

THE DESIGN & SYNTHESIS OF A GRAPHICAL SYSTEM

FOR THE VISUAL REPRESENTATION OF

AUTOMOTIVE DATA

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ENGINEERING TECHNOLOGY

OF WATERFORD INSTITUTE OF TECHNOLOGY

IN COMPLETE FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTERS OF ENGINEERING

By:

Dominick P. O’ Brien

Supervised By:

Mr. Gavin Walsh

June 2007

Dedicated To:

My Mother: Aisling O’ Brien

And

My Grandparents: Patrick and Elizabeth O’ Brien

 i

Declaration

I hereby declare that the material presented in this document is entirely my own work and

has not been submitted previously as an exercise or degree at this or any other

establishment of higher education. I, the author alone, have undertaken the work except

where otherwise stated.

Signed:

Date:

 ii

Acknowledgements

I hereby acknowledge the contributions to my work and offer my thanks to people who

have helped and supported me during my work over the past two years.

My Supervisor:

Mr. Gavin Walsh: I would like to thank Gavin for his constant encouragement,

invaluable guidance and excellent supervision during the last two years.

My Family:

I would like to thank my family for their support, encouragement and

understanding throughout all of my studies.

The AAEC (Advanced Automotive Electronic Control) Research Group:

I would like to take this opportunity to thank all members, both past and present,

of the research group whose assistance, knowledge and support has been first-

rate. I would like to pay a particular thanks to both Henry Acheson and Niall

Murphy for their additional support throughout the project.

Mr. Denis O’ Shea:

I would like to sincerely acknowledge the financial support of Denis; without

Denis’ funding this project would not have materialised.

My Friends:

A special word of thanks goes to all my friends who started out with me back in

2001 but left at different stations. Their humour and encouragement will never be

forgotten.

There are also many more people who have contributed in countless others way and

deserve my thanks also – Thank you!

 iii

Abstract

THE DESIGN & SYNTHESIS OF A GRAPHICAL SYSTEM FOR

THE VISUAL REPRESENTATION OF

AUTOMOTIVE DATA

By

Dominick P. O’ Brien

Master of Engineering

Waterford Institute of Technology

This report investigates the design and implementation of a system that visually

represents automotive data upon a connected graphical display. The devised system

obtained vehicle data from numerous CAN nodes that were constructed to formulate an

automotive network. The data was transmitted on this network and was interpreted by an

intelligent-device. The intelligent-device manipulated the CAN data into an appropriate

digital video stream. This stream was then converted into analogue format for display

upon a monitor’s screen. This report details all aspects of the design, testing and

synthesis of this automotive application.

 iv

Table of Contents

Declaration.. i

Acknowledgements ... ii

Abstract... iii

Table of Contents ... iv

Table of Figures.. viii

List of Tables .. xi

List of Abbreviations .. xii

Chapter 1 - Introduction .. 1

1.1 Introduction... 1

1.2 Thesis Organisation .. 2

SECTION I – TECHNICAL & LITERATURE REVIEW .. 4

Chapter 2 - CAN Bus Protocol .. 5

2.1 Introduction... 5

2.2 CAN Bus Protocol - An Overview ... 6

2.3 CAN & the OSI Model ... 8

2.3.1 CAN’s Physical Layer ... 11

2.3.1.1 Bit Encoding ... 11

2.3.1.2 Transmission Medium and Connectors .. 14

2.3.1.3 Bit Rates & Timing... 14

2.3.1.4 Bus Lengths & Synchronisation ... 17

2.3.2 CAN’s Data Link Layer... 21

2.3.2.1 Message Framing .. 21

2.3.2.2 Arbitration... 27

2.3.2.3 Error Confinement .. 28

2.4 Summary... 29

 v

Chapter 3 - Video Processing... 31

3.1 Introduction... 31

3.2 Composition of a Video Signal... 32

3.2.1 Interlaced and Progressive Scanning ... 34

3.2.2 Video - Standards and Resolution.. 35

3.2.3 Chrominance Representation ... 37

3.2.3.1 Chrominance Sub-Sampling ... 38

3.3 Digital Video... 39

3.3.1 ITU-R BT.601 & ITU-R BT.656... 40

3.3.1.1 ITU-R BT.656 - Frame Partitioning & Data Stream Characteristics........ 41

3.3.1.2 ITU-R BT.656 Implementation .. 44

3.4 Summary... 45

Chapter 4 - Selection of a Processor.. 46

4.1 Introduction... 46

4.2 Key Considerations... 47

4.2.1 Automotive Environment Specifications... 48

4.2.2 Video Processing Capabilities ... 49

4.2.2.1 Freescale MPC5200 Lite5200 Evaluation Board 50

4.2.2.2 Infineon TriBoard TC1796 ... 50

4.2.2.3 Xilinx Spartan-3E Starter Kit.. 51

4.2.2.4 Microchip dsPICDEM 1.1 Plus Development Board 52

4.2.2.5 Analog Devices Blackfin ADSP-BF537 EZ Kit Lite 52

4.2.2.6 Video Processing Capabilities - A Summary.. 53

4.2.3 CAN Handling Abilities .. 54

4.2.3.1 CAN Handling Abilities of Processors under Investigation 54

4.2.4 Clock Rates & Power Consumption .. 56

4.2.4.1 Summary of Clock Rates & Power Consumption 57

4.2.5 DMA - Direct Memory Access.. 58

4.2.5.1 DMA Competence of Evaluated Processors... 59

4.2.6 Programming Environment.. 60

 vi

4.2.6.1 Freescale MPC5200 Lite5200 Evaluation Board 61

4.2.6.2 Infineon TriBoard TC1796 ... 61

4.2.6.3 Xilinx Spartan-3E Starter Kit.. 61

4.2.6.4 Microchip dsPICDEM 1.1 Plus Development Board 62

4.2.6.5 Analog Devices Blackfin ADSP-BF537 EZ Kit Lite 62

4.2.6.6 Programming Environment - A Summary.. 63

4.3 Synopsis of Reviewed Processors... 64

4.4 Summary... 65

SECTION II - SYSTEM SYNTHESIS ... 66

Chapter 5 - CAN Implementation ... 67

5.1 Introduction... 67

5.2 Construction of CAN Nodes... 68

5.2.1 Hardware Contents of Constructed CAN Nodes ... 68

5.2.2 Software Implementation of Constructed CAN Nodes 70

5.2.2.1 A-D Conversion .. 71

5.2.2.2 CAN Initialisation & Transmission .. 73

5.3 Testing of Constructed CAN Nodes ... 80

5.4 CAN Implementation upon the Blackfin ADSP-BF537... 82

5.5 Testing of Blackfin's CAN Module .. 88

5.6 Summary... 91

Chapter 6 - Video Implementation.. 92

6.1 Introduction... 92

6.2 Video Implementation Strategy .. 93

6.2.1 Video Software Strategy.. 93

6.2.1.1 Device Drivers & System Services... 93

6.2.1.2 Software Testing of Video Implementation.. 99

6.2.2 Video Hardware Strategy... 109

6.3 Summary... 111

 vii

Chapter 7 - Application Synthesis ... 112

7.1 Introduction... 112

7.2 Displaying Simulated Vehicle Data.. 113

7.2.1 Initial Strategy.. 113

7.2.1.1 Problems Encountered .. 117

7.2.2 Final Strategy... 119

7.2.2.1 Testing of Final Strategy... 122

7.2.3 Capacity for Expansion.. 122

7.3 Summary... 123

Chapter 8 - Conclusion... 125

8.1 Introduction... 125

8.2 Conclusion .. 126

8.3 Recommendations for Further Research & Development 127

References .. 128

Appendix A - CAN Circuit Schematics... 135

Appendix B - CAN On-Board Source Code ... 137

Appendix C - CAN SPI Source Code .. 139

Appendix D - Blackfin CAN Module Source Code.. 142

Appendix E - Blackfin Video Implementation Source Code 151

Appendix F - Application Source Code .. 178

Appendix G - SAE 2007-01-1644... 192

 viii

Table of Figures

Figure 1: Application Overview ... 2

Figure 2: Automobile Systems Interconnected using Point-to-Point Wiring 7

Figure 3: CAN Serial-Bus Interface Leading to Reduced Cable-Lengths.......................... 8

Figure 4: CAN Protocol with Reference to the OSI Model .. 9

Figure 5: Typical CAN Node.. 10

Figure 6: An Example of a NRZ Waveform ... 11

Figure 7: Differential Bus Signalling.. 12

Figure 8: ISO11898 Nominal Bus Levels ... 13

Figure 9: CAN Network with Terminating Resistors ... 14

Figure 10: CAN Bit Time Segments... 15

Figure 11: Time Quantum, tq, & the Bit Period, tbit .. 17

Figure 12: Propagation Delay between a Transmitting & Receiving Node 19

Figure 13: SJW used for Resynchronisation ... 20

Figure 14: Standard CAN Data Frame... 23

Figure 15: CAN Error Frame.. 26

Figure 16: Arbitration Based on the Identifier Fields of Two Nodes............................... 27

Figure 17: Error State Diagram for a CAN Node ... 28

Figure 18: Luminance Component of a Elementary Analogue Video Signal [18]........... 32

Figure 19: Numerous Rows of Data form a Single Video Frame..................................... 33

Figure 20: Synchronisation Signals Embedded within a Video Signal 33

Figure 21: Interlaced vs. Progressive Video Scan [18]... 35

Figure 22: Formation of White Light using the Three Primary Colours 37

Figure 23: Chrominance Sub-Sampling.. 39

Figure 24: Digitisation of Analogue Video Data.. 40

Figure 25: ITU-R BT.656 Frame Partitioning .. 42

Figure 26: ITU-R BT.656 Video Data Stream [29].. 44

Figure 27: Harsh Factors Experienced inside an Automotive Environment 48

Figure 28: Video Data Transferred in Parallel between Processor & Video-Encoder 49

Figure 29: Parallel vs. Sequential Processing ... 51

 ix

Figure 30: Integrated vs. Peripheral CAN Controller within a Network Node 54

Figure 31: Relationship between Clock Rate & Power Consumption.............................. 56

Figure 32: Core Responsibilities... 58

Figure 33: Typical DMA Flow ... 59

Figure 34: Factors within a Programming Environment .. 60

Figure 35: Function of a Transducer... 68

Figure 36: Hardware Components of Constructed CAN Nodes....................................... 69

Figure 37: Flow Chart of CAN Nodes Software Applications ... 70

Figure 38: ADCON1 Register of PIC16F876A [58]... 71

Figure 39: Right & Left Justified A-D Results ... 72

Figure 40: Flowchart of CAN Initialisation & Message Transmission 73

Figure 41: CANSTAT Register [57], [58].. 74

Figure 42: Assigned Parameter Values... 75

Figure 43: 16-bit Variable Contains Right-Justified 10-bit A-D Result........................... 77

Figure 44: Assignment of Lower 8-bits of A-D Conversion .. 78

Figure 45: Assignment of Upper 2-bits of A-D Conversion... 78

Figure 46: CANKing allows a Computer/Laptop to Function as a CAN Node 80

Figure 47: Verification of Correct Functionality of Constructed CAN Nodes................. 81

Figure 48: CAN Network Consisting of Blackfin & Constructed Nodes 82

Figure 49: Configuration of a Blackfin CAN Mailbox ... 83

Figure 50: ADSP-BF537’s CAN_TIMING Register [42].. 84

Figure 51: ADSP-BF537’s CAN_CLOCK Register [42] .. 85

Figure 52: CAN_MBXX_ID1 & CAN_MBXX_ID0 Registers [42] 87

Figure 53: CAN Modules Data Field Registers [42].. 88

Figure 54: Mailbox Configurations for Testing of Blackfin CAN Module 89

Figure 55: Flowchart for Blackfin CAN Module Test Program 89

Figure 56: Verification of Correct Functionality of Blackfin CAN Module 90

Figure 57: Examples of Supported Blackfin Device Drivers.. 94

Figure 58: Standard Device Driver Functions .. 95

Figure 59: Chained Loopback Dataflow Methodology .. 97

Figure 60: Examples of System Services Supported .. 97

 x

Figure 61: Layered Utilities Structure .. 98

Figure 62: Typical Device Driver Programming Sequence.. 98

Figure 63: Flowchart for Video Processing Test Program ... 100

Figure 64: Stacked Approach of Device Drivers .. 103

Figure 65: Elements of Buffer Chains pointing to ITU-R BT.656 Frames 106

Figure 66: Required Pre-Processor Macro Definition .. 108

Figure 67: Flowchart of Original Initialisation Strategy... 114

Figure 68: Received CAN Message Interrupt Service Routine 115

Figure 69: Revised Initialisation Strategy... 118

Figure 70: Application Components... 122

Figure 71: CAN On-Board Circuit Schematic.. 135

Figure 72: CAN SPI Circuit Schematic .. 136

 xi

List of Tables

Table 1: Table of Chapters.. 3

Table 2: Truth-Table for Wired-AND Mechanism.. 13

Table 3: CAN Bit Rate vs. Bus Length [14]... 18

Table 4: Important CAN Bit Timing & Synchronisation Rules 21

Table 5: Four Categories of CAN Messages .. 22

Table 6: Frame Resolution - NTSC vs. PAL [22] .. 36

Table 7: 8-bit SAV & EAV Preamble Codes ... 43

Table 8: Bit Definitions for ITU-R BT.656 Preamble.. 43

Table 9: Ambient Temperature Ranges of Components under Evaluation 48

Table 10: Summary of Video Processing Capabilities of Reviewed Devices 53

Table 11: Overview of CAN Handling Abilities of Scrutinised Processors..................... 55

Table 12: Synopsis of Clock & Power Adjustment Features for Examined Processors .. 57

Table 13: Overview of DMA Competence of Inspected Processors 59

Table 14: Summary of Programming Environments of Analysed Components 63

Table 15: Synopsis of Reviewed Processors .. 64

Table 16: A/V Daughter Board Jumper Settings .. 110

 xii

List of Abbreviations

A/V

AC

ACK

A-D

API

BRP

CAN

CANH

CANL

CCLK

CEC

CRC

CRT

CSMA

CSMA/CD+AMP

DCB

DLC

DMA

DSP

EAV

EMI

ESD

FPGA

fps

GPS

GUI

HDTV

Audio/Video

Alternating Current

Acknowledge

Analogue-to-Digital

Application Program Interface

Baud Rate Prescalar

Controller Area Network

CAN High

CAN Low

Processor Core Clock

Core Event Controller

Cyclic Redundancy Check

Cathode Ray Tube

Carrier Sense Multiple Access

Carrier Sense Multiple Access with Collision Detection and

Arbitration on Message Priority

Deferred Callback

Data Length Code

Direct Memory Access

Digital Signal Processor

End of Active Video

Electromagnetic Interference

Electrostatic Discharge

Field Programmable Gate Array

Frames per Second

Global Positioning System

Graphic User Interface

High Definition Television

 xiii

I2C

IC

IDE

IP

ISO

ISR

ITU

IVG

LCD

LED

LLC

LSB

MAC

MIPS

MSB

NBR

NBT

NRZ

NTSC

OSI

PAL

PCI

PLL

PPI

QAM

REC

RGB

RX/TX

SAE

SAV

SCLK

Inter-Integrated Circuit

Integrated Circuit

Identifier Extension

Intellectual Property

International Standardisation Organisation

Interrupt Service Routine

International Telecommunications Union

Interrupt Vector Group

Liquid Crystal Display

Light Emitting Diode

Logic Link Control

Least Significant Bit

Medium Access Control

Millions of Instructions per Second

Most Significant Bit

Nominal Bit Rate

Nominal Bit Time

Non-Return to Zero

National Television System Committee

Open Systems Interconnection

Phase Alternating Line

Peripheral Component Interface

Phase Lock Loop

Parallel Peripheral Interface

Quadrature Amplitude Modulation

Receive Error Counter

Red Green Blue

Receive/Transmit

Society of Automotive Engineers

Start of Active Video

Processor System Clock (Peripheral Clock)

 xiv

SIC

SJW

SNR

SPI

TEC

TWI

USB

System Interrupt Controller

Synchronisation Jump Width

Signal-to-Noise Ratio

Serial Peripheral Interface

Transmit Error Counter

Two Wire Interface

Universal Serial Bus

 1

Chapter 1 - Introduction

1.1 Introduction

Since the advent of vehicular instrumentation, dash-panel displays have traditionally been

implemented with analogue and mechanical dials and gauges. For example, fuel and

temperature gauges were analogue electrical devices; whereas speedometers and

tachometers were mechanically driven. From this dash-panel displays have today evolved

to incorporate both analogue and digital dials and gauges. For instance, some cars

currently utilise analogue electrical speedometer devices while they also include a

tachometer that is comprised of a LCD (Liquid Crystal Display) [1]. The focus now is on

developing dash-panel displays that dynamically represent vehicular data utilising a

complete graphical approach.

This research project investigates the design and synthesis of an application which

visually represents simulated automobile data. This information is obtained via a CAN

(Controller Area Network) network and is displayed upon a connected monitor. Modern

day vehicles contain many sensors that measure various performance parameters; e.g.

automobile speed, oil temperature etc. Therefore this project necessitates a suitable

method for mimicking the operation of such sensors in order to replicate authentic

 2

vehicle data. Once obtained, this information is transmitted over a CAN network and it is

essential to appropriately manipulate it with the aim of representing it proportionally

upon a display-device. Consequently, the goal of this research project is to utilise a

suitable intelligent-device and additional resources to process CAN information and

configure the data for visual representation. For this system a television screen is

sufficient to act as a monitor utilised to illustrate vehicle data.

Figure 1: Application Overview

1.2 Thesis Organisation

The material and information presented in this thesis is compiled into two main sections.

The first section, Literature Review, gives an overview of the protocols, technologies and

components researched in order to formulate a suitable methodology for this application.

This section is comprised of Chapters 2, 3 and 4.

The second section, System Synthesis, details the implementation of the system design

with respect to the findings of the Literature Review section. This particular section

encompasses Chapters 5, 6 and 7. Finally, there are conclusions drawn by the author

based on the outcomes of the research and system implementation.

The work presented in this thesis is laid out as follows:

 3

Chapter 2: Chapter 2 discusses the CAN protocol used for in-vehicle networking;

detailing the exact composition of a CAN message and the physical

make-up of an automotive network.

Chapter 3: Chapter 3 introduces the fundamentals of video processing to the

reader. It describes the basics relating to video data and discusses in

detail a particular digital video standard.

Chapter 4: Chapter 4 details the selection of a suitable processor for utilisation

within this system. This chapter describes how the author evaluated

numerous processors under several key considerations in order to

establish the most fitting component for the system’s development.

Chapter 5: Chapter 5 outlines the implementation of the CAN network employed

in this system. It describes to the reader how the selected components

were coordinated, both in terms of hardware and software, to instigate

the network. An account of the test algorithms used to establish correct

functionality of the network is also included.

Chapter 6: Chapter 6 discusses the measures taken by the author to implement a

video display incorporating the device chosen in Chapter 4. It

describes how encountered errors were overcome in order to devise a

correct video module strategy.

Chapter 7: Chapter 7 describes how the strategies devised in Chapters 5 and 6

were combined to formulate the system’s synthesis. A discussion is

included outlining how encountered problems were surmounted in

order to visually represent vehicle data upon a display device.

Chapter 8: Chapter 8 outlines the conclusions derived by the author based on the

research and system implementation conducted. A discussion regarding

further possibilities for research based on findings from this particular

study is also provided.

Table 1: Table of Chapters

 4

SECTION I – TECHNICAL &

LITERATURE REVIEW

 5

Chapter 2 - CAN Bus Protocol

2.1 Introduction

This chapter details and outlines the CAN bus protocol. The information given in this

chapter is partitioned into the following sections:

• An overview describing the history and fundamental ideas behind the introduction

of the CAN protocol for utilisation as a vehicle networking standard.

• An account detailing how the CAN protocol is physically implemented including

a discussion on bit rates and timing.

• A look at what exactly constitutes a CAN message and how devices connected to

the network achieve synchronisation with each another.

• A synopsis portraying arbitration and error confinement within the CAN bus

protocol.

 6

2.2 CAN Bus Protocol - An Overview

 The CAN protocol is an advanced asynchronous serial-bus system that efficiently

supports distributed control systems. It was initially developed for use in automobiles by

Bosch in the late 1980s [2]. The CAN protocol is internationally standardised by the ISO

(International Standardisation Organisation) and the SAE (Society of Automotive

Engineers) [3]. ISO11898 is the international standard for high-speed CAN

communications in automobiles. CAN is presently being employed as the standard for

vehicle communications within Europe by automobile manufacturers. Meanwhile, it is

gaining more mainstream acceptance within the United States [4].

CAN is similar in principle to other serial communication protocols such as SPI (Serial

Peripheral Interface) [5]; however it is more complex. It is a “message-based” protocol as

opposed to an “address-based” network system such as I2
C (Inter-Integrated Circuit) [6].

This essentially means that devices connected to a CAN network do not have unique

addresses, but rather the message(s) that a device sends out onto the network possesses a

unique ID number [7]. As a result, each device on the network listens to every message

transmitted on the bus and determines what action, if any, it needs to take. For that

reason, this implies that a CAN network may contain multiple masters.

The development of CAN began as a result of the increasing quantity of electronic

components and control systems being incorporated into modern-day motor vehicles [3],

[8]. Examples of such components/systems include engine management systems,

transmission control and central locking. The integration of these electronic

components/control systems result in additional safety and comfort features for the

driver; thus enhancing the vehicle as a whole. To further these improvements it was

necessary for the different control systems to exchange information [3], [7]. Previously,

this was carried out using discrete interconnection of the different systems, i.e. point-to-

point wiring. The requirement for data exchange has since grown to such an extent that a

cable network with a length of up to several kilometres, with many connectors, would be

required if point-to-point wiring was employed.

 7

Figure 2: Automobile Systems Interconnected using Point-to-Point Wiring

Subsequently a solution to this problem was realised with the design and introduction of

the CAN bus protocol. Within the CAN protocol point-to-point wiring was replaced by a

single serial-bus connecting all control systems and electronic devices on the network [2],

[4].

The design of the CAN protocol had to take into consideration some special requirements

due to its employment within a vehicle. Examples of such special requirements include

durability and reliability. This is accomplished in the design by adding some CAN

specific hardware to each control unit that provides the “rules” of the protocol for

transmitting and receiving information via the bus. The combination of CAN specific

hardware and a particular control system/electronic device leads to the formulation of a

CAN node. Each of the nodes on a particular network has a solitary interface to the

serial-bus network thus allowing communication between attached nodes. Due to the fact

that each of the nodes on a CAN network connects to the same serial-bus there is a

considerable reduction in cable length requirements.

 8

Figure 3: CAN Serial-Bus Interface Leading to Reduced Cable-Lengths

As CAN is an asynchronous multi-master message-based protocol, the designer can

implement a degree of flexibility into how and when nodes communicate over the

network. For instance, a particular node may only transmit a message every twenty

milliseconds, while another node may only transmit data if, for instance, a temperature

rises above a pre-determined value [9]. Therefore it is easy to see that the use of CAN

within an automobile introduces adaptability and practicality to a designer for each

individual network.

2.3 CAN & the OSI Model

The CAN protocol, like many other network topologies, can be illustrated using the

seven-layer OSI (Open Systems Interconnection) model [4], [10], [11]. This layered

approach is intended to achieve interoperability between standard components from

different manufacturers. With reference to this model the CAN protocol defines the

functions and services of the Data Link Layer and also the bit-timing and synchronisation

components of the Physical Layer [12]. The remaining elements of the Physical Layer

and the five additional layers are purposely not defined within the CAN protocol [10].

The implementation of these additional layers is completely at the hand of the system-

designer so that specific system requirements can be met.

 9

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Figure 4: CAN Protocol with Reference to the OSI Model

The additional five layers of the OSI model are typically implemented by a system-

designer using a number of hardware/software components which complete the formation

of a CAN node. The components that classically comprise a node are as listed below:

• Application Software that controls a particular function e.g. Measure water

temperature. Application software executing within a particular CAN node may

perform a singular function, or a number of functions depending on the situation.

• Microcontroller (or a corresponding intelligent embedded device) upon which

the application software executes. This device also transmits/receives relevant

information to/from a CAN Controller at typical digital logic levels.

Logic Link Control (LLC)

- Acceptance Filtering

- Overload Notification

- Recovery Management

Medium Access Control (MAC)

- Data Encapsulation/Decapsulation

- Framing & Arbitration

- Error Checking & Error Flags

Physical Signalling

- Bit Encoding/Decoding

- Bit Timing/Synchronisation

Physical Medium Attachment (PMA)

- Driver/Receiver Characteristics

Medium Dependant Interface (MDI)

- Connectors/Wires

 10

• CAN Controller is used to read data from the microcontroller and write it to a

CAN Transceiver. Conversely, a CAN Controller may receive data from a CAN

Transceiver, via the network, and transmit it to the microcontroller. The CAN

Controller generally interfaces with a microcontroller (or an equivalent intelligent

embedded device) via a SPI link. This device typically contains components

which allow for the filtering of unwanted messages transmitted over the network

resulting in the reduction of the microcontroller’s overhead.

• CAN Transceiver exchanges information with a CAN Controller and broadcasts

it over the asynchronous network. Additionally this device converts the digital

signals supplied to it by a CAN controller to signals suitable for transmission over

the bus cabling. A CAN Transceiver also provides a buffer between the CAN

Controller and the high-voltage spikes that can be generated on the CAN bus by

outside sources (EMI, ESD, electrical transients, etc.).

Figure 5: Typical CAN Node

 11

The CAN Controller and Transceiver are the hardware units, mentioned earlier, that help

to meet numerous requirements like durability and reliability. With the popularity of

CAN increasing, not just within the automotive industry [9], but also within other sectors,

many IC (Integrated Circuit) manufacturers have taken the step of integrating CAN

Controller modules into their microcontrollers. This consequently eradicates the SPI link

previously needed between a microcontroller and a peripheral CAN Controller.

2.3.1 CAN’s Physical Layer

As mentioned earlier, the CAN protocol only defines the bit-timing and encoding

portions of the Physical Layer. The Physical Layer essentially defines how the raw-data

is actually transmitted over the network [7].

2.3.1.1 Bit Encoding

Fundamentally the CAN bus protocol uses NRZ (Non-Return to Zero) bit-encoding to

represent data [13]. NRZ encoding represents data with Logic 1 or 0 levels during the

entire bit time. If two or more Logic 1s (or Logic 0s) occur in succession, the waveform

does not return to Logic 0 (Logic 1) level until Logic 0 (Logic 1) actually occurs.

Figure 6: An Example of a NRZ Waveform

The CAN protocol specifies two logical states - dominant (Logic 0) and recessive (Logic

1). ISO11898 defines a differential voltage, VDIFF, to represent these two logic states.

 12

Typically, a twisted-wire pair is used to transfer data over the network using. Data can

also be transferred over the network using other physical-phenomena e.g. light pulses.

The wires are twisted together to prevent electromagnetic interference from other

electrical devices internal or external to the vehicle. One of the wires is given the label

CANH (CAN High), while the other is given the label CANL (CAN Low) [3], [7]. The

differential signal between the voltages carried in each wire defines the bus state.

CANLCANHDIFF VVV −= Eq. 2.1

, where VDIFF is the differential voltage (Volts),

VCANH and VCANL are the CANH and CANL voltages respectively (Volts).

Figure 7: Differential Bus Signalling

In the recessive state, the differential voltage between the two signals is less than a

minimum threshold. Conversely, in the dominant state the differential voltage between

CANH and CANL is greater than a minimum threshold. A dominant bit will always have

precedence over a recessive bit as CAN uses the Wired-AND mechanism [3]. Under this

system if any node transmits a dominant bit the bus resides in the dominant state; the

CAN bus only exists in the recessive state when all nodes on the network transmit

recessive bits.

 13

Node A Node B Node C Bus State

Dominant Dominant Dominant Dominant

Dominant Dominant Recessive Dominant

Dominant Recessive Dominant Dominant

Dominant Recessive Recessive Dominant

Recessive Dominant Dominant Dominant

Recessive Dominant Recessive Dominant

Recessive Recessive Dominant Dominant

Recessive Recessive Recessive Recessive

Table 2: Truth-Table for Wired-AND Mechanism

Figure 8: ISO11898 Nominal Bus Levels

 14

2.3.1.2 Transmission Medium and Connectors

With reference to the OSI model, even though the CAN protocol itself does not define the

PMA and DMA sub-layers of the Physical Layer; ISO-11898-2 makes recommendations

for the PMA and DMA sub-layers. ISO-11898-2, however, does not define the mechanical

wires and connectors to be used; but on the other hand stipulates numerous electrical

specifications for the mechanical connectors and wires. The specification requires that

each end of the CAN network is terminated using 120Ω resistors [10]. The terminating

resistors prevent data on the network from being reflected back when the signal reaches

the end of the system. If the signal was reflected it could cause errors on the CAN

network.

CAN Node CAN Node

CANH

CANL

Terminating
Resistor

Terminating
Resistor

Figure 9: CAN Network with Terminating Resistors

2.3.1.3 Bit Rates & Timing

The CAN protocol can achieve data rates of up to 1MBit/s. In today’s terms this is

considered to be moderately slow when compared to other networks. Nevertheless,

CAN’s transfer speed is more than adequately equipped to deal with the transmission of

data inside in an automobile. One of the appealing aspects of CAN for network designers

is that it’s bit rate, bit sample point and the number of samples in a bit period are user

programmable. Modern high-speed CAN networks use crystal oscillators to derive their

 15

bit timing. Each node has its own timing reference but it is not necessary for all nodes on

a particular network to use the same oscillator frequency [12].

A CAN message is made of numerous bits. Each of these bits has a specific period, tbit.

This parameter, tbit, is itself made up of a number of non-overlapping portions.

Figure 10: CAN Bit Time Segments

These non-overlapping segments are made up from an integer number of units called

time quantum, tq. The NBR (Nominal Bit Rate) is defined within the CAN specification to

be the number of bits per second transmitted by an ideal transmitter with no

resynchronisation and can be described using the following [14]:

bit

bit
t

fNBR
1

== Eq. 2.2

, where NBR is the nominal bit rate (Seconds),

fbit is the frequency of a bit (Hertz),

tbit is the bit period (Seconds).

From the preceding diagram it can be seen that the NBT (Nominal Bit Time), or tbit, can

be expressed as a summation as follows:

21Pr PSPSopSegSyncSegbit ttttt +++= Eq. 2.3

 16

, where tbit is the bit period (Seconds),

 tSyncSeg is the synchronisation segment period (Seconds),

 tPropSeg is the propagation segment period (Seconds),

tPS1 and tPS2 are the periods (Seconds) for phase segment 1 and 2

respectively.

The first portion of the NBT, the synchronisation segment (SyncSeg), is used to

synchronise nodes connected to the bus. The duration of this segment is always one tq.

Bit edges are expected to occur during this portion. The propagation segment (PropSeg)

is user programmable and is used to compensate for propagation delays between

communicating nodes. The system-designer can program the duration of the propagation

segment to be from one to eight tq in duration. Phase segments 1 and 2 (PhaseSeg1 and

PhaseSeg2) are used to compensate for any edge error that occurs around the sample

point. The sample point is the instance in the bit time where the logic level is read. This

is typically read at the end of PhaseSeg1. However, the system-designer has the option to

sample the logic level three times during the NBT. If so, two additional samples are taken

at half tq intervals prior to the end of PhaseSeg1. The durations of PhaseSeg1 and

PhaseSeg2 are also user defined; PhaseSeg1 can be lengthened, or conversely,

PhaseSeg2 can be shortened. PhaseSeg1 is programmable from one to eight tq and

PhaseSeg2 is programmable from two to eight tq [14].

The duration of a time quantum, tq, is derived from the period of the oscillator, tosc,

employed within an individual node. The base tq is equal to twice tosc and is also equal to

one tq clock period, tbrpclk. The figure for tq can be modified by the system-designer from

its base value using a programmable prescalar called the BRP (Baud Rate Prescalar) in

order to change the period of tbrpclk [14]. The relationship between these parameters is

mathematically illustrated below:

 oscq tBRPt ××= 2 Eq. 2.4

 17

osc

q
f

BRP
t

×
=⇒

2
 Eq. 2.5

, where tq is the time quantum (Seconds),

 BRP is a user-configurable prescalar integer unit,

 tosc is the period of an oscillator used within a node (Seconds),

 fosc is the frequency of an oscillator used within a node (Hertz).

Figure 11: Time Quantum, tq, & the Bit Period, tbit

2.3.1.4 Bus Lengths & Synchronisation

ISO11898 states that a CAN Transceiver must be able to drive a bus length of

approximately forty-metres at a data rate of 1MBit/s [10]. A longer bus length can be

realised by implementing a slower data-rate on the network.

 18

Bit Rate (kBits/s) Bus Length (m)

1000 30

500 100

250 250

125 500

62.5 1000

Table 3: CAN Bit Rate vs. Bus Length [14]

Within CAN, relationships exist between the bit timing parameters and the oscillator

tolerances; and as a result physical bus propagation delays. For a CAN network the

propagation delay, tprop, is calculated as being a signal’s round trip time on the physical

bus, tbus, plus the output driver delay, tdrv, plus the input comparator delay, tcmp. Assuming

all devices on a CAN bus have similar component delay-times the propagation delay of a

CAN network can be expressed mathematically as follows:

)(2 cmpdrvbusprop tttt ++×= Eq. 2.6

, where tprop is the network propagation delay (Seconds),

 tbus is the time duration of a signal’s round-trip (Seconds),

 tdrv is the delay of the output driver (Seconds),

 tcmp is the input comparator delay (Seconds).

 19

Figure 12: Propagation Delay between a Transmitting & Receiving Node

The bit timing parameters, the oscillator tolerances, and the propagation delays of a CAN

network are interrelated due to the fact that the later the sample point in the bit period is

taken, the more tolerance the system has to propagation delay. This means greater bus

lengths can be installed. Conversely a sample taken closer to the midpoint of the bit

period achieves greater oscillator tolerance levels. Therefore it is easy to see that a

system-designer is left with a trade-off; greater bus length vs. large oscillator tolerance

[12].

Earlier, it was mentioned that each CAN node has its own timing reference and that it is

not necessary for all nodes on a particular network to use the same oscillator frequency.

However all devices connected to a CAN bus must operate at the same NBR. This is

achieved by the system-designer by varying the BRP of each node to ensure a consistency

in nominal bit rate between all devices connected to the network. Factors such as noise,

phase shifts, and oscillator drift lead to situations where the ideal bit rate does not equal

the actual bit rate in a real system. Therefore, the nodes must have a method for achieving

and maintaining synchronisation with messages transmitted on the bus [14].

As discussed previously a dominant bit will always have precedence over a recessive bit.

With this style of arbitration in place each node involved with arbitration must be able to

sample each bit level with the same bit time otherwise invalid arbitration may occur. For

the CAN protocol there are two categories of synchronisation which guarantee suitable

 20

decoding of messages despite hindrances like phase errors etc. [12]; the two categories

are as follows: Hard Synchronisation and Resynchronisation.

Hard Synchronisation occurs on the first recessive-to-dominant (Logic 1 to Logic 0) edge

during an idle period on the network which indicates a Start-of-Frame condition. Every

CAN Controller on the network now initialises its current bit period timing at this first

recessive-to-dominant transition with SyncSeg [12], [14]. At this point, all of the

receiving nodes will be synchronised to the transmitting device. Hard Synchronisation

occurs only once during a message.

Resynchronisation is carried out once for each recessive-to-dominant transition

throughout the remainder of the received message. It is implemented to uphold the

preliminary synchronisation carried out on the first recessive-to-dominant transition using

Hard Synchronisation. If Resynchronisation is not employed receiving nodes could loose

synchronisation due to factors such as oscillator drift and noise. Resynchronisation is

typically implemented using a PLL (Phase Lock Loop) which compares and eradicates

any variations existing between the actual recessive-to-dominant transition and the

expected (during SyncSeg) recessive-to-dominant transition [2], [14]. Resynchronisation

compensates for any phase error by as much as the user defined parameter SJW

(Synchronisation Jump Width). SJW is not a segment within the bit period, tbit; it is a

value which defines the maximum number of tq by which a bit period can be

lengthened/shortened in the event of resynchronisation [12]. The user can program the

value of SJW to be in the range of one to four tq.

Figure 13: SJW used for Resynchronisation

 21

The stipulations seen in the table below must be adhered to by a system-designer in order

to comply with the synchronisation standards outlined in ISO11898 [2], [14].

1.
Only a single synchronisation within a particular bit

period, tbit, is allowed.

2.
Only recessive-to-dominant transmissions are to be

used for synchronisation purposes.

3.

Hard Synchronisation is only performed whenever

there is a recessive-to-dominant transition during an

idle-bus condition.

4.
All other recessive-to-dominant transitions will be used

for resynchronisation purposes.

5. SJW ≤ PhaseSeg2 ≤ PhaseSeg1

Table 4: Important CAN Bit Timing & Synchronisation Rules

2.3.2 CAN’s Data Link Layer

The Data Link Layer is primarily responsible for assembling the encoded data produced

in the Physical Layer into an ISO11898 structured frame. This layer, with reference to the

OSI model, is also required to perform arbitration and error confinement [8], [9]. For this

discussion, with reference to the OSI model, it is only necessary to describe the MAC

(Medium Access Control) section of the Data Link Layer. The LLC (Logic Link Control)

section is outside the scope of this discussion.

2.3.2.1 Message Framing

As outlined above the raw-data encoded in the Physical Layer has to be bundled into a

predefined structure called a frame as outlined in ISO11898. The CAN protocol defines

 22

four different types of frames [9], [15]. A brief description of the various frame types is

described in the table below.

Data Frame: Data is sent by a transmitting node to one or more receiving

nodes. This is the most common type of CAN message.

Remote Frame: A Remote Frame is used when one node requests the transfer of

information from another device connected to the CAN bus.

Error Frame: This type of CAN message is generated by a node when it detects

a particular protocol error defined within the ISO11898 standard.

Overload Frame: This is used within the CAN protocol to request additional time

needed by a node to process received information.

Table 5: Four Categories of CAN Messages

From above it can be seen that each of the message frames serves its own particular

function. Each of the frame types differ somewhat in their structure; although substantial

similarities exist between all of them.

Data Frame

The Data Frame will be discussed in greater detail than the other categories because it is

the most commonly employed frame type.

 23

Figure 14: Standard CAN Data Frame

The diagram above illustrates the composition of a standard CAN Data Frame. The

frame consists of a number of fields; this is true for the remaining three frame types. A

field within a frame is compromised of a number of bits. The composition of a Data

Frame is as described below [7], [15], [16]:

• Start-of-Frame Field: The Start-of-Frame field is always one bit in length and is

represented by a recessive-to-dominant transition. It is used to indicate the start of

a new message. Also, as discussed previously, the Start-of-Frame field is also

used for Hard Synchronisation purposes.

• Arbitration Field: This field is comprised of twelve bits and is used to prioritise

messages transmitted on a CAN network. The first eleven bits of this field consist

of the Identifier Field portion. These eleven bits contain the ID which is used to

identify a particular CAN message. The Identifier Field portion is therefore used

by network-nodes to establish if a received message is relevant to their own

specific function; if not, nodes will just ignore the message. This field is also used

for arbitration purposes which will be discussed in greater detail later. The

 24

Remote Transmission Request bit is used to distinguish between a Data Frame

and a Remote Frame. If this bit is recessive it indicates that the message is a

Remote Frame, otherwise the frame is a Data Frame.

• Control Field: The Control Field is composed of six bits, the first of which is

labelled the IDE (Identifier Extension) bit. In its dominant state it specifies that

the message is a Standard Data Frame. Otherwise, this bit indicates that the

message is an Extended Data Frame. A discussion outlining the principal

differences between a Standard Data Frame and an Extended Data Frame will be

described later. The following bit in this field is reserved and is defined to be

dominant. The additional four bits that make up the Control Field are the DLC

(Data Length Code) bits. The DLC is used to indicate the number of bytes of data

(0 - 8) contained within the following Data Field of the message.

• Data Field: This field contains the actual information data; e.g. oil pressure,

vehicle speed etc. The length of the Data Field is controlled by the contents of the

DLC. The Data Field can contain anything from zero to sixty-four bits (0 to 8

bytes).

• CRC Field: The CRC Field (Cyclic Redundancy Check) is used to detect any

possible transmission errors and contains a fifteen bit check sequence and a CRC

Delimiter bit. A receiving node compares the CRC it has computed from the

received frame to the information contained within the received message to

establish if any errors have occurred.

• ACK Field: The ACK Field (Acknowledge) contains two bits. During the ACK

slot bit a transmitting CAN node sends out a recessive bit. Any node on the

network that has received the transmitted message without any errors

acknowledges the correct message reception by sending a dominant bit back to

the transmitting node. The other bit within the ACK Field, the ACK delimiter bit,

must be recessive at all times and cannot be overwritten by a dominant bit.

 25

• End-of-Frame Field: This field is used to signify the end of the CAN message. It

consists of seven consecutive recessive bits.

The Data Frame described above is a Standard Data Frame as outlined by Bosch [2].

The CAN protocol describing a Standard Data Frame is entitled CAN2.0A. CAN2.0B is a

subsequent protocol release which describes an Extended Data Frame. The fundamental

difference between standard and extended frames is that an extended frame has the

capacity to support a twenty-nine bit Identifier Field as opposed to a standard frame’s

eleven bit Identifier Field. Thus the extended frame format possesses a greater ID-range

and relieves the system-designer from compromises with respect to defining well-

structured identification schemes [2], [3]. Overall, the extended format is similar to the

standard CAN frame. As discussed earlier, the two frames are distinguishable by the IDE

bit within the Control Field. Within an extended frame the Identifier Field is separated

into eleven and eighteen bit portions respectively. CAN2.0B is capable of receiving

CAN2.0A messages; however this situation is not reciprocal, CAN2.0A does not support

the reception of CAN2.0B messages.

CAN2.0A is used within the vast majority of automobile applications because an eleven

bit Identifier Field more than adequately realises typical system requirements. Another

reason for its employment within the majority of applications is the fact that it also

requires less overhead and silicon space than CAN2.0B implementations. It has been

established that the implementation of CAN2.0B is not always necessary and its

employment is only necessary under certain circumstances [4].

Remote Frame

ISO11898 specifies that any node on a CAN network can send a Remote Frame which

essentially is a request for information from another attached node. The transmission of a

Remote Frame is analogous to asking a question. The node that has the “answer” will

transmit a message containing the requested information to the node that sent the Remote

 26

Frame [15]. The composition of a Remote Frame is identical to a Standard Data Frame;

the only exception is that the Remote Transmission Request bit is transmitted in a

recessive sate. In addition, the DLC portion of the Control Field contains zero to indicate

that no data will be contained within the Data Field.

Error Frame

The CAN protocol allows any node on the network that detects a bus error to generate an

Error Frame. An Error Frame is comprised of two fields; an Error Flag Field and an

Error Delimiter Field. The content of the Error Flag Field depends on the error-status of

the node that has detected the error. The Error Delimiter Field consists of eight recessive

bits.

Figure 15: CAN Error Frame

Once an Error Frame is formed bus activity returns to normal and the node in which the

error occurs attempts to re-transmit the aborted message.

Overload Frame

An Overload Frame is defined within the CAN protocol to allow a node to tell the

network that it is occupied and is not yet ready to receive any further messages. It is

comprised of an Overload Flag and an Error Delimiter.

 27

2.3.2.2 Arbitration

ISO11898 allows simultaneous bus access from different nodes; this is known as CSMA

(Carrier Sense Multiple Access). A node can proceed to transmit a message over the

network if it detects that the bus is currently residing in an idle state i.e. no other node is

currently transmitting [15]. The situation can arise however where two nodes attempt to

transmit a message over the network simultaneously. Consequently a method of

arbitration is employed within the Data Link Layer to establish which node may continue

its transmission.

Many techniques exist within network topologies to implement arbitration [11], however

the CAN protocol stipulates that the CSMA/CD+AMP (Carrier Sense Multiple Access

with Collision Detection and Arbitration on Message Priority) technique be used [3],

[16]. This arbitration methodology involves determining the priority of messages to

establish which node may proceed with transmission. A message with a low binary value

in its Identifier Field will have a high priority based on the Wired-AND logic (a dominant

bit overwrites a recessive bit) discussed previously.

Figure 16: Arbitration Based on the Identifier Fields of Two Nodes

For the diagram above Node B has a higher priority over Node A because it’s Identifier

Field has a lower binary value than that of Node A. Subsequently if Node B and Node A

both attempt to transmit a message concurrently Node A will loose arbitration and Node B

can proceed with its message transmission.

 28

2.3.2.3 Error Confinement

As CAN was initially developed for use within the automotive environment the protocol

had to employ a methodology to efficiently process errors in order to acquire a

wholesome share within the marketplace [9]. As described previously, ISO11898 allows

all CAN nodes to generate Error Frames upon detection of an error. The nodes are

intelligent enough to assess whether an error is of a permanent or temporary nature. Each

CAN node has three error states in which it can reside upon detection of a fault. The three

states are as follows:

1. Error Active

2. Error Passive

3. Bus Off

Both CAN2.0A and the subsequent CAN2.0B stipulate that each CAN node should

contain both a TEC (Transmit Error Counter) and a REC (Receive Error Counter) register

in order to implement error confinement. The contents of these respective counters are

incremented by a certain value each time the node transmits/receives an erroneous frame.

Successful transmission and reception of message frames decrement the contents of the

two counter registers [3].

Figure 17: Error State Diagram for a CAN Node

The Error Active state is the typical state in which a network-node resides in after a reset

condition. When the TEC and REC counters for a particular node contain a values less

 29

than 128 the node also resides in this Error Active state. In this condition the node is

allowed to transmit and receive messages and is also allowed to transmit error frames

(containing Error Active flags) without constraint.

If either the TEC or the REC register for an individual node contain values between 128

and 255 the node resides in the Error Passive state. In this state a node is free to

transmit/receive message frames, although as soon as an Error Passive node transmits an

erroneous frame further communication of messages is suspended and an Error Passive

flag is sent out onto the CAN bus.

One aspect of the CAN protocol is that faulty nodes can withdraw themselves from the

network automatically. The Bus Off state is entered into by a node when the contents of

the TEC register are greater than 255; at this point all bus activity for this node

terminates. To return to the Error Active state, and to reset the error counter values, the

CAN node must be reinitialised.

2.4 Summary

This chapter examined and described various aspects of the CAN bus protocol. The main

points to embrace are as follows:

• The CAN protocol considerably reduces cable length requirements within a

system due to the fact that is a serial-based network topology.

• CAN is robust and reliable, therefore it is ideally suited for use within an

automotive environment. It is used as the standard for vehicle communications by

European automobile manufacturers; it is currently gaining mainstream

acceptance in the United States.

 30

• ISO11898 only specifies the bottom two layers of the OSI model for CAN thus

allowing a system-designer the freedom to customise a network to meet specific

requirements.

• An appealing aspect of the CAN protocol is that it’s physical parameters, such as

bit timing etc., are user programmable thus offering a designer control over bus

lengths and timing.

• The CAN protocol defines its own highly efficient method for arbitrating between

conflicting nodes in order to avoid transmission conflictions.

• The error handling capability of CAN allows a damaged node to withdraw itself

from a system; thus damage to an individual node does not hamper the operation

of the overall network.

 31

Chapter 3 - Video Processing

3.1 Introduction

As video processing is required to visually represent automobile data within this

application this chapter details the fundamentals relating to video data and its associated

standards. The information given in this chapter is separated into the following main

sections:

• An overview of the constitution of a generic video signal.

• A discussion outlining the most popular video standards.

• A summary detailing how chrominance is represented in a video signal and what

steps are taken to efficiently utilise bandwidth.

• A synopsis of the ITU-R BT.601 & ITU-R BT656 digital video protocols.

• A brief explanation of how the ITU-R BT.656 protocol is implemented using

hardware.

 32

3.2 Composition of a Video Signal

In its fundamental existence a video signal is comprised of a two-dimensional array of

luminance (intensity) and chrominance (colour) data. The video signal is updated at a

regular frame rate to ensure that perception of motion is conveyed to the human eye. The

intensity information for each line of video is represented within the signal by a low-

voltage waveform. In conjunction with this, timing information is embedded in the

analogue signal to ensure that display-devices remains synchronised with the video signal

[17], [18].

Figure 18: Luminance Component of a Elementary Analogue Video Signal [18]

For example, in a standard CRT (Cathode Ray Tube) television an analogue video signal

modulates an electron-beam which results in the illumination of phosphorus on the

screen. This practise is carried out in a left-to-right, top-to-bottom manner. As a result, it

can be envisaged that a single video frame is comprised of multiple rows of data, which

in turn are formed one-by-one on the screen [19].

 33

Figure 19: Numerous Rows of Data form a Single Video Frame

The embedded timing signals dictate when the electron-beam is active or inactive. The

previous diagram illustrates that during the inactive period the electron-beam is allowed

to retrace from right to left. This is so that it can begin to illuminate phosphorus on the

next row, or move from the bottom right-corner to the top-left corner of the screen in

order to begin formulation of the next video frame.

The synchronisation data embedded within a video signal and the timing relationships

between them are shown in the following diagram.

Figure 20: Synchronisation Signals Embedded within a Video Signal

The HSYNC waveform is the horizontal synchronisation signal and it is used to indicate

the start of active video on each row of a video frame. Horizontal blanking is the inactive

 34

period during which the electron-beam retraces from the right side of the screen back

over to the next row on the left side. VSYNC is the vertical synchronisation signal. It

demarcates the start of a new video frame. Vertical blanking is the inactive period during

which the electron-beam retraces from the bottom right-corner to the top-left corner of

the display-screen in order to begin formulation of the next video frame [20].

The FIELD signal indicates, for an interlaced video scan, whether the field being

displayed is “odd” or “even”. The FIELD synchronisation signal is not applicable to

progressive scan video systems.

3.2.1 Interlaced and Progressive Scanning

What exactly constitutes an interlaced and progressive scan, and what is the difference

between the two? In early analogue television systems bandwidth was a major restriction,

i.e. systems only had the capacity to transmit so many lines of video per second.

However, in order to seamlessly convey the perception of movement the video frames

needed to be updated at an appropriate frequency (≈ 50/60Hz).

A solution to this problem was realised by introducing the concept of interlaced video.

Within this concept each video frame is split into two fields; one consisting of odd

numbered row lines and the other composed of even numbered row lines. For an

interlaced system the television displays the odd-field (even-field) first and then displays

the even-field (odd-field). To the human eye, because of latencies, it appears that the

entire frame (made up from the two fields) is being displayed simultaneously. This

solution ensures that fluid motion is conveyed to the onlooker, while at the same time

ensuring bandwidth restrictions are not violated [18], [19].

 35

Figure 21: Interlaced vs. Progressive Video Scan [18]

In recent times, due to the advancements in television and video technologies,

progressive scan video has become more widespread. From the previous diagram it can

be seen that a progressive video frame is comprised of rows stored in a successive

manner. The concept of odd and even fields does not apply to progressive scan systems

as an individual frame is not split in two. Interlaced systems are still utilised, however

because of the exceptional capabilities of modern television and video technologies

progressive scan is increasingly prevalent, particularly in Western Europe [18], [20].

3.2.2 Video - Standards and Resolution

Numerous analogue video standards are employed worldwide. The primary difference

between the various standards is found in the manner in which they encode luminance

(intensity) and chrominance (colour) data. Universally speaking, two standards dominate

- NTSC (National Television System Committee) and PAL (Phase Alternating Line).

NTSC is predominantly employed in North America and Asia, while PAL on the other

hand is mainly utilised in Europe and South America. PAL is an enhancement on its older

NTSC counterpart, improving on colour distortion prevalent with NTSC. HDTV (High

 36

Definition Television) is the latest addition to the video standard realm. It is actually a

digital video standard, as opposed to the other analogue standards previously mentioned,

and it is forecasted to be the dominant standard in the future [20].

The fundamentals of NTSC and PAL are relatively similar; a QAM (Quadrature

Amplitude Modulation) [21] sub-carrier relaying the chrominance (colour) data is added

to a luminance (intensity) signal to form a composite video baseband signal. NTSC is

typically implemented using interlaced scanning. It has a frame rate of approximately

30fps (Frames per Second); therefore fields are updated at 60fps. PAL is equilaterally

utilised as an interlaced or progressive scan system. It has a frame refresh rate of

approximately 50fps. Notice that the frame rates of NTSC (60fps) and PAL (50fps)

coincide with the 60Hz and 50Hz frequencies of AC (Alternating Current) power in the

United States and Europe respectively. This is no coincidence; this is a deliberate design

ploy implemented to avoid visible interference upon a display-monitor [18], [20], [22].

The resolution of a video frame is measured in pixels and is defined as the product of the

horizontal and vertical resolution. The horizontal resolution indicates the number of

pixels on each row of a video frame, while the vertical resolution specifies how many

horizontal lines are displayed to create the entire video frame.

Video Standard

Horizontal

Resolution

(Pixels)

Vertical

Resolution

(Pixels)

Frame

Resolution

(Pixels)

NTSC 720 480 345,600

PAL 720 576 414,720

Table 6: Frame Resolution - NTSC vs. PAL [22]

The preceding table illustrates that both NTSC and PAL possess equal horizontal

resolutions. Yet PAL has a higher frame resolution than NTSC due to its superior vertical

 37

resolution. As a result a PAL frame represents a video frame with finer detail than NTSC.

However the colour resolution of NTSC is greater than that of PAL.

3.2.3 Chrominance Representation

Numerous methodologies exist for representing chrominance within the video

environment. Each individual system is suited to a particular application. For instance,

some are designed for application with television systems, whilst others are used with

computer-graphics displays. The most fundamental methodology for chrominance

representation is the RGB (Red Green Blue) colour space system. The three primary

colours are red, green and blue. When summed together in equal proportions they

manifest white light.

Figure 22: Formation of White Light using the Three Primary Colours

The RGB system combines various quantities of the three primary colours to formulate

any colour in the visible spectrum. Due to its relative simplicity the RGB scheme is the

preferred methodology used for chrominance representation in computer-graphics

systems [23], [24].

Luminance (intensity) is perceived in a non-linear fashion by the human eye. In addition,

display-devices such as CRTs also display luminance in a non-linear manner.

Coincidentally the eye’s perception of luminance sensitivity is approximately converse to

 38

standard display-devices’ output characteristics. For that reason video devices and

algorithms pre-distort their RGB output stream. This is to counteract display-devices’

non-linear luminance representation and to create a realistic model of how the eye

perceives a video image in reality. Pre-distorted RGB values are referenced as R’G’B’

[18].

Even though RGB is the natural technique for colour representation it is not appropriate

for image-processing because each it’s three components are highly correlated with one

another. Consequently other chrominance schemes that are more efficient and highly-

uncorrelated have evolved; an example of which is the YCbCr system. The YCbCr system

contains a single luminance value and two chrominance components. The separation of

luminance and chrominance data results in more efficient use of image-processing

bandwidth. The luminance, Y, and chrominance components, Cb and Cr, are

mathematically derived from R’G’B’ values as seen below [25]:

 ')114.0(')587.0(')299.0(BGRY ++= Eq. 3.1

128')498.0(')33.0(')168.0(++−−= BGRCb Eq. 3.2

128')081.0(')417.0(')498.0(+−−= BGRCr Eq. 3.3

, where R’, G’ and B’ are pre-distorted RGB values,

 Y is the luminance component,

 Cb and Cr are chrominance components.

3.2.3.1 Chrominance Sub-Sampling

The human eye is more sensitive to luminance variation than it is to chrominance

difference. YCbCr takes advantage of this as it pays more attention to luminance (Y

component) than chrominance (Cb and Cr components). Thus chrominance values can be

sub-sampled resulting in considerable bandwidth savings.

 39

Figure 23: Chrominance Sub-Sampling

From the preceding diagram a full-bandwidth pixel-stream is represented by the 4:4:4

YCbCr signal. The first number is always “4” and corresponds to the relationship

between the sampling frequency of the luminance component and the particular analogue

standard (i.e. NTSC or PAL) sub-carrier frequency. The second number represents the

ratio of luminance to chrominance in a given horizontal row; in this case all chrominance

components are sampled fully hence this number is “4”. The last number illustrates the

vertical luminance/chrominance relationship; if no sub-sampling takes place this number

is also “4”. If the chrominance components of the full-bandwidth signal are sub-sampled

by a factor of two horizontally a 4:2:2 YCbCr signal is obtained. This means that there

are four luminance components for every two chrominance values on a particular video

row [23]. The acquisition of a 4:2:2 signal results in only a minute distortion to the

quality of a video image when compared to a 4:4:4 signal, yet a bandwidth saving of

33% is yielded. Hence sub-sampling is extremely efficient.

3.3 Digital Video

So far only analogue video has been discussed. Since the mid-1990s digital video has

become prevalent, primarily due to mass improvements in internet infrastructure. This in

turn has lead to an increase in consumers’ demands for media-streaming. Digital video

 40

holds numerous advantages over its analogue counterpart. For instance, the SNR (Signal-

to-Noise Ration) achievable with digital streams is much greater than that of analogue

video. In addition, digital video utilises bandwidth more efficiently as several digital

channels are compressible into a single analogue channel.

Fundamentally speaking, the construction of a digital video stream involves the sampling

and quantisation of existing analogue video. The sampling process involves dividing an

analogue image into a grid-like structure and assigning relative amplitude values to each

grid-portion based on the intensities of colour-space components in each grid-region. The

quantisation process involves determining the discrete amplitude values to assign during

the sampling process. 8-bit video is common for consumer applications; a value of 0 is

assigned to the darkest portions (black), while a value of 255 is assigned to white

portions.

Figure 24: Digitisation of Analogue Video Data

To some degree the introduction of digital video has lead to standardisation between the

NTSC and PAL architectures. The ITU (International Telecommunications Union) has

defined digital video standards, ITU-R BT.601 and ITU-R BT.656, which are focused

towards achieving a large degree of cohesion between NTSC and PAL so that they can

both share the same coding formats [18], [26].

3.3.1 ITU-R BT.601 & ITU-R BT.656

ITU-R BT.601 and ITU-R BT.656 together define a practice that allows different video

system components and standards to interoperate. The ITU-R BT.601 standard describes

 41

the fundamentals of the video digitisation process, while ITU-R BT.656 defines how ITU-

R BT.601 is actually physically implemented.

ITU-R BT.601 specifies that 4:2:2 YCbCr colour-spacing is employed to achieve

bandwidth efficiencies as outlined earlier. The protocol also stipulates that standard

synchronisation signals (HSYNC, VSYNC, and FIELD) be used to demarcate the

boundaries of active video regions. Within this standard each pixel component (Y, Cb, or

Cr) is quantised to either 8 or 10-bits. 8-bit quantisation is more practical for

implementation purposes as processors can efficiently handle octal multiples.

 ITU-R BT.601 specifies that both NTSC and PAL comprise the same horizontal

resolution (i.e. 720 pixels of active video per line). On the other hand, a difference exists

in terms of vertical resolution. A 30fps NTSC video stream has a vertical resolution of

525 lines; this is in comparison to 625 lines for a 25fps PAL frame [23], [24], [27].

As mentioned above ITU-R BT.656 identifies the physical interfaces and data streams

needed to implement the ITU-R BT.601 standard. One of the main advantages realised

from the use of the ITU-R BT.656 digital protocol is that all timing signals are embedded

in the data stream. This therefore means that no additional hardware lines are required for

synchronisation purposes. ITU-R BT.656 defines both a bit-serial and bit-parallel mode.

The implementation of the bit-serial mode can be rather complex and is not realisable on

many systems. For that reason, this discussion will only refer to the bit-parallel mode

[23], [28].

3.3.1.1 ITU-R BT.656 - Frame Partitioning & Data Stream

Characteristics

The ITU-R BT.656 frame partitioning requirements for both NTSC and PAL are seen

below.

 42

Figure 25: ITU-R BT.656 Frame Partitioning

As mentioned earlier, the HYSNC (H), VSYNC (V) and FIELD (F) synchronisation

signals are sent as an embedded portion of the video stream. This data is transmitted as a

series of bytes that form a control word. The SAV (Start of Active Video) and EAV (End

of Active Video) respectively demarcate the beginning and end of relevant video data for

every line/row; thus horizontal blanking occurs during this period. SAV occurs on a 1-to-

0 logic level transition of HSYNC, while EAV occurs on a 0-to-1 transition of HSYNC.

Vertical blanking occurs when V = 1. A field of video begins on a logic transition of the F

bit. An odd-field is represented with F = 0, while an even-field is denoted by F = 1. If

progressive video scanning is employed no distinction is made between fields. Thus it is

seen that an entire field of video is comprised of active video, horizontal blanking, and

vertical blanking [18], [28].

The SAV and EAV codes are shown in greater detail below:

 43

 8-bit Data (D7 = MSB, D0 = LSB)

D7 D6 D5 D4 D3 D2 D1 D0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0
Preamble

0 0 0 0 0 0 0 0

Control

Byte
1 F V H P3 P2 P1 P0

Table 7: 8-bit SAV & EAV Preamble Codes

From the preceding table it is seen that a defined preamble, consisting of 3-bytes (0xFF,

0x00 and 0x00), is followed by a control-byte. This control-byte contains four bits (P3,

P2, P1, and P0) for error detection and correction in addition to the H, V, and F bits. The

bit definitions are as follows [18], [26]:

F = 0

for Field 1

V = 1 during

Vertical

Blanking

H = 0

at SAV

P3 =

V XOR H

P1 =

F XOR V

F = 1

for Field 2

V = 0 when not

in Vertical

Blanking

H = 1

at EAV

P2 =

F XOR H

P3 =

F XOR V XOR

H

Table 8: Bit Definitions for ITU-R BT.656 Preamble

The following diagram illustrates the composition of an ITU-R BT.656 bit stream for a

single line/row of video data. The SAV encompassing the defined preamble (0xFF, 0x00,

and 0x00) along with the control byte (containing H, V, F and error detection/correction

bits) indicates the beginning of a new line/row of video data. The active video

 44

information then follows in 4:2:2 YCbCr format. Recall that ITU-R BT.601 specifies that

both NTSC and PAL contain 720 pixels of active video per line. As the 4:2:2 format is

employed there are twice as many luminance components than chrominance values

resulting in a total of 1440 bytes of active video data in a given line/row. The occurrence

of an EAV completes the formation of a current line/row allowing the construction of the

next line/row to begin [20].

Figure 26: ITU-R BT.656 Video Data Stream [29]

3.3.1.2 ITU-R BT.656 Implementation

ITU-BT.656 is in essence a standard that is implemented in hardware through software

initialisation. If video data is being transmitted a video-encoder IC is used to convert the

digital ITU-R BT.656 stream into an analogue signal for display upon a CRT (or other

display device). It fundamentally acts as a digital-to-analogue converter converting the

input digitised stream into standard analogue video standards like NTSC or PAL.

Conversely speaking, if analogue video in the form of NTSC or PAL is being received a

video-decoder IC is used to convert the input signal to an ITU-R BT.656 video stream.

Video-encoder and decoder ICs interface to a processor giving a system-designer the

control to program the ICs to meet whatever specific requirements a project may demand.

The majority of video-encoder and decoder ICs support both NTSC and PAL. For this

 45

application the choice between NTSC and PAL is irrelevant; the main focus is on

displaying vehicle data regardless of the analogue video format utilised.

3.4 Summary

This chapter discussed the fundamentals of video data and outlined standards prevalent in

the video environment. The key points to note are as follows:

• Any video signal primarily consists of luminance and chrominance data.

• Timing information is embedded within the video data to ensure that display-

devices remain synchronised with the input signal.

• NTSC and PAL are the predominantly used analogue video standards.

• Chrominance sub-sampling is used to efficiently utilise bandwidth.

• ITU-R BT.601 and ITU-R BT.656 are digital video standards that are designed to

allow interoperability between video components and standards.

• The ITU-R BT.656 protocol is a standard implemented using video-encoder and

decoder ICs and is software configurable.

 46

Chapter 4 - Selection of a Processor

4.1 Introduction

Now that a review of CAN networking and video processing has been carried out the

next step is to select a suitable processor for utilisation within this system. This chapter

discusses the selection of an adequate processor. The information given is divided into

numerous sections as outlined below:

• An outline of the main factors taken into consideration when selecting an

appropriate intelligent-device for this system design, with particular attention

being paid to video processing and CAN capabilities.

• A comparison of a number of different processors is discussed under each of the

main factors taken into consideration.

• A summary outlining all of the components and the selection of a particular

processor for use within this system.

 47

4.2 Key Considerations

When choosing an appropriate processor for operation in this project sizeable

consideration must be given to a number of key factors. Bearing in mind that this is a

system designed for operation within an automotive setting, a suitable device has to be

able to operate sufficiently inside such a harsh environment. The correct processor for

this particular design must also possess CAN and video capabilities in order to meet the

system requirements. The main deliberations for selection of a fitting device are outlined

below [18], [30]:

• Automotive Environment Specifications

• Video Processing Capabilities

• CAN Handling Ability

• Clock Rates & Power Consumption

• DMA - Direct Memory Access

• Programming Environment

The development boards below contain suitable processors for completion of this project.

They are evaluated under the headings outlined above to establish which is the most

suitable for this system’s synthesis.

• Freescale MPC5200 Lite5200 Evaluation Board [31], [32], [33], [34]

• Infineon TriBoard TC1796 [35], [36]

• Xilinx Spartan-3E Starter Kit [37], [38]

• Microchip dsPICDEM 1.1 Plus Development Board [39], [40]

• Analog Devices Blackfin ADSP-BF537 EZ Kit Lite [41], [42]

Each of these components is designed by their respective manufacturers for use in the

automotive industry.

 48

4.2.1 Automotive Environment Specifications

An automotive environment contains many hindrances such as EMI, humidity, noise,

temperature extremes and vibrations [43]. These factors can have a detrimental effect on

signals and devices inside a vehicle. As a result ICs and processor used within an

automotive environment have to be able to withstand these factors. For instance, the

typical temperature-range for automotive ICs is -40ºC to +125ºC [43] because

components may have to operate under severe temperature extremes. Consequently, the

processor chosen for use in this system must comply with standard automotive IC

provisions.

Figure 27: Harsh Factors Experienced inside an Automotive Environment

The following table outlines the ambient operating temperature-ranges for the five

intelligent-devices chosen for evaluation.

Processor Temperature Range (ºC)

Freescale MPC5200 -40 to +85

Infineon TC1796 -40 to +125

Xilinx Spartan-3E -40 to +100

Microchip dsPIC30F6014A -40 to +125

Blackfin ADSP-BF537 -40 to +85

Table 9: Ambient Temperature Ranges of Components under Evaluation

 49

As it can be seen, all of the components comply with typical automotive temperatures;

however only the Infineon TC1796 and Microchip dsPIC30F6014A processors operate

over the full automotive temperature-range (-40 to +125ºC).

4.2.2 Video Processing Capabilities

The computational power of a processor employed with this system is crucial. A raw

video signal for instance could be comprised of data operating in the region of tens of

MBytes/s [18]. Consequently it is easy to envisage that an appropriate intelligent-device

must possess the capabilities to handle such high rates of data throughput. 16 and 32-bit

processors should hold enough power to fulfil this role.

In addition, a suitable device connects, with minimum hardware and software effort, to

standard video-encoder ICs that support the ITU-R BT.656 protocol in order to simplify

interfacing requirements. The standard hardware component of a processor

conventionally used to facilitate such an interface is a PPI (Parallel Peripheral Interface)

port. This is due to the fact that the transfer of video in ITU-R BT.656 parallel mode is

more efficient than a serial transfer. Thus, a suitable device preferably contains a PPI port

for transfer efficiencies.

Figure 28: Video Data Transferred in Parallel between Processor & Video-Encoder

To simplify interfacing requirements even further, video encoding ICs should be located

upon the development apparatus, or form part of a compatible A/V (Audio/Video)

daughter board.

 50

4.2.2.1 Freescale MPC5200 Lite5200 Evaluation Board

The 32-bit Freescale MPC5200 processor is extremely powerful and is more than

capable of adequately handling video data. It can perform 760MIPS (Millions of

Instructions per Second) at a 400MHz clock frequency; which gives an indication of its

processing power [33].

The MPC5200 contains a PCI (Peripheral Component Interconnect) interface which

allows for the connection of different varieties of peripherals to the development board.

The PCI is in essence a 32-bit configurable address/data bus suited for high data-rate

transfers [32]. Consequently, the PCI is configurable as a PPI port and thus it can be used

to interface with an attuned video-encoder IC. However it would take a great deal of

effort, both in terms of hardware and software, to interface these components.

A much simpler solution would be realised if the Lite5200 kit had a compatible A/V

daughter board that supports ITU-R BT.656. Nonetheless, no such A/V extension board is

available for the Lite5200.

4.2.2.2 Infineon TriBoard TC1796

This development board incorporates the 32-bit TriCore TC1796 processor. This device

can, with relative ease, support the processing of video data. For instance, an illustration

of its power can be seen in the fact that it can operate at a 150MHz clock frequency over

its entire temperature range [35].

The TC1796 contains a 16-bit PPI port which would facilitate in the transfer of ITU-R

BT.656 parallel data [35]. However, like the Freescale Lite5200 kit, there is no A/V

extension board available for this particular device. Once more, as a result of this, it

would take a large endeavour, both in terms of hardware and software, to interface the

TriBoard TC1796 development board with suitable hardware components that offer ITU-

R BT.656 support.

 51

4.2.2.3 Xilinx Spartan-3E Starter Kit

FPGAs (Field Programmable Gate Array) are highly configurable hardware devices.

They consist of a vast array of logic-gates and modules which can be configured to meet

any specification required by a designer [44]. Their basis of operation involves the

concept of “parallel-processing”; which essentially means that multiple data blocks can

be processed concurrently. Conversely, standard processors can only process data

sequentially.

Figure 29: Parallel vs. Sequential Processing

Even though the Xilinx Spartan-3E Starter Kit uses a relatively modest 50MHz clock-

signal to derive it’s timing the concept of parallel-processing results in this FPGA being

an extremely fast device [37], [38]. Therefore this component could more than adequately

handle a video stream.

However, due to the fact that FPGAs are comprised from an array of configurable

hardware blocks designers have to develop all hardware components from first principles.

For example, for this particular project a PPI port is desirable to facilitate the efficient

transfer of video data. This means that a designer would have to construct a PPI port

from gate-level up. Therefore it is easy to envisage that the development time for a

certain application designed to run on a FPGA could be relatively longer than that of a

standard processor.

 52

4.2.2.4 Microchip dsPICDEM 1.1 Plus Development Board

The 16-bit dsPIC30F6014A device incorporated onto the dsPICDEM 1.1 Plus

Development Board can operate at a maximum of 30 MIPS [39]. This is relatively slow

when compared to the other processors. The device can utilise a PLL to increase the

clocking frequency. In spite of this, the maximum clock rate achievable using the PLL is

not adequate to competently support video data processing.

The dsPIC30F6014A processor contains a PPI port, which again facilitates the efficient

transfer of video data. Yet, like the other components discussed so far, it does not have an

A/V daughter board to simplify interfacing requirements.

4.2.2.5 Analog Devices Blackfin ADSP-BF537 EZ Kit Lite

The Blackfin ADSP-BF537 is an example of a convergent processor. It combines a 16-bit

DSP (Digital Signal Processor) and a 32-bit microcontroller onto a single IC. It

amalgamates the best qualities of a DSP and a microcontroller making it an extremely

powerful device; thus it is sufficiently equipped to deal with video data.

This processor contains a PPI port which again is advantageous in efficient data transfers.

In fact the PPI port of the Blackfin has been designed with video processing in mind. In

addition, the Blackfin ADSP-BF537 EZ Kit Lite development board has a compatible A/V

daughter board. This daughter board contains video-encoder ICs and sockets for

interfacing with display-devices. Obviously, use of the Blackfin EZ Kit Lite and its

daughter board would minimise the interfacing efforts required for this project.

 53

4.2.2.6 Video Processing Capabilities - A Summary

Development

Board

Video Processing

Speed Capability

Parallel

Interfacing

Capability

Compatible A/V

Daughter Board

Freescale

MPC5200 Lite5200
Sufficient

Achievable through

PCI configuration
None Available

Infineon TriBoard

TC1796
Sufficient Yes None Available

Xilinx Spartan-3E

Starter Kit

Sufficient (due to

Parallel Processing

feature of FPGAs)

Must be developed

by Designer
None Available

Microchip

dsPICDEM 1.1

Plus Development

Board

Inadequate Yes None Available

Analog Devices

Blackfin ADSP-

BF537 EZ Kit Lite

Sufficient Yes Yes

Table 10: Summary of Video Processing Capabilities of Reviewed Devices

From the preceding table it can be seen that the MPC5200, TriBoard TC1796 and

Blackfin ADSP-BF537 are sufficiently equipped to process video data. The Blackfin is

however the processor of choice, in terms of video processing capabilities, due to the fact

that it has a compatible A/V board which minimises interfacing efforts.

 54

4.2.3 CAN Handling Abilities

As outlined in Chapter 2, the CAN protocol is employed as the standard for vehicle

communications within Europe by automobile manufacturers. Subsequently an adequate

intelligent-device preferably contains an integrated CAN Controller in order to reduce

overhead and propagation delay. This would obviously lead to an overall reduction in

system cost. The alternative to this is to use a peripheral CAN Controller interfaced to a

processor via a SPI link [45].

Figure 30: Integrated vs. Peripheral CAN Controller within a Network Node

As shown in the preceding diagram, the use of a peripheral CAN Controller leads to an

increase in the number of components required to implement a network node.

4.2.3.1 CAN Handling Abilities of Processors under Investigation

The following table illustrates the CAN handling abilities of the intelligent-devices

examined in this discussion.

 55

Processor
Integrated

CAN Controller

Total Number of

RX/TX Buffers

Freescale MPC5200 Yes
8 RX

6 TX

Infineon TriCore TC1796 Yes
4 RX/TX (Programmable

Bi-Directional Buffers)

Xilinx Spartan-3E FPGA No Not Applicable

Microchip

dsPIC30F6014A
Yes

3 RX

3 TX

Analog Devices Blackfin

ADSP-BF537
Yes

8 RX

8 TX

16 Configurable Buffers

Table 11: Overview of CAN Handling Abilities of Scrutinised Processors

From the preceding table it can be seen that all of the devices, with the exception of the

Spartan-3E, contain an integrated CAN Controller.

As mentioned previously, FPGAs are user-configurable hardware devices. The

development of a CAN Controller upon a FPGA would be an extremely time-consuming

process, primarily because the entire mechanics of a CAN Controller would need to be

described at fundamental gate-level. An alternative to the manual-development of a CAN

Controller is the purchase of a CAN IP (Intellectual Property) footprint. This essentially

means that a system-designer purchases a footprint of a CAN Controller developed by

some other party. The footprint is simply “dropped” onto the FPGA, resulting in part of

 56

the device operating as a CAN Controller. Conversely, the retail price of a CAN

Controller from one particular vendor is in the region of $15,000. It is clear to see that

this is an incredibly costly alternative. For that reason, the use of the Xilinx Spartan-3E to

implement the CAN protocol is not practical on this occasion.

Again with reference to the previous table, the four processors containing an integrated

CAN Controller enclose reduced overhead both in terms of hardware and software. These

four devices are sufficiently capable of handling CAN transfers for this particular project.

Each of the four processors contains numerous RX/TX (Receive/Transmit) buffers. A

CAN buffer acts like a mailbox for a particular CAN message. The more buffers a device

contains, the more efficient it is at managing the reception/transmission of CAN

messages. Therefore the Blackfin ADSP-BF537 is the most efficient processor, in terms

of CAN handling, as it contains a total of thirty-two message buffers.

4.2.4 Clock Rates & Power Consumption

In order to process video in real-time it is desirable to select a processor that operates at a

relatively high clock rate. However, a high clock rate results in greater power

consumption. Therefore the system-designer must take this trade-off into consideration

when selecting an intelligent-device to fulfil the system’s synthesis. Ideally, an adequate

component contains an adjustable clock frequency feature; i.e. the clock frequency

applied can be varied in real-time during program operation. This leads to reduced power

consumption. In addition, the selected intelligent-device contains power adjustment

features to reduce overall power consumption.

Figure 31: Relationship between Clock Rate & Power Consumption

 57

4.2.4.1 Summary of Clock Rates & Power Consumption

The following table illustrates the clock rates and power consumption features of the

processors examined in this discussion.

Processor

Recommended

Maximum Clock

Frequency (MHz)

Real-Time Clock

Adjustment

Capabilities

Power Adjustment

Features

Freescale

MPC5200
400 No Yes

Infineon TriCore

TC1796
150 No Yes

Xilinx Spartan-3E

FPGA
Not Applicable Not Applicable Yes

Microchip

dsPIC30F6014A
160 No Yes

Analog Devices

Blackfin ADSP-

BF537

600 Yes Yes

Table 12: Synopsis of Clock & Power Adjustment Features for Examined Processors

From the preceding table it can be concluded that all of the devices with the exception of

the dsPIC30F6014A possess adequate clocking abilities to process the high data-rates

associated with video. As mentioned previously, the concept of parallel-processing

fundamental to FPGAs results in the Xilinx Spartan-3E containing ample strength to

process video data sufficiently. As seen all of the processors encompass power

adjustment features.

 58

The processor of choice in terms of clock rate and power consumption is the Blackfin

ADSP-BF537. It is the device with the highest operating frequency. In addition, the

Blackfin possesses the ability to adjust its clock frequency in real-time making it an

attractive device for utilisation.

4.2.5 DMA - Direct Memory Access

The core of any processor is responsible for carrying out many operations. Parts of the

core’s duties involve managing data transfers between internal/external memory registers

and peripherals. When large quantities of data are being transferred frequently a

processor’s core can become completely embroiled with the task of information transfer;

thus preventing it from carrying out other necessary duties.

Figure 32: Core Responsibilities

DMA (Direct Memory Access) is a technique utilised to ensure efficient data-movement

and relieves an intelligent-device’s core from memory transfers so that it can perform

other operations. An integrated DMA controller is delegated data-movement

responsibilities by the processor’s core, and once empowered the controller can

independently manage data-transfers [18], [46].

 59

Figure 33: Typical DMA Flow

The presence of DMA in an application such as this is vital due to the fact that video-

information is being transferred at high data-rates. If DMA is not present the core of a

selected processor would essentially be congested by the constraint of having to read a

data sample every time one becomes available. For that reason, the processor selected to

implement this application must boast DMA competence.

4.2.5.1 DMA Competence of Evaluated Processors

The following table illustrates the DMA competence of the components examined in this

discussion.

Processor DMA Competence

Freescale MPC5200 Yes

Infineon TriCore TC1796 Yes

Xilinx Spartan-3E FPGA No

Microchip dsPIC30F6014A No

Analog Devices Blackfin ADSP-BF537 Yes

Table 13: Overview of DMA Competence of Inspected Processors

 60

From the preceding table it can be seen that the MPC5200, TriCore TC1796 and ADSP-

BF537 could be used in the synthesis of this system as they each contain DMA

components. The additional two devices under scrutiny in this discussion do not possess

any DMA functionality, and as a result would not support the efficient transfer of video-

data. However, a DMA component could be constructed on the Spartan-3E, but again

this would be a time-consuming process.

4.2.6 Programming Environment

The programming environment of an intelligent-device can encompass the language(s)

supported by its compiler(s), and the ease in which the component may be

reprogrammed. The programming environment of a specific choice of processor is

imperative when selecting it for use within an application. Most development interfaces

offer a system-designer the choice of using a high-level programming language (C, C++)

or assembler to develop software on the device. Many processors can be compiled using

royalty-free software packages, while others require specific compilers typically designed

by the particular device’s manufacturer. Nowadays, components can usually be re-

programmed in-circuit with minimum effort using a USB (Universal Serial Bus) or

alternative interface. The ideal processor selected for use within this project contains a

user-friendly programming setting which minimises overhead and reduces needless

complications.

Figure 34: Factors within a Programming Environment

 61

4.2.6.1 Freescale MPC5200 Lite5200 Evaluation Board

The development environment for this particular intelligent-device is relatively broad;

numerous compilers are available from various vendors. Options exist for a Macintosh,

Linux or Windows platform. For instance, Freescale offer their CodeWarrior interface

tool for use in either a Linux or Windows setting. CodeWarrior allows a system-designer

the freedom to cultivate software upon the MPC5200 processor using C, C++ or

assembly. Third-party vendors such as QNX and Green Hills also offer development

suites for this device [34]. Therefore a system-designer has a wide selection range to

choose from when using this particular development-board. The Lite5200 evaluation kit

utilises a USB interface to simplify the programming-process. Overall, the programming

environment for the Freescale Lite5200 is user-friendly and extensive so particular

preferences can be satisfied.

4.2.6.2 Infineon TriBoard TC1796

Infineon do not manufacture a development tool for their TriBoard TC1796. However,

like the Lite5200, many third-party options exist for both the Linux and Windows

platforms [47], [48]. The software package developed by Altium is the unofficial standard

industry tool for the TC1796 [47]. A royalty-free GNU C/C++ programming option is

also available for the TriBoard TC1796 [49]. The TC1796 incorporated onto this Infineon

development board can be re-programmed via a USB interface. In general, the

programming environment for the Infineon TC1796, like the Freescale Lite5200,

provides a vast array of options and the particular interface tool chosen depends on the

preferences of a system-designer.

4.2.6.3 Xilinx Spartan-3E Starter Kit

The Spartan-3E, like all FPGAs, is programmed using VHDL
1. VHDL is not a high-level

programming language like C/C++. In addition VHDL is not software; it is a hardware

1 VHDL stands for VHSIC Hardware Description Language. VHSIC is an abbreviation for Very High
Speed Integrated Circuit.

 62

description language. It is a list of configuration commands used to describe the

behaviour of hardware internal to a FPGA [50].

Subsequently, if a FPGA is selected for use within a project the designer would require

knowledge of VHDL specific to the chosen FPGA, in this case it would be Xilinx VHDL;

otherwise a new learning-curve would have to be embarked upon. Consequently, as a

result of timing-constraints it is not feasible for use in this particular project.

4.2.6.4 Microchip dsPICDEM 1.1 Plus Development Board

Microchip has developed its MPLAB development interface for use with the

dsPIC30F14A device incorporated onto the Plus Development Board. At present MPLAB

only supports the Windows platform. The MPLAB tool presents the system-designer with

the option of using either C or assembly language to configure the processor accordingly

[40]. Microchip’s MPLAB is user-friendly as it is relatively straight-forward to use. In

addition, the Plus Development Board contains a USB interface which simplifies the re-

programming process.

4.2.6.5 Analog Devices Blackfin ADSP-BF537 EZ Kit Lite

Like the Freescale and Infineon options already discussed, the development environment

for the Blackfin is relatively extensive. Third-party choices exist for both the Linux [51]

and Windows platforms [52], [53]. Analog Devices has developed its VisualDSP++ tool

for use with the Blackfin processor. This development component allows a designer to

configure the Blackfin using C/C++, assembler, or a combination of both. It incorporates

an abundance of functions and drivers to facilitate in software development. The Blackfin

EZ Kit development board interfaces to the chosen compiler via a USB link, thus

minimising re-programming efforts.

 63

4.2.6.6 Programming Environment - A Summary

Development

Board

Programming

Languages

Supported

Generic or

Third-Party

Packages

Royalty-Free

Packages

Available

Re-

Programming

Resources

Freescale

MPC5200

Lite5200

C, C++,

Assembly
Both No USB

Infineon

TriBoard

TC1796

C, C++,

Assembly
Both Yes USB

Xilinx Spartan-

3E Starter Kit
VHDL No No

Parallel

Interface

Microchip

dsPICDEM 1.1

Plus

Development

Board

C, Assembly Generic No USB

Analog

Devices

Blackfin

ADSP-BF537

EZ Kit Lite

C, C++,

Assembly
Both Yes USB

Table 14: Summary of Programming Environments of Analysed Components

From the preceding table, with the exception of the Xilinx Spartan-3E Starter Kit

(because it is only configurable using VHDL), it is clear to see that all of the intelligent-

devices under scrutiny offer a considerable variety in terms of programming

environments.

 64

4.3 Synopsis of Reviewed Processors

Automotive

Environment

Specifications

Video

Processing

Capabilities

CAN

Handling

Abilities

Clock Rates

& Power

Consumption

DMA

Programmin

g

Environment

Freescale

MPC5200
Sufficient Sufficient Sufficient Sufficient Sufficient Excellent

Infineon

TriCore

TC1796

Excellent Sufficient Sufficient Sufficient Sufficient Excellent

Xilinx

Spartan-3E
Sufficient

Moderate/

Sufficient
Inadequate Sufficient Inadequate Moderate

Microchip

dsPIC30F14

A

Excellent Inadequate Sufficient Inadequate Inadeqaute Sufficient

Blackfin

ADSP-BF537
Sufficient Excellent Excellent Excellent Sufficient Excellent

Table 15: Synopsis of Reviewed Processors

It is concluded from the preceding table that the highly-configurable Xilinx Spartan-3E

FPGA falls short of use in this particular application. This is primarily as a result of

timing constraints required to implement customisation on this device. The Microchip

dsPIC30F14A is also insufficient for use in this synthesis as it lacks the processing

strength necessary to meet the system’s specifications.

The Freescale MPC5200, Infineon TriCore TC1796 and Blackfin ADSP-BF537 are

sufficiently equipped for employment in this application’s development. However the

Blackfin ADSP-BD537 is the processor of choice. This is due to a number of factors.

Firstly, the EZ Kit development board upon which the Blackfin ADSP-BF537 is

incorporated has a compatible A/V daughter board which simplifies the fulfilment of

ITU-R BT.656 video processing. Also, the Blackfin is excellently equipped to deal with

CAN efficiently as it contains thirty-two message buffers. In addition to this, the

 65

maximum clock frequency of the ADSP-BF537 more than adequately supports real-time

video processing. The programming environment for this component is broad, thus

offering a designer an array of choices. The VisualDSP++ development tool has been

chosen for use to develop software on the device as it contains an abundance of support

functions and drivers as mentioned earlier.

The Blackfin is a relatively new processor and its popularity is increasing exponentially.

Evidence of this is found in the fact that the open-source community has embraced the

Blackfin with many support forums offering free-ware code and advice [51], [54], [55].

Analog Devices are continuously developing new device-drivers and support tools to aid

in implementation of new technologies.

4.4 Summary

This chapter discussed the selection of an adequate processor to implement this

application. The major points to behold are as follows:

• A number of key factors need to be taken into consideration when choosing a

suitable intelligent-device for use in this system.

• Numerous processors are discussed under each of the main factors taken into

consideration.

• The Blackfin ADSP-BF537 adequately meets all of the key considerations,

particularly in the area of video and CAN, and as a result is selected as the

processor or choice for use in this system.

Now that a suitable processor had been selected for utilisation from a number of

examined devices, based on the merits outlined within this chapter, the next step was to

synthesis the system incorporating correct hardware and software methodologies.

 66

SECTION II - SYSTEM SYNTHESIS

 67

Chapter 5 - CAN Implementation

5.1 Introduction

This chapter details the efforts involved in the development of the CAN bus network

employed in this system’s synthesis. The information given in this chapter is divided into

numerous sections as outlined below:

• A description of the hardware and software resources utilised to develop CAN

nodes employed in this system.

• A discussion on how potentiometers are incorporated into the constructed CAN

nodes to mimic the operation of standard vehicle sensors, and how their

functionality was verified.

• A synopsis detailing the steps taken to configure the Blackfin’s CAN module and

how the operation of the device was tested for conformity.

 68

5.2 Construction of CAN Nodes

The fundamental hypothesis of this application involves the reading of standard vehicle

information from sensors over a CAN network, processing the data, and then representing

it visually upon a display-device. Consequently, some method of mimicking the

operation of automobile sensing-devices is required. This is achieved by constructing two

CAN nodes that incorporate several potentiometers to imitate the actions of sensors found

in a vehicle. It can be said that sensors essentially function as transducers; i.e. they

measure a particular physical parameter and represent it proportionally in another form;

typically electrical. Therefore the rotation of a potentiometer and thus the subsequent

change in output-voltage suitably impersonates the operation of a sensing-device. For

instance, one potentiometer is employed to replicate the actions of an oil temperature

sensor while another is used to represent a device that monitors vehicle speed.

Figure 35: Function of a Transducer

5.2.1 Hardware Contents of Constructed CAN Nodes

Recall from Chapter 2 that a typical CAN node encompasses a software application that

is programmed onto an embedded device. The embedded devices incorporated into the

constructed CAN nodes come from the 8-bit PIC microcontroller family [56]. 8-bit PIC

microcontrollers offer a considerable performance at a competitive price which justifies

their selection for use. One of the CAN nodes incorporates a PIC18F258 [57] which

contains an integrated CAN Controller. With reference to Section 4.2.3, the PIC18F258

is therefore efficient in terms of CAN overhead and propagation delay. The other

constructed CAN node features a PIC16F876A [58] which does not include an integrated

 69

CAN Controller. Consequently, a MCP2515 IC [59] is interfaced to the PIC16F876A

through a SPI link. The use of a peripheral CAN Controller is deliberate in order for the

author to be proficient, both in terms of hardware and software, with the integrated and

peripheral CAN strategies. As seen below both CAN nodes utilise a MCP2551 CAN

Transceiver [60].

Figure 36: Hardware Components of Constructed CAN Nodes

Detailed circuit schematics for both CAN nodes are found in Appendix A.

From the preceding diagram it is seen that both network nodes utilise 16MHz crystal

oscillators to obtain their timing. This CAN network is configured to operate at a baud

rate of 500kBits/s. With reference to Section 2.3.1.4, it is not necessary for all CAN

nodes to use the same oscillator frequency. However recall that all CAN nodes must

operate at the same NBR. Consequently, the BRP of both CAN nodes is suitably set by

configuring specific bits in the appropriate registers. The software routines used to do this

are discussed in Section 5.2.2.2.

 70

5.2.2 Software Implementation of Constructed CAN Nodes

The MikroC compiler [61] is used in this synthesis to program the PIC microcontrollers.

This integrated development environment offers a rich set of functions and efficient

support for the PIC microcontroller families; hence its utilisation is practical and

convenient.

The function of the software applications executing inside both CAN nodes is to firstly

perform A-D (Analogue-to-Digital) conversions upon the potentiometers. Following on

from this, the software applications insert the conversion results into Standard Data

Frames for transmission to the Blackfin for interpretation. The flow chart below

illustrates this process. The source code for the CAN On-Board and SPI nodes can be

viewed in Appendix B and C respectively.

Figure 37: Flow Chart of CAN Nodes Software Applications

 71

5.2.2.1 A-D Conversion

The MikroC compiler, as mentioned previously, contains a rich set of functions to

simplify the programming process of the PIC microcontroller. The Adc_Read() function

is used to read a 10-bit A-D conversion from a specific channel [62]. The only parameter

passed to the Adc_Read() function is the channel number upon which A-D conversion is

required. For example, the function call below results in a reading of the voltage from the

potentiometer connected to channel one.

 Ch1_res = Adc_Read(1); // Get the ADC conversion result

Adc_Read() also implicitly determines, from the supplied clock frequency, the time

period necessary for performing A-D conversion. The PIC16F876A and PIC18F258

contain five and eight A-D channels respectively. Three potentiometers are connected to

the PIC16F876A hence a single call to Adc_Read() is required for each of the three

channels. On the other hand two individual calls to Adc_Read() are made for the two

potentiometers interfaced to the PIC18F258 - see Appendix A, B, and C. Before the

Adc_Read() function is utilised a certain degree of initialisation takes place. The ADCON

registers of both PIC devices are configured accordingly [57], [58].

Figure 38: ADCON1 Register of PIC16F876A [58]

The two microcontrollers are configured for all A-D channels to accept analogue inputs

only, and conversions occur at a rate of FOSC/2. Furthermore, both devices are initialised

 72

to issue a right-justified A-D result. Conversely they can be configured to yield a left-

justified result. What is the difference between the two configurations?

Figure 39: Right & Left Justified A-D Results

The PIC16F876A and PIC18F258 are 8-bit microcontrollers; however both devices

perform 10-bit A-D conversion. Consequently, a 10-bit A-D result is split between two 8-

bit result registers - ADRESH and ADRESL as seen in the previous diagram. If the A-D

result is right-justified the two MSBs (Most Significant Bit) of the result reside in the

ADRESH register, while the remaining eight bits of the conversion are stored in the

ADRESL register. In contrast, if the A-D result is left-justified the eight MSBs of the

result are found in the ADRESH register, while the two LSBs (Least Significant Bit) are

stored in the ADRESL register [57], [58].

Once all initialisation is complete the analogue voltages from the potentiometers are

continuously read by the A-D modules using the Adc_Read() function.

typedef unsigned int iadc;

…

iadc ch0_res = 0

…

ch0_res = Adc_Read(0); // Get the ADC conversion result

The 10-bit result from a specific A-D channel, contained in ADRESH and ADRESL, is

returned by Adc_Read() and the value is stored in a 16-bit unsigned integer variable.

 73

5.2.2.2 CAN Initialisation & Transmission

MikroC provides numerous functions for the initialisation and transmission/reception of

CAN messages, and adequately supports both the integrated (PIC18F258) and peripheral

(PIC16F876A) CAN strategies. In most cases the only difference between a function

used with an integrated CAN controller and that used with a peripheral controller is in the

name of the function - see Appendix B and C. For example, the CANWrite() function is

used to transmit a message from a node that incorporates an integrated CAN Controller.

On the other hand, the CANSPIWrite() function is used to transmit data when a peripheral

CAN controller is utilised. As mentioned earlier, Standard Data Frames are employed in

this application.

A summary of the operation of both CAN nodes is seen below.

Figure 40: Flowchart of CAN Initialisation & Message Transmission

Similar to the A-D conversions seen in the last section, a certain degree of initialisation

takes place before any messages are transmitted. To initialise the registers of CAN

modules residing in either an integrated or peripheral controller the module has to be set

 74

to the Configuration Mode using either the CANSetOperationMode() or

CANSPISetOperationMode() respectively. In both cases, two parameters are passed to the

function. The first parameter passed is the mode in which it is desired to enter into. This

parameter is copied into the CANSTAT register of either the integrated or peripheral

controller; depending on which strategy is being utilised [57], [58].

Figure 41: CANSTAT Register [57], [58]

The second item in the function prototype is either a “blocking” or “non-blocking” call. If

it is a “blocking” call, i.e. 0xFF, the function does not return until the requested mode is

entered into. If a “non-blocking” call, i.e. 0x00, is passed the function returns

immediately but the system-designer must ensure that the CAN Controller is now

residing in the requested mode [62].

 CANSetOperationMode(CAN_MODE_CONFIG,0xFF); // Set CONFIGURATION mode

 CANSPISetOperationMode(CAN_MODE_CONFIG,0xFF); // Set CONFIGURATION mode

In Sections 2.3.1.3 and 2.3.1.4 it is stated that one of the appealing aspects of the CAN

bus protocol is that its bit rate, sample and resynchronisation points are user-

programmable. These parameters are initialised using the CANInitialize() and

CANSPIInitialize() functions. Several items are passed to both functions.

CANInitialize(2,2,3,3,1,aa); // Initialise CAN module. BAUD = 500kBit/sec

CANSPIInitialize(2,2,3,3,1,aa); // Initialise external CAN module. BAUD = 500kBit/sec

 75

Firstly, the SJW resynchronisation value is passed. It is assigned the value of two;

therefore the bit period, tbit, of a CAN message is lengthened or shortened by 2tq if

resynchronisation is required [57], [58].

The second parameter is the BRP value and this is discussed in a few moments. The third

and fourth items in the function prototypes are the PhaseSeg1 and PhaseSeg2 values.

Recall from Section 2.3.1.3 that these elements compensate for any edge error that

appears around the sample point. They are both assigned the value of three. Thus Rule 5

of Table 4 is satisfied, i.e. SJW ≤ PhaseSeg2 ≤ PhaseSeg1. PropSeg is the next value

passed to the function and it is used to compensate for any propagation delay. This is

assigned the value of one.

Figure 42: Assigned Parameter Values

As mentioned above the second parameter passed to both CANInitialize() and

CANSPIInitialize() is the BRP value. Recall that the BRP of a particular node is used to

ensure that it functions at an identical NBR to all other nodes connected to the network,

even if it does not use the same oscillator frequency. To reiterate, this CAN network is

configured to operate at 500kBits/s. Therefore from Eq. 2.2 in Section 2.3.1.3:

skBits
t

fNBR
bit

bit /500
1

===

s
skBits

tbit µ2
/500

1
==⇒

 76

Concurrently, from Eq. 2.3:

21Pr PSPSopSegSyncSegbit ttttt +++=

From the assigned values in CANInitialize() and CANSPIInitialize(): (Note tSyncSeg is

implicitly 1tq in duration.)

()
qqbit ttt 83311 =×+++=

s
st

t bit

q µ
µ

25.0
8

2

8
===⇒

Both CAN nodes incorporate 16MHz oscillators to derive their timing; thus from Eq. 2.5:

MHz

BRP
s

f

BRP
t

osc

q
16

2
25.0

2 ×
==

×
= µ

2
2

1625.0

2
=

×
=

×
=⇒

MHzsft
BRP

oscq µ

Thus a BRP value of two results in both nodes operating at a NBR of 500kBits/s when

using a 16MHz oscillator to derive their timing.

The last parameter in the CANInitialize() and CANSPIInitialize() prototypes contains a

list of constants that are bitwise ANDED together and relate to CAN module

configuration. They include factors, for example, that determine whether the logic level is

sampled once or three times during the NBT [62].

aa = CAN_CONFIG_SAMPLE_THRICE & // form value to be used

 CAN_CONFIG_PHSEG2_PRG_ON & // with CANInitialize()

 CAN_CONFIG_ALL_MSG &

 CAN_CONFIG_DBL_BUFFER_ON &

 CAN_CONFIG_LINE_FILTER_OFF;

 77

Once initialisation is complete a respective CAN controller is set to Normal Mode in

order to commence data transmission.

CANSetOperationMode(CAN_MODE_NORMAL,0); // Set NORMAL mode

CANSPISetOperationMode(CAN_MODE_NORMAL,0); // Set NORMAL mode

Recall that the previous section outlines that the 8-bit PIC microcontrollers used in this

system perform 10-bit A-D conversion. The right-justified return value of Adc_Read() is

stored in a 16-bit unsigned integer variable as discussed previously.

Figure 43: 16-bit Variable Contains Right-Justified 10-bit A-D Result

Section 2.3.2.1 outlined that the Data field of a CAN Data frame contains zero to eight

bytes of data. For that reason the 10-bit A-D conversion result from a particular channel,

contained in the 16-bit variable, is appropriately manipulated in order to insert it into two

8-bit CAN data bytes without the loss of any information. This involves segmenting the

16-bit variable into two bytes of data. Therefore two characters, i.e. two 8-bit data

variables are declared. One character, ls_chX_res, will store the lower eight bits of the

conversion result, while another character, ms_chX_res, will store the upper two bits of

the A-D conversion.

typedef unsigned char uchar;

…

uchar ms_chX_res = 0; // ADC Channel X MSB result variable

uchar ls_chX_res = 0; // ADC Channel X LSB result variable

The assigning of the value of the 16-bit data variable to ls_chX_res results in the eight

MSBs of the 16-bit integer being discarded and the eight LSBs of the integer being stored

in the character variable.

 78

ls_chX_res = chX_res; // Get bottom 8 bits of ADC Channel X conversion

Figure 44: Assignment of Lower 8-bits of A-D Conversion

In order to assign the two MSBs of the 10-bit A-D conversion to ms_chX_res the 16-bit

variable is manipulated using the bitshift-right operator, >>. The contents of chX_res are

shifted eight places to the right. The resulting value is now assigned to the most

significant character. Therefore the two MSBs of the A-D conversion are now the two

LSBs of the ms_chX_res.

ms_chX_res = chX_res >> 8; // Get top 2 bits of ADC Channel X conversion

Figure 45: Assignment of Upper 2-bits of A-D Conversion

Once the A-D conversion result of each channel is appropriately manipulated it is

inserted into CAN data byte registers - see Appendix B and C.

data[0] = ms_ch2_res; // 2 MSBs of Channel 2 conversion result

data[1] = ls_ch2_res; // 8 LSBs of Channel 2 conversion result

data[2] = ms_ch1_res; // 2 MSBs of Channel 1 conversion result

 79

data[3] = ls_ch1_res; // 8 LSBs of Channel 1 conversion result

…

…

data[6] = 22; // Arbitrary Number

data[7] = 33; // Arbitrary Number

Lastly, the construction of the CAN Data messages are completed and transmitted onto

the network using the CANWrite() and CANSPIWrite() functions.

id = 0x411; // Message ID (Decimal 1041)

len = 8; // Data Length Code

CANWrite(id,data,len,aa1); // Write CAN message

id = 0x189; // Message ID (Decimal 393)

len = 8; // Data Length Code

CANSPIWrite(id,data,len,aa1); // Write CAN message

The first parameter passed to both CANWrite() and CANSPIWrite() is the Identifier Field,

which assigns an ID to a particular message. The next item in the function prototype is

the address of the first data byte in the array of information (A-D conversion results plus

arbitrary numbers in this application) that is transmitted. This can be up to 8-bytes in

length. The third item passed is essentially the DLC discussed in Section 2.3.2.1 and is

used to indicate the number of bytes contained in the data field. The last quantity in the

prototype of CANWrite() and CANSPIWrite() incorporates a list of constants that are

bitwise ANDED together. They include factors such as message priority etc. and indicate

whether the frame is a standard Data frame or otherwise [62].

aa1 = CAN_TX_PRIORITY_0 & // form value to be used

 CAN_TX_STD_FRAME & // with CANWrite()

 CAN_TX_NO_RTR_FRAME;

 80

5.3 Testing of Constructed CAN Nodes

The hardware and software functionality of both CAN nodes was verified using the

CANKing GUI (Graphic User Interface) test package [63]. CANKing is an easy-to-use

development tool and essentially allows a computer/laptop to function as a CAN node for

test purposes. It achieves this by interfacing to Microchip’s MCP2515 development board

via a parallel-port connection [64]. For that reason the Port95NT parallel-port driver was

required [65].

Figure 46: CANKing allows a Computer/Laptop to Function as a CAN Node

The MCP2515 development board incorporates a MCP2515 CAN Controller and

MCP2551 CAN Transceiver [59], [60]. Thus, CANKing is able to transmit/receive

messages to/from a CAN network via the MCP2515 development board. The

development suite possesses the ability to display numerous factors like traffic and bus

loading statistics, a history of messages transmitted/received, time-stamp information and

data content for received/transmitted messages.

 81

In this particular case, the author was only concerned with verifying if the constructed

CAN On-Board and CAN SPI nodes transmitted the correct data. Therefore time-stamp

information along with message content was paramount. The two constructed CAN nodes

along with the MCP2515 development board were connected to the same network and

CANKing was used to monitor message activity.

Figure 47: Verification of Correct Functionality of Constructed CAN Nodes

From the diagram above it is seen that both CAN nodes operated as desired. The CAN

On-Board node, incorporating the PIC18F258, transmitted messages approximately

every 500 milliseconds with the correct Identifier Field – i.e. 1041. It’s Data Field

correctly contained the segmented A-D conversion results for both potentiometers

integrated into this particular node along with four arbitrary numbers. As both

potentiometers were varied the relevant bytes within the Data Field updated accurately.

Similarly, the CAN SPI node, incorporating the PIC16F876, sent messages over the

network every 250 milliseconds using the correct Identifier Field – i.e. 393. The node’s

Data Field correctly contained the segmented A-D conversion results for the three

 82

potentiometers integrated into this individual node along with two arbitrary numbers.

Again, the appropriate data bytes within the messages continuously transmitted from this

node updated as soon as the three potentiometers were varied. Thus, as both CAN nodes

operate as desired the potentiometers suitably mimic the operation of sensors and the

simulated vehicle measurements are transmitted correctly over the network.

5.4 CAN Implementation upon the Blackfin ADSP-

BF537

The CAN module of the Blackfin ADSP-BF537 is configured to interpret the transmitted

messages containing “sensor measurements” in order to take appropriate action to

graphically-display the data upon a display-device.

Figure 48: CAN Network Consisting of Blackfin & Constructed Nodes

The CAN module utilises Port J of the ADSP-BF537 device and interfaces with the

Philips TJA1041 CAN Transceiver [66] incorporated onto the ADSP-BF537 EZ Kit Lite

development board. To enable the CAN module on the ADSP-BF537 EZ Kit Lite all the

elements of Switch 2 must be turned on [67].

 83

In Section 4.2.3.1 it was outlined that the Blackfin ADSP-BF537 processor incorporates

thirty-two mailboxes (message buffers) within it’s CAN module. Eight of these buffers

are transmit only, another eight are receive only, while the remaining sixteen are

programmable in direction. Each of these mailboxes has associative 32 or 16-bit control

and data registers which are appropriately configured before a message buffer is enabled

for use [42].

The flowchart below illustrates the steps taken to configure a CAN mailbox.

Figure 49: Configuration of a Blackfin CAN Mailbox

 84

If not previously configured, the SCLK (Processor System Clock) of the Blackfin is

derived from the CCLK (Processor Core Clock) [42]. A frequency value that is suitable

to BRP derivation is typically chosen. Next, the ADSP-BF537 CAN module is enabled by

initialising Port J of the processor. The Blackfin employs an interrupt policy for it’s CAN

module, which is opposite to the polling strategy implemented upon the constructed CAN

nodes. As a result, the interrupt priority for the mailbox undergoing the initialisation

process is assigned.

Configuration Mode is entered to configure the CAN module’s internal registers. On

power-up or reset, the module automatically resides in Configuration Mode. However to

explicitly enter Configuration Mode a request is made by setting the CCR bit of the

CAN_CONTROL register to Logic 1. A designer must test to see if the module is now

residing in Configuration Mode by polling the CCA bit of the CAN_STATUS register

[42].

The SJW, PhaseSeg1 and PhaseSeg2 values of the CAN module are programmed by

appropriately configuring the CAN_TIMING register.

Figure 50: ADSP-BF537’s CAN_TIMING Register [42]

The BRP value of the Blackfin’s CAN module is defined using the CAN_CLOCK

register.

 85

Figure 51: ADSP-BF537’s CAN_CLOCK Register [42]

The equations governing bit timing and synchronisation for the Blackfin processor differ

slightly to the universal formulae outlined in previous chapters [42]. This is not unusual

as many manufacturers integrate certain timing parameters together resulting in minor

formulae variances for bit timing calculations. The Blackfin’s CAN module, for instance,

does not distinguish between PropSeg and PhaseSeg1 as defined by the Bosch standard

[2]. The PhaseSeg1 value is intended to cover both parameters. Thus the NBT, or tbit, of

the Blackfin’s CAN module is found using:

() ()()
qbit tPhaseSegPhaseSegt ×++++= 21111 Eq. 5.1

, where tbit is the bit period (Seconds),

 PhaseSeg1 is a programmed integer value (0 - 15),

 PhaseSeg2 is a programmed integer value (0 - 7),

tq is the time quantum (Seconds).

The time quantum, tq, and the BRP of the Blackfin’s CAN Module are related by the

following:

SCLK

BRP
tq

+
=

1
 Eq. 5.2

, where tq is the time quantum (Seconds),

 BRP is a user-configurable prescalar integer unit (0 - 1023),

 SCLK is the Processor System Clock (Hz).

 86

As discussed earlier this CAN network operates at 500kBits/s. Thus, a suitable BRP value

for the Blackfin CAN module is required. From Eq. 2.2 in Section 2.3.1.3:

skBits
t

fNBR
bit

bit /500
1

===

s
skBits

tbit µ2
/500

1
==⇒

For PhaseSeg1 and PhaseSeg2 values of five and three respectively Eq. 5.1 yields:

() ()()
qbit tPhaseSegPhaseSegt ×++++= 21111

() ()()
qts ×++++=⇒ 315112µ

s
s

tq µ
µ

182.0
11

2
==⇒

The SCLK frequency utilised is 120MHz; thus from Eq. 5.2:

SCLK

BRP
tq

+
=

1

() 1−×=⇒ SCLKtBRP q

() 211120182.0 ≈−×=⇒ MHzsBRP µ

Hence, for a SCLK frequency of 120MHz a BRP value of twenty-one results in the CAN

module operating at 500kBits/s.

The Identifier Field of a specific mailbox is configured using the appropriate

CAN_MB_XXID1 register. In addition, the RTR bit of this register indicates if a message

is Remote or Standard - see Section 2.3.2.1. If a mailbox is set up to transmit/receive

Extended Data Frames the remainder of the Identifier Field is defined using the apt

CAN_MB_XXID0 register.

 87

Figure 52: CAN_MBXX_ID1 & CAN_MBXX_ID0 Registers [42]

The DLC for an individual mailbox is programmed using the appropriate

CAN_MBXX_LENGTH register. To enable a particular mailbox to generate an interrupt

the corresponding bit in the CAN_MBIMX register is set to Logic 1 [42]. The direction of

a mailbox, i.e. transmit or receive for a bi-directional buffer, is configured by

programming a corresponding bit in the relevant CAN_MDX register. Logic 1 indicates

that the mailbox is configured for message reception; while on the other hand, Logic 0

indicates that the mailbox is configured for message transmission.

Each of Blackfin’s mailboxes include four 16-bit data byte registers –

CAN_MBXX_DATA[3..0]. These four registers are used to store the Data Field members

of a CAN message. Consequently two data bytes are stored in each of the four data

registers. Data contained within these registers are transmitted MSB first from the

CAN_MBXX_DATA3/2/1/0 registers, respectively, based on the value defined for the

DLC. For instance, if only one byte is transmitted or received, i.e. DLC = 1, then it is

stored in the most significant byte of the CAN_MBXX_DATA3 register [42].

 88

Figure 53: CAN Modules Data Field Registers [42]

5.5 Testing of Blackfin's CAN Module

Within this application the Blackfin is required to receive simulated vehicle data from the

constructed CAN nodes and interpret this information for further processing. Therefore a

test program was developed to configure the Blackfin’s CAN module for message

transmission and reception. Note that even though CAN transmission from the Blackfin is

not a prerequisite for this system it was developed in this test program to allow for future

expansion. The source code for this test program is found in Appendix D.

The test program essentially involved initialising three Blackfin mailboxes (message

buffers) appropriately. Correct message reception was verified by allocating an individual

mailbox for each of the two constructed CAN nodes. Mailbox 6 was configured to

receive messages with ID 393, while Mailbox 7 was programmed to receive messages

with ID 1041. When a specific mailbox received a pertinent CAN message from the

network it performed a particular ISR (Interrupt Service Routine). For instance, as soon

 89

as Mailbox 6 received a message with ID 393 an ISR copied the Data Field of this

message buffer to Mailbox 24 and issued a transmission request. As a consequence of this

message transmission was implicitly tested. The ISR performed when Mailbox 7 received

a relevant message involved turning on/off LEDs (Light Emitting Diode) incorporated

onto the ADSP-BF537 EZ Kit Lite development board.

Figure 54: Mailbox Configurations for Testing of Blackfin CAN Module

The flow chart below illustrates the operations of the test program.

Figure 55: Flowchart for Blackfin CAN Module Test Program

 90

The functionality of the CAN module was examined by configuring and connecting the

Blackfin to the network incorporating the two constructed CAN nodes. CANKing was

used to monitor bus activity to establish if all components functioned as desired.

Figure 56: Verification of Correct Functionality of Blackfin CAN Module

From the preceding diagram it is seen that the devised test code functioned as desired as

the Data Fields of the messages with IDs 7 and 393 are identical. This proves that

Mailbox 6 within the Blackfin’s CAN module correctly received messages from the

constructed CAN SPI node and copied the contents to Mailbox 24. Mailbox 24, in turn,

re-transmitted the data onto the network under an Identifier Field of 7. Additionally, the

remaining configured message buffer, Mailbox 7, correctly received messages (ID 1041)

from the constructed CAN On-Board node. This was proven by twisting the

potentiometers situated upon the CAN On-Board node resulting in the LEDs on the

ADSP-BF537 EZ Kit Lite turning on or off. Thus a mechanism has been developed for

correctly initialising the Blackfin for CAN communications and integrating the device

into an existing CAN network.

 91

5.6 Summary

This chapter outlined the main steps taken to physically implement the CAN network

used in this application. The key points for contemplation are as follows:

• Potentiometers are suitable for the purpose of mimicking the operation of

standard vehicle sensors. The potentiometers are interfaced with embedded

devices chosen from the cost-effective 8-bit PIC microcontroller family to

formulate CAN nodes.

• Adequate software routines are utilised to ensure that the full 10-bit resolution of

the A-D conversions upon the potentiometers are kept intact prior to message

transmission.

• The calculation of the correct BRP value for any CAN node is paramount to

ensure that all devices communicate at the same NBR.

• The Blackfin ADSP-BF537 contains thirty-two CAN message buffers which

require a certain degree of configuration prior to use.

• The two constructed CAN nodes communicated as desired with the Blackfin’s

CAN module. This was verified using the CANKing tool suite.

 92

Chapter 6 - Video Implementation

6.1 Introduction

This chapter discusses the measures taken to implement a video display using the

Blackfin ADSP-BF537 EZ Kit Lite and A/V development boards. The information given

in this chapter is separated into the following main sectors:

• A discussion of the device drivers and system services incorporated into the

VisualDSP++ compiler, and how are they are utilised within this synthesis.

• A detailed description of the software test strategy employed to realise video

processing.

• A brief outline of the hardware configuration required to achieve successful video

processing using the Blackfin ADSP-BF537 EZ Kit Lite and A/V development

boards.

 93

6.2 Video Implementation Strategy

As a methodology for CAN implementation has been established the next step is to

realise video signalling using the Blackfin ADSP-BF537 EZ Kit Lite and its compatible

A/V daughter board. This is essential in order to visually represent the data received from

the CAN network; thus a suitable process for video functionality is required. However,

instead of endeavouring to develop video software that works in tandem with the CAN

source code a modular approach is taken. This essentially means firstly developing a

suitable standalone software strategy for video.

6.2.1 Video Software Strategy

Before delving into the software algorithms employed to implement video it is important

to point out that Analog Devices’ VisualDSP++ compiler contains numerous utilities,

such as device drivers and system services, which aid in developments incorporating their

ICs [68], [69].

6.2.1.1 Device Drivers & System Services

Device drivers are essentially standardised API2 (Application Program Interface) for

Blackfin processors that allow for interaction with internal modules and hardware

peripherals e.g. PPI and video encoders respectively.

2 An API forms part of a software interface that a compiler or library provides in order to support requests
for services to be made of it by an application program.

 94

Figure 57: Examples of Supported Blackfin Device Drivers

The utilisation of device drivers results in modular programming and portability between

Blackfin processors. Memory is required by device drivers in order to manage

components and this is supplied at the initialisation stage of a software application. All

device drivers use “handles”. A handle is quite literally a method for getting a handle on

a device; therefore it is fundamentally an address that points to device specific data. For

example the following source code declares a handle for an ADV7179 video encoder

device driver.

ADI_DEV_DEVICE_HANDLE AD7179DriverHandle; // Handle to the ADV7179 Driver

All VisualDSP++ device drivers encompass return codes which indicate the success or

failure resulting from the use of a device driver; a zero denotes success, while a non-zero

value signifies an error.

The following diagram illustrates the four major functions utilised with device drivers.

The purpose of each of the four functions is self explanatory from the diagram. However

the term “buffer” needs to be expanded upon. Buffers, with reference to VisualDSP++

utilities, describe the data for a device driver to process and are provided by the

application software exploiting a particular device driver. The application software

essentially populates the various fields of the buffer to completely describe the data to the

device driver. In other words data is shifted to/from device drivers using buffers [68].

 95

Figure 58: Standard Device Driver Functions

An input buffer is employed to receive data from a device; while conversely, an output

buffer contains data that is sent out to a particular device. The two main buffer categories

are 1D and 2D. A 1D buffer is comprised from a linear array of data that a device driver

processes. On the other hand, a 2D buffer is essentially a two-dimensional array (rows

and columns) of data that a device driver manages. 2D buffers are used in this application

as they are more efficient in terms of video processing than a 1D buffer. A 2D buffer is

comprised of the following fields [18], [69]:

• pData: A pointer to relevant data which can exist anywhere in memory.

• ElementWidth: Width of each element in terms of bytes to be read in or sent out.

• XCount: Specifies the number of column elements.

• XModify: Indicates the number of bytes to increment the address pointer after

each column transfer.

• YCount: Specifies the number of row elements.

• YModify: Indicates the number of bytes to increment the address pointer after each

row transfer.

• CallBackParameter: Null or non-null value. The idea of Callback is explained

shortly.

• pNext: Pointer to the next 2D buffer in the chain. The concept of chaining is

expanded upon shortly. This parameter is assigned null if the buffer is the

last/only buffer in a chain.

 96

The concept of Callback with reference to 2D buffers involves invoking a regular C

function in response to an asynchronous event such as an interrupt. The VisualDSP++

compiler incorporates two categories of Callback [69]:

1. Live Callback

2. Deferred Callback

For Live Callbacks, a C service routine is invoked as soon as an asynchronous event

occurs. Conversely, for Deferred Callbacks a C function is not summoned until a short

time after an asynchronous event occurs. Thus, Live Callbacks typically occur at

hardware interrupt time (higher priority interrupt level); whereas Deferred Callbacks

execute at software interrupt time (lower priority interrupt level). As a consequence, the

use of Live Callbacks can have a detrimental effect on performance as associated

interrupt latencies are high. Therefore Deferred Callbacks are used in the vast majority of

applications as they possess lower interrupt latencies.

With reference to the CallBackParameter field of a 2D buffer, if a value of null is

assigned Live Callbacks are utilised. In addition, a device driver does not “call back” an

application after a buffer has been processed. If the CallBackParameter field is allotted a

non-null value, Deferred Callbacks are employed invoking an application’s Callback

function after a buffer has been processed by a particular device driver.

The pNext parameter of a 2D buffer can be used to link numerous buffers together in a

chain-like manner. Typically, with video applications a Chained Loopback dataflow

method is used to mutually tie several buffers together [68]. This fundamentally means

that the last element of one particular buffer points to the first data member of a different

buffer. Therefore buffers are essentially queued one-by-one to a device driver ensuring

that the component, e.g. a video encoder IC, is never starved of data. This is obviously

critical in video applications.

 97

Figure 59: Chained Loopback Dataflow Methodology

System services are in essence pre-built software libraries that simplify software

development and provide efficient access into components such as DMA and dynamic

power modules etc [68].

Figure 60: Examples of System Services Supported

They are used in conjunction with device drivers in order to control and interact with

internal modules and external peripherals. Device drivers manage their own system

services as required. To utilise device drivers and system services software algorithms

must include the appropriate header files in the following order.

 #include <services/services.h> // System Services Header File

 #include <drivers/adi_dev.h> // Device Manager Header File

 #include <drivers/X.h> // Device Driver X’s Header File

System services are initialised prior to the configuration of device drivers. The

adi_dev_Init() function is used to initialise a device driver. VisualDSP++’s device

drivers are built on top of its system services [68], [69].

 98

Figure 61: Layered Utilities Structure

A typical programming sequence for the utilisation of device drivers and system services

is seen below.

Figure 62: Typical Device Driver Programming Sequence

 99

The device drivers for the ADV7179 video encoder IC [70] and DMA module are

employed in this system to implement video processing. The methodology used to realise

this is discussed in the next section. Before discussing this however, it must be pointed

out that the final implementation of the video encoder device driver module was only

being developed by Analog Devices at the same time as the author was trying to utilise

this particular device driver within this test algorithm. As a result, contact was made with

Analog Device’s support-team on numerous occasions to try and eradicate teething

problems. However, this was sometimes in vein as the support team were only at the

same development stage as the author. Consequently the author was engaged in many

debug sessions in order to successfully implement the test algorithm.

6.2.1.2 Software Testing of Video Implementation

The strategy for testing the correct implementation of video processing upon the Blackfin

ADSP-BF537 EZ Kit Lite and its A/V daughter board involved alternating the colour

displayed upon a television monitor. This included creating two ITU-R BT.656 buffers in

SDRAM. Two 2D buffers chains were declared to ensure that the ADV7179 IC was

never starved of data. Once all of the device drivers, handles etc. were declared the two

ITU-R BT.656 4:2:2 frames were initialised with different colours. The ADV7179 device

driver handle was then enabled and fed the data contained within the two buffers via a

DMA transfer. The correct operation of the test algorithm was verified by monitoring a

television screen to see if the desired colours were displayed. The flow chart below

illustrates the processes undertaken to achieve successful operation. The source code for

this test algorithm is found in Appendix E.

 100

Figure 63: Flowchart for Video Processing Test Program

Numerous colours were declared in YCbCr format. The period of time for which an

individual colour was displayed was dependant upon the value of the NUM_BUFFERS

constant. As seen below, for a value of 30 assigned to NUM_BUFFERS a colour change

rate of one second was achieved.

#define NUM_BUFFERS (30) // Colour Change Rate = (NUM_BUFFERS/30)/second

// Colour Patterns

static u8 black[] = {0x80,0x10,0x80,0x10}; // Black pixel YCbCr format

 101

static u8 blue[] = {0xF0,0x29,0x6E,0x29}; // Blue pixel YCbCr format

static u8 red[] = {0x5A,0x51,0xF0,0x51}; // Red pixel YCbCr format

static u8 magenta[] = {0xCA,0x6A,0xDE,0x6A}; // Magenta pixel YCbCr format

static u8 green[] = {0x36,0x91,0x22,0x91}; // Green pixel YCbCr format

static u8 cyan[] = {0xA6,0xAA,0x10,0xAA}; // Cyan pixel YCbCr format

static u8 yellow[] = {0x10,0xD2,0x92,0xD2}; // Yellow pixel YCbCr format

static u8 white[] = {0x80,0xEB,0x80,0xEB}; // White pixel YCbCr format

Two buffer frames were declared, PingFrame and PongFrame, both of which were

configured to hold the contents of an ITU-R BT.656 frame. In this particular case the two

arrays were initialised to hold a NTSC video frame. NTSC was chosen solely for test

purposes; the choice of PAL or NTSC in this case is irrelevant.

// Create two areas in SDRAM that will each hold a 656 frame

static u8 PingFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT];

static u8 PongFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT];

Two 2D buffer chains, one for PingFrame and one for PongFrame, were declared in

order to create a chaining method for the data fed to the ADV7179 device driver. Both

buffer chains consisted of a number of elements determined by the NUM_BUFFERS

constant.

ADI_DEV_2D_BUFFER PingBuffer[NUM_BUFFERS]; // Create Two Buffer Chains

ADI_DEV_2D_BUFFER PongBuffer[NUM_BUFFERS];

Several device drivers were used in this test algorithm. The DMA device driver was

incorporated to facilitate efficient data transfers between SDRAM and the PPI port. The

DCB (Deferred Callback) device driver was utilised as Deferred Callbacks were used to

improve performance as outlined in Section 6.2.1.1.

// DMA Manager data (base memory + memory for 1 DMA channel)

static u8 DMAMgrData[ADI_DMA_BASE_MEMORY + (ADI_DMA_CHANNEL_MEMORY *

1)];

// Deferred Callback Manager data (memory for 1 service + 4 posted callbacks)

 102

static u8 DCBMgrData[ADI_DCB_QUEUE_SIZE + (ADI_DCB_ENTRY_SIZE)*4];

The ADV7179 device driver was also employed within this system. It was used to control

the ADV7179 video encoder IC in order to transform a digital ITU-R BT.656 video

stream into an analogue television signal. Recall from Section 6.2.1.1 that memory is

required by device drivers in order to manage components and that this memory is

supplied at the initialisation stage of a program. During initial development of this test

program an error involving the use of the ADV7179 device driver module was

encountered.

// Device Manager Driver

static u8 DevMgrData[ADI_DEV_BASE_MEMORY + (ADI_DEV_DEVICE_MEMORY * 1)];

After consultation with Analog Device’s support team and a review of [71] it was found

that the ADV7179 IC, situated on the A/V daughter board, is connected to the Blackfin

ADSP-BF537 EZ Kit Lite using two peripherals. Firstly, the PPI port is used for

transferring video data to the encoder; while the SPI is used to control the ADV7179 IC.

Thus the ADV7179 device driver automatically and transparently opens and controls the

underlying PPI driver to move data through the encoder. It also opens and controls the

underlying SPI driver to configure the ADV7179. This can be thought of as a stacked

approach where the application talks exclusively to the ADV7179 device driver while the

ADV7179 driver talks to the underlying PPI and SPI drivers as necessary.

 103

Figure 64: Stacked Approach of Device Drivers

Subsequently, to overcome the encountered error, memory for three device drivers had to

be allocated for a single call to the ADV7179 device driver as it implicitly incorporates

the PPI and SPI device drivers.

// Device Manager data (base memory + memory for 3 devices)

// Memory for 3 devices is required because usage of a 7179 device results in the usage of the PPI

// and SPI devices.

static u8 DevMgrData[ADI_DEV_BASE_MEMORY + (ADI_DEV_DEVICE_MEMORY * 3)];

Handles for the utilised device drivers were declared.

ADI_DEV_DEVICE_HANDLE AD7179DriverHandle; // Handle to the ADV7179 Driver

ADI_DCB_HANDLE DCBManagerHandle; // Handle to the Callback Service Manager

ADI_DMA_MANAGER_HANDLE DMAManagerHandle; // Handle to the DMA Manager

ADI_DEV_MANAGER_HANDLE DeviceManagerHandle; // Handle to the Device Manager

The Callback function in this application was invoked as soon as the PPI completed the

processing of the last component in the buffer chains. Within the Callback function the

pNext value of the last elements of both buffer chains was assigned the address of the first

element within each individual chain in order to prevent starvation of data to the video

encoder IC.

 104

In order to initialise the DCB manager with sufficient memory for the required number of

Deferred Callback queues the adi_dcb_Init() and adi_dcb_Open() functions were used.

The DMA and ADV7179 device drivers were initialised using the adi_dma_Init() and

adi_dev_Init() functions – see Appendix E.

The two frames, PingFrame and PongFrame, were configured to hold a progressive scan

ITU-R BT.656 4:2:2 NTSC frame. This was achieved using a pre-written system services

function, adi_itu656_FrameFormat(), which initialises a frame with the necessary SAV,

EAV, preambles etc. required for an ITU-R BT.656 video stream – see Appendix E.

adi_itu656_FrameFormat (PingFrame,ADI_ITU656_NTSC_PR);

adi_itu656_FrameFormat (PongFrame,ADI_ITU656_NTSC_PR);

Once the frames were initialised their ITU-R BT.656 chrominance fields were filled with

a particular colour; in this case white and blue respectively. Again, this was achieved

using a pre-written system services function, adi_itu656_FrameFill() – see Appendix E.

adi_itu656_FrameFill (PingFrame,ADI_ITU656_NTSC_PR,white);

adi_itu656_FrameFill (PongFrame,ADI_ITU656_NTSC_PR,blue);

After resetting the ADV7179 IC through software and initialising the AV7179 device

driver, the application opened the video encoder IC for use using the adi_dev_Open()

function. This function also prescribed the inclusion of DMA transfer between SDRAM

and the ADV7179 as the DMA handle was passed as the seventh parameter.

// Open the AD7179 Driver for Output

ezErrorCheck(adi_dev_Open(DeviceManagerHandle, // Handle controlling the Device

 &ADIADV7179EntryPoint, // Address of Entry Point

 ENCODER_PPI, // Number identifying which Device is Opened

 NULL, // No Client Handle

 &AD7179DriverHandle, // Handle Address

 ADI_DEV_DIRECTION_OUTBOUND, // Data Direction

 DMAManagerHandle, // Handle to DMA Manager

 105

 DCBManagerHandle, // Handle to Callback Manager

 Callback)); // Callback

However, problems were encountered using this function. The Blackfin ADSP-BF537

processor contains a single PPI port. The third parameter passed to adi_dev_Open()

contains a number that identifies which device is to be opened. Initially ENCODER_PPI

was assigned a value of one to indicate the PPI device number. This resulted in nothing

being displayed upon the television monitor when the program was tested. After

reviewing [71] it was found that devices exploiting VisualDSP++ utilities are numbered

with a zero base; e.g. if there are four PPI ports the first is assigned zero for identification

purposes, the second is assigned one etc. Subsequently to solve the encountered error

ENCODER_PPI was assigned a value of zero.

The adi_dev_Control() function was used to configure the ADV7179 device driver for

data flow and open the PPI port for data transfer.

// Set PPI Device Number

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device

 // Command Identifier

ADI_ADV717x_CMD_SET_PPI_DEVICE_NUMBER,

 (void*)0)); // PPI Device Number

// Open PPI Device

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device

 ADI_ADV717x_CMD_SET_PPI_STATUS, // Command Identifier

 // Address of Command Specific Parameter

(void*)ADI_ADV717x_PPI_OPEN));

The two buffer chains were linked to PingFrame and PongFrame respectively in order to

form a loopback mechanism to ensure that data was constantly being fed from SDRAM

to the ADV7179 video encoder. Recall that each buffer chain contained NUM_BUFFERS

elements. As illustrated in the following diagram all of the elements within both chains,

PingBuffer and PongBuffer, pointed to PingFrame and PongFrame respectively.

 106

Figure 65: Elements of Buffer Chains pointing to ITU-R BT.656 Frames

This was accomplished in software by appropriately configuring the fields of all elements

of both 2D buffers; the configuration for PingBuffer is seen below.

for (i = 0; i < NUM_BUFFERS; i++) // Populate the PingBuffer

{

 PingBuffer[i].Data = PingFrame; // Point to PingFrame Data

 PingBuffer[i].ElementWidth = 2;

 PingBuffer[i].XCount = (ADI_ITU656_NTSC_LINE_WIDTH/2);

 PingBuffer[i].XModify = 2;

 PingBuffer[i].YCount = ADI_ITU656_NTSC_HEIGHT;

 PingBuffer[i].YModify = 2;

 PingBuffer[i].CallbackParameter = NULL;

 PingBuffer[i].pNext = &PingBuffer[i + 1];

}

// Callback on last buffer in chain, consequently point to first buffer in chain.

PingBuffer[NUM_BUFFERS - 1].CallbackParameter = &PingBuffer[0];

 107

PingBuffer[NUM_BUFFERS - 1].pNext = NULL;

As mentioned earlier, as soon as the processing of the last buffer in the chain was

terminated a Callback was issued in order to re-queue the data; i.e. the last buffer in the

chain points back to the first buffer element. Again, this mechanism was utilised to

ensure that a video stream was constantly being fed to the ADV7179.

The adi_dev_Control() function was again incorporated to configure the ADV7179

device driver for outbound loopback data flow.

// Configure the AD7179 Dataflow Method

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device

ADI_DEV_CMD_SET_DATAFLOW_METHOD, // Command Parameter

(void *)ADI_DEV_MODE_CHAINED_LOOPBACK)); // Outbound Loopback

The next step involved actually pointing the ADV7179 device driver towards the buffer

chains and turning on the data flow to allow transmission of an ITU-R BT.656 4:2:2

video stream to the ADV7179 video encoder IC.

// Give the device the Ping and Pong buffer chains

ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device

ADI_DEV_2D, // 2D Buffer

(ADI_DEV_BUFFER *)&PingBuffer)); // Point to PingBuffer

ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device

ADI_DEV_2D, // 2D Buffer

(ADI_DEV_BUFFER *)&PongBuffer)); // Point to PongBuffer

// Enable data flow

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device

ADI_DEV_CMD_SET_DATAFLOW, // Command Parameter

(void *)TRUE)); // Turn on Dataflow

 108

The reader may have noticed that most function calls discussed so far incorporated a call

to ezErrorCheck(). This was used as a debug aid as all calls to VisualDSP++ system

services functions return a value indicating the success/failure of a particular invoked

algorithm. If a specific function call returned unsuccessfully ezErrorCheck() illuminated

LEDs located on the Blackfin ADSP-BF537 EZ Kit Lite development board to indicate a

fault. Otherwise ezErrorCheck() took no action.

After eradicating all software debugs it was found that the program did not function as

desired; i.e. a television screen did not display alternate colours when connected to the

A/V daughter board. After reviewing [71] once more it was found that the problem

resided in the project options of VisualDSP++. As this test algorithm incorporated

SDRAM the pre-processor macro definition USE_SDRAM needed to be included in the

project options in order to enable the use of SDRAM upon the EZ Kit development board.

Figure 66: Required Pre-Processor Macro Definition

 109

Once this problem was eliminated, the test algorithm operated as desired; i.e. a television

screen connected to the A/V board continuously displayed alternate screens of white and

blue. This therefore proved that the ITU-R BT.656 video stream was being correctly

initialised within SDRAM and transferred successfully, via DMA, to the ADV7179 video

encoder IC. The encoder itself correctly converted the digital video stream into a standard

analogue television signal. Thus a formula for video processing utilising the Blackfin

ADSP-BF537 EZ Kit Lite and A/V development boards has been determined.

6.2.2 Video Hardware Strategy

The main focus so far has been on the software strategy implemented to realise video

processing. However a certain degree of hardware configuration strategy, albeit relatively

small, also took place involving signal routing on the ADSP-BF537 EZ Kit Lite and A/V

development boards. This was conducted by modifying jumper settings upon the A/V

daughter board. The correct hardware settings in conjunction with an accurate software

strategy led to the successful operation of this test program.

The following table illustrates the jumper settings instigated on the A/V daughter board.

Note that the table only contains details of jumper settings that were relative to this

particular video processing implementation. An individual jumper contains a number of

pins; so for example the description JP3.5/7 refers to the connection of pins 5 and 7 of

Jumper 3 [72].

 110

Jumper Number Pin Connections Outcome

JP3.5/7
JP3

JP3.6/8

ADSP-BF537’s TWI Interface is utilised to

potentially reconfigure the ADV7179 IC

JP4.1/2
JP4

JP4.3/4

Connects 27MHz A/V On-board Clock to

Video Encoder

JP5 JP5.3/4 Enables PPI0 to drive ADV7179 IC

JP8.1/3

JP8.2/4

Selects PPI0 as the source for the frame

synchronisation signals for ADV7179 IC JP8

JP8.7/8 Enables output data synchronisation signal

JP9 JP9.1/3 Video Encoder Reset with Flag Pin

Table 16: A/V Daughter Board Jumper Settings

Jumper 3 is the TWI
3 (Two Wire Interface) source selection jumper [42], [72]. It is used

to select between a software emulated and actual TWI interface. The ADV7179 IC is

reconfigurable using a TWI interface. Consequently this jumper is required as some

Blackfin processors do not contain a TWI interface; therefore they need to emulate the

interface in software. On the other hand, the ADSP-BF537 does contain a TWI interface;

subsequently JP3.5/7 and JP3.6/8 were installed.

The ADV7179 video encoder requires some sort of clocking mechanism. The A/V

daughter board contains an on-board 27MHz oscillator. JP4.1/2 and JP4.3/4 were used to

route the 27MHz clock signal to the ADV7179. Jumper 5 dictates where the video

encoder incorporated onto the A/V daughter board sources its video data from. As the

ADSP-BF537 contains a single PPI port, namely PPI0, JP5.3/4 was used to route the

ADSP-BF537’s PPI data to the ADV7179 [72].

3 TWI is a communications protocol used in small industrial networks. Its operation is similar to I2

C.

 111

JP8.1/3 and JP8.2/4 were used to select the ADSP-BF537’s PPI port as the source for

synchronisation signals feeding the video encoder. JP8.7/8 was inserted to enable the

output video synchronisation signals from the ADV7179 IC. Jumper 9 is partly used to

select between the resources utilised to reset the ICs incorporated onto the A/V board. In

this particular test algorithm a software reset was utilised therefore JP9.1/3 was inserted.

Again to reiterate, the correct hardware settings outlined in conjunction with the

described software strategy led to the successful operation of this test program.

6.3 Summary

This chapter described the test strategy employed for video processing utilising the

Blackfin ADSP-BF537 EZ Kit Lite and A/V development boards. The core issues to note

are as follows:

• VisualDSP++’s device drivers and system services are powerful resources which

aid in this video synthesis.

• A test algorithm involving the display of analogue video signals, derived from an

ITU-R BT.656 video stream in SDRAM, upon a television monitor has been

developed.

• Numerous software and hardware modifications were made to the initial testing

strategy resulting in a successful outcome; i.e. alternate colours were continuously

displayed on a television monitor.

 112

Chapter 7 - Application Synthesis

7.1 Introduction

This chapter details the efforts involved in the implementation of this application’s

synthesis by combining the developed CAN and video mechanisms. The information

given in this chapter is separated into numerous sections as outlined below:

• An explanation of the initial strategy undertaken to develop the application’s

synthesis.

• A description of the problems encountered with the initial synthesis strategy and

the debug session embarked on to identify the cause of the occurring errors and

their eradication with fitting solutions.

• An outline of the final strategy utilised and the test procedure incorporated to

assess its correct functionality.

• A depiction of future developments which could be made to further improve the

system’s performance.

 113

7.2 Displaying Simulated Vehicle Data

Over the last two chapters suitable procedures have been established for CAN networking

and video processing. As a result, the next step is to combine the two independent

strategies to endeavour to formulate the synthesis of this application. This essentially

involves utilising the CAN strategy to receive simulated vehicle data from the network

and pass this information over to the video processing module in order to visually

represent the data appropriately on a television monitor.

The general hypothesis behind the amalgamation of the two devised procedures is to

exploit the contents of received CAN messages to manipulate global variables in

software, resulting in the modulation of a monitor’s display. This is carried out repeatedly

in software resulting in a television screen being constantly updated with live vehicle

information.

7.2.1 Initial Strategy

Originally the CAN and video processing strategies were merged together with the

initialisation sequence for various parameters as illustrated in the following diagram. The

functions that were utilised in this particular implementation can be found (not in the

same order as the subsequent diagram) in Appendix F.

At first, it was decided to use only CAN messages received with ID 1041 to modulate a

monitor’s display. Thus, recalling from Section 5.5, only messages received into

Blackfin’s Mailbox 7 were employed to vary a television screen’s display. This approach

was taken in order to develop the application’s synthesis in steps; i.e. implement screen

modulation using one particular CAN message and then develop on from this. Message

ID 1041 was chosen to represent vehicle speed and, at the outset, it was decided to

signify this quantity by varying the colour displayed on the screen. A CAN network of

500kBits/s was again implemented as it satisfactorily transferred simulated vehicle data

at an appropriate rate.

 114

Figure 67: Flowchart of Original Initialisation Strategy

To utilise the information received into Mailbox 7 an ISR, CAN_RCV_HANDLER, was

developed which varied the value of a global variable, clr_screen, depending upon the

contents of the mailbox’s CAN_MB7_DATA3 register. Once all initialisation was

complete, this ISR was invoked as soon as a CAN message was received by the Blackfin.

The value of the clr_screen global variable was used within the main() function to

attempt to vary the colour displayed upon the monitor. As seen below, within this initial

implementation a value of clr_screen equal to two depicted red; while a value of one

represented blue. Note that the developed ISR included code to process a message

 115

received into Mailbox 6. However, this was only incorporated to allow for future

expansion because as stated earlier, an approach was taken to develop the application’s

synthesis in steps.

Figure 68: Received CAN Message Interrupt Service Routine

if(bit_pos = = 0x8) //if Mailbox7 IRQ // ISR for Mailbox 7

{

 if((*(pCAN_MB_DATA3(7)) = = 0) || (*(pCAN_MB_DATA3(7)) <= 512))

 {

 clr_screen = 2; // Display RED

 }

 …

 if(*(pCAN_MB_DATA3(7)) >= 513)

 {

 clr_screen = 1; // Display BLUE

 }

}

Within the main() function the clr_screen variable was evaluated using a switch-case C

statement and the appropriate colour was written to PingFrame and PongFrame in ITU-R

 116

BT.656 NTSC format. Note NTSC was chosen for use at this stage as it is default format

for the ADV7179 IC; configuring the device for PAL usage requires developing software

algorithms outside of the application’s scope.

switch(clr_screen) // Determine which colour is displayed on the screen

{

 case(0): // Display WHITE

 adi_itu656_FrameFill (PingFrame, ADI_ITU656_NTSC_PR, white);

 adi_itu656_FrameFill (PongFrame, ADI_ITU656_NTSC_PR, white);

 break;

 case(1): // Display BLUE

 adi_itu656_FrameFill (PingFrame, ADI_ITU656_NTSC_PR, blue);

 adi_itu656_FrameFill (PongFrame, ADI_ITU656_NTSC_PR, blue);

 break;

 …

 …

 case(6): // Display YELLOW

 adi_itu656_FrameFill (PingFrame, ADI_ITU656_NTSC_PR, yellow);

 adi_itu656_FrameFill (PongFrame, ADI_ITU656_NTSC_PR, yellow);

 break;

 default: //Display BLACK

 adi_itu656_FrameFill (PingFrame, ADI_ITU656_NTSC_PR, black);

 adi_itu656_FrameFill (PongFrame, ADI_ITU656_NTSC_PR, black);

 break;

}

After writing the ITU-R BT.656 4:2:2 data, two buffer chains were linked to the frames to

form a loopback mechanism as discussed in the last chapter. Once this was completed the

buffer chains were passed to the ADV7179 handle with the aim of displaying the

information on a monitor. This entire procedure was carried out continuously in software

by placing it within a while(1) loop.

 117

7.2.1.1 Problems Encountered

When the developed application was tested it did not function as desired. The default

colour, black, was continuously displayed upon a connected television monitor regardless

of the value contained within the CAN_MB7_DATA3 register of Mailbox 7.

Consequently, a debug session was undertaken in an attempt to establish the likely cause

of the error. After stepping through the source code it was found that the

CAN_RCV_HANDLER ISR was not being correctly registered with the Blackfin’s CEC

(Core Event Controller) and SIC (System Interrupt Controllers) modules. These two

modules are responsible for assigning priority levels and mapping ISRs. To program a

particular ISR with a specific IVG (Interrupt Vector Group), i.e. priority level, the

necessary bits in the appropriate SIC_IARx register must be configured accordingly. IVG

levels range from 0 to 15; lower numbers possess higher priority while higher numbers

bear lowest priority. IVG levels 7 to 15 are considered general purpose software or

peripheral level interrupts. All other priority levels are reserved for supervisory ISRs; e.g.

hardware errors [42].

The CAN_RCV_HANDLER was initially allocated an IVG level of eleven by assigning a

value of 0x4 to bits 31 to 29 of SIC_IAR1. After configuring the priority of an individual

ISR within the Blackfin it has to be registered with the CEC module. The VisualDSP++

compiler incorporates two ways to accomplish this. Firstly, the utilisation of device

drivers and system services can be used to automatically register an ISR. On the other

hand an ISR can be manually registered using the register_handler() function. The

register_handler() function was used to log the CAN_RCV_HANDLER with the CEC.

register_handler(ik_ivg9, CAN_RCV_HANDLER); // Register ISR with CEC

Conversely speaking, the devised video processing strategy incorporated device drivers

and system services to register ISRs utilised within the DMA transfers. In the

initialisation sequence illustrated in Figure 67 the CAN_RCV_HANDLER was registered

with the CEC and SIC prior to the logging of the ISRs utilised by the video processing

strategy. The cause of the occurring problem was that the registering of the video

 118

processing ISRs overwrote the logging of the CAN_RCV_HANDLER ISR. Therefore, as

far as the Blackfin was concerned, the CAN_RCV_HANDLER was no longer registered as

an ISR. As a result of this, when this program was tested the ISR for Mailbox 7 was never

invoked; thus the global variable clr_screen remained at its default value of zero. This is

why black was being continuously displayed on the connected television monitor.

Figure 69: Revised Initialisation Strategy

 119

A solution to this problem was realised by subtly amending the initialisation strategy as

seen in the preceding diagram. This initialisation sequence was almost identical to its

predecessor with the exception that the assigning of interrupt priority for

CAN_RCV_HANDLER did not take place until just before the enabling of dataflow. This

essentially meant that the registering of the CAN_RCV_HANDLER ISR was appended

onto the registering of the video processing ISRs using the register_handler() function.

This initialisation strategy was employed within the final synthesis – see Appendix F.

When the revised application was tested it still did not operate as anticipated. The

simulated vehicle speed data contained inside Mailbox 7 did depict what was displayed

upon the monitor. However, the screen’s display did not update when the potentiometer

used to mimic the operation of a sensor measuring speed was varied. Instead, the first

CAN message received into Mailbox 7 dictated what colour was statically displayed on

the monitor. For instance, if the first CAN message received into Mailbox 7 resulted in

CAN_MB7_DATA3 containing a value less than 513 the colour red was continuously

displayed regardless of any further deviations in received data into this specific message

buffer.

7.2.2 Final Strategy

A review was carried out to eradicate the reoccurring problem and establish how to

exploit the received CAN data to continuously refresh the connected monitor’s display

with new information. It was found that once any device controlled through

VisualDSP++ utilities is opened the dataflow method for the specific device, particularly

the DMA, must only be set once [68], [71]. This therefore was the fault in the initial

synthesis strategy; the dataflow method for the ADV7179 device driver was configured

during the initialisation stage and again inside the while(1) loop, thus violating standard

procedure. Consequently, it can be seen that the employment of a while(1) loop to

continuously update the connected television’s display would not suffice as the dataflow

method can only be configured once.

 120

An alternative methodology was found through the exploitation of the Callback function.

Recall that this function was invoked as soon as the PPI (via the ADV7179 device driver)

completed the processing of the last component in the buffers chains. The Callback

function was used to write the appropriate ITU-R BT.656 chrominance information,

representing vehicle speed, to the data buffers based on the value of the global variable

clr_screen. In other words, the switch-case C statement outlined earlier was modified and

incorporated into the Callback function:

switch(clr_screen) // Update data buffer with new colour

{

 case 0: // Fill frame with BLACK colour

 adi_itu656_FrameFill (pBuffer->Data,Frame,black);

 break;

 case 1: // Fill frame with BLUE colour

 adi_itu656_FrameFill (pBuffer->Data,Frame,blue);

 break;

 ...

 ...

 case 6: // Fill frame with YELLOW colour

 adi_itu656_FrameFill (pBuffer->Data,Frame,yellow);

 break;

 default: // Fill frame with WHITE colour

 adi_itu656_FrameFill (pBuffer->Data,Frame,white);

 break;

}

break;

Therefore, upon completion of processing of the last component in both buffer chains

fresh data was given to the ADV7179 IC for conversion to a standard analogue video

signal for display on the monitor – see Appendix F.

 121

This exploitation of the Callback function meant that an interrupt policy, in opposition to

a polling strategy embedded within a while(1) loop, was employed for continuously

refreshing the ADV7179 video encoder with new data. This implicitly made more

efficient use of both hardware and software resources. The interrupt policy involved

initialising all of the incorporated VisualDSP++ utilities and configuring the relevant

components for dataflow etc. Once all of this was completed the system simply waited

for suitable data to arrive for video processing via the CAN network, thus invoking

CAN_RCV_HANDLER.

The value of clr_screen was again determined within the CAN_RCV_HANDLER ISR by

evaluating the value contained within the CAN_MB7_DATA3 register of Mailbox 7:

if(bit_pos = = 0x8) // if Mailbox7 IRQ

{

 if((*(pCAN_MB_DATA3(7)) >= 128) && (*(pCAN_MB_DATA3(7)) <= 255))

 {

 clr_screen = 1; // Display BLUE

 }

 if((*(pCAN_MB_DATA3(7)) >= 256) && (*(pCAN_MB_DATA3(7)) <= 383))

 {

 clr_screen = 2; // Display RED

 }

 ...

 ...

 if((*(pCAN_MB_DATA3(7)) >= 768) && (*(pCAN_MB_DATA3(7)) <= 895))

 {

 clr_screen = 6; // Display YELLOW

 }

 if(*(pCAN_MB_DATA3(7)) >= 896)

 {

 clr_screen = 7; // Display WHITE

 }

} // end if Mailbox 7

 122

7.2.2.1 Testing of Final Strategy

The devised application methodology was tested by connecting the Blackfin ADSP-

BF537 EZ Kit Lite development board to the constructed CAN network described in

Section 5.2. In addition, a television monitor was interfaced to the video terminals of the

A/V daughter board.

Figure 70: Application Components

Once the system was powered up the potentiometer incorporated onto the CAN On-

Board node was rotated to simulate the action of an automobile sensor measuring speed.

This resulted in the colour on the monitor’s display varying in line with the rotation of the

potentiometer; hence proving that the simulated vehicle data, transmitted via the CAN

network, was correctly processed by the video module and represented visually.

Therefore the application operated successfully as desired.

7.2.3 Capacity for Expansion

Earlier it was outlined that a modular approach was adopted in order to develop the

application’s synthesis in steps. However due to project timing constraints the devised

methodology only accounted for the visual representation of a single CAN message’s

contents on a connected graphical display. Nonetheless, room for expansion in terms of

CAN message processing is contained within the CAN_RCV_HANDLER ISR. As

mentioned previously, source code for the processing of CAN messages received into

Mailbox 6 is incorporated into CAN_RCV_HANDLER to allow for future development.

 123

Therefore it can be envisaged that the potential exists for the processing of suitably

configured multiple CAN mailboxes. Consequently this allows for the handling of

numerous quantities of simulated automobile data.

In addition simulated automobile data was represented visually upon a connected display

monitor using colour information only. The derivation of a system to symbolise data in a

graphical manner, using dial and gauges, was not fulfilled due to timing constraints.

However a groundwork mechanism, incorporating CAN and video processing, which

would form the cornerstone of a graphical system representing vehicle data, has been

successfully established.

7.3 Summary

This chapter discussed the steps taken to formulate the system’s implementation through

the combination of the CAN and video processing methodologies described in previous

chapters. The major points to behold are as follows:

• Care was taken with the initialisation sequence to ensure that all parameters were

correctly configured in the appropriate order.

• To achieve desirable functionality the system was implemented with a full

interrupt policy; i.e. once initialisation had concluded and all ISRs were defined

the application only commenced processing when a particular interrupt occurred.

• Simulated vehicle data extracted from the constructed CAN network was visually

represented using colour upon a connected display device.

• Due to project timing constraints it was not possible to devise a methodology to

visually represent more than a single quantity of vehicle data at the same time; nor

was it achievable to represent vehicle data in a graphical manner.

 124

• The successfully devised application methodology can be used as the foundation

stone of a graphical system used to symbolise vehicle data.

 125

Chapter 8 - Conclusion

8.1 Introduction

This chapter summarises the research and methodologies carried out for this thesis, it

outlines the results and conclusions that have been drawn from the project and offers

suggestions on how to possibly further the research.

This research project commenced by outlining the protocols, technologies and

components reviewed to formulate a suitable methodology for this application. Chapter 2

discussed CAN with a view to automotive networking and highlighted the durability and

reliability of the protocol. Chapter 3 described to the reader the fundamentals of video

processing and gave a detailed account of the ITU-R BT.656 digital video standard.

Chapter 4 explained how numerous intelligent-devices were evaluated under several

headings to establish the most suitable for employment in this research project.

The research project then moved on to synthesising the application with respect to the

findings of Chapters 2, 3 and 4. Chapter 5 described the steps taken to simulate vehicle

data and detailed how the CAN network employed in this system was constructed.

Chapter 6 discussed how a correct video module strategy was devised for the intelligent-

 126

device selected in Chapter 4. Chapter 7 portrayed how the developed CAN and video

algorithms were combined to formulate the overall application.

8.2 Conclusion

A system that visually represents simulated automobile data has been successfully

implemented. The synthesised application illustrated, using colour variation, vehicle

speed upon a connected graphical display. The operation of automobile sensing-devices

was mimicked using potentiometers located within developed CAN nodes. The simulated

speed data was received from the constructed CAN network operating at 500kBits/s. This

information was then manipulated into ITU-R BT.656 format by the selected Blackfin

ADSP-537 convergent processor. Once appropriately configured the data was given to a

video encoder IC which converted the digital stream into an analogue video signal for

display upon a connected television monitor.

Problems such as memory allocation, compiler glitches and ISR registration were

overcome on the way to devising the successful system implementation. These problems

were eradicated through the combination of the review of pertinent literature,

consultation with the relevant bodies and software debugging.

The search for the appropriate intelligent-device required for this research project, with

respect to the factors outlined in Section 4.2, yielded the Blackfin ADSP-BF537 as the

most suitable processor. This component adequately met all of the key considerations

thus justifying it’s selection over the other devices evaluated.

As mentioned above the implemented system represented vehicle data using colour. The

chrominance data displayed on the screen updated in synchronisation with the rotation of

a specific potentiometer. Thus real-time vehicle data representation was achieved. This is

obviously paramount in an actual implementation of this system within an automobile as

a driver requires a live feed of critical vehicle data such as speed. However due to time

constraints it was only possible to display a single item of simulated vehicle data on the

 127

monitor. The derivation of a system to symbolise multiple data items in a graphical

manner, using dials and gauges, was not fulfilled. In conclusion, the devised system

nevertheless possesses the potential to form the cornerstone of a graphical system to

represent automobile data in real-time.

An actual implementation of this system would lead to economies of scale as the same

graphical display could be incorporated into all vehicle models developed by a particular

automotive manufacturer. Style variations between vehicle models could be still

maintained by simply devising different software graphics for each model – see Appendix

G.

8.3 Recommendations for Further Research &

Development

As mentioned previously in Section 7.2.3 the developed system could support the

representation of multiple data items by expanding the devised software algorithms. In

conjunction with this, the application’s functionality could be enhanced by constructing a

graphical mechanism to illustrate automobile information using dials and gauges; thus

formulating a digital dash-display.

The monitor used in a practical implementation of the devised system would be much

smaller than the television used in this project. It would be located where the dash-panel

of an automobile is located; i.e. it would replace the analogue dash-panel located behind

the steering wheel. This application displays video data dynamically upon the connected

monitor. As a result the potential exists to integrate additional vehicle information into

the graphical display. For example, GPS (Global Positioning System) systems are

typically located on the centre console of a vehicle cabin. The GPS information could be

displayed on the screen located behind the steering wheel resulting in the driver deviating

his/her attention from the road for less time. Research into the actual benefits realisable

with such a system would be similar to previous studies such as [73] and [74].

 128

References

[1] V. Hillier, “Fundamentals of Automotive Electronics, Second Edition”, Stanley

Thornes Ltd., 1996.

[2] Bosch Inc., “CAN Specification Version 2.0”, September 1991.

[3] Siemens Microcontrollers Inc., “Controller Area Network”, October 1998.

[4] Motorola Inc., “CAN Technical Overview”, January 2007.

[5] S. Ball, “Analog Interfacing to Embedded Microprocessor Systems, Second

Edition, Embedded Technology Series”, Newnes, 2004.

[6] D. Paret, et al, “The I
2
C Bus from Theory to Practice”, John Wiley & Sons, 1997.

[7] O. Pfeiffer, et al, “Embedded Networking with CAN and CANopen”,

Annabooks/Rtc Books, 2003.

[8] M. Jamali, “A Comparative Study of Physical Layers of In-Vehicle Multiplexing

Systems”, Society of Automotive Engineers Technical Paper Series 1999-01-

1271, 1999.

[9] B. Negley, “Getting Control Through CAN”,

http://www.sensorsmag.com/articles/1000/18/main.shtml, October 2001.

[10] P. Richards, Microchip Technologies Inc., “A CAN Physical Layer Discussion”,

September 2001.

[11] W. Stallings, “Data and Computer Communications, Seventh Edition”, Prentice

Hall, 2004.

 129

[12] K. Dietmayer, et al, “CAN Bit Timing Requirements”, Society of Automotive

Engineers Technical Paper Series 970295, 1997.

[13] T. Floyd, “Digital Fundamentals - 3
rd

 Edition”, Merrill, 1986.

[14] P. Richards, Microchip Technologies Inc., “Understanding Microchip’s CAN

Module Bit Timing”, 2001.

[15] CIA Inc., “CAN Data Link Layer”, 2006.

[16] K. Etschberger, “Controller Area Network”, IXXAT Automation GmbH, 2001.

[17] National Instruments Inc., “Anatomy of a Video Signal”,

http://zone.ni.com/devzone/cda/tut/p/id/3020, 2004.

[18] D. Katz, et al, “Embedded Media Processing”, Newnes, 2006.

[19] D. Vrhovnik, et al, “The Basics of Interlaced Video and the Techniques used in

De-Interlacing”, Digital TV Design Line - http://www.techonline.com, February

2007.

[20] K. Jack, “Video Demystified - 4
th

 Edition”, Newnes, 2004.

[21] G. Kennedy, “Electronic Communication Systems - 4
th

 Edition”, Lake Forest,

1993.

[22] B. Furht, et al, “Video and Image Processing in Multimedia Systems”, Kluwer,

1995.

[23] Digital Creation Labs Inc., “Digital Video Overview - AN10”, April 2004.

 130

[24] University of California, “Checkpoint 2 - Video Encoder”, 2004.

[25] C. Poynton, “Digital Video and HDTV: Algorithms and Interfaces”, Kaufmann,

2003.

[26] International Telecommunications Union, http://www.itu.int/home/index.html,

2005.

[27] Rohde & Schwarz Broadcast Division Inc., “The Digital Video Standard

according to ITU-R BT. 601/656”, 2006.

[28] International Telecommunications Union, “Recommendation ITU-R BT.656-4 -

Interfaces for Digital Component Video Signals in 525-Line & 625-Line

Television Systems Operating at the 4:2:2 Level of Recommendation ITU-R

BT.601 (Part A)”, 1998.

[29] Intersil Inc., “BT.656 Video Interface for ICs”, July 2002.

[30] Berkley Design Technologies Inc., http://www.bdti.com, 2005.

[31] Freescale Semiconductor Inc., “MPC5200 Data Sheet - Rev4.0”, January 2005.

[32] Freescale Semiconductor Inc., “MPC5200 Users Guide - 3.1”, March 2006.

[33] Freescale Semiconductor Inc., “MPC5200 Microprocessor Technical Summary”,

August 2004.

[34] Freescale Semiconductor Inc., “Product Brief - Lite5200 EVB Kits”, March 2004.

[35] Infineon Inc., “TriCore TC1796 32-Bit Single-Chip Microcontroller Data Sheet -

V0.7”, March 2006.

 131

[36] Infineon Inc., “TriBoard TC1796 Hardware Manual TC1796.300 - V3.1”, January

2005.

[37] Xilinx Inc., “Spartan-3E FPGA Family: Complete Data Sheet”, November 2006.

[38] Xilinx Inc., “Spartan-3E Starter Kit Board User Guide - V1.0”, March 2006.

[39] Microchip Inc., “dsPIC30F6014A Data Sheet”, 2006.

[40] Microchip Inc., “dsPICDEM 1.1 Plus Development Board User’s Guide”, 2006.

[41] Analog Devices Inc., “Blackfin Embedded Processor ADSP-BF536/7 Preliminary

Technical Data”, 2005.

[42] Analog Devices Inc., “ADSP-BF537 Blackfin Processor Hardware Reference -

Rev2.0”, December 2005.

[43] H. Minorikawa, et al, “Current Status and Future Trends of Electronic Packaging

in Automotive Applications”, Society of Automotive Engineers Technical Paper

Series 901134, 1990.

[44] K. Skahill, “VHDL for Programmable Logic”, Addison-Wesley, 1996.

[45] C. Szydlowski, “Tradeoffs between Stand-Alone and Integrated CAN

Peripherals”, Society of Automotive Engineers Technical Paper Series 941655,

1994.

[46] J. Bacon, “The Motorola MC68000: An Introduction to Processor, Memory and

Interfacing”, Prentice Hall, 1986.

[47] Altium Inc., “TriCore Software Development Toolset - v2.2”, 2005.

 132

[48] Green Hills Software Inc., “TriCore Family”, 2002.

[49] HighTec GNU C/C++ Compiler, http://www.hightec-

rt.com/index.php?option=com_content&task=view&id=16&Itemid=28, 2006.

[50] V. Pedroni, “Circuit Design with VHDL”, Massachusetts Institute of Technology,

2004.

[51] µCLinux Embedded Linux/Microprocessor Project, http://www.uclinux.org,

2005.

[52] Green Hills Software Inc., “Blackfin Processor Family Embedded Software

Solutions”, 2005.

[53] Analog Devices Inc., “LabVIEW Embedded Module for Analog Devices Blackfin

Processors”, 2006.

[54] Blackfin.org - The Processor Forum, http://www.blackfin.org, 2005.

[55] DSPRelated.com, http://www.dsprelated.com, 2005.

[56] Microchip Inc., http://www.microchip.com, 2005.

[57] Microchip Inc., “PIC18F2480/2580/4480/4580 Data Sheet”, 2004.

[58] Microchip Inc., “PIC16F87XA Data Sheet”, 2003.

[59] Microchip Inc., “MCP2510/15 Data Sheet”, 2002.

[60] Microchip Inc., “MCP2551 - High Speed CAN Transceiver Data Sheet”, 2003.

 133

[61] Mikroelektronika Inc., http://www.mikroelektronika.co.yu, 2005.

[62] Mikroelektronika Inc., MikroC Help Files, 2005.

[63] Kvaser Inc., http://www.kvaser.com, 2005.

[64] Microchip Inc., “MCP2515 Development User’s Guide”, 2003.

[65] Scientific Software Tools Inc.,

http://www.driverlinx.com/DownLoad/DlPortIO.htm, 2005.

[66] Philips Inc., “TJA1041 High speed CAN Transceiver Data Sheet”, 2003.

[67] Analog Devices Inc., “ADSP-BF537 EZ Kit Lite Evaluation Manual”, August

2005.

[68] Analog Devices Inc., “VisualDSP++4.5 Device Drivers and System Services

Manual for Blackfin Processors”, August 2006.

[69] Analog Devices Inc., “Blackfin Online Learning and Development (BOLD) Video

Tutorials”,

http://www.demosondemand.com/clients/analogdevices/001/page/index.asp?ref=

DSPS052, 2006.

[70] Analog Devices Inc., “ADV7174/79 Chip Scale PAL/NTSC Video Encoder with

Advanced Power Management - Data Sheet”, 2004.

[71] Analog Devices Inc., VisualDSP++ 4.5 Help Files, 2006.

[72] Analog Devices Inc., “Blackfin A-V EZ-Extender Manual”, January 2005.

 134

[73] H. Kosaka, et al, “Evaluation of a New In-Vehicle HMI System Composed of

Steering wheel Switch and Head-Up Display”, Society of Automotive Engineers

Technical Paper Series 2006-01-0576, 2006.

[74] P. Desroches, et al, “The Impact of Navigation Systems on the Perception Time of

Young and Older Drivers”, Society of Automotive Engineers Technical Paper

Series 2006-01-0577, 2006.

 135

Appendix A - CAN Circuit Schematics

Figure 71: CAN On-Board Circuit Schematic

 136

Figure 72: CAN SPI Circuit Schematic

 137

Appendix B - CAN On-Board Source Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

/***
*
* Device: PIC Microcontroller P18F258
* Osc: 16MHz
* File Name: "CAN_On_Board.c"
* Author: Dominick O' Brien
* Date: 29-Mar-06
* Version 1.00
*
***/

/***
*
* Type Declarations
*
***/
typedef unsigned char uchar;
typedef long l_ID;
typedef unsigned int iadc;

/***
*
* Variable Declarations
*
***/
uchar aa = 0;
uchar aa1 = 0;
uchar len = 0; // CAN DLC
uchar data[8]; // CAN Data Bytes
l_ID id = 0; // CAN ID

iadc ch0_res = 0; // ADC Channel 0 result variable
uchar ms_ch0_res = 0; // ADC Channel 0 MSB result variable
uchar ls_ch0_res = 0; // ADC Channel 0 LSB result variable

iadc ch1_res = 0; // ADC Channel 1 result variable
uchar ms_ch1_res = 0; // ADC Channel 1 MSB result variable
uchar ls_ch1_res = 0; // ADC Channel 1 LSB result variable

void main()
{
 TRISC.f2 = 0;
 PORTC.f2 = 0;
 PORTC.f0 = 1; // Chip Select line of MCP2510
 TRISC.f0 = 0; // Make Port C Pin 0 an Output
 ADCON1 = 0x00; // Configure ALL analog inputs, Result RIGHT justified & Fosc/2
 TRISA = 0xFF; // PORTA all inputs

 aa = CAN_CONFIG_SAMPLE_THRICE & // form value to be used with CANInitialize()
 CAN_CONFIG_PHSEG2_PRG_ON &
 CAN_CONFIG_ALL_MSG &

 138

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

 CAN_CONFIG_DBL_BUFFER_ON &
 CAN_CONFIG_LINE_FILTER_OFF;

 aa1 = CAN_TX_PRIORITY_0 & // form value to be used with CANWrite()
 CAN_TX_STD_FRAME &
 CAN_TX_NO_RTR_FRAME;

 PORTC.f2 = 1;
 PORTC.f0 = 1; // CS line of MCP2510 HIGH

 CANSetOperationMode(CAN_MODE_CONFIG,0xFF); // Set CONFIGURATION mode
 // 16MHz, BRP = 16 => 62.5kbits/sec
 // 16MHz, BRP = 8 => 125kbits/sec
 // 16MHz, BRP = 4 => 250kbits/sec
 // 16MHz, BRP = 2 => 500kbits/sec
 // 8MHz, BRP = 8 => 62.5kbits/sec
 // 8MHz, BRP = 4 => 125kbits/sec
 // 8MHz, BRP = 2 => 250kbits/sec
 // 8MHz, BRP = 1 => 500kbits/sec
 CANInitialize(2,2,3,3,1,aa); // Initialise CAN module. BAUD = 500kbits/sec
 CANSetOperationMode(CAN_MODE_NORMAL,0); // Set NORMAL mode

 while (1)
 {
 /***
 *
 * Remember the PICs ADC result is a 10 bit number
 * therefore we need two bytes to hold the 10 bit result
 *
 /***
 ch0_res = Adc_Read(0); // Get the ADC conversion result
 ls_ch0_res = ch0_res; // Get bottom 8 bits of ADC Channel 0 conversion
 ms_ch0_res = ch0_res >> 8; // Get top 2 bits of ADC Channel 0 conversion

 ch1_res = Adc_Read(1); // Get the ADC conversion result
 ls_ch1_res = ch1_res; // Get bottom 8 bits of ADC Channel 1 conversion
 ms_ch1_res = ch1_res >> 8; // Get top 2 bits of ADC Channel 1 conversion

 data[0] = ms_ch1_res; // 2 MSBs of Channel 1 conversion result
 data[1] = ls_ch1_res; // 8 LSBs of Channel 1 conversion result
 data[2] = ms_ch0_res; // 2 MSBs of Channel 0 conversion result
 data[3] = ls_ch0_res; // 8 LSBs of Channel 0 conversion result
 data[4] = 44; // Arbitrary Number
 data[5] = 55; // Arbitrary Number
 data[6] = 66; // Arbitrary Number
 data[7] = 77; // Arbitrary Number

 id = 0x411; // Message ID (Decimal 1041)
 len = 8; // Data Length Code
 CANWrite(id,data,len,aa1); // Write CAN message
 delay_ms(500); // Delay 500 milliseconds
 }

} // EOF

 139

Appendix C - CAN SPI Source Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

/***
*
* Device: PIC Microcontroller P16F876A
* Osc: 16MHz
* File Name: "CAN_SPI.c"
* Author: Dominick O' Brien
* Date: 06-Dec-05
* Version 1.00
*
***/

/***
*
* Type Declarations
*
***/
typedef unsigned char uchar;
typedef long l_ID;
typedef unsigned int iadc;

/***
*
* Variable Declarations
*
***/
uchar aa = 0;
uchar aa1 = 0;
uchar len = 0; // CAN DLC
uchar data[8]; // CAN Data Bytes
l_ID id = 0; // CAN ID

iadc ch0_res = 0; // ADC Channel 0 result variable
uchar ms_ch0_res = 0; // ADC Channel 0 MSB result variable
uchar ls_ch0_res = 0; // ADC Channel 0 LSB result variable

iadc ch1_res = 0; // ADC Channel 1 result variable
uchar ms_ch1_res = 0; // ADC Channel 1 MSB result variable
uchar ls_ch1_res = 0; // ADC Channel 1 LSB result variable

iadc ch2_res = 0; // ADC Channel 2 result variable
uchar ms_ch2_res = 0; // ADC Channel 2 MSB result variable
iadc ls_ch2_res = 0; // ADC Channel 2 LSB result variable

void main()
{
 Spi_Init(); // Initialise SPI

 TRISC.f2 = 0;
 PORTC.f2 = 0;
 PORTC.f0 = 1; // CS line of MCP2510
 TRISC.f0 = 0; // Make Port C Pin 0 an Output

 140

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

 ADCON1 = 0x80; // Configure ALL analog inputs, Fosc/2 & Result RIGHT justified
 TRISA = 0xFF; // PORTA all inputs

 aa = CAN_CONFIG_SAMPLE_THRICE & // form value to be used with CANSPIInitialize()
 CAN_CONFIG_PHSEG2_PRG_ON &
 CAN_CONFIG_ALL_MSG &
 CAN_CONFIG_DBL_BUFFER_ON &
 CAN_CONFIG_LINE_FILTER_OFF;

 aa1 = CAN_TX_PRIORITY_0 & // form value to be used with CANSPIWrite()
 CAN_TX_STD_FRAME &
 CAN_TX_NO_RTR_FRAME;

 PORTC.f2 = 1;
 PORTC.f0 = 1; // CS line of MCP2510 HIGH

 CANSPISetOperationMode(CAN_MODE_CONFIG,0xFF); // Set CONFIGURATION mode
 // 16MHz, BRP = 16 => 62.5kbits/sec
 // 16MHz, BRP = 8 => 125kbits/sec
 // 16MHz, BRP = 4 => 250kbits/sec
 // 16MHz, BRP = 2 => 500kbits/sec
 // 8MHz, BRP = 8 => 62.5kbits/sec
 // 8MHz, BRP = 4 => 125kbits/sec
 // 8MHz, BRP = 2 => 250kbits/sec
 // 8MHz, BRP = 1 => 500kbits/sec
 CANSPIInitialize(2,2,3,3,1,aa); // Initialise external CAN module. BAUD = 500kbits/sec
 CANSPISetOperationMode(CAN_MODE_NORMAL,0); // Set NORMAL mode

 while (1)
 {
 /***
 *
 * Remember the PICs ADC result is a 10 bit number
 * therefore we need two bytes to hold the 10 bit result
 *
 **
 ch0_res = Adc_Read(0); // Get the ADC conversion result
 ls_ch0_res = ch0_res; // Get bottom 8 bits of ADC Channel 0 conversion
 ms_ch0_res = ch0_res >> 8; // Get top 2 bits of ADC Channel 0 conversion

 ch1_res = Adc_Read(1); // Get the ADC conversion result
 ls_ch1_res = ch1_res; // Get bottom 8 bits of ADC Channel 1 conversion
 ms_ch1_res = ch1_res >> 8; // Get top 2 bits of ADC Channel 1 conversion

 ch2_res = Adc_Read(2); // Get the ADC conversion result
 ls_ch2_res = ch2_res; // Get bottom 8 bits of ADC Channel 2 conversion
 ms_ch2_res = ch2_res >> 8; // Get top 2 bits of ADC Channel 2 conversion

 data[0] = ms_ch2_res; // 2 MSBs of Channel 2 conversion result
 data[1] = ls_ch2_res; // 8 LSBs of Channel 2 conversion result
 data[2] = ms_ch1_res; // 2 MSBs of Channel 1 conversion result
 data[3] = ls_ch1_res; // 8 LSBs of Channel 1 conversion result
 data[4] = ms_ch0_res; // 2 MSBs of Channel 0 conversion result
 data[5] = ls_ch0_res; // 8 LSBs of Channel 0 conversion result
 data[6] = 22; // Arbitrary Number
 data[7] = 33; // Arbitrary Number

 141

108
109
110
111
112
113
114
115

 id = 0x189; // Message ID (Decimal 393)
 len = 8; // Data Length Code
 CANSPIWrite(id,data,len,aa1); // Write CAN message
 delay_ms(500); // Delay 500 milliseconds
 }

} // EOF

 142

Appendix D - Blackfin CAN Module Source

Code
CAN_Test.h

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

/***
*
* Device: ADSP-BF537
* Osc: SCLK = 120MHz
* File Name: "CAN_Test.h"
* Author: Dominick O' Brien
* Date: 10-May-06
* Version 1.00
*
***/
#ifndef _CAN_RX_H
#define _CAN_RX_H

#include <cdefBF537.h>
#include <ccblkfn.h>
#include <sys/exception.h>

/***
*
* Constants
*
***/
#define CAN_TX_MB_LO 0x0000
#define CAN_TX_MB_HI 0x0100 // Mailbox24
#define CAN_RX_MB_LO 0x00C0 // Mailbox 7 and Mailbox 6
#define CAN_RX_MB_HI 0x0000

/***
*
* Global Data
*
***/
extern char blink, off, change;
extern volatile unsigned int delay;
extern short display;
extern volatile unsigned short * CAN_MB_ID1[];
extern volatile unsigned short * CAN_MB_ID0[];
extern volatile unsigned short * CAN_MB_TIMESTAMP[];
extern volatile unsigned short * CAN_MB_LENGTH[];
extern volatile unsigned short * CAN_MB_DATA3[];
extern volatile unsigned short * CAN_MB_DATA2[];
extern volatile unsigned short * CAN_MB_DATA1[];
extern volatile unsigned short * CAN_MB_DATA0[];

/***
*
* Function Prototypes
*

 143

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

***/
// In Initialization.c
void Init_PLL(void);
void Init_Port(void);
void Init_CAN_Timing(void);
void Init_CAN_Mailboxes(void);
void Init_Interrupts(void);

// In CAN_Functions.c
void CAN_Enable(void);
void CAN_Transmit(void);
void CAN_Setup_Interrupts(void);

// In Interrupts.c
EX_INTERRUPT_HANDLER(CAN_RCV_HANDLER);
EX_INTERRUPT_HANDLER(CAN_XMT_HANDLER);

#endif // _CAN_RX_H

Initialization.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

/***
*
* Device: ADSP-BF537
* Osc: SCLK = 120MHz
* File Name: "Initialization.c"
* Author: Dominick O' Brien
* Date: 12-May-06
* Version 1.00
*
***/
#include "CAN_Test.h"

/***
*
* Init_PLL – Configures the PLL so that the CAN BRP can easily be derived. Sets the CCLK to
* 600MHz and SCLK to 120MHz
*
***/
void Init_PLL()
{
 *pPLL_CTL = SET_MSEL(24); // Set PLL: (25MHz X 24 (MSEL = 24)): CCLK=600MHz
 idle();
 *pPLL_DIV = SET_SSEL(4); // Set SCLK Divisor: (600MHz / (SSEL=5)): SCLK=120MHz
 ssync();
} // End Init_PLL

/***
*
* Init_Port – Sets up the Ports for CAN use and configured the PFx pins for access to the
* on-board LEDs.
*
***/
void Init_Port ()
{

 144

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

 short temp_fix;
 // Configure CAN RX and CAN TX pins on GPIO Port
 temp_fix = *pPORT_MUX;
 ssync();

 *pPORT_MUX = PJCE_CAN; // Enable CAN Pins On Port J
 ssync();
 *pPORT_MUX = PJCE_CAN; // #22 work-around: write it a few times
 ssync();
 *pPORT_MUX = PJCE_CAN; // #22 work-around: write it a few times
 ssync();

 temp_fix = *pPORT_MUX; // #22 work-around: read PORT_MUX after writing
 ssync();

 // Configure Port F pins for LED access
 *pPORTFIO_DIR = 0x0FC0; // Enable PF6-11 As Outputs (LEDs)
 ssync();
} // End Init_Port ()

/***
*
* Init_CAN_Timing – Sets up the CAN_TIMING & CLOCK Registers
*
***/
void Init_CAN_Timing()
{
 // ===
 // BIT TIMING:
 //
 // CCLK 600 MHz
 // SCLK 120 MHz
 //
 // CAN_CLOCK : Prescaler (BRP)
 // CAN_TIMING : SJW = 2, TSEG2 = 3, TSEG1 = 5
 //
 // tBIT = TQ x (1 + (TSEG1 + 1) + (TSEG2 + 1))
 // 2e-6 = TQ x (1 + (5 + 1) + (3 + 1))
 // TQ = 1.82e-7
 //
 // TQ = (BRP+1) / SCLK
 // 1.82e-7 = (BRP+1) / 120e6
 // (BRP+1) = 21.84
 // BRP = 20.84 ~ 21
 // ===
 // Set Bit Configuration Registers ...
 // ===
 *pCAN_TIMING = 0x0235;
 *pCAN_CLOCK = 21; // [0x15] 500kHz CAN Clock :: tBIT = 2us
 ssync();
} // End Init_CAN_Timing()

/***
*
* Init_CAN_Mailboxes – Configures Mailbox 24 to transmit a specific message ID with a
* message length of 8 bytes. Configures Mailbox 6 and 7 to each receive

 145

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

* a specific message ID
*
***/
void Init_CAN_Mailboxes()
{
 short msgID; // Variable for Mailbox 24 ID
 short msgID_OnB; // Variable for Mailbox 7 ID
 short msgID_SPI; // Variable for Mailbox 6 ID

 volatile char mbID;
 volatile char mbID_OnB; // Variable for Mailbox # for ON_B
 volatile char mbID_SPI; // Variable for Mailbox # for SPI
 // Mailbox 24 Will Transmit ACK to the Network via ID 0x007
 msgID = 0x007;
 mbID = 24;

 *(pCAN_MB_ID1(mbID)) = msgID << 2; // ID1, mask disabled, remote frame disable, 11 bit
 // identifier
 *(pCAN_MB_ID0(mbID)) = 0; // ID0 = all 0's
 *(pCAN_MB_LENGTH(mbID)) = 8; // DLC = 8 bytes

 // Mailbox 7 will Receive CAN Command from Network via ID 0x411
 // Mailbox 6 will Recieve CAN Command from Network via ID 0x189
 msgID_OnB = 0x411; // ID = dec 1041
 msgID_SPI = 0x189; // ID = dec 393
 mbID_OnB = 7; // Mailbox 7
 mbID_SPI = 6; // Mailbox 6

 *(pCAN_MB_ID1(mbID_OnB)) = msgID_OnB << 2; // ID1, mask disabled, remote frame
 // disable, 11 bit identifier
 *(pCAN_MB_ID0(mbID_OnB)) = 0; // ID0 = all 0's
 *(pCAN_MB_ID1(mbID_SPI)) = msgID_SPI << 2; // ID1, mask disabled, remote frame
 // disable, 11 bit identifier
 *(pCAN_MB_ID0(mbID_SPI)) = 0; // ID0 = all 0's
 *(pCAN_MB_LENGTH(mbID_SPI)) = 8; // DLC = 8 bytes
} // End Init_CAN_Mailboxes()

/***
*
* Init_Interrupts – Assigns interrupt priorities for CAN TX and CAN RX.
*
***/
void Init_Interrupts()
{
 // Configure Interrupt Priorities
 *pSIC_IAR0 = 0x77777777;
 *pSIC_IAR1 = 0x07777777; // CAN RX IRQ : 0=IVG7
 *pSIC_IAR2 = 0x77777771; // CAN TX IRQ : 1=IVG8
 *pSIC_IAR3 = 0x77777777;

// Register Interrupt Handlers and Enable Core Interrupts
 register_handler(ik_ivg7, CAN_RCV_HANDLER);
 register_handler(ik_ivg8, CAN_XMT_HANDLER);
 // Enable SIC Level Interrupts
 *pSIC_IMASK |= (IRQ_CAN_RX|IRQ_CAN_TX);
 } // End Init_Interrupts

 146

CAN_Functions.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

/***
*
* Device: ADSP-BF537
* Osc: SCLK = 120MHz
* File Name: "CAN_Functions.c"
* Author: Dominick O' Brien
* Date: 12-May-06
* Version 1.00
*
***/
#include "CAN_Test.h"

/***
*
* CAN_Setup_Interrupts – Enables Mailbox Interrupts for Mailboxes Used
*
***/
void CAN_Setup_Interrupts()
{
 *pCAN_MBIM1 = 0x00C0; // Enable Interrupts for Mailbox 7 and Mailbox 6
 *pCAN_MBIM2 = 0x0100; // Enable Interrupt for Mailbox 24
 ssync();
} // End CAN_Setup_Interrupts

/***
*
* CAN_Enable – Writes Mailbox Direction and Enables Registers before issuing a CAN
* Configuration Request and waiting for a CAN Configuration acknowledge
* before continuing.
*
***/
void CAN_Enable()
{
 // Set Mailbox Direction
 *pCAN_MD1 = CAN_RX_MB_LO; // No Low Mailboxes (MB 0-15) Are RX
 *pCAN_MD2 = CAN_TX_MB_LO; // Mailbox 24 Enabled For TX

 // Enable Mailboxes
 *pCAN_MC1 = CAN_RX_MB_LO; // Enables Mailbox 7 and Mailbox 6
 *pCAN_MC2 = CAN_TX_MB_HI; // Enables Mailbox 24
 ssync();

 *pCAN_CONTROL &= ~CCR; // Enable CAN Configuration Mode (Clear CCR)

while(*pCAN_STATUS & CCA); // Wait for CAN Configuration Acknowledge (CCA)

} // End CAN_Enable

Interrupts.c.

1
2
3

/***
*
* Device: ADSP-BF537

 147

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

* Osc: SCLK = 120MHz
* File Name: "Interrupts.c"
* Author: Dominick O' Brien
* Date: 15-May-06
* Version 1.00
*
***/
#include "CAN_Test.h"

/***
*
* CAN_RCV_HANDLER – This ISR checks for the highest priority RX Mailbox with an
* active interrupt and clears it.
* If the IRQ is from MB7, the appropriate operating flags are set
* based on the current mode and the contents of MB7.
* If the IRQ is from MB6, the received data in MB6 is transferred to
* MB24 and a request to transmit this data is made.
*
***/
EX_INTERRUPT_HANDLER(CAN_RCV_HANDLER)
{
 char highMB; // Which CAN Registers Should Be Used (1 or 2)
 // short data type is 16 bits
 short mbim_status; // Temp Location for Interrupt Status
 short bit_pos = 0; // Offset Into MBxIF Registers

 mbim_status = *pCAN_MBRIF2;

 if (mbim_status == 0) // If High 16 MBoxes Have No Active IRQ
 {
 mbim_status = *pCAN_MBRIF1; // Check Low 16 MBoxes
 highMB = 0; // Clear High/Low* Indicator
 }

 else // Otherwise, Active High MBox IRQ Found
 {
 highMB = 1; // Set High/Low* Indicator
 }

 while (!(mbim_status & 0x8000)) // Scan Status Register For Highest MB IRQ
 {
 mbim_status <<= 1;
 bit_pos++; // bit_pos Contains Offset from MB31
 }

 if (highMB)
 {
 *pCAN_MBRIF2 = (1 << (15 - bit_pos));
 }

else // Low Mailbox Interrupt
 {
 if(bit_pos == 0x8) // if Mailbox7 IRQ
 {
 if((*(pCAN_MB_DATA3(7)) == 0) || (*(pCAN_MB_DATA3(7)) <= 512))
 {

 148

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

 if(blink) // if blinking already
 {
 change = 0; // no mode change
 }

 else // otherwise it was off
 {
 change = 1; // set mode change
 off = 0; // make sure OFF is cleared
 blink = 1; // set BLINK flag
 display = 0x0FC0; // display all LEDs on
 }

 if(*(pCAN_MB_DATA3(7)) >= 513)
 {
 if (!off) // if not in OFF mode
 {
 off = 1; // set OFF flag
 blink = 0; // clear BLINK flag
 } // End if off
 }
 } // End if Mailbox 7

 if(bit_pos == 0x9) // if Mailbox 6 IRQ
 {
 // Place Received Commands Into CAN TX Mailbox
 *(pCAN_MB_DATA3(24)) = *(pCAN_MB_DATA3(6));
 *(pCAN_MB_DATA2(24)) = *(pCAN_MB_DATA2(6));
 *(pCAN_MB_DATA1(24)) = *(pCAN_MB_DATA1(6));
 *(pCAN_MB_DATA0(24)) = *(pCAN_MB_DATA0(6));

 // Issue CAN Transmit Request for Mailbox 24
 *pCAN_TRS2 = CAN_TX_MB_HI;
 ssync();
 } // End if Mailbox 6

 *pCAN_MBRIF1 = (1 << (15 - bit_pos)); // Write-1-to-Clear RX IRQ
 } // End Low Mailbox Interrupt

 ssync();

} // End CAN_RCV_HANDLER

/***
*
* CAN_XMT_HANDLER – This ISR checks for the highest priority TX Mailbox with an
* active interrupt and clears it.
*
***/
EX_INTERRUPT_HANDLER(CAN_XMT_HANDLER)
{
 char highMB; // Which CAN Registers Should Be Used (1 or 2)
 short mbim_status; // Temp Location for Interrupt Status
 short bit_pos = 0; // Offset Into MBxIF Registers

 mbim_status = *pCAN_MBTIF2; // Check High Mailboxes First

 149

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

 if (mbim_status == 0) // If No High MB Interrupts
 {
 mbim_status = *pCAN_MBTIF1; // Check Low MB Interrupts
 highMB = 0; // Clear High/Low* Mailbox Indicator
 }

 else highMB = 1; // Set High/Low* Mailbox Indicator

 while (!(mbim_status & 0x8000)) // Find Highest Mailbox W/ Active IRQ
 {
 mbim_status <<= 1;
 bit_pos++;
 } // Interrupting Mailbox Found

 if (highMB) // Process High Mailbox IRQ
 {
 *pCAN_MBTIF2 = (1 << (15 - bit_pos));
 }

 else // Else, Process Low Mailbox IRQ
 {
 *pCAN_MBTIF1 = (1 << (15 - bit_pos));
 }
ssync();

} // End CAN_XMT_HANDLER

main.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/***
*
* Device: ADSP-BF537
* Osc: SCLK = 120MHz
* File Name: "Interrupts.c"
* Author: Dominick O' Brien
* Date: 18-May-06
* Version 1.00
*
***/
#include "CAN_Test.h"

/***
*
* Global Data
*
***/
char blink = 0; // Display Select (1=blink, 0=scroll)
char change = 0; // Change Display Flag (1=Changed, 0=Same)
char off = 0; // Clear Display (1=Clear, 0=Not)
short display; // LED Display Value
volatile unsigned int delay = 0x400000;

main()
{
 Init_PLL(); // Set PLL

 150

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

 Init_Port(); // Initialize Ports
 Init_Interrupts(); Initialize Interrupts
 Init_CAN_Timing(); // Setup CAN Timing
 Init_CAN_Mailboxes(); // Initialize CAN Mailbox Area
 CAN_Setup_Interrupts(); // Configure CAN Mailbox Interrupts
 CAN_Enable(); // Enable CAN

 display = 0; // All LEDs off

 while(1) // wait for IRQs
 {
 *pPORTFIO = display; // write display

 while(delay--); // wait

 delay = 0x400000; // reset delay

 if (off) // if OFF flag is set
 {
 display = 0x0000; // turn LEDs off
 }

 else if (blink) // else if blink flag is set
 {
 display = ~display; // toggle display
 }

 } // End while forever

} // End main

 151

Appendix E - Blackfin Video Implementation

Source Code
ezkitutilities.h

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

/***
*
* Device: ADSP-BF537
* Osc: SCLK = 120MHz
* File Name: "ezkitutilities.h"
* Author: Dominick O' Brien
* Date: 13-Nov-06
* Version 1.00
* Modified version of Analog Device’s "ezkitutilities.h" found in VisualDSP++4.5
* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.."
*
***/
#ifndef EZKITUTILITIES_H
#define EZKITUTILITIES_H

/***
*
* Board Specific Info
*
***/
#define EZ_NUM_LEDS (6) // Number of LEDs on the board

/***
*
* LED Defines
*
***/
#define EZ_FIRST_LED (0) // First LED
#define EZ_LAST_LED (EZ_NUM_LEDS - 1) // Last LED

ADI_FLAG_ID ezLEDToFlag[]; // Structure containing the pf mappings for flags

/***
*
* Functions Provided by the Utilities
*
***/
void ezInit (u32 NumCores); // Initialises power, ebiu, any async, flash etc.
void ezInitPower u32 NumCores); // Initialises Power
void ezInitLED (u32 Led); // Enables/configures an LED for use
void ezTurnOffLED (u32 Led); // Dims an LED
void ezCycleLEDs (void); // Cycles LEDs
void ezSetDisplay (u32 Display); // Sets the LED pattern
void ezDelay (u32 msec); // Delays for approximately 'n' milliseconds
void ezErrorCheck (u32 Result); // Lights LEDs and spins to indicate an error if Result != 0
void ezEnableVideoEncoder (void); // Enables the 7179 video encoder

#endif // EZKITUTILITIES_H

 152

adi_itu656.h

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

/***
*
* Device: ADSP-BF537
* Osc: SCLK = 120MHz
* File Name: "adi_656.h"
* Author: Dominick O' Brien
* Date: 13-Nov-06
* Version 1.00
* Modified version of Analog Device’s "adi_itu656.h" found in VisualDSP++4.5
* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.."
*
***/
#ifndef ADI_ITU656_H // Define adi_itu656.h
#define ADI_ITU656_H

/***
*
* Common Definitions
*
***/
#define ADI_ITU656_EAV_SIZE 4 // EAV size (bytes)
#define ADI_ITU656_SAV_SIZE 4 // SAV size (bytes)

/***
*
* NTSC Definitions: Resolution - 720x480, 525/60 Video System
*
***/
#define ADI_ITU656_NTSC_WIDTH (720) // NTSC Resolution
#define ADI_ITU656_NTSC_HEIGHT (525) // Including Active & Blank lines
#define ADI_ITU656_NTSC_ACTIVE_FLINES (240) // Active Field lines

// Active Lines in a Frame
#define ADI_ITU656_NTSC_ACTIVE_LINES (ADI_ITU656_NTSC_ACTIVE_FLINES * 2)
#define ADI_ITU656_NTSC_BLANKING (268) // Blanking Size for NTSC

// Total Line Width
#define ADI_ITU656_NTSC_LINE_WIDTH ((ADI_ITU656_NTSC_WIDTH * 2) + \
 ADI_ITU656_NTSC_BLANKING + \
 ADI_ITU656_EAV_SIZE + \
 ADI_ITU656_SAV_SIZE)

// Interlaced NTSC Definitions
#define ADI_ITU656_NTSC_ILF1_START (23) // NTSC Interlaced Active Frame Field1 (odd)
 // Start Line
#define ADI_ITU656_NTSC_ILF1_END (262) // NTSC Interlaced Active Frame Field1 (odd)
 // Finish Line
#define ADI_ITU656_NTSC_ILF2_START (286) // NTSC Interlaced Active Frame Field2
 // start line
#define ADI_ITU656_NTSC_ILF2_END (525) // NTSC Interlaced active frame field2 (even)
 // (even) Start Line
// Progressive NTSC Definitions
#define ADI_ITU656_NTSC_PRF_START (46) // NTSC Progressive Active Frame Start Line
#define ADI_ITU656_NTSC_PRF_END (525) // NTSC Progressive Active Frame Finish Line

 153

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

/***
*
* PAL Definitions: 720x576, 625/50 Video System
*
***/
#define ADI_ITU656_PAL_WIDTH (720) // PAL resolution
#define ADI_ITU656_PAL_HEIGHT (625) // Including Active & Blank Lines
#define ADI_ITU656_PAL_ACTIVE_FLINES (288) // Active Field Lines

// Active Lines in a Frame
#define ADI_ITU656_PAL_ACTIVE_LINES (ADI_ITU656_PAL_ACTIVE_FLINES * 2)
#define ADI_ITU656_PAL_BLANKING (280) // Blanking Size for PAL (Bytes)

// Total Line Width
#define ADI_ITU656_PAL_LINE_WIDTH ((ADI_ITU656_PAL_WIDTH * 2) + \
 ADI_ITU656_PAL_BLANKING + \
 ADI_ITU656_EAV_SIZE + \
 ADI_ITU656_SAV_SIZE)
// Interlaced PAL Definitions
#define ADI_ITU656_PAL_ILF1_START (23) // PAL Interlaced Active Frame Field1 (odd)
 // Start Line
#define ADI_ITU656_PAL_ILF1_END (310) // PAL Interlaced Active Frame Field1 (odd)
 // Finish Line
#define ADI_ITU656_PAL_ILF2_START (336) // PAL Interlaced Active Frame Field2 (even)
 // Start Line
#define ADI_ITU656_PAL_ILF2_END (623) // PAL Interlaced Active Frame Field2 (even)
 // Start Line
// Progressive PAL Definitions
#define ADI_ITU656_PAL_PRF_START (45) // PAL Progressive Active Frame Start Line
#define ADI_ITU656_PAL_PRF_END (620) // PAL Progressive Active Frame Finish Line

/***
*
* Enumerations for Video Formats
*
***/
typedef enum{ // Video Formats
 ADI_ITU656_NTSC_IL, // NTSC Interlaced Frame
 ADI_ITU656_PAL_IL, // PAL Interlaced Frame
 ADI_ITU656_NTSC_PR, // NTSC Progressive Frame
 ADI_ITU656_PAL_PR // PAL Progressive Frame
}ADI_ITU656_FRAME_TYPE;

/***
*
* API Function Declarations
*

void adi_itu656_FrameFormat (// Formats an Area in Memory into a Video Frame
 u8 *frame_ptr, // Pointer to an Area of Memory used for Frame
 ADI_ITU656_FRAME_TYPE frametype // Memory will be Formatted for this Frame Type
);

void adi_itu656_FrameFill (// Fills Active Video Portions of Formatted Frame to Specified
 // Colour

 154

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

 u8 *frame_ptr, // Pointer to a Formatted Video Frame in Memory
 ADI_ITU656_FRAME_TYPE frametype, // Formatted Memory Frame Type
 u8 *ycbcr_data // 4 byte Array of 32 bit Colour Value of YCbCr Data
);

void adi_itu656_RowFill (// Fills a Row of Pixels in Active Video Portion of Formatted Frame
 // with Specified Colour
 u8 *frame_ptr, // Pointer to a Formatted video frame in memory
 ADI_ITU656_FRAME_TYPE frametype, // Formatted Memory Frame Type
 u32 row_value, // 32 Bit Value Corresponding to Row Number of Active Field
 u8 *ycbcr_data // 4 byte Array of 32 bit Colour Value of YCbCr Data
);

void adi_itu656_ColumnFill (// Fills a Column of Pixels in Active Video Portion of Formatted
 // Frame with Specified Colour
 u8 *frame_ptr, // Pointer to a formatted video frame in memory
 ADI_ITU656_FRAME_TYPE frametype, // Formatted Memory Frame type
 u32 column_value, // 32 bit Value Corresponding to Column Number of Active Field
 u8 *ycbcr_data // 4 byte Array of 32 bit Colour Value of YCbCr Data
);

#endif // End itu656.h definition

ezkitutilities.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/***
*
* Device: ADSP-BF537
* Osc: SCLK = 120MHz
* File Name: "ezkitutilities.c"
* Author: Dominick O' Brien
* Date: 16-Nov-06
* Version 1.00
* Modified version of Analog Device’s "ezkitutilities.c" found in VisualDSP++4.5
* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.."
*
***/
#include <services/services.h> // System Service Includes
#include <sysreg.h> // System Configuration Definitions
#include <defBF537.h> // Include all MMR's and bit definitions
#include "ezkitutilities.h" // EZ-Kit Utility Definitions

ADI_FLAG_ID ezLEDToFlag[] = {
 ADI_FLAG_PF6, // LED 0
 ADI_FLAG_PF7, // LED 1
 ADI_FLAG_PF8, // LED 2
 ADI_FLAG_PF9, // LED 3
 ADI_FLAG_PF10, // LED 4
 ADI_FLAG_PF11 // LED 5
};

/***
*
* LED Control
*

 155

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

***/
static u32 LEDDisplay; // Bit Field representing the LED display
static u32 LEDEnables; // Bit Field representing the Enabled LEDs

/***
*
* ezInitPower - Initialises and Sets Power management SDRAM parameters on the EZ-Kit.
*
***/
#define DO_NOT_CHANGE_MMR_SETTINGS 0
static void ezInitPower(u32 NumCores)
{
 ADI_EBIU_RESULT EBIUResult;
 ADI_PWR_RESULT PWRResult;

 // It is important that the EBIU module is configured before Power module so that changes to
 // the clock frequencies are correctly reflected in the SDRAM settings.
 ADI_EBIU_COMMAND_PAIR ezkit_sdram[] = // Initialises the EBIU module
 {
 { ADI_EBIU_CMD_SET_EZKIT, (void*)ADI_EBIU_EZKIT_BF537 },
 { ADI_EBIU_CMD_END, 0}
 };

 EBIUResult = adi_ebiu_Init(ezkit_sdram, DO_NOT_CHANGE_MMR_SETTINGS);

 if ((EBIUResult != ADI_EBIU_RESULT_SUCCESS) && (EBIUResult !=
 ADI_EBIU_RESULT_CALL_IGNORED))
 {
 ezErrorCheck(EBIUResult);
 }

 ADI_PWR_COMMAND_PAIR ezkit_power[] = // Initialises the Power Management Module
 {
 { ADI_PWR_CMD_SET_EZKIT, (void*)ADI_PWR_EZKIT_BF537_600MHZ },
 { ADI_PWR_CMD_END, 0}
 };

 PWRResult = adi_pwr_Init(ezkit_power);

 if ((PWRResult != ADI_PWR_RESULT_SUCCESS) && (PWRResult !=
 ADI_PWR_RESULT_CALL_IGNORED))
 {
 ezErrorCheck(PWRResult);
 }

 ezErrorCheck(adi_pwr_SetFreq(0, 0, ADI_PWR_DF_NONE));
 ezErrorCheck(adi_pwr_SetMaxFreqForVolt(ADI_PWR_VLEV_115))
}

/***
*
* ezInit – Initialises the EZ Kit board. Specifically Configuring:
* - Async Memory
* - Flash
* - CCLK = 600MHz, SCLK = 120MHz
*

 156

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

***/
void ezInit(u32 NumCores)
{
 // Configure Async Memory
 *pEBIU_AMBCTL0 = 0x7bb07bb0; // Write Access Time = 7 Cycles, Read Access Time =
 // 11Cycles, No ARDY
 *pEBIU_AMBCTL1 = 0x7bb07bb0; // Hold Time = 2 Cycles, Setup time = 3 Cycles,
 // Transition time = 4 cycles
 *pEBIU_AMGCTL = 0x00FF;

 // Configure Flash
 *pFlashA_PortA_Out = 0; // Resets Port A to Initial Value
 *pFlashA_PortA_Dir = 0xFF; // Configure Everything on Port A as Outputs
 *pFlashA_PortB_Out = 0; // Resets Port B to Initial Value
 *pFlashA_PortB_Dir = 0x3f; // Configure Everything on Port B as Outputs

 ezInitPower(NumCores); // Configure Power
}

/***
*
* ezInitLEDs - Enables an LED for use
*
***/
void ezInitLED(u32 LED) // Enables an LED
{
 if (LED >= EZ_NUM_LEDS)
 {
 return; // Make sure the LED is Valid
 }

 LEDEnables |= (1 << LED); // Set the Enable bit
 adi_flag_Open(ezLEDToFlag[LED]); // Configure the Flag for Output
 adi_flag_SetDirection(ezLEDToFlag[LED], ADI_FLAG_DIRECTION_OUTPUT);
 ezTurnOffLED(LED); // Dim the LED
}

/***
*
* ezTurnOffLED - Dims an LED
*
***/
void ezTurnOffLED(u32 LED)
{
 ezSetDisplay(LEDDisplay & ~(1 << LED)); // Update
}

/***
*
* ezCycleLEDs - Cycles LEDs
*
***/
void ezCycleLEDs(void)
{
 static u32 CycleDisplay;

 157

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

 if (LEDEnables = = 0) // Insure at least 1 LED is Enabled
 {
 return;
 }

 do { // calculate the pattern
 CycleDisplay <<= 1;
 if (CycleDisplay = = 0)
 {
 CycleDisplay = 1;
 }
 } while ((CycleDisplay & LEDEnables) = = 0);

 ezSetDisplay(CycleDisplay); // Update
}

/***
*
* ezSetDisplay - Sets the display pattern
*
***/
void ezSetDisplay(u32 Display)
{
 u32 i;
 u32 Mask;

 LEDDisplay = Display & LEDEnables; // Update the Display

 for (i = 0, Mask = 1; i < EZ_NUM_LEDS; i++, Mask <<= 1) // FOR (each LED)
 {
 if (LEDDisplay & Mask) // IF (the LED should be lit)
 {
 adi_flag_Set(ezLEDToFlag[i]); // Light It
 }

 else if (LEDEnables & Mask)
 {
 adi_flag_Clear(ezLEDToFlag[i]); // Dim It
 } // end if
 } // end for

}

/***
*
* ezDelay - Delays for approximately 1msec when running at 600 MHz
*
***/
void ezDelay(u32 msec)
{
 volatile u32 i,j;

 for (j = 0; j < msec; j++) // value of 0x3000000 is about 1 sec so 0xc49b is about 1msec
 {
 for (i = 0; i < 0xc49b; i++) ;
 }

 158

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

}

/***
*
* ezErrorCheck - Function is intended to be used as a means to quickly determine if a function
* has returned a non-zero (hence an error) return code. All driver and system
* services functions return a value of zero for success and a non-zero value
* when a failure occurs. This function makes all LEDs glow dimly when a non
* zero value is passed to it.
*
***/
void ezErrorCheck(u32 Result)
{
 while (Result != 0)
 {
 ezCycleLEDs();
 }
}

/***
*
* ezEnableVideoEncoder - Enables the AD7179 Video Encoder IC
*
***/
void ezEnableVideoEncoder(void)
{
 adi_flag_Open(ADI_FLAG_PF6); // Open PF6

 // ADSP-BF537 Blackfin PF6 pin must be set as an Output
 adi_flag_SetDirection(ADI_FLAG_PF6, ADI_FLAG_DIRECTION_OUTPUT);
 ssync();

 adi_flag_Clear(ADI_FLAG_PF6); // Clear bit to reset ADV7179, Blackfin pin PF6
 ssync();

 adi_flag_Set(ADI_FLAG_PF6);
 ssync();
}

adi_itu656.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14

/***
*
* Device: ADSP-BF537
* Osc: SCLK = 120MHz
* File Name: "adi_itu656.c"
* Author: Dominick O' Brien
* Date: 21-Nov-06
* Version 1.00
* Modified version of Analog Device’s "adi_itu656.c" found in VisualDSP++4.5
* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.."
*
***/
#include <services/services.h> // System Services Definitions
#include "adi_itu656.h" // ITU-656 Utilities Header File

 159

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

/***
*
* Constants
*
***/
#define ADI_ITU656_EAV 1 // Defines End of Active Video
#define ADI_ITU656_SAV 2 // Defines Start of Active video

/***
*
* Function Prototypes
*
***/
static void generate_XY (
 u32 scanline, // Current Scanline Number
 ADI_ITU656_FRAME_TYPE frametype, // Video Frame Type
 u8 *preambleXY, // Holds the Calculated XY Value for EAV/SAV
 u32 videostatus // Indicates XY Calculation for EAV or SAV
);

static void calculate_address (
 u8 *frame_ptr, // Pointer to the Formatted Video Frame in Memory
 ADI_ITU656_FRAME_TYPE frametype, // Frame Type of the Formatted Memory
 u8 **address1, // Holds Address of Field 1 First Active Line's Active Data Start
 // Address (for Interlaced Frame Type) OR First Active Line's Active Data Start
 // Address (for Progressive Frame type)
 u8 **address2, // Holds Address of Field 2 First Active Line's Active Data Start Address (for
 // Interlaced Frame Type)
 u32 *f1start, // Holds Field1 Active Line Start Value (for Interlaced Frame Format) OR Active
 // Line Start Value (for Progressive Frame Format)
 u32 *f1end, // Holds Field1 Active Line End Value (for Interlaced Frame Format) OR Active
 // Line End Value (for Progressive Frame Format)
 u32 *f2start, // Holds Field2 Active Line Start Value (for Interlaced Frame Format)
 u32 *f2end, // Holds Field2 Active Line End Value (for Interlaced Frame Format)
 u32 *widthcount // Holds the Value of NTSC/PAL Frame Width
);

/***
*
* adi_itu656_FrameFormat - This function formats an area in memory into a video frame active
* fields set blank.
*
***/
void adi_itu656_FrameFormat (u8 *frame_ptr,ADI_ITU656_FRAME_TYPE frametype)
{
 u32 i;
 u32 j;
 u32 linecount;
 u32 blankcount;
 u32 widthcount;
 u8 preambleXY;

 switch (frametype) { // Switch to Frame Type
 case (ADI_ITU656_NTSC_IL): // Format frame as NTSC Interlaced or NTSC Progressive
 case (ADI_ITU656_NTSC_PR):

 160

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

 linecount = ADI_ITU656_NTSC_HEIGHT;
 blankcount = ADI_ITU656_NTSC_BLANKING;
 widthcount = ADI_ITU656_NTSC_WIDTH;
 break;

 case (ADI_ITU656_PAL_IL): // Format frame as PAL Interlaced or PAL Progressive
 case (ADI_ITU656_PAL_PR):
 linecount = ADI_ITU656_PAL_HEIGHT;
 blankcount = ADI_ITU656_PAL_BLANKING;
 widthcount = ADI_ITU656_PAL_WIDTH;
 break;

 default: // Default as NTSC Frame
 linecount = ADI_ITU656_NTSC_HEIGHT;
 blankcount = ADI_ITU656_NTSC_BLANKING;
 widthcount = ADI_ITU656_NTSC_WIDTH;
 break;
 }

 for(i = 1; i <= linecount; i++) // Formats Frame Memory as EAV, Blanking, SAV, Active lines
 {
 // Generate BT656 Preamble
 generate_XY(i,frametype,&preambleXY,ADI_ITU656_EAV); // EAV - FF 00 00 XY
 *frame_ptr++ = 0xFF;
 *frame_ptr++ = 0x00;
 *frame_ptr++ = 0x00;
 *frame_ptr++ = preambleXY;

 for(j = 0; j < (blankcount / 2); j++) // Blanking
 {
 *frame_ptr++ = 0x80;
 *frame_ptr++ = 0x10;
 }

 generate_XY(i,frametype,&preambleXY,ADI_ITU656_SAV); // SAV - FF 00 00 XY
 *frame_ptr++ = 0xFF;
 *frame_ptr++ = 0x00;
 *frame_ptr++ = 0x00;
 *frame_ptr++ = preambleXY;

 for(j = 0; j < (widthcount); j++) // Output Empty Horizontal Data to Blank All Lines
 {
 *frame_ptr++ = 0x80;
 *frame_ptr++ = 0x10;
 }
 }
}

/***
*
* adi_itu656_FrameFill - This function fills the active video portion(s) of a formatted frame with
* a specified colour.
*
***/
void adi_itu656_FrameFill (u8 *frame_ptr,ADI_ITU656_FRAME_TYPE frametype,u8
*ycbcr_data)

 161

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

{
 u32 i;
 u32 j;
 u32 f1start;
 u32 f1end;
 u32 f2start;
 u32 f2end;
 u32 widthcount;
 u8 *address1;
 u8 *address2;

 address1 = frame_ptr; // Initialise the Pointers
 address2 = frame_ptr;

 // Calculate the Active Line Address & Update Widthcount, Frame Field Start and End Values
 calculate_address (frame_ptr,frametype,&address1,&address2,&f1start,&f1end,&f2start,
 &f2end,&widthcount);

 // Paints Active Lines with Provided YCbCr Colour Value
 // Paints Field1 if frameformat is Interlaced or Whole frame if frameformat is Progressive
 for(i = f1start; i <= f1end; i++)
 {
 for(j = 0; j < (widthcount / 2); j++) // Output YCbCr data (4:2:2 format)
 {
 *address1++ = *ycbcr_data;
 *address1++ = *(ycbcr_data+1);
 *address1++ = *(ycbcr_data+2);
 *address1++ = *(ycbcr_data+3);
 }
 }

 if ((frametype = = ADI_ITU656_NTSC_IL) || (frametype = = ADI_ITU656_NTSC_PR))
 {
 address1 = address1 + 276;
 }

 else
 address1 = address1 + 288;

 // Paints Field2 only when frametype is Interlaced
 if ((frametype = = ADI_ITU656_NTSC_IL) || (frametype = = ADI_ITU656_PAL_IL))
 {
 for(i = f2start; i <= f2end; i++)
 {
 for(j = 0; j < (widthcount / 2); j++) // Output YCbCr data (4:2:2 format)
 {
 *address2++ = *ycbcr_data;
 *address2++ = *(ycbcr_data+1);
 *address2++ = *(ycbcr_data+2);
 *address2++ = *(ycbcr_data+3);
 }

 if (frametype = = ADI_ITU656_NTSC_IL)
 {
 address2 = address2 + 276;
 }

 162

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

 else
 address2 = address2 + 288;
 }
 }
}

/***
*
* adi_itu656_RowFill - This function fills a row of pixels in active video portion of formatted
* frame with specified colour
*
***/
void adi_itu656_RowFill (u8 *frame_ptr,ADI_ITU656_FRAME_TYPE frametype,u32
row_value,u8 *ycbcr_data)
{
 u32 i,j,f1start,f1end,f2start,f2end,widthcount;
 u8 *address1,*address2;

 // Initialise the pointers
 address1 = frame_ptr;
 address2 = frame_ptr;

 // Calculate the active line address & update widthcount, frame field start and end values
 calculate_address(frame_ptr,frametype,&address1,&address2,&f1start,&f1end,&f2start,
 &f2end,&widthcount);

 // Paints active lines with provided YCbCr color value
 // Paints Field1 if frameformat is interlaced OR whole frame if frameformat is Progressive
 for(i = f1start; i <= f1end; i++)
 {
 if (i == row_value) // Is this the row to be painted with YCbCr data?
 {
 for(j = 0; j < (widthcount / 2); j++) // Output YCbCr data (4:2:2 format)
 {
 *address1++ = *ycbcr_data;
 *address1++ = *(ycbcr_data+1);
 *address1++ = *(ycbcr_data+2);
 *address1++ = *(ycbcr_data+3);
 }
 }

 else // Paint all other rows as blank
 {
 for(j = 0; j < (widthcount); j++)
 {
 *address1++ = 0x80;
 *address1++ = 0x10;
 }
 }

 if ((frametype == ADI_ITU656_NTSC_IL) || (frametype == ADI_ITU656_NTSC_PR))
 {
 address1 = address1 + 276;
 }

 else

 163

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

 {
 address1 = address1 + 288;
 }
 }

 // Paints Field2 only when frametype is Interlaced
 if ((frametype == ADI_ITU656_NTSC_IL) || (frametype == ADI_ITU656_PAL_IL))
 {
 for(i = f2start; i <= f2end; i++)
 {
 if (i == row_value) // Is this the row to be painted with YCbCr data?
 {
 for(j = 0; j < (widthcount / 2); j++) // Output YCbCr data (4:2:2 format)
 {
 *address2++ = *ycbcr_data;
 *address2++ = *(ycbcr_data+1);
 *address2++ = *(ycbcr_data+2);
 *address2++ = *(ycbcr_data+3);
 }
 }

 else // Paint all other rows as blank
 {
 for(j = 0; j < (widthcount); j++)
 {
 *address2++ = 0x80;
 *address2++ = 0x10;
 }
 }

 if (frametype == ADI_ITU656_NTSC_IL)
 {
 address2 = address2 + 276;
 }

 else
 {
 address2 = address2 + 288;
 }
 }
 }
}

/***
*
* adi_itu656_ ColumnFill - This function fills a column of pixels in active video portion of
* formatted frame with a specified colour.
*
***/
void adi_itu656_ColumnFill (u8 *frame_ptr,ADI_ITU656_FRAME_TYPE frametype,u32
column_value,u8 *ycbcr_data)
{
 u32 i,j,f1start,f1end,f2start,f2end,widthcount;
 u8 *address1,*address2;

 address1 = frame_ptr; // Initialise the pointers

 164

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

 address2 = frame_ptr;

 // Calculate the active line address & update widthcount, frame field start and end values
 calculate_address(frame_ptr,frametype,&address1,&address2,&f1start,&f1end,&f2start,
 &f2end,&widthcount);

 // Paints active lines with provided YCbCr color value
 // Paints Field1 if frameformat is interlaced OR whole frame if frameformat is Progressive
 for(i = f1start; i <= f1end; i++)
 {
 for(j = 0; j < (widthcount / 2); j++)
 {
 if (j == column_value) // Is this the column to be painted with YCbCr data?
 { // Yes, Output YCbCr data (4:2:2 format)
 *address1++ = *ycbcr_data;
 *address1++ = *(ycbcr_data+1);
 *address1++ = *(ycbcr_data+2);
 *address1++ = *(ycbcr_data+3);
 }

 else
 { // No - Paint the column as blank
 *address1++ = 0x80;
 *address1++ = 0x10;
 *address1++ = 0x80;
 *address1++ = 0x10;
 }
 }

 if ((frametype == ADI_ITU656_NTSC_IL) || (frametype == ADI_ITU656_NTSC_PR))
 {
 address1 = address1 + 276;
 }

 else
 {
 address1 = address1 + 288;
 }
 }

 // Paints Field2 only when frametype is Interlaced
 if ((frametype == ADI_ITU656_NTSC_IL) || (frametype == ADI_ITU656_PAL_IL))
 {
 for(i = f2start; i <= f2end; i++)
 {
 for(j = 0; j < (widthcount / 2); j++) // Output YCbCr data (4:2:2 format)
 {
 if (j == column_value) // Is this the column to be painted with YCbCr data?
 { // Yes, Output YCbCr data (4:2:2 format)
 *address2++ = *ycbcr_data;
 *address2++ = *(ycbcr_data+1);
 *address2++ = *(ycbcr_data+2);
 *address2++ = *(ycbcr_data+3);
 }

 else

 165

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

 { // No - Paint the column as blank
 *address2++ = 0x80;
 *address2++ = 0x10;
 *address2++ = 0x80;
 *address2++ = 0x10;
 }
 }

 if (frametype == ADI_ITU656_NTSC_IL)
 {
 address2 = address2 + 276;
 }

 else
 {
 address2 = address2 + 288;
 }
 }
 }
}

/***
*
* generate_XY - This function generates the XY preamble for EAV & SAV
*
***/
static void generate_XY (u32 scanline,ADI_ITU656_FRAME_TYPE frametype,u8
*preambleXY,u32 videostatus)
{
 if(frametype == ADI_ITU656_NTSC_IL) // Frame type is NTSC interlaced
 {
 if((scanline >= 1) && (scanline <= 3)) // 1-3 Blanking Field 2
 {
 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0xF1;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0xEC;
 }
 }

 else if((scanline >= 4) && (scanline <= 22)) // 4-22 Blanking Field 1
 {
 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0xB6;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0xAB;
 }
 }

 166

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

 else if((scanline >= 23) && (scanline <= 262)) // 23-262 Active Video Field 1
 {
 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0x9D;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0x80;
 }
 }

 else if((scanline >= 263) && (scanline <= 265)) // 263-265 Blanking Field 1
 {
 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0xB6;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0xAB;
 }
 }

 else if((scanline >= 266) && (scanline <= 285)) // 266-285 Blanking Field 2
 {
 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0xF1;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0xEC;
 }
 }

 else if((scanline >= 286) && (scanline <= 525)) // 286-525 Active Video Field 2
 {
 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0xDA;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0xC7;
 }
 }
 }

 else if(frametype == ADI_ITU656_PAL_IL) // Frame type is PAL interlaced
 {

 167

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

 if((scanline >= 1) && (scanline <= 22)) // 1-22 Blanking Field 1
 {
 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0xB6;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0xAB;
 }
 }

 else if((scanline >= 23) && (scanline <= 310)) // 23-310 Active Video Field 1
 {
 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0x9D;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0x80;
 }
 }

 else if((scanline >= 311) && (scanline <= 312)) // 311-312 Blanking Field 1
 {
 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0xB6;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0xAB;
 }
 }

 else if((scanline >= 313) && (scanline <= 335)) // 313-335 Blanking Field 2
 {
 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0xF1;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0xEC;
 }
 }

 else if((scanline >= 336) && (scanline <= 623)) // 336-623 Active Video Field 2
 {
 if(videostatus == ADI_ITU656_EAV)
 {

 168

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

 *preambleXY = 0xDA;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0xC7;
 }
 }

 else if((scanline >= 624) && (scanline <= 625)) // 624-625 Blanking Field 2
 {
 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0xF1;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0xEC;
 }
 }
 }

 else if(frametype == ADI_ITU656_NTSC_PR) // Frame type is NTSC Progressive
 {
 if((scanline >= 1) && (scanline <= 45)) // 1-45 Blanking
 {
 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0xB6;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0xAB;
 }
 }

 else if((scanline >= 46) && (scanline <= 525)) // 46-525 Active Video
 {
 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0x9D;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0x80;
 }
 }
 }

 else if(frametype == ADI_ITU656_PAL_PR) // Frame type is PAL Progressive
 {
 if((scanline >= 1) && (scanline <= 44)) // lines 1-44 Blanking
 {

 169

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0xB6;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0xAB;
 }
 }

 else if((scanline >= 45) && (scanline <= 620)) // lines 46-620 Active Video
 {
 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0x9D;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0x80;
 }
 }

 else if((scanline >= 621) && (scanline <= 625)) // lines 621-625 Blanking
 {
 if(videostatus == ADI_ITU656_EAV)
 {
 *preambleXY = 0xB6;
 }

 else if(videostatus == ADI_ITU656_SAV)
 {
 *preambleXY = 0xAB;
 }
 }
 }
}

/***
*
* calculate_address - This function calculates active line address & updates widthcount, frame
* field start and end values
*
***/
static void calculate_address (u8 *frame_ptr,ADI_ITU656_FRAME_TYPE frametype,u8
**address1,u8 **address2,u32 *f1start,
u32 *f1end,u32 *f2start,u32 *f2end,u32 *widthcount)
{
 switch (frametype)
 { // Switch to Frame Type
 case (ADI_ITU656_NTSC_IL): // Frame format is NTSC Interlaced
 *widthcount = ADI_ITU656_NTSC_WIDTH;
 *f1start = ADI_ITU656_NTSC_ILF1_START; // active line start - Field1
 *f1end = ADI_ITU656_NTSC_ILF1_END; // active line end - Field1

 170

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

 // Calculate Field 1 first active line's active data start address
 *address1 = frame_ptr + ((ADI_ITU656_NTSC_ILF1_START-1) * 1716) + 276;
 *f2start = ADI_ITU656_NTSC_ILF2_START; // active line start - Field2
 *f2end = ADI_ITU656_NTSC_ILF2_END; // active line end - Field2

 // Calculate Field 2 first active line's active data start address
 *address2 = frame_ptr + ((ADI_ITU656_NTSC_ILF2_START-1) * 1716) + 276;
 break;

 case (ADI_ITU656_PAL_IL): // Frame format is PAL Interlaced
 *widthcount = ADI_ITU656_PAL_WIDTH;
 *f1start = ADI_ITU656_PAL_ILF1_START; // active line start - Field1
 *f1end = ADI_ITU656_PAL_ILF1_END; // active line end - Field1

 // Calculate Field 1 first active line's active data start address
 *address1 = frame_ptr + ((ADI_ITU656_PAL_ILF1_START-1) * 1728) + 288;
 *f2start = ADI_ITU656_PAL_ILF2_START; // active line start - Field2
 *f2end = ADI_ITU656_PAL_ILF2_END; // active line end - Field2

 // Calculate Field 2 first active line's active data start address
 *address2 = frame_ptr + ((ADI_ITU656_PAL_ILF2_START-1) * 1728) + 288;
 break;

 case (ADI_ITU656_NTSC_PR): // Frame format is NTSC Progressive
 *widthcount = ADI_ITU656_NTSC_WIDTH;
 *f1start = ADI_ITU656_NTSC_PRF_START; // active line start
 *f1end = ADI_ITU656_NTSC_PRF_END; // active line end

 // Calculate First active line's active data start address
 address1 = frame_ptr + ((ADI_ITU656_NTSC_PRF_START-1) 1716) + 276;
 break;

 case (ADI_ITU656_PAL_PR): // Frame format is PAL Progressive
 *widthcount = ADI_ITU656_PAL_WIDTH;
 *f1start = ADI_ITU656_PAL_PRF_START; // active line start
 *f1end = ADI_ITU656_PAL_PRF_END; // active line end

 // Calculate First active line's active data start address
 address1 = frame_ptr + ((ADI_ITU656_PAL_PRF_START-1) 1728) + 288;
 break;

 default: // Default as NTSC Progressive
 *widthcount = ADI_ITU656_NTSC_WIDTH;
 *f1start = ADI_ITU656_NTSC_PRF_START; // active line start
 *f1end = ADI_ITU656_NTSC_PRF_END; // active line end

 // Calculate First active line's active data start address
 address1 = frame_ptr + ((ADI_ITU656_NTSC_PRF_START-1) 1716) + 276;
 break;
 }
}

adv7179.c

1 /***

 171

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

*
* Device: ADSP-BF537
* Osc: SCLK = 120MHz
* File Name: "adv7179.c"
* Author: Dominick O' Brien
* Date: 21-Nov-06
* Version 1.00
* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.."
*
***/

/***
* Description - This is the driver source code for the ADV7179 Video Encoder. It is layered
* on top of the PPI and TWI device drivers, which are configured for the specific
* use ADV7179 peripheral.
***/

/***
*
* ADV7179 device macro define
*
***/
#define ADI_ADV7179_DEVICE
#include "adi_adv717x.c" // Driver Register Access Includes

adv717x.c - Note: This is a standard system service that is un-modified within this

application. Reference "..\VisualDSP4.5\Blackfin\lib\src\drivers\encoder" directory. To

utilise this program it must not be directly included within a VisualDSP++4.5 project;

however it has to be situated within a project directory.

main.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

/***
*
* Device: ADSP-BF537
* Osc: SCLK = 120MHz
* File Name: "main.c"
* Author: Dominick O' Brien
* Date: 24-Nov-06
* Version 1.00
* Modified version of Analog Device’s "ezkitutilities.c" found in VisualDSP++4.5
* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.."
* Target Processor: ADSP-BF537
* Target Tools Revision: ADSP VisualDSP++ v4.5 (September 2006 Update)
*
***/
#include <services\services.h> // System Services
#include <drivers\adi_dev.h> // Device Manager Includes
#include <drivers\ppi\adi_ppi.h> // PPI Driver Includes
#include <defBF537.h> // Include all MMR's and bit defs
#include <drivers\encoder\adi_adv717x.h> // 7179 Device Driver Includes

 172

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

#include "ezkitutilities.h" // EZ-Kit Utilities
#include "adi_itu656.h" // ITU656 Utilities

/***
*
* ADSP-BF537 Switch Settings
*

*
* SW1: ALL OFF
* SW2: ALL ON
* SW3: ALL OFF
* SW4: OFF, ON, OFF, ON
* SW5: ALL ON
* SW6: ALL ON
* SW7: ALL ON
* SW8: ON, ON, OFF, OFF, OFF, OFF
*
***/

/***
*
* A/V Extender Board Jumper Settings
*

*
* JP1: NOT USED
* JP2: NOT USED
* JP3: JP3.5/7 & JP3.6/8 --> Processor's TWI
* JP4: JP4.1/2 & JP4.3/4 --> 27MHz A V extender card onboard clock to source PPI CLK
* JP5: JP5.3/4 --> Enables PPI0 to drive VID_OUT
* JP6: NOT USED
* JP7: NOT USED
* JP8: JP8.1/3 & JP8.2/4 --> Selects PPI0 as source
* JP8.7/8 --> Enables VID_OUT bus sync
* JP9: JP9.1/3 --> Connect AD7179 reset to reset flag
* JP10: NOT USED
*
***/

/***
*
* External Connections
*

*
* Connect a monitor to the A-V Extender card video-out connector. The video connectors are
* the bank of 6 RCA-style jacks on the A-V Extender card labelled as J7.
*
* J7 +---+
* | O O < Video out O | (white)
*
* | O O O | (red)
* +---+
*
***/

 173

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

/***
*
* Enumerations and defines
*
***/
#define ENCODER_PPI (0) // ADSP-BF537 has only 1 PPI called PPI0
#define NUM_BUFFERS (30) // Colour Change Rate = (NUM_BUFFERS/30)/second
// Colour Patterns
static u8 black[] = {0x80,0x10,0x80,0x10}; // Black pixel YCbCr format
static u8 blue[] = {0xF0,0x29,0x6E,0x29}; // Blue pixel YCbCr format
static u8 red[] = {0x5A,0x51,0xF0,0x51}; // Red pixel YCbCr format
static u8 magenta[] = {0xCA,0x6A,0xDE,0x6A}; // Magenta pixel YCbCr format
static u8 green[] = {0x36,0x91,0x22,0x91}; // Green pixel YCbCr format
static u8 cyan[] = {0xA6,0xAA,0x10,0xAA}; // Cyan pixel YCbCr format
static u8 yellow[] = {0x10,0xD2,0x92,0xD2}; // Yellow pixel YCbCr format
static u8 white[] = {0x80,0xEB,0x80,0xEB}; // White pixel YCbCr format

/***
*
* Static data
*
***/
// Create two areas in SDRAM that will each hold a 656 Frame
static u8 PingFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT];
static u8 PongFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT];

ADI_DEV_2D_BUFFER PingBuffer[NUM_BUFFERS]; // Create two buffer chains.
ADI_DEV_2D_BUFFER PongBuffer[NUM_BUFFERS];

// DMA Manager data (base memory + memory for 1 DMA channel)
static u8 DMAMgrData[ADI_DMA_BASE_MEMORY + (ADI_DMA_CHANNEL_MEMORY
* 1)];
// Deferred Callback Manager data (memory for 1 service plus 4 posted callbacks)
static u8 DCBMgrData[ADI_DCB_QUEUE_SIZE + (ADI_DCB_ENTRY_SIZE)*4];

// Device Manager data (base memory + memory for 3 devices)
// Memory for 3 devices is required because usage of a 717x device results in the usage of the
// PPI and SPI devices.
static u8 DevMgrData[ADI_DEV_BASE_MEMORY + (ADI_DEV_DEVICE_MEMORY *
3)];
ADI_DEV_DEVICE_HANDLE AD7179DriverHandle; // Handle to the ADV7179 Driver

/***
*
* ExceptionHandler - An Exception error should never happen but just in case if one occurs all
* the LEDs will light up.
*
***/
static ADI_INT_HANDLER(ExceptionHandler) // Exception Handler
{
 ezErrorCheck(1);
 return(ADI_INT_RESULT_PROCESSED);
}

/***

 174

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

*
* HWErrorHandler - A Hardware error should never happen but just in case if one occurs all
* the LEDs will light up.
*
***/
static ADI_INT_HANDLER(HWErrorHandler) // Hardware Error Handler
{
 ezErrorCheck(1);
 return(ADI_INT_RESULT_PROCESSED);
}

/***
*
* Callback - Callback occurs when the PPI has completed processing of the last buffer in the
* Ping & Pong Buffer chains.
*
***/
static void Callback(void *AppHandle,u32 Event,void *pArg)
{
 ADI_DEV_BUFFER *pBuffer; // Pointer to the Buffer that was processed

 switch (Event)
 { // Case Of (event type)
 case ADI_DEV_EVENT_BUFFER_PROCESSED: // CASE (buffer processed)
 // When the buffer chain was created, the CallbackParameter value for the buffer that was
 // generating the callback was set to be the address of the first buffer in the chain.
 // So here in the callback that value is passed in as the pArg parameter.
 pBuffer = (ADI_DEV_BUFFER *)pArg;
 break;

 case ADI_DEV_EVENT_DMA_ERROR_INTERRUPT: // Case (an Error)
 case ADI_PPI_EVENT_ERROR_INTERRUPT:
 ezTurnOnAllLEDs(); // Turn on all LEDs and wait for help
 while (1) ;
 }
}

void main(void)
{
 // Table of PPI driver configuration values
 ADI_DEV_CMD_VALUE_PAIR ConfigurationTable [] =
 {
 {ADI_DEV_CMD_SET_DATAFLOW_METHOD,
 (void*)ADI_DEV_MODE_CHAINED_LOOPBACK},
 {ADI_PPI_CMD_SET_CONTROL_REG, (void *)0x0082},
 {ADI_PPI_CMD_SET_LINES_PER_FRAME_REG,
 (void*)ADI_ITU656_NTSC_HEIGHT},
 {ADI_DEV_CMD_SET_STREAMING, (void *)TRUE},
 {ADI_DEV_CMD_END, NULL},
 };

 ADI_DCB_HANDLE DCBManagerHandle; // Handle to the Callback Service Manager
 ADI_DMA_MANAGER_HANDLE DMAManagerHandle; // Handle to the DMA Manager
 ADI_DEV_MANAGER_HANDLE DeviceManagerHandle; // Handle to the Device Manager

 u32 ResponseCount; // Response Counter

 175

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

 int i = 0; // Counter

 ezInit(1); // Initialise the EZ-Kit
 ezTurnOffAllLEDs();// Turn off all LEDs

 // Initialise the Interrupt Manager and hook the exception and hardware error interrupts
 ezErrorCheck(adi_int_Init(NULL, 0, &ResponseCount, NULL));
 ezErrorCheck(adi_int_CECHook(3, ExceptionHandler, NULL, FALSE));
 ezErrorCheck(adi_int_CECHook(5, HWErrorHandler, NULL, FALSE));

 // Initialise the Deferred Callback Manager and setup a queue
 ezErrorCheck(adi_dcb_Init(&DCBMgrData[0],
 ADI_DCB_QUEUE_SIZE,
 &ResponseCount,
 NULL));

 ezErrorCheck(adi_dcb_Open(14,
 &DCBMgrData[ADI_DCB_QUEUE_SIZE],
 (ADI_DCB_ENTRY_SIZE)*4,
 &ResponseCount,
 &DCBManagerHandle));

 // Initialise the flag service, memory is not passed because callbacks are not being used
 ezErrorCheck(adi_flag_Init(NULL, 0, &ResponseCount, NULL));

 for (i = EZ_FIRST_LED; i < EZ_NUM_LEDS; i++) // Enable all LEDs
 {
 ezInitLED(i);
 }

 ezErrorCheck(adi_dma_Init(DMAMgrData, // Initialise the DMA Manager
 sizeof(DMAMgrData),
 &ResponseCount,
 &DMAManagerHandle,
 NULL));

 ezErrorCheck(adi_dev_Init(DevMgrData, // Initialise the Device Manager
 sizeof(DevMgrData),
 &ResponseCount,
 &DeviceManagerHandle,
 NULL));

 // Initialise the two frames and make them both different colours
 adi_itu656_FrameFormat (PingFrame,ADI_ITU656_NTSC_PR);
 adi_itu656_FrameFormat (PongFrame,ADI_ITU656_NTSC_PR);
 adi_itu656_FrameFill (PingFrame,ADI_ITU656_NTSC_PR,white); // WHITE
 adi_itu656_FrameFill (PongFrame,ADI_ITU656_NTSC_PR,blue); // BLUE

 ezEnableVideoEncoder(); // Enable video encoder (7179)
 ezDelay(300); // Give the encoder time to sync

 // Open the AD7179 Driver for Output
 ezErrorCheck(adi_dev_Open(DeviceManagerHandle, // Handle controlling the Device
 &ADIADV7179EntryPoint, // Address of Entry Point
 ENCODER_PPI, // Number identifying which Device is Opened
 NULL, // No Client Handle

 176

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

 &AD7179DriverHandle, // Handle Address
 ADI_DEV_DIRECTION_OUTBOUND, // Data Direction
 DMAManagerHandle, // Handle to DMA Manager
 DCBManagerHandle, // Handle to Callback Manager
 Callback)); // Callback

 // Set PPI Device Number
 ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
 // Command Identifier

ADI_ADV717x_CMD_SET_PPI_DEVICE_NUMBER,
 (void*)0)); // PPI Device Number

 // Open PPI Device
 ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
 ADI_ADV717x_CMD_SET_PPI_STATUS, // Command Identifier
 // Address of Command Specific Parameter

(void*)ADI_ADV717x_PPI_OPEN));

 // Create a buffer chain that points to the PingFrame. Each buffer points to the same PingFrame
 // so the PingFrame will be displayed NUM_BUFFERS times. NUM_BUFFERS is sized to
 // keep the display busy for 1 second. Place a callback on only the last buffer in the chain.
 // Make the CallbackParameter (the value that gets passed to the callback function as the pArg
 // parameter) point to the first buffer in the chain. This way, when the callback goes off, the
 // callback function can requeue the whole chain if the loopback mode is off.

 for (i = 0; i < NUM_BUFFERS; i++) // Populate the PingBuffer
 {
 PingBuffer[i].Data = PingFrame; // Point to PingFrame Data
 PingBuffer[i].ElementWidth = 2;
 PingBuffer[i].XCount = (ADI_ITU656_NTSC_LINE_WIDTH/2);
 PingBuffer[i].XModify = 2;
 PingBuffer[i].YCount = ADI_ITU656_NTSC_HEIGHT;
 PingBuffer[i].YModify = 2;
 PingBuffer[i].CallbackParameter = NULL;
 PingBuffer[i].pNext = &PingBuffer[i + 1];
 }

 PingBuffer[NUM_BUFFERS - 1].CallbackParameter = &PingBuffer[0];
 PingBuffer[NUM_BUFFERS - 1].pNext = NULL;

 for (i = 0; i < NUM_BUFFERS; i++) // Populate the PongBuffer
 {
 PongBuffer[i].Data = PongFrame; // Point to PongFrame Data
 PongBuffer[i].ElementWidth = 2;
 PongBuffer[i].XCount = (ADI_ITU656_NTSC_LINE_WIDTH/2);
 PongBuffer[i].XModify = 2;
 PongBuffer[i].YCount = ADI_ITU656_NTSC_HEIGHT;
 PongBuffer[i].YModify = 2;
 PongBuffer[i].CallbackParameter = NULL;
 PongBuffer[i].pNext = &PongBuffer[i + 1];
 }

 PongBuffer[NUM_BUFFERS - 1].CallbackParameter = &PongBuffer[0];
 PongBuffer[NUM_BUFFERS - 1].pNext = NULL;

 // Configure the AD7179 Dataflow Method

 177

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

 ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
 ADI_DEV_CMD_SET_DATAFLOW_METHOD, // Command Parameter
 (void *)ADI_DEV_MODE_CHAINED_LOOPBACK)); // Outbound Loopback

 // Give the device the Ping and Pong buffer chains
 ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device

 ADI_DEV_2D, // 2D Buffer
 (ADI_DEV_BUFFER *)&PingBuffer)); // Point to PingBuffer

 ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device

 ADI_DEV_2D, // 2D Buffer
 (ADI_DEV_BUFFER *)&PongBuffer)); // Point to PongBuffer

 // Enable data flow
 ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device

 ADI_DEV_CMD_SET_DATAFLOW// Command Parameter
 (void *)TRUE)); // Turn on Dataflow

 while(1);
}

 178

Appendix F - Application Source Code

ezkitutilities.h - Note: See Appendix E – ezkitutilities.h

adi_itu656.h - Note: See Appendix E – adi_itu656.h

CAN.h - Note: See Appendix E - CAN_Test.h. CAN.h and CAN_Test.h (Appendix E) are

identical except that Line 51 of CAN_Test.h is omitted from CAN.h

ezkitutilities.c - Note: See Appendix E – ezkitutilities.c

adi_itu656.c - Note: See Appendix E – adi_itu656.c

adv7179.c - Note: See Appendix E – adv7179.c

adv717x.c - Note: See Appendix E – adv717x.c

CAN_Init.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

/***
*
* Device: ADSP-BF537
* Osc: SCLK = 120MHz
* File Name: "CAN_Init.c"
* Author: Dominick O' Brien
* Date: 19-Jan-07
* Version 1.00
*
***/
#include " CAN.h" // CAN Utilities

/***
*
* Init_CAN_Port – Sets up the Ports for CAN use and configured the PFx pins for access to the
* on-board LEDs.
*
***/
void Init_CAN_Port ()
{
 short temp_fix;
 // Configure CAN RX and CAN TX pins on GPIO Port

 179

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

 temp_fix = *pPORT_MUX;
 ssync();

 *pPORT_MUX = PJCE_CAN; // Enable CAN Pins On Port J
 ssync();
 *pPORT_MUX = PJCE_CAN; // #22 work-around: write it a few times
 ssync();
 *pPORT_MUX = PJCE_CAN; // #22 work-around: write it a few times
 ssync();

 temp_fix = *pPORT_MUX; // #22 work-around: read PORT_MUX after writing
 ssync();

 // Configure Port F pins for LED access
 *pPORTFIO_DIR = 0x0FC0; // Enable PF6-11 As Outputs (LEDs)
 ssync();
} // End Init_Port ()

/***
*
* Init_CAN_Timing – Sets up the CAN_TIMING & CLOCK Registers
*
***/
void Init_CAN_Timing()
{
 // ===
 // BIT TIMING:
 //
 // CCLK 600 MHz
 // SCLK 120 MHz
 //
 // CAN_CLOCK : Prescaler (BRP)
 // CAN_TIMING : SJW = 2, TSEG2 = 3, TSEG1 = 5
 //
 // tBIT = TQ x (1 + (TSEG1 + 1) + (TSEG2 + 1))
 // 2e-6 = TQ x (1 + (5 + 1) + (3 + 1))
 // TQ = 1.82e-7
 //
 // TQ = (BRP+1) / SCLK
 // 1.82e-7 = (BRP+1) / 120e6
 // (BRP+1) = 21.84
 // BRP = 20.84 ~ 21
 // ===
 // Set Bit Configuration Registers ...
 // ===
 *pCAN_TIMING = 0x0235;
 *pCAN_CLOCK = 21; // [0x15] 500kHz CAN Clock :: tBIT = 2us
 ssync();
} // End Init_CAN_Timing()

/***
*
* Init_CAN_Mailboxes – Configures Mailbox 24 to transmit a specific message ID with a
* message length of 8 bytes. Configures Mailbox 6 and 7 to each receive
* a specific message ID
*

 180

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

***/
void Init_CAN_Mailboxes()
{
 short msgID; // Variable for Mailbox 24 ID
 short msgID_OnB; // Variable for Mailbox 7 ID
 short msgID_SPI; // Variable for Mailbox 6 ID

 volatile char mbID;
 volatile char mbID_OnB; // Variable for Mailbox # for ON_B
 volatile char mbID_SPI; // Variable for Mailbox # for SPI
 // Mailbox 24 Will Transmit ACK to the Network via ID 0x007
 msgID = 0x007;
 mbID = 24;

 *(pCAN_MB_ID1(mbID)) = msgID << 2; // ID1, mask disabled, remote frame disable, 11 bit
 // identifier
 *(pCAN_MB_ID0(mbID)) = 0; // ID0 = all 0's
 *(pCAN_MB_LENGTH(mbID)) = 8; // DLC = 8 bytes

 // Mailbox 7 will Receive CAN Command from Network via ID 0x411
 // Mailbox 6 will Recieve CAN Command from Network via ID 0x189
 msgID_OnB = 0x411; // ID = dec 1041
 msgID_SPI = 0x189; // ID = dec 393
 mbID_OnB = 7; // Mailbox 7
 mbID_SPI = 6; // Mailbox 6

 *(pCAN_MB_ID1(mbID_OnB)) = msgID_OnB << 2; // ID1, mask disabled, remote frame
 // disable, 11 bit identifier
 *(pCAN_MB_ID0(mbID_OnB)) = 0; // ID0 = all 0's
 *(pCAN_MB_ID1(mbID_SPI)) = msgID_SPI << 2; // ID1, mask disabled, remote frame
 // disable, 11 bit identifier
 *(pCAN_MB_ID0(mbID_SPI)) = 0; // ID0 = all 0's
 *(pCAN_MB_LENGTH(mbID_SPI)) = 8; // DLC = 8 bytes
} // End Init_CAN_Mailboxes()

/***
*
* Init_Interrupts – Assigns interrupt priorities for CAN TX and CAN RX.
*
***/
void Init_Interrupts()
{
 // Configure Interrupt Priorities
 *pSIC_IAR0 = 0x77717777; // PPI DMA IRQ : 1 = IVG8
 *pSIC_IAR1 = 0x47777777; // CAN RX IRQ : 4 = IVG11
 *pSIC_IAR2 = 0x77777775; // CAN TX IRQ : 5 = IVG12
 *pSIC_IAR3 = 0x77777777;

 // Register Interrupt Handlers and Enable Core Interrupts
 register_handler(ik_ivg11, CAN_RCV_HANDLER);
 register_handler(ik_ivg12, CAN_XMT_HANDLER);

 // Enable SIC Level Interrupts
 *pSIC_IMASK |= (IRQ_CAN_RX|IRQ_CAN_TX);
} // End Init_Interrupts

 181

CAN_Functions.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

/***
*
* Device: ADSP-BF537
* Osc: SCLK = 120MHz
* File Name: "CAN_Functions.c"
* Author: Dominick O' Brien
* Date: 22-Jan-07
* Version 1.00
*
***/
#include "CAN.h" // CAN Utilities

/***
*
* CAN_Setup_Interrupts – Enables Mailbox Interrupts for Mailboxes Used
*
***/
void CAN_Setup_Interrupts()
{
 *pCAN_MBIM1 = 0x00C0; // Enable Interrupts for Mailbox 7 and Mailbox 6
 *pCAN_MBIM2 = 0x0100; // Enable Interrupt for Mailbox 24
 ssync();
} // End CAN_Setup_Interrupts

/***
*
* CAN_Enable – Writes Mailbox Direction and Enables Registers before issuing a CAN
* Configuration Request and waiting for a CAN Configuration acknowledge
* before continuing.
*
***/
void CAN_Enable()
{
 // Set Mailbox Direction
 *pCAN_MD1 = CAN_RX_MB_LO; // No Low Mailboxes (MB 0-15) Are RX
 *pCAN_MD2 = CAN_TX_MB_LO; // Mailbox 24 Enabled For TX

 // Enable Mailboxes
 *pCAN_MC1 = CAN_RX_MB_LO; // Enables Mailbox 7 and Mailbox 6
 *pCAN_MC2 = CAN_TX_MB_HI; // Enables Mailbox 24
 ssync();

 *pCAN_CONTROL &= ~CCR; // Enable CAN Configuration Mode (Clear CCR)

while(*pCAN_STATUS & CCA); // Wait for CAN Configuration Acknowledge (CCA)

} // End CAN_Enable

CAN_ISR.c

1
2
3

/***
*
* Device: ADSP-BF537

 182

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

* Osc: SCLK = 120MHz
* File Name: "CAN_ISR.c"
* Author: Dominick O' Brien
* Date: 24-Jan-07
* Version 1.00
*
***/
#include "CAN_Test.h" // CAN Utilities

/***
*
* CAN_RCV_HANDLER – This ISR checks for the highest priority RX Mailbox with an
* active interrupt and clears it.
*
***/
EX_INTERRUPT_HANDLER(CAN_RCV_HANDLER)
{
 char highMB; // Which CAN Registers Should Be Used (1 or 2)
 // short data type is 16 bits
 short mbim_status; // Temp Location for Interrupt Status
 short bit_pos = 0; // Offset Into MBxIF Registers

 mbim_status = *pCAN_MBRIF2;

 if (mbim_status == 0) // If High 16 MBoxes Have No Active IRQ
 {
 mbim_status = *pCAN_MBRIF1; // Check Low 16 MBoxes
 highMB = 0; // Clear High/Low* Indicator
 }

 else // Otherwise, Active High MBox IRQ Found
 {
 highMB = 1; // Set High/Low* Indicator
 }

 while (!(mbim_status & 0x8000)) // Scan Status Register For Highest MB IRQ
 {
 mbim_status <<= 1;
 bit_pos++; // bit_pos Contains Offset from MB31
 }

 if (highMB)
 {
 *pCAN_MBRIF2 = (1 << (15 - bit_pos));
 }

else // Low Mailbox Interrupt
 {
 if(bit_pos = = 0x8) // if Mailbox7 IRQ
 {
 if((*(pCAN_MB_DATA3(7)) <= 127))
 {
 clr_screen = 0; // Display BLACK
 }

 if((*(pCAN_MB_DATA3(7)) >= 128) && (*(pCAN_MB_DATA3(7)) <= 255))

 183

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

 {
 clr_screen = 1; // Display BLUE
 }

 if((*(pCAN_MB_DATA3(7)) >= 256) && (*(pCAN_MB_DATA3(7)) <= 383))
 {
 clr_screen = 2; // Display RED
 }

 if((*(pCAN_MB_DATA3(7)) >= 384) && (*(pCAN_MB_DATA3(7)) <= 511))
 {
 clr_screen = 3; // Display MAGENTA
 }

 if((*(pCAN_MB_DATA3(7)) >= 512) && (*(pCAN_MB_DATA3(7)) <= 639))
 {
 clr_screen = 4; // Display GREEN
 }

 if((*(pCAN_MB_DATA3(7)) >= 640) && (*(pCAN_MB_DATA3(7)) <= 767))
 {
 clr_screen = 5; // Display CYAN
 }

 if((*(pCAN_MB_DATA3(7)) >= 768) && (*(pCAN_MB_DATA3(7)) <= 895))
 {
 clr_screen = 6; // Display YELLOW
 }

 if(*(pCAN_MB_DATA3(7)) >= 896)
 {
 clr_screen = 7; // Display WHITE
 }
 } // end if Mailbox 7

 if(bit_pos = = 0x9) // if Mailbox 6 IRQ
 {
 // Place Received Commands Into CAN TX Mailbox
 *(pCAN_MB_DATA3(24)) = *(pCAN_MB_DATA3(6));
 *(pCAN_MB_DATA2(24)) = *(pCAN_MB_DATA2(6));
 *(pCAN_MB_DATA1(24)) = *(pCAN_MB_DATA1(6));
 *(pCAN_MB_DATA0(24)) = *(pCAN_MB_DATA0(6));

 // Issue CAN Transmit Request for Mailbox 24
 *pCAN_TRS2 = CAN_TX_MB_HI;
 ssync();
 } // end if Mailbox 6

 *pCAN_MBRIF1 = (1 << (15 - bit_pos)); // Write-1-to-Clear RX IRQ
 } // end Low Mailbox Interrupt
} // end CAN_RCV_HANDLER

/***
*
* CAN_ XMT_HANDLER – This ISR checks for the highest priority TX Mailbox with an
* active interrupt and clears it.

 184

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

*
***/
EX_INTERRUPT_HANDLER(CAN_XMT_HANDLER)
{
 char highMB; // Which CAN Registers Should Be Used (1 or 2)
 short mbim_status; // Temp Location for Interrupt Status
 short bit_pos = 0; // Offset Into MBxIF Registers

 mbim_status = *pCAN_MBTIF2; // Check High Mailboxes First
 if (mbim_status == 0) // If No High MB Interrupts
 {
 mbim_status = *pCAN_MBTIF1; // Check Low MB Interrupts
 highMB = 0; // Clear High/Low* Mailbox Indicator
 }

 else highMB = 1; // Set High/Low* Mailbox Indicator

 while (!(mbim_status & 0x8000)) // Find Highest Mailbox W/ Active IRQ
 {
 mbim_status <<= 1;
 bit_pos++;
 } // Interrupting Mailbox Found

 if (highMB) // Process High Mailbox IRQ
 {
 *pCAN_MBTIF2 = (1 << (15 - bit_pos));
 }

 else // Else, Process Low Mailbox IRQ
 {
 *pCAN_MBTIF1 = (1 << (15 - bit_pos));
 }
ssync();

} // End CAN_XMT_HANDLER

main.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

/***
*
* Device: ADSP-BF537
* Osc: SCLK = 120MHz
* File Name: "main.c"
* Author: Dominick O' Brien
* Date: 30-Jan-07
* Version 1.00
* Modified version of Analog Device’s "ezkitutilities.c" found in VisualDSP++4.5
* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.."
* Target Processor: ADSP-BF537
* Target Tools Revision: ADSP VisualDSP++ v4.5 (September 2006 Update)
*
***/
#include <services\services.h> // System Services
#include <drivers\adi_dev.h> // Device Manager Includes
#include <drivers\ppi\adi_ppi.h> // PPI Driver Includes

 185

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

#include <defBF537.h> // Include all MMR's and bit defs
#include <drivers\encoder\adi_adv717x.h> // 7179 Device Driver Includes
#include "ezkitutilities.h" // EZ-Kit Utilities
#include "adi_itu656.h" // ITU656 Utilities
#include "CAN.h" // CAN Utilities

/***
*
* ADSP-BF537 Switch Settings
*

*
* SW1: ALL OFF
* SW2: ALL ON
* SW3: ALL OFF
* SW4: OFF, ON, OFF, ON
* SW5: ALL ON
* SW6: ALL ON
* SW7: ALL ON
* SW8: ON, ON, OFF, OFF, OFF, OFF
*
***/

/***
*
* A/V Extender Board Jumper Settings
*

*
* JP1: NOT USED
* JP2: NOT USED
* JP3: JP3.5/7 & JP3.6/8 --> Processor's TWI
* JP4: JP4.1/2 & JP4.3/4 --> 27MHz A V extender card onboard clock to source PPI CLK
* JP5: JP5.3/4 --> Enables PPI0 to drive VID_OUT
* JP6: NOT USED
* JP7: NOT USED
* JP8: JP8.1/3 & JP8.2/4 --> Selects PPI0 as source
* JP8.7/8 --> Enables VID_OUT bus sync
* JP9: JP9.1/3 --> Connect AD7179 reset to reset flag
* JP10: NOT USED
*
***/

/***
*
* External Connections
*

*
* Connect a monitor to the A-V Extender card video-out connector. The video connectors are
* the bank of 6 RCA-style jacks on the A-V Extender card labelled as J7.
*
* J7 +---+
* | O O < Video out O | (white)
*
* | O O O | (red)

 186

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

* +---+
*
***/

/***
*
* Enumerations and defines
*
***/
#define ENCODER_PPI (0) // ADSP-BF537 has only 1 PPI called PPI0
#define NUM_BUFFERS (1) // Colour Change Rate = (NUM_BUFFERS/30)/second
// Colour Patterns
static u8 black[] = {0x80,0x10,0x80,0x10}; // Black pixel YCbCr format
static u8 blue[] = {0xF0,0x29,0x6E,0x29}; // Blue pixel YCbCr format
static u8 red[] = {0x5A,0x51,0xF0,0x51}; // Red pixel YCbCr format
static u8 magenta[] = {0xCA,0x6A,0xDE,0x6A}; // Magenta pixel YCbCr format
static u8 green[] = {0x36,0x91,0x22,0x91}; // Green pixel YCbCr format
static u8 cyan[] = {0xA6,0xAA,0x10,0xAA}; // Cyan pixel YCbCr format
static u8 yellow[] = {0x10,0xD2,0x92,0xD2}; // Yellow pixel YCbCr format
static u8 white[] = {0x80,0xEB,0x80,0xEB}; // White pixel YCbCr format

/***
*
* Static data
*
***/
// Create two areas in SDRAM that will each hold a 656 Frame
static u8 PingFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT];
static u8 PongFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT];

ADI_DEV_2D_BUFFER PingBuffer[NUM_BUFFERS]; // Create two buffer chains.
ADI_DEV_2D_BUFFER PongBuffer[NUM_BUFFERS];

// DMA Manager data (base memory + memory for 1 DMA channel)
static u8 DMAMgrData[ADI_DMA_BASE_MEMORY + (ADI_DMA_CHANNEL_MEMORY
* 1)];
// Deferred Callback Manager data (memory for 1 service plus 4 posted callbacks)
static u8 DCBMgrData[ADI_DCB_QUEUE_SIZE + (ADI_DCB_ENTRY_SIZE)*4];

// Device Manager data (base memory + memory for 3 devices)
// Memory for 3 devices is required because usage of a 717x device results in the usage of the
// PPI and SPI devices.
static u8 DevMgrData[ADI_DEV_BASE_MEMORY + (ADI_DEV_DEVICE_MEMORY *
3)];
ADI_DEV_DEVICE_HANDLE AD7179DriverHandle; // Handle to the ADV7179 Driver

/***
*
* Global data
*
***/
ADI_ITU656_FRAME_TYPE Frame; // ITU Frame Type
short clr_screen = 0;

/***
*

 187

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

* ExceptionHandler - An Exception error should never happen but just in case if one occurs all
* the LEDs will light up.
*
***/
static ADI_INT_HANDLER(ExceptionHandler) // Exception Handler
{
 ezErrorCheck(1);
 return(ADI_INT_RESULT_PROCESSED);
}

/***
*
* HWErrorHandler - A Hardware error should never happen but just in case if one occurs all
* the LEDs will light up.
*
***/
static ADI_INT_HANDLER(HWErrorHandler) // Hardware Error Handler
{
 ezErrorCheck(1);
 return(ADI_INT_RESULT_PROCESSED);
}

/***
*
* Callback - Callback occurs when the PPI has completed processing of the last buffer in the
* Ping & Pong Buffer chains.
*
***/
static void Callback(void *AppHandle,u32 Event,void *pArg)
{
 ADI_DEV_BUFFER *pBuffer; // Pointer to the Buffer that was processed

 switch (Event)
 {
 case ADI_DEV_EVENT_BUFFER_PROCESSED: // CASE (buffer processed)
 // When the buffer chain was created, the CallbackParameter value for the buffer that was
 // generating the callback was set to be the address of the first buffer in the chain.
 // So here in the callback that value is passed in as the pArg parameter.
 pBuffer = (ADI_DEV_2D_BUFFER *)pArg;

 switch(clr_screen) // Update data buffer with new colour
 {
 case 0: // Fill frame with BLACK colour
 adi_itu656_FrameFill (pBuffer->Data,Frame,black);
 break;

 case 1: // Fill frame with BLUE colour
 adi_itu656_FrameFill (pBuffer->Data,Frame,blue);
 break;

 case 2: // Fill frame with RED colour
 adi_itu656_FrameFill (pBuffer->Data,Frame,red);
 break;

 case 3: // Fill frame with MAGENTA colour
 adi_itu656_FrameFill (pBuffer->Data,Frame, magenta);

 188

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

 break;

 case 4: // Fill frame with GREEN colour
 adi_itu656_FrameFill (pBuffer->Data,Frame,green);
 break;

 case 5: // Fill frames with CYAN colour
 adi_itu656_FrameFill (pBuffer->Data,Frame,cyan);
 break;

 case 6: // Fill frame with YELLOW colour
 adi_itu656_FrameFill (pBuffer->Data,Frame,yellow);
 break;

 default: // Fill frame with WHITE colour
 adi_itu656_FrameFill (pBuffer->Data,Frame,white);
 break;
 }

 break;

 // CASE (an error)
 case ADI_DEV_EVENT_DMA_ERROR_INTERRUPT:
 case ADI_PPI_EVENT_ERROR_INTERRUPT:
 ezTurnOnAllLEDs();// Turn on all LEDs and wait for help
 while (1) ;
 }
}

void main(void)
{
 // Table of PPI driver configuration values
 ADI_DEV_CMD_VALUE_PAIR ConfigurationTable [] =
 {
 {ADI_DEV_CMD_SET_DATAFLOW_METHOD,
 (void*)ADI_DEV_MODE_CHAINED_LOOPBACK},
 {ADI_PPI_CMD_SET_CONTROL_REG, (void *)0x0082},
 {ADI_PPI_CMD_SET_LINES_PER_FRAME_REG,
 (void*)ADI_ITU656_NTSC_HEIGHT},
 {ADI_DEV_CMD_SET_STREAMING, (void *)TRUE},
 {ADI_DEV_CMD_END, NULL},
 };

 ADI_DCB_HANDLE DCBManagerHandle; // Handle to the Callback Service Manager
 ADI_DMA_MANAGER_HANDLE DMAManagerHandle; // Handle to the DMA Manager
 ADI_DEV_MANAGER_HANDLE DeviceManagerHandle; // Handle to the Device Manager

 u32 ResponseCount; // Response Counter
 int i = 0; // Counter
 Frame = ADI_ITU656_NTSC_PR; // Frame Type

 ezInit(1); // Initialise the EZ-Kit
 // - Configure Async Memory
 // - Configure Power & SDRAM Parameters
 // - Configure Clock, CCLK = 600MHz, SCLK = 120MHz

 189

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

 Init_CAN_Port(); // Initialise CAN Ports
 Init_CAN_Timing(); // Setup CAN Timing Parameters
 Init_CAN_Mailboxes(); // Initialise CAN Mailboxes' Registers
 CAN_Setup_Interrupts(); // Configure CAN Mailbox Interrupts
 CAN_Enable(); // Enable CAN

 ezTurnOffAllLEDs(); // Turn off all LEDs

 // Initialise the Interrupt Manager and hook the exception and hardware error interrupts
 ezErrorCheck(adi_int_Init(NULL, 0, &ResponseCount, NULL));
 ezErrorCheck(adi_int_CECHook(3, ExceptionHandler, NULL, FALSE));
 ezErrorCheck(adi_int_CECHook(5, HWErrorHandler, NULL, FALSE));

 // Initialise the Deferred Callback Manager and setup a queue
 ezErrorCheck(adi_dcb_Init(&DCBMgrData[0],
 ADI_DCB_QUEUE_SIZE,
 &ResponseCount,
 NULL));

 ezErrorCheck(adi_dcb_Open(14,
 &DCBMgrData[ADI_DCB_QUEUE_SIZE],
 (ADI_DCB_ENTRY_SIZE)*4,
 &ResponseCount,
 &DCBManagerHandle));

 // Initialise the flag service, memory is not passed because callbacks are not being used
 ezErrorCheck(adi_flag_Init(NULL, 0, &ResponseCount, NULL));

 for (i = EZ_FIRST_LED; i < EZ_NUM_LEDS; i++) // Enable all LEDs
 {
 ezInitLED(i);
 }

 ezErrorCheck(adi_dma_Init(DMAMgrData, // Initialise the DMA Manager
 sizeof(DMAMgrData),
 &ResponseCount,
 &DMAManagerHandle,
 NULL));

 ezErrorCheck(adi_dev_Init(DevMgrData, // Initialise the Device Manager
 sizeof(DevMgrData),
 &ResponseCount,
 &DeviceManagerHandle,
 NULL));

 // Initialise the two frames and make them both BLACK in colour
 adi_itu656_FrameFormat (PingFrame, Frame);
 adi_itu656_FrameFormat (PongFrame, Frame);
 adi_itu656_FrameFill (PingFrame,ADI_ITU656_NTSC_PR,black);
 adi_itu656_FrameFill (PongFrame,ADI_ITU656_NTSC_PR,black);

 ezEnableVideoEncoder(); // Enable video encoder (7179)
 ezDelay(300); // Give the encoder time to sync

 // Open the AD7179 Driver for Output
 ezErrorCheck(adi_dev_Open(DeviceManagerHandle, // Handle controlling the Device

 190

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

 &ADIADV7179EntryPoint, // Address of Entry Point
 ENCODER_PPI, // Number identifying which Device is Opened
 NULL, // No Client Handle
 &AD7179DriverHandle, // Handle Address
 ADI_DEV_DIRECTION_OUTBOUND, // Data Direction
 DMAManagerHandle, // Handle to DMA Manager
 DCBManagerHandle, // Handle to Callback Manager
 Callback)); // Callback

 // Set PPI Device Number
 ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
 // Command Identifier

ADI_ADV717x_CMD_SET_PPI_DEVICE_NUMBER,
 (void*)0)); // PPI Device Number

 // Open PPI Device
 ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
 ADI_ADV717x_CMD_SET_PPI_STATUS, // Command Identifier
 // Address of Command Specific Parameter

(void*)ADI_ADV717x_PPI_OPEN));

 // Create a buffer chain that points to the PingFrame. Each buffer points to the same PingFrame
 // so the PingFrame will be displayed NUM_BUFFERS times. NUM_BUFFERS is sized to
 // keep the display busy for 1 second. Place a callback on only the last buffer in the chain.
 // Make the CallbackParameter (the value that gets passed to the callback function as the pArg
 // parameter) point to the first buffer in the chain. This way, when the callback goes off, the
 // callback function can requeue the whole chain if the loopback mode is off.

 for (i = 0; i < NUM_BUFFERS; i++) // Populate the PingBuffer
 {
 PingBuffer[i].Data = PingFrame; // Point to PingFrame Data
 PingBuffer[i].ElementWidth = 2;
 PingBuffer[i].XCount = (ADI_ITU656_NTSC_LINE_WIDTH/2);
 PingBuffer[i].XModify = 2;
 PingBuffer[i].YCount = ADI_ITU656_NTSC_HEIGHT;
 PingBuffer[i].YModify = 2;
 PingBuffer[i].CallbackParameter = NULL;
 PingBuffer[i].pNext = &PingBuffer[i + 1];
 }

 PingBuffer[NUM_BUFFERS - 1].CallbackParameter = &PingBuffer[0];
 PingBuffer[NUM_BUFFERS - 1].pNext = NULL;

 for (i = 0; i < NUM_BUFFERS; i++) // Populate the PongBuffer
 {
 PongBuffer[i].Data = PongFrame; // Point to PongFrame Data
 PongBuffer[i].ElementWidth = 2;
 PongBuffer[i].XCount = (ADI_ITU656_NTSC_LINE_WIDTH/2);
 PongBuffer[i].XModify = 2;
 PongBuffer[i].YCount = ADI_ITU656_NTSC_HEIGHT;
 PongBuffer[i].YModify = 2;
 PongBuffer[i].CallbackParameter = NULL;
 PongBuffer[i].pNext = &PongBuffer[i + 1];
 }

 PongBuffer[NUM_BUFFERS - 1].CallbackParameter = &PongBuffer[0];

 191

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

 PongBuffer[NUM_BUFFERS - 1].pNext = NULL;

 // Configure the AD7179 Dataflow Method
 ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
 ADI_DEV_CMD_SET_DATAFLOW_METHOD, // Command Parameter
 (void *)ADI_DEV_MODE_CHAINED_LOOPBACK)); // Outbound Loopback

 // Give the device the Ping and Pong buffer chains
 ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device

 ADI_DEV_2D, // 2D Buffer
 (ADI_DEV_BUFFER *)&PingBuffer)); // Point to PingBuffer

 ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device

 ADI_DEV_2D, // 2D Buffer
 (ADI_DEV_BUFFER *)&PongBuffer)); // Point to PongBuffer

 Init_Interrupts(); // Assign Interrupt priorities for CAN RX/TX

 // Enable data flow
 ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device

 ADI_DEV_CMD_SET_DATAFLOW// Command Parameter
 (void *)TRUE)); // Turn on Dataflow

 while(1);
}

 192

Appendix G - SAE 2007-01-1644

 193

 194

 195

 196

 197

 198

