered pre-trained
random structured NNs, problem-solving using GRNNs re-
quires searching and extraction of the precise sub-GRNN.
Therefore, as one of the main objectives of this study, we
propose an application-specific sub-GRNN search algorithm
for classification which is illustrated in Fig. 7. This search
algorithm uses a random permutation-based method to find
the most suitable sub-GRNN to match a problem, aiming to
compute it with high accuracy.

In the initial step, suitable candidates for the input layer are
first filtered using the characteristics of the genes, including
inward/outward degree as shown in Fig. 7 (Step 1). These
characteristics include (i) Gene-perceptrons with an inward
degree closer to zero, which are not significantly influenced
by unnecessary incoming signals except for the problem-
specific inputs and (ii) input gene-perceptrons with a higher
outward degree so they have variety of output combinations
that can support complex computing capabilities. This stage
uses graph theoretical degree distribution to create a set of
gene-perceptrons for the input layer, G(Trimmed). Here,
the G(Trimmed) contains P ′ number of genes, where the
selected genes, P ′, is less than the total number of genes, P , of
the GRNN, respectively. Given the G(Trimmed) contains P ′

number of gene-perceptrons and the problem has K number
of features, there are P ′PK(= P ′!

(P ′−K)! ) number of different
input layers that can be extracted. Due to the massive number
of sub-GRNNs, a heuristic search algorithm may be more
efficient. However, exploring such algorithms are out of this
study’s scope and we only use this random permutation-based
algorithm.

Subsequently, in the same step (Fig. 7-Step 1), the al-
gorithm randomly picks a set of K number of inputs de-
noted as G(InJ), for the J th permutation, where J =
{0, 1, 2, ..., P ′PK}, where K is number of input features of
the problem. This search algorithm requires a dataset (termed
as the search dataset SDK×V ), which is similar to the training
data in conventional NN training to evaluate the fitness of each
sub-GRNN to the problem, where V is the number records
with corresponding class labels. Before the SD is encoded
into expression levels in Fig. 7 (Step 2), a base-TF array is
created using the expression levels at the zero timestep of
the transcriptomic data used for the weight extraction [30]
(GEO accession number GSE65244). This step is crucial to
mimic the base behavior of the cell at t = 0 (computing
process starting time), where the cell functions with respect
to the environmental conditions. The base-TF array is then
altered adequately to encode the inputs of SD to create
the input matrix I(t=0) that contains input TF input arrays
I
(t=0)
v , where v = {0, 1, 2, ..., V }. In this stage, if the SD

is considered digital, then state ”1” represents the highest
expression level of the corresponding gene, while state ”0” the
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Fig. 7. Illustration of the proposed application-specific sub-GRNN search algorithm for One-vs-All classification. Step 1 focuses on selecting a set of input
gene-perceptrons, G(Trimmed) based on their inward/outward degree distributions, and a subset, G(Inj) with K (K is the number of input features of
the application) number of gene-perceptrons from G(Trimmed) is selected. In Step 2, the searching dataset SD is encoded into the expression level-based
input matrix I(t=0). The output matrix, O(t=T ), corresponding to I(t=0), is then calculated using the in-silico base-GRNN model as explained in Section
III-B. In Step 4, a set of gene-perceptrons is identified, exhibiting higher expression variance between classes and lower expression variance within the same
class. This set of gene-perceptrons is then pooled under each class in Step 5 based on their expression levels. Step 6 searches for the optimal expression
thresholds for each class by maximizing accuracy. Finally, Step 7 conducts an MI analysis to identify the insignificant input gene-perceptrons and removes
them from the input layer to reduce the size of the network.

lowest value. However, if the SD is in analog form, the values
are normalized and mapped with the concentrations based on
the highest and lowest expression levels of the relevant gene.
After decoding all the input records with the expression levels
in Step 2, using the mathematical model explained in (4)
and (5), the output expression levels are computed in Step 3.
This step produces an expression matrix, O(t=T ), with output
arrays, O

(t=T )
v , where v = {0, 1, 2, ..., V } corresponding to

each class.
In Step 4, we conduct a variance analysis with the in-

tention of identifying genes-perceptron that can be used to
represent each class at the output layer of the sub-GRNN.
Suppose a gene-perceptron can express in a higher level for
the corresponding input, I(t=0) of a particular class, ci, while
maintaining low variance between augmentations in the same
class and higher variance between different classes. In this
case, that gene-perceptron is a good candidate to represent ci.
Hence, we search for gene-perceptrons for all the classes in
”Region 4” (as shown in Fig. 7(Step 4)), where the variance
between classes is high and the variance between records of
the same class is low, which we will then form a set of output
gene-perceptrons.

In Step 5, if a gene-perceptron gi from the above set fulfills
the condition, y(gi, cl) > y(gi, cm) : m∀;m < |c|,m ̸= l,

where y(gi, cl) is the mean expression level for class cl, then
gi is pooled under the class cl. This process is repeated for
all the gene-perceptrons in ”Region 4”. Following this, the
gene-perceptrons with the highest mean expression level that
has the largest gap with the rest of the gene-perceptrons is
selected to represent each class.

The Step 6 of the algorithm is dedicated to identifying
the threshold for each gene-perceptron using an accuracy-
maximizing approach. First, we get the true-positives (TP),
true-negatives (TN), false-positives (FP) and false-nagatives
(FN) for each class using an arbitrary threshold value, Th = a.
The accuracy of the classification is then calculated for class
cl, which is denoted as ACC(cl, Th = a) and represented as
follows

Acc(cl, Th = a) =
TP + TN

TP + TN + FN + FP
. (11)

This calculation is repeated with various thresholds a rang-
ing from zero to one with 0.05 increments and the threshold
calculated for the class cl is as follows

Th = argmax
a

Acc(cl, Th = a). (12)

Similarly, the thresholds for all the classes associated with
the problem are extracted iteratively.
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Fig. 9. Illustration of simple linear regression using E.coli GRNN, where a)
shows the regression slope distribution of all the genes against the respective
r2 score, b) exemplifies three regression lines based on three output gene-
perceptrons and c) is the sub-GRNN for the linear regressions.

Finally, this process is repeated a number of times (<
P ′PK), where this will result in ranking of the sub-GRNNs
based on accuracy that will result in the selection of the best
candidate.

IV. GRNN APPLICATION IN REGRESSION

Mathematical regression has been widely used in data min-
ing applications [38], [39] for many years. Therefore, one key
contribution of this study is the GRNN’s expression behaviour
that matches regression problems, which will be analyzed in
this section. Fig. 8 illustrate the types of regression problems
we consider under the regression feasibility analysis.

A. Linear Regression Analysis

First, we identified b3067 as the E. coli input gene-
perceptron that has the highest outward degree that can regu-
late 1703 other connected gene-perceptrons. This is important
for this analysis, as the stimulation of the b3067 cascades
through a significant portion of the GRNN, leading to diverse
regression outputs.

Next, the input gene-perceptron is stimulated with 25 con-
centration input values ranging from 0 to 0.5 normalized
concentration units. The initial expression values of the rest
of the gene-perceptrons are kept at the minimum level based
on the expression profiles in [30] (GEO accession number
GSE65244). Each step of this experiment is also iterated 10
times to observe more accurate behaviors.
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Fig. 10. Illustration of non-linear quadratic regression using E.coli GRNN,
where a) shows the quadratic and linear coefficient distribution of all the genes
that are color-coded to the RSS value, b) shows three example regression
curves and c) is the sub-GRNN associated with the three example regression
curves.
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Fig. 11. Illustration of non-linear cubic regression using E.coli GRNN, where
a) shows the cubic, quadratic and linear coefficient distribution of all the
genes that are color-coded to the RSS value, b) shows three example cubic
regression curves and c) illustrates the extracted sub-GRNNs of the three
cubic regression curves.

Our aim is to determine linear regression functions that
match the gene-perceptron expression profiles and to also
determine the flexibility of finding other functions with dif-
ferent coefficients. We first extracted the expression levels of
all the gene-perceptrons and calculated the r2 score (r2 =
RSS/TSS, where RSS is the residual sum of squares and
TSS is the total sum of squares) to measure the goodness
of fitness of the output gene-perceptron expression with a
linear approximation. Fig. 9a shows the variety of linear
regression slopes with respect to the r2 fitness, where the gene-
perceptrons with the highest r2 values tend to have a variety
of coefficients for different slopes. Further, this plot reveals
that the highest positive slope is estimated as 0.36 while the
-0.50 is the largest negative slope for E. coli GRNN when the
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Fig. 12. Illustration of multiple-linear regression using E.coli GRNN by using
gene-perceptrons b3067 and b3357 as two inputs, where a) shows the first
and second coefficients distribution of all the genes that are color-coded to the
RSS value, b) and c) shows the example plane of the output gene-perceptron
b1411 and the corresponding sub-GRNN, respectively.

input is b3067. Fig. 9b presents three output gene-perceptrons
for different regression lines, where b1380 and b3293 have
positive slopes of 0.29 and 0.12, respectively, while b4435
has a negative regression slope of -0.29. Fig. 9c illustrates the
sub-GRNNs associated with the three output gene-perceptrons,
b4435, b1380 and b3293 with corresponding color codes to
Fig. 9b. According to Fig. 9c, it is essential to highlight that
all the three linear regressions are done parallelly, proving the
parallel computing properties of the GRNN. This analysis evi-
dently elucidates the availability of a diverse linear regression
solution space, where an algorithm can search and map gene-
perceptrons to applications.

B. Quadratic Polynomial Regression

The GRNN output generated in the previous section is
utilized also for matching to the quadratic polynomial regres-
sions. Fig. 10a represents the behavior of the quadratic (Coef.
1) and linear (Coef. 2) coefficients of each gene perceptron
that is color-coded according to the RSS value, where the
lighter color (yellow) indicates the higher goodness of fit.
The quadratic coefficients of the curves with the highest RSS
values range from -2 to 2, while the linear coefficient ranges
-1 to 0.5. Fig. 10b shows three example curves to emphasize
the diversity of the available quadratic regression within the E.
coli GRNN given the input gene-perceptron as b3067. Three
quadratic curves shown in Fig. 10b are for the gene b0124,
b2487 and b3751 where the quadratic coefficients are -0.83 -
0.63 and 1.48, respectively. Figure 10c depicts the sub-GRNNs
corresponding to the three output gene-perceptrons, namely
b0124, b2487, and b3751, each represented with distinctive
color codes as aligned with Fig. 10b. This shows that with
the same input gene-pereceptron b3067, we can switch from
the linear regression to quadratic polynomial regression by
finding a different output gene-perceptron combination.
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Fig. 13. Illustration of multiple non-linear regression using E.coli GRNN by
using gene-perceptrons b3067 and b3357 as two inputs, where a) shows the
distributions of each coefficient associated with (13) while b) and c) exemplify
two curves with positive and negative coef. 1, respectively. Subsequently, d)
shows the sub-GRNNs for the two examples regressions shown in b) and c).

C. Cubic Polynomial Regression

The same data set used in Section IV-A and IV-B is
employed to discover and match to the cubic polynomial
regression of E. coli GRNN. Fig. 11a shows the coefficients
of the cubic polynomials and Fig. 11b provides three ex-
ample curves, while Fig. 11c illustrates the corresponding
three sub-GRNNs. The cubic coefficient with RSS > 0.7
ranges approximately from 0 to 13, while the quadratic and
linear coefficients have ranges of -11 to 2 and -0.75 to 0.75,
respectively. The ranges of the data points for the curves in
Fig. 11 are not spread out, which means there is a minimized
variation in the higher-degree polynomial regressions. This can
be perceived as a limitation in discoverying higher degree
functions. Nevertheless, it is essential to mention that these
solution spaces are extracted only using input gene-perceptron
b3067 as an example. Therefore, the solution space can be im-
mensely expanded by using different input-gene perceptrons.

D. Multiple Linear Regression

We further investigate the feasibility of multiple regression
of E.coli GRNN by using two input gene-perceptrons, b3067
and b3357 with outward degrees of 1703 and 596, respectively.
Similar to the previous setup, the two inputs are stimulated
with expression levels from 0 to 0.5 with 0.02 increments
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(a total of 625 input setups.). In this analysis, the RSS is
considered the measure of variance of the regression model.
Fig. 12a is the coefficient variation, where Coef. 1 and
Coef. 2 are associated with the two input gene-perceptrons
respectively. Planes with RSS > 0.7 have Coef. 1 ranging
from -0.2 to +0.4 and coef. 2 ranging from -1 to 1. Fig. 12b
exemplifies the plane for the output b3090 with the first and
second coefficients of 0.10 and 0.14, respectively. Fig. 12c
depicts the sub-GRNN where the input layer consists of b3067
and b3357 and output layer with b3090 gene-perceptrons. Note
that this example only considers the gene-perceptrons b3067
and b3357 as the inputs, and it is possible to explore diverse
efficient spaces by selecting different inputs and output gene-
perceptron combinations.

E. Multiple Polynomial Regression

Multiple polynomial regressions are used for a number
of applications, and one example is the estimation of the
”Affective States” in humans [40]. Therefore, we evaluate
the multiple polynomial regression dynamics using the same
two inputs gene-perceptrons b3067 and b3357. However, in
this case, the goodness of the curve is fitted to the following
equation,

f(x1, x2) = d1x
2
1+d2x

2
2+d3x1x2+d4x1+d5x2+d6, (13)

where d1 to d6 are coefficients that would be extracted for
each output gene-perceptron and x1 and x2 are the inputs
associated with the two genes b3067 and b3357. Results in
Fig. 13 depict the possibility of extracting complex higher-
order multivariable polynomial regression models that matches
to our problem. The d1 and d2 of Fig. 13a are quadratic
coefficients associated with the two inputs that govern the
curvature of the model. The positive values of d1 and d2
result in curvature along the b3067 and b3357 concentration
axes, respectively. It is evident that d1 and d2 distributions
exhibit distinct trends, characterized by positive and negative
skewness, within approximate ranges of -10 to +10 and -3 to
+3, respectively. Furthermore, d3 is the cross-term coefficient
that determines how the two inputs, b3067 and b3357 combine
to affect the shape of the curve. Given that both inputs
are consistently positive, the negative skewness of the d3
distribution emphasizes that the majority of resulting curves
are shifted upwards due to the combined influence of b3067
and b3357. The linear terms, d4 and d5, have an impact on
the curve’s vertical position based on individual inputs. The
analysis of the plots in Fig. 13a reveals that b3067 exerts a
balanced effect on shifting the curve, while b3357 primarily
tends to shift the curve downwards. Lastly, d6 represents
the y-intercept or the offset of the curve, determining the
vertical positioning of the curve. Notably, the distribution of
d6 is fairly symmetrical around zero. Fig. 13b and Fig. 13c
elucidate two significantly different multi-variable polynomial
regression examples, using gene-perceptrons b0904 and b4406
and this is based on the sub-GRNN presented in Fig. 13c.

Classification

Binary

MulticlassOne-Vs-All One-Vs-One

Fig. 14. Illustration of sub-categories of classification problems.

V. GRNN APPLICATION IN CLASSIFICATION

Besides, regression application, NNs are also well-known
for classification tasks [41], which is what we will analyze in
this section.

A. BReLU as the activation function for GRNN-based classi-
fication

As mentioned earlier, the gene-perceptrons exhibit BReLU
activation function behaviors, and that can be beneficial in
GRNN-based classification. The sigmoid function produces
positive outputs for negative inputs and this can lead to
noisy computing in NNs.However, this noisy behavior cannot
be observed in the NNs when ReLU (BReLU) activation
functions are utilized for classification tasks [42] as evident
in Fig. 15a. ReLU including (BReLU) further encourages
activation sparsity in computing by zeroing out negative values
[43] and it further contributes to pruned networks for better
computing efficiency, which will be discussed using Mutual
Information later in this section.

Another advantage of BReLU is the increased sensitivity
in classification [44]. As shown in Fig. 15b where the upper
bound of the BReLU is equal to that in the sigmoid function,
BReLU is more sensitive within the input range of zero to
one compared to the sigmoid activation. While the variation
of the sigmoid activation function is limited to 0.23 within the
non-negative region ([0, +1]), the BReLU exhibits a variation
of one.

The increased sensitivity in BReLU paves the path towards
multi-class classification using single output gene-perceptron.
This property is presented in Fig. 15b, where different values
of thresholds (Th1, Th2 and Th3 set to the 0.2, 0.5 and
0.8 values) are spaced to enable higher sensitivity. As the
gene expression values are modeled by the BReLU activation
function, the thresholds represent varying expression levels
corresponding to the input. In the multi-class classification
application, the number of thresholds is determined by the
number of classes and can be expressed as |Th| = |c| − 1,
where |Th| and |c| are the number of thresholds and classes,
respectively. Due to this continuous output of the gene-
perceptrons, two types of thresholds can further be applied,
1) Th > 0 for one class versus all the other classes (One-vs-
All) and one class versus another class (One-vs-One) and 2)
Th = 0 for One-Vs-All. However, the determination of the
threshold in the case of Th > 0 requires additional processes
as discussed in Section III-D and elucidated in Step 6 of Fig.
7.

Fig. 15c shows multiple expression levels corresponding to
different classes (C0, C1, C2 and C3) where the expected
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TABLE I
PARAMETERS UTILIZED FOR THE in-silico FEASIBILITY ANALYSIS

Parameter Value
Input gene b2664, b0080, b3060, b2697, b2220, b3423, b3743, b0345,

b3481, b4401, b0357, b0889, b0817, b2217, b3905, b3071
Input range 0 to 0.5(normalized concentration units)
Iterations 10 per each input

expression level for the class c0, E(c0) is always higher
compared to other classes. Therefore, such an expression
pattern of a gene-perceptron deems it suitable for One-vs-
All classification output. However, determining the appropriate
threshold (Th(c0)) necessitates additional steps, as discussed
earlier. In addition, if a gene-perceptron expresses in two
distinguish levels, E(c0) and E(c1) as depicted in Fig. 15c,
it can be utilized for One-vs-One classification output with
the threshold Th(c0,c1). Similarly, a gene-perceptron capable
of expressing in three fixed levels, E(c0), E(c1) and E(c2) as
shown in Fig. 15e in response to various inputs is suitable
to represent the output layer node for multi-class classifica-
tion applications. It is essential to emphasize that, in such
situations, two thresholds (Th(c0,c1), Th(c1,c2)) should be
determined.

The feasibility of binary and multi-class classification is
proven with in-silico experimental results in the next subsec-
tion.

B. Binary and Multi-Class Classification
We discuss the feasibility of gene-perceptron performing

a binary classification under two sub-categories, One-Vs-One
(Fig. 15c) and One-Vs-All (Fig. 15d). Initially, we established
a transcriptomic-level experimental setup using the E. coli
GRNN, where we use 16 inputs that are represented by 16
randomly selected gene-perceptrons and more details on the
selected input layer genes, the input range, and the number of
simulation iterations are given in Table. I

For this specific network, the input layer of the GRNN
is introduced with five different TF arrays (created as de-
scribed in Section III-D) associated with five classes ci, i =
{0, 1, 2, 3, 4}. To capture the stochastic behavior within a cell,
each simulation setup is iterated 10 times. Next, the expression
levels of each gene-perceptron are recorded and filtered using
the search algorithm proposed in Section III-D to identify
the suitable gene-perceptron perform three sub-categories of
classification, one-vs-all, one-vs-one and multi-class.

For the one-vs-all sub-category of binary classifications
that employs the threshold as Th = 0, the algorithm seeks
genes-perceptrons that express for one class with a minimized
variance, while the expression levels for the other classes
remain equal to zero. Fig. 16a shows results for one-vs-all
classification for class c0 where gene-perceptrons in the x-
axis are an example set of suitable candidates that can be
considered output nodes. Selecting one of the gene-perceptrons
in the x-axis as the output node, it is possible to classify inputs
into class c0 proving the possibility of using the GRNN for
one-vs-all classification tasks. Moreover, the one-vs-all method
can be used for multi-class classification by selecting gene-
perceprons that are suitable for other classes.
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Fig. 15. Comparison of the sigmoid and inherent BReLU properties in the
GRNN, where, a) highlights the shaded area in light blue that represents
the region, where the sigmoid function outputs a positive value for negative
weighted summation of the perceptron, b) compares the Sigmoid Vs BReLU
output variation within the weighted summation range [0, 1] and the possibility
of having multiple thresholds (Th1, Th2 and Th3) leading to multi-class
classifications (c0, c1, and c2), c) example gene expression distribution for
One-vs-All classification where Th > 0, d) gene expression distribution for
One-Vs-One binary classification, and e) gene expression distribution with
multi-class classification possibilities.

Fig. 16b shows the feasibility of using GRNN for one-vs-
one classification, in which the objective is to search genes
that have low variance in expression levels within the same
class while showing higher variance between classes. Hence,
these genes have different fixed expression levels for each
class. This plot provides evidence for the existence of the
gene-perceptrons that can be expressed in two distinct levels
by representing two classes. The x-axis is sorted based on
the mean expression distance between the two classes. The
gene-perceptrons b3403, b4063, b3250, b3251, and b4150
clearly differentiate between classes c0 and c4 with expression
difference of approximately 0.1. Further, gene-perceptrons
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Fig. 16. Classification using the GRNN under three methods, where a) shows
the One-vs-All, b) shows the One-vs-One, where the aim is to show different
expression levels can be achieved for each gene indicating it can be used to
classify more than one class and c) illustrates the multi-class classification,
where we can see certain genes have separations that are high to support
classification of up to three classes.

b2923 and b2343 can express in various levels to differentiate
between classes c0 and c2, and c0 and c1, respectively

Finally, the possibility of using gene-perceptrons for multi-
class classification is discussed here. As mentioned earlier,
the extended output range due to BReLU allows multiple
thresholds enabling multi-class classification. Fig. 16c presents
a series of genes that can be used to classify three classes. The
gene b0565 has the largest distribution of mean expression
levels associated with each class. Note that, except for the
genes-perceptrons b0565 and b0557, the deviation between
multiple classes is low, making the differentiation between
classes less feasible. However, it is important to mention that
these results are extracted using one set of random inputs,
and various input gene-perceptrons enable finding more output
gene-perceptrons that will have sparse expression levels for
multiple classes.

Digit
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Digit
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Digit
7

Fig. 17. 4 × 4 images under the five classes of digits and the associated
augmentations.
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Fig. 18. Illustration of variance analysis results of two input permutations
J = 23 and J = 29 in a) and b) respectively, where the x-axis is the
expression variance between classes and the y-axis is the variance for different
augmentations within the same class.

C. Digit Classification Use-case

This study focuses on a classic use case of digit classifi-
cation task using E. coli GRNN that are discovered through
our search algorithm. The primary goal of the use case
is to systematically analyzing each step of the application-
specific sub-GRNN search algorithm and the accuracy of the
computing. This section first discusses the experimental setup,
the utilization of the proposed sub-GRNN search algorithm
and finally the performance of the GRNN computing for digit
classification.

The complexity of the problem is kept low in order to
make the analysis more explainable. We only use 4 × 4
images with 16 pixels. We use a search dataset SD with
five classes of digits (”0”, ”1”, ”2”, ”6”, and ”7”) and 10
augmentations with significant pattern differences as shown in
Fig. 17. Consequently, this SD has the dimensions of 50×16
with an accompanying 50× 1 label matrix.

Following the proposed search algorithm, first, a pool of
128 (P ′ = 128) gene-perceptrons as suitable candidates for
the input layer is selected based on the inward/outward edges
degree distributions. As the images contain 16 (K = 16)
pixels, the total number of input layer permutations is equal to
128P16 ≈ 1.95×1033 (Fig. 7, Step 1). Next, the SD is encoded
into I(t=0) as explained in Section III-D (Step 2) taking the
binary properties of pixels into consideration.

We only use 150 (J < 150) permutations to find the
most suitable sub-GRNN for our digit classification scenario.
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Fig. 19. Heatmaps of normalized gene-perceptron pools for each digit class, where a) shows the expression behaviors for the permutation, J = 23 , that is
associated with Fig. 18a and b) represents the results for permutation, J = 29 that is associated with Fig. 18b.
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Fig. 20. Determining the thresholds for each class by maximizing the accuracy
of each output gene-perceptron. These thresholds are then used to classify the
expression levels of the corresponding output gene-perceptrons.

Using the GRNN computing model explained in Section III-B
(Step 3), the output expression levels for all the genes for
each of these input permutations are recorded after 43 times
steps (where T = 42). As the next stage of the search
algorithm, the variance analysis is conducted. Here we extract
a pool of gene-perceptrons for the output layer (Fig. III-D,
Step 4), with higher expression variation between classes and
low expression variations for different augmentation within
the same class that results in steady expression rates for the
corresponding class. Variance analysis results for two input
permutations with significantly high and low gene quantities in
”Region 4” (higher class variance and lower record variance)
are shown in Fig. 18 Fig. 18a shows the variance behavior of
a random permutation J = 23 of inputs where a minimized
number of candidates for output genes-perceptrons can be
observed in ”Region 4”. In contrast, Fig. 18b associated with
the permutation J = 29 has a significant number of candidates
in ”Region 4”, maximizing the possibility of selecting the most
accurate output gene-perceptrons.

After ranking the gene-perceptrons by the difference be-
tween the first and second highest mean expression values,

b2664
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b3423

b3743

b0345

b3481

b4401
b0357

b0889

b0817

b2217

b3905

b3071

b2436

b0613

b0675

b2417

b3902

Fig. 21. Illustration of perturbation-based MI analysis on the input and output
layer of the extracted sub-GRNN.

according to Step 5 in Fig. 7, the output gene-perceptron
are categorised under each digit as shown in Fig. 19. This
categorization will allow us to determine which output gene
corresponds to which digit. Evidently, Fig. 19a depicts a
low variation between the expression levels for each digit
class, that is resulted from the low number of gene-perceptron
candidates in Fig. 18a for J = 23 permutation. However,
contrasting results are observed for the expression patterns
in Fig. 19b due to the evidently increased number of gene-
perceptron candidates in ”Region 4” from Fig. 18b for the
J = 29 permutation. Hence, we select the input permutation
J = 29 as the most suitable input layer for this particular
problem as shown in Fig. 21.

The search algorithm can be employed to extract sub-
GRNNs for one-vs-one, one-vs-all and multi-class classifica-
tion. However, in this use case, we only show the method
for one-vs-all classification where each class is assigned with
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corresponding output gene-perceptrons. Based on the statisti-
cal distance relative gene expression levels corresponding to
each digit class, the algorithm then selects five output gene-
perceptrons (b2436, b0613, b0675, b2417 and b3902) from
each digit pool as shown in Fig. 19b. Subsequently, the algo-
rithm searches for the appropriate expression thresholds (Step
6) which are selected based on the maximum classification
accuracy. The classification accuracies for the selected five
output gene-perceptron are calculated using (11) for a range
of threshold (from zero to one with 0.05 increments) and
consequent accuracy variation is shown in Fig. 20. As depicted
in this figure, the accuracy maximization method determines
0.10, 0.50, 0.85, 0.1 and 0.35 as the thresholds that in turn
result in accuracies of 0.842, 0.938, 0.820, 0.804 and 0.918
for digit classes 0, 1, 2, 6 and 7, respectively.

After successfully extracting an application-specific sub-
GRNN, a perturbation-based MI analysis is performed with the
objective of optimizing the network. Here, all the inputs of the
extracted sub-GRNN are given input signals with fluctuation
ranging from zero to one and the outputs are recorded from
the five genes-perceptrons b2436, b0613, b0675, b2417 and
b3902. Since the inputs and the outputs for this network are
continuous variables, the Mutual Information (MI) between
the input and output nodes is denoted as,

I(gx; gy) = f(x, y) · log
(

f(x, y)

f(x) · f(y)

)
dxdy, (14)

where gx and gy are the input and output nodes, respectively.
Further f(x, y) is the joint probability density function of gx
and gy expressions.

The results of this MI analysis are presented in Fig. 22
distinctively proving that only the input gene-perceptrons,
b0080, b4401, b0889, b2217 and b3905 contribute to the
decision in the output layer gene-perceptrons. It is understood
that the shutting down of gene expression pathways as a result
of BReLU causes information flow disconnection between the
input and output layer nodes. This disconnection is evident in
Fig. 22, where mutual information (MI) becomes zero. We
then extract an optimized network based on these results by
reducing the input layer to only have five gene-perceptrons
that are mentioned above.

Finally, we compare the accuracy of decision-making of the
extracted sub-GRNN, before and after condensing the network
based on minimizing the number of inputs, where the results
are shown in Fig. 23. These results suggest that the optimized
sub-GRNN can make decisions close to the previous version
of the network, despite the reduced structural complexity
due to a low number of input nodes that are stimulated.
This complexity reduction can further result in lowering ATP
energy to fuel the gene-perceptrons for computing [45], lower
the amount of noise to maximize reliability, as well as improve
explainability and reproducibility.

VI. DISCUSSION

GRNNs introduced in [22], represent a distinctive form
of neural networks naturally embedded within GRNs. These
networks can be conceptualized as extensive repositories of
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Fig. 22. Illustration of perturbation-based MI analysis on the input and output
layer of the extracted sub-GRNN.
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Fig. 23. A comparison of the accuracy of the extracted sub-GRNN before and
after minimizing the number of inputs, where the darker columns represent
the accuracies of each class before and the lighter columns represent the
accuracies of the network after minimizing the number of inputs.

pre-trained NNs at the biological hardware-layer capable of ex-
ecuting intricate and diverse computing tasks. Hence, GRNNs
can be regarded as a wet-neuromorphic systems. However,
harnessing the potential of GRNNs for computing demands
a specialized set of mechanisms, including GRNN extrac-
tion and an algorithm for searching application-specific sub-
GRNNs. Therefore, this study improved the GRNN extraction
method in [22] and introduced a random permutation-based
application-specific sub-GRNN search algorithm. Considering
E. coli as the model species, we extracted the base-GRNN and
proved its accuracy indicating the reliability of the proposed
extraction method, innate computing, and the possibility of
converging the multi-dimensional gene-gene interaction to
a single weight. Subsequently, a feasibility analysis on the
extracted E. coli GRNN proved its computing capability in
classification and regression problems.

The feasibility analyses exhibit the computing power em-
bedded in a single cell and the possibility of mapping sub-
GRNNs for wide range of applications. The classification
and regression results highlight two noteworthy attributes
of GRNN-based computing: analog and parallel computing
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capabilities. Both analyses used continuous inputs, for one-
vs-all and one-vs-one classifications revealing the potential
for analog to digital computing. Furthermore, in the multi-
class classification, it is evident that the GRNN can be
utilized for analog to multi-level computing. In addition, we
conducted all the analyses on three datasets generated for
classification, simple regression, and multiple regression. All
three sub-analyses on classification, three analyses on simple
regression and two analyses on multiple regression are done
parallelly on the corresponding dataset. This emphasizes the
possibility of using GRNNs for parallel computing which can
be significantly efficient.

Here, we like to highlight prospective research areas asso-
ciated with the concept of GRNN as it is still in its infancy.
Integrating reporter genes as the output layer of application-
specific sub-GRNN for conveniently observable outputs can
be one of the promising research. Similarly, we believe that
exploring the possibility of utilizing synthetic proteins as
inputs can also be one of the avenue for further research.
Moreover, embedding the metabolomic layer in the GRNN
can lead to incorporating molecular inputs, enhancing both
convenience and practicality in this domain.

This study indicates that in the future, GRNN-based bio-
computing can be an alternative to silicon-based computing.
Moreover, this study proposes an application-specific sub-
GRNN search algorithm that will find the most suitable
candidate for the targeted problem.
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propagated by molecules through chem-
ical reactions. We begin by reviewing 
the current approaches that have been 
developed for MML, before we move 
towards potential new directions that 
rely on gene regulatory networks inside 
biological organisms, as well as their pop-
ulation interactions to create neural net-
works. We then investigate mechanisms 
for training machine learning structures 
in biological cells based on calcium sig-
naling and demonstrate their application 
to build an Analog to Digital Convert-
er (ADC). Lastly, we look at potential 
future directions, as well as challenges 
that this area could solve.

INTRODUCTION
In resent years, we have started to wit-
ness the widespread development of sys-
tems to apply Artificial Intelligence (AI) 
and Machine Learning (ML) to very 
diverse application scenarios [1]. This has 
resulted in software-based systems for 
AI, such as Artificial Neural Networks 
(ANN)  [2], as well as hardware based 
systems like neuromorphic hardware [3]. 
In particular, within the area of ANN, 
various algorithms have been developed, 
that includes Recurrent Neural Networks 
(RNN), Convolutional Neural Net-
works (CNN), amongst others, where 
each has its own properties and behav-
iour derived from specific functions of 
neuronal networks of the brain. While 
developments have been made in AI for 
both hardware and software, there is 
still a number of challenges that exists. 
These challenges include the ability to  
mimic the behavior and realism of neu-
rons and their internal functionalities, 
as well as matching their energy require-
ments. The former challenge is still today 
a major issue that continues to motivate 
research to ensure that new algorithms 
or hardware designs will resemble the 
properties of internal neuronal signaling 
(e.g., ion transfer, action potential gen-
eration and propagation). However, the 
more realistic we design AI algorithms 
to closely resemble neuronal cells, the 
higher the energy consumption since we 
are mimicking the chemical and molecu-
lar reactions that occurs internally. When 
making this comparison, the brain con-
sumes approximately 20 W for 100 bil-

lion neurons and 1,000 trillion synapses 
compared to a neuromorphic processor 
such as the Neurogrid with 65 thousand 
neurons and 500 M synapses, which con-
sumes 3.1W  [4]. In order to minimize 
energy consumptions, alternative materi-
als have also been proposed for artificial 
neural systems and one example is the 
use of spintronics [5].

A number of alternative solutions 
have also been proposed to mimic natu-
ral neuron functions, where biological 
neuronal cells have been used to perform 
AI computing to replace conventional 
computing systems, i.e., biological AI. 
Examples of this include living neurons 
that can play pong [6], robots integrated 
with neuronal cells to control their oper-
ation  [7], control of a robotic arm  [8], 
and Organoid Intelligence Bio-comput-
ing  [9]. This approach has also shown 
that the neurons can also be taught and 
trained to adapt to specific applications. 
Besides neurons, other forms for biologi-
cal systems have also been considered to 
perform computing functions. Examples 
include the use of Physarum to solve net-
working problems at the Tokyo railway 
network [10], and, most recently, the use 
of fungii to perform molecular comput-
ing  [11]. Using these approaches can 
possibly result in new solutions where 
biological cells work in tandem with 
silicon technologies, i.e., bio-hybrid AI. 
While this may address the aforemen-
tioned challenges of including more real-
istic biological properties, protocols and 
technologies to maintain biological cell 
lines and keeping them alive for a long 
period may also invalidate the quest for 
higher efficiency of these systems.

Fundamental to all biological AI 
solutions and models that have been 
proposed is the exchange of molecules 
between cells to realize computing func-
tions. This communication based on 
molecules occurs as both an intra, as well 
as inter-cellular signaling. However, the 
training and computing processes within 
these systems can be further enhanced 
through modeling, optimization, and 
engineering of these same processes, 
with the help of molecular commu-
nication theory. As this field is slowly 
maturing, models and systems have 
been developed to study and engineer 

information encoding into molecules 
to be exchanged between different bio-
logical or bio-hybrid entities, also called 
bio-nanomachines, such as the afore-
mentioned AI-enabling cells. Examples 
include characterizations of channels 
within biological environments  [15], 
[16], [17], [18] and molecular modula-
tion techniques (e.g., MoSK [19]). These 
new communication models have been 
applied to characterize and engineer 
numerous types of molecular communi-
cation systems such as neuronal intercon-
nections [20], multi-hop diffusion-based 
networks  [21], and large scale systems 
with 3D geometry  [22]. Test beds and 
proofs-of-concept have also been devel-
oped, including table top molecular 
communication systems  [23], as well as 
molecular modulators that transmit digi-
tal information between computers [24]. 
The engineering of molecular communi-
cation systems in biological or bio-hybrid 
AI systems can enable new design, as well 
as efficiency and robustness. This may 
include the design of engineered mol-
ecules to propagate information during 
gene expression leading to intra-cellular 
signaling, as well as inter-cellular signal-
ing that can support ANN functional-
ities between populations of cells. This 
can be achieve through the combination 
of molecular communication theory and 
the tools provided by synthetic biology, 
where genetic circuits are engineered to 
produce molecular signals communicat-
ed between cells.

In this article, we will analyze a num-
ber of different biological AI and the 
types of communication that is inherent 
in the models, i.e., Molecular Machine 
Learning (MML). MML in here intend-
ed as machine learning realized with 
molecules and chemical reactions as 
building blocks, rather than computer 
programs to inform synthetic chemis-
try, as in [25]. This includes engineered 
cells to create perceptrons found in ANN 
or interconnecting engineered cells to 
behave as neural networks. We will then 
follow with alternative future directions 
for developing ANN using the concepts 
of molecular communication theory 
through the natural Gene Regulatory 
Networks (GRN), molecular communi-
cation between multi-species population 
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of cells, as well as engineering of Ca2+ 
signaling based molecular communi-
cations to create an Analog-to-Digital 
Converter (ADC). Lastly we will focus 
on future challenges for MML.

This article is organized as follows. 
Section 2 discusses current background 
on engineered cells as well as metabolic 
reaction models to realize ANN. In Sec-
tion 3, we propose a new direction where-
by natural GRNs and their embedded 
intracellular molecular communication 
for AI. In Section 4, we introduce an idea 
for utilizing a multi-species cellular con-
sortia to perform AI using inter-cellular 
molecular communication. In Section 5, 
we move towards engineering calcium 
(Ca2+) signaling in cells to achieve per-
ceptron like behavior. In Section 6, 
we discuss future directions and chal-
lenges, while in Section 7, we conclude  
the paper.

CURRENT BACKGROUND  
ON BIOLOGICAL AI
Numerous research has indicated nat-
ural intelligence that occurs within  
cells. From the perspective of molecu-
lar communications, this deals with ini-
tially sensing molecular signals from the 
environment, followed by internal signal 
transduction that leads to gene expres-
sions, as well as corresponding metabolic 
pathways. This process is largely pro-
grammed into the cell’s genome  [26]. 
In certain cases, this intelligence and 
memory management can be performed 
with organisms that lack a brain, or non-
neuronal systems as pointed out in [27]. 
In the case of bacteria, claims have been 
made the microbes contain ’minimal 
cognition’ [28].

In [12], a single layer ANN was devel-
oped using engineered E.Coli, known as 
Bactoneuron (Figure  1(a)). The devel-
oped model is able to achieve both 
reversible as well as irreversible comput-
ing. Each cell is engineered to receive 
inter-cellular diffusing molecules, and 
as a response, execute a log-sigmoid 
activation function to produce Green 
Fluorescent Protein (GFP) output. This 
execution is established through a tran-
scriptional regulation which is under-
taken by an engineered genetic circuit 
(also referred to as cellular device). The 
solution proposed uses established set of 
general rules to map the complete ANN 
architecture and to derive unit bactoneu-
rons directly from the functional truth 
table of a complex computing function. 
The study produced both simulations, as 
well as experimental validation. Example 
applications included a 2-to-4 decoder, 
a 4-to-2-priority encoder, a majority 
function, a 1-to-2 de-multiplexer, and a 
2-to-1 multiplexer and reversible logic 
mapping through Feynman and Fred-
kin gates. Rizik et  al.  [13] developed 
the Perceptgene (Figure  1(b)), which is 
a perceptron model of an ANN. This 
was achieved through the genetic circuit 
engineering in E. Coli bacteria. The per-
ceptron behavior is established through 
a logarithmic input-output relationship 
that fits to the non-linear biochemi-
cal reactions that occur in the genetic 
circuits. The implementation is based 
on engineered genetic circuits whose 
input-output behavior includes both 
the power-law, as well as a multiplica-
tion function. The power-law function 
encodes the weighted chemical inputs, 
while the multiplication function aggre-

gates all the inputs that will determine 
the activation. The weight of each input 
is determined by the Hill coefficient. 
The two inputs used are isopropyl Beta-
D-1-thiogalactopyranoside (IPTG) and 
anhydrotetracycline (aTc) molecular sig-
nals and results in a repression process 
that in turn regulates their own produc-
tion using an auto-negative feedback 
loop. Similar to the perceptrons of an 
ANN, the perceptgene also contains a 
bias component for the sigmoidal acti-
vation function. The bias input is set by 
the ratio of the maximum transcription 
process to the binding affinities of the 
protein-protein/protein-DNA reactions. 
The applications of the perceptgene 
include weighted multi-input functions, 
classification, as well as an offline gradi-
ent descent learning algorithms. In [28], 
an offline trained perceptron neural net-
work is used to program a population 
of bacteria, and it is simulated in silico. 
Through the diffusion of inter-cellular 
molecular communication within a pop-
ulation, the cells were able to have social 
interactions and form complex commu-
nities. The programmed perceptron was 
also used to solve an optimization prob-
lem. The work was based on an in-silico 
model, where the plasmid encoded per-
ceptron was designed using Cello, while 
the simulation of the bacterial com-
munication was developed through the 
Gro simulation tool. A particular aspect 
of the study is the use of programmed 
ANN into the genetic circuit to control 
signaling between cells in the popula-
tion to perform functions. The input are 
natural molecules (e.g., galactose), which 
in turn control a downstream behavior. 
This includes (i) emitting molecular 

FIGURE 1 Proposed solutions to develop neural networks from engineering cells. (a) Bactoneuron [12], (b) Perceptgene [13], and (c) metabolic 
perceptron [14].
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signals proportional to the concentration 
of oxygen that is used for metabolic pur-
poses, (ii) inducing chemotaxis for cell 
movement, (iii) commensalism, where 
the cells emit a signal that degrades the 
waste products from other bacteria in the 
population, and (iv) controlling of cell 
growth when the environment is harsh.

In  [29], a consortia-based bacterial 
ANN was developed and proved experi-
mentally. An interesting feedback pro-
cess is developed between the receiver 
and the sender, which are the percep-
tron nodes for decision making and this 
is achieved using quorum sensing. The 
sender bacteria are able to emit varying 
molecular signals (OHC14 - acyl-homo-
serine lactone 3OHC14:1-HSL), which 
represent the weights. These molecu-
lar signals are induced by an external 
signal (OC6 (acyl-homoserine lactone 
3OC6-HSL)). The application was spe-
cific to 4-bit pattern recognition, where 
varying levels of the OC6 inducers are 
applied to sender bacterial populations, 
and once the molecular signals diffuse to 
the receiver, they will activate a genetic 
circuit to produce an output signal. A 
novel gradient descent algorithm was 
also developed to optimize the weights 
of molecular signals to suit the pattern 
recognition application.

A cell-free perceptron model was pro-
posed in [14] using the metabolic circuit 
illustrated in Figure 1(c). The latter was 
designed with a focus on biochemical 
retrosynthesis to predict the pathways, 
which was achieved using the Retro-
path and Sensipath computational design 
tools. The circuit was then embedded 
into a cell-free system in order to create 
the Metabolic Perceptron. The metabol-
ic perceptron was able to perform binary 
classification based on metabolite molec-
ular signals that leads to a classification 
process. The example application was 
here a four-input binary classifier.

GENETIC REGULATORY AI
While the previous section focused on 
the genetic engineering of living cells to 
create machine learning systems, in this 
section, we will look at an alternative 
approach that is based on computing 
structures naturally present in biological  
cells, i.e., GRNs. This approach is based 

on essential similarities between a GRN 
and its structure to an ANN. While a 
number of different works have investi-
gated neural-like properties in GRNs, 
our investigation focuses on how molec-
ular communication properties can be 
exploited to perform computing func-
tions as well as training by externally 
manipulating the weight connections 
between gene relationships.

BACKGROUND ON GENE  
REGULATORY NETWORKS
A GRN is a highly complex network of 
multi-layered interactions between genes. 
Each individual cell carries a GRN spe-
cific to its species and strain, giving an 
unique behavioral pattern, as well as 
functionalities. A cell can sense a range 
of external stimuli using membrane 
receptors, perform computing through 
the GRN and express genes accordingly, 
thus resembling an input-process-output 
sequence found in conventional comput-
ing. A typical process of gene expression 
starts with the transcription process of 
converting the genes into mRNA, and  
this, depending on the gene, can be fol-
lowed by the translation process that 
coverts the information contained in 
the mRNA into proteins. However, dur-
ing gene expression within the GRN, 
molecular communication patterns can 
be identified in gene-gene interactions, 
which are complex processes that occur 
at multiple layers. For example, while 
these interactions in prokaryotes con-
tribute to the regulation of the afore-
mentioned transcription process, for 
eukaryotes, they can be post-transcrip-
tional, i.e., contributing to, among other 
things, mRNA (or other transcript) and/
or protein functionalities.

Moreover, the regulation in the post-
transcription layer contributes to specific 
dynamics in the behavior of GNRs. In 
this context, proteins plays a crucial role 
complementing the regulation mecha-
nism by integrating sensing, transfer, 
storage, and processing of information. 
As an example, proteins can perform 
computational tasks such as amplifica-
tion, Boolean logic functions, and infor-
mation storage through mechanisms of 
allosteric regulation  [30]. In addition, 
the inter-conversions between phosphor-

ylated and non-phosphorylated states of 
proteins act as switches enabling them to 
exhibit sigmoidal behaviours over a lim-
ited concentration range.

In the following, we show how these 
complex molecular signaling processes 
that involve multiple layers of chemical 
reactions, as well as components during 
gene expressions, combined with the 
network structure of genome relation-
ships, can allow us to identify and exploit 
natural ANN within GRNs, i.e., Genetic 
Regulatory AI (GRAI).

ANN LEARNING AND TRAINING 
MODELS IN A SIMPLE GENE 
REGULATORY NETWORK
The transcription of a particular gene 
in a GRN is combinatorial action of 
products of other genes, as well as its 
own. Subsequently, the state of the cell 
is an action based on a combination of 
diverse translated gene products. When 
we observe these properties, we see a 
resemblance to the dynamics of an ANN, 
specifically a Recurrent Neural Network 
(RNN), where the current state depends 
on the previous. This means that there is 
a potential to create MML from manipu-
lating the gene expression patterns.

To describe our concept, we will 
focus on a simple communication pat-
tern found in the GRN of a bacterial 
cell. Bacteria uses signal transduction 
pathways to sense the environment by 
processing input signals. Two-Component 
Systems (TCS) are among the most wide-
spread signal transduction mechanisms, 
which contain a Sensor Histidine Kinase 
(SHK) that receives external signals and 
a response regulator that accordingly ini-
tiates the expression of a set of genes. On 
average, a bacterial cell contains 30 TCSs 
that are essential for their virulence, 
growth, and survival. Approximately  
87% of the known response regulators 
of TCS involve gene expression regula-
tion at the transcription layer. Based on 
this, 96% of SHKs are capable of sensing 
small-molecule-binding from the extra-
cellular space. Hence, the combination 
of TCSs can be considered a viable exam-
ple of a natural GRN pattern that can be 
modeled and characterized as an ANN, 
where the input layer is represented by 
the SHKs, and multiple hidden layers as 
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well as an output layer consist of genes 
and their mutual interactions. There 
are several advantages in using the TCS 
sub-network of the GRN as an ANN 
for MML. This includes availability of 
experimental data that offer validation 
and quantification of the relationships 
between gene expressions for both input 
and output layers. In a number of cases, 
the direct mapping of a GRN sub-net-
work to an ANN is not feasible. The 
reason is because sometimes the num-
ber of gene interactions (network hops) 
from the input layer to the output layer 
can vary for different gene expression 
paths, resulting in the corresponding 
ANN to be asymmetric, which leads to 
less computational efficiency. There are 
well-known approaches to address this 
problem, such as introducing phantom 
nodes that do not alter the overall behav-
ior or treat the network as asymmetric 
ANN structure. Another alternative is 
to introduce missing gene interactions 
through engineered genetic circuits, 
which can further align the sub-network 
closer to a typical ANN structure.

Figure 2 illustrates how we recognize 
an ANN structure from a TCS sub-net-
work of a GRN. As shown in the figure, 
the cell is able to combine multiple input 
signals and accordingly express down-
stream genes through the network. Gene 
expression products from one gene reach 
the non-coding region of another via 

intra-cellular diffusion [31]. The relation-
ship of genes to be expressed in the net-
work can be associated to a set of weights. 
The values of the weights are a result of 
several factors that include the transcrip-
tion factors, affinity of the transcription 
factor binding site, thermoregulation, 
enhancers [32], as well as the noise due to 
the diffusive motion of regulatory mol-
ecules [33], [34]. Here, we focus mainly 
on two TCSs: PhoB-PhoR and BqsR-BqsS 
systems, which are associated with phos-
phate and iron uptake of the P. aeruginosa 
species. Further, we target the inter-cellu-
lar molecular communications by consid-
ering three QS systems, namely, Las, Rhl, 
and PQS genes where Las uses 3O-C12-
HSL and Rhl uses C4-HSL, while the 
PQS relies on 2-heptyl-3-hydroxy-4(1H)-
quinolone. To identify the correspond-
ing ANN structure, we first modeled the  
GRNs as graphs using the interaction 
structural data from publicly available 
database [35]. This is followed by extract-
ing the TCS sub-network related to the 
phosphate intakes iron along with the 
quorum sensing process. The obtained 
ANN model contains various numbers 
of hops from the input layer to the out-
put layer, which require the introduction 
of phantom nodes that do not have an 
impact on the interaction dynamics of 
the network. The weights of the ANN 
represented by the TCS are estimated 
relatively using the interaction dynamics, 

as well as transcriptomic data [36], [37]. 
The performance accuracy of this model 
is then evaluated based the pyocyanin 
production and gene expression levels in 
low and high phosphate conditions with 
the data from wet-lab experiments in sim-
ilar setups [38].

A typical ANN will require modifica-
tion of weights as it is being trained to 
serve for a specific purpose. Here, we 
investigated how the weights of the ANN 
related to the TCS can be changed with 
a specific focus on changes that can be 
operated externally to the biological cell 
from the environment. Previous research 
has demonstrated how the temperature 
can impact the cellular functions of P. 
aeruginosa. This usually results in the 
modulation of one specific gene expres-
sion interaction of the Rhl QS sys-
tem [32]. As highlighted in Figure 2(b), 
with the reception of C4-RhlR at 37°C 
temperature, the weight of hn21 - rhlR 
is significantly higher compared to the 
same at 30°C, as shown in Figure 2(c). 
This corresponds to a higher expression 
rate of RhlR at 37°C. This demonstrates 
that updating and training of GRAIs is 
possible through changes in the environ-
mental conditions such as temperature.

MINING ANN IN GRNS
Our previous section has shown that cer-
tain sub-networks of the GRN exhibit 
natural neural networks. In this section, 

FIGURE 2 Illustration of inherited GRAI where (a) shows the extraction of a subnetwork that resembles an ANN with relative weights, (b) set of 
relative weights in one environment condition (temperature at 37°C), and (c) modified weight in a different environment condition (temperature 
 at 30°C).
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we want to investigate if other sub-net-
works that exhibit ANN structures can 
be extracted from the GRN. We per-
form this through a search algorithm 
that mines the GRN for specific types 
of structures. During the search process, 
if we need a structure with i number 
of input nodes and j number of output 
nodes, the algorithm first mines j num-
ber of nodes that have a common prede-
cessor. The j number of nodes will have 
a number of different predecessors and 
will be put together into the same group. 
Within the same group, the nodes will 
be put together to create different com-
bination, where the combinations must 
have i number of input nodes that re the 
predecessor, as well as j output nodes. 
These combination will ref lect the dif-
ferent number of sub-network for nodes 
input nodes i and output nodes j.

Figure 3(a) illustrates examples of 
a Feed-Forward neural network with  

different structures of fully connected 
ANN sub-networks extracted from the 
GRN. Figure 3(b) shows the number of 
perceptron and Feed-Forward neural net-
work structures we obtained from the 
GRN using our mining algorithm. We 
are able to discover a significant number 
of perceptron structures with the high-
est recorded for one output node and two 
input nodes. As we increase the number 
of inputs, the number of fully connected 
Feed-Forward networks becomes harder 
to discover. In particular, Feed-Forward 
networks with five output nodes and high-
er than three input nodes are very rare.

Since these Feed-Forward neural 
networks are pre-trained with defined 
weights, the question now rises as to how 
we can use this for applications. One 
approach towards using the ANN found 
in the GRN is to match it to an appli-
cation’s requirement. This will require 
a mining algorithm that matches the 

problems that require an ANN with the 
same structure as well as weight combi-
nation. While this can create challenges 
in terms of finding the right problem to 
suit the ANN found in a GRN, there is 
an opportunity to engineer the circuit 
with addition of genes that will increase 
the diversity of the network, as well as 
integrate hidden layers.

BACTERIAL MULTI-SPECIES 
DIFFUSION-BASED NEURAL NETWORK
In this section, we look at an alternative 
model for MML, where we investigate 
how multiple species of bacteria with 
symbiotic relationships, such as those 
found in a bacteriome, i.e., bacteria liv-
ing in endosymbiosis with a host organ-
isms, can be modeled and exploited as an 
ANN. In general, bacteria of the same 
species receive specific types of molecu-
lar signals from other populations and 
process them to produce a set of mol-
ecules that can inf luence other species 
or host cells. These multi-species bacte-
rial populations can be considered the 
nodes of a network, where the molecular 
signals that diffuse between population 
are the link/edges, based on diffusion-
based molecular communications. As 
the molecular signal cascades through 
the network from layer to layer, this 
resembles a feed forward neural network 
(layer in this instance are bacterial spe-
cies that receive the same type of signals). 
The relationship structure of the bacteria 
and signaling weights depend on fac-
tors such as the diversity of the species, 
population sizes, cross-feeding/inter-
cellular communications and molecular 
signal diffusion dynamics. The popula-
tion sizes determine the rate of molecular 
signal reception and production, and this 
ref lects the weight of the edges of the 
corresponding ANN model. If a larger 
population produces a signal and another 
population that has higher relative abun-
dance consumes that signal, the weight 
corresponding to the link between these 
larger populations will be modeled with 
an ANN edge with a larger weight. On 
the other hand, if the population sizes of 
the two different species are smaller, the 
interaction between them is compara-
tively weaker and will result in a smaller 
weight value of the corresponding edge.

FIGURE 3 Two fully-connected ANN sub-networks extracted from the full GRN is shown in (a) and 
number of different sub-network structures that can extracted from the GRN is illustrated in (b).
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One of the well-studied bacterial 
ecosystems is the Human Gut Bacteri-
ome (HGB), which constitutes up to 
1000 species [39], and it suggests a rel-
evant use case for the aforementioned 
concept. The reliability of the molecular 
signal f low between the different spe-
cies is vital in modeling and exploiting 
the ecosystem as an ANN. In our pre-
vious study, the structural derivation 
of a network of multi-bacterial spe-
cies using graph theory was analyzed, 
where input of glucose is received by 
certain species to produce various Short 
Chain Fatty Acid (SCFA) communi-
cated between the cells [40]. The study 
revealed that the weights of the edges, 

which are the lactate and acetate signals 
exchanged between the populations, 
can be modified and adapted based on 
external inputs (e.g., glucose). Using 
this concept, we believe we could design 
a Bacterial Multi-species ANN from 
the SCFA molecular communication 
network within the HGB. Figure 4(a) 
illustrates an example of multi-species 
bacteria population that are organized 
into an ANN structure. The arrange-
ment of the structure is based on the 
input-output relationship of molecular 
production. For example, when input 
glucose is consumed, it produces lactate 
and two SCFA (acetate and proprion-
ate) by six species to produce butyrate 

for other species, then the six species 
will be the first layer of a corresponding 
ANN of our NN, and the species that 
produce butyrate will be the ANN’s sec-
ond layer. Figure 4(a) shows the ANN 
with the relative weights of each edge 
shown with different color shades. Our 
aim is to train the ANN in Figure 4(a) 
into an ANN with a specific functional-
ity, shown in Figure 4(b). Our training 
is based on the external input of glucose, 
where we can see in Figure 4(c) that as 
the species are consuming and produc-
ing molecules, their weight is slowly 
being modulated by changing the popu-
lation sizes see Figure 4(d) (as the Mean 
Squared Error (MSE) of the population 

FIGURE 4 Illustration of population-based ANN weight alteration and its impact on the network outputs is shown here, where (a) is the initial ANN 
setup, (b) is the ANN with the preferred network weights, (c) is the convergence of weights of all the edges relative to the preferred ANN over the 
transformation period, and (d) is the MSE behaviors of molecular production relative to the preferred ANN weights. Further, the output signal 
behaviors due to variations in weights caused by network structural changes are shown in (e), (f), and (g) by changing the population sizes  
of Bacteroides, Alistipes, and Faecalibacterium, respectively.
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converges, similarly the molecular pro-
duction error). Further, we show how 
significant the impact of the popula-
tion size variation is on the overall gut 

metabolic performance by altering the 
abundance of each species relative to a 
healthy HGB composition. Figure 4(e) 
shows the network outputs in terms of 

acetate, propionate, and butyrate when 
the abundance of Bacteroides is changed 
from zero cells in the environment 
to a population size of 200% as in the 

FIGURE 5 Transforming Ca2+  ions molecular communication into a perceptron. (a) A conventional perceptron model, (b) a two-bit ADC architecture, 
(c) engineering Ca2+ signaling into an ADC between two cells, (d) Ca2+ signaling training process to modify the basal functional activity and 
communication channel flowchart, (e) trained Ca2+ ions transients in the cytoplasm, (f) dynamics of Cell 1 weight  w0 through the training process 
with respect to the input extracellular Ca2+ input (x), and (g) variations in output Ca2+ ions for the two cells to represent the ADC digital bits.
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healthy HGB. Figure 4(f) and (g) pres-
ent the behaviors of the same outputs 
when altering the population sizes of 
Alistipes and Faecalibacterium, respec-
tively. These results indicate the pos-
sibility of altering weights of Bacterial 
Multi-species ANN to modify the net-
work outputs significantly, which can be 
used in applications such as personalized 
treatment of metabolic disorders.

Ca2+ SIGNALING PERCEPTRON 
BASED ON MOLECULAR 
COMMUNICATIONS
In this section, we discuss a perceptron 
that can be trained by controlling the ion 
flow as well as the basal reactions of Ca2+  

Signaling between biological cells. As an 
example, we demonstrate the design of 
a multi-cell ADC realized by modulating 
the cell’s Ca2+ influx, as well as through 
the engineering of genetic circuits.

CALCIUM SIGNALING
Communication through Ca2+ ions is 
one of the essential signaling processes 
at the basis of numerous cell functions. 
While a few mathematical models for 
Ca2+ signaling have been proposed, the 
model by Korngren et  al. for Ca2+ ion 
transients in electrically non-excitable 
cells is one of the most recognized and 
is at the basis of the concepts we present 
in the following  [41]. According to this 
well-regarded model, this communica-
tion process is based on Ca2+ ion influx 
into the cytoplasm from the extracellular 
medium, where ion-conducting channels 
are established through the membrane 
and controlled by receptors. The recep-
tor in the model is designed in terms of 
a linear activation instead of complicated 
non-linear agonist binding curve  [41]. 
As the influx of ions increases the Ca2+ 
signaling reaction is activated, where the 
Ca2+ ion pumps allow the outf low of 
ions from the cytoplasm to the external 
medium, as well as its store. Eventually, 
the Ca2+ ions concentration in the cyto-
plasm reaches a saturated level. Based 
on this sequence of events, numerous 
Ca2+ signaling based molecular com-
munications systems, models, and their 
characterization have been investigated 
and proposed over the years  [20], [42], 
[43], [44].

OBTAINING A PERCEPTRON  
FROM Ca2+ SIGNALING
We adapt the Korngreen et al. model to 
exploit a Ca2+ signaling system as a per-
ceptron. As illustrated in Figure 5(a), the 
input ( x ) will be the Ca2+ ion concen-
tration in the extracellular medium and 
the weight ( w ) is the Ca2+ ions influx 
rate through the plasma membrane chan-
nels. Therefore, x * w  represents the 
amount of Ca2+ ion influx ( y ) into the 
cytoplasm, representing its transient. As 
described earlier, the Ca2+ ion transients 
are multi-stage signaling processes that 
involve the transition of ions within the 
cytoplasm, store, buffer, as well as the 
extracellular medium, and regulate the 
concentration in the cytoplasm. In order 
to train the Ca2+ signaling process into 
a perception, the cell needs to be the 
incorporation of an engineered genet-
ic circuit to modify its basal fractional 
activity to trigger the Ca2+ signaling 
reaction or to modulate the influx chan-
nel. In the case of a multiple-cell system 
to realize an ANN multi-perceptron net-
work, the engineered genetic circuits are 
required to enable dynamic activation 
and deactivation of the Ca2+ channel.

TWO-BIT ANALOG  
TO DIGITAL CONVERTER
ARCHITECTURE
We adapted the Ca2+ ion signaling 
model to create interacting perceptrons 
in multiple cells that altogether realize 
a two-bit ADC through a simulation 
model. The architecture of a conven-
tional ADC is illustrated in Figure 5(b). 
The equivalent model based on Ca2+ 
signaling, where made clear the essential 
role of ion flow between two cells (the 
blue arrows in the Figure 5(c) indicate 
Ca2+ ions reactions to facilitate this). 
The input x  is the incoming extracel-
lular Ca2+ concentration into the two 
cells, where the range of input considered 
in the simulation is set between 500µ M  
to 2500µ M and sampled according to 
an interval of 500µ M. By dividing this 
range into four intervals, each interval 
will produce different Ca2+ signals from 
two cells, i.e., Cell 1  and Cell 2 , which 
map to different digital bits. Based on 
this, the Cell 1  and Cell 2  produce 
the Most Significant Bit (MSB) and the 

least signif icant bit (LSB), respective-
ly. Ca2+ ions in the extracellular medi-
um( x ) flow into the cytoplasm through 
the Ca2+ channel with an inf lux rate 
w0  and w1  for Cell 1  and Cell 2 , 
respectively. A bias to the Ca2+  ions 
influx for each of the two cells ( y0 , y1 )  
is randomly selected and applied (in this 
example th is is b0 0 169255� . � M 
and b1 0 287264� . � M, respectively). 
Through the Ca2+ transients, the ion 
concentrations in the cytoplasm that are 
set to C0  and C1 , respectively. By set-
ting a threshold, in our case, 1µ M, the 
Ca2+ concentration in the cytoplasm, can 
be converted into digital bit ( Z0 , Z1 ),  
which are the MSB and LSB. In order 
to make an ADC, Cell 1  is genetically 
engineered to produce molecules when 
enough Ca2+  ions (1µ M) are present 
in the cytoplasm. The output molecules 
temporally deactivate the calcium chan-
nel in Cell 2  plasma. This deactivation 
rate is indicated as d0 .

TRAINING PROCESS
The flow chart for training the Ca2+ sig-
naling perceptron is presented in Figure 
5(d). The two cells have to be trained 
to obtain optimal Ca2+ inf lux rates 
(w0, w1) as well as the correct Cell 1’s  
calcium channel deactivation rate for 
Cell 2 (d0) so that Cell 1 and Cell 2 can 
produce the aforementioned MSB and 
LSB, respectively. Cell 1 is trained first 
to find an optimal w0, and then Cell 2 
to obtain w1  and d0 . With initial w0,  
Ca2+ f lows into Cell 1 and is regulat-
ed in the cytoplasm (C0) for a certain 
period. Based on the amount of input 
from the extracellular medium ( x ), the 
concentration at saturation will represent 
an MSB digital bit (Z0). When Z0  is bit 
0, but the expected output is bit 1: an 
activation chemical from the engineered 
circuit is injected to elevate the basal 
activity of the calcium channel in Cell 1  
plasma. Due to the increased activity 
of the channel, an increased amount of 
Ca2+ ions will f low into Cell 1, which 
means the inf lux rate (w0) is also 
increased. For the opposite case, when 
Z0 is bit 1 and the expected value is bit 
0, a different deactivation chemical signal 
is expressed by the engineered genetic 
circuit to reduce the basal activity of the 
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Ca2+ channel. Then, w0 is updated to 
a lower value. Based on this sequential 
training process, the optimal w0  will 
be found. The same training process is 
performed on Cell 2, except for one case. 
This exception case is when Z0  and Z1  
are bits 1, but the expected Z1  is bit 
0, which will require manual interven-
tion to modify the rate of Cell 1 output 
chemical production instead of injecting 
chemicals. Figure  5(e) shows how the 
perceptron behaves for different levels 
of Ca2+ within the cytoplasm based on 
varying extracellular influx. Figure  5(f) 
illustrates an example of convergence of 
weight w0  during training with respect 
to the error for varying levels of extra-
cellular input (x). Finally, Figure  5(g) 
shows the variations of output from 
the two cells that represent digital bits 
from Cell 1 and Cell 2. For example, an 
input between 1000µ M and 1500µ M  
results in ’01,’ where the 0  b is from  
Cell 1 and 1 b is from Cell 2.

CHALLENGES
While we have identified solutions that 
enable non-neural cells to develop percep-
tron properties, or the exploitation of gene 
regulations to obtain ANN functional-
ities, there are still a number of challenges 
that need to be addressed to move towards 
practical applications in the future, and 
some important ones are discussed next.

CONTROLLING MOLECULAR 
COMMUNICATIONS IN MOLECULAR 
MACHINE LEARNING
The MML that we have discussed so 
far are based on training and comput-
ing operations that stem from com-
munications of molecules and chemical 
reactions. To develop MML systems pro-
cesses matching the computational capa-
bilities of silicon-based technologies, we 
will eventually need to consider multi-
layer perceptron architectures. While 
the genetic engineering will possibly be 
the main enabling technology, specific 
challenges are as follows. First, since the 
training of the edge weights of molecu-
lar signals, which in our case is based 
on population control, a mechanism is 
required to ensure that parallel chang-
es in the bacteriome can be performed 
to modify the relative population of 

different species/strains in the system. 
This becomes more challenging when we  
consider Ca2+ signaling between cells  
and in particular controlling the flow of  
ions through the gap junction of cells.  
Second, while GRAI might be inher-
ently including multi-layer perceptrons, 
the question is how do we determine 
appropriate chemical inputs to express 
genes of the input nodes and, at the same 
time, detect expressions on specific out-
put nodes. From a multi-bacterial species 
perspective, this will require engineering 
of cells with different receptors to detect 
diverse molecular signals from the previ-
ous layers. The cells will, therefore, need 
to have the ability to detect signals effi-
ciently and operate in noisy environments. 
The other challenge is the ability to syn-
chronize all transmissions as signals prop-
agate between different layers. The latter 
challenge can have an immense impact 
on the reliability of the resulting ANN. 
Since we have shown that multiple ANNs 
are embedded in a GRN through a sub-
network, the question is whether mul-
tiple parallel processing can be achieved 
through different gene expression paths.

BIO-HYBRID AI
The paradigm of the Internet of Bio-
Nano Things  [45] includes the need to 
interconnect molecular communication 
systems to connect to the cyber-Internet 
by propagating information between the 
molecular and the electrical domains. 
This can be realized through an elec-
tro-chemical based Bio-cyber interfaces. 
While this can allow to detect chemical 
outputs from the MML, an issue arises 
when we want to actively interact and 
reconfigure the MML system from the 
electrical domain. In particular, the chal-
lenge lies in the mechanism to reconfig-
ure the weights.

RESPONSIBLE AI IN MOLECULAR 
MACHINE LEARNING
As AI continues to spread and weave into 
our everyday lives, besides developing 
sophisticated hardware and software, we 
are facing new and emerging ethical con-
cerns has risen, which altogether call for 
the notion of responsible AI. Responsible 
AI aims to address the ethical and legal 
issues in regards to deployment, as well as 

utilization of AI. This is already a major 
challenge in conventional AI, which is 
necessary to address to provide trust for 
the public in using the technology. This 
challenge will deepen further when AI 
is extended in living machines. This is 
particularly true when we consider the 
potential applications of learning-based 
living machines for treating diseases, 
where they can potentially be deployed 
into the body or the environment. 
Another challenge is also the security 
aspect, in the similar manner that this is 
a challenge in conventional AI.

CONCLUSION
As our society embraces AI to play a 
part in our everyday lives, we are start-
ing to witness various forms and algo-
rithms that are embedded into devices 
with different computational capabilites. 
In this article, we investigate MML for 
Biological AI, where AI occurs in liv-
ing systems and is based on information 
propagation through chemical reaction 
and molecule transport, i.e., molecular 
communications. We reviewed the cur-
rent background in Biological AI. This 
is followed by our proposed directions 
of MML through the GRN, bacterial 
multi-species communication, as well as 
Ca2+ signaling. We then discuss future 
possible directions for the molecular 
communications research.
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[117] V. H. Tierrafŕıa, C. Rioualen, H. Salgado, P. Lara, S. Gama-Castro, P. Lally,
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