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Abstract. Interest in molecular magnets continues to grow, offering a link between
the atomic and nanoscale properties. The classical Heisenberg model has been effective
in modelling exchange interactions in such systems. In this, the magnetization and
susceptibility are calculated through the partition function, where the Hamiltonian
contains both Zeeman and exchange energy. For an ensemble of N spins, this requires
integrals in 2N dimensions. For two, three and four spin nearest neighbour chains
these integrals reduce to sums of known functions. For the case of the three and
four spin chains, the sums are equivalent to results of Joyce. Expanding these sums,
the effect of the exchange on the linear susceptibility appears as Langevin functions
with exchange term arguments. These expressions are generalised here to describe
an N spin nearest neighbour chain, where the exchange between each pair of nearest
neighbours is different and arbitrary. For a common exchange constant, this reduces
to the result of Fisher. The high temperature expansion of the Langevin functions
for the different exchange constants, leads to agreement with the appropriate high
temperature quantum formula of Schmidt et al., when the spin number is large.
Simulations are presented for open linear chains of three, four and five spins with
up to four different exchange constants, illustrating how the exchange constants can
be retrieved successfully.
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1. Introduction

Molecular magnets are typified by relatively small numbers of paramagnetic spins which

interact intramolecularly via exchange forces, and where the intermolecular dipole-

dipole interaction can be ignored. They are of interest as model magnetic systems,

where basic understanding of exchange can be studied, as well as offering promise as

novel materials [1, 2, 3], with the possibility of applications in areas including material

science, biomedicine and quantum computing - see [4] and references therein. For

a recent survey and discussion of theoretical and experimental aspects of magnetic

molecules the reader is referred to an article by Luban [5]. From a theoretical point

of view, where the spin number is large, the classical Heisenberg model has proved

useful. Notably, Fisher [6], Joyce [7] and Blume et al. [8] advanced this model. More

recently, with the progress in molecular magnet synthesis, theoretical interest has been

revived [9, 10, 11, 12]. Of interest to many of these authors are descriptions of the

susceptibility of such magnetic systems where two or more different exchange constants

are involved [9, 11, 12]. Significantly, Luban et al. [13] have applied the high-temperature

quantum expansion for the low-field susceptibility of Schmidt et al. [11] to obtain

from experiment, values for a system with four different exchange parameters, without

recourse to diagonalizing large quantum Hamiltonians. With this interest in mind, here

we present a classical, low-field susceptibility formula for an open chain of N spins,

with arbitrary and different exchange between each pair of nearest neighbours. Using

a result due to Gegenbauer [14], the authors [15] have been able to re-derive, in a

simple manner, the results of Joyce for open classical Heisenberg spin chains where

the partition functions are expressed as sums of known functions, and also to obtain

some new results. Expanding these sums, it is possible to obtain analytic expressions

for the magnetisation to terms linear in the applied field, corresponding to the linear

susceptibility. (In addition, if required, the non-linear susceptibility can be obtained

by taking non-linear terms in the magnetisation [15, 16]). The effect of the exchange

on the linear susceptibility is expressed in terms of Langevin functions with exchange

term arguments. Furthermore by considering the source of each of these terms, it is

possible, from the finite cases, to infer a structure for a chain of any number of spins

(the N -chain) which is in agreement with a result obtainable from Joyce [7] for a four

spin chain. The formula shows the expected asymptotic behaviour for small and large

exchange, and for equal exchange, the result of Fisher [6, 9] is recovered. It is consistent

within the approach of Takahashi [17] for dimerized classical chains and with that of

Furasaki et al. [18] for equal exchange but random sign. It is also in agreement with

the appropriate high-temperature expansion resulting from Schmidt et al. [11] for the

limit of large spin number. Following Schmidt et al., simulations are performed to

illustrate the usefulness of this formula. Within these simulations, open linear chains

containing up to five spins, with four different exchange constants, have been considered.

The temperature dependence of the low-field susceptibility has been calculated using

this formula and noise has been added. The same formula has then been fitted over
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the temperature range 50K–300K, in order to show that up to four different exchange

constants can be retrieved. Further calculations and simulations might be performed

with reference to diagonalizing the Hamiltonian as performed by Luban et al. [13], with

a view to outlining the differences between quantum and classical Heisenberg models as

dealt with recently by Engelhardt et al. [19].

2. Classical Heisenberg Model for 2-spin and 3-spin chains

The Hamiltonian for two interacting spins contains the isotropic classical Heisenberg

exchange and Zeeman (external field) terms

H2−spin = −Jc ~e1 · ~e2 − µ0m ~H · (~e1 + ~e2) (1)

where ~H is the external magnetic field vector, ~ei represents the unit vector of each

classical spin, µ0 is the permeability of free space, and where the classical values for the

exchange parameter Jc and classical magnetic moment m are taken as [20]

Jc = Js (s + 1) , m = gµB

√
s (s + 1) . (2)

Here J is the exchange constant where we take J > 0 for ferromagnetic and J < 0

for anti-ferromagnetic exchange, g is the Landé spectroscopic splitting factor, µB is the

Bohr magneton, and s is the spin number. From Ref. [15] the classical partition function

for two spins can be written as a sum of known functions

Z2−spin =
∞∑

n=0

(2n + 1) in (ξ)2 in (K) (3)

where K = Jc/kT , ξ = µ0mH/kT , k is Boltzmann’s constant, T is absolute

temperature, and the functions in (x) are [7, 9, 21]

in (x) =

√
π

2x
In+ 1

2
(x) (4)

where In+ 1
2
(x) are the modified spherical Bessel functions of the first kind [22]. It is

worth noting that i0 (x) = sinh (x) /x and i1 (x) = cosh (x) /x − sinh (x) /x so that

i1 (x) /i0 (x) = coth (x)− 1/x = L (x), the Langevin function. In this sum, each in (ξ) is

due to the field acting on each spin and in (K)) is due to the single exchange interaction.

The magnetisation can be obtained from

M =
Nm

V

1

N

∂Z

∂ξ
(5)

where V is the sample volume and N is the number of spin sites. Expanding the

magnetisation to the first order in ξ leads to the low-field susceptibility per spin site

χ2−spin = χ0 (1 + L (K)) (6)

where the zero-exchange linear susceptibility per spin site is given by

χ0 =
µ0m

2

3kTV
(7)
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This agrees with previous results [9] and for zero exchange the Curie law is recovered.

The Hamiltonian for a three spin chain with two different exchange constants is

H3−spin = −Jc1,2 ~e1 · ~e2 − Jc2,3 ~e2 · ~e3 − µ0m ~H · (~e1 + ~e2 + ~e3) (8)

where Jc1,2 and Jc2,3 are the exchange constants between spins 1 and 2, and spins 2 and

3, respectively. From Ref. [15] the classical partition function for the three spin chain

can be written as

Z3−spin =
∞∑

l=0

∞∑
m=0

∞∑
n=0

(2n + 1) (2m + 1) (2l + 1)

(
n m l

0 0 0

)2

×

in (ξ) im (ξ) il (ξ) in (K1,2) im (K2,3) (9)

where K1,2 = Jc1,2/kT and K2,3 = Jc2,3/kT . Here, each of the three terms in (ξ), im (ξ)

and il (ξ) is due to the field acting on each spin and the two terms in (K1,2) and im (K1,2)

are due to the two exchange interactions. The coefficient includes the Wigner 3j symbol

which occurs in angular momentum problems, and can be readily calculated for small

values [23]. This is of the same form as that of Joyce [7] for a cluster treated via a

Bethe-Peierls-Weiss approximation. Again, expanding to the first order in ξ leads to

the low-field susceptibility per spin site

χ3−spin = χ0

(
1 +

2

3
[L (K1,2) + L (K2,3) + L (K1,2) L (K2,3)]

)
(10)

and again for zero exchange the Curie law is recovered.

3. Extension to an N-spin chain

The terms in Eqs. 6 and 10 can be interpreted as follows: The single term(s) L (Ki,i+1)

are due to nearest-neighbour exchange interactions. The product term in the case of

three spins is due to next-nearest-neighbours spin correlations, in this case from spin 1

to spin 3 via spin 2. This can be extended to four spins where

χ4−spin = χ0




1 +
2

4




L (K1,2)

+L (K2,3)

+L (K3,4)

+L (K1,2) L (K2,3)

+L (K2,3) L (K3,4)

+L (K1,2) L (K2,3) L (K3,4)







(11)

This result is also obtainable from the expansion for four spins [7, 15]. From an

examination of the structure it is possible to deduce an N -spin structure for the

susceptibility. Thus,for an N -spin chain with nearest-neighbour exchange we can write

χN−spin = χ0

(
1 +

2

N

N−1∑

k=1

N−k∑
j=1

k−1∏
i=0

L (Kj+i,j+1+i)

)
. (12)
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Where the exchange between each pair is taken as equal this simplifies to

χN−spin = χ0

(
1 +

2

N

N−1∑

k=1

(N − k) L (K)k

)
. (13)

Using the arithmetico-geometric progression (Eq. 0.112 of [24]) for the above series, we

can write for N spins

χN−spin = χ0

(
1 + L (K)

1− L (K)
− 2L (K)

N

1− L (K)N

(1− L (K))2

)
(14)

which is the zero-field susceptibility formula of Fisher [6, 9] for an open chain of N spins

with equal classical Heisenberg exchange acting between them. It is worth noting that

this expression for the susceptibility is consistent with that resulting from the zero-field

fluctuation relation [12]

χN−spin = χ0

(
1 +

2

N

N∑
i>j

〈~ei · ~ej〉
)

(15)

where Fisher’s two spin correlation function result for open ended chains, with equal

exchange along the chain [6, 9, 20],

〈~ei · ~ei+n〉 = L (K)n (16)

is a special case.

4. Comparison with finite spin quantum spin models

Schmidt et al. [11] presented exact analytical expressions for the high temperature

expansion for finite quantum Heisenberg spin systems with different exchange between

nearest neighbour spins. These were employed by Luban et al. [13] for cubane-type

magnetic molecule {Cr8} with four different exchange constants. Employing the generic

formula of Schmidt et al. to a three spin chain as considered here leads to

χ3−spin = χ0

(
1 +

2

3

[
K1,2

3
+

K2,3

3
+

K1,2K2,3

9
− 3

4s (s + 1)

[(
K1,2

3

)2

+

(
K2,3

3

)2
]])

.(17)

This is in agreement with a low exchange (high-temperature) expansion of Eq. 10, where

the low value approximation L (x) ∼= x/3 is taken, but includes a quantum correction

term, which vanishes for very large spin number. An empirical hybrid of these would be

χ3−spin = χ0

(
1 +

2

3

[
L (K1,2) + L (K2,3) + L (K1,2) L (K2,3)− 3

4s (s + 1)

[
L (K1,2)

2 + L (K2,3)
2]

])
(18)

which would agree with both Schmidt high temperature quantum result and the all

temperature classical result (for infinite spin number). Calculations similar to those

of Schmidt et al., where the high temperature data generated by diagonalizing the

Hamiltonian were fitted to a polynomial and related to the formulae of Schmidt et

al. might be repeated for the full temperature range, using the various formulae above.

Furthermore the N spin classical susceptibility formulae should be of use in studies such

that of Engelhardt et al. [19] which aim to distinguish between quantum and classical

effects.
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Figure 1. Data generated using exchange parameter values Jci,i+1/k, for
a 5-spin chain (i = 1...4) {−135K,−200K,−300K,−380K} with white noise
added. Parameter estimates resulting from the constrained non-linear fit are
{−133K,−205K,−316K,−366K} which are accurate to within 5.4% of the true
parameter values. (The vertical axis is effectively normalised χT ).

5. Simulations for classical spin chains

Following Schmidt et al., we exclude factors such as diagmagnetic contribultions and look

exclusively at how accurately exchange parameters may be estimated from simulated

susceptibility data. For N -spin chain up to length N = 5 theoretical susceptibility

data were generated and white noise added. The signal-to-noise ratio is approximately

0.25 × 10−3. Then, using Maple’s sequential quadratic programming (SQP) routine to

perform a constrained non-linear fitting of Eq. 12 to the generated data, it was possible

retrieve estimates for the exchange parameters. In the case of the 3-spin chain and

the 4-spin chain, estimates for the respective two and three exchange parameters are

readily obtained. For the 5-spin chain, in order to achieve reliable convergence and

so obtain reasonable estimates for the four exchange parameters, constraints specifying

the sign of the exchange parameters were incorporated into the fitting procedure. As

discussed by Schmidt et al., this requires additional magneto-chemical information in

order to generate estimates for the exchange parameters. The fits were performed in

the temperature range 50K–300K and the case of the 5-spin chain is presented in Fig. 1

with the chosen and retrieved exchange values. The low temperature range has been

avoided, where in experiments quantum effects lead to disagreement with the classical

model. For the 4-spin chain the linear co-dependence of the parameters is illustrated in

Fig. 2, by the rod-like pattern in the 3-D plot for repeated simulations, consistent with

the line-like pattern observable in Fig. 4 of Schmidt et al. for the case of two linear

co-dependent exchange parameters.
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Figure 2. Repeated simulation of fitting to susceptibility data generated for the
4-spin chain using exchange parameter values {−150K,−125K,−90K}. The linear
co-dependence is illustrated by the rod-like structure.

6. Conclusions

Here we present a classical, low-field susceptibility formula for an open chain of N spins,

with arbitrary and different exchange between each pair of nearest neighbours. Within

this formula, the exchange parameters appear as arguments in Langevin functions. The

formula shows the expected asymptotic behaviour for small and large exchange and for

equal exchange, the result of Fisher [6, 9] is recovered. It is also in agreement with the

appropriate high-temperature expansion resulting from Schmidt et al. [11] for the limit

of large spin number. Simulations demonstrate that it is possible to retrieve up to four

different exchange constants using this formula.
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