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Abstract 

 

THE DESIGN & SYNTHESIS OF A GRAPHICAL SYSTEM FOR 

THE VISUAL REPRESENTATION OF  

AUTOMOTIVE DATA 

 

 

By 

 

Dominick P. O’ Brien 

 

 

Master of Engineering 

 

 

Waterford Institute of Technology 

 

 

This report investigates the design and implementation of a system that visually 

represents automotive data upon a connected graphical display. The devised system 

obtained vehicle data from numerous CAN nodes that were constructed to formulate an 

automotive network. The data was transmitted on this network and was interpreted by an 

intelligent-device. The intelligent-device manipulated the CAN data into an appropriate 

digital video stream. This stream was then converted into analogue format for display 

upon a monitor’s screen. This report details all aspects of the design, testing and 

synthesis of this automotive application. 
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Chapter 1 - Introduction 

 

 
 

 

 

 

1.1 Introduction 

Since the advent of vehicular instrumentation, dash-panel displays have traditionally been 

implemented with analogue and mechanical dials and gauges. For example, fuel and 

temperature gauges were analogue electrical devices; whereas speedometers and 

tachometers were mechanically driven. From this dash-panel displays have today evolved 

to incorporate both analogue and digital dials and gauges. For instance, some cars 

currently utilise analogue electrical speedometer devices while they also include a 

tachometer that is comprised of a LCD (Liquid Crystal Display) [1]. The focus now is on 

developing dash-panel displays that dynamically represent vehicular data utilising a 

complete graphical approach. 

 

This research project investigates the design and synthesis of an application which 

visually represents simulated automobile data. This information is obtained via a CAN 

(Controller Area Network) network and is displayed upon a connected monitor. Modern 

day vehicles contain many sensors that measure various performance parameters; e.g. 

automobile speed, oil temperature etc. Therefore this project necessitates a suitable 

method for mimicking the operation of such sensors in order to replicate authentic 
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vehicle data. Once obtained, this information is transmitted over a CAN network and it is 

essential to appropriately manipulate it with the aim of representing it proportionally 

upon a display-device. Consequently, the goal of this research project is to utilise a 

suitable intelligent-device and additional resources to process CAN information and 

configure the data for visual representation. For this system a television screen is 

sufficient to act as a monitor utilised to illustrate vehicle data. 

 

 

 

Figure 1: Application Overview 

 

 

1.2 Thesis Organisation 

The material and information presented in this thesis is compiled into two main sections. 

The first section, Literature Review, gives an overview of the protocols, technologies and 

components researched in order to formulate a suitable methodology for this application. 

This section is comprised of Chapters 2, 3 and 4. 

 

The second section, System Synthesis, details the implementation of the system design 

with respect to the findings of the Literature Review section. This particular section 

encompasses Chapters 5, 6 and 7. Finally, there are conclusions drawn by the author 

based on the outcomes of the research and system implementation. 

 

The work presented in this thesis is laid out as follows: 
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Chapter 2: Chapter 2 discusses the CAN protocol used for in-vehicle networking; 

detailing the exact composition of a CAN message and the physical 

make-up of an automotive network. 

Chapter 3: Chapter 3 introduces the fundamentals of video processing to the 

reader. It describes the basics relating to video data and discusses in 

detail a particular digital video standard. 

Chapter 4: Chapter 4 details the selection of a suitable processor for utilisation 

within this system. This chapter describes how the author evaluated 

numerous processors under several key considerations in order to 

establish the most fitting component for the system’s development.   

Chapter 5: Chapter 5 outlines the implementation of the CAN network employed 

in this system. It describes to the reader how the selected components 

were coordinated, both in terms of hardware and software, to instigate 

the network. An account of the test algorithms used to establish correct 

functionality of the network is also included. 

Chapter 6: Chapter 6 discusses the measures taken by the author to implement a 

video display incorporating the device chosen in Chapter 4. It 

describes how encountered errors were overcome in order to devise a 

correct video module strategy. 

Chapter 7: Chapter 7 describes how the strategies devised in Chapters 5 and 6 

were combined to formulate the system’s synthesis. A discussion is 

included outlining how encountered problems were surmounted in 

order to visually represent vehicle data upon a display device. 

Chapter 8: Chapter 8 outlines the conclusions derived by the author based on the 

research and system implementation conducted. A discussion regarding 

further possibilities for research based on findings from this particular 

study is also provided. 

 

Table 1: Table of Chapters 
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SECTION I – TECHNICAL & 

LITERATURE REVIEW 
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Chapter 2 - CAN Bus Protocol 

 

 
 

 

 

 

2.1 Introduction 

This chapter details and outlines the CAN bus protocol. The information given in this 

chapter is partitioned into the following sections: 

 

• An overview describing the history and fundamental ideas behind the introduction 

of the CAN protocol for utilisation as a vehicle networking standard. 

 

• An account detailing how the CAN protocol is physically implemented including 

a discussion on bit rates and timing. 

 

• A look at what exactly constitutes a CAN message and how devices connected to 

the network achieve synchronisation with each another. 

 

• A synopsis portraying arbitration and error confinement within the CAN bus 

protocol. 
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2.2 CAN Bus Protocol - An Overview 

 The CAN protocol is an advanced asynchronous serial-bus system that efficiently 

supports distributed control systems. It was initially developed for use in automobiles by 

Bosch in the late 1980s [2]. The CAN protocol is internationally standardised by the ISO 

(International Standardisation Organisation) and the SAE (Society of Automotive 

Engineers) [3]. ISO11898 is the international standard for high-speed CAN 

communications in automobiles. CAN is presently being employed as the standard for 

vehicle communications within Europe by automobile manufacturers. Meanwhile, it is 

gaining more mainstream acceptance within the United States [4]. 

 

CAN is similar in principle to other serial communication protocols such as SPI (Serial 

Peripheral Interface) [5]; however it is more complex. It is a “message-based” protocol as 

opposed to an “address-based” network system such as I2
C (Inter-Integrated Circuit) [6]. 

This essentially means that devices connected to a CAN network do not have unique 

addresses, but rather the message(s) that a device sends out onto the network possesses a 

unique ID number [7]. As a result, each device on the network listens to every message 

transmitted on the bus and determines what action, if any, it needs to take. For that 

reason, this implies that a CAN network may contain multiple masters. 

 

The development of CAN began as a result of the increasing quantity of electronic 

components and control systems being incorporated into modern-day motor vehicles [3], 

[8]. Examples of such components/systems include engine management systems, 

transmission control and central locking. The integration of these electronic 

components/control systems result in additional safety and comfort features for the 

driver; thus enhancing the vehicle as a whole. To further these improvements it was 

necessary for the different control systems to exchange information [3], [7]. Previously, 

this was carried out using discrete interconnection of the different systems, i.e. point-to-

point wiring. The requirement for data exchange has since grown to such an extent that a 

cable network with a length of up to several kilometres, with many connectors, would be 

required if point-to-point wiring was employed. 



 7 

 

Figure 2: Automobile Systems Interconnected using Point-to-Point Wiring 

 

 

Subsequently a solution to this problem was realised with the design and introduction of 

the CAN bus protocol. Within the CAN protocol point-to-point wiring was replaced by a 

single serial-bus connecting all control systems and electronic devices on the network [2], 

[4]. 

 

The design of the CAN protocol had to take into consideration some special requirements 

due to its employment within a vehicle. Examples of such special requirements include 

durability and reliability. This is accomplished in the design by adding some CAN 

specific hardware to each control unit that provides the “rules” of the protocol for 

transmitting and receiving information via the bus. The combination of CAN specific 

hardware and a particular control system/electronic device leads to the formulation of a 

CAN node. Each of the nodes on a particular network has a solitary interface to the 

serial-bus network thus allowing communication between attached nodes. Due to the fact 

that each of the nodes on a CAN network connects to the same serial-bus there is a 

considerable reduction in cable length requirements. 
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Figure 3: CAN Serial-Bus Interface Leading to Reduced Cable-Lengths 

 

 

As CAN is an asynchronous multi-master message-based protocol, the designer can 

implement a degree of flexibility into how and when nodes communicate over the 

network. For instance, a particular node may only transmit a message every twenty 

milliseconds, while another node may only transmit data if, for instance, a temperature 

rises above a pre-determined value [9]. Therefore it is easy to see that the use of CAN 

within an automobile introduces adaptability and practicality to a designer for each 

individual network. 

 

2.3 CAN & the OSI Model 

The CAN protocol, like many other network topologies, can be illustrated using the 

seven-layer OSI (Open Systems Interconnection) model [4], [10], [11]. This layered 

approach is intended to achieve interoperability between standard components from 

different manufacturers. With reference to this model the CAN protocol defines the 

functions and services of the Data Link Layer and also the bit-timing and synchronisation 

components of the Physical Layer [12]. The remaining elements of the Physical Layer 

and the five additional layers are purposely not defined within the CAN protocol [10]. 

The implementation of these additional layers is completely at the hand of the system-

designer so that specific system requirements can be met. 
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Application Layer 

Presentation Layer 

Session Layer 

Transport Layer 

Network Layer 

Data Link Layer 

Physical Layer 

 

 

 

 

 

 

 

 

 
Figure 4: CAN Protocol with Reference to the OSI Model 

 

 

The additional five layers of the OSI model are typically implemented by a system-

designer using a number of hardware/software components which complete the formation 

of a CAN node. The components that classically comprise a node are as listed below: 

 

• Application Software that controls a particular function e.g. Measure water 

temperature. Application software executing within a particular CAN node may 

perform a singular function, or a number of functions depending on the situation. 

 

• Microcontroller (or a corresponding intelligent embedded device) upon which 

the application software executes. This device also transmits/receives relevant 

information to/from a CAN Controller at typical digital logic levels. 

 

Logic Link Control (LLC) 

- Acceptance Filtering 

- Overload Notification 

- Recovery Management 

Medium Access Control (MAC) 

- Data Encapsulation/Decapsulation 

- Framing & Arbitration 

- Error Checking & Error Flags 

Physical Signalling 

- Bit Encoding/Decoding 

- Bit Timing/Synchronisation 

Physical Medium Attachment (PMA) 

- Driver/Receiver Characteristics 

Medium Dependant Interface (MDI) 

- Connectors/Wires 



 10 

• CAN Controller is used to read data from the microcontroller and write it to a 

CAN Transceiver. Conversely, a CAN Controller may receive data from a CAN 

Transceiver, via the network, and transmit it to the microcontroller. The CAN 

Controller generally interfaces with a microcontroller (or an equivalent intelligent 

embedded device) via a SPI link. This device typically contains components 

which allow for the filtering of unwanted messages transmitted over the network 

resulting in the reduction of the microcontroller’s overhead. 

 

• CAN Transceiver exchanges information with a CAN Controller and broadcasts 

it over the asynchronous network. Additionally this device converts the digital 

signals supplied to it by a CAN controller to signals suitable for transmission over 

the bus cabling. A CAN Transceiver also provides a buffer between the CAN 

Controller and the high-voltage spikes that can be generated on the CAN bus by 

outside sources (EMI, ESD, electrical transients, etc.). 

 

 

 

Figure 5: Typical CAN Node 
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The CAN Controller and Transceiver are the hardware units, mentioned earlier, that help 

to meet numerous requirements like durability and reliability. With the popularity of 

CAN increasing, not just within the automotive industry [9], but also within other sectors, 

many IC (Integrated Circuit) manufacturers have taken the step of integrating CAN 

Controller modules into their microcontrollers. This consequently eradicates the SPI link 

previously needed between a microcontroller and a peripheral CAN Controller. 

 

2.3.1 CAN’s Physical Layer 

As mentioned earlier, the CAN protocol only defines the bit-timing and encoding 

portions of the Physical Layer. The Physical Layer essentially defines how the raw-data 

is actually transmitted over the network [7]. 

 

2.3.1.1 Bit Encoding 

Fundamentally the CAN bus protocol uses NRZ (Non-Return to Zero) bit-encoding to 

represent data [13]. NRZ encoding represents data with Logic 1 or 0 levels during the 

entire bit time. If two or more Logic 1s (or Logic 0s) occur in succession, the waveform 

does not return to Logic 0 (Logic 1) level until Logic 0 (Logic 1) actually occurs. 

 

 

 

Figure 6: An Example of a NRZ Waveform 

 

 

The CAN protocol specifies two logical states - dominant (Logic 0) and recessive (Logic 

1). ISO11898 defines a differential voltage, VDIFF, to represent these two logic states. 



 12 

Typically, a twisted-wire pair is used to transfer data over the network using. Data can 

also be transferred over the network using other physical-phenomena e.g. light pulses. 

The wires are twisted together to prevent electromagnetic interference from other 

electrical devices internal or external to the vehicle. One of the wires is given the label 

CANH (CAN High), while the other is given the label CANL (CAN Low) [3], [7]. The 

differential signal between the voltages carried in each wire defines the bus state. 

 

CANLCANHDIFF VVV −=    Eq. 2.1 

 

, where  VDIFF is the differential voltage (Volts), 

VCANH and VCANL are the CANH and CANL voltages respectively (Volts). 

 

 

 

Figure 7: Differential Bus Signalling 

 

 

In the recessive state, the differential voltage between the two signals is less than a 

minimum threshold. Conversely, in the dominant state the differential voltage between 

CANH and CANL is greater than a minimum threshold. A dominant bit will always have 

precedence over a recessive bit as CAN uses the Wired-AND mechanism [3]. Under this 

system if any node transmits a dominant bit the bus resides in the dominant state; the 

CAN bus only exists in the recessive state when all nodes on the network transmit 

recessive bits. 
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Node A Node B Node C Bus State 

Dominant Dominant Dominant Dominant 

Dominant Dominant Recessive Dominant 

Dominant Recessive Dominant Dominant 

Dominant Recessive Recessive Dominant 

Recessive Dominant Dominant Dominant 

Recessive Dominant Recessive Dominant 

Recessive Recessive Dominant Dominant 

Recessive Recessive Recessive Recessive 

 

Table 2: Truth-Table for Wired-AND Mechanism 

 

 

 

Figure 8: ISO11898 Nominal Bus Levels 
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2.3.1.2 Transmission Medium and Connectors 

With reference to the OSI model, even though the CAN protocol itself does not define the 

PMA and DMA sub-layers of the Physical Layer; ISO-11898-2 makes recommendations 

for the PMA and DMA sub-layers. ISO-11898-2, however, does not define the mechanical 

wires and connectors to be used; but on the other hand stipulates numerous electrical 

specifications for the mechanical connectors and wires. The specification requires that 

each end of the CAN network is terminated using 120Ω resistors [10]. The terminating 

resistors prevent data on the network from being reflected back when the signal reaches 

the end of the system. If the signal was reflected it could cause errors on the CAN 

network. 

 

 

CAN Node CAN Node

CANH

CANL

Terminating
Resistor

Terminating
Resistor

 

Figure 9: CAN Network with Terminating Resistors 

 

 

2.3.1.3 Bit Rates & Timing 

The CAN protocol can achieve data rates of up to 1MBit/s. In today’s terms this is 

considered to be moderately slow when compared to other networks. Nevertheless, 

CAN’s transfer speed is more than adequately equipped to deal with the transmission of 

data inside in an automobile. One of the appealing aspects of CAN for network designers 

is that it’s bit rate, bit sample point and the number of samples in a bit period are user 

programmable. Modern high-speed CAN networks use crystal oscillators to derive their 
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bit timing. Each node has its own timing reference but it is not necessary for all nodes on 

a particular network to use the same oscillator frequency [12]. 

 

A CAN message is made of numerous bits. Each of these bits has a specific period, tbit. 

This parameter, tbit, is itself made up of a number of non-overlapping portions. 

 

 

 

Figure 10: CAN Bit Time Segments 

 

 

These non-overlapping segments are made up from an integer number of units called 

time quantum, tq. The NBR (Nominal Bit Rate) is defined within the CAN specification to 

be the number of bits per second transmitted by an ideal transmitter with no 

resynchronisation and can be described using the following [14]: 

 

bit

bit
t

fNBR
1

==    Eq. 2.2 

 

, where  NBR is the nominal bit rate (Seconds), 

fbit is the frequency of a bit (Hertz), 

tbit is the bit period (Seconds). 

 

From the preceding diagram it can be seen that the NBT (Nominal Bit Time), or tbit, can 

be expressed as a summation as follows: 

 

21Pr PSPSopSegSyncSegbit ttttt +++=  Eq. 2.3 
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, where  tbit is the bit period (Seconds), 

  tSyncSeg is the synchronisation segment period (Seconds), 

  tPropSeg is the propagation segment period (Seconds), 

tPS1 and tPS2 are the periods (Seconds) for phase segment 1 and 2 

respectively. 

 

The first portion of the NBT, the synchronisation segment (SyncSeg), is used to 

synchronise nodes connected to the bus. The duration of this segment is always one tq. 

Bit edges are expected to occur during this portion. The propagation segment (PropSeg) 

is user programmable and is used to compensate for propagation delays between 

communicating nodes. The system-designer can program the duration of the propagation 

segment to be from one to eight tq in duration. Phase segments 1 and 2 (PhaseSeg1 and 

PhaseSeg2) are used to compensate for any edge error that occurs around the sample 

point. The sample point is the instance in the bit time where the logic level is read.  This 

is typically read at the end of PhaseSeg1. However, the system-designer has the option to 

sample the logic level three times during the NBT. If so, two additional samples are taken 

at half tq intervals prior to the end of PhaseSeg1. The durations of PhaseSeg1 and 

PhaseSeg2 are also user defined; PhaseSeg1 can be lengthened, or conversely, 

PhaseSeg2 can be shortened. PhaseSeg1 is programmable from one to eight tq and 

PhaseSeg2 is programmable from two to eight tq [14]. 

 

The duration of a time quantum, tq, is derived from the period of the oscillator, tosc, 

employed within an individual node. The base tq is equal to twice tosc and is also equal to 

one tq clock period, tbrpclk. The figure for tq can be modified by the system-designer from 

its base value using a programmable prescalar called the BRP (Baud Rate Prescalar) in 

order to change the period of tbrpclk [14]. The relationship between these parameters is 

mathematically illustrated below: 

 

 oscq tBRPt ××= 2    Eq. 2.4 
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osc

q
f

BRP
t

×
=⇒

2
   Eq. 2.5 

 

, where  tq is the time quantum (Seconds), 

  BRP is a user-configurable prescalar integer unit, 

  tosc is the period of an oscillator used within a node (Seconds), 

  fosc is the frequency of an oscillator used within a node (Hertz). 

 

 

 

Figure 11: Time Quantum, tq, & the Bit Period, tbit 

 

 

2.3.1.4 Bus Lengths & Synchronisation 

ISO11898 states that a CAN Transceiver must be able to drive a bus length of 

approximately forty-metres at a data rate of 1MBit/s [10]. A longer bus length can be 

realised by implementing a slower data-rate on the network. 
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Bit Rate (kBits/s) Bus Length (m) 

1000 30 

500 100 

250 250 

125 500 

62.5 1000 

 
Table 3: CAN Bit Rate vs. Bus Length [14] 

 

 

Within CAN, relationships exist between the bit timing parameters and the oscillator 

tolerances; and as a result physical bus propagation delays. For a CAN network the 

propagation delay, tprop, is calculated as being a signal’s round trip time on the physical 

bus, tbus, plus the output driver delay, tdrv, plus the input comparator delay, tcmp. Assuming 

all devices on a CAN bus have similar component delay-times the propagation delay of a 

CAN network can be expressed mathematically as follows: 

 

)(2 cmpdrvbusprop tttt ++×=   Eq. 2.6 

 

, where  tprop is the network propagation delay (Seconds), 

  tbus is the time duration of a signal’s round-trip (Seconds), 

  tdrv is the delay of the output driver (Seconds), 

  tcmp is the input comparator delay (Seconds). 
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Figure 12: Propagation Delay between a Transmitting & Receiving Node 

 

 

The bit timing parameters, the oscillator tolerances, and the propagation delays of a CAN 

network are interrelated due to the fact that the later the sample point in the bit period is 

taken, the more tolerance the system has to propagation delay. This means greater bus 

lengths can be installed. Conversely a sample taken closer to the midpoint of the bit 

period achieves greater oscillator tolerance levels. Therefore it is easy to see that a 

system-designer is left with a trade-off; greater bus length vs. large oscillator tolerance 

[12]. 

 

Earlier, it was mentioned that each CAN node has its own timing reference and that it is 

not necessary for all nodes on a particular network to use the same oscillator frequency. 

However all devices connected to a CAN bus must operate at the same NBR. This is 

achieved by the system-designer by varying the BRP of each node to ensure a consistency 

in nominal bit rate between all devices connected to the network. Factors such as noise, 

phase shifts, and oscillator drift lead to situations where the ideal bit rate does not equal 

the actual bit rate in a real system. Therefore, the nodes must have a method for achieving 

and maintaining synchronisation with messages transmitted on the bus [14]. 

 

As discussed previously a dominant bit will always have precedence over a recessive bit. 

With this style of arbitration in place each node involved with arbitration must be able to 

sample each bit level with the same bit time otherwise invalid arbitration may occur. For 

the CAN protocol there are two categories of synchronisation which guarantee suitable 
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decoding of messages despite hindrances like phase errors etc. [12]; the two categories 

are as follows: Hard Synchronisation and Resynchronisation. 

 

Hard Synchronisation occurs on the first recessive-to-dominant (Logic 1 to Logic 0) edge 

during an idle period on the network which indicates a Start-of-Frame condition. Every 

CAN Controller on the network now initialises its current bit period timing at this first 

recessive-to-dominant transition with SyncSeg [12], [14]. At this point, all of the 

receiving nodes will be synchronised to the transmitting device. Hard Synchronisation 

occurs only once during a message. 

 

Resynchronisation is carried out once for each recessive-to-dominant transition 

throughout the remainder of the received message. It is implemented to uphold the 

preliminary synchronisation carried out on the first recessive-to-dominant transition using 

Hard Synchronisation. If Resynchronisation is not employed receiving nodes could loose 

synchronisation due to factors such as oscillator drift and noise. Resynchronisation is 

typically implemented using a PLL (Phase Lock Loop)  which compares and eradicates 

any variations existing between the actual recessive-to-dominant transition and the 

expected (during SyncSeg) recessive-to-dominant transition [2], [14]. Resynchronisation 

compensates for any phase error by as much as the user defined parameter SJW 

(Synchronisation Jump Width). SJW is not a segment within the bit period, tbit; it is a 

value which defines the maximum number of tq by which a bit period can be 

lengthened/shortened in the event of resynchronisation [12]. The user can program the 

value of SJW to be in the range of one to four tq. 

 

 

 

Figure 13: SJW used for Resynchronisation 
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The stipulations seen in the table below must be adhered to by a system-designer in order 

to comply with the synchronisation standards outlined in ISO11898 [2], [14]. 

 

 

1. 
Only a single synchronisation within a particular bit 

period, tbit, is allowed. 

2. 
Only recessive-to-dominant transmissions are to be 

used for synchronisation purposes. 

3. 

Hard Synchronisation is only performed whenever 

there is a recessive-to-dominant transition during an 

idle-bus condition. 

4. 
All other recessive-to-dominant transitions will be used 

for resynchronisation purposes. 

5. SJW ≤ PhaseSeg2 ≤ PhaseSeg1 

 

Table 4: Important CAN Bit Timing & Synchronisation Rules 

 

 

2.3.2 CAN’s Data Link Layer 

The Data Link Layer is primarily responsible for assembling the encoded data produced 

in the Physical Layer into an ISO11898 structured frame. This layer, with reference to the 

OSI model, is also required to perform arbitration and error confinement [8], [9]. For this 

discussion, with reference to the OSI model, it is only necessary to describe the MAC 

(Medium Access Control) section of the Data Link Layer. The LLC (Logic Link Control) 

section is outside the scope of this discussion. 

 

2.3.2.1 Message Framing 

As outlined above the raw-data encoded in the Physical Layer has to be bundled into a 

predefined structure called a frame as outlined in ISO11898. The CAN protocol defines 
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four different types of frames [9], [15]. A brief description of the various frame types is 

described in the table below. 

 

 

Data Frame: Data is sent by a transmitting node to one or more receiving 

nodes. This is the most common type of CAN message. 

Remote Frame: A Remote Frame is used when one node requests the transfer of 

information from another device connected to the CAN bus. 

Error Frame: This type of CAN message is generated by a node when it detects 

a particular protocol error defined within the ISO11898 standard. 

Overload Frame: This is used within the CAN protocol to request additional time 

needed by a node to process received information. 

 
Table 5: Four Categories of CAN Messages 

 

 

From above it can be seen that each of the message frames serves its own particular 

function. Each of the frame types differ somewhat in their structure; although substantial 

similarities exist between all of them. 

 

Data Frame 

The Data Frame will be discussed in greater detail than the other categories because it is 

the most commonly employed frame type. 
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Figure 14: Standard CAN Data Frame 

 

 

The diagram above illustrates the composition of a standard CAN Data Frame. The 

frame consists of a number of fields; this is true for the remaining three frame types. A 

field within a frame is compromised of a number of bits. The composition of a Data 

Frame is as described below [7], [15], [16]: 

 

• Start-of-Frame Field: The Start-of-Frame field is always one bit in length and is 

represented by a recessive-to-dominant transition. It is used to indicate the start of 

a new message. Also, as discussed previously, the Start-of-Frame field is also 

used for Hard Synchronisation purposes. 

 

• Arbitration Field: This field is comprised of twelve bits and is used to prioritise 

messages transmitted on a CAN network. The first eleven bits of this field consist 

of the Identifier Field portion. These eleven bits contain the ID which is used to 

identify a particular CAN message. The Identifier Field portion is therefore used 

by network-nodes to establish if a received message is relevant to their own 

specific function; if not, nodes will just ignore the message. This field is also used 

for arbitration purposes which will be discussed in greater detail later. The 



 24 

Remote Transmission Request bit is used to distinguish between a Data Frame 

and a Remote Frame. If this bit is recessive it indicates that the message is a 

Remote Frame, otherwise the frame is a Data Frame. 

 

• Control Field: The Control Field is composed of six bits, the first of which is 

labelled the IDE (Identifier Extension) bit. In its dominant state it specifies that 

the message is a Standard Data Frame. Otherwise, this bit indicates that the 

message is an Extended Data Frame. A discussion outlining the principal 

differences between a Standard Data Frame and an Extended Data Frame will be 

described later. The following bit in this field is reserved and is defined to be 

dominant. The additional four bits that make up the Control Field are the DLC 

(Data Length Code) bits. The DLC is used to indicate the number of bytes of data 

(0 - 8) contained within the following Data Field of the message. 

 

• Data Field: This field contains the actual information data; e.g. oil pressure, 

vehicle speed etc. The length of the Data Field is controlled by the contents of the 

DLC. The Data Field can contain anything from zero to sixty-four bits (0 to 8 

bytes). 

 

• CRC Field: The CRC Field (Cyclic Redundancy Check) is used to detect any 

possible transmission errors and contains a fifteen bit check sequence and a CRC 

Delimiter bit. A receiving node compares the CRC it has computed from the 

received frame to the information contained within the received message to 

establish if any errors have occurred. 

 

• ACK Field: The ACK Field (Acknowledge) contains two bits. During the ACK 

slot bit a transmitting CAN node sends out a recessive bit. Any node on the 

network that has received the transmitted message without any errors 

acknowledges the correct message reception by sending a dominant bit back to 

the transmitting node. The other bit within the ACK Field, the ACK delimiter bit, 

must be recessive at all times and cannot be overwritten by a dominant bit. 
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• End-of-Frame Field: This field is used to signify the end of the CAN message. It 

consists of seven consecutive recessive bits. 

 

The Data Frame described above is a Standard Data Frame as outlined by Bosch [2]. 

The CAN protocol describing a Standard Data Frame is entitled CAN2.0A. CAN2.0B is a 

subsequent protocol release which describes an Extended Data Frame. The fundamental 

difference between standard and extended frames is that an extended frame has the 

capacity to support a twenty-nine bit Identifier Field as opposed to a standard frame’s 

eleven bit Identifier Field. Thus the extended frame format possesses a greater ID-range 

and relieves the system-designer from compromises with respect to defining well-

structured identification schemes [2], [3]. Overall, the extended format is similar to the 

standard CAN frame. As discussed earlier, the two frames are distinguishable by the IDE 

bit within the Control Field. Within an extended frame the Identifier Field is separated 

into eleven and eighteen bit portions respectively. CAN2.0B is capable of receiving 

CAN2.0A messages; however this situation is not reciprocal, CAN2.0A does not support 

the reception of CAN2.0B messages. 

 

CAN2.0A is used within the vast majority of automobile applications because an eleven 

bit Identifier Field more than adequately realises typical system requirements. Another 

reason for its employment within the majority of applications is the fact that it also 

requires less overhead and silicon space than CAN2.0B implementations. It has been 

established that the implementation of CAN2.0B is not always necessary and its 

employment is only necessary under certain circumstances [4]. 

 

Remote Frame 

ISO11898 specifies that any node on a CAN network can send a Remote Frame which 

essentially is a request for information from another attached node. The transmission of a 

Remote Frame is analogous to asking a question. The node that has the “answer” will 

transmit a message containing the requested information to the node that sent the Remote 
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Frame [15]. The composition of a Remote Frame is identical to a Standard Data Frame; 

the only exception is that the Remote Transmission Request bit is transmitted in a 

recessive sate. In addition, the DLC portion of the Control Field contains zero to indicate 

that no data will be contained within the Data Field. 

 

Error Frame 

The CAN protocol allows any node on the network that detects a bus error to generate an 

Error Frame. An Error Frame is comprised of two fields; an Error Flag Field and an 

Error Delimiter Field. The content of the Error Flag Field depends on the error-status of 

the node that has detected the error. The Error Delimiter Field consists of eight recessive 

bits. 

 

 

 

Figure 15: CAN Error Frame 

 

 

Once an Error Frame is formed bus activity returns to normal and the node in which the 

error occurs attempts to re-transmit the aborted message. 

 

Overload Frame 

An Overload Frame is defined within the CAN protocol to allow a node to tell the 

network that it is occupied and is not yet ready to receive any further messages. It is 

comprised of an Overload Flag and an Error Delimiter. 
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2.3.2.2 Arbitration 

ISO11898 allows simultaneous bus access from different nodes; this is known as CSMA 

(Carrier Sense Multiple Access). A node can proceed to transmit a message over the 

network if it detects that the bus is currently residing in an idle state i.e. no other node is 

currently transmitting [15]. The situation can arise however where two nodes attempt to 

transmit a message over the network simultaneously. Consequently a method of 

arbitration is employed within the Data Link Layer to establish which node may continue 

its transmission. 

 

Many techniques exist within network topologies to implement arbitration [11], however 

the CAN protocol stipulates that the CSMA/CD+AMP (Carrier Sense Multiple Access 

with Collision Detection and Arbitration on Message Priority) technique be used [3], 

[16]. This arbitration methodology involves determining the priority of messages to 

establish which node may proceed with transmission. A message with a low binary value 

in its Identifier Field will have a high priority based on the Wired-AND logic (a dominant 

bit overwrites a recessive bit) discussed previously. 

 

 

 

Figure 16: Arbitration Based on the Identifier Fields of Two Nodes 

 

 

For the diagram above Node B has a higher priority over Node A because it’s Identifier 

Field has a lower binary value than that of Node A. Subsequently if Node B and Node A 

both attempt to transmit a message concurrently Node A will loose arbitration and Node B 

can proceed with its message transmission. 
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2.3.2.3 Error Confinement 

As CAN was initially developed for use within the automotive environment the protocol 

had to employ a methodology to efficiently process errors in order to acquire a 

wholesome share within the marketplace [9]. As described previously, ISO11898 allows 

all CAN nodes to generate Error Frames upon detection of an error. The nodes are 

intelligent enough to assess whether an error is of a permanent or temporary nature. Each 

CAN node has three error states in which it can reside upon detection of a fault. The three 

states are as follows: 

 

1. Error Active 

2. Error Passive 

3. Bus Off 

 

Both CAN2.0A and the subsequent CAN2.0B stipulate that each CAN node should 

contain both a TEC (Transmit Error Counter) and a REC (Receive Error Counter) register 

in order to implement error confinement. The contents of these respective counters are 

incremented by a certain value each time the node transmits/receives an erroneous frame. 

Successful transmission and reception of message frames decrement the contents of the 

two counter registers [3]. 

 

 

 

Figure 17: Error State Diagram for a CAN Node 

 

 

The Error Active state is the typical state in which a network-node resides in after a reset 

condition. When the TEC and REC counters for a particular node contain a values less 
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than 128 the node also resides in this Error Active state. In this condition the node is 

allowed to transmit and receive messages and is also allowed to transmit error frames 

(containing Error Active flags) without constraint. 

 

If either the TEC or the REC register for an individual node contain values between 128 

and 255 the node resides in the Error Passive state. In this state a node is free to 

transmit/receive message frames, although as soon as an Error Passive node transmits an 

erroneous frame further communication of messages is suspended and an Error Passive 

flag is sent out onto the CAN bus. 

 

One aspect of the CAN protocol is that faulty nodes can withdraw themselves from the 

network automatically. The Bus Off state is entered into by a node when the contents of 

the TEC register are greater than 255; at this point all bus activity for this node 

terminates. To return to the Error Active state, and to reset the error counter values, the 

CAN node must be reinitialised. 

 

2.4 Summary 

This chapter examined and described various aspects of the CAN bus protocol. The main 

points to embrace are as follows: 

 

• The CAN protocol considerably reduces cable length requirements within a 

system due to the fact that is a serial-based network topology. 

 

• CAN is robust and reliable, therefore it is ideally suited for use within an 

automotive environment. It is used as the standard for vehicle communications by 

European automobile manufacturers; it is currently gaining mainstream 

acceptance in the United States. 
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• ISO11898 only specifies the bottom two layers of the OSI model for CAN thus 

allowing a system-designer the freedom to customise a network to meet specific 

requirements. 

 

• An appealing aspect of the CAN protocol is that it’s physical parameters, such as 

bit timing etc., are user programmable thus offering a designer control over bus 

lengths and timing. 

 

• The CAN protocol defines its own highly efficient method for arbitrating between 

conflicting nodes in order to avoid transmission conflictions. 

 

• The error handling capability of CAN allows a damaged node to withdraw itself 

from a system; thus damage to an individual node does not hamper the operation 

of the overall network. 
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Chapter 3 - Video Processing 

 

 
 

 

 

 

3.1 Introduction 

As video processing is required to visually represent automobile data within this 

application this chapter details the fundamentals relating to video data and its associated 

standards. The information given in this chapter is separated into the following main 

sections: 

 

• An overview of the constitution of a generic video signal. 

 

• A discussion outlining the most popular video standards. 

 

• A summary detailing how chrominance is represented in a video signal and what 

steps are taken to efficiently utilise bandwidth. 

 

• A synopsis of the ITU-R BT.601 & ITU-R BT656 digital video protocols. 

 

• A brief explanation of how the ITU-R BT.656 protocol is implemented using 

hardware. 
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3.2 Composition of a Video Signal 

In its fundamental existence a video signal is comprised of a two-dimensional array of 

luminance (intensity) and chrominance (colour) data. The video signal is updated at a 

regular frame rate to ensure that perception of motion is conveyed to the human eye. The 

intensity information for each line of video is represented within the signal by a low-

voltage waveform. In conjunction with this, timing information is embedded in the 

analogue signal to ensure that display-devices remains synchronised with the video signal 

[17], [18]. 

 

 

 

Figure 18: Luminance Component of a Elementary Analogue Video Signal [18] 

 

 

For example, in a standard CRT (Cathode Ray Tube) television an analogue video signal 

modulates an electron-beam which results in the illumination of phosphorus on the 

screen. This practise is carried out in a left-to-right, top-to-bottom manner. As a result, it 

can be envisaged that a single video frame is comprised of multiple rows of data, which 

in turn are formed one-by-one on the screen [19]. 
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Figure 19: Numerous Rows of Data form a Single Video Frame 

 

 

The embedded timing signals dictate when the electron-beam is active or inactive. The 

previous diagram illustrates that during the inactive period the electron-beam is allowed 

to retrace from right to left. This is so that it can begin to illuminate phosphorus on the 

next row, or move from the bottom right-corner to the top-left corner of the screen in 

order to begin formulation of the next video frame. 

 

The synchronisation data embedded within a video signal and the timing relationships 

between them are shown in the following diagram. 

 

 

 

Figure 20: Synchronisation Signals Embedded within a Video Signal 

 

 

The HSYNC waveform is the horizontal synchronisation signal and it is used to indicate 

the start of active video on each row of a video frame. Horizontal blanking is the inactive 
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period during which the electron-beam retraces from the right side of the screen back 

over to the next row on the left side. VSYNC is the vertical synchronisation signal. It 

demarcates the start of a new video frame. Vertical blanking is the inactive period during 

which the electron-beam retraces from the bottom right-corner to the top-left corner of 

the display-screen in order to begin formulation of the next video frame [20]. 

 

The FIELD signal indicates, for an interlaced video scan, whether the field being 

displayed is “odd” or “even”. The FIELD synchronisation signal is not applicable to 

progressive scan video systems. 

 

3.2.1 Interlaced and Progressive Scanning 

What exactly constitutes an interlaced and progressive scan, and what is the difference 

between the two? In early analogue television systems bandwidth was a major restriction, 

i.e. systems only had the capacity to transmit so many lines of video per second. 

However, in order to seamlessly convey the perception of movement the video frames 

needed to be updated at an appropriate frequency (≈ 50/60Hz).  

 

A solution to this problem was realised by introducing the concept of interlaced video. 

Within this concept each video frame is split into two fields; one consisting of odd 

numbered row lines and the other composed of even numbered row lines. For an 

interlaced system the television displays the odd-field (even-field) first and then displays 

the even-field (odd-field). To the human eye, because of latencies, it appears that the 

entire frame (made up from the two fields) is being displayed simultaneously. This 

solution ensures that fluid motion is conveyed to the onlooker, while  at the same time 

ensuring bandwidth restrictions are not violated [18], [19]. 
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Figure 21: Interlaced vs. Progressive Video Scan [18] 

 

 

In recent times, due to the advancements in television and video technologies, 

progressive scan video has become more widespread. From the previous diagram it can 

be seen that a progressive video frame is comprised of rows stored in a successive 

manner. The concept of odd and even fields does not apply to progressive scan systems 

as an individual frame is not split in two. Interlaced systems are still utilised, however 

because of the exceptional capabilities of modern television and video technologies 

progressive scan is increasingly prevalent, particularly in Western Europe [18], [20]. 

 

3.2.2 Video - Standards and Resolution 

Numerous analogue video standards are employed worldwide. The primary difference 

between the various standards is found in the manner in which they encode luminance 

(intensity) and chrominance (colour) data. Universally speaking, two standards dominate 

- NTSC (National Television System Committee) and PAL (Phase Alternating Line).  

 

NTSC is predominantly employed in North America and Asia, while PAL on the other 

hand is mainly utilised in Europe and South America. PAL is an enhancement on its older 

NTSC counterpart, improving on colour distortion prevalent with NTSC. HDTV (High 
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Definition Television) is the latest addition to the video standard realm. It is actually a 

digital video standard, as opposed to the other analogue standards previously mentioned, 

and it is forecasted to be the dominant standard in the future [20]. 

 

The fundamentals of NTSC and PAL are relatively similar; a QAM (Quadrature 

Amplitude Modulation) [21] sub-carrier relaying the chrominance (colour) data is added 

to a luminance (intensity) signal to form a composite video baseband signal. NTSC is 

typically implemented using interlaced scanning. It has a frame rate of approximately 

30fps (Frames per Second); therefore fields are updated at 60fps. PAL is equilaterally 

utilised as an interlaced or progressive scan system. It has a frame refresh rate of 

approximately 50fps. Notice that the frame rates of NTSC (60fps) and PAL (50fps) 

coincide with the 60Hz and 50Hz frequencies of AC (Alternating Current) power in the 

United States and Europe respectively. This is no coincidence; this is a deliberate design 

ploy implemented to avoid visible interference upon a display-monitor [18], [20], [22].  

 

The resolution of a video frame is measured in pixels and is defined as the product of the 

horizontal and vertical resolution. The horizontal resolution indicates the number of 

pixels on each row of a video frame, while the vertical resolution specifies how many 

horizontal lines are displayed to create the entire video frame. 

 

 

Video Standard 

Horizontal 

Resolution 

(Pixels) 

Vertical 

Resolution 

(Pixels) 

Frame 

Resolution 

(Pixels) 

NTSC 720 480 345,600 

PAL 720 576 414,720 

 
Table 6: Frame Resolution - NTSC vs. PAL [22] 

 

 

The preceding table illustrates that both NTSC and PAL possess equal horizontal 

resolutions. Yet PAL has a higher frame resolution than NTSC due to its superior vertical 
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resolution. As a result a PAL frame represents a video frame with finer detail than NTSC. 

However the colour resolution of NTSC is greater than that of PAL. 

 

3.2.3 Chrominance Representation 

Numerous methodologies exist for representing chrominance within the video 

environment. Each individual system is suited to a particular application. For instance, 

some are designed for application with television systems, whilst others are used with 

computer-graphics displays. The most fundamental methodology for chrominance 

representation is the RGB (Red Green Blue) colour space system. The three primary 

colours are red, green and blue. When summed together in equal proportions they 

manifest white light. 

 

 

 

Figure 22: Formation of White Light using the Three Primary Colours 

 

 

The RGB system combines various quantities of the three primary colours to formulate 

any colour in the visible spectrum. Due to its relative simplicity the RGB scheme is the 

preferred methodology used for chrominance representation in computer-graphics 

systems [23], [24]. 

 

Luminance (intensity) is perceived in a non-linear fashion by the human eye. In addition, 

display-devices such as CRTs also display luminance in a non-linear manner. 

Coincidentally the eye’s perception of luminance sensitivity is approximately converse to 
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standard display-devices’ output characteristics. For that reason video devices and 

algorithms pre-distort their RGB output stream. This is to counteract display-devices’ 

non-linear luminance representation and to create a realistic model of how the eye 

perceives a video image in reality. Pre-distorted RGB values are referenced as R’G’B’ 

[18]. 

 

Even though RGB is the natural technique for colour representation it is not appropriate 

for image-processing because each it’s three components are highly correlated with one 

another. Consequently other chrominance schemes that are more efficient and highly-

uncorrelated have evolved; an example of which is the YCbCr system. The YCbCr system 

contains a single luminance value and two chrominance components. The separation of 

luminance and chrominance data results in more efficient use of image-processing 

bandwidth. The luminance, Y, and chrominance components, Cb and Cr, are 

mathematically derived from R’G’B’ values as seen below [25]: 

 

 ')114.0(')587.0(')299.0( BGRY ++=   Eq. 3.1 

128')498.0(')33.0(')168.0( ++−−= BGRCb  Eq. 3.2 

128')081.0(')417.0(')498.0( +−−= BGRCr  Eq. 3.3 

 

, where  R’, G’ and B’ are pre-distorted RGB values, 

  Y is the luminance component, 

  Cb and Cr are chrominance components. 

 

3.2.3.1 Chrominance Sub-Sampling 

The human eye is more sensitive to luminance variation than it is to chrominance 

difference. YCbCr takes advantage of this as it pays more attention to luminance (Y 

component) than chrominance (Cb and Cr components). Thus chrominance values can be 

sub-sampled resulting in considerable bandwidth savings. 
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Figure 23: Chrominance Sub-Sampling 

 

 

From the preceding diagram a full-bandwidth pixel-stream is represented by the 4:4:4 

YCbCr signal. The first number is always “4” and corresponds to the relationship 

between the sampling frequency of the luminance component and the particular analogue 

standard (i.e. NTSC or PAL) sub-carrier frequency. The second number represents the 

ratio of luminance to chrominance in a given horizontal row; in this case all chrominance 

components are sampled fully hence this number is “4”. The last number illustrates the 

vertical luminance/chrominance relationship; if no sub-sampling takes place this number 

is also “4”. If the chrominance components of the full-bandwidth signal are sub-sampled 

by a factor of two horizontally a 4:2:2 YCbCr signal is obtained. This means that there 

are four luminance components for every two chrominance values on a particular video 

row [23]. The acquisition of a 4:2:2 signal results in only a minute distortion to the 

quality of a video image when compared to a 4:4:4 signal, yet a bandwidth saving of 

33% is yielded. Hence sub-sampling is extremely efficient. 

 

3.3 Digital Video 

So far only analogue video has been discussed. Since the mid-1990s digital video has 

become prevalent, primarily due to mass improvements in internet infrastructure. This in 

turn has lead to an increase in consumers’ demands for media-streaming. Digital video 
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holds numerous advantages over its analogue counterpart. For instance, the SNR (Signal-

to-Noise Ration) achievable with digital streams is much greater than that of analogue 

video. In addition, digital video utilises bandwidth more efficiently as several digital 

channels are compressible into a single analogue channel. 

 

Fundamentally speaking, the construction of a digital video stream involves the sampling 

and quantisation of existing analogue video. The sampling process involves dividing an 

analogue image into a grid-like structure and assigning relative amplitude values to each 

grid-portion based on the intensities of colour-space components in each grid-region. The 

quantisation process involves determining the discrete amplitude values to assign during 

the sampling process. 8-bit video is common for consumer applications; a value of 0 is 

assigned to the darkest portions (black), while a value of 255 is assigned to white 

portions. 

 

 

 

Figure 24: Digitisation of Analogue Video Data 

 

 

To some degree the introduction of digital video has lead to standardisation between the 

NTSC and PAL architectures. The ITU (International Telecommunications Union) has 

defined digital video standards, ITU-R BT.601 and ITU-R BT.656, which are focused 

towards achieving a large degree of cohesion between NTSC and PAL so that they can 

both share the same coding formats [18], [26]. 

 

3.3.1 ITU-R BT.601 & ITU-R BT.656 

ITU-R BT.601 and ITU-R BT.656 together define a practice that allows different video 

system components and standards to interoperate. The ITU-R BT.601 standard describes 
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the fundamentals of the video digitisation process, while ITU-R BT.656 defines how ITU-

R BT.601 is actually physically implemented. 

 

ITU-R BT.601 specifies that 4:2:2 YCbCr colour-spacing is employed to achieve 

bandwidth efficiencies as outlined earlier. The protocol also stipulates that standard 

synchronisation signals (HSYNC, VSYNC, and FIELD) be used to demarcate the 

boundaries of active video regions. Within this standard each pixel component (Y, Cb, or 

Cr) is quantised to either 8 or 10-bits. 8-bit quantisation is more practical for 

implementation purposes as processors can efficiently handle octal multiples. 

 

 ITU-R BT.601 specifies that both NTSC and PAL comprise the same horizontal 

resolution (i.e. 720 pixels of active video per line). On the other hand, a difference exists 

in terms of vertical resolution. A 30fps NTSC video stream has a vertical resolution of 

525 lines; this is in comparison to 625 lines for a 25fps PAL frame [23], [24], [27]. 

 

As mentioned above ITU-R BT.656 identifies the physical interfaces and data streams 

needed to implement the ITU-R BT.601 standard. One of the main advantages realised 

from the use of the ITU-R BT.656 digital protocol is that all timing signals are embedded 

in the data stream. This therefore means that no additional hardware lines are required for 

synchronisation purposes. ITU-R BT.656 defines both a bit-serial and bit-parallel mode. 

The implementation of the bit-serial mode can be rather complex and is not realisable on 

many systems. For that reason, this discussion will only refer to the bit-parallel mode 

[23], [28]. 

 

3.3.1.1 ITU-R BT.656 - Frame Partitioning & Data Stream 

Characteristics 

The ITU-R BT.656 frame partitioning requirements for both NTSC and PAL are seen 

below. 
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Figure 25: ITU-R BT.656 Frame Partitioning 

 

 

As mentioned earlier, the HYSNC (H), VSYNC (V) and FIELD (F) synchronisation 

signals are sent as an embedded portion of the video stream. This data is transmitted as a 

series of bytes that form a control word. The SAV (Start of Active Video) and EAV (End 

of Active Video) respectively demarcate the beginning and end of relevant video data for 

every line/row; thus horizontal blanking occurs during this period. SAV occurs on a 1-to-

0 logic level transition of HSYNC, while EAV occurs on a 0-to-1 transition of HSYNC. 

Vertical blanking occurs when V = 1. A field of video begins on a logic transition of the F 

bit. An odd-field is represented with F = 0, while an even-field is denoted by F = 1. If 

progressive video scanning is employed no distinction is made between fields. Thus it is 

seen that an entire field of video is comprised of active video, horizontal blanking, and 

vertical blanking [18], [28]. 

 

The SAV and EAV codes are shown in greater detail below: 
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 8-bit Data (D7 = MSB, D0 = LSB) 

D7 D6 D5 D4 D3 D2 D1 D0 

1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 
Preamble 

0 0 0 0 0 0 0 0 

Control 

Byte 
1 F V H P3 P2 P1 P0 

 
Table 7: 8-bit SAV & EAV Preamble Codes 

 

 

From the preceding table it is seen that a defined preamble, consisting of 3-bytes (0xFF, 

0x00 and 0x00), is followed by a control-byte. This control-byte contains four bits (P3, 

P2, P1, and P0) for error detection and correction in addition to the H, V, and F bits. The 

bit definitions are as follows [18], [26]: 

 

 

F = 0 

for Field 1 

V = 1 during 

Vertical 

Blanking 

H = 0 

at SAV 

P3 = 

V XOR H 

P1 = 

F XOR V 

F = 1 

for Field 2 

V = 0 when not 

in Vertical 

Blanking 

H = 1 

at EAV 

P2 = 

F XOR H 

P3 = 

F XOR V XOR 

H 

 

Table 8: Bit Definitions for ITU-R BT.656 Preamble 

 

 

The following diagram illustrates the composition of an ITU-R BT.656 bit stream for a 

single line/row of video data. The SAV encompassing the defined preamble (0xFF, 0x00, 

and 0x00) along with the control byte (containing H, V, F and error detection/correction 

bits) indicates the beginning of a new line/row of video data. The active video 
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information then follows in 4:2:2 YCbCr format. Recall that ITU-R BT.601 specifies that 

both NTSC and PAL contain 720 pixels of active video per line. As the 4:2:2 format is 

employed there are twice as many luminance components than chrominance values 

resulting in a total of 1440 bytes of active video data in a given line/row. The occurrence 

of an EAV completes the formation of a current line/row allowing the construction of the 

next line/row to begin [20]. 

 

 

 

Figure 26: ITU-R BT.656 Video Data Stream [29] 

 

 

3.3.1.2 ITU-R BT.656 Implementation 

ITU-BT.656 is in essence a standard that is implemented in hardware through software 

initialisation. If video data is being transmitted a video-encoder IC is used to convert the 

digital ITU-R BT.656 stream into an analogue signal for display upon a CRT (or other 

display device). It fundamentally acts as a digital-to-analogue converter converting the 

input digitised stream into standard analogue video standards like NTSC or PAL. 

Conversely speaking, if analogue video in the form of NTSC or PAL is being received a 

video-decoder IC is used to convert the input signal to an ITU-R BT.656 video stream. 

 

Video-encoder and decoder ICs interface to a processor giving a system-designer the 

control to program the ICs to meet whatever specific requirements a project may demand. 

The majority of video-encoder and decoder ICs support both NTSC and PAL. For this 
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application the choice between NTSC and PAL is irrelevant; the main focus is on 

displaying vehicle data regardless of the analogue video format utilised.  

 

3.4 Summary 

This chapter discussed the fundamentals of video data and outlined standards prevalent in 

the video environment. The key points to note are as follows: 

 

• Any video signal primarily consists of luminance and chrominance data. 

 

• Timing information is embedded within the video data to ensure that display-

devices remain synchronised with the input signal. 

 

• NTSC and PAL are the predominantly used analogue video standards. 

 

• Chrominance sub-sampling is used to efficiently utilise bandwidth. 

 

• ITU-R BT.601 and ITU-R BT.656 are digital video standards that are designed to 

allow interoperability between video components and standards. 

 

• The ITU-R BT.656 protocol is a standard implemented using video-encoder and 

decoder ICs and is software configurable. 
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Chapter 4 - Selection of a Processor 

 

 
 

 

 

 

4.1 Introduction 

Now that a review of CAN networking and video processing has been carried out the 

next step is to select a suitable processor for utilisation within this system. This chapter 

discusses the selection of an adequate processor. The information given is divided into 

numerous sections as outlined below: 

 

• An outline of the main factors taken into consideration when selecting an 

appropriate intelligent-device for this system design, with particular attention 

being paid to video processing and CAN capabilities. 

 

• A comparison of a number of different processors is discussed under each of the 

main factors taken into consideration. 

 

• A summary outlining all of the components and the selection of a particular 

processor for use within this system. 
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4.2 Key Considerations 

When choosing an appropriate processor for operation in this project sizeable 

consideration must be given to a number of key factors. Bearing in mind that this is a 

system designed for operation within an automotive setting, a suitable device has to be 

able to operate sufficiently inside such a harsh environment. The correct processor for 

this particular design must also possess CAN and video capabilities in order to meet the 

system requirements. The main deliberations for selection of a fitting device are outlined 

below [18], [30]: 

 

• Automotive Environment Specifications 

• Video Processing Capabilities 

• CAN Handling Ability 

• Clock Rates & Power Consumption 

• DMA - Direct Memory Access 

• Programming Environment 

 

The development boards below contain suitable processors for completion of this project. 

They are evaluated under the headings outlined above to establish which is the most 

suitable for this system’s synthesis. 

 

• Freescale MPC5200 Lite5200 Evaluation Board [31], [32], [33], [34] 

• Infineon TriBoard TC1796 [35], [36] 

• Xilinx Spartan-3E Starter Kit [37], [38] 

• Microchip dsPICDEM 1.1 Plus Development Board [39], [40] 

• Analog Devices Blackfin ADSP-BF537 EZ Kit Lite [41], [42] 

 

Each of these components is designed by their respective manufacturers for use in the 

automotive industry. 
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4.2.1 Automotive Environment Specifications 

An automotive environment contains many hindrances such as EMI, humidity, noise, 

temperature extremes and vibrations [43]. These factors can have a detrimental effect on 

signals and devices inside a vehicle. As a result ICs and processor used within an 

automotive environment have to be able to withstand these factors. For instance, the 

typical temperature-range for automotive ICs is -40ºC to +125ºC [43] because 

components may have to operate under severe temperature extremes. Consequently, the 

processor chosen for use in this system must comply with standard automotive IC 

provisions. 

 

 

 

Figure 27: Harsh Factors Experienced inside an Automotive Environment 

 

 

The following table outlines the ambient operating temperature-ranges for the five 

intelligent-devices chosen for evaluation. 

 

Processor Temperature Range (ºC) 

Freescale MPC5200 -40 to +85 

Infineon TC1796 -40 to +125 

Xilinx Spartan-3E -40 to +100 

Microchip dsPIC30F6014A -40 to +125 

Blackfin ADSP-BF537 -40 to +85 

 

Table 9: Ambient Temperature Ranges of Components under Evaluation 
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As it can be seen, all of the components comply with typical automotive temperatures; 

however only the Infineon TC1796 and Microchip dsPIC30F6014A processors operate 

over the full automotive temperature-range (-40 to +125ºC). 

 

4.2.2 Video Processing Capabilities 

The computational power of a processor employed with this system is crucial. A raw 

video signal for instance could be comprised of data operating in the region of tens of 

MBytes/s [18]. Consequently it is easy to envisage that an appropriate intelligent-device 

must possess the capabilities to handle such high rates of data throughput. 16 and 32-bit 

processors should hold enough power to fulfil this role. 

 

In addition, a suitable device connects, with minimum hardware and software effort, to 

standard video-encoder ICs that support the ITU-R BT.656 protocol in order to simplify 

interfacing requirements. The standard hardware component of a processor 

conventionally used to facilitate such an interface is a PPI (Parallel Peripheral Interface) 

port. This is due to the fact that the transfer of video in ITU-R BT.656 parallel mode is 

more efficient than a serial transfer. Thus, a suitable device preferably contains a PPI port 

for transfer efficiencies. 

 

 

 

Figure 28: Video Data Transferred in Parallel between Processor & Video-Encoder 

 

 

To simplify interfacing requirements even further, video encoding ICs should be located 

upon the development apparatus, or form part of a compatible A/V (Audio/Video) 

daughter board. 
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4.2.2.1 Freescale MPC5200 Lite5200 Evaluation Board 

The 32-bit Freescale MPC5200 processor is extremely powerful and is more than 

capable of adequately handling video data. It can perform 760MIPS (Millions of 

Instructions per Second) at a 400MHz clock frequency; which gives an indication of its 

processing power [33]. 

 

The MPC5200 contains a PCI (Peripheral Component Interconnect) interface which 

allows for the connection of different varieties of peripherals to the development board. 

The PCI is in essence a 32-bit configurable address/data bus suited for high data-rate 

transfers [32]. Consequently, the PCI is configurable as a PPI port and thus it can be used 

to interface with an attuned video-encoder IC. However it would take a great deal of 

effort, both in terms of hardware and software, to interface these components. 

 

A much simpler solution would be realised if the Lite5200 kit had a compatible A/V 

daughter board that supports ITU-R BT.656. Nonetheless, no such A/V extension board is 

available for the Lite5200. 

 

4.2.2.2 Infineon TriBoard TC1796 

This development board incorporates the 32-bit TriCore TC1796 processor. This device 

can, with relative ease, support the processing of video data. For instance, an illustration 

of its power can be seen in the fact that it can operate at a 150MHz clock frequency over 

its entire temperature range [35]. 

 

The TC1796 contains a 16-bit PPI port which would facilitate in the transfer of ITU-R 

BT.656 parallel data [35]. However, like the Freescale Lite5200 kit, there is no A/V 

extension board available for this particular device. Once more, as a result of this, it 

would take a large endeavour, both in terms of hardware and software, to interface the 

TriBoard TC1796 development board with suitable hardware components that offer ITU-

R BT.656 support. 
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4.2.2.3 Xilinx Spartan-3E Starter Kit 

FPGAs (Field Programmable Gate Array) are highly configurable hardware devices. 

They consist of a vast array of logic-gates and modules which can be configured to meet 

any specification required by a designer [44]. Their basis of operation involves the 

concept of “parallel-processing”; which essentially means that multiple data blocks can 

be processed concurrently. Conversely, standard processors can only process data 

sequentially. 

 

 

 

Figure 29: Parallel vs. Sequential Processing 

 

 

Even though the Xilinx Spartan-3E Starter Kit uses a relatively modest 50MHz clock-

signal to derive it’s timing the concept of parallel-processing results in this FPGA being 

an extremely fast device [37], [38]. Therefore this component could more than adequately 

handle a video stream. 

 

However, due to the fact that FPGAs are comprised from an array of configurable 

hardware blocks designers have to develop all hardware components from first principles. 

For example, for this particular project a PPI port is desirable to facilitate the efficient 

transfer of video data. This means that a designer would have to construct a PPI port 

from gate-level up. Therefore it is easy to envisage that the development time for a 

certain application designed to run on a FPGA could be relatively longer than that of a 

standard processor. 
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4.2.2.4 Microchip dsPICDEM 1.1 Plus Development Board 

The 16-bit dsPIC30F6014A device incorporated onto the dsPICDEM 1.1 Plus 

Development Board can operate at a maximum of 30 MIPS [39]. This is relatively slow 

when compared to the other processors. The device can utilise a PLL to increase the 

clocking frequency. In spite of this, the maximum clock rate achievable using the PLL is 

not adequate to competently support video data processing. 

 

The dsPIC30F6014A processor contains a PPI port, which again facilitates the efficient 

transfer of video data. Yet, like the other components discussed so far, it does not have an 

A/V daughter board to simplify interfacing requirements. 

 

4.2.2.5 Analog Devices Blackfin ADSP-BF537 EZ Kit Lite 

The Blackfin ADSP-BF537 is an example of a convergent processor. It combines a 16-bit 

DSP (Digital Signal Processor) and a 32-bit microcontroller onto a single IC. It 

amalgamates the best qualities of a DSP and a microcontroller making it an extremely 

powerful device; thus it is sufficiently equipped to deal with video data.  

 

This processor contains a PPI port which again is advantageous in efficient data transfers. 

In fact the PPI port of the Blackfin has been designed with video processing in mind. In 

addition, the Blackfin ADSP-BF537 EZ Kit Lite development board has a compatible A/V 

daughter board. This daughter board contains video-encoder ICs and sockets for 

interfacing with display-devices. Obviously, use of the Blackfin EZ Kit Lite and its 

daughter board would minimise the interfacing efforts required for this project. 
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4.2.2.6 Video Processing Capabilities - A Summary 

 

Development 

Board 

Video Processing 

Speed Capability 

Parallel 

Interfacing 

Capability 

Compatible A/V 

Daughter Board 

Freescale 

MPC5200 Lite5200 
Sufficient 

Achievable through 

PCI configuration 
None Available 

Infineon TriBoard 

TC1796 
Sufficient Yes None Available 

Xilinx Spartan-3E 

Starter Kit 

Sufficient (due to 

Parallel Processing 

feature of FPGAs) 

Must be developed 

by Designer 
None Available 

Microchip 

dsPICDEM 1.1 

Plus Development 

Board 

Inadequate Yes None Available 

Analog Devices 

Blackfin ADSP-

BF537 EZ Kit Lite 

Sufficient Yes Yes 

 

Table 10: Summary of Video Processing Capabilities of Reviewed Devices 

 

 

From the preceding table it can be seen that the MPC5200, TriBoard TC1796 and 

Blackfin ADSP-BF537 are sufficiently equipped to process video data. The Blackfin is 

however the processor of choice, in terms of video processing capabilities, due to the fact 

that it has a compatible A/V board which minimises interfacing efforts. 
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4.2.3 CAN Handling Abilities 

As outlined in Chapter 2, the CAN protocol is employed as the standard for vehicle 

communications within Europe by automobile manufacturers. Subsequently an adequate 

intelligent-device preferably contains an integrated CAN Controller in order to reduce 

overhead and propagation delay. This would obviously lead to an overall reduction in 

system cost. The alternative to this is to use a peripheral CAN Controller interfaced to a 

processor via a SPI link [45]. 

 

 

 

Figure 30: Integrated vs. Peripheral CAN Controller within a Network Node 

 

 

As shown in the preceding diagram, the use of a peripheral CAN Controller leads to an 

increase in the number of components required to implement a network node. 

 

4.2.3.1 CAN Handling Abilities of Processors under Investigation 

The following table illustrates the CAN handling abilities of the intelligent-devices 

examined in this discussion. 
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Processor 
Integrated  

CAN Controller 

Total Number of  

RX/TX Buffers 

Freescale MPC5200 Yes 
8 RX  

6 TX 

Infineon TriCore TC1796 Yes 
4 RX/TX (Programmable 

Bi-Directional Buffers) 

Xilinx Spartan-3E FPGA No Not Applicable 

Microchip 

dsPIC30F6014A 
Yes 

3 RX 

3 TX 

Analog Devices Blackfin 

ADSP-BF537 
Yes 

8 RX 

8 TX 

16 Configurable Buffers 

 
Table 11: Overview of CAN Handling Abilities of Scrutinised Processors 

 

 

From the preceding table it can be seen that all of the devices, with the exception of the 

Spartan-3E, contain an integrated CAN Controller. 

 

As mentioned previously, FPGAs are user-configurable hardware devices. The 

development of a CAN Controller upon a FPGA would be an extremely time-consuming 

process, primarily because the entire mechanics of a CAN Controller would need to be 

described at fundamental gate-level. An alternative to the manual-development of a CAN 

Controller is the purchase of a CAN IP (Intellectual Property) footprint. This essentially 

means that a system-designer purchases a footprint of a CAN Controller developed by 

some other party. The footprint is simply “dropped” onto the FPGA, resulting in part of 
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the device operating as a CAN Controller. Conversely, the retail price of a CAN 

Controller from one particular vendor is in the region of $15,000. It is clear to see that 

this is an incredibly costly alternative. For that reason, the use of the Xilinx Spartan-3E to 

implement the CAN protocol is not practical on this occasion. 

 

Again with reference to the previous table, the four processors containing an integrated 

CAN Controller enclose reduced overhead both in terms of hardware and software. These 

four devices are sufficiently capable of handling CAN transfers for this particular project. 

Each of the four processors contains numerous RX/TX (Receive/Transmit) buffers. A 

CAN buffer acts like a mailbox for a particular CAN message. The more buffers a device 

contains, the more efficient it is at managing the reception/transmission of CAN 

messages. Therefore the Blackfin ADSP-BF537 is the most efficient processor, in terms 

of CAN handling, as it contains a total of thirty-two message buffers. 

 

4.2.4 Clock Rates & Power Consumption 

In order to process video in real-time it is desirable to select a processor that operates at a 

relatively high clock rate. However, a high clock rate results in greater power 

consumption. Therefore the system-designer must take this trade-off into consideration 

when selecting an intelligent-device to fulfil the system’s synthesis. Ideally, an adequate 

component contains an adjustable clock frequency feature; i.e. the clock frequency 

applied can be varied in real-time during program operation. This leads to reduced power 

consumption. In addition, the selected intelligent-device contains power adjustment 

features to reduce overall power consumption. 

 

 

 

Figure 31: Relationship between Clock Rate & Power Consumption 



 57 

4.2.4.1 Summary of Clock Rates & Power Consumption 

The following table illustrates the clock rates and power consumption features of the 

processors examined in this discussion. 

 

 

Processor 

Recommended 

Maximum Clock 

Frequency (MHz) 

Real-Time Clock 

Adjustment 

Capabilities 

Power Adjustment 

Features 

Freescale 

MPC5200 
400 No Yes 

Infineon TriCore 

TC1796 
150 No Yes 

Xilinx Spartan-3E 

FPGA 
Not Applicable Not Applicable Yes 

Microchip 

dsPIC30F6014A 
160 No Yes 

Analog Devices 

Blackfin ADSP-

BF537 

600 Yes Yes 

 
Table 12: Synopsis of Clock & Power Adjustment Features for Examined Processors 

 

 

From the preceding table it can be concluded that all of the devices with the exception of 

the dsPIC30F6014A possess adequate clocking abilities to process the high data-rates 

associated with video. As mentioned previously, the concept of parallel-processing 

fundamental to FPGAs results in the Xilinx Spartan-3E containing ample strength to 

process video data sufficiently. As seen all of the processors encompass power 

adjustment features. 
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The processor of choice in terms of clock rate and power consumption is the Blackfin 

ADSP-BF537. It is the device with the highest operating frequency. In addition, the 

Blackfin possesses the ability to adjust its clock frequency in real-time making it an 

attractive device for utilisation. 

  

4.2.5 DMA - Direct Memory Access 

The core of any processor is responsible for carrying out many operations. Parts of the 

core’s duties involve managing data transfers between internal/external memory registers 

and peripherals. When large quantities of data are being transferred frequently a 

processor’s core can become completely embroiled with the task of information transfer; 

thus preventing it from carrying out other necessary duties. 

 

 

 

Figure 32: Core Responsibilities 

 

 

DMA (Direct Memory Access) is a technique utilised to ensure efficient data-movement 

and relieves an intelligent-device’s core from memory transfers so that it can perform 

other operations. An integrated DMA controller is delegated data-movement 

responsibilities by the processor’s core, and once empowered the controller can 

independently manage data-transfers [18], [46]. 
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Figure 33: Typical DMA Flow 

 

 

The presence of DMA in an application such as this is vital due to the fact that video-

information is being transferred at high data-rates. If DMA is not present the core of a 

selected processor would essentially be congested by the constraint of having to read a 

data sample every time one becomes available. For that reason, the processor selected to 

implement this application must boast DMA competence. 

 

4.2.5.1 DMA Competence of Evaluated Processors 

The following table illustrates the DMA competence of the components examined in this 

discussion. 

 

Processor DMA Competence 

Freescale MPC5200 Yes 

Infineon TriCore TC1796 Yes 

Xilinx Spartan-3E FPGA No 

Microchip dsPIC30F6014A No 

Analog Devices Blackfin ADSP-BF537 Yes 

 

Table 13: Overview of DMA Competence of Inspected Processors 
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From the preceding table it can be seen that the MPC5200, TriCore TC1796 and ADSP-

BF537 could be used in the synthesis of this system as they each contain DMA 

components. The additional two devices under scrutiny in this discussion do not possess 

any DMA functionality, and as a result would not support the efficient transfer of video-

data. However, a DMA component could be constructed on the Spartan-3E, but again 

this would be a time-consuming process. 

 

4.2.6 Programming Environment 

The programming environment of an intelligent-device can encompass the language(s) 

supported by its compiler(s), and the ease in which the component may be 

reprogrammed. The programming environment of a specific choice of processor is 

imperative when selecting it for use within an application. Most development interfaces 

offer a system-designer the choice of using a high-level programming language (C, C++) 

or assembler to develop software on the device. Many processors can be compiled using 

royalty-free software packages, while others require specific compilers typically designed 

by the particular device’s manufacturer. Nowadays, components can usually be re-

programmed in-circuit with minimum effort using a USB (Universal Serial Bus) or 

alternative interface. The ideal processor selected for use within this project contains a 

user-friendly programming setting which minimises overhead and reduces needless 

complications. 

 

 

 

Figure 34: Factors within a Programming Environment 
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4.2.6.1 Freescale MPC5200 Lite5200 Evaluation Board 

The development environment for this particular intelligent-device is relatively broad; 

numerous compilers are available from various vendors. Options exist for a Macintosh, 

Linux or Windows platform. For instance, Freescale offer their CodeWarrior interface 

tool for use in either a Linux or Windows setting. CodeWarrior allows a system-designer 

the freedom to cultivate software upon the MPC5200 processor using C, C++ or 

assembly. Third-party vendors such as QNX and Green Hills also offer development 

suites for this device [34]. Therefore a system-designer has a wide selection range to 

choose from when using this particular development-board. The Lite5200 evaluation kit 

utilises a USB interface to simplify the programming-process. Overall, the programming 

environment for the Freescale Lite5200 is user-friendly and extensive so particular 

preferences can be satisfied. 

 

4.2.6.2 Infineon TriBoard TC1796 

Infineon do not manufacture a development tool for their TriBoard TC1796. However, 

like the Lite5200, many third-party options exist for both the Linux and Windows 

platforms [47], [48]. The software package developed by Altium is the unofficial standard 

industry tool for the TC1796 [47]. A royalty-free GNU C/C++ programming option is 

also available for the TriBoard TC1796 [49]. The TC1796 incorporated onto this Infineon 

development board can be re-programmed via a USB interface. In general, the 

programming environment for the Infineon TC1796, like the Freescale Lite5200, 

provides a vast array of options and the particular interface tool chosen depends on the 

preferences of a system-designer. 

 

4.2.6.3 Xilinx Spartan-3E Starter Kit 

The Spartan-3E, like all FPGAs, is programmed using VHDL
1. VHDL is not a high-level 

programming language like C/C++. In addition VHDL is not software; it is a hardware 

                                                 
1 VHDL stands for VHSIC Hardware Description Language. VHSIC is an abbreviation for Very High 
Speed Integrated Circuit. 
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description language. It is a list of configuration commands used to describe the 

behaviour of hardware internal to a FPGA [50]. 

 

Subsequently, if a FPGA is selected for use within a project the designer would require 

knowledge of VHDL specific to the chosen FPGA, in this case it would be Xilinx VHDL; 

otherwise a new learning-curve would have to be embarked upon. Consequently, as a 

result of timing-constraints it is not feasible for use in this particular project. 

 

4.2.6.4 Microchip dsPICDEM 1.1 Plus Development Board 

Microchip has developed its MPLAB development interface for use with the 

dsPIC30F14A device incorporated onto the Plus Development Board. At present MPLAB 

only supports the Windows platform. The MPLAB tool presents the system-designer with 

the option of using either C or assembly language to configure the processor accordingly 

[40]. Microchip’s MPLAB is user-friendly as it is relatively straight-forward to use. In 

addition, the Plus Development Board contains a USB interface which simplifies the re-

programming process. 

 

4.2.6.5 Analog Devices Blackfin ADSP-BF537 EZ Kit Lite 

Like the Freescale and Infineon options already discussed, the development environment 

for the Blackfin is relatively extensive. Third-party choices exist for both the Linux [51] 

and Windows platforms [52], [53]. Analog Devices has developed its VisualDSP++ tool 

for use with the Blackfin processor. This development component allows a designer to 

configure the Blackfin using C/C++, assembler, or a combination of both. It incorporates 

an abundance of functions and drivers to facilitate in software development. The Blackfin 

EZ Kit development board interfaces to the chosen compiler via a USB link, thus 

minimising re-programming efforts. 
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4.2.6.6 Programming Environment - A Summary 

 
 

Development 

Board 

Programming 

Languages 

Supported 

Generic or 

Third-Party 

Packages 

Royalty-Free 

Packages 

Available 

Re-

Programming 

Resources 

Freescale 

MPC5200 

Lite5200 

C, C++, 

Assembly 
Both No USB 

Infineon 

TriBoard 

TC1796 

C, C++, 

Assembly 
Both Yes USB 

Xilinx Spartan-

3E Starter Kit 
VHDL No No 

Parallel 

Interface 

Microchip 

dsPICDEM 1.1 

Plus 

Development 

Board 

C, Assembly Generic No USB 

Analog 

Devices 

Blackfin 

ADSP-BF537 

EZ Kit Lite 

C, C++, 

Assembly 
Both Yes USB 

 
Table 14: Summary of Programming Environments of Analysed Components 

 

 

From the preceding table, with the exception of the Xilinx Spartan-3E Starter Kit 

(because it is only configurable using VHDL), it is clear to see that all of the intelligent-

devices under scrutiny offer a considerable variety in terms of programming 

environments. 
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4.3 Synopsis of Reviewed Processors 

 

 

Automotive 

Environment 

Specifications 

Video 

Processing 

Capabilities 

CAN 

Handling 

Abilities 

Clock Rates 

& Power 

Consumption 

DMA 

Programmin

g 

Environment 

Freescale 

MPC5200 
Sufficient Sufficient Sufficient Sufficient Sufficient Excellent 

Infineon 

TriCore 

TC1796 

Excellent Sufficient Sufficient Sufficient Sufficient Excellent 

Xilinx 

Spartan-3E 
Sufficient 

Moderate/ 

Sufficient 
Inadequate Sufficient Inadequate Moderate 

Microchip 

dsPIC30F14

A 

Excellent Inadequate Sufficient Inadequate Inadeqaute Sufficient 

Blackfin 

ADSP-BF537 
Sufficient Excellent Excellent Excellent Sufficient Excellent 

 
Table 15: Synopsis of Reviewed Processors 

 

 

It is concluded from the preceding table that the highly-configurable Xilinx Spartan-3E 

FPGA falls short of use in this particular application. This is primarily as a result of 

timing constraints required to implement customisation on this device. The Microchip 

dsPIC30F14A is also insufficient for use in this synthesis as it lacks the processing 

strength necessary to meet the system’s specifications. 

 

The Freescale MPC5200, Infineon TriCore TC1796 and Blackfin ADSP-BF537 are 

sufficiently equipped for employment in this application’s development. However the 

Blackfin ADSP-BD537 is the processor of choice. This is due to a number of factors. 

Firstly, the EZ Kit development board upon which the Blackfin ADSP-BF537 is 

incorporated has a compatible A/V daughter board which simplifies the fulfilment of 

ITU-R BT.656 video processing. Also, the Blackfin is excellently equipped to deal with 

CAN efficiently as it contains thirty-two message buffers. In addition to this, the 
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maximum clock frequency of the ADSP-BF537 more than adequately supports real-time 

video processing. The programming environment for this component is broad, thus 

offering a designer an array of choices. The VisualDSP++ development tool has been 

chosen for use to develop software on the device as it contains an abundance of support 

functions and drivers as mentioned earlier. 

 

The Blackfin is a relatively new processor and its popularity is increasing exponentially. 

Evidence of this is found in the fact that the open-source community has embraced the 

Blackfin with many support forums offering free-ware code and advice [51], [54], [55]. 

Analog Devices are continuously developing new device-drivers and support tools to aid 

in implementation of new technologies. 

 

4.4 Summary 

This chapter discussed the selection of an adequate processor to implement this 

application. The major points to behold are as follows: 

 

• A number of key factors need to be taken into consideration when choosing a 

suitable intelligent-device for use in this system. 

 

• Numerous processors are discussed under each of the main factors taken into 

consideration. 

 

• The Blackfin ADSP-BF537 adequately meets all of the key considerations, 

particularly in the area of video and CAN, and as a result is selected as the 

processor or choice for use in this system. 

 

Now that a suitable processor had been selected for utilisation from a number of 

examined devices, based on the merits outlined within this chapter, the next step was to 

synthesis the system incorporating correct hardware and software methodologies. 
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SECTION II - SYSTEM SYNTHESIS 
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Chapter 5 - CAN Implementation 

 

 
 

 

 

 

5.1 Introduction 

This chapter details the efforts involved in the development of the CAN bus network 

employed in this system’s synthesis. The information given in this chapter is divided into 

numerous sections as outlined below: 

 

• A description of the hardware and software resources utilised to develop CAN 

nodes employed in this system. 

 

• A discussion on how potentiometers are incorporated into the constructed CAN 

nodes to mimic the operation of standard vehicle sensors, and how their 

functionality was verified. 

 

• A synopsis detailing the steps taken to configure the Blackfin’s CAN module and 

how the operation of the device was tested for conformity. 
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5.2 Construction of CAN Nodes 

The fundamental hypothesis of this application involves the reading of standard vehicle 

information from sensors over a CAN network, processing the data, and then representing 

it visually upon a display-device. Consequently, some method of mimicking the 

operation of automobile sensing-devices is required. This is achieved by constructing two 

CAN nodes that incorporate several potentiometers to imitate the actions of sensors found 

in a vehicle. It can be said that sensors essentially function as transducers; i.e. they 

measure a particular physical parameter and represent it proportionally in another form; 

typically electrical. Therefore the rotation of a potentiometer and thus the subsequent 

change in output-voltage suitably impersonates the operation of a sensing-device. For 

instance, one potentiometer is employed to replicate the actions of an oil temperature 

sensor while another is used to represent a device that monitors vehicle speed. 

 

 

 

Figure 35: Function of a Transducer 

 

 

5.2.1 Hardware Contents of Constructed CAN Nodes 

Recall from Chapter 2 that a typical CAN node encompasses a software application that 

is programmed onto an embedded device. The embedded devices incorporated into the 

constructed CAN nodes come from the 8-bit PIC microcontroller family [56]. 8-bit PIC 

microcontrollers offer a considerable performance at a competitive price which justifies 

their selection for use. One of the CAN nodes incorporates a PIC18F258 [57] which 

contains an integrated CAN Controller. With reference to Section 4.2.3, the PIC18F258 

is therefore efficient in terms of CAN overhead and propagation delay. The other 

constructed CAN node features a PIC16F876A [58] which does not include an integrated 
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CAN Controller. Consequently, a MCP2515 IC [59] is interfaced to the PIC16F876A 

through a SPI link. The use of a peripheral CAN Controller is deliberate in order for the 

author to be proficient, both in terms of hardware and software, with the integrated and 

peripheral CAN strategies. As seen below both CAN nodes utilise a MCP2551 CAN 

Transceiver [60]. 

 

 

 

Figure 36: Hardware Components of Constructed CAN Nodes 

 

 

Detailed circuit schematics for both CAN nodes are found in Appendix A. 

 

From the preceding diagram it is seen that both network nodes utilise 16MHz crystal 

oscillators to obtain their timing. This CAN network is configured to operate at a baud 

rate of 500kBits/s. With reference to Section 2.3.1.4, it is not necessary for all CAN 

nodes to use the same oscillator frequency. However recall that all CAN nodes must 

operate at the same NBR. Consequently, the BRP of both CAN nodes is suitably set by 

configuring specific bits in the appropriate registers. The software routines used to do this 

are discussed in Section 5.2.2.2. 
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5.2.2 Software Implementation of Constructed CAN Nodes 

The MikroC compiler [61] is used in this synthesis to program the PIC microcontrollers. 

This integrated development environment offers a rich set of functions and efficient 

support for the PIC microcontroller families; hence its utilisation is practical and 

convenient. 

 

The function of the software applications executing inside both CAN nodes is to firstly 

perform A-D (Analogue-to-Digital) conversions upon the potentiometers. Following on 

from this, the software applications insert the conversion results into Standard Data 

Frames for transmission to the Blackfin for interpretation. The flow chart below 

illustrates this process. The source code for the CAN On-Board and SPI nodes can be 

viewed in Appendix B and C respectively. 

 

 

 

Figure 37: Flow Chart of CAN Nodes Software Applications 
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5.2.2.1 A-D Conversion 

The MikroC compiler, as mentioned previously, contains a rich set of functions to 

simplify the programming process of the PIC microcontroller. The Adc_Read() function 

is used to read a 10-bit A-D conversion from a specific channel [62]. The only parameter 

passed to the Adc_Read() function is the channel number upon which A-D conversion is 

required. For example, the function call below results in a reading of the voltage from the 

potentiometer connected to channel one. 

 

 Ch1_res = Adc_Read(1); // Get the ADC conversion result 

 

Adc_Read() also implicitly determines, from the supplied clock frequency, the time 

period necessary for performing A-D conversion. The PIC16F876A and PIC18F258 

contain five and eight A-D channels respectively. Three potentiometers are connected to 

the PIC16F876A hence a single call to Adc_Read() is required for each of the three 

channels. On the other hand two individual calls to Adc_Read() are made for the two 

potentiometers interfaced to the PIC18F258 - see Appendix A, B, and C. Before the 

Adc_Read() function is utilised a certain degree of initialisation takes place. The ADCON 

registers of both PIC devices are configured accordingly [57], [58]. 

 

 

 

Figure 38: ADCON1 Register of PIC16F876A [58] 

 

 

The two microcontrollers are configured for all A-D channels to accept analogue inputs 

only, and conversions occur at a rate of FOSC/2. Furthermore, both devices are initialised 



 72 

to issue a right-justified A-D result. Conversely they can be configured to yield a left-

justified result. What is the difference between the two configurations? 

 

 

 

Figure 39: Right & Left Justified A-D Results 

 

 

The PIC16F876A and PIC18F258 are 8-bit microcontrollers; however both devices 

perform 10-bit A-D conversion. Consequently, a 10-bit A-D result is split between two 8-

bit result registers - ADRESH and ADRESL as seen in the previous diagram. If the A-D 

result is right-justified the two MSBs (Most Significant Bit) of the result reside in the 

ADRESH register, while the remaining eight bits of the conversion are stored in the 

ADRESL register. In contrast, if the A-D result is left-justified the eight MSBs of the 

result are found in the ADRESH register, while the two LSBs (Least Significant Bit) are 

stored in the ADRESL register [57], [58]. 

 

Once all initialisation is complete the analogue voltages from the potentiometers are 

continuously read by the A-D modules using the Adc_Read() function. 

 

typedef unsigned int iadc; 

… 

iadc ch0_res = 0 

… 

ch0_res = Adc_Read(0); // Get the ADC conversion result 

 

The 10-bit result from a specific A-D channel, contained in ADRESH and ADRESL, is 

returned by Adc_Read() and the value is stored in a 16-bit unsigned integer variable. 
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5.2.2.2 CAN Initialisation & Transmission 

MikroC provides numerous functions for the initialisation and transmission/reception of 

CAN messages, and adequately supports both the integrated (PIC18F258) and peripheral 

(PIC16F876A) CAN strategies. In most cases the only difference between a function 

used with an integrated CAN controller and that used with a peripheral controller is in the 

name of the function - see Appendix B and C. For example, the CANWrite() function is 

used to transmit a message from a node that incorporates an integrated CAN Controller. 

On the other hand, the CANSPIWrite() function is used to transmit data when a peripheral 

CAN controller is utilised. As mentioned earlier, Standard Data Frames are employed in 

this application. 

 

A summary of the operation of both CAN nodes is seen below. 

 

 

 

Figure 40: Flowchart of CAN Initialisation & Message Transmission 

 

 

Similar to the A-D conversions seen in the last section, a certain degree of initialisation 

takes place before any messages are transmitted. To initialise the registers of CAN 

modules residing in either an integrated or peripheral controller the module has to be set 
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to the Configuration Mode using either the CANSetOperationMode() or 

CANSPISetOperationMode() respectively. In both cases, two parameters are passed to the 

function. The first parameter passed is the mode in which it is desired to enter into. This 

parameter is copied into the CANSTAT register of either the integrated or peripheral 

controller; depending on which strategy is being utilised [57], [58]. 

 

 

 

Figure 41: CANSTAT Register [57], [58] 

 

 

The second item in the function prototype is either a “blocking” or “non-blocking” call. If 

it is a “blocking” call, i.e. 0xFF, the function does not return until the requested mode is 

entered into. If a “non-blocking” call, i.e. 0x00, is passed the function returns 

immediately but the system-designer must ensure that the CAN Controller is now 

residing in the requested mode [62]. 

 

 CANSetOperationMode(CAN_MODE_CONFIG,0xFF); // Set CONFIGURATION mode 

 CANSPISetOperationMode(CAN_MODE_CONFIG,0xFF); // Set CONFIGURATION mode  

 

In Sections 2.3.1.3 and 2.3.1.4 it is stated that one of the appealing aspects of the CAN 

bus protocol is that its bit rate, sample and resynchronisation points are user-

programmable. These parameters are initialised using the CANInitialize() and 

CANSPIInitialize() functions. Several items are passed to both functions. 

 

CANInitialize( 2,2,3,3,1,aa); // Initialise CAN module. BAUD = 500kBit/sec 

CANSPIInitialize( 2,2,3,3,1,aa); // Initialise external CAN module. BAUD = 500kBit/sec 
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Firstly, the SJW resynchronisation value is passed. It is assigned the value of two; 

therefore the bit period, tbit, of a CAN message is lengthened or shortened by 2tq if 

resynchronisation is required [57], [58]. 

 

The second parameter is the BRP value and this is discussed in a few moments. The third 

and fourth items in the function prototypes are the PhaseSeg1 and PhaseSeg2 values. 

Recall from Section 2.3.1.3 that these elements compensate for any edge error that 

appears around the sample point. They are both assigned the value of three. Thus Rule 5 

of Table 4 is satisfied, i.e. SJW ≤ PhaseSeg2 ≤ PhaseSeg1. PropSeg is the next value 

passed to the function and it is used to compensate for any propagation delay. This is 

assigned the value of one. 

 

 

 

Figure 42: Assigned Parameter Values 

 

 

As mentioned above the second parameter passed to both CANInitialize() and 

CANSPIInitialize() is the BRP value. Recall that the BRP of a particular node is used to 

ensure that it functions at an identical NBR to all other nodes connected to the network, 

even if it does not use the same oscillator frequency. To reiterate, this CAN network is 

configured to operate at 500kBits/s. Therefore from Eq. 2.2 in Section 2.3.1.3: 
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Concurrently, from Eq. 2.3: 

 

21Pr PSPSopSegSyncSegbit ttttt +++=  

 

From the assigned values in CANInitialize() and CANSPIInitialize(): (Note tSyncSeg is 

implicitly 1tq in duration.) 
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Both CAN nodes incorporate 16MHz oscillators to derive their timing; thus from Eq. 2.5: 
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Thus a BRP value of two results in both nodes operating at a NBR of 500kBits/s when 

using a 16MHz oscillator to derive their timing.  

 

The last parameter in the CANInitialize() and CANSPIInitialize() prototypes contains a 

list of constants that are bitwise ANDED together and relate to CAN module 

configuration. They include factors, for example, that determine whether the logic level is 

sampled once or three times during the NBT [62]. 

 

aa = CAN_CONFIG_SAMPLE_THRICE &  // form value to be used 

       CAN_CONFIG_PHSEG2_PRG_ON & // with CANInitialize() 

       CAN_CONFIG_ALL_MSG & 

       CAN_CONFIG_DBL_BUFFER_ON & 

       CAN_CONFIG_LINE_FILTER_OFF; 
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Once initialisation is complete a respective CAN controller is set to Normal Mode in 

order to commence data transmission. 

 

CANSetOperationMode(CAN_MODE_NORMAL,0); // Set NORMAL mode 

CANSPISetOperationMode(CAN_MODE_NORMAL,0); // Set NORMAL mode 

 

Recall that the previous section outlines that the 8-bit PIC microcontrollers used in this 

system perform 10-bit A-D conversion. The right-justified return value of Adc_Read() is 

stored in a 16-bit unsigned integer variable as discussed previously. 

 

 

 

Figure 43: 16-bit Variable Contains Right-Justified 10-bit A-D Result 

 

 

Section 2.3.2.1 outlined that the Data field of a CAN Data frame contains zero to eight 

bytes of data. For that reason the 10-bit A-D conversion result from a particular channel, 

contained in the 16-bit variable, is appropriately manipulated in order to insert it into two 

8-bit CAN data bytes without the loss of any information. This involves segmenting the 

16-bit variable into two bytes of data. Therefore two characters, i.e. two 8-bit data 

variables are declared. One character, ls_chX_res, will store the lower eight bits of the 

conversion result, while another character, ms_chX_res, will store the upper two bits of 

the A-D conversion.  

 

typedef unsigned char uchar; 

… 

uchar ms_chX_res = 0; // ADC Channel X MSB result variable 

uchar ls_chX_res = 0; // ADC Channel X LSB result variable 

 

The assigning of the value of the 16-bit data variable to ls_chX_res results in the eight 

MSBs of the 16-bit integer being discarded and the eight LSBs of the integer being stored 

in the character variable. 
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ls_chX_res = chX_res; // Get bottom 8 bits of ADC Channel X conversion 

 

 

 

Figure 44: Assignment of Lower 8-bits of A-D Conversion 

 

 

In order to assign the two MSBs of the 10-bit A-D conversion to ms_chX_res the 16-bit 

variable is manipulated using the bitshift-right operator, >>. The contents of chX_res are 

shifted eight places to the right. The resulting value is now assigned to the most 

significant character. Therefore the two MSBs of the A-D conversion are now the two 

LSBs of the ms_chX_res. 

 

ms_chX_res = chX_res >> 8; // Get top 2 bits of ADC Channel X conversion 

 

 

 

Figure 45: Assignment of Upper 2-bits of A-D Conversion 

 

 

Once the A-D conversion result of each channel is appropriately manipulated it is 

inserted into CAN data byte registers - see Appendix B and C. 

 

data[0] = ms_ch2_res; // 2 MSBs of Channel 2 conversion result 

data[1] = ls_ch2_res; // 8 LSBs of Channel 2 conversion result 

data[2] = ms_ch1_res; // 2 MSBs of Channel 1 conversion result 
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data[3] = ls_ch1_res; // 8 LSBs of Channel 1 conversion result 

… 

… 

data[6] = 22; // Arbitrary Number 

data[7] = 33; // Arbitrary Number 

 

Lastly, the construction of the CAN Data messages are completed and transmitted onto 

the network using the CANWrite() and CANSPIWrite() functions. 

 

id = 0x411; // Message ID (Decimal 1041) 

len = 8; // Data Length Code 

CANWrite(id,data,len,aa1); // Write CAN message 

 

id = 0x189; // Message ID (Decimal 393) 

len = 8; // Data Length Code 

CANSPIWrite(id,data,len,aa1); // Write CAN message 

 

The first parameter passed to both CANWrite() and CANSPIWrite() is the Identifier Field, 

which assigns an ID to a particular message. The next item in the function prototype is 

the address of the first data byte in the array of information (A-D conversion results plus 

arbitrary numbers in this application) that is transmitted. This can be up to 8-bytes in 

length. The third item passed is essentially the DLC discussed in Section 2.3.2.1 and is 

used to indicate the number of bytes contained in the data field. The last quantity in the 

prototype of CANWrite() and CANSPIWrite() incorporates a list of constants that are 

bitwise ANDED together. They include factors such as message priority etc. and indicate 

whether the frame is a standard Data frame or otherwise [62]. 

 

aa1 = CAN_TX_PRIORITY_0 & // form value to be used 

       CAN_TX_STD_FRAME & // with CANWrite() 

       CAN_TX_NO_RTR_FRAME; 
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5.3 Testing of Constructed CAN Nodes 

The hardware and software functionality of both CAN nodes was verified using the 

CANKing GUI (Graphic User Interface) test package [63]. CANKing is an easy-to-use 

development tool and essentially allows a computer/laptop to function as a CAN node for 

test purposes. It achieves this by interfacing to Microchip’s MCP2515 development board 

via a parallel-port connection [64]. For that reason the Port95NT parallel-port driver was 

required [65]. 

 

 

 

Figure 46: CANKing allows a Computer/Laptop to Function as a CAN Node 

 

 

The MCP2515 development board incorporates a MCP2515 CAN Controller and 

MCP2551 CAN Transceiver [59], [60]. Thus, CANKing is able to transmit/receive 

messages to/from a CAN network via the MCP2515 development board. The 

development suite possesses the ability to display numerous factors like traffic and bus 

loading statistics, a history of messages transmitted/received, time-stamp information and 

data content for received/transmitted messages. 
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In this particular case, the author was only concerned with verifying if the constructed 

CAN On-Board and CAN SPI nodes transmitted the correct data. Therefore time-stamp 

information along with message content was paramount. The two constructed CAN nodes 

along with the MCP2515 development board were connected to the same network and 

CANKing was used to monitor message activity. 

 

 

 

Figure 47: Verification of Correct Functionality of Constructed CAN Nodes 

 

 

From the diagram above it is seen that both CAN nodes operated as desired. The CAN 

On-Board node, incorporating the PIC18F258, transmitted messages approximately 

every 500 milliseconds with the correct Identifier Field – i.e. 1041. It’s Data Field 

correctly contained the segmented A-D conversion results for both potentiometers 

integrated into this particular node along with four arbitrary numbers. As both 

potentiometers were varied the relevant bytes within the Data Field updated accurately. 

Similarly, the CAN SPI node, incorporating the PIC16F876, sent messages over the 

network every 250 milliseconds using the correct Identifier Field – i.e. 393. The node’s 

Data Field correctly contained the segmented A-D conversion results for the three 
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potentiometers integrated into this individual node along with two arbitrary numbers. 

Again, the appropriate data bytes within the messages continuously transmitted from this 

node updated as soon as the three potentiometers were varied. Thus, as both CAN nodes 

operate as desired the potentiometers suitably mimic the operation of sensors and the 

simulated vehicle measurements are transmitted correctly over the network. 

 

5.4 CAN Implementation upon the Blackfin ADSP-

BF537  

The CAN module of the Blackfin ADSP-BF537 is configured to interpret the transmitted 

messages containing “sensor measurements” in order to take appropriate action to 

graphically-display the data upon a display-device. 

 

 

 

Figure 48: CAN Network Consisting of Blackfin & Constructed Nodes 

 

 

The CAN module utilises Port J of the ADSP-BF537 device and interfaces with the 

Philips TJA1041 CAN Transceiver [66] incorporated onto the ADSP-BF537 EZ Kit Lite 

development board. To enable the CAN module on the ADSP-BF537 EZ Kit Lite all the 

elements of Switch 2 must be turned on [67]. 
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In Section 4.2.3.1 it was outlined that the Blackfin ADSP-BF537 processor incorporates 

thirty-two mailboxes (message buffers) within it’s CAN module. Eight of these buffers 

are transmit only, another eight are receive only, while the remaining sixteen are 

programmable in direction. Each of these mailboxes has associative 32 or 16-bit control 

and data registers which are appropriately configured before a message buffer is enabled 

for use [42]. 

 

The flowchart below illustrates the steps taken to configure a CAN mailbox. 

 

 

 

Figure 49: Configuration of a Blackfin CAN Mailbox 
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If not previously configured, the SCLK (Processor System Clock) of the Blackfin is 

derived from the CCLK (Processor Core Clock) [42]. A frequency value that is suitable 

to BRP derivation is typically chosen. Next, the ADSP-BF537 CAN module is enabled by 

initialising Port J of the processor. The Blackfin employs an interrupt policy for it’s CAN 

module, which is opposite to the polling strategy implemented upon the constructed CAN 

nodes. As a result, the interrupt priority for the mailbox undergoing the initialisation 

process is assigned. 

 

Configuration Mode is entered to configure the CAN module’s internal registers. On 

power-up or reset, the module automatically resides in Configuration Mode. However to 

explicitly enter Configuration Mode a request is made by setting the CCR bit of the 

CAN_CONTROL register to Logic 1. A designer must test to see if the module is now 

residing in Configuration Mode by polling the CCA bit of the CAN_STATUS register 

[42]. 

 

The SJW, PhaseSeg1 and PhaseSeg2 values of the CAN module are programmed by 

appropriately configuring the CAN_TIMING register. 

 

 

 

Figure 50: ADSP-BF537’s CAN_TIMING Register [42] 

 

 

The BRP value of the Blackfin’s CAN module is defined using the CAN_CLOCK 

register. 
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Figure 51: ADSP-BF537’s CAN_CLOCK Register [42] 

 

 

The equations governing bit timing and synchronisation for the Blackfin processor differ 

slightly to the universal formulae outlined in previous chapters [42]. This is not unusual 

as many manufacturers integrate certain timing parameters together resulting in minor 

formulae variances for bit timing calculations. The Blackfin’s CAN module, for instance, 

does not distinguish between PropSeg and PhaseSeg1 as defined by the Bosch standard 

[2]. The PhaseSeg1 value is intended to cover both parameters. Thus the NBT, or tbit, of 

the Blackfin’s CAN module is found using: 

 

( ) ( )( )
qbit tPhaseSegPhaseSegt ×++++= 21111  Eq. 5.1  

 

, where  tbit is the bit period (Seconds), 

  PhaseSeg1 is a programmed integer value (0 - 15), 

  PhaseSeg2 is a programmed integer value (0 - 7), 

tq is the time quantum (Seconds). 

 

The time quantum, tq, and the BRP of the Blackfin’s CAN Module are related by the 

following: 

 

SCLK

BRP
tq

+
=

1
    Eq. 5.2  

 

, where  tq is the time quantum (Seconds), 

  BRP is a user-configurable prescalar integer unit (0 - 1023), 

  SCLK is the Processor System Clock (Hz). 
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As discussed earlier this CAN network operates at 500kBits/s. Thus, a suitable BRP value 

for the Blackfin CAN module is required. From Eq. 2.2 in Section 2.3.1.3: 

 

skBits
t

fNBR
bit

bit /500
1

===  

s
skBits

tbit µ2
/500

1
==⇒  

 

For PhaseSeg1 and PhaseSeg2 values of five and three respectively Eq. 5.1 yields: 

 

( ) ( )( )
qbit tPhaseSegPhaseSegt ×++++= 21111  

( ) ( )( )
qts ×++++=⇒ 315112µ  

s
s

tq µ
µ

182.0
11

2
==⇒  

 

The SCLK frequency utilised is 120MHz; thus from Eq. 5.2: 

 

SCLK

BRP
tq

+
=

1
 

( ) 1−×=⇒ SCLKtBRP q  

( ) 211120182.0 ≈−×=⇒ MHzsBRP µ  

 

Hence, for a SCLK frequency of 120MHz a BRP value of twenty-one results in the CAN 

module operating at 500kBits/s. 

 

The Identifier Field of a specific mailbox is configured using the appropriate 

CAN_MB_XXID1 register. In addition, the RTR bit of this register indicates if a message 

is Remote or Standard - see Section 2.3.2.1. If a mailbox is set up to transmit/receive 

Extended Data Frames the remainder of the Identifier Field is defined using the apt 

CAN_MB_XXID0 register. 
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Figure 52: CAN_MBXX_ID1 & CAN_MBXX_ID0 Registers [42] 

 

 

The DLC for an individual mailbox is programmed using the appropriate 

CAN_MBXX_LENGTH register. To enable a particular mailbox to generate an interrupt 

the corresponding bit in the CAN_MBIMX register is set to Logic 1 [42]. The direction of 

a mailbox, i.e. transmit or receive for a bi-directional buffer, is configured by 

programming a corresponding bit in the relevant CAN_MDX register. Logic 1 indicates 

that the mailbox is configured for message reception; while on the other hand, Logic 0 

indicates that the mailbox is configured for message transmission. 

 

Each of Blackfin’s mailboxes include four 16-bit data byte registers – 

CAN_MBXX_DATA[3..0]. These four registers are used to store the Data Field members 

of a CAN message. Consequently two data bytes are stored in each of the four data 

registers. Data contained within these registers are transmitted MSB first from the 

CAN_MBXX_DATA3/2/1/0 registers, respectively, based on the value defined for the 

DLC. For instance, if only one byte is transmitted or received, i.e. DLC = 1, then it is 

stored in the most significant byte of the CAN_MBXX_DATA3 register [42]. 
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Figure 53: CAN Modules Data Field Registers [42] 

 

 

5.5 Testing of Blackfin's CAN Module 

Within this application the Blackfin is required to receive simulated vehicle data from the 

constructed CAN nodes and interpret this information for further processing. Therefore a 

test program was developed to configure the Blackfin’s CAN module for message 

transmission and reception. Note that even though CAN transmission from the Blackfin is 

not a prerequisite for this system it was developed in this test program to allow for future 

expansion. The source code for this test program is found in Appendix D. 

 

The test program essentially involved initialising three Blackfin mailboxes (message 

buffers) appropriately. Correct message reception was verified by allocating an individual 

mailbox for each of the two constructed CAN nodes. Mailbox 6 was configured to 

receive messages with ID 393, while Mailbox 7 was programmed to receive messages 

with ID 1041. When a specific mailbox received a pertinent CAN message from the 

network it performed a particular ISR (Interrupt Service Routine). For instance, as soon 
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as Mailbox 6 received a message with ID 393 an ISR copied the Data Field of this 

message buffer to Mailbox 24 and issued a transmission request. As a consequence of this 

message transmission was implicitly tested. The ISR performed when Mailbox 7 received 

a relevant message involved turning on/off LEDs (Light Emitting Diode) incorporated 

onto the ADSP-BF537 EZ Kit Lite development board. 

 

 

 

Figure 54: Mailbox Configurations for Testing of Blackfin CAN Module 

 

 

The flow chart below illustrates the operations of the test program. 

 

 

Figure 55: Flowchart for Blackfin CAN Module Test Program 
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The functionality of the CAN module was examined by configuring and connecting the 

Blackfin to the network incorporating the two constructed CAN nodes. CANKing was 

used to monitor bus activity to establish if all components functioned as desired. 

 

 

 

Figure 56: Verification of Correct Functionality of Blackfin CAN Module 

 

 

From the preceding diagram it is seen that the devised test code functioned as desired as 

the Data Fields of the messages with IDs 7 and 393 are identical. This proves that 

Mailbox 6 within the Blackfin’s CAN module correctly received messages from the 

constructed CAN SPI node and copied the contents to Mailbox 24. Mailbox 24, in turn, 

re-transmitted the data onto the network under an Identifier Field of 7. Additionally, the 

remaining configured message buffer, Mailbox 7, correctly received messages (ID 1041) 

from the constructed CAN On-Board node. This was proven by twisting the 

potentiometers situated upon the CAN On-Board node resulting in the LEDs on the 

ADSP-BF537 EZ Kit Lite turning on or off. Thus a mechanism has been developed for 

correctly initialising the Blackfin for CAN communications and integrating the device 

into an existing CAN network. 
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5.6 Summary 

This chapter outlined the main steps taken to physically implement the CAN network 

used in this application. The key points for contemplation are as follows: 

 

• Potentiometers are suitable for the purpose of mimicking the operation of 

standard vehicle sensors. The potentiometers are interfaced with embedded 

devices chosen from the cost-effective 8-bit PIC microcontroller family to 

formulate CAN nodes. 

 

• Adequate software routines are utilised to ensure that the full 10-bit resolution of 

the A-D conversions upon the potentiometers are kept intact prior to message 

transmission. 

 

• The calculation of the correct BRP value for any CAN node is paramount to 

ensure that all devices communicate at the same NBR. 

 

• The Blackfin ADSP-BF537 contains thirty-two CAN message buffers which 

require a certain degree of configuration prior to use. 

 

• The two constructed CAN nodes communicated as desired with the Blackfin’s 

CAN module. This was verified using the CANKing tool suite. 
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Chapter 6 - Video Implementation 

 

 
 

 

 

 

6.1 Introduction 

This chapter discusses the measures taken to implement a video display using the 

Blackfin ADSP-BF537 EZ Kit Lite and A/V development boards. The information given 

in this chapter is separated into the following main sectors: 

 

• A discussion of the device drivers and system services incorporated into the 

VisualDSP++ compiler, and how are they are utilised within this synthesis. 

 

• A detailed description of the software test strategy employed to realise video 

processing. 

 

• A brief outline of the hardware configuration required to achieve successful video 

processing using the Blackfin ADSP-BF537 EZ Kit Lite and A/V development 

boards. 
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6.2 Video Implementation Strategy 

As a methodology for CAN implementation has been established the next step is to 

realise video signalling using the Blackfin ADSP-BF537 EZ Kit Lite and its compatible 

A/V daughter board. This is essential in order to visually represent the data received from 

the CAN network; thus a suitable process for video functionality is required. However, 

instead of endeavouring to develop video software that works in tandem with the CAN 

source code a modular approach is taken. This essentially means firstly developing a 

suitable standalone software strategy for video. 

 

6.2.1 Video Software Strategy 

Before delving into the software algorithms employed to implement video it is important 

to point out that Analog Devices’ VisualDSP++ compiler contains numerous utilities, 

such as device drivers and system services, which aid in developments incorporating their 

ICs [68], [69]. 

 

6.2.1.1 Device Drivers & System Services 

Device drivers are essentially standardised API2 (Application Program Interface) for 

Blackfin processors that allow for interaction with internal modules and hardware 

peripherals e.g. PPI and video encoders respectively. 

 

 

                                                 
2 An API forms part of a software interface that a compiler or library provides in order to support requests 
for services to be made of it by an application program. 
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Figure 57: Examples of Supported Blackfin Device Drivers 

 

 

The utilisation of device drivers results in modular programming and portability between 

Blackfin processors. Memory is required by device drivers in order to manage 

components and this is supplied at the initialisation stage of a software application. All 

device drivers use “handles”. A handle is quite literally a method for getting a handle on 

a device; therefore it is fundamentally an address that points to device specific data. For 

example the following source code declares a handle for an ADV7179 video encoder 

device driver. 

 

ADI_DEV_DEVICE_HANDLE AD7179DriverHandle; // Handle to the ADV7179 Driver 

 

All VisualDSP++ device drivers encompass return codes which indicate the success or 

failure resulting from the use of a device driver; a zero denotes success, while a non-zero 

value signifies an error. 

 

The following diagram illustrates the four major functions utilised with device drivers. 

The purpose of each of the four functions is self explanatory from the diagram. However 

the term “buffer” needs to be expanded upon. Buffers, with reference to VisualDSP++ 

utilities, describe the data for a device driver to process and are provided by the 

application software exploiting a particular device driver. The application software 

essentially populates the various fields of the buffer to completely describe the data to the 

device driver. In other words data is shifted to/from device drivers using buffers [68]. 
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Figure 58: Standard Device Driver Functions 

 

 

An input buffer is employed to receive data from a device; while conversely, an output 

buffer contains data that is sent out to a particular device. The two main buffer categories 

are 1D and 2D. A 1D buffer is comprised from a linear array of data that a device driver 

processes. On the other hand, a 2D buffer is essentially a two-dimensional array (rows 

and columns) of data that a device driver manages. 2D buffers are used in this application 

as they are more efficient in terms of video processing than a 1D buffer. A 2D buffer is 

comprised of the following fields [18], [69]: 

 

• pData: A pointer to relevant data which can exist anywhere in memory. 

• ElementWidth: Width of each element in terms of bytes to be read in or sent out. 

• XCount: Specifies the number of column elements. 

• XModify: Indicates the number of bytes to increment the address pointer after 

each column transfer. 

• YCount: Specifies the number of row elements. 

• YModify: Indicates the number of bytes to increment the address pointer after each 

row transfer. 

• CallBackParameter: Null or non-null value. The idea of Callback is explained 

shortly. 

• pNext: Pointer to the next 2D buffer in the chain. The concept of chaining is 

expanded upon shortly. This parameter is assigned null if the buffer is the 

last/only buffer in a chain. 
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The concept of Callback with reference to 2D buffers involves invoking a regular C 

function in response to an asynchronous event such as an interrupt. The VisualDSP++ 

compiler incorporates two categories of Callback [69]: 

 

1. Live Callback 

2. Deferred Callback 

 

For Live Callbacks, a C service routine is invoked as soon as an asynchronous event 

occurs. Conversely, for Deferred Callbacks a C function is not summoned until a short 

time after an asynchronous event occurs. Thus, Live Callbacks typically occur at 

hardware interrupt time (higher priority interrupt level); whereas Deferred Callbacks 

execute at software interrupt time (lower priority interrupt level). As a consequence, the 

use of Live Callbacks can have a detrimental effect on performance as associated 

interrupt latencies are high. Therefore Deferred Callbacks are used in the vast majority of 

applications as they possess lower interrupt latencies. 

 

With reference to the CallBackParameter field of a 2D buffer, if a value of null is 

assigned Live Callbacks are utilised. In addition, a device driver does not “call back” an 

application after a buffer has been processed. If the CallBackParameter field is allotted a 

non-null value, Deferred Callbacks are employed invoking an application’s Callback 

function after a buffer has been processed by a particular device driver. 

 

The pNext parameter of a 2D buffer can be used to link numerous buffers together in a 

chain-like manner. Typically, with video applications a Chained Loopback dataflow 

method is used to mutually tie several buffers together [68]. This fundamentally means 

that the last element of one particular buffer points to the first data member of a different 

buffer. Therefore buffers are essentially queued one-by-one to a device driver ensuring 

that the component, e.g. a video encoder IC, is never starved of data. This is obviously 

critical in video applications. 
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Figure 59: Chained Loopback Dataflow Methodology 

 

 

System services are in essence pre-built software libraries that simplify software 

development and provide efficient access into components such as DMA and dynamic 

power modules etc [68]. 

 

 

 

Figure 60: Examples of System Services Supported 

 

 

They are used in conjunction with device drivers in order to control and interact with 

internal modules and external peripherals. Device drivers manage their own system 

services as required. To utilise device drivers and system services software algorithms 

must include the appropriate header files in the following order. 

 

 #include <services/services.h> // System Services Header File 

 #include <drivers/adi_dev.h> // Device Manager Header File 

 #include <drivers/X.h> // Device Driver X’s Header File 

 

System services are initialised prior to the configuration of device drivers. The 

adi_dev_Init() function is used to initialise a device driver. VisualDSP++’s device 

drivers are built on top of its system services [68], [69]. 
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Figure 61: Layered Utilities Structure 

 

 

A typical programming sequence for the utilisation of device drivers and system services 

is seen below. 

 

 

 

Figure 62: Typical Device Driver Programming Sequence 
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The device drivers for the ADV7179 video encoder IC [70] and DMA module are 

employed in this system to implement video processing. The methodology used to realise 

this is discussed in the next section. Before discussing this however, it must be pointed 

out that the final implementation of the video encoder device driver module was only 

being developed by Analog Devices at the same time as the author was trying to utilise 

this particular device driver within this test algorithm. As a result, contact was made with 

Analog Device’s support-team on numerous occasions to try and eradicate teething 

problems. However, this was sometimes in vein as the support team were only at the 

same development stage as the author. Consequently the author was engaged in many 

debug sessions in order to successfully implement the test algorithm. 

 

6.2.1.2 Software Testing of Video Implementation 

The strategy for testing the correct implementation of video processing upon the Blackfin 

ADSP-BF537 EZ Kit Lite and its A/V daughter board involved alternating the colour 

displayed upon a television monitor. This included creating two ITU-R BT.656 buffers in 

SDRAM. Two 2D buffers chains were declared to ensure that the ADV7179 IC was 

never starved of data. Once all of the device drivers, handles etc. were declared the two 

ITU-R BT.656 4:2:2 frames were initialised with different colours. The ADV7179 device 

driver handle was then enabled and fed the data contained within the two buffers via a 

DMA transfer. The correct operation of the test algorithm was verified by monitoring a 

television screen to see if the desired colours were displayed. The flow chart below 

illustrates the processes undertaken to achieve successful operation. The source code for 

this test algorithm is found in Appendix E. 
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Figure 63: Flowchart for Video Processing Test Program 

 

 

Numerous colours were declared in YCbCr format. The period of time for which an 

individual colour was displayed was dependant upon the value of the NUM_BUFFERS 

constant. As seen below, for a value of 30 assigned to NUM_BUFFERS a colour change 

rate of one second was achieved. 

 

#define NUM_BUFFERS (30) // Colour Change Rate = (NUM_BUFFERS/30)/second 

// Colour Patterns 

static u8 black[] = {0x80,0x10,0x80,0x10}; // Black pixel YCbCr format 
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static u8 blue[] = {0xF0,0x29,0x6E,0x29}; // Blue pixel YCbCr format 

static u8 red[] = {0x5A,0x51,0xF0,0x51}; // Red pixel YCbCr format 

static u8 magenta[] = {0xCA,0x6A,0xDE,0x6A}; // Magenta pixel YCbCr format 

static u8 green[] = {0x36,0x91,0x22,0x91}; // Green pixel YCbCr format 

static u8 cyan[] = {0xA6,0xAA,0x10,0xAA}; // Cyan pixel YCbCr format 

static u8 yellow[] = {0x10,0xD2,0x92,0xD2}; // Yellow pixel YCbCr format 

static u8 white[] = {0x80,0xEB,0x80,0xEB}; // White pixel YCbCr format 

 

Two buffer frames were declared, PingFrame and PongFrame, both of which were 

configured to hold the contents of an ITU-R BT.656 frame. In this particular case the two 

arrays were initialised to hold a NTSC video frame. NTSC was chosen solely for test 

purposes; the choice of PAL or NTSC in this case is irrelevant. 

 

// Create two areas in SDRAM that will each hold a 656 frame 

static u8 PingFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT]; 

static u8 PongFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT]; 

 

Two 2D buffer chains, one for PingFrame and one for PongFrame, were declared in 

order to create a chaining method for the data fed to the ADV7179 device driver. Both 

buffer chains consisted of a number of elements determined by the NUM_BUFFERS 

constant. 

 

ADI_DEV_2D_BUFFER PingBuffer[NUM_BUFFERS]; // Create Two Buffer Chains 

ADI_DEV_2D_BUFFER PongBuffer[NUM_BUFFERS]; 

 

Several device drivers were used in this test algorithm. The DMA device driver was 

incorporated to facilitate efficient data transfers between SDRAM and the PPI port. The 

DCB (Deferred Callback) device driver was utilised as Deferred Callbacks were used to 

improve performance as outlined in Section 6.2.1.1. 

 

// DMA Manager data (base memory + memory for 1 DMA channel) 

static u8 DMAMgrData[ADI_DMA_BASE_MEMORY + (ADI_DMA_CHANNEL_MEMORY * 

1)]; 

// Deferred Callback Manager data (memory for 1 service + 4 posted callbacks)  



 102 

static u8 DCBMgrData[ADI_DCB_QUEUE_SIZE + (ADI_DCB_ENTRY_SIZE)*4]; 

 

The ADV7179 device driver was also employed within this system. It was used to control 

the ADV7179 video encoder IC in order to transform a digital ITU-R BT.656 video 

stream into an analogue television signal. Recall from Section 6.2.1.1 that memory is 

required by device drivers in order to manage components and that this memory is 

supplied at the initialisation stage of a program. During initial development of this test 

program an error involving the use of the ADV7179 device driver module was 

encountered. 

 

// Device Manager Driver 

static u8 DevMgrData[ADI_DEV_BASE_MEMORY + (ADI_DEV_DEVICE_MEMORY * 1)]; 

 

After consultation with Analog Device’s support team and a review of [71] it was found 

that the ADV7179 IC, situated on the A/V daughter board, is connected to the Blackfin 

ADSP-BF537 EZ Kit Lite using two peripherals. Firstly, the PPI port is used for 

transferring video data to the encoder; while the SPI is used to control the ADV7179 IC. 

Thus the ADV7179 device driver automatically and transparently opens and controls the 

underlying PPI driver to move data through the encoder. It also opens and controls the 

underlying SPI driver to configure the ADV7179. This can be thought of as a stacked 

approach where the application talks exclusively to the ADV7179 device driver while the 

ADV7179 driver talks to the underlying PPI and SPI drivers as necessary. 
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Figure 64: Stacked Approach of Device Drivers 

 

 

Subsequently, to overcome the encountered error, memory for three device drivers had to 

be allocated for a single call to the ADV7179 device driver as it implicitly incorporates 

the PPI and SPI device drivers. 

 

// Device Manager data (base memory + memory for 3 devices)  

// Memory for 3 devices is required because usage of a 7179 device results in the usage of the PPI 

// and SPI devices. 

static u8 DevMgrData[ADI_DEV_BASE_MEMORY + (ADI_DEV_DEVICE_MEMORY * 3)]; 

 

Handles for the utilised device drivers were declared. 

 

ADI_DEV_DEVICE_HANDLE AD7179DriverHandle; // Handle to the ADV7179 Driver 

ADI_DCB_HANDLE DCBManagerHandle; // Handle to the Callback Service Manager 

ADI_DMA_MANAGER_HANDLE DMAManagerHandle; // Handle to the DMA Manager 

ADI_DEV_MANAGER_HANDLE DeviceManagerHandle; // Handle to the Device Manager 

 

The Callback function in this application was invoked as soon as the PPI completed the 

processing of the last component in the buffer chains. Within the Callback function the 

pNext value of the last elements of both buffer chains was assigned the address of the first 

element within each individual chain in order to prevent starvation of data to the video 

encoder IC. 
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In order to initialise the DCB manager with sufficient memory for the required number of 

Deferred Callback queues the adi_dcb_Init() and adi_dcb_Open() functions were used. 

The DMA and ADV7179 device drivers were initialised using the adi_dma_Init() and 

adi_dev_Init() functions – see Appendix E. 

 

The two frames, PingFrame and PongFrame, were configured to hold a progressive scan 

ITU-R BT.656 4:2:2 NTSC frame. This was achieved using a pre-written system services 

function, adi_itu656_FrameFormat(), which initialises a frame with the necessary SAV, 

EAV, preambles etc. required for an ITU-R BT.656 video stream – see Appendix E. 

 

adi_itu656_FrameFormat (PingFrame,ADI_ITU656_NTSC_PR); 

adi_itu656_FrameFormat (PongFrame,ADI_ITU656_NTSC_PR); 

 

Once the frames were initialised their ITU-R BT.656 chrominance fields were filled with 

a particular colour; in this case white and blue respectively. Again, this was achieved 

using a pre-written system services function, adi_itu656_FrameFill() – see Appendix E. 

 

adi_itu656_FrameFill (PingFrame,ADI_ITU656_NTSC_PR,white); 

adi_itu656_FrameFill (PongFrame,ADI_ITU656_NTSC_PR,blue); 

 

After resetting the ADV7179 IC through software and initialising the AV7179 device 

driver, the application opened the video encoder IC for use using the adi_dev_Open() 

function. This function also prescribed the inclusion of DMA transfer between SDRAM 

and the ADV7179 as the DMA handle was passed as the seventh parameter. 

 

// Open the AD7179 Driver for Output 

ezErrorCheck(adi_dev_Open(DeviceManagerHandle, // Handle controlling the Device 

   &ADIADV7179EntryPoint, // Address of Entry Point  

   ENCODER_PPI,   // Number identifying which Device is Opened 

   NULL, // No Client Handle 

   &AD7179DriverHandle, // Handle Address 

   ADI_DEV_DIRECTION_OUTBOUND, // Data Direction  

   DMAManagerHandle, // Handle to DMA Manager 
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   DCBManagerHandle, // Handle to Callback Manager 

   Callback)); // Callback 

 

However, problems were encountered using this function. The Blackfin ADSP-BF537 

processor contains a single PPI port. The third parameter passed to adi_dev_Open() 

contains a number that identifies which device is to be opened. Initially ENCODER_PPI 

was assigned a value of one to indicate the PPI device number. This resulted in nothing 

being displayed upon the television monitor when the program was tested. After 

reviewing [71] it was found that devices exploiting VisualDSP++ utilities are numbered 

with a zero base; e.g. if there are four PPI ports the first is assigned zero for identification 

purposes, the second is assigned one etc. Subsequently to solve the encountered error 

ENCODER_PPI was assigned a value of zero. 

 

The adi_dev_Control() function was used to configure the ADV7179 device driver for 

data flow and open the PPI port for data transfer. 

 

// Set PPI Device Number 

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device 

       // Command Identifier 

ADI_ADV717x_CMD_SET_PPI_DEVICE_NUMBER, 

        (void*)0)); // PPI Device Number 

 

// Open PPI Device 

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device 

       ADI_ADV717x_CMD_SET_PPI_STATUS, // Command Identifier 

       // Address of Command Specific Parameter 

(void*)ADI_ADV717x_PPI_OPEN)); 

 

The two buffer chains were linked to PingFrame and PongFrame respectively in order to 

form a loopback mechanism to ensure that data was constantly being fed from SDRAM 

to the ADV7179 video encoder. Recall that each buffer chain contained NUM_BUFFERS 

elements. As illustrated in the following diagram all of the elements within both chains, 

PingBuffer and PongBuffer, pointed to PingFrame and PongFrame respectively. 
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Figure 65: Elements of Buffer Chains pointing to ITU-R BT.656 Frames 

 

 

This was accomplished in software by appropriately configuring the fields of all elements 

of both 2D buffers; the configuration for PingBuffer is seen below. 

 

for (i = 0; i < NUM_BUFFERS; i++) // Populate the PingBuffer 

{ 

  PingBuffer[i].Data = PingFrame; // Point to PingFrame Data 

  PingBuffer[i].ElementWidth = 2; 

  PingBuffer[i].XCount = (ADI_ITU656_NTSC_LINE_WIDTH/2); 

  PingBuffer[i].XModify = 2; 

  PingBuffer[i].YCount = ADI_ITU656_NTSC_HEIGHT; 

  PingBuffer[i].YModify = 2; 

  PingBuffer[i].CallbackParameter = NULL; 

  PingBuffer[i].pNext = &PingBuffer[i + 1]; 

} 

// Callback on last buffer in chain, consequently point to first buffer in chain.  

PingBuffer[NUM_BUFFERS - 1].CallbackParameter = &PingBuffer[0];  
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PingBuffer[NUM_BUFFERS - 1].pNext = NULL; 

 

As mentioned earlier, as soon as the processing of the last buffer in the chain was 

terminated a Callback was issued in order to re-queue the data; i.e. the last buffer in the 

chain points back to the first buffer element. Again, this mechanism was utilised to 

ensure that a video stream was constantly being fed to the ADV7179. 

 

The adi_dev_Control() function was again incorporated to configure the ADV7179 

device driver for outbound loopback data flow. 

 

// Configure the AD7179 Dataflow Method 

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device 

ADI_DEV_CMD_SET_DATAFLOW_METHOD, // Command Parameter 

(void *)ADI_DEV_MODE_CHAINED_LOOPBACK)); // Outbound Loopback 

 

The next step involved actually pointing the ADV7179 device driver towards the buffer 

chains and turning on the data flow to allow transmission of an ITU-R BT.656 4:2:2 

video stream to the ADV7179 video encoder IC. 

 

// Give the device the Ping and Pong buffer chains 

ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device 

ADI_DEV_2D, // 2D Buffer 

(ADI_DEV_BUFFER *)&PingBuffer)); // Point to PingBuffer 

 

ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device 

ADI_DEV_2D, // 2D Buffer 

(ADI_DEV_BUFFER *)&PongBuffer)); // Point to PongBuffer 

 

// Enable data flow         

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device 

ADI_DEV_CMD_SET_DATAFLOW, // Command Parameter 

(void *)TRUE)); // Turn on Dataflow 
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The reader may have noticed that most function calls discussed so far incorporated a call 

to ezErrorCheck(). This was used as a debug aid as all calls to VisualDSP++ system 

services functions return a value indicating the success/failure of a particular invoked 

algorithm. If a specific function call returned unsuccessfully ezErrorCheck() illuminated 

LEDs located on the Blackfin ADSP-BF537 EZ Kit Lite development board to indicate a 

fault. Otherwise ezErrorCheck() took no action. 

 

After eradicating all software debugs it was found that the program did not function as 

desired; i.e. a television screen did not display alternate colours when connected to the 

A/V daughter board. After reviewing [71] once more it was found that the problem 

resided in the project options of VisualDSP++. As this test algorithm incorporated 

SDRAM the pre-processor macro definition USE_SDRAM needed to be included in the 

project options in order to enable the use of SDRAM upon the EZ Kit development board. 

 

 

 

Figure 66: Required Pre-Processor Macro Definition 
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Once this problem was eliminated, the test algorithm operated as desired; i.e. a television 

screen connected to the A/V board continuously displayed alternate screens of white and 

blue. This therefore proved that the ITU-R BT.656 video stream was being correctly 

initialised within SDRAM and transferred successfully, via DMA, to the ADV7179 video 

encoder IC. The encoder itself correctly converted the digital video stream into a standard 

analogue television signal. Thus a formula for video processing utilising the Blackfin 

ADSP-BF537 EZ Kit Lite and A/V development boards has been determined. 

 

6.2.2 Video Hardware Strategy 

The main focus so far has been on the software strategy implemented to realise video 

processing. However a certain degree of hardware configuration strategy, albeit relatively 

small, also took place involving signal routing on the ADSP-BF537 EZ Kit Lite and A/V 

development boards. This was conducted by modifying jumper settings upon the A/V 

daughter board. The correct hardware settings in conjunction with an accurate software 

strategy led to the successful operation of this test program. 

 

The following table illustrates the jumper settings instigated on the A/V daughter board. 

Note that the table only contains details of jumper settings that were relative to this 

particular video processing implementation. An individual jumper contains a number of 

pins; so for example the description JP3.5/7 refers to the connection of pins 5 and 7 of 

Jumper 3 [72]. 
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Jumper Number Pin Connections Outcome 

JP3.5/7 
JP3 

JP3.6/8 

ADSP-BF537’s TWI Interface is utilised to 

potentially reconfigure the ADV7179 IC 

JP4.1/2 
JP4 

JP4.3/4 

Connects 27MHz A/V On-board Clock to 

Video Encoder  

JP5 JP5.3/4 Enables PPI0 to drive ADV7179 IC 

JP8.1/3 

JP8.2/4 

Selects PPI0 as the source for the frame 

synchronisation signals for ADV7179 IC JP8 

JP8.7/8 Enables output data synchronisation signal 

JP9 JP9.1/3 Video Encoder Reset with Flag Pin 

 

Table 16: A/V Daughter Board Jumper Settings 

 

 

Jumper 3 is the TWI
3 (Two Wire Interface) source selection jumper [42], [72]. It is used 

to select between a software emulated and actual TWI interface. The ADV7179 IC is 

reconfigurable using a TWI interface. Consequently this jumper is required as some 

Blackfin processors do not contain a TWI interface; therefore they need to emulate the 

interface in software. On the other hand, the ADSP-BF537 does contain a TWI interface; 

subsequently JP3.5/7 and JP3.6/8 were installed. 

 

The ADV7179 video encoder requires some sort of clocking mechanism. The A/V 

daughter board contains an on-board 27MHz oscillator. JP4.1/2 and JP4.3/4 were used to 

route the 27MHz clock signal to the ADV7179. Jumper 5 dictates where the video 

encoder incorporated onto the A/V daughter board sources its video data from. As the 

ADSP-BF537 contains a single PPI port, namely PPI0, JP5.3/4 was used to route the 

ADSP-BF537’s PPI data to the ADV7179 [72]. 

 

                                                 
3 TWI is a communications protocol used in small industrial networks. Its operation is similar to I2

C. 
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JP8.1/3 and JP8.2/4 were used to select the ADSP-BF537’s PPI port as the source for 

synchronisation signals feeding the video encoder. JP8.7/8 was inserted to enable the 

output video synchronisation signals from the ADV7179 IC. Jumper 9 is partly used to 

select between the resources utilised to reset the ICs incorporated onto the A/V board. In 

this particular test algorithm a software reset was utilised therefore JP9.1/3 was inserted. 

Again to reiterate, the correct hardware settings outlined in conjunction with the 

described software strategy led to the successful operation of this test program. 

 

6.3 Summary 

This chapter described the test strategy employed for video processing utilising the 

Blackfin ADSP-BF537 EZ Kit Lite and A/V development boards. The core issues to note 

are as follows: 

 

• VisualDSP++’s device drivers and system services are powerful resources which 

aid in this video synthesis. 

 

• A test algorithm involving the display of analogue video signals, derived from an 

ITU-R BT.656 video stream in SDRAM, upon a television monitor has been 

developed. 

 

• Numerous software and hardware modifications were made to the initial testing 

strategy resulting in a successful outcome; i.e. alternate colours were continuously 

displayed on a television monitor. 
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Chapter 7 - Application Synthesis 

 

 
 

 

 

 

7.1 Introduction 

This chapter details the efforts involved in the implementation of this application’s 

synthesis by combining the developed CAN and video mechanisms. The information 

given in this chapter is separated into numerous sections as outlined below: 

 

• An explanation of the initial strategy undertaken to develop the application’s 

synthesis. 

 

• A description of the problems encountered with the initial synthesis strategy and 

the debug session embarked on to identify the cause of the occurring errors and 

their eradication with fitting solutions. 

 

• An outline of the final strategy utilised and the test procedure incorporated to 

assess its correct functionality. 

 

• A depiction of future developments which could be made to further improve the 

system’s performance. 
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7.2 Displaying Simulated Vehicle Data 

Over the last two chapters suitable procedures have been established for CAN networking 

and video processing. As a result, the next step is to combine the two independent 

strategies to endeavour to formulate the synthesis of this application. This essentially 

involves utilising the CAN strategy to receive simulated vehicle data from the network 

and pass this information over to the video processing module in order to visually 

represent the data appropriately on a television monitor. 

 

The general hypothesis behind the amalgamation of the two devised procedures is to 

exploit the contents of received CAN messages to manipulate global variables in 

software, resulting in the modulation of a monitor’s display. This is carried out repeatedly 

in software resulting in a television screen being constantly updated with live vehicle 

information. 

 

7.2.1 Initial Strategy 

Originally the CAN and video processing strategies were merged together with the 

initialisation sequence for various parameters as illustrated in the following diagram. The 

functions that were utilised in this particular implementation can be found (not in the 

same order as the subsequent diagram) in Appendix F. 

 

At first, it was decided to use only CAN messages received with ID 1041 to modulate a 

monitor’s display. Thus, recalling from Section 5.5, only messages received into 

Blackfin’s Mailbox 7 were employed to vary a television screen’s display. This approach 

was taken in order to develop the application’s synthesis in steps; i.e. implement screen 

modulation using one particular CAN message and then develop on from this. Message 

ID 1041 was chosen to represent vehicle speed and, at the outset, it was decided to 

signify this quantity by varying the colour displayed on the screen. A CAN network of 

500kBits/s was again implemented as it satisfactorily transferred simulated vehicle data 

at an appropriate rate. 
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Figure 67: Flowchart of Original Initialisation Strategy 

 

 

To utilise the information received into Mailbox 7 an ISR, CAN_RCV_HANDLER, was 

developed which varied the value of a global variable, clr_screen, depending upon the 

contents of the mailbox’s CAN_MB7_DATA3 register. Once all initialisation was 

complete, this ISR was invoked as soon as a CAN message was received by the Blackfin. 

The value of the clr_screen global variable was used within the main() function to 

attempt to vary the colour displayed upon the monitor. As seen below, within this initial 

implementation a value of clr_screen equal to two depicted red; while a value of one 

represented blue. Note that the developed ISR included code to process a message 
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received into Mailbox 6. However, this was only incorporated to allow for future 

expansion because as stated earlier, an approach was taken to develop the application’s 

synthesis in steps. 

 

 

 

Figure 68: Received CAN Message Interrupt Service Routine 

 

 

if(bit_pos = = 0x8) //if Mailbox7 IRQ // ISR for Mailbox 7 

{ 

  if((*(pCAN_MB_DATA3(7)) = = 0) || (*(pCAN_MB_DATA3(7)) <= 512)) 

  { 

     clr_screen = 2; // Display RED 

  } 

  … 

  if(*(pCAN_MB_DATA3(7)) >= 513) 

  { 

     clr_screen = 1; // Display BLUE 

  } 

} 

 

Within the main() function the clr_screen variable was evaluated using a switch-case C 

statement and the appropriate colour was written to PingFrame and PongFrame in ITU-R 
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BT.656 NTSC format. Note NTSC was chosen for use at this stage as it is default format 

for the ADV7179 IC; configuring the device for PAL usage requires developing software 

algorithms outside of the application’s scope. 

 

switch(clr_screen) // Determine which colour is displayed on the screen 

{ 

   case(0): // Display WHITE 

     adi_itu656_FrameFill (PingFrame, ADI_ITU656_NTSC_PR, white); 

     adi_itu656_FrameFill (PongFrame, ADI_ITU656_NTSC_PR, white); 

     break; 

     

  case(1):  // Display BLUE  

     adi_itu656_FrameFill (PingFrame, ADI_ITU656_NTSC_PR, blue); 

     adi_itu656_FrameFill (PongFrame, ADI_ITU656_NTSC_PR, blue); 

     break; 

  … 

  …      

  case(6): //  Display YELLOW  

     adi_itu656_FrameFill (PingFrame, ADI_ITU656_NTSC_PR, yellow); 

     adi_itu656_FrameFill (PongFrame, ADI_ITU656_NTSC_PR, yellow); 

     break;    

 

  default: //Display BLACK 

     adi_itu656_FrameFill (PingFrame, ADI_ITU656_NTSC_PR, black); 

     adi_itu656_FrameFill (PongFrame, ADI_ITU656_NTSC_PR, black); 

     break; 

} 

 

After writing the ITU-R BT.656 4:2:2 data, two buffer chains were linked to the frames to 

form a loopback mechanism as discussed in the last chapter. Once this was completed the 

buffer chains were passed to the ADV7179 handle with the aim of displaying the 

information on a monitor. This entire procedure was carried out continuously in software 

by placing it within a while(1) loop. 
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7.2.1.1 Problems Encountered 

When the developed application was tested it did not function as desired. The default 

colour, black, was continuously displayed upon a connected television monitor regardless 

of the value contained within the CAN_MB7_DATA3 register of Mailbox 7. 

Consequently, a debug session was undertaken in an attempt to establish the likely cause 

of the error. After stepping through the source code it was found that the 

CAN_RCV_HANDLER ISR was not being correctly registered with the Blackfin’s CEC 

(Core Event Controller) and SIC (System Interrupt Controllers) modules. These two 

modules are responsible for assigning priority levels and mapping ISRs. To program a 

particular ISR with a specific IVG (Interrupt Vector Group), i.e. priority level, the 

necessary bits in the appropriate SIC_IARx register must be configured accordingly. IVG 

levels range from 0 to 15; lower numbers possess higher priority while higher numbers 

bear lowest priority. IVG levels 7 to 15 are considered general purpose software or 

peripheral level interrupts. All other priority levels are reserved for supervisory ISRs; e.g. 

hardware errors [42]. 

 

The CAN_RCV_HANDLER was initially allocated an IVG level of eleven by assigning a 

value of 0x4 to bits 31 to 29 of SIC_IAR1. After configuring the priority of an individual 

ISR within the Blackfin it has to be registered with the CEC module. The VisualDSP++ 

compiler incorporates two ways to accomplish this. Firstly, the utilisation of device 

drivers and system services can be used to automatically register an ISR. On the other 

hand an ISR can be manually registered using the register_handler() function. The 

register_handler() function was used to log the CAN_RCV_HANDLER with the CEC. 

 

register_handler(ik_ivg9, CAN_RCV_HANDLER); // Register ISR with CEC 

 

Conversely speaking, the devised video processing strategy incorporated device drivers 

and system services to register ISRs utilised within the DMA transfers. In the 

initialisation sequence illustrated in Figure 67 the CAN_RCV_HANDLER was registered 

with the CEC and SIC prior to the logging of the ISRs utilised by the video processing 

strategy. The cause of the occurring problem was that the registering of the video 
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processing ISRs overwrote the logging of the CAN_RCV_HANDLER ISR. Therefore, as 

far as the Blackfin was concerned, the CAN_RCV_HANDLER was no longer registered as 

an ISR. As a result of this, when this program was tested the ISR for Mailbox 7 was never 

invoked; thus the global variable clr_screen remained at its default value of zero. This is 

why black was being continuously displayed on the connected television monitor. 

 

 

 

Figure 69: Revised Initialisation Strategy 
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A solution to this problem was realised by subtly amending the initialisation strategy as 

seen in the preceding diagram. This initialisation sequence was almost identical to its 

predecessor with the exception that the assigning of interrupt priority for 

CAN_RCV_HANDLER did not take place until just before the enabling of dataflow. This 

essentially meant that the registering of the CAN_RCV_HANDLER ISR was appended 

onto the registering of the video processing ISRs using the register_handler() function. 

This initialisation strategy was employed within the final synthesis – see Appendix F. 

 

When the revised application was tested it still did not operate as anticipated. The 

simulated vehicle speed data contained inside Mailbox 7 did depict what was displayed 

upon the monitor. However, the screen’s display did not update when the potentiometer 

used to mimic the operation of a sensor measuring speed was varied. Instead, the first 

CAN message received into Mailbox 7 dictated what colour was statically displayed on 

the monitor. For instance, if the first CAN message received into Mailbox 7 resulted in 

CAN_MB7_DATA3 containing a value less than 513 the colour red was continuously 

displayed regardless of any further deviations in received data into this specific message 

buffer. 

 

7.2.2 Final Strategy 

A review was carried out to eradicate the reoccurring problem and establish how to 

exploit the received CAN data to continuously refresh the connected monitor’s display 

with new information. It was found that once any device controlled through 

VisualDSP++ utilities is opened the dataflow method for the specific device, particularly 

the DMA, must only be set once [68], [71]. This therefore was the fault in the initial 

synthesis strategy; the dataflow method for the ADV7179 device driver was configured 

during the initialisation stage and again inside the while(1) loop, thus violating standard 

procedure. Consequently, it can be seen that the employment of a while(1) loop to 

continuously update the connected television’s display would not suffice as the dataflow 

method can only be configured once. 
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An alternative methodology was found through the exploitation of the Callback function. 

Recall that this function was invoked as soon as the PPI (via the ADV7179 device driver) 

completed the processing of the last component in the buffers chains. The Callback 

function was used to write the appropriate ITU-R BT.656 chrominance information, 

representing vehicle speed, to the data buffers based on the value of the global variable 

clr_screen. In other words, the switch-case C statement outlined earlier was modified and 

incorporated into the Callback function: 

 

switch(clr_screen) // Update data buffer with new colour 

{ 

  case 0: // Fill frame with BLACK colour 

     adi_itu656_FrameFill (pBuffer->Data,Frame,black); 

     break; 

 

  case 1: // Fill frame with BLUE colour 

     adi_itu656_FrameFill (pBuffer->Data,Frame,blue); 

     break; 

  ... 

  ...          

  case 6: // Fill frame with YELLOW colour 

     adi_itu656_FrameFill (pBuffer->Data,Frame,yellow); 

     break; 

                 

  default: // Fill frame with WHITE colour 

     adi_itu656_FrameFill (pBuffer->Data,Frame,white); 

     break; 

}        

break; 

 

Therefore, upon completion of processing of the last component in both buffer chains 

fresh data was given to the ADV7179 IC for conversion to a standard analogue video 

signal for display on the monitor – see Appendix F. 
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This exploitation of the Callback function meant that an interrupt policy, in opposition to 

a polling strategy embedded within a while(1) loop, was employed for continuously 

refreshing the ADV7179 video encoder with new data. This implicitly made more 

efficient use of both hardware and software resources. The interrupt policy involved 

initialising all of the incorporated VisualDSP++ utilities and configuring the relevant 

components for dataflow etc. Once all of this was completed the system simply waited 

for suitable data to arrive for video processing via the CAN network, thus invoking 

CAN_RCV_HANDLER. 

 

The value of clr_screen was again determined within the CAN_RCV_HANDLER ISR by 

evaluating the value contained within the CAN_MB7_DATA3 register of Mailbox 7: 

 

if(bit_pos = = 0x8) // if Mailbox7 IRQ 

{ 

  if((*(pCAN_MB_DATA3(7)) >= 128) && (*(pCAN_MB_DATA3(7)) <= 255)) 

  { 

     clr_screen = 1; // Display BLUE 

  }     

    

  if((*(pCAN_MB_DATA3(7)) >= 256) && (*(pCAN_MB_DATA3(7)) <= 383)) 

  { 

     clr_screen = 2; // Display RED 

  } 

  ... 

  ... 

  if((*(pCAN_MB_DATA3(7)) >= 768) && (*(pCAN_MB_DATA3(7)) <= 895)) 

  { 

     clr_screen = 6; // Display YELLOW 

  } 

 

  if(*(pCAN_MB_DATA3(7)) >= 896)  

  { 

     clr_screen = 7; // Display WHITE 

  } 

} // end if Mailbox 7 
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7.2.2.1 Testing of Final Strategy 

The devised application methodology was tested by connecting the Blackfin ADSP-

BF537 EZ Kit Lite development board to the constructed CAN network described in 

Section 5.2. In addition, a television monitor was interfaced to the video terminals of the 

A/V daughter board. 

 

 

 

Figure 70: Application Components 

 

 

Once the system was powered up the potentiometer incorporated onto the CAN On-

Board node was rotated to simulate the action of an automobile sensor measuring speed. 

This resulted in the colour on the monitor’s display varying in line with the rotation of the 

potentiometer; hence proving that the simulated vehicle data, transmitted via the CAN 

network, was correctly processed by the video module and represented visually. 

Therefore the application operated successfully as desired. 

 

7.2.3 Capacity for Expansion 

Earlier it was outlined that a modular approach was adopted in order to develop the 

application’s synthesis in steps. However due to project timing constraints the devised 

methodology only accounted for the visual representation of a single CAN message’s 

contents on a connected graphical display. Nonetheless, room for expansion in terms of 

CAN message processing is contained within the CAN_RCV_HANDLER ISR. As 

mentioned previously, source code for the processing of CAN messages received into 

Mailbox 6 is incorporated into CAN_RCV_HANDLER to allow for future development. 
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Therefore it can be envisaged that the potential exists for the processing of suitably 

configured multiple CAN mailboxes. Consequently this allows for the handling of 

numerous quantities of simulated automobile data. 

 

In addition simulated automobile data was represented visually upon a connected display 

monitor using colour information only. The derivation of a system to symbolise data in a 

graphical manner, using dial and gauges, was not fulfilled due to timing constraints. 

However a groundwork mechanism, incorporating CAN and video processing, which 

would form the cornerstone of a graphical system representing vehicle data, has been 

successfully established. 

 

7.3 Summary 

This chapter discussed the steps taken to formulate the system’s implementation through 

the combination of the CAN and video processing methodologies described in previous 

chapters. The major points to behold are as follows:  

 

• Care was taken with the initialisation sequence to ensure that all parameters were 

correctly configured in the appropriate order. 

 

• To achieve desirable functionality the system was implemented with a full 

interrupt policy; i.e. once initialisation had concluded and all ISRs were defined 

the application only commenced processing when a particular interrupt occurred. 

 

• Simulated vehicle data extracted from the constructed CAN network was visually 

represented using colour upon a connected display device. 

 

• Due to project timing constraints it was not possible to devise a methodology to 

visually represent more than a single quantity of vehicle data at the same time; nor 

was it achievable to represent vehicle data in a graphical manner. 
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• The successfully devised application methodology can be used as the foundation 

stone of a graphical system used to symbolise vehicle data. 



 125 

 

 

Chapter 8 - Conclusion 

 

 
 

 

 

 

8.1 Introduction 

This chapter summarises the research and methodologies carried out for this thesis, it 

outlines the results and conclusions that have been drawn from the project and offers 

suggestions on how to possibly further the research. 

 

This research project commenced by outlining the protocols, technologies and 

components reviewed to formulate a suitable methodology for this application. Chapter 2 

discussed CAN with a view to automotive networking and highlighted the durability and 

reliability of the protocol. Chapter 3 described to the reader the fundamentals of video 

processing and gave a detailed account of the ITU-R BT.656 digital video standard. 

Chapter 4 explained how numerous intelligent-devices were evaluated under several 

headings to establish the most suitable for employment in this research project. 

 

The research project then moved on to synthesising the application with respect to the 

findings of Chapters 2, 3 and 4. Chapter 5 described the steps taken to simulate vehicle 

data and detailed how the CAN network employed in this system was constructed. 

Chapter 6 discussed how a correct video module strategy was devised for the intelligent-



 126 

device selected in Chapter 4. Chapter 7 portrayed how the developed CAN and video 

algorithms were combined to formulate the overall application. 

 

8.2 Conclusion 

A system that visually represents simulated automobile data has been successfully 

implemented. The synthesised application illustrated, using colour variation, vehicle 

speed upon a connected graphical display. The operation of automobile sensing-devices 

was mimicked using potentiometers located within developed CAN nodes. The simulated 

speed data was received from the constructed CAN network operating at 500kBits/s. This 

information was then manipulated into ITU-R BT.656 format by the selected Blackfin 

ADSP-537 convergent processor. Once appropriately configured the data was given to a 

video encoder IC which converted the digital stream into an analogue video signal for 

display upon a connected television monitor. 

 

Problems such as memory allocation, compiler glitches and ISR registration were 

overcome on the way to devising the successful system implementation. These problems 

were eradicated through the combination of the review of pertinent literature, 

consultation with the relevant bodies and software debugging. 

 

The search for the appropriate intelligent-device required for this research project, with 

respect to the factors outlined in Section 4.2, yielded the Blackfin ADSP-BF537 as the 

most suitable processor. This component adequately met all of the key considerations 

thus justifying it’s selection over the other devices evaluated. 

 

As mentioned above the implemented system represented vehicle data using colour. The 

chrominance data displayed on the screen updated in synchronisation with the rotation of 

a specific potentiometer. Thus real-time vehicle data representation was achieved. This is 

obviously paramount in an actual implementation of this system within an automobile as 

a driver requires a live feed of critical vehicle data such as speed. However due to time 

constraints it was only possible to display a single item of simulated vehicle data on the 
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monitor. The derivation of a system to symbolise multiple data items in a graphical 

manner, using dials and gauges, was not fulfilled. In conclusion, the devised system 

nevertheless possesses the potential to form the cornerstone of a graphical system to 

represent automobile data in real-time. 

 

An actual implementation of this system would lead to economies of scale as the same 

graphical display could be incorporated into all vehicle models developed by a particular 

automotive manufacturer. Style variations between vehicle models could be still 

maintained by simply devising different software graphics for each model – see Appendix 

G. 

 

8.3 Recommendations for Further Research & 

Development 

As mentioned previously in Section 7.2.3 the developed system could support the 

representation of multiple data items by expanding the devised software algorithms. In 

conjunction with this, the application’s functionality could be enhanced by constructing a 

graphical mechanism to illustrate automobile information using dials and gauges; thus 

formulating a digital dash-display. 

 

The monitor used in a practical implementation of the devised system would be much 

smaller than the television used in this project. It would be located where the dash-panel 

of an automobile is located; i.e. it would replace the analogue dash-panel located behind 

the steering wheel. This application displays video data dynamically upon the connected 

monitor. As a result the potential exists to integrate additional vehicle information into 

the graphical display. For example, GPS (Global Positioning System) systems are 

typically located on the centre console of a vehicle cabin. The GPS information could be 

displayed on the screen located behind the steering wheel resulting in the driver deviating 

his/her attention from the road for less time. Research into the actual benefits realisable 

with such a system would be similar to previous studies such as [73] and [74]. 
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Appendix A - CAN Circuit Schematics 

 

Figure 71: CAN On-Board Circuit Schematic 
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Figure 72: CAN SPI Circuit Schematic 
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Appendix B - CAN On-Board Source Code 
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/*****************************************************************************
* 
* Device: PIC Microcontroller P18F258 
* Osc: 16MHz 
* File Name: "CAN_On_Board.c" 
* Author: Dominick O' Brien 
* Date: 29-Mar-06 
* Version 1.00 
* 
*****************************************************************************/ 
 
/***************************************************************************** 
* 
* Type Declarations 
* 
*****************************************************************************/ 
typedef unsigned char uchar; 
typedef long l_ID; 
typedef unsigned int iadc; 
 
/***************************************************************************** 
*  
* Variable Declarations 
* 
*****************************************************************************/ 
uchar aa = 0; 
uchar aa1 = 0; 
uchar len = 0; // CAN DLC 
uchar data[8]; // CAN Data Bytes 
l_ID id = 0; // CAN ID 
 
iadc ch0_res = 0; // ADC Channel 0 result variable 
uchar ms_ch0_res = 0; // ADC Channel 0 MSB result variable 
uchar ls_ch0_res = 0; // ADC Channel 0 LSB result variable 
 
iadc ch1_res = 0; // ADC Channel 1 result variable 
uchar ms_ch1_res = 0; // ADC Channel 1 MSB result variable 
uchar ls_ch1_res = 0; // ADC Channel 1 LSB result variable 
 
void main() 
{ 
  TRISC.f2 = 0; 
  PORTC.f2 = 0; 
  PORTC.f0 = 1; // Chip Select line of MCP2510 
  TRISC.f0 = 0; // Make Port C Pin 0 an Output 
  ADCON1 = 0x00; // Configure ALL analog inputs, Result RIGHT justified & Fosc/2 
  TRISA  = 0xFF; // PORTA all inputs 
 
  aa = CAN_CONFIG_SAMPLE_THRICE &  // form value to be used with CANInitialize() 
        CAN_CONFIG_PHSEG2_PRG_ON &  
        CAN_CONFIG_ALL_MSG & 
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        CAN_CONFIG_DBL_BUFFER_ON & 
        CAN_CONFIG_LINE_FILTER_OFF; 
 
  aa1 =  CAN_TX_PRIORITY_0 & // form value to be used with CANWrite() 
             CAN_TX_STD_FRAME & 
             CAN_TX_NO_RTR_FRAME; 
 
  PORTC.f2 = 1; 
  PORTC.f0 = 1; // CS line of MCP2510 HIGH 
 
  CANSetOperationMode(CAN_MODE_CONFIG,0xFF); // Set CONFIGURATION mode 
  // 16MHz, BRP = 16 => 62.5kbits/sec 
  // 16MHz, BRP = 8 => 125kbits/sec 
  // 16MHz, BRP = 4 => 250kbits/sec 
  // 16MHz, BRP = 2 => 500kbits/sec 
  // 8MHz, BRP = 8 => 62.5kbits/sec 
  // 8MHz, BRP = 4 => 125kbits/sec 
  // 8MHz, BRP = 2 => 250kbits/sec 
  // 8MHz, BRP = 1 => 500kbits/sec 
  CANInitialize( 2,2,3,3,1,aa); // Initialise CAN module. BAUD = 500kbits/sec 
  CANSetOperationMode(CAN_MODE_NORMAL,0); // Set NORMAL mode 
 
  while (1) 
   { 
   /*************************************************************************** 
   * 
   * Remember the PICs ADC result is a 10 bit number 
   * therefore we need two bytes to hold the 10 bit result 
   * 
   /*************************************************************************** 
     ch0_res = Adc_Read(0); // Get the ADC conversion result 
     ls_ch0_res = ch0_res; // Get bottom 8 bits of ADC Channel 0 conversion 
     ms_ch0_res = ch0_res >> 8; // Get top 2 bits of ADC Channel 0 conversion 
 
     ch1_res = Adc_Read(1); // Get the ADC conversion result 
     ls_ch1_res = ch1_res; // Get bottom 8 bits of ADC Channel 1 conversion 
     ms_ch1_res = ch1_res >> 8; // Get top 2 bits of ADC Channel 1 conversion 
 
     data[0] = ms_ch1_res; // 2 MSBs of Channel 1 conversion result 
     data[1] = ls_ch1_res; // 8 LSBs of Channel 1 conversion result 
     data[2] = ms_ch0_res; // 2 MSBs of Channel 0 conversion result 
     data[3] = ls_ch0_res; // 8 LSBs of Channel 0 conversion result 
     data[4] = 44; // Arbitrary Number 
     data[5] = 55; // Arbitrary Number 
     data[6] = 66; // Arbitrary Number 
     data[7] = 77; // Arbitrary Number 
 
     id = 0x411; // Message ID (Decimal 1041) 
     len = 8; // Data Length Code 
     CANWrite(id,data,len,aa1); // Write CAN message 
     delay_ms(500); // Delay 500 milliseconds 
   } 
 
} // EOF 
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Appendix C - CAN SPI Source Code 
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/*****************************************************************************
* 
* Device: PIC Microcontroller P16F876A 
* Osc: 16MHz 
* File Name: "CAN_SPI.c" 
* Author: Dominick O' Brien 
* Date: 06-Dec-05 
* Version 1.00 
* 
*****************************************************************************/ 
 
/***************************************************************************** 
* 
* Type Declarations 
* 
*****************************************************************************/ 
typedef unsigned char uchar; 
typedef long l_ID; 
typedef unsigned int iadc; 
 
/***************************************************************************** 
*  
* Variable Declarations 
* 
*****************************************************************************/ 
uchar aa = 0; 
uchar aa1 = 0; 
uchar len = 0; // CAN DLC 
uchar data[8]; // CAN Data Bytes 
l_ID id = 0; // CAN ID 
 
iadc ch0_res = 0; // ADC Channel 0 result variable 
uchar ms_ch0_res = 0; // ADC Channel 0 MSB result variable 
uchar ls_ch0_res = 0; // ADC Channel 0 LSB result variable 
 
iadc ch1_res = 0; // ADC Channel 1 result variable 
uchar ms_ch1_res = 0; // ADC Channel 1 MSB result variable 
uchar ls_ch1_res = 0; // ADC Channel 1 LSB result variable 
 
iadc ch2_res = 0; // ADC Channel 2 result variable 
uchar ms_ch2_res = 0; // ADC Channel 2 MSB result variable 
iadc ls_ch2_res = 0; // ADC Channel 2 LSB result variable 
 
void main() 
{ 
  Spi_Init(); // Initialise SPI 
   
  TRISC.f2 = 0; 
  PORTC.f2 = 0; 
  PORTC.f0 = 1; // CS line of MCP2510 
  TRISC.f0 = 0; // Make Port C Pin 0 an Output 
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  ADCON1 = 0x80; // Configure ALL analog inputs, Fosc/2 & Result RIGHT justified 
  TRISA  = 0xFF; // PORTA all inputs 
 
  aa = CAN_CONFIG_SAMPLE_THRICE &  // form value to be used with CANSPIInitialize() 
          CAN_CONFIG_PHSEG2_PRG_ON & 
          CAN_CONFIG_ALL_MSG & 
          CAN_CONFIG_DBL_BUFFER_ON & 
          CAN_CONFIG_LINE_FILTER_OFF; 
 
  aa1 =  CAN_TX_PRIORITY_0 & // form value to be used with CANSPIWrite() 
             CAN_TX_STD_FRAME & 
             CAN_TX_NO_RTR_FRAME; 
 
  PORTC.f2 = 1; 
  PORTC.f0 = 1; // CS line of MCP2510 HIGH 
 
  CANSPISetOperationMode(CAN_MODE_CONFIG,0xFF); // Set CONFIGURATION mode 
  // 16MHz, BRP = 16 => 62.5kbits/sec 
  // 16MHz, BRP = 8 => 125kbits/sec 
  // 16MHz, BRP = 4 => 250kbits/sec 
  // 16MHz, BRP = 2 => 500kbits/sec 
  // 8MHz, BRP = 8 => 62.5kbits/sec 
  // 8MHz, BRP = 4 => 125kbits/sec 
  // 8MHz, BRP = 2 => 250kbits/sec 
  // 8MHz, BRP = 1 => 500kbits/sec 
  CANSPIInitialize( 2,2,3,3,1,aa); // Initialise external CAN module. BAUD = 500kbits/sec 
  CANSPISetOperationMode(CAN_MODE_NORMAL,0); // Set NORMAL mode 
 
  while (1) 
  { 
   /*************************************************************************** 
   *  
   * Remember the PICs ADC result is a 10 bit number 
   * therefore we need two bytes to hold the 10 bit result 
   * 
   **************************************************************************** 
     ch0_res = Adc_Read(0); // Get the ADC conversion result 
     ls_ch0_res = ch0_res; // Get bottom 8 bits of ADC Channel 0 conversion 
     ms_ch0_res = ch0_res >> 8; // Get top 2 bits of ADC Channel 0 conversion 
    
     ch1_res = Adc_Read(1); // Get the ADC conversion result 
     ls_ch1_res = ch1_res; // Get bottom 8 bits of ADC Channel 1 conversion 
     ms_ch1_res = ch1_res >> 8; // Get top 2 bits of ADC Channel 1 conversion 
    
     ch2_res = Adc_Read(2); // Get the ADC conversion result 
     ls_ch2_res = ch2_res; // Get bottom 8 bits of ADC Channel 2 conversion 
     ms_ch2_res = ch2_res >> 8; // Get top 2 bits of ADC Channel 2 conversion 
 
     data[0] = ms_ch2_res; // 2 MSBs of Channel 2 conversion result 
     data[1] = ls_ch2_res; // 8 LSBs of Channel 2 conversion result 
     data[2] = ms_ch1_res; // 2 MSBs of Channel 1 conversion result 
     data[3] = ls_ch1_res; // 8 LSBs of Channel 1 conversion result 
     data[4] = ms_ch0_res; // 2 MSBs of Channel 0 conversion result 
     data[5] = ls_ch0_res; // 8 LSBs of Channel 0 conversion result 
     data[6] = 22; // Arbitrary Number 
     data[7] = 33; // Arbitrary Number 
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     id = 0x189; // Message ID (Decimal 393) 
     len = 8; // Data Length Code 
     CANSPIWrite(id,data,len,aa1); // Write CAN message 
     delay_ms(500); // Delay 500 milliseconds 
   } 
 
} // EOF 
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Appendix D - Blackfin CAN Module Source 

Code 
CAN_Test.h 
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/*****************************************************************************
* 
* Device: ADSP-BF537 
* Osc: SCLK = 120MHz 
* File Name: "CAN_Test.h" 
* Author: Dominick O' Brien 
* Date: 10-May-06 
* Version 1.00 
* 
*****************************************************************************/ 
#ifndef _CAN_RX_H 
#define _CAN_RX_H 
  
#include <cdefBF537.h> 
#include <ccblkfn.h> 
#include <sys/exception.h> 
 
/***************************************************************************** 
*  
* Constants  
* 
*****************************************************************************/ 
#define CAN_TX_MB_LO 0x0000 
#define CAN_TX_MB_HI 0x0100 // Mailbox24 
#define CAN_RX_MB_LO 0x00C0 // Mailbox 7 and Mailbox 6 
#define CAN_RX_MB_HI 0x0000 
 
/***************************************************************************** 
*  
* Global Data 
* 
*****************************************************************************/ 
extern char blink, off, change; 
extern volatile unsigned int delay; 
extern short display; 
extern volatile unsigned short * CAN_MB_ID1[]; 
extern volatile unsigned short * CAN_MB_ID0[]; 
extern volatile unsigned short * CAN_MB_TIMESTAMP[]; 
extern volatile unsigned short * CAN_MB_LENGTH[]; 
extern volatile unsigned short * CAN_MB_DATA3[]; 
extern volatile unsigned short * CAN_MB_DATA2[]; 
extern volatile unsigned short * CAN_MB_DATA1[]; 
extern volatile unsigned short * CAN_MB_DATA0[]; 
 
/***************************************************************************** 
*  
* Function Prototypes 
* 
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*****************************************************************************/ 
// In Initialization.c 
void Init_PLL(void); 
void Init_Port(void); 
void Init_CAN_Timing(void); 
void Init_CAN_Mailboxes(void); 
void Init_Interrupts(void); 
 
// In CAN_Functions.c 
void CAN_Enable(void); 
void CAN_Transmit(void); 
void CAN_Setup_Interrupts(void); 
 
// In Interrupts.c 
EX_INTERRUPT_HANDLER(CAN_RCV_HANDLER); 
EX_INTERRUPT_HANDLER(CAN_XMT_HANDLER); 
 
#endif // _CAN_RX_H 

 

Initialization.c. 
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/*****************************************************************************
* 
* Device: ADSP-BF537 
* Osc: SCLK = 120MHz 
* File Name: "Initialization.c" 
* Author: Dominick O' Brien 
* Date: 12-May-06 
* Version 1.00 
* 
*****************************************************************************/ 
#include "CAN_Test.h" 
 
/***************************************************************************** 
*  
* Init_PLL – Configures the PLL so that the CAN BRP can easily be derived. Sets the CCLK to 
*                    600MHz and SCLK to 120MHz 
* 
*****************************************************************************/ 
void Init_PLL() 
{ 
   *pPLL_CTL = SET_MSEL(24); // Set PLL: (25MHz X 24 (MSEL = 24)): CCLK=600MHz 
   idle(); 
   *pPLL_DIV = SET_SSEL(4); // Set SCLK Divisor: (600MHz / (SSEL=5)): SCLK=120MHz 
   ssync(); 
} // End Init_PLL 
 
/***************************************************************************** 
*  
* Init_Port – Sets up the Ports for CAN use and configured the PFx pins for access to the  
*                   on-board LEDs. 
* 
*****************************************************************************/ 
void Init_Port () 
{ 
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  short temp_fix;  
  // Configure CAN RX and CAN TX pins on GPIO Port 
   temp_fix = *pPORT_MUX; 
   ssync(); 
 
   *pPORT_MUX = PJCE_CAN; // Enable CAN Pins On Port J 
   ssync(); 
   *pPORT_MUX = PJCE_CAN; // #22 work-around: write it a few times 
   ssync(); 
   *pPORT_MUX = PJCE_CAN; // #22 work-around: write it a few times 
   ssync(); 
 
   temp_fix = *pPORT_MUX; // #22 work-around: read PORT_MUX after writing 
   ssync(); 
   
   // Configure Port F pins for LED access 
   *pPORTFIO_DIR   = 0x0FC0; // Enable PF6-11 As Outputs (LEDs) 
   ssync(); 
} // End Init_Port () 
 
/***************************************************************************** 
*  
* Init_CAN_Timing – Sets up the CAN_TIMING & CLOCK Registers 
* 
*****************************************************************************/ 
void Init_CAN_Timing() 
{ 
  // =================================================== 
  // BIT TIMING: 
  //  
  // CCLK 600 MHz 
  // SCLK 120 MHz 
  // 
  // CAN_CLOCK  : Prescaler (BRP) 
  // CAN_TIMING : SJW = 2, TSEG2 = 3, TSEG1 = 5 
  // 
  //  tBIT = TQ x (1 + (TSEG1 + 1) + (TSEG2 + 1)) 
  //  2e-6 = TQ x (1 + (5 + 1) + (3 + 1)) 
  //  TQ = 1.82e-7 
  // 
  //  TQ = (BRP+1) / SCLK 
  //  1.82e-7 = (BRP+1) / 120e6 
  //  (BRP+1) = 21.84 
  //  BRP = 20.84 ~ 21 
  // =================================================== 
  // Set Bit Configuration Registers ... 
  // ===================================================  
  *pCAN_TIMING = 0x0235; 
   *pCAN_CLOCK  = 21; // [0x15] 500kHz CAN Clock :: tBIT = 2us 
  ssync(); 
} // End Init_CAN_Timing() 
 
/***************************************************************************** 
*  
* Init_CAN_Mailboxes – Configures Mailbox 24 to transmit a specific message ID with a 
*                                        message length of 8 bytes. Configures Mailbox 6 and 7 to each receive  
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*                                        a specific message ID 
* 
*****************************************************************************/ 
void Init_CAN_Mailboxes() 
{ 
  short msgID;  // Variable for Mailbox 24 ID 
  short msgID_OnB; // Variable for Mailbox 7 ID 
  short msgID_SPI; // Variable for Mailbox 6 ID 
  
  volatile char mbID; 
  volatile char mbID_OnB; // Variable for Mailbox # for ON_B 
  volatile char mbID_SPI; // Variable for Mailbox # for SPI 
  // Mailbox 24 Will Transmit ACK  to the Network via ID 0x007 
  msgID = 0x007; 
  mbID  = 24; 
  
  *(pCAN_MB_ID1(mbID)) = msgID << 2; // ID1, mask disabled, remote frame disable, 11 bit 
                                                                       // identifier 
  *(pCAN_MB_ID0(mbID)) = 0; // ID0 = all 0's 
  *(pCAN_MB_LENGTH(mbID)) = 8; // DLC = 8 bytes 
 
  // Mailbox 7 will Receive CAN Command from Network via ID 0x411 
  // Mailbox 6 will Recieve CAN Command from Network via ID 0x189 
  msgID_OnB = 0x411; // ID = dec 1041 
  msgID_SPI = 0x189; // ID = dec 393 
  mbID_OnB  = 7; // Mailbox 7   
  mbID_SPI = 6; // Mailbox 6 
  
  *(pCAN_MB_ID1(mbID_OnB)) = msgID_OnB << 2; // ID1, mask disabled, remote frame 
                                                                                          // disable, 11 bit identifier 
  *(pCAN_MB_ID0(mbID_OnB)) = 0; // ID0 = all 0's 
  *(pCAN_MB_ID1(mbID_SPI)) = msgID_SPI << 2; // ID1, mask disabled, remote frame 
                                                                                      // disable, 11 bit identifier 
  *(pCAN_MB_ID0(mbID_SPI)) = 0; // ID0 = all 0's 
  *(pCAN_MB_LENGTH(mbID_SPI)) = 8; // DLC = 8 bytes 
} // End Init_CAN_Mailboxes() 
 
/***************************************************************************** 
*  
* Init_Interrupts – Assigns interrupt priorities for CAN TX and CAN RX. 
* 
*****************************************************************************/ 
void Init_Interrupts() 
{ 
  // Configure Interrupt Priorities 
  *pSIC_IAR0 = 0x77777777; 
  *pSIC_IAR1 = 0x07777777; // CAN RX IRQ   : 0=IVG7 
  *pSIC_IAR2 = 0x77777771; // CAN TX IRQ   : 1=IVG8 
  *pSIC_IAR3 = 0x77777777; 
   
// Register Interrupt Handlers and Enable Core Interrupts 
  register_handler(ik_ivg7, CAN_RCV_HANDLER); 
  register_handler(ik_ivg8, CAN_XMT_HANDLER); 
  // Enable SIC Level Interrupts 
  *pSIC_IMASK |= (IRQ_CAN_RX|IRQ_CAN_TX); 
  } // End Init_Interrupts 
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/*****************************************************************************
* 
* Device: ADSP-BF537 
* Osc: SCLK = 120MHz 
* File Name: "CAN_Functions.c" 
* Author: Dominick O' Brien 
* Date: 12-May-06 
* Version 1.00 
* 
*****************************************************************************/ 
#include "CAN_Test.h" 
 
/***************************************************************************** 
*  
* CAN_Setup_Interrupts – Enables Mailbox Interrupts for Mailboxes Used 
* 
*****************************************************************************/ 
void CAN_Setup_Interrupts() 
{ 
  *pCAN_MBIM1 = 0x00C0; // Enable Interrupts for Mailbox 7 and Mailbox 6 
  *pCAN_MBIM2 = 0x0100; // Enable Interrupt for Mailbox 24 
  ssync(); 
} // End CAN_Setup_Interrupts 
 
/***************************************************************************** 
*  
* CAN_Enable – Writes Mailbox Direction and Enables Registers before issuing a CAN 
*                           Configuration Request and waiting for a CAN Configuration acknowledge 
*                           before continuing. 
* 
*****************************************************************************/ 
void CAN_Enable() 
{ 
  // Set Mailbox Direction 
  *pCAN_MD1 = CAN_RX_MB_LO; // No Low Mailboxes (MB 0-15) Are RX 
  *pCAN_MD2 = CAN_TX_MB_LO; // Mailbox 24 Enabled For TX 
 
  // Enable Mailboxes 
  *pCAN_MC1 = CAN_RX_MB_LO; // Enables Mailbox 7 and Mailbox 6 
  *pCAN_MC2 = CAN_TX_MB_HI; // Enables Mailbox 24 
  ssync(); 
 
  *pCAN_CONTROL &= ~CCR; // Enable CAN Configuration Mode (Clear CCR) 
   
while(*pCAN_STATUS & CCA); // Wait for CAN Configuration Acknowledge (CCA) 
 
} // End CAN_Enable 

 

Interrupts.c. 
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/*****************************************************************************
* 
* Device: ADSP-BF537 
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* Osc: SCLK = 120MHz 
* File Name: "Interrupts.c" 
* Author: Dominick O' Brien 
* Date: 15-May-06 
* Version 1.00 
* 
*****************************************************************************/ 
#include "CAN_Test.h" 
 
/***************************************************************************** 
*  
* CAN_RCV_HANDLER – This ISR checks for the highest priority RX Mailbox with an 
*                                             active interrupt and clears it. 
*                                             If the IRQ is from MB7, the appropriate operating flags are set 
*                                             based on the current mode and the contents of MB7. 
*                                             If the IRQ is from MB6, the received data in MB6 is transferred to 
*                                             MB24 and a request to transmit this data is made. 
* 
*****************************************************************************/ 
EX_INTERRUPT_HANDLER(CAN_RCV_HANDLER) 
{ 
  char  highMB; // Which CAN Registers Should Be Used (1 or 2) 
  // short data type is 16 bits 
  short mbim_status; // Temp Location for Interrupt Status 
  short bit_pos = 0; // Offset Into MBxIF Registers 
   
  mbim_status = *pCAN_MBRIF2; 
  
  if (mbim_status == 0) // If High 16 MBoxes Have No Active IRQ 
  { 
     mbim_status = *pCAN_MBRIF1; // Check Low 16 MBoxes 
     highMB = 0; // Clear High/Low* Indicator 
  } 
  
  else // Otherwise, Active High MBox IRQ Found 
  { 
     highMB = 1; // Set High/Low* Indicator 
  } 
 
  while (!(mbim_status & 0x8000)) // Scan Status Register For Highest MB IRQ 
  { 
     mbim_status <<= 1; 
     bit_pos++; // bit_pos Contains Offset from MB31 
  } 
 
  if (highMB) 
  { 
     *pCAN_MBRIF2 = (1 << (15 - bit_pos)); 
  } 
 
else // Low Mailbox Interrupt 
  { 
     if(bit_pos == 0x8) // if Mailbox7 IRQ 
     { 
        if((*(pCAN_MB_DATA3(7)) == 0) || (*(pCAN_MB_DATA3(7)) <= 512)) 
           { 
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              if(blink) // if blinking already 
              { 
                 change = 0; // no mode change 
              } 
  
              else // otherwise it was off 
              { 
                 change = 1; // set mode change 
    off = 0; // make sure OFF is cleared 
    blink = 1; // set BLINK flag 
                 display = 0x0FC0; // display all LEDs on 
              } 
 
        if(*(pCAN_MB_DATA3(7)) >= 513)  
        { 
           if (!off) // if not in OFF mode 
           { 
              off = 1; // set OFF flag 
              blink = 0; // clear BLINK flag 
           } // End if off 
        }    
     } // End if Mailbox 7 
   
     if(bit_pos == 0x9) // if Mailbox 6 IRQ 
     { 
        // Place Received Commands Into CAN TX Mailbox 
        *(pCAN_MB_DATA3(24)) = *(pCAN_MB_DATA3(6)); 
        *(pCAN_MB_DATA2(24)) = *(pCAN_MB_DATA2(6)); 
        *(pCAN_MB_DATA1(24)) = *(pCAN_MB_DATA1(6)); 
        *(pCAN_MB_DATA0(24)) = *(pCAN_MB_DATA0(6));  
         
        // Issue CAN Transmit Request for Mailbox 24 
        *pCAN_TRS2 = CAN_TX_MB_HI; 
        ssync(); 
     } // End if Mailbox 6 
   
     *pCAN_MBRIF1 = (1 << (15 - bit_pos)); // Write-1-to-Clear RX IRQ 
  } // End Low Mailbox Interrupt 
   
  ssync(); 
  
} // End CAN_RCV_HANDLER 
 
/***************************************************************************** 
*  
* CAN_XMT_HANDLER – This ISR checks for the highest priority TX Mailbox with an 
*                                             active interrupt and clears it. 
* 
*****************************************************************************/ 
EX_INTERRUPT_HANDLER(CAN_XMT_HANDLER) 
{ 
  char  highMB; // Which CAN Registers Should Be Used (1 or 2) 
  short mbim_status; // Temp Location for Interrupt Status 
  short bit_pos = 0;  // Offset Into MBxIF Registers 
 
  mbim_status = *pCAN_MBTIF2; // Check High Mailboxes First 
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  if (mbim_status == 0) // If No High MB Interrupts 
  { 
     mbim_status = *pCAN_MBTIF1; // Check Low MB Interrupts 
     highMB = 0; // Clear High/Low* Mailbox Indicator 
  } 
  
  else highMB = 1; // Set High/Low* Mailbox Indicator 
      
  while (!(mbim_status & 0x8000)) // Find Highest Mailbox W/ Active IRQ 
  { 
     mbim_status <<= 1; 
     bit_pos++; 
  } // Interrupting Mailbox Found 
  
  if (highMB) // Process High Mailbox IRQ 
  { 
     *pCAN_MBTIF2 = (1 << (15 - bit_pos)); 
  } 
   
  else // Else, Process Low Mailbox IRQ 
  { 
     *pCAN_MBTIF1 = (1 << (15 - bit_pos)); 
  } 
ssync(); 
 
} // End CAN_XMT_HANDLER 

 

main.c. 
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/*****************************************************************************
* 
* Device: ADSP-BF537 
* Osc: SCLK = 120MHz 
* File Name: "Interrupts.c" 
* Author: Dominick O' Brien 
* Date: 18-May-06 
* Version 1.00 
* 
*****************************************************************************/ 
#include "CAN_Test.h" 
 
/***************************************************************************** 
*  
* Global Data 
* 
*****************************************************************************/ 
char  blink = 0; // Display Select  (1=blink,   0=scroll) 
char  change = 0; // Change Display Flag (1=Changed, 0=Same) 
char  off = 0; // Clear Display (1=Clear,   0=Not) 
short display; // LED Display Value 
volatile unsigned int delay = 0x400000; 
 
main() 
{ 
  Init_PLL(); // Set PLL 
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  Init_Port(); // Initialize Ports 
  Init_Interrupts(); Initialize Interrupts 
  Init_CAN_Timing(); // Setup CAN Timing 
  Init_CAN_Mailboxes(); // Initialize CAN Mailbox Area 
  CAN_Setup_Interrupts(); // Configure CAN Mailbox Interrupts 
  CAN_Enable(); // Enable CAN 
 
  display = 0; // All LEDs off 
 
  while(1) // wait for IRQs 
  { 
    *pPORTFIO = display; // write display 
 
     while(delay--); // wait 
     
     delay = 0x400000; // reset delay 
   
     if (off) // if OFF flag is set 
     { 
        display = 0x0000; // turn LEDs off 
     } 
 
     else if (blink) // else if blink flag is set 
     { 
        display = ~display; // toggle display 
     } 
 
  } // End while forever 
 
} // End main 
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Appendix E - Blackfin Video Implementation 

Source Code 
ezkitutilities.h 
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/*****************************************************************************
* 
* Device: ADSP-BF537 
* Osc: SCLK = 120MHz 
* File Name: "ezkitutilities.h" 
* Author: Dominick O' Brien 
* Date: 13-Nov-06 
* Version 1.00 
* Modified version of Analog Device’s "ezkitutilities.h" found in VisualDSP++4.5 
* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.." 
* 
*****************************************************************************/ 
#ifndef EZKITUTILITIES_H 
#define EZKITUTILITIES_H 
 
/*****************************************************************************
* 
* Board Specific Info 
* 
*****************************************************************************/ 
#define EZ_NUM_LEDS (6) // Number of LEDs on the board 
 
/***************************************************************************** 
* 
* LED Defines 
* 
*****************************************************************************/ 
#define EZ_FIRST_LED (0) // First LED 
#define EZ_LAST_LED (EZ_NUM_LEDS - 1) // Last LED 
 
ADI_FLAG_ID ezLEDToFlag[]; // Structure containing the pf mappings for flags  
 
/***************************************************************************** 
* 
* Functions Provided by the Utilities 
* 
*****************************************************************************/ 
void ezInit (u32 NumCores); // Initialises power, ebiu, any async, flash etc. 
void ezInitPower u32 NumCores); // Initialises Power 
void ezInitLED (u32 Led); // Enables/configures an LED for use 
void ezTurnOffLED (u32 Led); // Dims an LED 
void ezCycleLEDs (void); // Cycles LEDs 
void ezSetDisplay (u32 Display); // Sets the LED pattern 
void ezDelay (u32 msec); // Delays for approximately 'n' milliseconds 
void ezErrorCheck (u32 Result); // Lights LEDs and spins to indicate an error if Result != 0 
void ezEnableVideoEncoder (void); // Enables the 7179 video encoder 
 
#endif  // EZKITUTILITIES_H 
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adi_itu656.h 
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/*****************************************************************************
* 
* Device: ADSP-BF537 
* Osc: SCLK = 120MHz 
* File Name: "adi_656.h" 
* Author: Dominick O' Brien 
* Date: 13-Nov-06 
* Version 1.00 
* Modified version of Analog Device’s "adi_itu656.h" found in VisualDSP++4.5 
* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.." 
* 
*****************************************************************************/ 
#ifndef ADI_ITU656_H // Define adi_itu656.h 
#define ADI_ITU656_H 
 
/*****************************************************************************  
* 
* Common Definitions 
* 
*****************************************************************************/ 
#define ADI_ITU656_EAV_SIZE 4 // EAV size (bytes) 
#define ADI_ITU656_SAV_SIZE 4 // SAV size (bytes) 
 
/*****************************************************************************  
* 
* NTSC Definitions: Resolution - 720x480, 525/60 Video System 
* 
*****************************************************************************/ 
#define ADI_ITU656_NTSC_WIDTH (720) // NTSC Resolution 
#define ADI_ITU656_NTSC_HEIGHT (525) // Including Active & Blank lines 
#define ADI_ITU656_NTSC_ACTIVE_FLINES (240) // Active Field lines   
 
// Active Lines in a Frame 
#define ADI_ITU656_NTSC_ACTIVE_LINES (ADI_ITU656_NTSC_ACTIVE_FLINES * 2)  
#define ADI_ITU656_NTSC_BLANKING (268) // Blanking Size for NTSC 
 
// Total Line Width      
#define ADI_ITU656_NTSC_LINE_WIDTH ((ADI_ITU656_NTSC_WIDTH * 2)    +   \ 
                                        ADI_ITU656_NTSC_BLANKING        +   \ 
                                        ADI_ITU656_EAV_SIZE             +   \ 
                                        ADI_ITU656_SAV_SIZE) 
                                         
// Interlaced NTSC Definitions 
#define ADI_ITU656_NTSC_ILF1_START (23) // NTSC Interlaced Active Frame Field1 (odd) 
                                                                                // Start Line 
#define ADI_ITU656_NTSC_ILF1_END (262) // NTSC Interlaced Active Frame Field1 (odd) 
                                                                              // Finish Line 
#define ADI_ITU656_NTSC_ILF2_START (286) // NTSC Interlaced Active Frame Field2  
                                                                                  // start line 
#define ADI_ITU656_NTSC_ILF2_END (525) // NTSC Interlaced active frame field2 (even) 
                                                                             // (even) Start Line 
// Progressive NTSC Definitions 
#define ADI_ITU656_NTSC_PRF_START (46) // NTSC Progressive Active Frame Start Line 
#define ADI_ITU656_NTSC_PRF_END (525) // NTSC Progressive Active Frame Finish Line 
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/*****************************************************************************  
* 
* PAL Definitions: 720x576, 625/50 Video System 
* 
*****************************************************************************/ 
#define ADI_ITU656_PAL_WIDTH (720) // PAL resolution 
#define ADI_ITU656_PAL_HEIGHT (625) // Including Active & Blank Lines 
#define ADI_ITU656_PAL_ACTIVE_FLINES (288) // Active Field Lines 
 
// Active Lines in a Frame 
#define ADI_ITU656_PAL_ACTIVE_LINES (ADI_ITU656_PAL_ACTIVE_FLINES * 2) 
#define ADI_ITU656_PAL_BLANKING (280) // Blanking Size for PAL (Bytes) 
 
// Total Line Width      
#define ADI_ITU656_PAL_LINE_WIDTH ((ADI_ITU656_PAL_WIDTH * 2)    +   \ 
                                        ADI_ITU656_PAL_BLANKING        +   \ 
                                        ADI_ITU656_EAV_SIZE            +   \ 
                                        ADI_ITU656_SAV_SIZE) 
// Interlaced PAL Definitions 
#define ADI_ITU656_PAL_ILF1_START (23) // PAL Interlaced Active Frame Field1 (odd) 
                                                                             // Start Line 
#define ADI_ITU656_PAL_ILF1_END (310) // PAL Interlaced Active Frame Field1 (odd) 
                                                                           // Finish Line 
#define ADI_ITU656_PAL_ILF2_START (336) // PAL Interlaced Active Frame Field2 (even) 
                                                                                // Start Line 
#define ADI_ITU656_PAL_ILF2_END (623) // PAL Interlaced Active Frame Field2 (even) 
                                                                           // Start Line 
// Progressive PAL Definitions 
#define ADI_ITU656_PAL_PRF_START (45) // PAL Progressive Active Frame Start Line 
#define ADI_ITU656_PAL_PRF_END (620) // PAL Progressive Active Frame Finish Line 
 
/*****************************************************************************  
* 
* Enumerations for Video Formats 
* 
*****************************************************************************/ 
typedef enum{ // Video Formats 
  ADI_ITU656_NTSC_IL, // NTSC Interlaced Frame 
  ADI_ITU656_PAL_IL, // PAL Interlaced Frame 
  ADI_ITU656_NTSC_PR, // NTSC Progressive Frame 
  ADI_ITU656_PAL_PR // PAL Progressive Frame 
}ADI_ITU656_FRAME_TYPE; 
 
/*****************************************************************************  
* 
* API Function Declarations 
* 
*****************************************************************************
void adi_itu656_FrameFormat ( // Formats an Area in Memory into a Video Frame 
  u8 *frame_ptr, // Pointer to an Area of Memory used for Frame 
  ADI_ITU656_FRAME_TYPE frametype // Memory will be Formatted for this Frame Type  
); 
 
void adi_itu656_FrameFill ( // Fills Active Video Portions of Formatted Frame to Specified 
                                              // Colour 
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  u8 *frame_ptr, // Pointer to a Formatted Video Frame in Memory 
  ADI_ITU656_FRAME_TYPE frametype, // Formatted Memory Frame Type 
  u8 *ycbcr_data // 4 byte Array of 32 bit Colour Value of YCbCr Data 
);  
 
void adi_itu656_RowFill ( // Fills a Row of Pixels in Active Video Portion of Formatted Frame 
                                           // with Specified Colour 
  u8 *frame_ptr, // Pointer to a Formatted video frame in memory 
  ADI_ITU656_FRAME_TYPE frametype, // Formatted Memory Frame Type 
  u32 row_value, // 32 Bit Value Corresponding to Row Number of Active Field 
  u8 *ycbcr_data // 4 byte Array of 32 bit Colour Value of YCbCr Data 
);  
 
void adi_itu656_ColumnFill ( // Fills a Column of Pixels in Active Video Portion of Formatted 
                                                 // Frame with Specified Colour 
  u8 *frame_ptr,    // Pointer to a formatted video frame in memory 
  ADI_ITU656_FRAME_TYPE frametype, // Formatted Memory Frame type 
  u32 column_value,  // 32 bit Value Corresponding to Column Number of Active Field 
  u8 *ycbcr_data // 4 byte Array of 32 bit Colour Value of YCbCr Data 
);  
 
#endif // End itu656.h definition 

 

ezkitutilities.c 
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/*****************************************************************************
* 
* Device: ADSP-BF537 
* Osc: SCLK = 120MHz 
* File Name: "ezkitutilities.c" 
* Author: Dominick O' Brien 
* Date: 16-Nov-06 
* Version 1.00 
* Modified version of Analog Device’s "ezkitutilities.c" found in VisualDSP++4.5 
* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.." 
* 
*****************************************************************************/ 
#include <services/services.h> // System Service Includes 
#include <sysreg.h> // System Configuration Definitions 
#include <defBF537.h> // Include all MMR's and bit definitions 
#include "ezkitutilities.h" // EZ-Kit Utility Definitions 
 
ADI_FLAG_ID ezLEDToFlag[] = { 
  ADI_FLAG_PF6, // LED 0 
  ADI_FLAG_PF7, // LED 1 
  ADI_FLAG_PF8, // LED 2 
  ADI_FLAG_PF9, // LED 3 
  ADI_FLAG_PF10, // LED 4 
  ADI_FLAG_PF11 // LED 5 
}; 
 
/*****************************************************************************
* 
* LED Control 
* 
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*****************************************************************************/ 
static u32 LEDDisplay; // Bit Field representing the LED display 
static u32 LEDEnables; // Bit Field representing the Enabled LEDs 
 
/***************************************************************************** 
* 
* ezInitPower - Initialises and Sets Power management SDRAM parameters on the EZ-Kit. 
* 
*****************************************************************************/ 
#define DO_NOT_CHANGE_MMR_SETTINGS 0 
static void ezInitPower(u32 NumCores) 
{ 
  ADI_EBIU_RESULT EBIUResult; 
  ADI_PWR_RESULT  PWRResult; 
 
  // It is important that the EBIU module is configured before Power module so that changes to 
  // the clock frequencies are correctly reflected in the SDRAM settings. 
  ADI_EBIU_COMMAND_PAIR ezkit_sdram[] = // Initialises the EBIU module 
  { 
     { ADI_EBIU_CMD_SET_EZKIT, (void*)ADI_EBIU_EZKIT_BF537 }, 
     { ADI_EBIU_CMD_END, 0} 
  }; 
     
  EBIUResult = adi_ebiu_Init( ezkit_sdram, DO_NOT_CHANGE_MMR_SETTINGS ); 
     
  if ((EBIUResult != ADI_EBIU_RESULT_SUCCESS) && (EBIUResult != 
  ADI_EBIU_RESULT_CALL_IGNORED))  
  { 
     ezErrorCheck(EBIUResult); 
  } 
 
  ADI_PWR_COMMAND_PAIR ezkit_power[] = // Initialises the Power Management Module 
  { 
     { ADI_PWR_CMD_SET_EZKIT, (void*)ADI_PWR_EZKIT_BF537_600MHZ }, 
     { ADI_PWR_CMD_END, 0} 
  }; 
 
  PWRResult = adi_pwr_Init(ezkit_power); 
     
  if ((PWRResult != ADI_PWR_RESULT_SUCCESS) && (PWRResult != 
  ADI_PWR_RESULT_CALL_IGNORED))  
  { 
     ezErrorCheck(PWRResult); 
  } 
   
  ezErrorCheck( adi_pwr_SetFreq( 0, 0, ADI_PWR_DF_NONE ) ); 
  ezErrorCheck( adi_pwr_SetMaxFreqForVolt( ADI_PWR_VLEV_115 ) ) 
} 
 
/***************************************************************************** 
*  
* ezInit – Initialises the EZ Kit board. Specifically Configuring: 
*                                                                                - Async Memory 
*                                                                                - Flash 
*                                                                                - CCLK = 600MHz, SCLK = 120MHz 
* 
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*****************************************************************************/ 
void ezInit(u32 NumCores) 
{ 
  // Configure Async Memory 
  *pEBIU_AMBCTL0  = 0x7bb07bb0; // Write Access Time = 7 Cycles, Read Access Time =  
                                                               // 11Cycles, No ARDY 
  *pEBIU_AMBCTL1  = 0x7bb07bb0; // Hold Time = 2 Cycles, Setup time = 3 Cycles, 
                                                               // Transition time = 4 cycles 
  *pEBIU_AMGCTL   = 0x00FF; 
 
  // Configure Flash 
  *pFlashA_PortA_Out = 0; // Resets Port A to Initial Value 
  *pFlashA_PortA_Dir = 0xFF; // Configure Everything on Port A as Outputs 
  *pFlashA_PortB_Out = 0; // Resets Port B to Initial Value 
  *pFlashA_PortB_Dir = 0x3f; // Configure Everything on Port B as Outputs 
 
  ezInitPower(NumCores); // Configure Power 
} 
 
/***************************************************************************** 
* 
* ezInitLEDs - Enables an LED for use 
* 
*****************************************************************************/ 
void ezInitLED(u32 LED) // Enables an LED 
{ 
  if (LED >= EZ_NUM_LEDS)  
  { 
     return; // Make sure the LED is Valid 
  } 
   
  LEDEnables |= (1 << LED); // Set the Enable bit 
  adi_flag_Open(ezLEDToFlag[LED]); // Configure the Flag for Output 
  adi_flag_SetDirection(ezLEDToFlag[LED], ADI_FLAG_DIRECTION_OUTPUT); 
  ezTurnOffLED(LED); // Dim the LED 
} 
 
/***************************************************************************** 
* 
* ezTurnOffLED - Dims an LED 
* 
*****************************************************************************/ 
void ezTurnOffLED(u32 LED) 
{ 
  ezSetDisplay(LEDDisplay & ~(1 << LED)); // Update 
} 
 
/***************************************************************************** 
* 
* ezCycleLEDs - Cycles LEDs 
* 
*****************************************************************************/ 
void ezCycleLEDs(void) 
{ 
  static u32 CycleDisplay; 
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  if (LEDEnables = = 0) // Insure at least 1 LED is Enabled 
  { 
     return; 
  } 
 
  do { // calculate the pattern 
     CycleDisplay <<= 1; 
     if (CycleDisplay = = 0)  
     { 
        CycleDisplay = 1; 
     } 
  } while ((CycleDisplay & LEDEnables) = = 0); 
 
  ezSetDisplay(CycleDisplay); // Update 
} 
 
/***************************************************************************** 
* 
* ezSetDisplay - Sets the display pattern 
* 
*****************************************************************************/ 
void ezSetDisplay(u32 Display) 
{ 
  u32 i; 
  u32 Mask; 
 
  LEDDisplay = Display & LEDEnables; // Update the Display 
 
  for (i = 0, Mask = 1; i < EZ_NUM_LEDS; i++, Mask <<= 1) // FOR (each LED) 
  { 
     if (LEDDisplay & Mask) // IF (the LED should be lit) 
     { 
        adi_flag_Set(ezLEDToFlag[i]); // Light It 
     }  
         
     else if (LEDEnables & Mask)  
     { 
        adi_flag_Clear(ezLEDToFlag[i]); // Dim It 
     } // end if 
  } // end for 
 
}  
 
/***************************************************************************** 
* 
* ezDelay - Delays for approximately 1msec when running at 600 MHz 
* 
*****************************************************************************/ 
void ezDelay(u32 msec)  
{ 
  volatile u32 i,j; 
  
  for (j = 0; j < msec; j++) // value of 0x3000000 is about 1 sec so 0xc49b is about 1msec 
  { 
     for (i = 0; i < 0xc49b; i++) ; 
  } 
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} 
 
/***************************************************************************** 
* 
* ezErrorCheck - Function is intended to be used as a means to quickly determine if a function 
*                           has returned a non-zero (hence an error) return code. All driver and system 
*                           services functions return a value of zero for success and a non-zero value 
*                           when a failure occurs.  This function makes all LEDs glow dimly when a non 
*                           zero value is passed to it. 
* 
*****************************************************************************/ 
void ezErrorCheck(u32 Result) 
{ 
  while (Result != 0)  
     { 
        ezCycleLEDs(); 
     } 
} 
 
/***************************************************************************** 
* 
* ezEnableVideoEncoder - Enables the AD7179 Video Encoder IC 
* 
*****************************************************************************/ 
void ezEnableVideoEncoder(void) 
{ 
  adi_flag_Open(ADI_FLAG_PF6); // Open PF6 
 
  // ADSP-BF537 Blackfin PF6 pin must be set as an Output 
  adi_flag_SetDirection(ADI_FLAG_PF6, ADI_FLAG_DIRECTION_OUTPUT); 
  ssync(); 
   
  adi_flag_Clear(ADI_FLAG_PF6); // Clear bit to reset ADV7179, Blackfin pin PF6 
  ssync(); 
   
  adi_flag_Set(ADI_FLAG_PF6); 
  ssync(); 
} 

 

adi_itu656.c 

1 
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/*****************************************************************************
* 
* Device: ADSP-BF537 
* Osc: SCLK = 120MHz 
* File Name: "adi_itu656.c" 
* Author: Dominick O' Brien 
* Date: 21-Nov-06 
* Version 1.00 
* Modified version of Analog Device’s "adi_itu656.c" found in VisualDSP++4.5 
* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.." 
* 
*****************************************************************************/ 
#include <services/services.h> // System Services Definitions 
#include "adi_itu656.h" // ITU-656 Utilities Header File 
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/*****************************************************************************  
*  
* Constants 
* 
*****************************************************************************/ 
#define ADI_ITU656_EAV 1 // Defines End of Active Video 
#define ADI_ITU656_SAV 2 // Defines Start of Active video 
 
/*****************************************************************************  
*  
* Function Prototypes 
* 
*****************************************************************************/ 
static void generate_XY (  
  u32 scanline, // Current Scanline Number 
  ADI_ITU656_FRAME_TYPE frametype, // Video Frame Type 
  u8 *preambleXY, // Holds the Calculated XY Value for EAV/SAV 
  u32 videostatus // Indicates XY Calculation for EAV or SAV 
); 
 
static void calculate_address (  
  u8 *frame_ptr, // Pointer to the Formatted Video Frame in Memory 
  ADI_ITU656_FRAME_TYPE frametype, // Frame Type of the Formatted Memory 
  u8 **address1, // Holds Address of Field 1 First Active Line's Active Data Start 
                           // Address (for Interlaced Frame Type) OR First Active Line's Active Data Start 
                           // Address (for Progressive Frame type) 
  u8 **address2, // Holds Address of Field 2 First Active Line's Active Data Start Address (for 
                           // Interlaced Frame Type) 
  u32 *f1start, // Holds Field1 Active Line Start Value (for Interlaced Frame Format) OR Active 
                       // Line Start Value (for Progressive Frame Format) 
  u32 *f1end, // Holds Field1 Active Line End Value (for Interlaced Frame Format) OR Active 
                     // Line End Value (for Progressive Frame Format) 
  u32 *f2start, // Holds Field2 Active Line Start Value (for Interlaced Frame Format)  
  u32 *f2end, // Holds Field2 Active Line End Value (for Interlaced Frame Format)  
  u32 *widthcount // Holds the Value of NTSC/PAL Frame Width  
); 
 
/***************************************************************************** 
* 
* adi_itu656_FrameFormat - This function formats an area in memory into a video frame active 
*                                             fields set blank. 
* 
*****************************************************************************/ 
void adi_itu656_FrameFormat ( u8 *frame_ptr,ADI_ITU656_FRAME_TYPE frametype ) 
{ 
  u32 i; 
  u32 j; 
  u32 linecount; 
  u32 blankcount; 
  u32 widthcount; 
  u8 preambleXY; 
 
  switch (frametype) { // Switch to Frame Type 
     case (ADI_ITU656_NTSC_IL): // Format frame as NTSC Interlaced or NTSC Progressive 
     case (ADI_ITU656_NTSC_PR): 
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        linecount = ADI_ITU656_NTSC_HEIGHT; 
        blankcount = ADI_ITU656_NTSC_BLANKING; 
        widthcount = ADI_ITU656_NTSC_WIDTH; 
        break; 
 
     case (ADI_ITU656_PAL_IL): // Format frame as PAL Interlaced or PAL Progressive 
     case (ADI_ITU656_PAL_PR): 
        linecount = ADI_ITU656_PAL_HEIGHT; 
        blankcount = ADI_ITU656_PAL_BLANKING; 
        widthcount = ADI_ITU656_PAL_WIDTH; 
        break; 
 
     default: // Default as NTSC Frame 
        linecount = ADI_ITU656_NTSC_HEIGHT; 
        blankcount = ADI_ITU656_NTSC_BLANKING; 
        widthcount = ADI_ITU656_NTSC_WIDTH; 
        break; 
  } 
   
  for(i = 1; i <= linecount; i++) // Formats Frame Memory as EAV, Blanking, SAV, Active lines 
  { 
     // Generate BT656 Preamble 
     generate_XY(i,frametype,&preambleXY,ADI_ITU656_EAV); // EAV - FF 00 00 XY 
     *frame_ptr++ = 0xFF; 
     *frame_ptr++ = 0x00; 
     *frame_ptr++ = 0x00; 
     *frame_ptr++ = preambleXY; 
            
     for(j = 0; j < (blankcount / 2); j++) // Blanking 
     { 
        *frame_ptr++ = 0x80; 
        *frame_ptr++ = 0x10; 
     } 
      
     generate_XY(i,frametype,&preambleXY,ADI_ITU656_SAV); // SAV - FF 00 00 XY 
     *frame_ptr++ = 0xFF; 
     *frame_ptr++ = 0x00; 
     *frame_ptr++ = 0x00; 
      *frame_ptr++ = preambleXY; 
 
     for(j = 0; j < (widthcount); j++) // Output Empty Horizontal Data to Blank All Lines 
     { 
        *frame_ptr++ = 0x80; 
        *frame_ptr++ = 0x10; 
     } 
  } 
} 
 
/*****************************************************************************  
* 
* adi_itu656_FrameFill - This function fills the active video portion(s) of a formatted frame with 
*                                       a specified colour. 
* 
*****************************************************************************/ 
void adi_itu656_FrameFill ( u8 *frame_ptr,ADI_ITU656_FRAME_TYPE frametype,u8 
*ycbcr_data ) 
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{ 
  u32 i; 
  u32 j; 
  u32 f1start; 
  u32 f1end; 
  u32 f2start; 
  u32 f2end; 
  u32 widthcount; 
  u8 *address1; 
  u8 *address2;     
 
  address1 = frame_ptr; // Initialise the Pointers 
  address2 = frame_ptr; 
   
  // Calculate the Active Line Address & Update Widthcount, Frame Field Start and End Values  
 calculate_address (frame_ptr,frametype,&address1,&address2,&f1start,&f1end,&f2start, 
  &f2end,&widthcount); 
   
  // Paints Active Lines with Provided YCbCr Colour Value 
  // Paints Field1 if frameformat is Interlaced or Whole frame if frameformat is Progressive 
  for(i = f1start; i <= f1end; i++)     
  { 
     for(j = 0; j < (widthcount / 2); j++) // Output YCbCr data (4:2:2 format) 
     { 
        *address1++ = *ycbcr_data; 
        *address1++ = *(ycbcr_data+1); 
        *address1++ = *(ycbcr_data+2); 
        *address1++ = *(ycbcr_data+3); 
     } 
  }        
   
  if ((frametype = = ADI_ITU656_NTSC_IL) || (frametype = = ADI_ITU656_NTSC_PR)) 
  { 
     address1 = address1 + 276; 
  } 
  
 else 
     address1 = address1 + 288; 
 
  // Paints Field2 only when frametype is Interlaced 
  if ((frametype = = ADI_ITU656_NTSC_IL) || (frametype = = ADI_ITU656_PAL_IL))     
  { 
     for(i = f2start; i <= f2end; i++) 
     { 
        for(j = 0; j < (widthcount / 2); j++) // Output YCbCr data (4:2:2 format) 
        { 
           *address2++ = *ycbcr_data; 
           *address2++ = *(ycbcr_data+1); 
           *address2++ = *(ycbcr_data+2); 
           *address2++ = *(ycbcr_data+3); 
        } 
         
        if (frametype = = ADI_ITU656_NTSC_IL) 
        { 
           address2 = address2 + 276; 
        } 
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        else 
           address2 = address2 + 288; 
     } 
  } 
} 
 
/*****************************************************************************
* 
* adi_itu656_RowFill - This function fills a row of pixels in active video portion of formatted 
*                                     frame with specified colour 
* 
*****************************************************************************/ 
void adi_itu656_RowFill ( u8 *frame_ptr,ADI_ITU656_FRAME_TYPE frametype,u32 
row_value,u8 *ycbcr_data ) 
{ 
  u32     i,j,f1start,f1end,f2start,f2end,widthcount; 
  u8      *address1,*address2; 
           
  // Initialise the pointers 
  address1 = frame_ptr; 
  address2 = frame_ptr; 
  
  // Calculate the active line address & update widthcount, frame field start and end values  
  calculate_address(frame_ptr,frametype,&address1,&address2,&f1start,&f1end,&f2start, 
  &f2end,&widthcount); 
 
  // Paints active lines with provided YCbCr color value 
  // Paints Field1 if frameformat is interlaced OR whole frame if frameformat is Progressive 
  for(i = f1start; i <= f1end; i++)     
  { 
     if (i == row_value) // Is this the row to be painted with YCbCr data? 
     { 
        for(j = 0; j < (widthcount / 2); j++) // Output YCbCr data (4:2:2 format) 
        { 
           *address1++ = *ycbcr_data; 
           *address1++ = *(ycbcr_data+1); 
           *address1++ = *(ycbcr_data+2); 
           *address1++ = *(ycbcr_data+3); 
        }    
     } 
 
     else // Paint all other rows as blank 
     { 
        for(j = 0; j < (widthcount); j++) 
        { 
           *address1++ = 0x80; 
           *address1++ = 0x10; 
        }    
     } 
         
     if ((frametype == ADI_ITU656_NTSC_IL) || (frametype == ADI_ITU656_NTSC_PR)) 
     { 
        address1 = address1 + 276; 
     } 
    
     else 



 163 

239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 

     { 
        address1 = address1 + 288; 
     } 
  } 
     
  // Paints Field2 only when frametype is Interlaced 
  if ((frametype == ADI_ITU656_NTSC_IL) || (frametype == ADI_ITU656_PAL_IL))     
  { 
     for(i = f2start; i <= f2end; i++) 
     { 
        if (i == row_value) // Is this the row to be painted with YCbCr data? 
        { 
           for(j = 0; j < (widthcount / 2); j++) // Output YCbCr data (4:2:2 format) 
           { 
              *address2++ = *ycbcr_data; 
              *address2++ = *(ycbcr_data+1); 
              *address2++ = *(ycbcr_data+2); 
              *address2++ = *(ycbcr_data+3); 
           }    
        } 
             
        else // Paint all other rows as blank 
        { 
           for(j = 0; j < (widthcount); j++) 
           { 
              *address2++ = 0x80; 
               *address2++ = 0x10; 
           }    
        } 
             
        if (frametype == ADI_ITU656_NTSC_IL) 
        { 
           address2 = address2 + 276; 
        } 
         
        else 
        { 
           address2 = address2 + 288; 
        } 
     } 
  } 
} 
 
/***************************************************************************** 
* 
* adi_itu656_ ColumnFill - This function fills a column of pixels in active video portion of 
*                                           formatted frame with a specified colour. 
* 
*****************************************************************************/ 
void adi_itu656_ColumnFill ( u8 *frame_ptr,ADI_ITU656_FRAME_TYPE frametype,u32 
column_value,u8 *ycbcr_data ) 
{ 
  u32     i,j,f1start,f1end,f2start,f2end,widthcount; 
  u8      *address1,*address2; 
     
  address1 = frame_ptr; // Initialise the pointers 
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  address2 = frame_ptr; 
  
  // Calculate the active line address & update widthcount, frame field start and end values  
  calculate_address(frame_ptr,frametype,&address1,&address2,&f1start,&f1end,&f2start, 
  &f2end,&widthcount); 
 
  // Paints active lines with provided YCbCr color value 
  // Paints Field1 if frameformat is interlaced OR whole frame if frameformat is Progressive 
  for(i = f1start; i <= f1end; i++)     
  { 
     for(j = 0; j < (widthcount / 2); j++) 
     { 
        if (j == column_value) // Is this the column to be painted with YCbCr data? 
        { // Yes, Output YCbCr data (4:2:2 format) 
           *address1++ = *ycbcr_data; 
           *address1++ = *(ycbcr_data+1); 
           *address1++ = *(ycbcr_data+2); 
           *address1++ = *(ycbcr_data+3); 
        } 
         
        else 
        { // No - Paint the column as blank 
           *address1++ = 0x80; 
           *address1++ = 0x10; 
           *address1++ = 0x80; 
           *address1++ = 0x10; 
        } 
     } 
 
     if ((frametype == ADI_ITU656_NTSC_IL) || (frametype == ADI_ITU656_NTSC_PR)) 
     { 
        address1 = address1 + 276; 
     } 
      
     else 
     { 
        address1 = address1 + 288; 
     } 
  } 
     
  // Paints Field2 only when frametype is Interlaced 
  if ((frametype == ADI_ITU656_NTSC_IL) || (frametype == ADI_ITU656_PAL_IL))     
  { 
     for(i = f2start; i <= f2end; i++) 
     { 
        for(j = 0; j < (widthcount / 2); j++) // Output YCbCr data (4:2:2 format) 
        { 
           if (j == column_value) // Is this the column to be painted with YCbCr data? 
           { // Yes, Output YCbCr data (4:2:2 format) 
              *address2++ = *ycbcr_data; 
              *address2++ = *(ycbcr_data+1); 
              *address2++ = *(ycbcr_data+2); 
              *address2++ = *(ycbcr_data+3); 
           } 
            
           else 



 165 

351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 

           { // No - Paint the column as blank 
              *address2++ = 0x80; 
              *address2++ = 0x10; 
              *address2++ = 0x80; 
              *address2++ = 0x10; 
           } 
        } 
        
        if (frametype == ADI_ITU656_NTSC_IL) 
        { 
           address2 = address2 + 276; 
        } 
        
        else 
        { 
           address2 = address2 + 288; 
        } 
     } 
  } 
} 
 
/***************************************************************************** 
* 
* generate_XY - This function generates the XY preamble for EAV & SAV 
* 
*****************************************************************************/ 
static void generate_XY ( u32 scanline,ADI_ITU656_FRAME_TYPE frametype,u8 
*preambleXY,u32 videostatus ) 
{ 
  if(frametype == ADI_ITU656_NTSC_IL) // Frame type is NTSC interlaced  
  { 
     if((scanline >= 1) && (scanline <= 3)) // 1-3 Blanking Field 2 
     { 
        if(videostatus == ADI_ITU656_EAV)   
        { 
           *preambleXY = 0xF1; 
        } 
             
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0xEC; 
         } 
      } 
        
     else if((scanline >= 4) && (scanline <= 22)) // 4-22 Blanking Field 1 
     { 
        if(videostatus == ADI_ITU656_EAV) 
        { 
           *preambleXY = 0xB6; 
        } 
             
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0xAB; 
        } 
     } 
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     else if((scanline >= 23) && (scanline <= 262)) // 23-262 Active Video Field 1 
     { 
        if(videostatus == ADI_ITU656_EAV) 
        { 
           *preambleXY = 0x9D; 
        } 
             
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0x80; 
        } 
     } 
 
     else if((scanline >= 263) && (scanline <= 265)) // 263-265 Blanking Field 1 
     { 
        if(videostatus == ADI_ITU656_EAV) 
        { 
           *preambleXY = 0xB6; 
        } 
          
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0xAB; 
        } 
     } 
 
     else if((scanline >= 266) && (scanline <= 285)) // 266-285 Blanking Field 2 
     { 
        if(videostatus == ADI_ITU656_EAV) 
        { 
           *preambleXY = 0xF1; 
        } 
 
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0xEC; 
        } 
     } 
 
     else if((scanline >= 286) && (scanline <= 525)) // 286-525 Active Video Field 2 
     { 
        if(videostatus == ADI_ITU656_EAV) 
        { 
           *preambleXY = 0xDA; 
        } 
             
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0xC7; 
        } 
     } 
  } 
 
  else if(frametype == ADI_ITU656_PAL_IL) // Frame type is PAL interlaced 
  { 
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     if((scanline >= 1) && (scanline <= 22)) // 1-22 Blanking Field 1 
     { 
        if(videostatus == ADI_ITU656_EAV) 
        { 
           *preambleXY = 0xB6; 
        } 
             
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0xAB; 
        } 
     } 
 
     else if((scanline >= 23) && (scanline <= 310))  // 23-310 Active Video Field 1 
     { 
        if(videostatus == ADI_ITU656_EAV) 
        { 
           *preambleXY = 0x9D; 
        } 
 
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0x80; 
        } 
     } 
 
     else if((scanline >= 311) && (scanline <= 312)) // 311-312 Blanking Field 1 
     { 
        if(videostatus == ADI_ITU656_EAV) 
        { 
           *preambleXY = 0xB6; 
        } 
             
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0xAB; 
        } 
     } 
 
     else if((scanline >= 313) && (scanline <= 335)) // 313-335 Blanking Field 2 
     { 
        if(videostatus == ADI_ITU656_EAV) 
        { 
           *preambleXY = 0xF1; 
        } 
             
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0xEC; 
         } 
     } 
 
     else if((scanline >= 336) && (scanline <= 623)) // 336-623 Active Video Field 2 
     { 
        if(videostatus == ADI_ITU656_EAV) 
        { 
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           *preambleXY = 0xDA; 
        } 
 
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0xC7; 
        }    
     } 
 
     else if((scanline >= 624) && (scanline <= 625)) // 624-625 Blanking Field 2 
     { 
        if(videostatus == ADI_ITU656_EAV) 
        { 
           *preambleXY = 0xF1; 
        } 
             
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0xEC; 
        } 
     } 
  } 
 
  else if(frametype == ADI_ITU656_NTSC_PR) // Frame type is NTSC Progressive    
  { 
     if((scanline >= 1) && (scanline <= 45)) // 1-45 Blanking 
     { 
        if(videostatus == ADI_ITU656_EAV) 
        { 
           *preambleXY = 0xB6; 
        } 
 
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0xAB; 
        } 
     } 
 
     else if((scanline >= 46) && (scanline <= 525)) // 46-525 Active Video 
     { 
        if(videostatus == ADI_ITU656_EAV) 
        { 
           *preambleXY = 0x9D; 
        } 
             
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0x80; 
        } 
     } 
  } 
 
  else if(frametype == ADI_ITU656_PAL_PR) // Frame type is PAL Progressive    
  { 
     if((scanline >= 1) && (scanline <= 44)) // lines 1-44 Blanking 
     { 
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        if(videostatus == ADI_ITU656_EAV) 
        { 
           *preambleXY = 0xB6; 
        } 
 
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0xAB; 
        } 
     } 
         
     else if((scanline >= 45) && (scanline <= 620)) // lines 46-620 Active Video 
     { 
        if(videostatus == ADI_ITU656_EAV) 
        { 
           *preambleXY = 0x9D; 
        } 
             
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0x80; 
        } 
     } 
 
     else if((scanline >= 621) && (scanline <= 625))  // lines 621-625 Blanking 
     { 
        if(videostatus == ADI_ITU656_EAV) 
        { 
           *preambleXY = 0xB6; 
        } 
             
        else if(videostatus == ADI_ITU656_SAV) 
        { 
           *preambleXY = 0xAB; 
        } 
     } 
  } 
} 
 
/*****************************************************************************
* 
* calculate_address - This function calculates active line address & updates widthcount, frame 
*                                 field start and end values 
* 
*****************************************************************************/ 
static void calculate_address ( u8 *frame_ptr,ADI_ITU656_FRAME_TYPE frametype,u8 
**address1,u8 **address2,u32 *f1start, 
u32 *f1end,u32 *f2start,u32 *f2end,u32 *widthcount) 
{ 
  switch (frametype)  
  { // Switch to Frame Type 
     case (ADI_ITU656_NTSC_IL): // Frame format is NTSC Interlaced 
        *widthcount = ADI_ITU656_NTSC_WIDTH; 
        *f1start = ADI_ITU656_NTSC_ILF1_START; // active line start - Field1 
        *f1end = ADI_ITU656_NTSC_ILF1_END; // active line end - Field1 
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        // Calculate Field 1 first active line's active data start address 
        *address1 = frame_ptr + ((ADI_ITU656_NTSC_ILF1_START-1) * 1716) + 276; 
        *f2start = ADI_ITU656_NTSC_ILF2_START;  // active line start - Field2 
        *f2end = ADI_ITU656_NTSC_ILF2_END;      // active line end - Field2  
         
       // Calculate Field 2 first active line's active data start address 
        *address2 = frame_ptr + ((ADI_ITU656_NTSC_ILF2_START-1) * 1716) + 276; 
        break; 
 
     case (ADI_ITU656_PAL_IL): // Frame format is PAL Interlaced 
        *widthcount = ADI_ITU656_PAL_WIDTH; 
        *f1start = ADI_ITU656_PAL_ILF1_START; // active line start - Field1 
        *f1end = ADI_ITU656_PAL_ILF1_END; // active line end - Field1 
         
        // Calculate Field 1 first active line's active data start address 
        *address1 = frame_ptr + ((ADI_ITU656_PAL_ILF1_START-1) * 1728) + 288; 
        *f2start = ADI_ITU656_PAL_ILF2_START; // active line start - Field2 
        *f2end = ADI_ITU656_PAL_ILF2_END; // active line end - Field2 
         
        // Calculate Field 2 first active line's active data start address 
        *address2 = frame_ptr + ((ADI_ITU656_PAL_ILF2_START-1) * 1728) + 288; 
        break; 
 
     case (ADI_ITU656_NTSC_PR): // Frame format is NTSC Progressive 
        *widthcount = ADI_ITU656_NTSC_WIDTH; 
        *f1start = ADI_ITU656_NTSC_PRF_START; // active line start 
        *f1end = ADI_ITU656_NTSC_PRF_END; // active line end 
         
        // Calculate First active line's active data start address 
        *address1 = frame_ptr + ((ADI_ITU656_NTSC_PRF_START-1)* 1716) + 276; 
        break; 
 
     case (ADI_ITU656_PAL_PR): // Frame format is PAL Progressive 
        *widthcount = ADI_ITU656_PAL_WIDTH; 
        *f1start = ADI_ITU656_PAL_PRF_START; // active line start 
        *f1end = ADI_ITU656_PAL_PRF_END; // active line end 
         
        // Calculate First active line's active data start address 
        *address1 = frame_ptr + ((ADI_ITU656_PAL_PRF_START-1)* 1728) + 288;         
        break; 
 
     default:    // Default as NTSC Progressive 
        *widthcount = ADI_ITU656_NTSC_WIDTH; 
        *f1start = ADI_ITU656_NTSC_PRF_START; // active line start 
        *f1end = ADI_ITU656_NTSC_PRF_END; // active line end 
         
        // Calculate First active line's active data start address 
        *address1 = frame_ptr + ((ADI_ITU656_NTSC_PRF_START-1)* 1716) + 276; 
        break; 
  } 
} 

 

adv7179.c 

1 /*****************************************************************************
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* 
* Device: ADSP-BF537 
* Osc: SCLK = 120MHz 
* File Name: "adv7179.c" 
* Author: Dominick O' Brien 
* Date: 21-Nov-06 
* Version 1.00 
* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.." 
* 
*****************************************************************************/ 
 
/***************************************************************************** 
* Description - This is the driver source code for the ADV7179 Video Encoder. It is layered 
*                       on top of the PPI and TWI device drivers, which are configured for the specific 
*                       use ADV7179 peripheral. 
*****************************************************************************/ 
           
/*****************************************************************************
* 
* ADV7179 device macro define 
* 
*****************************************************************************/ 
#define ADI_ADV7179_DEVICE 
#include "adi_adv717x.c"       // Driver Register Access Includes 

 

adv717x.c - Note: This is a standard system service that is un-modified within this 

application. Reference "..\VisualDSP4.5\Blackfin\lib\src\drivers\encoder" directory. To 

utilise this program it must not be directly included within a VisualDSP++4.5 project; 

however it has to be situated within a project directory. 

 

main.c 
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/*****************************************************************************
* 
* Device: ADSP-BF537 
* Osc: SCLK = 120MHz 
* File Name: "main.c" 
* Author: Dominick O' Brien 
* Date: 24-Nov-06 
* Version 1.00 
* Modified version of Analog Device’s "ezkitutilities.c" found in VisualDSP++4.5 
* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.." 
* Target Processor: ADSP-BF537 
* Target Tools Revision: ADSP VisualDSP++ v4.5 (September 2006 Update) 
* 
*****************************************************************************/ 
#include <services\services.h> // System Services 
#include <drivers\adi_dev.h> // Device Manager Includes 
#include <drivers\ppi\adi_ppi.h> // PPI Driver Includes 
#include <defBF537.h> // Include all MMR's and bit defs 
#include <drivers\encoder\adi_adv717x.h> // 7179 Device Driver Includes 
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#include "ezkitutilities.h" // EZ-Kit Utilities 
#include "adi_itu656.h" // ITU656 Utilities 
 
/***************************************************************************** 
* 
* ADSP-BF537 Switch Settings 
* 
*****************************************************************************
* 
* SW1: ALL OFF 
* SW2: ALL ON 
* SW3: ALL OFF 
* SW4: OFF, ON, OFF, ON    
* SW5: ALL ON 
* SW6: ALL ON 
* SW7: ALL ON 
* SW8: ON, ON, OFF, OFF, OFF, OFF 
* 
*****************************************************************************/ 
 
/***************************************************************************** 
* 
* A/V Extender Board Jumper Settings 
* 
*****************************************************************************
* 
* JP1: NOT USED 
* JP2: NOT USED 
* JP3: JP3.5/7 & JP3.6/8 --> Processor's TWI 
* JP4: JP4.1/2 & JP4.3/4 --> 27MHz A V extender card onboard clock to source PPI CLK 
* JP5: JP5.3/4 --> Enables PPI0 to drive VID_OUT 
* JP6: NOT USED 
* JP7: NOT USED 
* JP8: JP8.1/3 & JP8.2/4 --> Selects PPI0 as source 
* JP8.7/8  --> Enables VID_OUT bus sync 
* JP9: JP9.1/3 --> Connect AD7179 reset to reset flag  
* JP10: NOT USED 
*      
*****************************************************************************/ 
 
/***************************************************************************** 
* 
* External Connections 
* 
*****************************************************************************
* 
* Connect a monitor to the A-V Extender card video-out connector. The video connectors are 
* the bank of 6 RCA-style jacks on the A-V Extender card labelled as J7. 
*  
*    J7   +-----------------------------------------------------+ 
*           |          O          O < Video out            O           | (white) 
* 
*           |          O          O                             O           | (red) 
*          +-----------------------------------------------------+  
*                
*****************************************************************************/ 
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/***************************************************************************** 
* 
* Enumerations and defines 
* 
*****************************************************************************/ 
#define ENCODER_PPI (0) // ADSP-BF537 has only 1 PPI called PPI0 
#define NUM_BUFFERS (30) // Colour Change Rate = (NUM_BUFFERS/30)/second 
// Colour Patterns 
static u8 black[] = {0x80,0x10,0x80,0x10}; // Black pixel YCbCr format 
static u8 blue[] = {0xF0,0x29,0x6E,0x29}; // Blue pixel YCbCr format 
static u8 red[] = {0x5A,0x51,0xF0,0x51}; // Red pixel YCbCr format 
static u8 magenta[] = {0xCA,0x6A,0xDE,0x6A}; // Magenta pixel YCbCr format 
static u8 green[] = {0x36,0x91,0x22,0x91}; // Green pixel YCbCr format 
static u8 cyan[] = {0xA6,0xAA,0x10,0xAA}; // Cyan pixel YCbCr format 
static u8 yellow[] = {0x10,0xD2,0x92,0xD2}; // Yellow pixel YCbCr format 
static u8 white[] = {0x80,0xEB,0x80,0xEB}; // White pixel YCbCr format 
 
/***************************************************************************** 
* 
* Static data 
* 
*****************************************************************************/ 
// Create two areas in SDRAM that will each hold a 656 Frame 
static u8 PingFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT]; 
static u8 PongFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT]; 
 
ADI_DEV_2D_BUFFER PingBuffer[NUM_BUFFERS]; // Create two buffer chains. 
ADI_DEV_2D_BUFFER PongBuffer[NUM_BUFFERS]; 
 
// DMA Manager data (base memory + memory for 1 DMA channel) 
static u8 DMAMgrData[ADI_DMA_BASE_MEMORY + (ADI_DMA_CHANNEL_MEMORY 
* 1)]; 
// Deferred Callback Manager data (memory for 1 service plus 4 posted callbacks) 
static u8 DCBMgrData[ADI_DCB_QUEUE_SIZE + (ADI_DCB_ENTRY_SIZE)*4]; 
 
// Device Manager data (base memory + memory for 3 devices) 
// Memory for 3 devices is required because usage of a 717x device results in the usage of the 
// PPI and SPI devices. 
static u8 DevMgrData[ADI_DEV_BASE_MEMORY + (ADI_DEV_DEVICE_MEMORY * 
3)]; 
ADI_DEV_DEVICE_HANDLE AD7179DriverHandle; // Handle to the ADV7179 Driver 
 
/*****************************************************************************
* 
* ExceptionHandler - An Exception error should never happen but just in case if one occurs all 
*                                 the LEDs will light up. 
* 
*****************************************************************************/ 
static ADI_INT_HANDLER(ExceptionHandler) // Exception Handler 
{ 
  ezErrorCheck(1); 
  return(ADI_INT_RESULT_PROCESSED); 
} 
   
/*****************************************************************************
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* 
* HWErrorHandler - A Hardware error should never happen but just in case if one occurs all 
*                                 the LEDs will light up. 
* 
*****************************************************************************/ 
static ADI_INT_HANDLER(HWErrorHandler) // Hardware Error Handler 
{ 
  ezErrorCheck(1); 
  return(ADI_INT_RESULT_PROCESSED); 
} 
 
/*****************************************************************************
* 
* Callback - Callback occurs when the PPI has completed processing of the last buffer in the 
*                   Ping & Pong Buffer chains. 
* 
*****************************************************************************/ 
static void Callback(void *AppHandle,u32  Event,void *pArg) 
{ 
  ADI_DEV_BUFFER *pBuffer; // Pointer to the Buffer that was processed 
  
  switch (Event)  
  { // Case Of (event type)   
     case ADI_DEV_EVENT_BUFFER_PROCESSED: // CASE (buffer processed) 
        // When the buffer chain was created, the CallbackParameter value for the buffer that was 
        // generating the callback was set to be the address of the first buffer in the chain. 
        // So here in the callback that value is passed in as the pArg parameter.   
        pBuffer = (ADI_DEV_BUFFER *)pArg; 
        break; 
    
     case ADI_DEV_EVENT_DMA_ERROR_INTERRUPT: // Case (an Error) 
     case ADI_PPI_EVENT_ERROR_INTERRUPT: 
        ezTurnOnAllLEDs(); // Turn on all LEDs and wait for help 
        while (1) ; 
  } 
} 
 
void main(void)  
{ 
  // Table of PPI driver configuration values 
  ADI_DEV_CMD_VALUE_PAIR ConfigurationTable [] =  
  { 
    {ADI_DEV_CMD_SET_DATAFLOW_METHOD, 
     (void*)ADI_DEV_MODE_CHAINED_LOOPBACK}, 
     {ADI_PPI_CMD_SET_CONTROL_REG, (void *)0x0082}, 
     {ADI_PPI_CMD_SET_LINES_PER_FRAME_REG, 
     (void*)ADI_ITU656_NTSC_HEIGHT}, 
     {ADI_DEV_CMD_SET_STREAMING, (void *)TRUE}, 
     {ADI_DEV_CMD_END, NULL}, 
  }; 
 
  ADI_DCB_HANDLE DCBManagerHandle; // Handle to the Callback Service Manager 
  ADI_DMA_MANAGER_HANDLE DMAManagerHandle; // Handle to the DMA Manager 
  ADI_DEV_MANAGER_HANDLE DeviceManagerHandle; // Handle to the Device Manager 
  
  u32 ResponseCount; // Response Counter 
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  int i = 0; // Counter      
   
  ezInit(1); // Initialise the EZ-Kit 
  ezTurnOffAllLEDs();// Turn off all LEDs 
 
  // Initialise the Interrupt Manager and hook the exception and hardware error interrupts 
  ezErrorCheck(adi_int_Init(NULL, 0, &ResponseCount, NULL)); 
  ezErrorCheck(adi_int_CECHook(3, ExceptionHandler, NULL, FALSE)); 
  ezErrorCheck(adi_int_CECHook(5, HWErrorHandler, NULL, FALSE)); 
 
  // Initialise the Deferred Callback Manager and setup a queue 
  ezErrorCheck(adi_dcb_Init(&DCBMgrData[0],  
                                              ADI_DCB_QUEUE_SIZE,  
                                              &ResponseCount,  
                                              NULL)); 
         
  ezErrorCheck(adi_dcb_Open(14,  
                                                  &DCBMgrData[ADI_DCB_QUEUE_SIZE], 
                                                  (ADI_DCB_ENTRY_SIZE)*4,  
                                                  &ResponseCount,  
                                                  &DCBManagerHandle)); 
 
  // Initialise the flag service, memory is not passed because callbacks are not being used 
  ezErrorCheck(adi_flag_Init(NULL, 0, &ResponseCount, NULL)); 
  
  for (i = EZ_FIRST_LED; i < EZ_NUM_LEDS; i++) // Enable all LEDs 
  { 
     ezInitLED(i); 
  } 
 
  ezErrorCheck(adi_dma_Init(DMAMgrData, // Initialise the DMA Manager 
                         sizeof(DMAMgrData),  
                         &ResponseCount,  
                         &DMAManagerHandle,  
                         NULL)); 
 
  ezErrorCheck(adi_dev_Init(DevMgrData, // Initialise the Device Manager 
                                               sizeof(DevMgrData), 
                                               &ResponseCount,  
                                               &DeviceManagerHandle,  
                                               NULL)); 
 
  // Initialise the two frames and make them both different colours 
  adi_itu656_FrameFormat (PingFrame,ADI_ITU656_NTSC_PR); 
  adi_itu656_FrameFormat (PongFrame,ADI_ITU656_NTSC_PR); 
  adi_itu656_FrameFill (PingFrame,ADI_ITU656_NTSC_PR,white); // WHITE 
  adi_itu656_FrameFill (PongFrame,ADI_ITU656_NTSC_PR,blue); // BLUE 
   
  ezEnableVideoEncoder(); // Enable video encoder (7179) 
  ezDelay(300); // Give the encoder time to sync 
  
  // Open the AD7179 Driver for Output 
  ezErrorCheck(adi_dev_Open(DeviceManagerHandle, // Handle controlling the Device 
   &ADIADV7179EntryPoint, // Address of Entry Point  
   ENCODER_PPI,   // Number identifying which Device is Opened 
   NULL, // No Client Handle 
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   &AD7179DriverHandle, // Handle Address 
   ADI_DEV_DIRECTION_OUTBOUND, // Data Direction  
   DMAManagerHandle, // Handle to DMA Manager 
   DCBManagerHandle, // Handle to Callback Manager 
   Callback)); // Callback 
 
  // Set PPI Device Number 
  ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device 
       // Command Identifier 

ADI_ADV717x_CMD_SET_PPI_DEVICE_NUMBER, 
        (void*)0)); // PPI Device Number 
 
  // Open PPI Device 
  ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device 
       ADI_ADV717x_CMD_SET_PPI_STATUS, // Command Identifier 
       // Address of Command Specific Parameter 

(void*)ADI_ADV717x_PPI_OPEN)); 
 
  // Create a buffer chain that points to the PingFrame. Each buffer points to the same PingFrame 
  // so the PingFrame will be displayed NUM_BUFFERS times. NUM_BUFFERS is sized to 
  // keep the display busy for 1 second. Place a callback on only the last buffer in the chain. 
  // Make the CallbackParameter (the value that gets passed to the callback function as the pArg 
  // parameter) point to the first buffer in the chain. This way, when the callback goes off, the 
  // callback function can requeue the whole chain if the loopback mode is off. 
 
  for (i = 0; i < NUM_BUFFERS; i++) // Populate the PingBuffer 
  { 
     PingBuffer[i].Data = PingFrame; // Point to PingFrame Data  
     PingBuffer[i].ElementWidth = 2; 
     PingBuffer[i].XCount = (ADI_ITU656_NTSC_LINE_WIDTH/2); 
     PingBuffer[i].XModify = 2; 
     PingBuffer[i].YCount = ADI_ITU656_NTSC_HEIGHT; 
     PingBuffer[i].YModify = 2; 
     PingBuffer[i].CallbackParameter = NULL; 
     PingBuffer[i].pNext = &PingBuffer[i + 1]; 
  } 
   
  PingBuffer[NUM_BUFFERS - 1].CallbackParameter = &PingBuffer[0]; 
  PingBuffer[NUM_BUFFERS - 1].pNext = NULL; 
  
  for (i = 0; i < NUM_BUFFERS; i++) // Populate the PongBuffer 
  { 
     PongBuffer[i].Data = PongFrame; // Point to PongFrame Data 
     PongBuffer[i].ElementWidth = 2; 
     PongBuffer[i].XCount = (ADI_ITU656_NTSC_LINE_WIDTH/2); 
     PongBuffer[i].XModify = 2; 
     PongBuffer[i].YCount = ADI_ITU656_NTSC_HEIGHT; 
     PongBuffer[i].YModify = 2; 
     PongBuffer[i].CallbackParameter = NULL; 
     PongBuffer[i].pNext = &PongBuffer[i + 1]; 
  } 
  
  PongBuffer[NUM_BUFFERS - 1].CallbackParameter = &PongBuffer[0]; 
  PongBuffer[NUM_BUFFERS - 1].pNext = NULL; 
 
  // Configure the AD7179 Dataflow Method 
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  ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device 
                      ADI_DEV_CMD_SET_DATAFLOW_METHOD, // Command Parameter 
                      (void *)ADI_DEV_MODE_CHAINED_LOOPBACK)); // Outbound Loopback 
 
  // Give the device the Ping and Pong buffer chains 
  ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device 

                      ADI_DEV_2D, // 2D Buffer 
                      (ADI_DEV_BUFFER *)&PingBuffer)); // Point to PingBuffer 

 
  ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device 

                     ADI_DEV_2D, // 2D Buffer 
                     (ADI_DEV_BUFFER *)&PongBuffer)); // Point to PongBuffer 

 
  // Enable data flow         
  ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device 

          ADI_DEV_CMD_SET_DATAFLOW// Command Parameter 
          (void *)TRUE)); // Turn on Dataflow 

  while(1);  
} 
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Appendix F - Application Source Code 

ezkitutilities.h - Note: See Appendix E – ezkitutilities.h 

 

adi_itu656.h - Note: See Appendix E – adi_itu656.h 

 

CAN.h - Note: See Appendix E - CAN_Test.h. CAN.h and CAN_Test.h (Appendix E) are 

identical except that Line 51 of CAN_Test.h is omitted from CAN.h 

 

ezkitutilities.c - Note: See Appendix E – ezkitutilities.c 

 

adi_itu656.c - Note: See Appendix E – adi_itu656.c 

 

adv7179.c - Note: See Appendix E – adv7179.c 

 

adv717x.c - Note: See Appendix E – adv717x.c 

 

CAN_Init.c. 
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/*****************************************************************************
* 
* Device: ADSP-BF537 
* Osc: SCLK = 120MHz 
* File Name: "CAN_Init.c" 
* Author: Dominick O' Brien 
* Date: 19-Jan-07 
* Version 1.00 
* 
*****************************************************************************/ 
#include " CAN.h" // CAN Utilities 
 
/***************************************************************************** 
*  
* Init_CAN_Port – Sets up the Ports for CAN use and configured the PFx pins for access to the  
*                              on-board LEDs. 
* 
*****************************************************************************/ 
void Init_CAN_Port () 
{ 
  short temp_fix;  
  // Configure CAN RX and CAN TX pins on GPIO Port 
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   temp_fix = *pPORT_MUX; 
   ssync(); 
 
   *pPORT_MUX = PJCE_CAN; // Enable CAN Pins On Port J 
   ssync(); 
   *pPORT_MUX = PJCE_CAN; // #22 work-around: write it a few times 
   ssync(); 
   *pPORT_MUX = PJCE_CAN; // #22 work-around: write it a few times 
   ssync(); 
 
   temp_fix = *pPORT_MUX; // #22 work-around: read PORT_MUX after writing 
   ssync(); 
   
   // Configure Port F pins for LED access 
   *pPORTFIO_DIR   = 0x0FC0; // Enable PF6-11 As Outputs (LEDs) 
   ssync(); 
} // End Init_Port () 
 
/***************************************************************************** 
*  
* Init_CAN_Timing – Sets up the CAN_TIMING & CLOCK Registers 
* 
*****************************************************************************/ 
void Init_CAN_Timing() 
{ 
  // =================================================== 
  // BIT TIMING: 
  //  
  // CCLK 600 MHz 
  // SCLK 120 MHz 
  // 
  // CAN_CLOCK  : Prescaler (BRP) 
  // CAN_TIMING : SJW = 2, TSEG2 = 3, TSEG1 = 5 
  // 
  //  tBIT = TQ x (1 + (TSEG1 + 1) + (TSEG2 + 1)) 
  //  2e-6 = TQ x (1 + (5 + 1) + (3 + 1)) 
  //  TQ = 1.82e-7 
  // 
  //  TQ = (BRP+1) / SCLK 
  //  1.82e-7 = (BRP+1) / 120e6 
  //  (BRP+1) = 21.84 
  //  BRP = 20.84 ~ 21 
  // =================================================== 
  // Set Bit Configuration Registers ... 
  // ===================================================  
  *pCAN_TIMING = 0x0235; 
   *pCAN_CLOCK  = 21; // [0x15] 500kHz CAN Clock :: tBIT = 2us 
  ssync(); 
} // End Init_CAN_Timing() 
 
/***************************************************************************** 
*  
* Init_CAN_Mailboxes – Configures Mailbox 24 to transmit a specific message ID with a 
*                                        message length of 8 bytes. Configures Mailbox 6 and 7 to each receive  
*                                        a specific message ID 
* 
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*****************************************************************************/ 
void Init_CAN_Mailboxes() 
{ 
  short msgID;  // Variable for Mailbox 24 ID 
  short msgID_OnB; // Variable for Mailbox 7 ID 
  short msgID_SPI; // Variable for Mailbox 6 ID 
  
  volatile char mbID; 
  volatile char mbID_OnB; // Variable for Mailbox # for ON_B 
  volatile char mbID_SPI; // Variable for Mailbox # for SPI 
  // Mailbox 24 Will Transmit ACK  to the Network via ID 0x007 
  msgID = 0x007; 
  mbID  = 24; 
  
  *(pCAN_MB_ID1(mbID)) = msgID << 2; // ID1, mask disabled, remote frame disable, 11 bit 
                                                                       // identifier 
  *(pCAN_MB_ID0(mbID)) = 0; // ID0 = all 0's 
  *(pCAN_MB_LENGTH(mbID)) = 8; // DLC = 8 bytes 
 
  // Mailbox 7 will Receive CAN Command from Network via ID 0x411 
  // Mailbox 6 will Recieve CAN Command from Network via ID 0x189 
  msgID_OnB = 0x411; // ID = dec 1041 
  msgID_SPI = 0x189; // ID = dec 393 
  mbID_OnB  = 7; // Mailbox 7   
  mbID_SPI = 6; // Mailbox 6 
  
  *(pCAN_MB_ID1(mbID_OnB)) = msgID_OnB << 2; // ID1, mask disabled, remote frame 
                                                                                          // disable, 11 bit identifier 
  *(pCAN_MB_ID0(mbID_OnB)) = 0; // ID0 = all 0's 
  *(pCAN_MB_ID1(mbID_SPI)) = msgID_SPI << 2; // ID1, mask disabled, remote frame 
                                                                                      // disable, 11 bit identifier 
  *(pCAN_MB_ID0(mbID_SPI)) = 0; // ID0 = all 0's 
  *(pCAN_MB_LENGTH(mbID_SPI)) = 8; // DLC = 8 bytes 
} // End Init_CAN_Mailboxes() 
 
/***************************************************************************** 
*  
* Init_Interrupts – Assigns interrupt priorities for CAN TX and CAN RX. 
* 
*****************************************************************************/ 
void Init_Interrupts() 
{ 
  // Configure Interrupt Priorities 
  *pSIC_IAR0 = 0x77717777; // PPI DMA IRQ : 1 = IVG8 
  *pSIC_IAR1 = 0x47777777; // CAN RX IRQ : 4 = IVG11 
  *pSIC_IAR2 = 0x77777775; // CAN TX IRQ : 5 = IVG12 
  *pSIC_IAR3 = 0x77777777; 
 
  // Register Interrupt Handlers and Enable Core Interrupts 
  register_handler(ik_ivg11, CAN_RCV_HANDLER); 
  register_handler(ik_ivg12, CAN_XMT_HANDLER); 
  
  // Enable SIC Level Interrupts 
  *pSIC_IMASK |= (IRQ_CAN_RX|IRQ_CAN_TX);   
} // End Init_Interrupts 
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/*****************************************************************************
* 
* Device: ADSP-BF537 
* Osc: SCLK = 120MHz 
* File Name: "CAN_Functions.c" 
* Author: Dominick O' Brien 
* Date: 22-Jan-07 
* Version 1.00 
* 
*****************************************************************************/ 
#include "CAN.h" // CAN Utilities 
 
/***************************************************************************** 
*  
* CAN_Setup_Interrupts – Enables Mailbox Interrupts for Mailboxes Used 
* 
*****************************************************************************/ 
void CAN_Setup_Interrupts() 
{ 
  *pCAN_MBIM1 = 0x00C0; // Enable Interrupts for Mailbox 7 and Mailbox 6 
  *pCAN_MBIM2 = 0x0100; // Enable Interrupt for Mailbox 24 
  ssync(); 
} // End CAN_Setup_Interrupts 
 
/***************************************************************************** 
*  
* CAN_Enable – Writes Mailbox Direction and Enables Registers before issuing a CAN 
*                           Configuration Request and waiting for a CAN Configuration acknowledge 
*                           before continuing. 
* 
*****************************************************************************/ 
void CAN_Enable() 
{ 
  // Set Mailbox Direction 
  *pCAN_MD1 = CAN_RX_MB_LO; // No Low Mailboxes (MB 0-15) Are RX 
  *pCAN_MD2 = CAN_TX_MB_LO; // Mailbox 24 Enabled For TX 
 
  // Enable Mailboxes 
  *pCAN_MC1 = CAN_RX_MB_LO; // Enables Mailbox 7 and Mailbox 6 
  *pCAN_MC2 = CAN_TX_MB_HI; // Enables Mailbox 24 
  ssync(); 
 
  *pCAN_CONTROL &= ~CCR; // Enable CAN Configuration Mode (Clear CCR) 
   
while(*pCAN_STATUS & CCA); // Wait for CAN Configuration Acknowledge (CCA) 
 
} // End CAN_Enable 

 

CAN_ISR.c 
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/*****************************************************************************
* 
* Device: ADSP-BF537 
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* Osc: SCLK = 120MHz 
* File Name: "CAN_ISR.c" 
* Author: Dominick O' Brien 
* Date: 24-Jan-07 
* Version 1.00 
* 
*****************************************************************************/ 
#include "CAN_Test.h" // CAN Utilities 
 
/***************************************************************************** 
*  
* CAN_RCV_HANDLER – This ISR checks for the highest priority RX Mailbox with an 
*                                             active interrupt and clears it. 
* 
*****************************************************************************/ 
EX_INTERRUPT_HANDLER(CAN_RCV_HANDLER) 
{ 
  char  highMB; // Which CAN Registers Should Be Used (1 or 2) 
  // short data type is 16 bits 
  short mbim_status; // Temp Location for Interrupt Status 
  short bit_pos = 0; // Offset Into MBxIF Registers 
   
  mbim_status = *pCAN_MBRIF2; 
  
  if (mbim_status == 0) // If High 16 MBoxes Have No Active IRQ 
  { 
     mbim_status = *pCAN_MBRIF1; // Check Low 16 MBoxes 
     highMB = 0; // Clear High/Low* Indicator 
  } 
  
  else // Otherwise, Active High MBox IRQ Found 
  { 
     highMB = 1; // Set High/Low* Indicator 
  } 
 
  while (!(mbim_status & 0x8000)) // Scan Status Register For Highest MB IRQ 
  { 
     mbim_status <<= 1; 
     bit_pos++; // bit_pos Contains Offset from MB31 
  } 
 
  if (highMB) 
  { 
     *pCAN_MBRIF2 = (1 << (15 - bit_pos)); 
  } 
 
else // Low Mailbox Interrupt 
  { 
     if(bit_pos = = 0x8) // if Mailbox7 IRQ 
     { 
        if((*(pCAN_MB_DATA3(7)) <= 127)) 
        { 
           clr_screen = 0; // Display BLACK 
        } 
 
        if((*(pCAN_MB_DATA3(7)) >= 128) && (*(pCAN_MB_DATA3(7)) <= 255)) 
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        { 
           clr_screen = 1; // Display BLUE 
        }     
    
        if((*(pCAN_MB_DATA3(7)) >= 256) && (*(pCAN_MB_DATA3(7)) <= 383)) 
        { 
           clr_screen = 2; // Display RED 
        } 
 
        if((*(pCAN_MB_DATA3(7)) >= 384) && (*(pCAN_MB_DATA3(7)) <= 511)) 
        { 
           clr_screen = 3; // Display MAGENTA  
        } 
 
        if((*(pCAN_MB_DATA3(7)) >= 512) && (*(pCAN_MB_DATA3(7)) <= 639)) 
        { 
           clr_screen = 4; // Display GREEN 
        } 
 
        if((*(pCAN_MB_DATA3(7)) >= 640) && (*(pCAN_MB_DATA3(7)) <= 767)) 
        { 
           clr_screen = 5; // Display CYAN 
        } 
 
        if((*(pCAN_MB_DATA3(7)) >= 768) && (*(pCAN_MB_DATA3(7)) <= 895)) 
        { 
           clr_screen = 6; // Display YELLOW 
        } 
 
        if(*(pCAN_MB_DATA3(7)) >= 896)  
        { 
           clr_screen = 7; // Display WHITE 
        } 
     } // end if Mailbox 7 
 
     if(bit_pos = = 0x9) // if Mailbox 6 IRQ 
     { 
        // Place Received Commands Into CAN TX Mailbox 
        *(pCAN_MB_DATA3(24)) = *(pCAN_MB_DATA3(6)); 
        *(pCAN_MB_DATA2(24)) = *(pCAN_MB_DATA2(6)); 
        *(pCAN_MB_DATA1(24)) = *(pCAN_MB_DATA1(6)); 
        *(pCAN_MB_DATA0(24)) = *(pCAN_MB_DATA0(6)); 
 
        // Issue CAN Transmit Request for Mailbox 24 
        *pCAN_TRS2 = CAN_TX_MB_HI; 
        ssync(); 
     } // end if Mailbox 6 
   
     *pCAN_MBRIF1 = (1 << (15 - bit_pos)); // Write-1-to-Clear RX IRQ 
  } // end Low Mailbox Interrupt 
} // end CAN_RCV_HANDLER 
 
/***************************************************************************** 
*  
* CAN_ XMT_HANDLER – This ISR checks for the highest priority TX Mailbox with an 
*                                             active interrupt and clears it. 
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* 
*****************************************************************************/ 
EX_INTERRUPT_HANDLER(CAN_XMT_HANDLER) 
{ 
  char  highMB; // Which CAN Registers Should Be Used (1 or 2) 
  short mbim_status; // Temp Location for Interrupt Status 
  short bit_pos = 0;  // Offset Into MBxIF Registers 
 
  mbim_status = *pCAN_MBTIF2; // Check High Mailboxes First 
  if (mbim_status == 0) // If No High MB Interrupts 
  { 
     mbim_status = *pCAN_MBTIF1; // Check Low MB Interrupts 
     highMB = 0; // Clear High/Low* Mailbox Indicator 
  } 
  
  else highMB = 1; // Set High/Low* Mailbox Indicator 
      
  while (!(mbim_status & 0x8000)) // Find Highest Mailbox W/ Active IRQ 
  { 
     mbim_status <<= 1; 
     bit_pos++; 
  } // Interrupting Mailbox Found 
  
  if (highMB) // Process High Mailbox IRQ 
  { 
     *pCAN_MBTIF2 = (1 << (15 - bit_pos)); 
  } 
   
  else // Else, Process Low Mailbox IRQ 
  { 
     *pCAN_MBTIF1 = (1 << (15 - bit_pos)); 
  } 
ssync(); 
 
} // End CAN_XMT_HANDLER 
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/*****************************************************************************
* 
* Device: ADSP-BF537 
* Osc: SCLK = 120MHz 
* File Name: "main.c" 
* Author: Dominick O' Brien 
* Date: 30-Jan-07 
* Version 1.00 
* Modified version of Analog Device’s "ezkitutilities.c" found in VisualDSP++4.5 
* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.." 
* Target Processor: ADSP-BF537 
* Target Tools Revision: ADSP VisualDSP++ v4.5 (September 2006 Update) 
* 
*****************************************************************************/ 
#include <services\services.h> // System Services 
#include <drivers\adi_dev.h> // Device Manager Includes 
#include <drivers\ppi\adi_ppi.h> // PPI Driver Includes 
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#include <defBF537.h> // Include all MMR's and bit defs 
#include <drivers\encoder\adi_adv717x.h> // 7179 Device Driver Includes 
#include "ezkitutilities.h" // EZ-Kit Utilities 
#include "adi_itu656.h" // ITU656 Utilities 
#include "CAN.h" // CAN Utilities 
 
/***************************************************************************** 
* 
* ADSP-BF537 Switch Settings 
* 
*****************************************************************************
* 
* SW1: ALL OFF 
* SW2: ALL ON 
* SW3: ALL OFF 
* SW4: OFF, ON, OFF, ON    
* SW5: ALL ON 
* SW6: ALL ON 
* SW7: ALL ON 
* SW8: ON, ON, OFF, OFF, OFF, OFF 
* 
*****************************************************************************/ 
 
/***************************************************************************** 
* 
* A/V Extender Board Jumper Settings 
* 
*****************************************************************************
* 
* JP1: NOT USED 
* JP2: NOT USED 
* JP3: JP3.5/7 & JP3.6/8 --> Processor's TWI 
* JP4: JP4.1/2 & JP4.3/4 --> 27MHz A V extender card onboard clock to source PPI CLK 
* JP5: JP5.3/4 --> Enables PPI0 to drive VID_OUT 
* JP6: NOT USED 
* JP7: NOT USED 
* JP8: JP8.1/3 & JP8.2/4 --> Selects PPI0 as source 
* JP8.7/8  --> Enables VID_OUT bus sync 
* JP9: JP9.1/3 --> Connect AD7179 reset to reset flag  
* JP10: NOT USED 
*      
*****************************************************************************/ 
 
/***************************************************************************** 
* 
* External Connections 
* 
*****************************************************************************
* 
* Connect a monitor to the A-V Extender card video-out connector. The video connectors are 
* the bank of 6 RCA-style jacks on the A-V Extender card labelled as J7. 
*  
*    J7   +-----------------------------------------------------+ 
*           |          O          O < Video out            O           | (white) 
* 
*           |          O          O                             O           | (red) 
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*          +-----------------------------------------------------+  
*                
*****************************************************************************/ 
 
/***************************************************************************** 
* 
* Enumerations and defines 
* 
*****************************************************************************/ 
#define ENCODER_PPI (0) // ADSP-BF537 has only 1 PPI called PPI0 
#define NUM_BUFFERS (1) // Colour Change Rate = (NUM_BUFFERS/30)/second 
// Colour Patterns 
static u8 black[] = {0x80,0x10,0x80,0x10}; // Black pixel YCbCr format 
static u8 blue[] = {0xF0,0x29,0x6E,0x29}; // Blue pixel YCbCr format 
static u8 red[] = {0x5A,0x51,0xF0,0x51}; // Red pixel YCbCr format 
static u8 magenta[] = {0xCA,0x6A,0xDE,0x6A}; // Magenta pixel YCbCr format 
static u8 green[] = {0x36,0x91,0x22,0x91}; // Green pixel YCbCr format 
static u8 cyan[] = {0xA6,0xAA,0x10,0xAA}; // Cyan pixel YCbCr format 
static u8 yellow[] = {0x10,0xD2,0x92,0xD2}; // Yellow pixel YCbCr format 
static u8 white[] = {0x80,0xEB,0x80,0xEB}; // White pixel YCbCr format 
 
/***************************************************************************** 
* 
* Static data 
* 
*****************************************************************************/ 
// Create two areas in SDRAM that will each hold a 656 Frame 
static u8 PingFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT]; 
static u8 PongFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT]; 
 
ADI_DEV_2D_BUFFER PingBuffer[NUM_BUFFERS]; // Create two buffer chains. 
ADI_DEV_2D_BUFFER PongBuffer[NUM_BUFFERS]; 
 
// DMA Manager data (base memory + memory for 1 DMA channel) 
static u8 DMAMgrData[ADI_DMA_BASE_MEMORY + (ADI_DMA_CHANNEL_MEMORY 
* 1)]; 
// Deferred Callback Manager data (memory for 1 service plus 4 posted callbacks) 
static u8 DCBMgrData[ADI_DCB_QUEUE_SIZE + (ADI_DCB_ENTRY_SIZE)*4]; 
 
// Device Manager data (base memory + memory for 3 devices) 
// Memory for 3 devices is required because usage of a 717x device results in the usage of the 
// PPI and SPI devices. 
static u8 DevMgrData[ADI_DEV_BASE_MEMORY + (ADI_DEV_DEVICE_MEMORY * 
3)]; 
ADI_DEV_DEVICE_HANDLE AD7179DriverHandle; // Handle to the ADV7179 Driver 
 
/***************************************************************************** 
* 
* Global data 
* 
*****************************************************************************/ 
ADI_ITU656_FRAME_TYPE Frame; // ITU Frame Type 
short clr_screen = 0; 
 
/*****************************************************************************
* 
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* ExceptionHandler - An Exception error should never happen but just in case if one occurs all 
*                                 the LEDs will light up. 
* 
*****************************************************************************/ 
static ADI_INT_HANDLER(ExceptionHandler) // Exception Handler 
{ 
  ezErrorCheck(1); 
  return(ADI_INT_RESULT_PROCESSED); 
} 
   
/*****************************************************************************
* 
* HWErrorHandler - A Hardware error should never happen but just in case if one occurs all 
*                                 the LEDs will light up. 
* 
*****************************************************************************/ 
static ADI_INT_HANDLER(HWErrorHandler) // Hardware Error Handler 
{ 
  ezErrorCheck(1); 
  return(ADI_INT_RESULT_PROCESSED); 
} 
 
/*****************************************************************************
* 
* Callback - Callback occurs when the PPI has completed processing of the last buffer in the 
*                   Ping & Pong Buffer chains. 
* 
*****************************************************************************/ 
static void Callback(void *AppHandle,u32  Event,void *pArg) 
{ 
  ADI_DEV_BUFFER *pBuffer; // Pointer to the Buffer that was processed 
  
  switch (Event)  
  { 
     case ADI_DEV_EVENT_BUFFER_PROCESSED: // CASE (buffer processed)  
        // When the buffer chain was created, the CallbackParameter value for the buffer that was 
        // generating the callback was set to be the address of the first buffer in the chain. 
        // So here in the callback that value is passed in as the pArg parameter.   
        pBuffer = (ADI_DEV_2D_BUFFER *)pArg; 
    
        switch(clr_screen) // Update data buffer with new colour 
        { 
           case 0: // Fill frame with BLACK colour 
              adi_itu656_FrameFill (pBuffer->Data,Frame,black); 
              break; 
 
           case 1: // Fill frame with BLUE colour 
              adi_itu656_FrameFill (pBuffer->Data,Frame,blue); 
              break; 
 
           case 2: // Fill frame with RED colour 
              adi_itu656_FrameFill (pBuffer->Data,Frame,red); 
              break; 
 
           case 3: // Fill frame with MAGENTA colour 
              adi_itu656_FrameFill (pBuffer->Data,Frame, magenta); 
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              break; 
 
           case 4: // Fill frame with GREEN colour 
              adi_itu656_FrameFill (pBuffer->Data,Frame,green); 
              break; 
 
          case 5: // Fill frames with CYAN colour 
              adi_itu656_FrameFill (pBuffer->Data,Frame,cyan); 
              break; 
                 
           case 6: // Fill frame with YELLOW colour 
              adi_itu656_FrameFill (pBuffer->Data,Frame,yellow); 
              break; 
                 
           default: // Fill frame with WHITE colour 
              adi_itu656_FrameFill (pBuffer->Data,Frame,white); 
              break; 
        } 
         
        break; 
    
        // CASE (an error) 
        case ADI_DEV_EVENT_DMA_ERROR_INTERRUPT: 
        case ADI_PPI_EVENT_ERROR_INTERRUPT: 
           ezTurnOnAllLEDs();// Turn on all LEDs and wait for help 
           while (1) ;   
  } 
} 
 
void main(void)  
{ 
  // Table of PPI driver configuration values 
  ADI_DEV_CMD_VALUE_PAIR ConfigurationTable [] =  
  { 
    {ADI_DEV_CMD_SET_DATAFLOW_METHOD, 
     (void*)ADI_DEV_MODE_CHAINED_LOOPBACK}, 
     {ADI_PPI_CMD_SET_CONTROL_REG, (void *)0x0082}, 
     {ADI_PPI_CMD_SET_LINES_PER_FRAME_REG, 
     (void*)ADI_ITU656_NTSC_HEIGHT}, 
     {ADI_DEV_CMD_SET_STREAMING, (void *)TRUE}, 
     {ADI_DEV_CMD_END, NULL}, 
  }; 
 
  ADI_DCB_HANDLE DCBManagerHandle; // Handle to the Callback Service Manager 
  ADI_DMA_MANAGER_HANDLE DMAManagerHandle; // Handle to the DMA Manager 
  ADI_DEV_MANAGER_HANDLE DeviceManagerHandle; // Handle to the Device Manager 
  
  u32 ResponseCount; // Response Counter 
  int i = 0; // Counter 
  Frame = ADI_ITU656_NTSC_PR; // Frame Type      
   
  ezInit(1); // Initialise the EZ-Kit 
                 // - Configure Async Memory 
                 // - Configure Power & SDRAM Parameters 
                 // - Configure Clock, CCLK = 600MHz, SCLK = 120MHz 
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  Init_CAN_Port(); // Initialise CAN Ports 
  Init_CAN_Timing(); // Setup CAN Timing Parameters 
  Init_CAN_Mailboxes(); // Initialise CAN Mailboxes' Registers 
  CAN_Setup_Interrupts(); // Configure CAN Mailbox Interrupts 
  CAN_Enable(); // Enable CAN           
   
  ezTurnOffAllLEDs(); // Turn off all LEDs 
 
  // Initialise the Interrupt Manager and hook the exception and hardware error interrupts 
  ezErrorCheck(adi_int_Init(NULL, 0, &ResponseCount, NULL)); 
  ezErrorCheck(adi_int_CECHook(3, ExceptionHandler, NULL, FALSE)); 
  ezErrorCheck(adi_int_CECHook(5, HWErrorHandler, NULL, FALSE)); 
 
  // Initialise the Deferred Callback Manager and setup a queue 
  ezErrorCheck(adi_dcb_Init(&DCBMgrData[0],  
                                              ADI_DCB_QUEUE_SIZE,  
                                              &ResponseCount,  
                                              NULL)); 
         
  ezErrorCheck(adi_dcb_Open(14,  
                                                  &DCBMgrData[ADI_DCB_QUEUE_SIZE], 
                                                  (ADI_DCB_ENTRY_SIZE)*4,  
                                                  &ResponseCount,  
                                                  &DCBManagerHandle)); 
 
  // Initialise the flag service, memory is not passed because callbacks are not being used 
  ezErrorCheck(adi_flag_Init(NULL, 0, &ResponseCount, NULL)); 
  
  for (i = EZ_FIRST_LED; i < EZ_NUM_LEDS; i++) // Enable all LEDs 
  { 
     ezInitLED(i); 
  } 
 
  ezErrorCheck(adi_dma_Init(DMAMgrData, // Initialise the DMA Manager 
                         sizeof(DMAMgrData),  
                         &ResponseCount,  
                         &DMAManagerHandle,  
                         NULL)); 
  
  ezErrorCheck(adi_dev_Init(DevMgrData, // Initialise the Device Manager 
                                               sizeof(DevMgrData), 
                                               &ResponseCount,  
                                               &DeviceManagerHandle,  
                                               NULL)); 
 
  // Initialise the two frames and make them both BLACK in colour 
  adi_itu656_FrameFormat (PingFrame, Frame); 
  adi_itu656_FrameFormat (PongFrame, Frame); 
  adi_itu656_FrameFill (PingFrame,ADI_ITU656_NTSC_PR,black); 
  adi_itu656_FrameFill (PongFrame,ADI_ITU656_NTSC_PR,black); 
   
  ezEnableVideoEncoder(); // Enable video encoder (7179) 
  ezDelay(300); // Give the encoder time to sync 
  
  // Open the AD7179 Driver for Output 
  ezErrorCheck(adi_dev_Open(DeviceManagerHandle, // Handle controlling the Device 
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   &ADIADV7179EntryPoint, // Address of Entry Point  
   ENCODER_PPI,   // Number identifying which Device is Opened 
   NULL, // No Client Handle 
   &AD7179DriverHandle, // Handle Address 
   ADI_DEV_DIRECTION_OUTBOUND, // Data Direction  
   DMAManagerHandle, // Handle to DMA Manager 
   DCBManagerHandle, // Handle to Callback Manager 
   Callback)); // Callback 
 
  // Set PPI Device Number 
  ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device 
       // Command Identifier 

ADI_ADV717x_CMD_SET_PPI_DEVICE_NUMBER, 
        (void*)0)); // PPI Device Number 
 
  // Open PPI Device 
  ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device 
       ADI_ADV717x_CMD_SET_PPI_STATUS, // Command Identifier 
       // Address of Command Specific Parameter 

(void*)ADI_ADV717x_PPI_OPEN)); 
 
  // Create a buffer chain that points to the PingFrame. Each buffer points to the same PingFrame 
  // so the PingFrame will be displayed NUM_BUFFERS times. NUM_BUFFERS is sized to 
  // keep the display busy for 1 second. Place a callback on only the last buffer in the chain. 
  // Make the CallbackParameter (the value that gets passed to the callback function as the pArg 
  // parameter) point to the first buffer in the chain. This way, when the callback goes off, the 
  // callback function can requeue the whole chain if the loopback mode is off. 
 
  for (i = 0; i < NUM_BUFFERS; i++) // Populate the PingBuffer 
  { 
     PingBuffer[i].Data = PingFrame; // Point to PingFrame Data  
     PingBuffer[i].ElementWidth = 2; 
     PingBuffer[i].XCount = (ADI_ITU656_NTSC_LINE_WIDTH/2); 
     PingBuffer[i].XModify = 2; 
     PingBuffer[i].YCount = ADI_ITU656_NTSC_HEIGHT; 
     PingBuffer[i].YModify = 2; 
     PingBuffer[i].CallbackParameter = NULL; 
     PingBuffer[i].pNext = &PingBuffer[i + 1]; 
  } 
   
  PingBuffer[NUM_BUFFERS - 1].CallbackParameter = &PingBuffer[0]; 
  PingBuffer[NUM_BUFFERS - 1].pNext = NULL; 
  
  for (i = 0; i < NUM_BUFFERS; i++) // Populate the PongBuffer 
  { 
     PongBuffer[i].Data = PongFrame; // Point to PongFrame Data 
     PongBuffer[i].ElementWidth = 2; 
     PongBuffer[i].XCount = (ADI_ITU656_NTSC_LINE_WIDTH/2); 
     PongBuffer[i].XModify = 2; 
     PongBuffer[i].YCount = ADI_ITU656_NTSC_HEIGHT; 
     PongBuffer[i].YModify = 2; 
     PongBuffer[i].CallbackParameter = NULL; 
     PongBuffer[i].pNext = &PongBuffer[i + 1]; 
  } 
  
  PongBuffer[NUM_BUFFERS - 1].CallbackParameter = &PongBuffer[0]; 
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  PongBuffer[NUM_BUFFERS - 1].pNext = NULL; 
 
  // Configure the AD7179 Dataflow Method 
  ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device 
                      ADI_DEV_CMD_SET_DATAFLOW_METHOD, // Command Parameter 
                      (void *)ADI_DEV_MODE_CHAINED_LOOPBACK)); // Outbound Loopback 
 
  // Give the device the Ping and Pong buffer chains 
  ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device 

                      ADI_DEV_2D, // 2D Buffer 
                      (ADI_DEV_BUFFER *)&PingBuffer)); // Point to PingBuffer 

 
  ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device 

                     ADI_DEV_2D, // 2D Buffer 
                     (ADI_DEV_BUFFER *)&PongBuffer)); // Point to PongBuffer 

 
  Init_Interrupts(); // Assign Interrupt priorities for CAN RX/TX 
 
  // Enable data flow         
  ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device 

          ADI_DEV_CMD_SET_DATAFLOW// Command Parameter 
          (void *)TRUE)); // Turn on Dataflow 

  while(1);  
} 
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