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Abstract

THE DESIGN & SYNTHESIS OF A GRAPHICAL SYSTEM FOR
THE VISUAL REPRESENTATION OF
AUTOMOTIVE DATA

By

Dominick P. O’ Brien

Master of Engineering

Waterford Institute of Technology

This report investigates the design and implementation of a system that visually
represents automotive data upon a connected graphical display. The devised system
obtained vehicle data from numerous CAN nodes that were constructed to formulate an
automotive network. The data was transmitted on this network and was interpreted by an
intelligent-device. The intelligent-device manipulated the CAN data into an appropriate
digital video stream. This stream was then converted into analogue format for display
upon a monitor’s screen. This report details all aspects of the design, testing and

synthesis of this automotive application.

il
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Chapter 1 - Introduction

1.1 Introduction

Since the advent of vehicular instrumentation, dash-panel displays have traditionally been
implemented with analogue and mechanical dials and gauges. For example, fuel and
temperature gauges were analogue electrical devices; whereas speedometers and
tachometers were mechanically driven. From this dash-panel displays have today evolved
to incorporate both analogue and digital dials and gauges. For instance, some cars
currently utilise analogue electrical speedometer devices while they also include a
tachometer that is comprised of a LCD (Liquid Crystal Display) [1]. The focus now is on
developing dash-panel displays that dynamically represent vehicular data utilising a

complete graphical approach.

This research project investigates the design and synthesis of an application which
visually represents simulated automobile data. This information is obtained via a CAN
(Controller Area Network) network and is displayed upon a connected monitor. Modern
day vehicles contain many sensors that measure various performance parameters; e.g.
automobile speed, oil temperature etc. Therefore this project necessitates a suitable

method for mimicking the operation of such sensors in order to replicate authentic



vehicle data. Once obtained, this information is transmitted over a CAN network and it is
essential to appropriately manipulate it with the aim of representing it proportionally
upon a display-device. Consequently, the goal of this research project is to utilise a
suitable intelligent-device and additional resources to process CAN information and
configure the data for visual representation. For this system a television screen is

sufficient to act as a monitor utilised to illustrate vehicle data.
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Figure 1: Application Overview

1.2 Thesis Organisation

The material and information presented in this thesis is compiled into two main sections.
The first section, Literature Review, gives an overview of the protocols, technologies and
components researched in order to formulate a suitable methodology for this application.

This section is comprised of Chapters 2, 3 and 4.

The second section, System Synthesis, details the implementation of the system design
with respect to the findings of the Literature Review section. This particular section
encompasses Chapters 5, 6 and 7. Finally, there are conclusions drawn by the author

based on the outcomes of the research and system implementation.

The work presented in this thesis is laid out as follows:



Chapter 2:

Chapter 2 discusses the CAN protocol used for in-vehicle networking;
detailing the exact composition of a CAN message and the physical

make-up of an automotive network.

Chapter 3:

Chapter 3 introduces the fundamentals of video processing to the
reader. It describes the basics relating to video data and discusses in

detail a particular digital video standard.

Chapter 4:

Chapter 4 details the selection of a suitable processor for utilisation
within this system. This chapter describes how the author evaluated
numerous processors under several key considerations in order to

establish the most fitting component for the system’s development.

Chapter 5:

Chapter 5 outlines the implementation of the CAN network employed
in this system. It describes to the reader how the selected components
were coordinated, both in terms of hardware and software, to instigate
the network. An account of the test algorithms used to establish correct

functionality of the network is also included.

Chapter 6:

Chapter 6 discusses the measures taken by the author to implement a
video display incorporating the device chosen in Chapter 4. It
describes how encountered errors were overcome in order to devise a

correct video module strategy.

Chapter 7:

Chapter 7 describes how the strategies devised in Chapters 5 and 6
were combined to formulate the system’s synthesis. A discussion is
included outlining how encountered problems were surmounted in

order to visually represent vehicle data upon a display device.

Chapter 8:

Chapter 8 outlines the conclusions derived by the author based on the
research and system implementation conducted. A discussion regarding
further possibilities for research based on findings from this particular

study is also provided.

Table 1: Table of Chapters




SECTION I - TECHNICAL &
LITERATURE REVIEW



Chapter 2 - CAN Bus Protocol

2.1 Introduction

This chapter details and outlines the CAN bus protocol. The information given in this

chapter is partitioned into the following sections:

® An overview describing the history and fundamental ideas behind the introduction

of the CAN protocol for utilisation as a vehicle networking standard.

® An account detailing how the CAN protocol is physically implemented including

a discussion on bit rates and timing.

* A look at what exactly constitutes a CAN message and how devices connected to

the network achieve synchronisation with each another.

® A synopsis portraying arbitration and error confinement within the CAN bus

protocol.



2.2 CAN Bus Protocol - An Overview

The CAN protocol is an advanced asynchronous serial-bus system that efficiently
supports distributed control systems. It was initially developed for use in automobiles by
Bosch in the late 1980s [2]. The CAN protocol is internationally standardised by the ISO
(International Standardisation Organisation) and the SAE (Society of Automotive
Engineers) [3]. ISOI11898 1is the international standard for high-speed CAN
communications in automobiles. CAN is presently being employed as the standard for
vehicle communications within Europe by automobile manufacturers. Meanwhile, it is

gaining more mainstream acceptance within the United States [4].

CAN is similar in principle to other serial communication protocols such as SPI (Serial
Peripheral Interface) [5]; however it is more complex. It is a “message-based” protocol as
opposed to an “address-based” network system such as FcC (Inter-Integrated Circuit) [6].
This essentially means that devices connected to a CAN network do not have unique
addresses, but rather the message(s) that a device sends out onto the network possesses a
unique ID number [7]. As a result, each device on the network listens to every message
transmitted on the bus and determines what action, if any, it needs to take. For that

reason, this implies that a CAN network may contain multiple masters.

The development of CAN began as a result of the increasing quantity of electronic
components and control systems being incorporated into modern-day motor vehicles [3],
[8]. Examples of such components/systems include engine management systems,
transmission control and central locking. The integration of these electronic
components/control systems result in additional safety and comfort features for the
driver; thus enhancing the vehicle as a whole. To further these improvements it was
necessary for the different control systems to exchange information [3], [7]. Previously,
this was carried out using discrete interconnection of the different systems, i.e. point-to-
point wiring. The requirement for data exchange has since grown to such an extent that a
cable network with a length of up to several kilometres, with many connectors, would be

required if point-to-point wiring was employed.
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Figure 2: Automobile Systems Interconnected using Point-to-Point Wiring

Subsequently a solution to this problem was realised with the design and introduction of
the CAN bus protocol. Within the CAN protocol point-to-point wiring was replaced by a

single serial-bus connecting all control systems and electronic devices on the network [2],

[4].

The design of the CAN protocol had to take into consideration some special requirements
due to its employment within a vehicle. Examples of such special requirements include
durability and reliability. This is accomplished in the design by adding some CAN
specific hardware to each control unit that provides the “rules” of the protocol for
transmitting and receiving information via the bus. The combination of CAN specific
hardware and a particular control system/electronic device leads to the formulation of a
CAN node. Each of the nodes on a particular network has a solitary interface to the
serial-bus network thus allowing communication between attached nodes. Due to the fact
that each of the nodes on a CAN network connects to the same serial-bus there is a

considerable reduction in cable length requirements.
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Figure 3: CAN Serial-Bus Interface Leading to Reduced Cable-Lengths

As CAN is an asynchronous multi-master message-based protocol, the designer can
implement a degree of flexibility into how and when nodes communicate over the
network. For instance, a particular node may only transmit a message every twenty
milliseconds, while another node may only transmit data if, for instance, a temperature
rises above a pre-determined value [9]. Therefore it is easy to see that the use of CAN
within an automobile introduces adaptability and practicality to a designer for each

individual network.

2.3 CAN & the OSI Model

The CAN protocol, like many other network topologies, can be illustrated using the
seven-layer OSI (Open Systems Interconnection) model [4], [10], [11]. This layered
approach is intended to achieve interoperability between standard components from
different manufacturers. With reference to this model the CAN protocol defines the
functions and services of the Data Link Layer and also the bit-timing and synchronisation
components of the Physical Layer [12]. The remaining elements of the Physical Layer
and the five additional layers are purposely not defined within the CAN protocol [10].
The implementation of these additional layers is completely at the hand of the system-

designer so that specific system requirements can be met.
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Figure 4: CAN Protocol with Reference to the OSI Model

The additional five layers of the OSI model are typically implemented by a system-
designer using a number of hardware/software components which complete the formation

of a CAN node. The components that classically comprise a node are as listed below:

e Application Software that controls a particular function e.g. Measure water
temperature. Application software executing within a particular CAN node may

perform a singular function, or a number of functions depending on the situation.

e Microcontroller (or a corresponding intelligent embedded device) upon which
the application software executes. This device also transmits/receives relevant

information to/from a CAN Controller at typical digital logic levels.



CAN Controller is used to read data from the microcontroller and write it to a
CAN Transceiver. Conversely, a CAN Controller may receive data from a CAN
Transceiver, via the network, and transmit it to the microcontroller. The CAN
Controller generally interfaces with a microcontroller (or an equivalent intelligent
embedded device) via a SPI link. This device typically contains components
which allow for the filtering of unwanted messages transmitted over the network

resulting in the reduction of the microcontroller’s overhead.

CAN Transceiver exchanges information with a CAN Controller and broadcasts
it over the asynchronous network. Additionally this device converts the digital
signals supplied to it by a CAN controller to signals suitable for transmission over
the bus cabling. A CAN Transceiver also provides a buffer between the CAN
Controller and the high-voltage spikes that can be generated on the CAN bus by

outside sources (EMI, ESD, electrical transients, etc.).

CAMN Node

| Software Application |

| microcontroller |

i

| cancontroller |

I

| CAM Transceiver |

caM |
Mode

=

1 CAN Metwork 1

M AN
Mode Mode

Figure 5: Typical CAN Node
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The CAN Controller and Transceiver are the hardware units, mentioned earlier, that help
to meet numerous requirements like durability and reliability. With the popularity of
CAN increasing, not just within the automotive industry [9], but also within other sectors,
many IC (Integrated Circuit) manufacturers have taken the step of integrating CAN
Controller modules into their microcontrollers. This consequently eradicates the SPI link

previously needed between a microcontroller and a peripheral CAN Controller.

2.3.1 CAN’s Physical Layer

As mentioned earlier, the CAN protocol only defines the bit-timing and encoding
portions of the Physical Layer. The Physical Layer essentially defines how the raw-data

is actually transmitted over the network [7].

2.3.1.1 Bit Encoding

Fundamentally the CAN bus protocol uses NRZ (Non-Return to Zero) bit-encoding to
represent data [13]. NRZ encoding represents data with Logic 1 or O levels during the
entire bit time. If two or more Logic 1s (or Logic 0s) occur in succession, the waveform

does not return to Logic 0 (Logic 1) level until Logic 0 (Logic 1) actually occurs.

11 12

BitTime 1 . 2 , 8 , & , 5

|

| 1 | a | 1 | a | 1

1 '8 ' @

Figure 6: An Example of a NRZ Waveform

The CAN protocol specifies two logical states - dominant (Logic 0) and recessive (Logic

1). ISO11898 defines a differential voltage, Vprr, to represent these two logic states.
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Typically, a twisted-wire pair is used to transfer data over the network using. Data can
also be transferred over the network using other physical-phenomena e.g. light pulses.
The wires are twisted together to prevent electromagnetic interference from other
electrical devices internal or external to the vehicle. One of the wires is given the label
CANH (CAN High), while the other is given the label CANL (CAN Low) [3], [7]. The

differential signal between the voltages carried in each wire defines the bus state.

Voirr =Vean = Vean Eq. 2.1

, where Ve 1s the differential voltage (Volts),

Veann and Veane are the CANH and CANL voltages respectively (Volts).

E  AHL Dorninant
E | |
; Recessive i Recessive
o)
a
> e -

CAML

Time it

Figure 7: Differential Bus Signalling

In the recessive state, the differential voltage between the two signals is less than a
minimum threshold. Conversely, in the dominant state the differential voltage between
CANH and CANL is greater than a minimum threshold. A dominant bit will always have
precedence over a recessive bit as CAN uses the Wired-AND mechanism [3]. Under this
system if any node transmits a dominant bit the bus resides in the dominant state; the
CAN bus only exists in the recessive state when all nodes on the network transmit

recessive bits.

12



Dorninant
Differential
Output
Range

Recessive
Differential
Cutput
Range

Node A Node B Node C Bus State
Dominant Dominant Dominant Dominant
Dominant Dominant Recessive Dominant
Dominant Recessive Dominant Dominant
Dominant Recessive Recessive Dominant
Recessive Dominant Dominant Dominant
Recessive Dominant Recessive Dominant
Recessive Recessive Dominant Dominant
Recessive Recessive Recessive Recessive

Table 2: Truth-Table for Wired-AND Mechanism
Y
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Figure 8: 1SO11898 Nominal Bus Levels
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2.3.1.2 Transmission Medium and Connectors

With reference to the OSI model, even though the CAN protocol itself does not define the
PMA and DMA sub-layers of the Physical Layer; ISO-11898-2 makes recommendations
for the PMA and DMA sub-layers. ISO-11898-2, however, does not define the mechanical
wires and connectors to be used; but on the other hand stipulates numerous electrical
specifications for the mechanical connectors and wires. The specification requires that
each end of the CAN network is terminated using 120Q resistors [10]. The terminating
resistors prevent data on the network from being reflected back when the signal reaches
the end of the system. If the signal was reflected it could cause errors on the CAN

network.

CAN Node CAN Node

CANH

Terminating [j

Terminating
Resistor D

Resistor
CANL

Figure 9: CAN Network with Terminating Resistors

2.3.1.3 Bit Rates & Timing

The CAN protocol can achieve data rates of up to 1MBit/s. In today’s terms this is
considered to be moderately slow when compared to other networks. Nevertheless,
CAN’s transfer speed is more than adequately equipped to deal with the transmission of
data inside in an automobile. One of the appealing aspects of CAN for network designers
is that it’s bit rate, bit sample point and the number of samples in a bit period are user

programmable. Modern high-speed CAN networks use crystal oscillators to derive their

14



bit timing. Each node has its own timing reference but it is not necessary for all nodes on

a particular network to use the same oscillator frequency [12].

A CAN message is made of numerous bits. Each of these bits has a specific period, tpi.

This parameter, ty;, is itself made up of a number of non-overlapping portions.

Sample
Paint

SyncSeq PropSeg PhaseSegl (P51) PhazeSegs (P52)

MNorninal Bit Time (NET?. thit

Figure 10: CAN Bit Time Segments

These non-overlapping segments are made up from an integer number of units called
time quantum, ty. The NBR (Nominal Bit Rate) is defined within the CAN specification to
be the number of bits per second transmitted by an ideal transmitter with no

resynchronisation and can be described using the following [14]:

NBR=f,, = Eq.2.2

bit
, where NBR is the nominal bit rate (Seconds),
fyi is the frequency of a bit (Hertz),

tvi¢ 1S the bit period (Seconds).

From the preceding diagram it can be seen that the NBT (Nominal Bit Time), or ty, can

be expressed as a summation as follows:

Ftpg +pg, Eq. 2.3

tbir = tSyncSeg + tPropSeg
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, where tyi¢ 1S the bit period (Seconds),
tsyncseg 1S the synchronisation segment period (Seconds),
tpropseg 18 the propagation segment period (Seconds),
tps;1 and tps; are the periods (Seconds) for phase segment 1 and 2

respectively.

The first portion of the NBT, the synchronisation segment (SyncSeg), is used to
synchronise nodes connected to the bus. The duration of this segment is always one t.
Bit edges are expected to occur during this portion. The propagation segment (PropSeg)
is user programmable and is used to compensate for propagation delays between
communicating nodes. The system-designer can program the duration of the propagation
segment to be from one to eight tq in duration. Phase segments 1 and 2 (PhaseSegl and
PhaseSeg?2) are used to compensate for any edge error that occurs around the sample
point. The sample point is the instance in the bit time where the logic level is read. This
is typically read at the end of PhaseSegl. However, the system-designer has the option to
sample the logic level three times during the NBT. If so, two additional samples are taken
at half ty intervals prior to the end of PhaseSegl. The durations of PhaseSegl and
PhaseSeg2 are also user defined; PhaseSegl can be lengthened, or conversely,
PhaseSeg2 can be shortened. PhaseSegl is programmable from one to eight t; and

PhaseSeg?2 is programmable from two to eight t, [14].

The duration of a time quantum, tg, is derived from the period of the oscillator, to,
employed within an individual node. The base tq is equal to twice tos and is also equal to
one tq clock period, typei. The figure for tq can be modified by the system-designer from
its base value using a programmable prescalar called the BRP (Baud Rate Prescalar) in
order to change the period of typek [14]. The relationship between these parameters is

mathematically illustrated below:

1, =2XBRPXt,, Eq. 2.4
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. _2xBRP

Eq. 2.5
! f()SC

, Where tq is the time quantum (Seconds),
BRP is a user-configurable prescalar integer unit,
tosc 18 the period of an oscillator used within a node (Seconds),

fosc 18 the frequency of an oscillator used within a node (Hertz).
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Figure 11: Time Quantum, t,, & the Bit Period, tyi

2.3.1.4 Bus Lengths & Synchronisation

ISO11898 states that a CAN Transceiver must be able to drive a bus length of
approximately forty-metres at a data rate of 1MBit/s [10]. A longer bus length can be

realised by implementing a slower data-rate on the network.
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Bit Rate (kBits/s) Bus Length (m)
1000 30
500 100
250 250
125 500
62.5 1000

Table 3: CAN Bit Rate vs. Bus Length [14]

Within CAN, relationships exist between the bit timing parameters and the oscillator
tolerances; and as a result physical bus propagation delays. For a CAN network the
propagation delay, t,mp, 1S calculated as being a signal’s round trip time on the physical
bus, tyus, plus the output driver delay, tqr, plus the input comparator delay, temp. Assuming

all devices on a CAN bus have similar component delay-times the propagation delay of a

CAN network can be expressed mathematically as follows:

tP rop

= 2 X (tbus + tdrv + tcmp)

, where torop 18 the network propagation delay (Seconds),

tous 1 the time duration of a signal’s round-trip (Seconds),

tarv 1S the delay of the output driver (Seconds),

temp 18 the input comparator delay (Seconds).

18

Eq. 2.6
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Figure 12: Propagation Delay between a Transmitting & Receiving Node

The bit timing parameters, the oscillator tolerances, and the propagation delays of a CAN
network are interrelated due to the fact that the later the sample point in the bit period is
taken, the more tolerance the system has to propagation delay. This means greater bus
lengths can be installed. Conversely a sample taken closer to the midpoint of the bit
period achieves greater oscillator tolerance levels. Therefore it is easy to see that a
system-designer is left with a trade-off; greater bus length vs. large oscillator tolerance

[12].

Earlier, it was mentioned that each CAN node has its own timing reference and that it is
not necessary for all nodes on a particular network to use the same oscillator frequency.
However all devices connected to a CAN bus must operate at the same NBR. This is
achieved by the system-designer by varying the BRP of each node to ensure a consistency
in nominal bit rate between all devices connected to the network. Factors such as noise,
phase shifts, and oscillator drift lead to situations where the ideal bit rate does not equal
the actual bit rate in a real system. Therefore, the nodes must have a method for achieving

and maintaining synchronisation with messages transmitted on the bus [14].

As discussed previously a dominant bit will always have precedence over a recessive bit.
With this style of arbitration in place each node involved with arbitration must be able to
sample each bit level with the same bit time otherwise invalid arbitration may occur. For

the CAN protocol there are two categories of synchronisation which guarantee suitable
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decoding of messages despite hindrances like phase errors etc. [12]; the two categories

are as follows: Hard Synchronisation and Resynchronisation.

Hard Synchronisation occurs on the first recessive-to-dominant (Logic 1 to Logic 0) edge
during an idle period on the network which indicates a Start-of-Frame condition. Every
CAN Controller on the network now initialises its current bit period timing at this first
recessive-to-dominant transition with SyncSeg [12], [14]. At this point, all of the
receiving nodes will be synchronised to the transmitting device. Hard Synchronisation

occurs only once during a message.

Resynchronisation 1is carried out once for each recessive-to-dominant transition
throughout the remainder of the received message. It is implemented to uphold the
preliminary synchronisation carried out on the first recessive-to-dominant transition using
Hard Synchronisation. If Resynchronisation is not employed receiving nodes could loose
synchronisation due to factors such as oscillator drift and noise. Resynchronisation is
typically implemented using a PLL (Phase Lock Loop) which compares and eradicates
any variations existing between the actual recessive-to-dominant transition and the
expected (during SyncSeg) recessive-to-dominant transition [2], [14]. Resynchronisation
compensates for any phase error by as much as the user defined parameter SJW
(Synchronisation Jump Width). S/W is not a segment within the bit period, ty;; it is a
value which defines the maximum number of t; by which a bit period can be
lengthened/shortened in the event of resynchronisation [12]. The user can program the

value of S/W to be in the range of one to four t;.

Morinal Bit Time (MET). thit
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Figure 13: SJW used for Resynchronisation
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The stipulations seen in the table below must be adhered to by a system-designer in order

to comply with the synchronisation standards outlined in ISO11898 [2], [14].

Only a single synchronisation within a particular bit

period, tyi, is allowed.

Only recessive-to-dominant transmissions are to be

used for synchronisation purposes.

Hard Synchronisation is only performed whenever
3. | there is a recessive-to-dominant transition during an

idle-bus condition.

All other recessive-to-dominant transitions will be used

for resynchronisation purposes.

5. | SIW< PhaseSeg2 < PhaseSegl

Table 4: Important CAN Bit Timing & Synchronisation Rules

2.3.2 CAN’s Data Link Layer

The Data Link Layer is primarily responsible for assembling the encoded data produced
in the Physical Layer into an ISO11898 structured frame. This layer, with reference to the
OSI model, is also required to perform arbitration and error confinement [8], [9]. For this
discussion, with reference to the OSI model, it is only necessary to describe the MAC
(Medium Access Control) section of the Data Link Layer. The LLC (Logic Link Control)

section is outside the scope of this discussion.

2.3.2.1 Message Framing

As outlined above the raw-data encoded in the Physical Layer has to be bundled into a

predefined structure called a frame as outlined in ISO11898. The CAN protocol defines
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four different types of frames [9], [15]. A brief description of the various frame types is

described in the table below.

Data Frame: Data is sent by a transmitting node to one or more receiving

nodes. This is the most common type of CAN message.

Remote Frame: A Remote Frame is used when one node requests the transfer of

information from another device connected to the CAN bus.

Error Frame: This type of CAN message is generated by a node when it detects

a particular protocol error defined within the I1SO11898 standard.

Overload Frame: | This is used within the CAN protocol to request additional time

needed by a node to process received information.

Table 5: Four Categories of CAN Messages

From above it can be seen that each of the message frames serves its own particular
function. Each of the frame types differ somewhat in their structure; although substantial

similarities exist between all of them.

Data Frame

The Data Frame will be discussed in greater detail than the other categories because it is

the most commonly employed frame type.
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Figure 14: Standard CAN Data Frame

The diagram above illustrates the composition of a standard CAN Data Frame. The
frame consists of a number of fields; this is true for the remaining three frame types. A
field within a frame is compromised of a number of bits. The composition of a Data

Frame is as described below [7], [15], [16]:

e Start-of-Frame Field: The Start-of-Frame field is always one bit in length and is
represented by a recessive-to-dominant transition. It is used to indicate the start of
a new message. Also, as discussed previously, the Start-of-Frame field is also

used for Hard Synchronisation purposes.

e Arbitration Field: This field is comprised of twelve bits and is used to prioritise
messages transmitted on a CAN network. The first eleven bits of this field consist
of the Identifier Field portion. These eleven bits contain the ID which is used to
identify a particular CAN message. The Identifier Field portion is therefore used
by network-nodes to establish if a received message is relevant to their own
specific function; if not, nodes will just ignore the message. This field is also used

for arbitration purposes which will be discussed in greater detail later. The
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Remote Transmission Request bit is used to distinguish between a Data Frame
and a Remote Frame. If this bit is recessive it indicates that the message is a

Remote Frame, otherwise the frame is a Data Frame.

Control Field: The Control Field is composed of six bits, the first of which is
labelled the IDE (Identifier Extension) bit. In its dominant state it specifies that
the message is a Standard Data Frame. Otherwise, this bit indicates that the
message is an Extended Data Frame. A discussion outlining the principal
differences between a Standard Data Frame and an Extended Data Frame will be
described later. The following bit in this field is reserved and is defined to be
dominant. The additional four bits that make up the Control Field are the DLC
(Data Length Code) bits. The DLC is used to indicate the number of bytes of data
(0 - 8) contained within the following Data Field of the message.

Data Field: This field contains the actual information data; e.g. oil pressure,
vehicle speed etc. The length of the Data Field is controlled by the contents of the
DLC. The Data Field can contain anything from zero to sixty-four bits (0 to 8
bytes).

CRC Field: The CRC Field (Cyclic Redundancy Check) is used to detect any
possible transmission errors and contains a fifteen bit check sequence and a CRC
Delimiter bit. A receiving node compares the CRC it has computed from the
received frame to the information contained within the received message to

establish if any errors have occurred.

ACK Field: The ACK Field (Acknowledge) contains two bits. During the ACK
slot bit a transmitting CAN node sends out a recessive bit. Any node on the
network that has received the transmitted message without any errors
acknowledges the correct message reception by sending a dominant bit back to
the transmitting node. The other bit within the ACK Field, the ACK delimiter bit,

must be recessive at all times and cannot be overwritten by a dominant bit.
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¢ End-of-Frame Field: This field is used to signify the end of the CAN message. It

consists of seven consecutive recessive bits.

The Data Frame described above is a Standard Data Frame as outlined by Bosch [2].
The CAN protocol describing a Standard Data Frame is entitled CAN2.0A. CAN2.0B is a
subsequent protocol release which describes an Extended Data Frame. The fundamental
difference between standard and extended frames is that an extended frame has the
capacity to support a twenty-nine bit Identifier Field as opposed to a standard frame’s
eleven bit Identifier Field. Thus the extended frame format possesses a greater ID-range
and relieves the system-designer from compromises with respect to defining well-
structured identification schemes [2], [3]. Overall, the extended format is similar to the
standard CAN frame. As discussed earlier, the two frames are distinguishable by the IDE
bit within the Control Field. Within an extended frame the Identifier Field is separated
into eleven and eighteen bit portions respectively. CAN2.0B is capable of receiving
CAN2.0A messages; however this situation is not reciprocal, CAN2.0A does not support
the reception of CAN2.0B messages.

CAN2.0A is used within the vast majority of automobile applications because an eleven
bit Identifier Field more than adequately realises typical system requirements. Another
reason for its employment within the majority of applications is the fact that it also
requires less overhead and silicon space than CAN2.0B implementations. It has been
established that the implementation of CAN2.0B is not always necessary and its

employment is only necessary under certain circumstances [4].

Remote Frame

ISO11898 specifies that any node on a CAN network can send a Remote Frame which
essentially is a request for information from another attached node. The transmission of a
Remote Frame is analogous to asking a question. The node that has the “answer” will

transmit a message containing the requested information to the node that sent the Remote
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Frame [15]. The composition of a Remote Frame is identical to a Standard Data Frame;
the only exception is that the Remote Transmission Request bit is transmitted in a
recessive sate. In addition, the DLC portion of the Control Field contains zero to indicate

that no data will be contained within the Data Field.

Error Frame

The CAN protocol allows any node on the network that detects a bus error to generate an
Error Frame. An Error Frame is comprised of two fields; an Error Flag Field and an
Error Delimiter Field. The content of the Error Flag Field depends on the error-status of
the node that has detected the error. The Error Delimiter Field consists of eight recessive

bits.

Errar Frame

Errar o+ Error
Flag 1+ Delimiter
W----- 1
Nariable a

Figure 15: CAN Error Frame

Once an Error Frame is formed bus activity returns to normal and the node in which the

error occurs attempts to re-transmit the aborted message.

Overload Frame

An Overload Frame is defined within the CAN protocol to allow a node to tell the
network that it is occupied and is not yet ready to receive any further messages. It is

comprised of an Overload Flag and an Error Delimiter.
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2.3.2.2 Arbitration

ISO11898 allows simultaneous bus access from different nodes; this is known as CSMA
(Carrier Sense Multiple Access). A node can proceed to transmit a message over the
network if it detects that the bus is currently residing in an idle state i.e. no other node is
currently transmitting [15]. The situation can arise however where two nodes attempt to
transmit a message over the network simultaneously. Consequently a method of
arbitration is employed within the Data Link Layer to establish which node may continue

its transmission.

Many techniques exist within network topologies to implement arbitration [11], however
the CAN protocol stipulates that the CSMA/CD+AMP (Carrier Sense Multiple Access
with Collision Detection and Arbitration on Message Priority) technique be used [3],
[16]. This arbitration methodology involves determining the priority of messages to
establish which node may proceed with transmission. A message with a low binary value
in its Identifier Field will have a high priority based on the Wired-AND logic (a dominant

bit overwrites a recessive bit) discussed previously.

[dentifier Fields
11101001010  MNaode &
11001001010 " Node B

Figure 16: Arbitration Based on the Identifier Fields of Two Nodes

For the diagram above Node B has a higher priority over Node A because it’s Identifier
Field has a lower binary value than that of Node A. Subsequently if Node B and Node A
both attempt to transmit a message concurrently Node A will loose arbitration and Node B

can proceed with its message transmission.
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2.3.2.3 Error Confinement

As CAN was initially developed for use within the automotive environment the protocol
had to employ a methodology to efficiently process errors in order to acquire a
wholesome share within the marketplace [9]. As described previously, ISO11898 allows
all CAN nodes to generate Error Frames upon detection of an error. The nodes are
intelligent enough to assess whether an error is of a permanent or temporary nature. Each
CAN node has three error states in which it can reside upon detection of a fault. The three

states are as follows:

1. Error Active

2. Error Passive

3. Bus Off

Both CAN2.0A and the subsequent CAN2.0B stipulate that each CAN node should
contain both a TEC (Transmit Error Counter) and a REC (Receive Error Counter) register
in order to implement error confinement. The contents of these respective counters are
incremented by a certain value each time the node transmits/receives an erroneous frame.
Successful transmission and reception of message frames decrement the contents of the

two counter registers [3].

Re-Initialisation

= REC & TEC =127
Error ) Error | TEC>255 Bus
Active . Passive | i Off
REC or TEC > 127

Figure 17: Error State Diagram for a CAN Node

The Error Active state is the typical state in which a network-node resides in after a reset

condition. When the TEC and REC counters for a particular node contain a values less
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than 128 the node also resides in this Error Active state. In this condition the node is
allowed to transmit and receive messages and is also allowed to transmit error frames

(containing Error Active flags) without constraint.

If either the TEC or the REC register for an individual node contain values between 128
and 255 the node resides in the Error Passive state. In this state a node is free to
transmit/receive message frames, although as soon as an Error Passive node transmits an
erroneous frame further communication of messages is suspended and an Error Passive

flag is sent out onto the CAN bus.

One aspect of the CAN protocol is that faulty nodes can withdraw themselves from the
network automatically. The Bus Off state is entered into by a node when the contents of
the TEC register are greater than 255; at this point all bus activity for this node
terminates. To return to the Error Active state, and to reset the error counter values, the

CAN node must be reinitialised.

2.4 Summary

This chapter examined and described various aspects of the CAN bus protocol. The main

points to embrace are as follows:

e The CAN protocol considerably reduces cable length requirements within a

system due to the fact that is a serial-based network topology.

e CAN is robust and reliable, therefore it is ideally suited for use within an
automotive environment. It is used as the standard for vehicle communications by
European automobile manufacturers; it is currently gaining mainstream

acceptance in the United States.
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ISO11898 only specifies the bottom two layers of the OSI model for CAN thus
allowing a system-designer the freedom to customise a network to meet specific

requirements.

An appealing aspect of the CAN protocol is that it’s physical parameters, such as
bit timing etc., are user programmable thus offering a designer control over bus

lengths and timing.

The CAN protocol defines its own highly efficient method for arbitrating between

conflicting nodes in order to avoid transmission conflictions.
The error handling capability of CAN allows a damaged node to withdraw itself

from a system; thus damage to an individual node does not hamper the operation

of the overall network.
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Chapter 3 - Video Processing

3.1 Introduction

As video processing is required to visually represent automobile data within this

application this chapter details the fundamentals relating to video data and its associated

standards. The information given in this chapter is separated into the following main

sections:

An overview of the constitution of a generic video signal.

A discussion outlining the most popular video standards.

A summary detailing how chrominance is represented in a video signal and what

steps are taken to efficiently utilise bandwidth.

A synopsis of the ITU-R BT.601 & ITU-R BT656 digital video protocols.

A brief explanation of how the ITU-R BT.656 protocol is implemented using

hardware.
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3.2 Composition of a Video Signal

In its fundamental existence a video signal is comprised of a two-dimensional array of
luminance (intensity) and chrominance (colour) data. The video signal is updated at a
regular frame rate to ensure that perception of motion is conveyed to the human eye. The
intensity information for each line of video is represented within the signal by a low-
voltage waveform. In conjunction with this, timing information is embedded in the
analogue signal to ensure that display-devices remains synchronised with the video signal

[17], [18].

---------------------- White Level

e Grey Level

i N j ----- Black Level

Horizontal
Sync

Figure 18: Luminance Component of a Elementary Analogue Video Signal [18]

For example, in a standard CRT (Cathode Ray Tube) television an analogue video signal
modulates an electron-beam which results in the illumination of phosphorus on the
screen. This practise is carried out in a left-to-right, top-to-bottom manner. As a result, it
can be envisaged that a single video frame is comprised of multiple rows of data, which

in turn are formed one-by-one on the screen [19].
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Figure 19: Numerous Rows of Data form a Single Video Frame

The embedded timing signals dictate when the electron-beam is active or inactive. The
previous diagram illustrates that during the inactive period the electron-beam is allowed
to retrace from right to left. This is so that it can begin to illuminate phosphorus on the
next row, or move from the bottom right-corner to the top-left corner of the screen in

order to begin formulation of the next video frame.
The synchronisation data embedded within a video signal and the timing relationships

between them are shown in the following diagram.

Field 1 Field 2
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i —
Figure 20: Synchronisation Signals Embedded within a Video Signal

The HSYNC waveform is the horizontal synchronisation signal and it is used to indicate

the start of active video on each row of a video frame. Horizontal blanking is the inactive
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period during which the electron-beam retraces from the right side of the screen back
over to the next row on the left side. VSYNC is the vertical synchronisation signal. It
demarcates the start of a new video frame. Vertical blanking is the inactive period during
which the electron-beam retraces from the bottom right-corner to the top-left corner of

the display-screen in order to begin formulation of the next video frame [20].

The FIELD signal indicates, for an interlaced video scan, whether the field being
displayed is “odd” or “even”. The FIELD synchronisation signal is not applicable to

progressive scan video systems.

3.2.1 Interlaced and Progressive Scanning

What exactly constitutes an interlaced and progressive scan, and what is the difference
between the two? In early analogue television systems bandwidth was a major restriction,
i.e. systems only had the capacity to transmit so many lines of video per second.
However, in order to seamlessly convey the perception of movement the video frames

needed to be updated at an appropriate frequency (= 50/60Hz).

A solution to this problem was realised by introducing the concept of interlaced video.
Within this concept each video frame is split into two fields; one consisting of odd
numbered row lines and the other composed of even numbered row lines. For an
interlaced system the television displays the odd-field (even-field) first and then displays
the even-field (odd-field). To the human eye, because of latencies, it appears that the
entire frame (made up from the two fields) is being displayed simultaneously. This
solution ensures that fluid motion is conveyed to the onlooker, while at the same time

ensuring bandwidth restrictions are not violated [18], [19].
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Figure 21: Interlaced vs. Progressive Video Scan [18]

In recent times, due to the advancements in television and video technologies,
progressive scan video has become more widespread. From the previous diagram it can
be seen that a progressive video frame is comprised of rows stored in a successive
manner. The concept of odd and even fields does not apply to progressive scan systems
as an individual frame is not split in two. Interlaced systems are still utilised, however
because of the exceptional capabilities of modern television and video technologies

progressive scan is increasingly prevalent, particularly in Western Europe [18], [20].

3.2.2 Video - Standards and Resolution

Numerous analogue video standards are employed worldwide. The primary difference
between the various standards is found in the manner in which they encode luminance
(intensity) and chrominance (colour) data. Universally speaking, two standards dominate

- NTSC (National Television System Committee) and PAL (Phase Alternating Line).
NTSC is predominantly employed in North America and Asia, while PAL on the other

hand is mainly utilised in Europe and South America. PAL is an enhancement on its older

NTSC counterpart, improving on colour distortion prevalent with NTSC. HDTV (High
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Definition Television) is the latest addition to the video standard realm. It is actually a
digital video standard, as opposed to the other analogue standards previously mentioned,

and it is forecasted to be the dominant standard in the future [20].

The fundamentals of NTSC and PAL are relatively similar; a QAM (Quadrature
Amplitude Modulation) [21] sub-carrier relaying the chrominance (colour) data is added
to a luminance (intensity) signal to form a composite video baseband signal. NTSC is
typically implemented using interlaced scanning. It has a frame rate of approximately
30fps (Frames per Second); therefore fields are updated at 60fps. PAL is equilaterally
utilised as an interlaced or progressive scan system. It has a frame refresh rate of
approximately 50fps. Notice that the frame rates of NTSC (60fps) and PAL (50fps)
coincide with the 60Hz and 50Hz frequencies of AC (Alternating Current) power in the
United States and Europe respectively. This is no coincidence; this is a deliberate design

ploy implemented to avoid visible interference upon a display-monitor [18], [20], [22].

The resolution of a video frame is measured in pixels and is defined as the product of the
horizontal and vertical resolution. The horizontal resolution indicates the number of
pixels on each row of a video frame, while the vertical resolution specifies how many

horizontal lines are displayed to create the entire video frame.

Horizontal Vertical Frame

Video Standard Resolution Resolution Resolution
(Pixels) (Pixels) (Pixels)
NTSC 720 480 345,600
PAL 720 576 414,720

Table 6: Frame Resolution - NTSC vs. PAL [22]

The preceding table illustrates that both NTSC and PAL possess equal horizontal

resolutions. Yet PAL has a higher frame resolution than NTSC due to its superior vertical
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resolution. As a result a PAL frame represents a video frame with finer detail than NTSC.

However the colour resolution of NTSC is greater than that of PAL.

3.2.3 Chrominance Representation

Numerous methodologies exist for representing chrominance within the video
environment. Each individual system is suited to a particular application. For instance,
some are designed for application with television systems, whilst others are used with
computer-graphics displays. The most fundamental methodology for chrominance
representation is the RGB (Red Green Blue) colour space system. The three primary
colours are red, green and blue. When summed together in equal proportions they

manifest white light.

areen

Figure 22: Formation of White Light using the Three Primary Colours

The RGB system combines various quantities of the three primary colours to formulate
any colour in the visible spectrum. Due to its relative simplicity the RGB scheme is the
preferred methodology used for chrominance representation in computer-graphics

systems [23], [24].
Luminance (intensity) is perceived in a non-linear fashion by the human eye. In addition,

display-devices such as CRTs also display luminance in a non-linear manner.

Coincidentally the eye’s perception of luminance sensitivity is approximately converse to
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standard display-devices’ output characteristics. For that reason video devices and
algorithms pre-distort their RGB output stream. This is to counteract display-devices’
non-linear luminance representation and to create a realistic model of how the eye
perceives a video image in reality. Pre-distorted RGB values are referenced as R’G’B’

[18].

Even though RGB is the natural technique for colour representation it is not appropriate
for image-processing because each it’s three components are highly correlated with one
another. Consequently other chrominance schemes that are more efficient and highly-
uncorrelated have evolved; an example of which is the YChCr system. The YCbhCr system
contains a single luminance value and two chrominance components. The separation of
luminance and chrominance data results in more efficient use of image-processing
bandwidth. The Iluminance, Y, and chrominance components, Cb and Cr, are

mathematically derived from R’G’B’ values as seen below [25]:

Y =(0.299)R'+(0.587)G'+(0.114)B' Eq. 3.1
Cb=—(0.168)R'—(0.33)G'+(0.498)B'+128 Eq. 3.2
Cr=(0.498)R'-(0.417)G'-(0.081)B'+128  Egq. 3.3

, where R’, G’ and B’ are pre-distorted RGB values,
Y is the luminance component,

Cb and Cr are chrominance components.

3.2.3.1 Chrominance Sub-Sampling

The human eye is more sensitive to luminance variation than it is to chrominance
difference. YCbCr takes advantage of this as it pays more attention to luminance (Y
component) than chrominance (Ch and Cr components). Thus chrominance values can be

sub-sampled resulting in considerable bandwidth savings.

38



3 Bytes per Pixel Z Bytes per Pixel
Pixel 1 Pixel 2 Pixel 2 Pixeld Pixel 1 Pixel 2

l l
Y T I

[ [

Pixel 2 Pixel 4

d:d-4 YChir Sampling ' ) 4:2:2 ¥Chir Sampling

Figure 23: Chrominance Sub-Sampling

From the preceding diagram a full-bandwidth pixel-stream is represented by the 4:4:4
YCbCr signal. The first number is always “4” and corresponds to the relationship
between the sampling frequency of the luminance component and the particular analogue
standard (i.e. NTSC or PAL) sub-carrier frequency. The second number represents the
ratio of luminance to chrominance in a given horizontal row; in this case all chrominance
components are sampled fully hence this number is “4”. The last number illustrates the
vertical luminance/chrominance relationship; if no sub-sampling takes place this number
is also “4”. If the chrominance components of the full-bandwidth signal are sub-sampled
by a factor of two horizontally a 4:2:2 YCbCr signal is obtained. This means that there
are four luminance components for every two chrominance values on a particular video
row [23]. The acquisition of a 4:2:2 signal results in only a minute distortion to the
quality of a video image when compared to a 4:4:4 signal, yet a bandwidth saving of

33% is yielded. Hence sub-sampling is extremely efficient.

3.3 Digital Video

So far only analogue video has been discussed. Since the mid-1990s digital video has
become prevalent, primarily due to mass improvements in internet infrastructure. This in

turn has lead to an increase in consumers’ demands for media-streaming. Digital video
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holds numerous advantages over its analogue counterpart. For instance, the SNR (Signal-
to-Noise Ration) achievable with digital streams is much greater than that of analogue
video. In addition, digital video utilises bandwidth more efficiently as several digital

channels are compressible into a single analogue channel.

Fundamentally speaking, the construction of a digital video stream involves the sampling
and quantisation of existing analogue video. The sampling process involves dividing an
analogue image into a grid-like structure and assigning relative amplitude values to each
grid-portion based on the intensities of colour-space components in each grid-region. The
quantisation process involves determining the discrete amplitude values to assign during
the sampling process. 8-bit video is common for consumer applications; a value of 0 is
assigned to the darkest portions (black), while a value of 255 is assigned to white

portions.
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Figure 24: Digitisation of Analogue Video Data

To some degree the introduction of digital video has lead to standardisation between the
NTSC and PAL architectures. The ITU (International Telecommunications Union) has
defined digital video standards, ITU-R BT.601 and ITU-R BT.656, which are focused
towards achieving a large degree of cohesion between NTSC and PAL so that they can

both share the same coding formats [18], [26].

3.3.1ITU-R BT.601 & ITU-R BT.656

ITU-R BT.601 and ITU-R BT.656 together define a practice that allows different video
system components and standards to interoperate. The ITU-R BT.601 standard describes
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the fundamentals of the video digitisation process, while ITU-R BT.656 defines how ITU-
R BT.601 is actually physically implemented.

ITU-R BT.601 specifies that 4:2:2 YCbCr colour-spacing is employed to achieve
bandwidth efficiencies as outlined earlier. The protocol also stipulates that standard
synchronisation signals (HSYNC, VSYNC, and FIELD) be used to demarcate the
boundaries of active video regions. Within this standard each pixel component (Y, Cb, or
Cr) is quantised to either 8 or 10-bits. 8-bit quantisation is more practical for

implementation purposes as processors can efficiently handle octal multiples.

ITU-R BT.601 specifies that both NTSC and PAL comprise the same horizontal
resolution (i.e. 720 pixels of active video per line). On the other hand, a difference exists
in terms of vertical resolution. A 30fps NTSC video stream has a vertical resolution of

525 lines; this is in comparison to 625 lines for a 25fps PAL frame [23], [24], [27].

As mentioned above ITU-R BT.656 identifies the physical interfaces and data streams
needed to implement the ITU-R BT.601 standard. One of the main advantages realised
from the use of the ITU-R BT.656 digital protocol is that all timing signals are embedded
in the data stream. This therefore means that no additional hardware lines are required for
synchronisation purposes. ITU-R BT.656 defines both a bit-serial and bit-parallel mode.
The implementation of the bit-serial mode can be rather complex and is not realisable on

many systems. For that reason, this discussion will only refer to the bit-parallel mode

[23], [28].

33.1.1 ITU-R BT.656 - Frame Partitioning & Data Stream
Characteristics

The ITU-R BT.656 frame partitioning requirements for both NTSC and PAL are seen

below.
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As mentioned earlier, the HYSNC (H), VSYNC (V) and FIELD (F) synchronisation
signals are sent as an embedded portion of the video stream. This data is transmitted as a
series of bytes that form a control word. The SAV (Start of Active Video) and EAV (End
of Active Video) respectively demarcate the beginning and end of relevant video data for
every line/row; thus horizontal blanking occurs during this period. SAV occurs on a 1-to-
0 logic level transition of HSYNC, while EAV occurs on a 0-to-1 transition of HSYNC.
Vertical blanking occurs when V = 1. A field of video begins on a logic transition of the F’
bit. An odd-field is represented with F' = 0, while an even-field is denoted by F = 1. If
progressive video scanning is employed no distinction is made between fields. Thus it is

seen that an entire field of video is comprised of active video, horizontal blanking, and

Figure 25: ITU-R BT.656 Frame Partitioning

vertical blanking [18], [28].

The SAV and EAV codes are shown in greater detail below:
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8-bit Data (D; = MSB, D, = LSB)
D, D¢ Ds Dy D; D, D; Dy
1 1 1 1 1 1 1 1
Preamble
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Control
1 F \Y% H P; P, P, Py
Byte

Table 7: 8-bit SAV & EAV Preamble Codes

From the preceding table it is seen that a defined preamble, consisting of 3-bytes (OxFF,

0x00 and 0x00), is followed by a control-byte. This control-byte contains four bits (P;,

P>, P;, and Py) for error detection and correction in addition to the H, V, and F bits. The

bit definitions are as follows [18], [26]:

V=1 during
F=0 H=0 P; = P, =
Vertical
for Field 1 at SAV VXOR H FXORYV
Blanking
V = 0 when not P; =
F=1 H= P, =
in Vertical F XOR V XOR
for Field 2 at FAV FXOR H
Blanking H

Table 8: Bit Definitions for ITU-R BT.656 Preamble

The following diagram illustrates the composition of an ITU-R BT.656 bit stream for a

single line/row of video data. The SAV encompassing the defined preamble (OxFF, 0x00,

and 0x00) along with the control byte (containing H, V, F and error detection/correction

bits) indicates the beginning of a new line/row of video data. The active video
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information then follows in 4:2:2 YCbhCr format. Recall that ITU-R BT.601 specifies that
both NTSC and PAL contain 720 pixels of active video per line. As the 4:2:2 format is
employed there are twice as many luminance components than chrominance values
resulting in a total of 1440 bytes of active video data in a given line/row. The occurrence
of an EAV completes the formation of a current line/row allowing the construction of the

next line/row to begin [20].

End of Active Video Start of Active Video Start of
Next
. Line
EAV Code Hor izonta| SAY Code
(H=1) Blanking (H=0) Digital
FFloojoojeelzofiofealio]  ©  |eo|io|FFoojoofsglce] v [or| v Jae] v e[y T | |FF] video
iy Stream
4 268 for NTSC L4 1440
280 for PAL
AB = Control Byte 1716 for MTSC
‘ 1728 for PAL

Figure 26: ITU-R BT.656 Video Data Stream [29]

3.3.1.2 ITU-R BT.656 Implementation

ITU-BT.656 is in essence a standard that is implemented in hardware through software
initialisation. If video data is being transmitted a video-encoder IC is used to convert the
digital ITU-R BT.656 stream into an analogue signal for display upon a CRT (or other
display device). It fundamentally acts as a digital-to-analogue converter converting the
input digitised stream into standard analogue video standards like N7SC or PAL.
Conversely speaking, if analogue video in the form of NTSC or PAL is being received a

video-decoder IC is used to convert the input signal to an ITU-R BT.656 video stream.
Video-encoder and decoder ICs interface to a processor giving a system-designer the

control to program the ICs to meet whatever specific requirements a project may demand.

The majority of video-encoder and decoder ICs support both NTSC and PAL. For this
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application the choice between NTSC and PAL is irrelevant; the main focus is on

displaying vehicle data regardless of the analogue video format utilised.

3.4 Summary

This chapter discussed the fundamentals of video data and outlined standards prevalent in

the video environment. The key points to note are as follows:
® Any video signal primarily consists of luminance and chrominance data.

¢ Timing information is embedded within the video data to ensure that display-

devices remain synchronised with the input signal.
e NTSC and PAL are the predominantly used analogue video standards.
¢ Chrominance sub-sampling is used to efficiently utilise bandwidth.

e [TU-R BT.601 and ITU-R BT.656 are digital video standards that are designed to

allow interoperability between video components and standards.

e The ITU-R BT.656 protocol is a standard implemented using video-encoder and

decoder ICs and is software configurable.
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Chapter 4 - Selection of a Processor

4.1 Introduction

Now that a review of CAN networking and video processing has been carried out the
next step is to select a suitable processor for utilisation within this system. This chapter
discusses the selection of an adequate processor. The information given is divided into

numerous sections as outlined below:
® An outline of the main factors taken into consideration when selecting an
appropriate intelligent-device for this system design, with particular attention

being paid to video processing and CAN capabilities.

e A comparison of a number of different processors is discussed under each of the

main factors taken into consideration.

e A summary outlining all of the components and the selection of a particular

processor for use within this system.
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4.2 Key Considerations

When choosing an appropriate processor for operation in this project sizeable
consideration must be given to a number of key factors. Bearing in mind that this is a
system designed for operation within an automotive setting, a suitable device has to be
able to operate sufficiently inside such a harsh environment. The correct processor for
this particular design must also possess CAN and video capabilities in order to meet the

system requirements. The main deliberations for selection of a fitting device are outlined

below [18], [30]:

¢ Automotive Environment Specifications
¢ Video Processing Capabilities

e CAN Handling Ability

¢ (lock Rates & Power Consumption

e DMA - Direct Memory Access

® Programming Environment

The development boards below contain suitable processors for completion of this project.
They are evaluated under the headings outlined above to establish which is the most

suitable for this system’s synthesis.

e Freescale MPC5200 Lite5200 Evaluation Board [31], [32], [33], [34]
e Infineon TriBoard TC1796 [35], [36]

e Xilinx Spartan-3E Starter Kit [37], [38]

e  Microchip dsPICDEM 1.1 Plus Development Board [39], [40]

® Analog Devices Blackfin ADSP-BF537 EZ Kit Lite [41], [42]

Each of these components is designed by their respective manufacturers for use in the

automotive industry.
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4.2.1 Automotive Environment Specifications

An automotive environment contains many hindrances such as EMI, humidity, noise,
temperature extremes and vibrations [43]. These factors can have a detrimental effect on
signals and devices inside a vehicle. As a result ICs and processor used within an
automotive environment have to be able to withstand these factors. For instance, the
typical temperature-range for automotive ICs is -40°C to +125°C [43] because
components may have to operate under severe temperature extremes. Consequently, the
processor chosen for use in this system must comply with standard automotive IC

provisions.
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Figure 27: Harsh Factors Experienced inside an Automotive Environment

The following table outlines the ambient operating temperature-ranges for the five

intelligent-devices chosen for evaluation.

Processor Temperature Range (°C)
Freescale MPC5200 -40 to +85
Infineon TC1796 -40 to +125
Xilinx Spartan-3E -40 to +100
Microchip dsPIC30F6014A -40 to +125
Blackfin ADSP-BF537 -40 to +85

Table 9: Ambient Temperature Ranges of Components under Evaluation
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As it can be seen, all of the components comply with typical automotive temperatures;
however only the Infineon TC1796 and Microchip dsPIC30F6014A processors operate

over the full automotive temperature-range (-40 to +125°C).

4.2.2 Video Processing Capabilities

The computational power of a processor employed with this system is crucial. A raw
video signal for instance could be comprised of data operating in the region of tens of
MBytes/s [18]. Consequently it is easy to envisage that an appropriate intelligent-device
must possess the capabilities to handle such high rates of data throughput. 16 and 32-bit

processors should hold enough power to fulfil this role.

In addition, a suitable device connects, with minimum hardware and software effort, to
standard video-encoder ICs that support the ITU-R BT.656 protocol in order to simplify
interfacing requirements. The standard hardware component of a processor
conventionally used to facilitate such an interface is a PPI (Parallel Peripheral Interface)
port. This is due to the fact that the transfer of video in ITU-R BT.656 parallel mode is
more efficient than a serial transfer. Thus, a suitable device preferably contains a PPI port

for transfer efficiencies.
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Figure 28: Video Data Transferred in Parallel between Processor & Video-Encoder

To simplify interfacing requirements even further, video encoding ICs should be located
upon the development apparatus, or form part of a compatible A/V (Audio/Video)
daughter board.
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4.2.2.1 Freescale MPC5200 Lite5200 Evaluation Board

The 32-bit Freescale MPC5200 processor is extremely powerful and is more than
capable of adequately handling video data. It can perform 760MIPS (Millions of
Instructions per Second) at a 400MHz clock frequency; which gives an indication of its

processing power [33].

The MPC5200 contains a PCI (Peripheral Component Interconnect) interface which
allows for the connection of different varieties of peripherals to the development board.
The PCI is in essence a 32-bit configurable address/data bus suited for high data-rate
transfers [32]. Consequently, the PCI is configurable as a PPI port and thus it can be used
to interface with an attuned video-encoder IC. However it would take a great deal of

effort, both in terms of hardware and software, to interface these components.

A much simpler solution would be realised if the Lite5200 kit had a compatible A/V
daughter board that supports ITU-R BT.656. Nonetheless, no such A/V extension board is
available for the Lite5200.

4.2.2.2 Infineon TriBoard TC1796

This development board incorporates the 32-bit TriCore TC1796 processor. This device
can, with relative ease, support the processing of video data. For instance, an illustration
of its power can be seen in the fact that it can operate at a 150MHz clock frequency over

its entire temperature range [35].

The TC1796 contains a 16-bit PPI port which would facilitate in the transfer of ITU-R
BT.656 parallel data [35]. However, like the Freescale Lite5200 kit, there is no A/V
extension board available for this particular device. Once more, as a result of this, it
would take a large endeavour, both in terms of hardware and software, to interface the
TriBoard TC1796 development board with suitable hardware components that offer I7U-
R BT.656 support.
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4.2.2.3 Xilinx Spartan-3E Starter Kit

FPGAs (Field Programmable Gate Array) are highly configurable hardware devices.
They consist of a vast array of logic-gates and modules which can be configured to meet
any specification required by a designer [44]. Their basis of operation involves the
concept of “parallel-processing”; which essentially means that multiple data blocks can
be processed concurrently. Conversely, standard processors can only process data

sequentially.
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Figure 29: Parallel vs. Sequential Processing

Even though the Xilinx Spartan-3E Starter Kit uses a relatively modest S0OMHz clock-
signal to derive it’s timing the concept of parallel-processing results in this FPGA being
an extremely fast device [37], [38]. Therefore this component could more than adequately

handle a video stream.

However, due to the fact that FPGAs are comprised from an array of configurable
hardware blocks designers have to develop all hardware components from first principles.
For example, for this particular project a PPI port is desirable to facilitate the efficient
transfer of video data. This means that a designer would have to construct a PPI port
from gate-level up. Therefore it is easy to envisage that the development time for a
certain application designed to run on a FPGA could be relatively longer than that of a

standard processor.
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4.2.2.4 Microchip dsPICDEM 1.1 Plus Development Board

The 16-bit dsPIC30F6014A device incorporated onto the dsPICDEM 1.1 Plus
Development Board can operate at a maximum of 30 MIPS [39]. This is relatively slow
when compared to the other processors. The device can utilise a PLL to increase the
clocking frequency. In spite of this, the maximum clock rate achievable using the PLL is

not adequate to competently support video data processing.

The dsPIC30F6014A processor contains a PPI port, which again facilitates the efficient
transfer of video data. Yet, like the other components discussed so far, it does not have an

A/V daughter board to simplify interfacing requirements.

4.2.2.5 Analog Devices Blackfin ADSP-BF537 EZ Kit Lite

The Blackfin ADSP-BF537 is an example of a convergent processor. It combines a 16-bit
DSP (Digital Signal Processor) and a 32-bit microcontroller onto a single IC. It
amalgamates the best qualities of a DSP and a microcontroller making it an extremely

powerful device; thus it is sufficiently equipped to deal with video data.

This processor contains a PPI port which again is advantageous in efficient data transfers.
In fact the PPI port of the Blackfin has been designed with video processing in mind. In
addition, the Blackfin ADSP-BF537 EZ Kit Lite development board has a compatible A/V
daughter board. This daughter board contains video-encoder ICs and sockets for
interfacing with display-devices. Obviously, use of the Blackfin EZ Kit Lite and its

daughter board would minimise the interfacing efforts required for this project.
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4.2.2.6 Video Processing Capabilities - A Summary

Parallel
Development Video Processing Compatible A/V
Interfacing
Board Speed Capability Daughter Board
Capability
Freescale Achievable through
Sufficient None Available
MPC5200 Lite5200 PCI configuration
Infineon TriBoard
Sufficient Yes None Available
TC1796
. Sufficient (due to
Xilinx ~ Spartan-3E Must be developed
Parallel Processing None Available
Starter Kit by Designer
feature of FPGAs)
Microchip
dsPICDEM 1.1
Inadequate Yes None Available
Plus Development
Board
Analog Devices
Blackfin ~ ADSP- Sufficient Yes Yes
BF537 EZ Kit Lite

Table 10: Summary of Video Processing Capabilities of Reviewed Devices

From the preceding table it can be seen that the MPC5200, TriBoard TC1796 and
Blackfin ADSP-BF537 are sufficiently equipped to process video data. The Blackfin is

however the processor of choice, in terms of video processing capabilities, due to the fact

that it has a compatible A/V board which minimises interfacing efforts.
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4.2.3 CAN Handling Abilities

As outlined in Chapter 2, the CAN protocol is employed as the standard for vehicle
communications within Europe by automobile manufacturers. Subsequently an adequate
intelligent-device preferably contains an integrated CAN Controller in order to reduce
overhead and propagation delay. This would obviously lead to an overall reduction in
system cost. The alternative to this is to use a peripheral CAN Controller interfaced to a

processor via a SPI link [45].
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Figure 30: Integrated vs. Peripheral CAN Controller within a Network Node

As shown in the preceding diagram, the use of a peripheral CAN Controller leads to an

increase in the number of components required to implement a network node.

4.2.3.1 CAN Handling Abilities of Processors under Investigation

The following table illustrates the CAN handling abilities of the intelligent-devices

examined in this discussion.
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Integrated Total Number of
Processor
CAN Controller RX/TX Buffers
8 RX
Freescale MPC5200 Yes
6 TX
4 RX/TX (Programmable
Infineon TriCore TC1796 Yes
Bi-Directional Buffers)
Xilinx Spartan-3E FPGA No Not Applicable
Microchip 3 RX
Yes
dsPIC30F6014A 3TX
8 RX
Analog Devices Blackfin
Yes 8 TX

ADSP-BF537

16 Configurable Buffers

Table 11: Overview of CAN Handling Abilities of Scrutinised Processors

From the preceding table it can be seen that all of the devices, with the exception of the

Spartan-3E, contain an integrated CAN Controller.

As mentioned previously, FPGAs are user-configurable hardware devices. The
development of a CAN Controller upon a FPGA would be an extremely time-consuming
process, primarily because the entire mechanics of a CAN Controller would need to be
described at fundamental gate-level. An alternative to the manual-development of a CAN
Controller is the purchase of a CAN IP (Intellectual Property) footprint. This essentially
means that a system-designer purchases a footprint of a CAN Controller developed by

some other party. The footprint is simply “dropped” onto the FPGA, resulting in part of
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the device operating as a CAN Controller. Conversely, the retail price of a CAN
Controller from one particular vendor is in the region of $15,000. It is clear to see that
this is an incredibly costly alternative. For that reason, the use of the Xilinx Spartan-3E to

implement the CAN protocol is not practical on this occasion.

Again with reference to the previous table, the four processors containing an integrated
CAN Controller enclose reduced overhead both in terms of hardware and software. These
four devices are sufficiently capable of handling CAN transfers for this particular project.
Each of the four processors contains numerous RX/TX (Receive/Transmit) buffers. A
CAN buffer acts like a mailbox for a particular CAN message. The more buffers a device
contains, the more efficient it is at managing the reception/transmission of CAN
messages. Therefore the Blackfin ADSP-BF537 is the most efficient processor, in terms

of CAN handling, as it contains a total of thirty-two message buffers.

4.2.4 Clock Rates & Power Consumption

In order to process video in real-time it is desirable to select a processor that operates at a
relatively high clock rate. However, a high clock rate results in greater power
consumption. Therefore the system-designer must take this trade-off into consideration
when selecting an intelligent-device to fulfil the system’s synthesis. Ideally, an adequate
component contains an adjustable clock frequency feature; i.e. the clock frequency
applied can be varied in real-time during program operation. This leads to reduced power
consumption. In addition, the selected intelligent-device contains power adjustment

features to reduce overall power consumption.

Zlock Rate
Power
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Zlock Rate
Porwer
Consurnption

Figure 31: Relationship between Clock Rate & Power Consumption
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4.2.4.1 Summary of Clock Rates & Power Consumption

The following table illustrates the clock rates and power consumption features of the

processors examined in this discussion.

Recommended Real-Time Clock
Power Adjustment
Processor Maximum Clock Adjustment
Features
Frequency (MHz) Capabilities
Freescale
MPC5200 400 No Yes
Infineon TriCore
TC1796 150 No Yes
Xilinx Spartan-3E
FPGA Not Applicable Not Applicable Yes
Microchip
dsPIC30F6014A 160 No Yes
Analog Devices
Blackfin ADSP- 600 Yes Yes
BF537

Table 12: Synopsis of Clock & Power Adjustment Features for Examined Processors

From the preceding table it can be concluded that all of the devices with the exception of
the dsPIC30F6014A possess adequate clocking abilities to process the high data-rates
associated with video. As mentioned previously, the concept of parallel-processing
fundamental to FPGAs results in the Xilinx Spartan-3E containing ample strength to
process video data sufficiently. As seen all of the processors encompass power

adjustment features.
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The processor of choice in terms of clock rate and power consumption is the Blackfin
ADSP-BF537. It is the device with the highest operating frequency. In addition, the
Blackfin possesses the ability to adjust its clock frequency in real-time making it an

attractive device for utilisation.

4.2.5 DMA - Direct Memory Access

The core of any processor is responsible for carrying out many operations. Parts of the
core’s duties involve managing data transfers between internal/external memory registers
and peripherals. When large quantities of data are being transferred frequently a
processor’s core can become completely embroiled with the task of information transfer;

thus preventing it from carrying out other necessary duties.
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Figure 32: Core Responsibilities

DMA (Direct Memory Access) is a technique utilised to ensure efficient data-movement
and relieves an intelligent-device’s core from memory transfers so that it can perform
other operations. An integrated DMA controller is delegated data-movement
responsibilities by the processor’s core, and once empowered the controller can

independently manage data-transfers [18], [46].
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Figure 33: Typical DMA Flow

The presence of DMA in an application such as this is vital due to the fact that video-
information is being transferred at high data-rates. If DMA is not present the core of a
selected processor would essentially be congested by the constraint of having to read a
data sample every time one becomes available. For that reason, the processor selected to

implement this application must boast DMA competence.

4.2.5.1 DMA Competence of Evaluated Processors

The following table illustrates the DMA competence of the components examined in this

discussion.
Processor DMA Competence
Freescale MPC5200 Yes
Infineon TriCore TC1796 Yes
Xilinx Spartan-3E FPGA No
Microchip dsPIC30F6014A No
Analog Devices Blackfin ADSP-BF537 Yes

Table 13: Overview of DMA Competence of Inspected Processors
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From the preceding table it can be seen that the MPC5200, TriCore TC1796 and ADSP-
BF537 could be used in the synthesis of this system as they each contain DMA
components. The additional two devices under scrutiny in this discussion do not possess
any DMA functionality, and as a result would not support the efficient transfer of video-
data. However, a DMA component could be constructed on the Spartan-3E, but again

this would be a time-consuming process.

4.2.6 Programming Environment

The programming environment of an intelligent-device can encompass the language(s)
supported by its compiler(s), and the ease in which the component may be
reprogrammed. The programming environment of a specific choice of processor is
imperative when selecting it for use within an application. Most development interfaces
offer a system-designer the choice of using a high-level programming language (C, C++)
or assembler to develop software on the device. Many processors can be compiled using
royalty-free software packages, while others require specific compilers typically designed
by the particular device’s manufacturer. Nowadays, components can usually be re-
programmed in-circuit with minimum effort using a USB (Universal Serial Bus) or
alternative interface. The ideal processor selected for use within this project contains a
user-friendly programming setting which minimises overhead and reduces needless

complications.

Prograrnrming (aEneric
Languages Third-Party
Supported Fackages

Roalty
Free
Packages

Re-Programrming
Interface

Figure 34: Factors within a Programming Environment
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4.2.6.1 Freescale MPC5200 Lite5200 Evaluation Board

The development environment for this particular intelligent-device is relatively broad;
numerous compilers are available from various vendors. Options exist for a Macintosh,
Linux or Windows platform. For instance, Freescale offer their CodeWarrior interface
tool for use in either a Linux or Windows setting. CodeWarrior allows a system-designer
the freedom to cultivate software upon the MPC5200 processor using C, C++ or
assembly. Third-party vendors such as QNX and Green Hills also offer development
suites for this device [34]. Therefore a system-designer has a wide selection range to
choose from when using this particular development-board. The Lite5200 evaluation kit
utilises a USB interface to simplify the programming-process. Overall, the programming
environment for the Freescale Lite5200 is user-friendly and extensive so particular

preferences can be satisfied.

4.2.6.2 Infineon TriBoard TC1796

Infineon do not manufacture a development tool for their TriBoard TC1796. However,
like the Lite5200, many third-party options exist for both the Linux and Windows
platforms [47], [48]. The software package developed by Altium is the unofficial standard
industry tool for the TC1796 [47]. A royalty-free GNU C/C++ programming option is
also available for the TriBoard TC1796 [49]. The TC1796 incorporated onto this Infineon
development board can be re-programmed via a USB interface. In general, the
programming environment for the Infineon TC1796, like the Freescale Lite5200,
provides a vast array of options and the particular interface tool chosen depends on the

preferences of a system-designer.

4.2.6.3 Xilinx Spartan-3E Starter Kit

The Spartan-3E, like all FPGAs, is programmed using VHDL'. VHDL is not a high-level

programming language like C/C++. In addition VHDL is not software; it is a hardware

" VHDL stands for VHSIC Hardware Description Language. VHSIC is an abbreviation for Very High
Speed Integrated Circuit.
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description language. It is a list of configuration commands used to describe the

behaviour of hardware internal to a FPGA [50].

Subsequently, if a FPGA is selected for use within a project the designer would require
knowledge of VHDL specific to the chosen FPGA, in this case it would be Xilinx VHDL,;
otherwise a new learning-curve would have to be embarked upon. Consequently, as a

result of timing-constraints it is not feasible for use in this particular project.

4.2.6.4 Microchip dsPICDEM 1.1 Plus Development Board

Microchip has developed its MPLAB development interface for use with the
dsPIC30F14A device incorporated onto the Plus Development Board. At present MPLAB
only supports the Windows platform. The MPLAB tool presents the system-designer with
the option of using either C or assembly language to configure the processor accordingly
[40]. Microchip’s MPLAB is user-friendly as it is relatively straight-forward to use. In
addition, the Plus Development Board contains a USB interface which simplifies the re-

programming process.

4.2.6.5 Analog Devices Blackfin ADSP-BF537 EZ Kit Lite

Like the Freescale and Infineon options already discussed, the development environment
for the Blackfin is relatively extensive. Third-party choices exist for both the Linux [51]
and Windows platforms [52], [53]. Analog Devices has developed its VisualDSP++ tool
for use with the Blackfin processor. This development component allows a designer to
configure the Blackfin using C/C++, assembler, or a combination of both. It incorporates
an abundance of functions and drivers to facilitate in software development. The Blackfin
EZ Kit development board interfaces to the chosen compiler via a USB link, thus

minimising re-programming efforts.
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4.2.6.6 Programming Environment - A Summary

Programming Generic or Royalty-Free Re-
Development
Board Languages Third-Party Packages Programming
oar
Supported Packages Available Resources
Freescale
C, C++,
MPC5200 Both No USB
Assembly
Lite5200
Infineon
C, C++,
TriBoard Both Yes USB
Assembly
TC1796
Xilinx Spartan- Parallel
VHDL No No
3E Starter Kit Interface
Microchip
dsPICDEM 1.1
Plus C, Assembly Generic No USB
Development
Board
Analog
Devices
C, C++,
Blackfin Both Yes USB
Assembly
ADSP-BF537
EZ Kit Lite

Table 14: Summary of Programming Environments of Analysed Components

From the preceding table, with the exception of the Xilinx Spartan-3E Starter Kit
(because it is only configurable using VHDL), it is clear to see that all of the intelligent-
devices under scrutiny offer a considerable variety in terms of programming

environments.
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4.3 Synopsis of Reviewed Processors

Automotive Video CAN Clock Rates Programmin
Environment Processing Handling & Power DMA g
Specifications | Capabilities Abilities Consumption Environment
Freescale
Sufficient Sufficient Sufficient Sufficient Sufficient Excellent
MPC5200
Infineon
TriCore Excellent Sufficient Sufficient Sufficient Sufficient Excellent
TC1796
Xilinx Moderate/
Sufficient Inadequate Sufficient Inadequate Moderate
Spartan-3E Sufficient
Microchip
dsPIC30F14 Excellent Inadequate Sufficient Inadequate Inadeqaute Sufficient
A
Blackfin
Sufficient Excellent Excellent Excellent Sufficient Excellent
ADSP-BF537

Table 15: Synopsis of Reviewed Processors

It is concluded from the preceding table that the highly-configurable Xilinx Spartan-3E
FPGA falls short of use in this particular application. This is primarily as a result of
timing constraints required to implement customisation on this device. The Microchip
dsPIC30F14A 1is also insufficient for use in this synthesis as it lacks the processing

strength necessary to meet the system’s specifications.

The Freescale MPC5200, Infineon TriCore TC1796 and Blackfin ADSP-BF537 are
sufficiently equipped for employment in this application’s development. However the
Blackfin ADSP-BD537 is the processor of choice. This is due to a number of factors.
Firstly, the EZ Kit development board upon which the Blackfin ADSP-BF537 is
incorporated has a compatible A/V daughter board which simplifies the fulfilment of
ITU-R BT.656 video processing. Also, the Blackfin is excellently equipped to deal with
CAN efficiently as it contains thirty-two message buffers. In addition to this, the
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maximum clock frequency of the ADSP-BF537 more than adequately supports real-time
video processing. The programming environment for this component is broad, thus
offering a designer an array of choices. The VisualDSP++ development tool has been
chosen for use to develop software on the device as it contains an abundance of support

functions and drivers as mentioned earlier.

The Blackfin is a relatively new processor and its popularity is increasing exponentially.
Evidence of this is found in the fact that the open-source community has embraced the
Blackfin with many support forums offering free-ware code and advice [51], [54], [55].
Analog Devices are continuously developing new device-drivers and support tools to aid

in implementation of new technologies.

4.4 Summary

This chapter discussed the selection of an adequate processor to implement this

application. The major points to behold are as follows:

e A number of key factors need to be taken into consideration when choosing a

suitable intelligent-device for use in this system.

e Numerous processors are discussed under each of the main factors taken into

consideration.

e The Blackfin ADSP-BF537 adequately meets all of the key considerations,
particularly in the area of video and CAN, and as a result is selected as the

processor or choice for use in this system.
Now that a suitable processor had been selected for utilisation from a number of

examined devices, based on the merits outlined within this chapter, the next step was to

synthesis the system incorporating correct hardware and software methodologies.
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SECTION II - SYSTEM SYNTHESIS
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Chapter 5 - CAN Implementation

5.1 Introduction

This chapter details the efforts involved in the development of the CAN bus network
employed in this system’s synthesis. The information given in this chapter is divided into

numerous sections as outlined below:

e A description of the hardware and software resources utilised to develop CAN

nodes employed in this system.
e A discussion on how potentiometers are incorporated into the constructed CAN
nodes to mimic the operation of standard vehicle sensors, and how their

functionality was verified.

® A synopsis detailing the steps taken to configure the Blackfin’s CAN module and

how the operation of the device was tested for conformity.
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5.2 Construction of CAN Nodes

The fundamental hypothesis of this application involves the reading of standard vehicle
information from sensors over a CAN network, processing the data, and then representing
it visually upon a display-device. Consequently, some method of mimicking the
operation of automobile sensing-devices is required. This is achieved by constructing two
CAN nodes that incorporate several potentiometers to imitate the actions of sensors found
in a vehicle. It can be said that sensors essentially function as transducers; i.e. they
measure a particular physical parameter and represent it proportionally in another form;
typically electrical. Therefore the rotation of a potentiometer and thus the subsequent
change in output-voltage suitably impersonates the operation of a sensing-device. For
instance, one potentiometer is employed to replicate the actions of an oil temperature

sensor while another is used to represent a device that monitors vehicle speed.

Representative
Proportional
Cutput

Frysical

FParameter
Transducer

Figure 35: Function of a Transducer

5.2.1 Hardware Contents of Constructed CAN Nodes

Recall from Chapter 2 that a typical CAN node encompasses a software application that
is programmed onto an embedded device. The embedded devices incorporated into the
constructed CAN nodes come from the 8-bit PIC microcontroller family [56]. 8-bit PIC
microcontrollers offer a considerable performance at a competitive price which justifies
their selection for use. One of the CAN nodes incorporates a PICISF258 [57] which
contains an integrated CAN Controller. With reference to Section 4.2.3, the PICIS8F258
is therefore efficient in terms of CAN overhead and propagation delay. The other

constructed CAN node features a PIC16F876A [58] which does not include an integrated
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CAN Controller. Consequently, a MCP2515 1IC [59] is interfaced to the PICI6F876A
through a SPI link. The use of a peripheral CAN Controller is deliberate in order for the
author to be proficient, both in terms of hardware and software, with the integrated and
peripheral CAN strategies. As seen below both CAN nodes utilise a MCP2551 CAN

Transceiver [60].
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Figure 36: Hardware Components of Constructed CAN Nodes

Detailed circuit schematics for both CAN nodes are found in Appendix A.

From the preceding diagram it is seen that both network nodes utilise 16MHz crystal
oscillators to obtain their timing. This CAN network is configured to operate at a baud
rate of 500kBits/s. With reference to Section 2.3.1.4, it is not necessary for all CAN
nodes to use the same oscillator frequency. However recall that all CAN nodes must
operate at the same NBR. Consequently, the BRP of both CAN nodes is suitably set by
configuring specific bits in the appropriate registers. The software routines used to do this

are discussed in Section 5.2.2.2.
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5.2.2 Software Implementation of Constructed CAN Nodes

The MikroC compiler [61] is used in this synthesis to program the PI/C microcontrollers.
This integrated development environment offers a rich set of functions and efficient
support for the PIC microcontroller families; hence its utilisation is practical and

convenient.

The function of the software applications executing inside both CAN nodes is to firstly
perform A-D (Analogue-to-Digital) conversions upon the potentiometers. Following on
from this, the software applications insert the conversion results into Standard Data
Frames for transmission to the Blackfin for interpretation. The flow chart below
illustrates this process. The source code for the CAN On-Board and SPI nodes can be

viewed in Appendix B and C respectively.
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Figure 37: Flow Chart of CAN Nodes Software Applications
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5.2.2.1 A-D Conversion

The MikroC compiler, as mentioned previously, contains a rich set of functions to
simplify the programming process of the PIC microcontroller. The Adc_Read() function
is used to read a 10-bit A-D conversion from a specific channel [62]. The only parameter
passed to the Adc_Read() function is the channel number upon which A-D conversion is
required. For example, the function call below results in a reading of the voltage from the

potentiometer connected to channel one.

Chl_res = Adc_Read(1); // Get the ADC conversion result

Adc_Read() also implicitly determines, from the supplied clock frequency, the time
period necessary for performing A-D conversion. The PICI6F876A and PICISF258
contain five and eight A-D channels respectively. Three potentiometers are connected to
the PICI6F876A hence a single call to Adc_Read() is required for each of the three
channels. On the other hand two individual calls to Adc_Read() are made for the two
potentiometers interfaced to the PICISF258 - see Appendix A, B, and C. Before the
Adc_Read() function is utilised a certain degree of initialisation takes place. The ADCON
registers of both PIC devices are configured accordingly [57], [58].

Bit 7 BitO
SE L5k
ADZOM
PIC16FET764 | AOFM |ADCSE) — — |PCFia3|PCFiaZ |PCFa 1 |PCFGEO
e
I I_l T
&-0 Result Format A-D Clock &-0 Part Configuration
Select Bit Conyersion Control Bits

1 = Right Justified  Select Bit
0 = Left Justified

Figure 38: ADCONI Register of PICI6F876A [58]

The two microcontrollers are configured for all A-D channels to accept analogue inputs

only, and conversions occur at a rate of Fogc/2. Furthermore, both devices are initialised
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to issue a right-justified A-D result. Conversely they can be configured to yield a left-

justified result. What is the difference between the two configurations?

ADRESH ADRESL
[afofofofofafxx]  [x]x|x[x]x][x][x]*]
Right-Justified 10-Bit 4-D Result

ADRESH ADRESL
e xfx]x|x|=]=]=]  [x]=|ofafafo]o]o]
Left-Justified 10-Bit A-D Result

Figure 39: Right & Left Justified A-D Results

The PICI6F876A and PICIS8F258 are 8-bit microcontrollers; however both devices
perform 10-bit A-D conversion. Consequently, a 10-bit A-D result is split between two 8-
bit result registers - ADRESH and ADRESL as seen in the previous diagram. If the A-D
result is right-justified the two MSBs (Most Significant Bit) of the result reside in the
ADRESH register, while the remaining eight bits of the conversion are stored in the
ADRESL register. In contrast, if the A-D result is left-justified the eight MSBs of the
result are found in the ADRESH register, while the two LSBs (Least Significant Bit) are
stored in the ADRESL register [57], [58].

Once all initialisation is complete the analogue voltages from the potentiometers are

continuously read by the A-D modules using the Adc_Read() function.

typedef unsigned int iadc;

iadc chO_res =0

chO_res = Adc_Read(0); // Get the ADC conversion result

The 10-bit result from a specific A-D channel, contained in ADRESH and ADRESL, is

returned by Adc_Read() and the value is stored in a 16-bit unsigned integer variable.
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5.2.2.2 CAN Initialisation & Transmission

MikroC provides numerous functions for the initialisation and transmission/reception of
CAN messages, and adequately supports both the integrated (PICI8F258) and peripheral
(PICI6F876A) CAN strategies. In most cases the only difference between a function
used with an integrated CAN controller and that used with a peripheral controller is in the
name of the function - see Appendix B and C. For example, the CANWrite() function is
used to transmit a message from a node that incorporates an integrated CAN Controller.
On the other hand, the CANSPIWrite() function is used to transmit data when a peripheral
CAN controller is utilised. As mentioned earlier, Standard Data Frames are employed in

this application.

A summary of the operation of both CAN nodes is seen below.

START )

¥ b J
Set Segment A-D
Controllers to Conversion
Configuration Result for each [
hade AL channel
¥ b 4
I ritialise Insert
L Segmented
Tim nglﬁe?nc- Results into
[ ata Bytes
¥ b 4
=et Canfigure b =g
Controllers to IO & DLC.
NomalMode TH Mags

Figure 40: Flowchart of CAN Initialisation & Message Transmission

Similar to the A-D conversions seen in the last section, a certain degree of initialisation
takes place before any messages are transmitted. To initialise the registers of CAN

modules residing in either an integrated or peripheral controller the module has to be set
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to the Configuration Mode using either the CANSetOperationMode() or
CANSPISetOperationMode() respectively. In both cases, two parameters are passed to the
function. The first parameter passed is the mode in which it is desired to enter into. This
parameter is copied into the CANSTAT register of either the integrated or peripheral
controller; depending on which strategy is being utilised [57], [58].

Bit 7 Bit O
MSB LSB
CAMSTAT [ OPMOCEZ |OPMODE! (OPMODED|  —— ICODEZ | ICODE! I(CODED —
| | | |
CDperation Mal:le Status Bits [Mterrupt EDEIE Bits

100 = Configuration Mode
200 = Mormnal Mode

Figure 41: CANSTAT Register [57], [58]

The second item in the function prototype is either a “blocking” or “non-blocking” call. If
it is a “blocking” call, i.e. OxFF, the function does not return until the requested mode is
entered into. If a “non-blocking” call, i.e. 0x00, is passed the function returns
immediately but the system-designer must ensure that the CAN Controller is now

residing in the requested mode [62].

CANSetOperationMode(CAN_MODE_CONFIG,0xFF); // Set CONFIGURATION mode
CANSPISetOperationMode(CAN_MODE_CONFIG,0xFF); // Set CONFIGURATION mode

In Sections 2.3.1.3 and 2.3.1.4 it is stated that one of the appealing aspects of the CAN
bus protocol is that its bit rate, sample and resynchronisation points are user-
programmable. These parameters are initialised using the CANInitialize() and

CANSPIInitialize() functions. Several items are passed to both functions.

CANInitialize( 2,2,3,3,1,aa); // Initialise CAN module. BAUD = 500kBit/sec
CANSPIInitialize( 2,2,3,3,1,aa); // Initialise external CAN module. BAUD = 500kBit/sec
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Firstly, the SJW resynchronisation value is passed. It is assigned the value of two;
therefore the bit period, ty;, of a CAN message is lengthened or shortened by 2ty if

resynchronisation is required [57], [58].

The second parameter is the BRP value and this is discussed in a few moments. The third
and fourth items in the function prototypes are the PhaseSegl and PhaseSeg2 values.
Recall from Section 2.3.1.3 that these elements compensate for any edge error that
appears around the sample point. They are both assigned the value of three. Thus Rule 5
of Table 4 is satisfied, i.e. SIW < PhaseSeg2 < PhaseSegl. PropSeg is the next value
passed to the function and it is used to compensate for any propagation delay. This is

assigned the value of one.

Morninal Bit Time (NET?. thit

SyNCSeq PropSeg FPhazesegl (F51) FPhaseSegz (P52
- Always 1tg 119 i 3tq i 3tq
S ” S
2tq 2tq

Figure 42: Assigned Parameter Values

As mentioned above the second parameter passed to both CANInitialize() and
CANSPllInitialize() is the BRP value. Recall that the BRP of a particular node is used to
ensure that it functions at an identical NBR to all other nodes connected to the network,
even if it does not use the same oscillator frequency. To reiterate, this CAN network is

configured to operate at S00kBits/s. Therefore from Egq. 2.2 in Section 2.3.1.3:

NBR = f,, =~ = 500kBits/ s

bit
1
== 2
500kBits /s Hs

tbit
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Concurrently, from Egq. 2.3:

tbit = tSyncSeg + tPropSeg + tPSl + tPSZ

From the assigned values in CANInitialize() and CANSPIInitialize(): (Note tsyncseg 15

implicitly 1ty in duration.)

t,, =(l+1+3+3)xt, =8,

Ty _ 2Hs
=>t, =——=——=0.25
8 8 -

q

Both CAN nodes incorporate 16 MHz oscillators to derive their timing; thus from Egq. 2.5:

2X BRP 2X BRP
t, =——=025us =———
! f 16MHz

osc

1y X e _ 0.25us x 16 MHz _
2

= BRP = 2

Thus a BRP value of two results in both nodes operating at a NBR of 500kBits/s when

using a 16MHz oscillator to derive their timing.

The last parameter in the CANInitialize() and CANSPlInitialize() prototypes contains a
list of constants that are bitwise ANDED together and relate to CAN module
configuration. They include factors, for example, that determine whether the logic level is

sampled once or three times during the NBT [62].

aa = CAN_CONFIG_SAMPLE_THRICE & // form value to be used
CAN_CONFIG_PHSEG2_PRG_ON & // with CANInitialize()
CAN_CONFIG_ALL_MSG &
CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_LINE_FILTER_OFF;
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Once initialisation is complete a respective CAN controller is set to Normal Mode in

order to commence data transmission.

CANSetOperationMode(CAN_MODE_NORMAL,0); / Set NORMAL mode
CANSPISetOperationMode(CAN_MODE_NORMAL,0); // Set NORMAL mode

Recall that the previous section outlines that the 8-bit PIC microcontrollers used in this
system perform 10-bit A-D conversion. The right-justified return value of Adc_Read() is

stored in a 16-bit unsigned integer variable as discussed previously.

. Contents of ADRESH " Contents of ADRESL ,
chixres|o[ofofofofo]x =)= ]=]x]=]x]=]=]x]

Figure 43: 16-bit Variable Contains Right-Justified 10-bit A-D Result

Section 2.3.2.1 outlined that the Data field of a CAN Data frame contains zero to eight
bytes of data. For that reason the 10-bit A-D conversion result from a particular channel,
contained in the 16-bit variable, is appropriately manipulated in order to insert it into two
8-bit CAN data bytes without the loss of any information. This involves segmenting the
16-bit variable into two bytes of data. Therefore two characters, i.e. two 8-bit data
variables are declared. One character, Is_chX_res, will store the lower eight bits of the
conversion result, while another character, ms_chX_res, will store the upper two bits of

the A-D conversion.

typedef unsigned char uchar;

uchar ms_chX_res = 0; // ADC Channel X MSB result variable
uchar Is_chX_res = 0; // ADC Channel X LSB result variable

The assigning of the value of the 16-bit data variable to Is_chX_res results in the eight
MSBs of the 16-bit integer being discarded and the eight LSBs of the integer being stored

in the character variable.
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Is_chX res = chX_res; // Get bottom 8 bits of ADC Channel X conversion

cixres|o[ofofofofo]x[=]x[=]x]=]x]x]x]x]

lschix reslw [w [ [ o [0 [ [ ]=]

Figure 44: Assignment of Lower 8-bits of A-D Conversion

In order to assign the two MSBs of the 10-bit A-D conversion to ms_chX_res the 16-bit
variable is manipulated using the bitshift-right operator, >>. The contents of chX_res are
shifted eight places to the right. The resulting value is now assigned to the most
significant character. Therefore the two MSBs of the A-D conversion are now the two

LSBs of the ms_chX_res.

ms_chX_res = chX_res >> 8; // Get top 2 bits of ADC Channel X conversion

chxres|ofofofofofax]xlx[x][=]x]x][=]x]x]

ch#_res bit-shifted 3-bits 1o the right i
[ [% =[x |x[x[=[=]oJofofo]ofo]x]x]

ms_chxreslo|o|o|o|ofo|x|x]

Figure 45: Assignment of Upper 2-bits of A-D Conversion

Once the A-D conversion result of each channel is appropriately manipulated it is

inserted into CAN data byte registers - see Appendix B and C.

data[0] = ms_ch2_res; // 2 MSBs of Channel 2 conversion result
data[1] = 1s_ch2_res; // 8 LSBs of Channel 2 conversion result

data[2] = ms_chl_res; // 2 MSBs of Channel 1 conversion result
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data[3] = 1s_ch1_res; // 8 LSBs of Channel 1 conversion result

data[6] = 22; // Arbitrary Number
data[7] = 33; // Arbitrary Number

Lastly, the construction of the CAN Data messages are completed and transmitted onto

the network using the CANWrite() and CANSPIWrite() functions.

id = 0x411; // Message ID (Decimal 1041)
len = 8; // Data Length Code
CANWErite(id,data,len,aal); // Write CAN message

id = 0x189; // Message ID (Decimal 393)
len = 8; // Data Length Code
CANSPIWrite(id,data,len,aal); // Write CAN message

The first parameter passed to both CANWrite() and CANSPIWrite() is the Identifier Field,
which assigns an ID to a particular message. The next item in the function prototype is
the address of the first data byte in the array of information (A-D conversion results plus
arbitrary numbers in this application) that is transmitted. This can be up to 8-bytes in
length. The third item passed is essentially the DLC discussed in Section 2.3.2.1 and is
used to indicate the number of bytes contained in the dara field. The last quantity in the
prototype of CANWrite() and CANSPIWrite() incorporates a list of constants that are
bitwise ANDED together. They include factors such as message priority etc. and indicate

whether the frame is a standard Data frame or otherwise [62].

aal = CAN_TX_PRIORITY_O & // form value to be used
CAN_TX_STD_FRAME & // with CANWrite()
CAN_TX_NO_RTR_FRAME;
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5.3 Testing of Constructed CAN Nodes

The hardware and software functionality of both CAN nodes was verified using the
CANKing GUI (Graphic User Interface) test package [63]. CANKing is an easy-to-use
development tool and essentially allows a computer/laptop to function as a CAN node for
test purposes. It achieves this by interfacing to Microchip’s MCP2515 development board
via a parallel-port connection [64]. For that reason the Port95NT parallel-port driver was

required [65].

AN Mode

Computer
Laptop

Parallel
[nterface

2313
Development
Board

!

- T

CaM
Mode

‘ e :
1 CAN Network 1

AN M
Mode Mode

Figure 46: CANKing allows a Computer/Laptop to Function as a CAN Node

The MCP2515 development board incorporates a MCP2515 CAN Controller and
MCP2551 CAN Transceiver [59], [60]. Thus, CANKing is able to transmit/receive
messages to/from a CAN network via the MCP2515 development board. The
development suite possesses the ability to display numerous factors like traffic and bus
loading statistics, a history of messages transmitted/received, time-stamp information and

data content for received/transmitted messages.
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In this particular case, the author was only concerned with verifying if the constructed
CAN On-Board and CAN SPI nodes transmitted the correct data. Therefore time-stamp
information along with message content was paramount. The two constructed CAN nodes
along with the MCP2515 development board were connected to the same network and

CANKing was used to monitor message activity.
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Figure 47: Verification of Correct Functionality of Constructed CAN Nodes

From the diagram above it is seen that both CAN nodes operated as desired. The CAN
On-Board node, incorporating the PICI8F258, transmitted messages approximately
every 500 milliseconds with the correct Identifier Field — i.e. 1041. 1t’s Data Field
correctly contained the segmented A-D conversion results for both potentiometers
integrated into this particular node along with four arbitrary numbers. As both
potentiometers were varied the relevant bytes within the Data Field updated accurately.
Similarly, the CAN SPI node, incorporating the PICI6F876, sent messages over the
network every 250 milliseconds using the correct Identifier Field — i.e. 393. The node’s

Data Field correctly contained the segmented A-D conversion results for the three
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potentiometers integrated into this individual node along with two arbitrary numbers.
Again, the appropriate data bytes within the messages continuously transmitted from this
node updated as soon as the three potentiometers were varied. Thus, as both CAN nodes
operate as desired the potentiometers suitably mimic the operation of sensors and the

simulated vehicle measurements are transmitted correctly over the network.

5.4 CAN Implementation upon the Blackfin ADSP-
BF537

The CAN module of the Blackfin ADSP-BF537 is configured to interpret the transmitted
messages containing ‘“‘sensor measurements” in order to take appropriate action to

graphically-display the data upon a display-device.

Display-
Dievice
Blackfin
ADSP-BFS3T
i 3
o Y
i 3 CAN i 3
Metwark
FIC13F258 PIC1GFE70A
| | [ | L 1
| | Patentiometer Potentiometer
Potentiometer Potentiometer
Potentiometer
CAMN Mode CAM Mode

Figure 48: CAN Network Consisting of Blackfin & Constructed Nodes

The CAN module utilises Port J of the ADSP-BF537 device and interfaces with the
Philips TJA1041 CAN Transceiver [66] incorporated onto the ADSP-BF537 EZ Kit Lite
development board. To enable the CAN module on the ADSP-BF537 EZ Kit Lite all the

elements of Switch 2 must be turned on [67].
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In Section 4.2.3.1 it was outlined that the Blackfin ADSP-BF537 processor incorporates
thirty-two mailboxes (message buffers) within it’s CAN module. Eight of these buffers
are transmit only, another eight are receive only, while the remaining sixteen are
programmable in direction. Each of these mailboxes has associative 32 or 16-bit control

and data registers which are appropriately configured before a message buffer is enabled

for use [42].

The flowchart below illustrates the steps taken to configure a CAN mailbox.
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Figure 49: Configuration of a Blackfin CAN Mailbox
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If not previously configured, the SCLK (Processor System Clock) of the Blackfin is
derived from the CCLK (Processor Core Clock) [42]. A frequency value that is suitable
to BRP derivation is typically chosen. Next, the ADSP-BF537 CAN module is enabled by
initialising Port J of the processor. The Blackfin employs an interrupt policy for it’s CAN
module, which is opposite to the polling strategy implemented upon the constructed CAN
nodes. As a result, the interrupt priority for the mailbox undergoing the initialisation

process is assigned.

Configuration Mode is entered to configure the CAN module’s internal registers. On
power-up or reset, the module automatically resides in Configuration Mode. However to
explicitly enter Configuration Mode a request is made by setting the CCR bit of the
CAN_CONTROL register to Logic 1. A designer must test to see if the module is now
residing in Configuration Mode by polling the CCA bit of the CAN_STATUS register
[42].

The SJW, PhaseSegl and PhaseSeg2 values of the CAN module are programmed by
appropriately configuring the CAN_TIMING register.

Bit 15 Eit O
MISE LSE
cantmmG|o o fofofojfox]efalx|x]x[x{e]=]x]
1 | L 1 1 |
S — L — PhaseSeqgz
S — PhaseSeg

Figure 50: ADSP-BF537’s CAN_TIMING Register [42]

The BRP value of the Blackfin’s CAN module is defined using the CAN_CLOCK

register.
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Figure 51: ADSP-BF537’s CAN_CLOCK Register [42]

The equations governing bit timing and synchronisation for the Blackfin processor differ
slightly to the universal formulae outlined in previous chapters [42]. This is not unusual
as many manufacturers integrate certain timing parameters together resulting in minor
formulae variances for bit timing calculations. The Blackfin’s CAN module, for instance,
does not distinguish between PropSeg and PhaseSegl as defined by the Bosch standard
[2]. The PhaseSegl value is intended to cover both parameters. Thus the NBT, or ty;, of
the Blackfin’s CAN module is found using:

L = (1+ (1+ PhaseSeg1)+ (1 + PhaseSeg?2))x t, Eq5.1

, Where tvi¢ 1S the bit period (Seconds),
PhaseSegl is a programmed integer value (0 - 15),
PhaseSeg?2 is a programmed integer value (0 - 7),

tq is the time quantum (Seconds).

The time quantum, ty, and the BRP of the Blackfin’s CAN Module are related by the

following:
1+ BRP
t, == Eq. 52
SCLK
, Where tq is the time quantum (Seconds),

BRP is a user-configurable prescalar integer unit (0 - 1023),

SCLK is the Processor System Clock (Hz).
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As discussed earlier this CAN network operates at 500kBits/s. Thus, a suitable BRP value
for the Blackfin CAN module is required. From Egq. 2.2 in Section 2.3.1.3:

NBR=f,, = L 500kBits / s

bit
1
= = 2
500kBits / s H

tbit

For PhaseSegl and PhaseSeg?2 values of five and three respectively Eq. 5.1 yields:

L = (1+ (1 + PhaseSegl)+ (1 + PhaseSeg2))x ,
= 2us=(1+(1+5)+(1+3))xt,

.y :21—‘?:0.182;15

q

The SCLK frequency utilised is 120MHz; thus from Egq. 5.2:

1+ BRP

" SCLK
= BRP=(r, x SCLK )1

= BRP =(0.182us x 120MHz) —1=21

Hence, for a SCLK frequency of 120MHz a BRP value of twenty-one results in the CAN
module operating at 500kBits/s.

The Identifier Field of a specific mailbox is configured using the appropriate
CAN_MB_XXID] register. In addition, the RTR bit of this register indicates if a message
is Remote or Standard - see Section 2.3.2.1. If a mailbox is set up to transmit/receive
Extended Data Frames the remainder of the Identifier Field is defined using the apt
CAN_MB_XXIDO register.
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Figure 52: CAN_MBXX_ID1 & CAN_MBXX_IDO Registers [42]

The DLC for an individual mailbox is programmed using the appropriate
CAN_MBXX_LENGTH register. To enable a particular mailbox to generate an interrupt
the corresponding bit in the CAN_MBIMX register is set to Logic 1 [42]. The direction of
a mailbox, i.e. transmit or receive for a bi-directional buffer, is configured by
programming a corresponding bit in the relevant CAN_MDX register. Logic 1 indicates
that the mailbox is configured for message reception; while on the other hand, Logic 0

indicates that the mailbox is configured for message transmission.

Each of Blackfin’s mailboxes include four 16-bit data byte registers —
CAN_MBXX_DATA/[3..0]. These four registers are used to store the Data Field members
of a CAN message. Consequently two data bytes are stored in each of the four data
registers. Data contained within these registers are transmitted MSB first from the
CAN_MBXX_DATA3/2/1/0 registers, respectively, based on the value defined for the
DLC. For instance, if only one byte is transmitted or received, i.e. DLC = 1, then it is

stored in the most significant byte of the CAN_MBXX DATA3 register [42].
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Figure 53: CAN Modules Data Field Registers [42]

5.5 Testing of Blackfin's CAN Module

Within this application the Blackfin is required to receive simulated vehicle data from the
constructed CAN nodes and interpret this information for further processing. Therefore a
test program was developed to configure the Blackfin’s CAN module for message
transmission and reception. Note that even though CAN transmission from the Blackfin is
not a prerequisite for this system it was developed in this test program to allow for future

expansion. The source code for this test program is found in Appendix D.

The test program essentially involved initialising three Blackfin mailboxes (message
buffers) appropriately. Correct message reception was verified by allocating an individual
mailbox for each of the two constructed CAN nodes. Mailbox 6 was configured to
receive messages with ID 393, while Mailbox 7 was programmed to receive messages
with ID 1041. When a specific mailbox received a pertinent CAN message from the

network it performed a particular ISR (Interrupt Service Routine). For instance, as soon
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as Mailbox 6 received a message with ID 393 an ISR copied the Data Field of this
message buffer to Mailbox 24 and issued a transmission request. As a consequence of this
message transmission was implicitly tested. The ISR performed when Mailbox 7 received

a relevant message involved turning on/off LEDs (Light Emitting Diode) incorporated

onto the ADSP-BF537 EZ Kit Lite development board.

Mailbox & Mlailboy 7 Mailboy 2
D =393 D= 1041 o=7
DLC =8 DLC =82 DLC =8

Figure 54: Mailbox Configurations for Testing of Blackfin CAN Module

The flow chart below illustrates the operations of the test program.
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Figure 55: Flowchart for Blackfin CAN Module Test Program
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The functionality of the CAN module was examined by configuring and connecting the

Blackfin to the network incorporating the two constructed CAN nodes. CANKing was

used to monitor bus activity to establish if all components functioned as desired.
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Figure 56: Verification of Correct Functionality of Blackfin CAN Module

From the preceding diagram it is seen that the devised test code functioned as desired as
the Data Fields of the messages with IDs 7 and 393 are identical. This proves that
Mailbox 6 within the Blackfin’s CAN module correctly received messages from the
constructed CAN SPI node and copied the contents to Mailbox 24. Mailbox 24, in turn,
re-transmitted the data onto the network under an Identifier Field of 7. Additionally, the
remaining configured message buffer, Mailbox 7, correctly received messages (ID 1041)
from the constructed CAN On-Board node. This was proven by twisting the
potentiometers situated upon the CAN On-Board node resulting in the LEDs on the
ADSP-BF537 EZ Kit Lite turning on or off. Thus a mechanism has been developed for
correctly initialising the Blackfin for CAN communications and integrating the device

into an existing CAN network.
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5.6 Summary

This chapter outlined the main steps taken to physically implement the CAN network

used in this application. The key points for contemplation are as follows:

e Potentiometers are suitable for the purpose of mimicking the operation of
standard vehicle sensors. The potentiometers are interfaced with embedded
devices chosen from the cost-effective 8-bit PIC microcontroller family to

formulate CAN nodes.
e Adequate software routines are utilised to ensure that the full 10-bit resolution of
the A-D conversions upon the potentiometers are kept intact prior to message

transmission.

e The calculation of the correct BRP value for any CAN node is paramount to

ensure that all devices communicate at the same NBR.

e The Blackfin ADSP-BF537 contains thirty-two CAN message buffers which

require a certain degree of configuration prior to use.

e The two constructed CAN nodes communicated as desired with the Blackfin’s

CAN module. This was verified using the CANKing tool suite.
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Chapter 6 - Video Implementation

6.1 Introduction

This chapter discusses the measures taken to implement a video display using the
Blackfin ADSP-BF537 EZ Kit Lite and A/V development boards. The information given

in this chapter is separated into the following main sectors:

e A discussion of the device drivers and system services incorporated into the

VisualDSP++ compiler, and how are they are utilised within this synthesis.

e A detailed description of the software test strategy employed to realise video

processing.
e A brief outline of the hardware configuration required to achieve successful video

processing using the Blackfin ADSP-BF537 EZ Kit Lite and A/V development

boards.
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6.2 Video Implementation Strategy

As a methodology for CAN implementation has been established the next step is to
realise video signalling using the Blackfin ADSP-BF537 EZ Kit Lite and its compatible
A/V daughter board. This is essential in order to visually represent the data received from
the CAN network; thus a suitable process for video functionality is required. However,
instead of endeavouring to develop video software that works in tandem with the CAN
source code a modular approach is taken. This essentially means firstly developing a

suitable standalone software strategy for video.

6.2.1 Video Software Strategy

Before delving into the software algorithms employed to implement video it is important
to point out that Analog Devices’ VisualDSP++ compiler contains numerous utilities,
such as device drivers and system services, which aid in developments incorporating their

ICs [68], [69].

6.2.1.1 Device Drivers & System Services

Device drivers are essentially standardised API (Application Program Interface) for
Blackfin processors that allow for interaction with internal modules and hardware

peripherals e.g. PPI and video encoders respectively.

% An API forms part of a software interface that a compiler or library provides in order to support requests
for services to be made of it by an application program.
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Figure 57: Examples of Supported Blackfin Device Drivers

The utilisation of device drivers results in modular programming and portability between
Blackfin processors. Memory is required by device drivers in order to manage
components and this is supplied at the initialisation stage of a software application. All
device drivers use “handles”. A handle is quite literally a method for getting a handle on
a device; therefore it is fundamentally an address that points to device specific data. For
example the following source code declares a handle for an ADV7179 video encoder

device driver.

ADI_DEV_DEVICE_HANDLE AD7179DriverHandle; / Handle to the ADV7179 Driver

All VisualDSP++ device drivers encompass return codes which indicate the success or
failure resulting from the use of a device driver; a zero denotes success, while a non-zero

value signifies an error.

The following diagram illustrates the four major functions utilised with device drivers.
The purpose of each of the four functions is self explanatory from the diagram. However
the term “buffer” needs to be expanded upon. Buffers, with reference to VisualDSP++
utilities, describe the data for a device driver to process and are provided by the
application software exploiting a particular device driver. The application software
essentially populates the various fields of the buffer to completely describe the data to the

device driver. In other words data is shifted to/from device drivers using buffers [68].
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Figure 58: Standard Device Driver Functions

An input buffer is employed to receive data from a device; while conversely, an output
buffer contains data that is sent out to a particular device. The two main buffer categories
are /D and 2D. A 1D buffer is comprised from a linear array of data that a device driver
processes. On the other hand, a 2D buffer is essentially a two-dimensional array (rows
and columns) of data that a device driver manages. 2D buffers are used in this application
as they are more efficient in terms of video processing than a /D buffer. A 2D buffer is

comprised of the following fields [18], [69]:

e pData: A pointer to relevant data which can exist anywhere in memory.

o FElementWidth: Width of each element in terms of bytes to be read in or sent out.

® XCount: Specifies the number of column elements.

®  XModify: Indicates the number of bytes to increment the address pointer after
each column transfer.

® YCount: Specifies the number of row elements.

®  YModify: Indicates the number of bytes to increment the address pointer after each
row transfer.

® CallBackParameter: Null or non-null value. The idea of Callback is explained
shortly.

e pNext: Pointer to the next 2D buffer in the chain. The concept of chaining is
expanded upon shortly. This parameter is assigned null if the buffer is the

last/only buffer in a chain.
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The concept of Callback with reference to 2D buffers involves invoking a regular C
function in response to an asynchronous event such as an interrupt. The VisualDSP++

compiler incorporates two categories of Callback [69]:

1. Live Callback
2. Deferred Callback

For Live Callbacks, a C service routine is invoked as soon as an asynchronous event
occurs. Conversely, for Deferred Callbacks a C function is not summoned until a short
time after an asynchronous event occurs. Thus, Live Callbacks typically occur at
hardware interrupt time (higher priority interrupt level); whereas Deferred Callbacks
execute at software interrupt time (lower priority interrupt level). As a consequence, the
use of Live Callbacks can have a detrimental effect on performance as associated
interrupt latencies are high. Therefore Deferred Callbacks are used in the vast majority of

applications as they possess lower interrupt latencies.

With reference to the CallBackParameter field of a 2D buffer, if a value of null is
assigned Live Callbacks are utilised. In addition, a device driver does not “call back™ an
application after a buffer has been processed. If the CallBackParameter field is allotted a
non-null value, Deferred Callbacks are employed invoking an application’s Callback

function after a buffer has been processed by a particular device driver.

The pNext parameter of a 2D buffer can be used to link numerous buffers together in a
chain-like manner. Typically, with video applications a Chained Loopback dataflow
method is used to mutually tie several buffers together [68]. This fundamentally means
that the last element of one particular buffer points to the first data member of a different
buffer. Therefore buffers are essentially queued one-by-one to a device driver ensuring
that the component, e.g. a video encoder IC, is never starved of data. This is obviously

critical in video applications.
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Figure 59: Chained Loopback Dataflow Methodology

System services are in essence pre-built software libraries that simplify software
development and provide efficient access into components such as DMA and dynamic

power modules etc [68].
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Figure 60: Examples of System Services Supported

They are used in conjunction with device drivers in order to control and interact with
internal modules and external peripherals. Device drivers manage their own system
services as required. To utilise device drivers and system services software algorithms

must include the appropriate header files in the following order.

#include <services/services.h> // System Services Header File
#include <drivers/adi_dev.h> // Device Manager Header File

#include <drivers/X.h> // Device Driver X’s Header File
System services are initialised prior to the configuration of device drivers. The

adi_dev_Init() function is used to initialise a device driver. VisualDSP++’s device

drivers are built on top of its system services [68], [69].
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A typical programming sequence for the utilisation of device drivers and system services

1s seen below.
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Figure 62: Typical Device Driver Programming Sequence
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The device drivers for the ADV7179 video encoder IC [70] and DMA module are
employed in this system to implement video processing. The methodology used to realise
this is discussed in the next section. Before discussing this however, it must be pointed
out that the final implementation of the video encoder device driver module was only
being developed by Analog Devices at the same time as the author was trying to utilise
this particular device driver within this test algorithm. As a result, contact was made with
Analog Device’s support-team on numerous occasions to try and eradicate teething
problems. However, this was sometimes in vein as the support team were only at the
same development stage as the author. Consequently the author was engaged in many

debug sessions in order to successfully implement the test algorithm.

6.2.1.2 Software Testing of Video Implementation

The strategy for testing the correct implementation of video processing upon the Blackfin
ADSP-BF537 EZ Kit Lite and its A/V daughter board involved alternating the colour
displayed upon a television monitor. This included creating two ITU-R BT.656 buffers in
SDRAM. Two 2D buffers chains were declared to ensure that the ADV7179 IC was
never starved of data. Once all of the device drivers, handles etc. were declared the two
ITU-R BT.656 4:2:2 frames were initialised with different colours. The ADV7179 device
driver handle was then enabled and fed the data contained within the two buffers via a
DMA transfer. The correct operation of the test algorithm was verified by monitoring a
television screen to see if the desired colours were displayed. The flow chart below
illustrates the processes undertaken to achieve successful operation. The source code for

this test algorithm is found in Appendix E.
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Figure 63: Flowchart for Video Processing Test Program

Numerous colours were declared in YChCr format. The period of time for which an
individual colour was displayed was dependant upon the value of the NUM_BUFFERS
constant. As seen below, for a value of 30 assigned to NUM_BUFFERS a colour change

rate of one second was achieved.

#define NUM_BUFFERS (30) // Colour Change Rate = (NUM_BUFFERS/30)/second
// Colour Patterns

static u8 black[] = {0x80,0x10,0x80,0x10}; // Black pixel YCbCr format
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static u8 blue[] = {0xF0,0x29,0x6E,0x29}; // Blue pixel YCbCr format

static u8 red[] = {0x5A,0x51,0xF0,0x51}; // Red pixel YCbCr format

static u8 magenta[] = {0xCA,0x6A,0xDE,0x6A }; // Magenta pixel YCbCr format
static u8 green[] = {0x36,0x91,0x22,0x91}; // Green pixel YCbCr format

static u8 cyan[] = {OxA6,0xAA,0x10,0xAA}; // Cyan pixel YCbCr format

static u8 yellow[] = {0x10,0xD2,0x92,0xD2}; // Yellow pixel YCbCr format
static u8 white[] = {0x80,0xEB,0x80,0xEB }; // White pixel YCbCr format

Two buffer frames were declared, PingFrame and PongFrame, both of which were
configured to hold the contents of an /ITU-R BT.656 frame. In this particular case the two
arrays were initialised to hold a NTSC video frame. NTSC was chosen solely for test

purposes; the choice of PAL or NTSC in this case is irrelevant.

// Create two areas in SDRAM that will each hold a 656 frame
static u8 PingFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT];
static u8 PongFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT];

Two 2D buffer chains, one for PingFrame and one for PongFrame, were declared in
order to create a chaining method for the data fed to the ADV7179 device driver. Both
buffer chains consisted of a number of elements determined by the NUM_BUFFERS

constant.

ADI_DEV_2D_BUFFER PingBufferfNUM_BUFFERS]; // Create Two Buffer Chains
ADI_DEV_2D_BUFFER PongBuffer[NUM_BUFFERS];

Several device drivers were used in this test algorithm. The DMA device driver was
incorporated to facilitate efficient data transfers between SDRAM and the PPI port. The
DCB (Deferred Callback) device driver was utilised as Deferred Callbacks were used to

improve performance as outlined in Section 6.2.1.1.

// DMA Manager data (base memory + memory for 1| DMA channel)
static u§ DMAMgrDatal ADI_DMA_BASE_MEMORY + (ADI_DMA_CHANNEL_MEMORY *

Dl
/I Deferred Callback Manager data (memory for 1 service + 4 posted callbacks)
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static u§ DCBMgrData[ ADI_DCB_QUEUE_SIZE + (ADI_DCB_ENTRY_SIZE)*4];

The ADV7179 device driver was also employed within this system. It was used to control
the ADV7179 video encoder IC in order to transform a digital /ITU-R BT.656 video
stream into an analogue television signal. Recall from Section 6.2.1.1 that memory is
required by device drivers in order to manage components and that this memory is
supplied at the initialisation stage of a program. During initial development of this test
program an error involving the use of the ADV7179 device driver module was

encountered.

/I Device Manager Driver

static u§ DevMgrData[ADI_DEV_BASE_MEMORY + (ADI_DEV_DEVICE_MEMORY * 1)];

After consultation with Analog Device’s support team and a review of [71] it was found
that the ADV7179 IC, situated on the A/V daughter board, is connected to the Blackfin
ADSP-BF537 EZ Kit Lite using two peripherals. Firstly, the PPI port is used for
transferring video data to the encoder; while the SPI is used to control the ADV7179 IC.
Thus the ADV7179 device driver automatically and transparently opens and controls the
underlying PPI driver to move data through the encoder. It also opens and controls the
underlying SPI driver to configure the ADV7179. This can be thought of as a stacked
approach where the application talks exclusively to the ADV7179 device driver while the
ADV7179 driver talks to the underlying PPI and SPI drivers as necessary.
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Subsequently, to overcome the encountered error, memory for three device drivers had to
be allocated for a single call to the ADV7179 device driver as it implicitly incorporates

the PPI and SPI device drivers.

/I Device Manager data (base memory + memory for 3 devices)

/Il Memory for 3 devices is required because usage of a 7179 device results in the usage of the PPI
// and SPI devices.

static u§ DevMgrData[ADI_DEV_BASE_MEMORY + (ADI_DEV_DEVICE_MEMORY * 3)];

Handles for the utilised device drivers were declared.

ADI_DEV_DEVICE_HANDLE AD7179DriverHandle; // Handle to the ADV7179 Driver
ADI_DCB_HANDLE DCBManagerHandle; // Handle to the Callback Service Manager
ADI_DMA_MANAGER_HANDLE DMAManagerHandle; // Handle to the DMA Manager
ADI_DEV_MANAGER_HANDLE DeviceManagerHandle; // Handle to the Device Manager

The Callback function in this application was invoked as soon as the PPI completed the
processing of the last component in the buffer chains. Within the Callback function the
pNext value of the last elements of both buffer chains was assigned the address of the first
element within each individual chain in order to prevent starvation of data to the video

encoder IC.
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In order to initialise the DCB manager with sufficient memory for the required number of
Deferred Callback queues the adi_dcb_Init() and adi_dcb_Open() functions were used.
The DMA and ADV7179 device drivers were initialised using the adi_dma_Init() and

adi_dev_Init() functions — see Appendix E.

The two frames, PingFrame and PongFrame, were configured to hold a progressive scan
ITU-R BT.656 4:2:2 NTSC frame. This was achieved using a pre-written system services
function, adi_itu656_FrameFormat(), which initialises a frame with the necessary SAV,

EAV, preambles etc. required for an ITU-R BT.656 video stream — see Appendix E.

adi_itu656_FrameFormat (PingFrame,ADI_ITU656_NTSC_PR);
adi_itu656_FrameFormat (PongFrame, ADI_ITU656_NTSC_PR);

Once the frames were initialised their /TU-R BT.656 chrominance fields were filled with
a particular colour; in this case white and blue respectively. Again, this was achieved

using a pre-written system services function, adi_itu656_FrameFill() — see Appendix E.

adi_itu656_FrameFill (PingFrame,ADI_ITU656_NTSC_PR,white);
adi_itu656_FrameFill (PongFrame,ADI_ITU656_NTSC_PR,blue);

After resetting the ADV7179 IC through software and initialising the AV7179 device
driver, the application opened the video encoder IC for use using the adi_dev_Open()
function. This function also prescribed the inclusion of DMA transfer between SDRAM
and the ADV7179 as the DMA handle was passed as the seventh parameter.

// Open the AD7179 Driver for Output

ezErrorCheck(adi_dev_Open(DeviceManagerHandle, // Handle controlling the Device
&ADIADV7179EntryPoint, // Address of Entry Point
ENCODER_PPI, // Number identifying which Device is Opened
NULL, // No Client Handle
&AD7179DriverHandle, // Handle Address
ADI_DEV_DIRECTION_OUTBOUND, // Data Direction
DMAManagerHandle, // Handle to DMA Manager
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DCBManagerHandle, // Handle to Callback Manager
Callback)); // Callback

However, problems were encountered using this function. The Blackfin ADSP-BF537
processor contains a single PPI port. The third parameter passed to adi_dev_Open()
contains a number that identifies which device is to be opened. Initially ENCODER_PPI
was assigned a value of one to indicate the PPl device number. This resulted in nothing
being displayed upon the television monitor when the program was tested. After
reviewing [71] it was found that devices exploiting VisualDSP++ utilities are numbered
with a zero base; e.g. if there are four PPI ports the first is assigned zero for identification
purposes, the second is assigned one etc. Subsequently to solve the encountered error

ENCODER_PPI was assigned a value of zero.

The adi_dev_Control() function was used to configure the ADV7179 device driver for

data flow and open the PPI port for data transfer.

/I Set PPI Device Number

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
/l Command Identifier
ADI_ADV717x_CMD_SET_PPI_DEVICE_NUMBER,
(void*)0)); // PPI Device Number

/I Open PPI Device

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
ADI_ADV717x_CMD_SET_PPI_STATUS, // Command Identifier
/I Address of Command Specific Parameter

(void*)ADI_ADV717x_PPI_OPEN));

The two buffer chains were linked to PingFrame and PongFrame respectively in order to
form a loopback mechanism to ensure that data was constantly being fed from SDRAM
to the ADV7179 video encoder. Recall that each buffer chain contained NUM_BUFFERS
elements. As illustrated in the following diagram all of the elements within both chains,

PingBuffer and PongBuffer, pointed to PingFrame and PongFrame respectively.
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Figure 65: Elements of Buffer Chains pointing to ITU-R BT.656 Frames

This was accomplished in software by appropriately configuring the fields of all elements

of both 2D buffers; the configuration for PingBuffer is seen below.

for (i = 0; i < NUM_BUFFERS; i++) // Populate the PingBuffer

{
PingBuffer[i].Data = PingFrame; // Point to PingFrame Data
PingBuffer[i].ElementWidth = 2;
PingBuffer[i]. XCount = (ADI_ITU656_NTSC_LINE_WIDTH/2);
PingBuffer[i]. XModify = 2;
PingBuffer[i]. YCount = ADI_ITU656_NTSC_HEIGHT;
PingBuffer[i]. YModify = 2;
PingBuffer[i].CallbackParameter = NULL,;
PingBuffer[i].pNext = &PingBuffer[i + 1];

}

/I Callback on last buffer in chain, consequently point to first buffer in chain.

PingBuffer[NUM_BUFFERS - 1].CallbackParameter = &PingBuffer[0];
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PingBuffer[NUM_BUFFERS - 1].pNext = NULL;

As mentioned earlier, as soon as the processing of the last buffer in the chain was
terminated a Callback was issued in order to re-queue the data; i.e. the last buffer in the
chain points back to the first buffer element. Again, this mechanism was utilised to

ensure that a video stream was constantly being fed to the ADV7179.

The adi_dev_Control() function was again incorporated to configure the ADV7179

device driver for outbound loopback data flow.

/I Configure the AD7179 Dataflow Method

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
ADI_DEV_CMD_SET _DATAFLOW_METHOD, // Command Parameter
(void *)ADI_DEV_MODE_CHAINED_LOOPBACK)); // Outbound Loopback

The next step involved actually pointing the ADV7179 device driver towards the buffer
chains and turning on the data flow to allow transmission of an ITU-R BT.656 4:2:2
video stream to the ADV7179 video encoder IC.

/I Give the device the Ping and Pong buffer chains
ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device
ADI_DEV_2D, // 2D Buffer
(ADI_DEV_BUFFER *)&PingBuffer)); // Point to PingBuffer

ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device
ADI_DEV_2D, // 2D Buffer
(ADI_DEV_BUFFER *)&PongBuffer)); // Point to PongBuffer

// Enable data flow

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
ADI_DEV_CMD_SET_DATAFLOW, // Command Parameter
(void *)TRUE)); // Turn on Dataflow
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The reader may have noticed that most function calls discussed so far incorporated a call
to ezErrorCheck(). This was used as a debug aid as all calls to VisualDSP++ system
services functions return a value indicating the success/failure of a particular invoked
algorithm. If a specific function call returned unsuccessfully ezErrorCheck() illuminated
LEDs located on the Blackfin ADSP-BF537 EZ Kit Lite development board to indicate a

fault. Otherwise ezErrorCheck() took no action.

After eradicating all software debugs it was found that the program did not function as
desired; i.e. a television screen did not display alternate colours when connected to the
A/V daughter board. After reviewing [71] once more it was found that the problem
resided in the project options of VisualDSP++. As this test algorithm incorporated
SDRAM the pre-processor macro definition USE_SDRAM needed to be included in the

project options in order to enable the use of SDRAM upon the EZ Kit development board.

Project Options for Streaming

= @ Project ~
[ General

-—-E Comnpile :
@ General |USE_SDRAM
@ Saource Language S :
[y Preprocessor Additional include directories:
8 Processor (1)
g Processar (2) E]
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[ Assemble

:;:---E Link
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@ LEF Preprocessing

8 Elimination

gy Processar

:;:---E boad

[ Options
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B kermel 5 Additional options:

p—

Freprocessor macio definitions:

L ok ] [ Cancel

Figure 66: Required Pre-Processor Macro Definition
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Once this problem was eliminated, the test algorithm operated as desired; i.e. a television
screen connected to the A/V board continuously displayed alternate screens of white and
blue. This therefore proved that the ITU-R BT.656 video stream was being correctly
initialised within SDRAM and transferred successfully, via DMA, to the ADV7179 video
encoder IC. The encoder itself correctly converted the digital video stream into a standard
analogue television signal. Thus a formula for video processing utilising the Blackfin

ADSP-BF537 EZ Kit Lite and A/V development boards has been determined.

6.2.2 Video Hardware Strategy

The main focus so far has been on the software strategy implemented to realise video
processing. However a certain degree of hardware configuration strategy, albeit relatively
small, also took place involving signal routing on the ADSP-BF537 EZ Kit Lite and A/V
development boards. This was conducted by modifying jumper settings upon the A/V
daughter board. The correct hardware settings in conjunction with an accurate software

strategy led to the successful operation of this test program.

The following table illustrates the jumper settings instigated on the A/V daughter board.
Note that the table only contains details of jumper settings that were relative to this
particular video processing implementation. An individual jumper contains a number of
pins; so for example the description JP3.5/7 refers to the connection of pins 5 and 7 of

Jumper 3 [72].
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Jumper Number | Pin Connections Outcome
JP3.5/7 ADSP-BF537’s TWI Interface is utilised to
o JP3.6/8 potentially reconfigure the ADV7179 IC
JP4.1/2 Connects 27MHz A/V On-board Clock to
ol JP4.3/4 Video Encoder
JP5 JP5.3/4 Enables PPIO to drive ADV7179 IC
JP8.1/3 Selects PPIO as the source for the frame
JP8 JP8.2/4 synchronisation signals for ADV7179 IC
JP8.7/8 Enables output data synchronisation signal
JP9 JP9.1/3 Video Encoder Reset with Flag Pin

Table 16: A/V Daughter Board Jumper Settings

Jumper 3 is the TWP (Two Wire Interface) source selection jumper [42], [72]. It is used
to select between a software emulated and actual TWI interface. The ADV7179 IC is
reconfigurable using a TWI interface. Consequently this jumper is required as some
Blackfin processors do not contain a TWI interface; therefore they need to emulate the
interface in software. On the other hand, the ADSP-BF537 does contain a 7WI interface;
subsequently JP3.5/7 and JP3.6/8 were installed.

The ADV7179 video encoder requires some sort of clocking mechanism. The A/V
daughter board contains an on-board 27MHz oscillator. JP4.1/2 and JP4.3/4 were used to
route the 27MHz clock signal to the ADV7179. Jumper 5 dictates where the video
encoder incorporated onto the A/V daughter board sources its video data from. As the
ADSP-BF537 contains a single PPI port, namely PPI0, JP5.3/4 was used to route the
ADSP-BF537’s PPI data to the ADV7179 [72].

* TWI is a communications protocol used in small industrial networks. Its operation is similar to I°C.
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JP8.1/3 and JP8.2/4 were used to select the ADSP-BF537’s PPI port as the source for
synchronisation signals feeding the video encoder. JP8.7/8 was inserted to enable the
output video synchronisation signals from the ADV7179 IC. Jumper 9 is partly used to
select between the resources utilised to reset the ICs incorporated onto the A/V board. In
this particular test algorithm a software reset was utilised therefore JP9.1/3 was inserted.
Again to reiterate, the correct hardware settings outlined in conjunction with the

described software strategy led to the successful operation of this test program.

6.3 Summary

This chapter described the test strategy employed for video processing utilising the
Blackfin ADSP-BF537 EZ Kit Lite and A/V development boards. The core issues to note

are as follows:

e VisualDSP++’s device drivers and system services are powerful resources which

aid in this video synthesis.

e A test algorithm involving the display of analogue video signals, derived from an
ITU-R BT.656 video stream in SDRAM, upon a television monitor has been
developed.

e Numerous software and hardware modifications were made to the initial testing

strategy resulting in a successful outcome; i.e. alternate colours were continuously

displayed on a television monitor.
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Chapter 7 - Application Synthesis

7.1 Introduction

This chapter details the efforts involved in the implementation of this application’s
synthesis by combining the developed CAN and video mechanisms. The information

given in this chapter is separated into numerous sections as outlined below:

®* An explanation of the initial strategy undertaken to develop the application’s

synthesis.

e A description of the problems encountered with the initial synthesis strategy and
the debug session embarked on to identify the cause of the occurring errors and

their eradication with fitting solutions.

® An outline of the final strategy utilised and the test procedure incorporated to

assess its correct functionality.

e A depiction of future developments which could be made to further improve the

system’s performance.
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7.2 Displaying Simulated Vehicle Data

Over the last two chapters suitable procedures have been established for CAN networking
and video processing. As a result, the next step is to combine the two independent
strategies to endeavour to formulate the synthesis of this application. This essentially
involves utilising the CAN strategy to receive simulated vehicle data from the network
and pass this information over to the video processing module in order to visually

represent the data appropriately on a television monitor.

The general hypothesis behind the amalgamation of the two devised procedures is to
exploit the contents of received CAN messages to manipulate global variables in
software, resulting in the modulation of a monitor’s display. This is carried out repeatedly
in software resulting in a television screen being constantly updated with live vehicle

information.

7.2.1 Initial Strategy

Originally the CAN and video processing strategies were merged together with the
initialisation sequence for various parameters as illustrated in the following diagram. The
functions that were utilised in this particular implementation can be found (not in the

same order as the subsequent diagram) in Appendix F.

At first, it was decided to use only CAN messages received with ID 1041 to modulate a
monitor’s display. Thus, recalling from Section 5.5, only messages received into
Blackfin’s Mailbox 7 were employed to vary a television screen’s display. This approach
was taken in order to develop the application’s synthesis in steps; i.e. implement screen
modulation using one particular CAN message and then develop on from this. Message
ID 1041 was chosen to represent vehicle speed and, at the outset, it was decided to
signify this quantity by varying the colour displayed on the screen. A CAN network of
500kBits/s was again implemented as it satisfactorily transferred simulated vehicle data

at an appropriate rate.
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Figure 67: Flowchart of Original Initialisation Strategy

To utilise the information received into Mailbox 7 an ISR, CAN_RCV_HANDLER, was
developed which varied the value of a global variable, clr_screen, depending upon the
contents of the mailbox’s CAN_MB7_DATA3 register. Once all initialisation was
complete, this ISR was invoked as soon as a CAN message was received by the Blackfin.
The value of the clr_screen global variable was used within the main() function to
attempt to vary the colour displayed upon the monitor. As seen below, within this initial
implementation a value of clr_screen equal to two depicted red; while a value of one

represented blue. Note that the developed ISR included code to process a message
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received into Mailbox 6. However, this was only incorporated to allow for future
expansion because as stated earlier, an approach was taken to develop the application’s

synthesis in steps.
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Contents of
CAN_MB_DATAIT
= or==5137
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clt_screen = 2 dr_soeen=1

¥
Return to
mainf)

Figure 68: Received CAN Message Interrupt Service Routine

if(bit_pos = = 0x8) //if Mailbox7 IRQ // ISR for Mailbox 7

{
if(*(pCAN_MB_DATA3(7)) = = 0) Il (¥(pCAN_MB_DATA3(7)) <= 512))

{
clr_screen = 2; // Display RED

}

if(*(pCAN_MB_DATA3(7)) >= 513)

{
clr_screen = 1; // Display BLUE

}
}

Within the main() function the clr_screen variable was evaluated using a switch-case C

statement and the appropriate colour was written to PingFrame and PongFrame in ITU-R
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BT.656 NTSC format. Note NTSC was chosen for use at this stage as it is default format
for the ADV7179 IC; configuring the device for PAL usage requires developing software

algorithms outside of the application’s scope.

switch(clr_screen) // Determine which colour is displayed on the screen
{
case(0): // Display WHITE
adi_itu656_FrameFill (PingFrame, ADI_ITU656_NTSC_PR, white);
adi_itu656_FrameFill (PongFrame, ADI_ITU656_NTSC_PR, white);
break;

case(1): // Display BLUE
adi_itu656_FrameFill (PingFrame, ADI_ITU656_NTSC_PR, blue);
adi_itu656_FrameFill (PongFrame, ADI_ITU656_NTSC_PR, blue);
break;

case(6): // Display YELLOW
adi_itu656_FrameFill (PingFrame, ADI_ITU656_NTSC_PR, yellow);
adi_itu656_FrameFill (PongFrame, ADI_ITU656_NTSC_PR, yellow);
break;

default: //Display BLACK
adi_itu656_FrameFill (PingFrame, ADI_ITU656_NTSC_PR, black);
adi_itu656_FrameFill (PongFrame, ADI_ITU656_NTSC_PR, black);
break;

After writing the ITU-R BT.656 4:2:2 data, two buffer chains were linked to the frames to
form a loopback mechanism as discussed in the last chapter. Once this was completed the
buffer chains were passed to the ADV7179 handle with the aim of displaying the
information on a monitor. This entire procedure was carried out continuously in software

by placing it within a while(1) loop.
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7.2.1.1 Problems Encountered

When the developed application was tested it did not function as desired. The default
colour, black, was continuously displayed upon a connected television monitor regardless
of the value contained within the CAN_MB7_DATA3 register of Mailbox 7.
Consequently, a debug session was undertaken in an attempt to establish the likely cause
of the error. After stepping through the source code it was found that the
CAN_RCV_HANDLER ISR was not being correctly registered with the Blackfin’s CEC
(Core Event Controller) and SIC (System Interrupt Controllers) modules. These two
modules are responsible for assigning priority levels and mapping ISRs. To program a
particular ISR with a specific IVG (Interrupt Vector Group), i.e. priority level, the
necessary bits in the appropriate SIC_IARx register must be configured accordingly. IVG
levels range from O to 15; lower numbers possess higher priority while higher numbers
bear lowest priority. IVG levels 7 to 15 are considered general purpose software or
peripheral level interrupts. All other priority levels are reserved for supervisory ISRs; e.g.

hardware errors [42].

The CAN_RCV_HANDLER was initially allocated an IVG level of eleven by assigning a
value of 0x4 to bits 31 to 29 of SIC_IARI. After configuring the priority of an individual
ISR within the Blackfin it has to be registered with the CEC module. The VisualDSP++
compiler incorporates two ways to accomplish this. Firstly, the utilisation of device
drivers and system services can be used to automatically register an ISR. On the other
hand an ISR can be manually registered using the register_handler() function. The

register_handler() function was used to log the CAN_RCV_HANDLER with the CEC.

register_handler(ik_ivg9, CAN_RCV_HANDLER); // Register ISR with CEC

Conversely speaking, the devised video processing strategy incorporated device drivers
and system services to register ISRs utilised within the DMA transfers. In the
initialisation sequence illustrated in Figure 67 the CAN_RCV_HANDLER was registered
with the CEC and SIC prior to the logging of the ISRs utilised by the video processing

strategy. The cause of the occurring problem was that the registering of the video
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processing ISRs overwrote the logging of the CAN_RCV_HANDLER ISR. Therefore, as
far as the Blackfin was concerned, the CAN_RCV_HANDLER was no longer registered as
an ISR. As a result of this, when this program was tested the ISR for Mailbox 7 was never
invoked; thus the global variable clr_screen remained at its default value of zero. This is

why black was being continuously displayed on the connected television monitor.
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Figure 69: Revised Initialisation Strategy
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A solution to this problem was realised by subtly amending the initialisation strategy as
seen in the preceding diagram. This initialisation sequence was almost identical to its
predecessor with the exception that the assigning of interrupt priority for
CAN_RCV_HANDLER did not take place until just before the enabling of dataflow. This
essentially meant that the registering of the CAN_RCV_HANDLER ISR was appended
onto the registering of the video processing ISRs using the register_handler() function.

This initialisation strategy was employed within the final synthesis — see Appendix F.

When the revised application was tested it still did not operate as anticipated. The
simulated vehicle speed data contained inside Mailbox 7 did depict what was displayed
upon the monitor. However, the screen’s display did not update when the potentiometer
used to mimic the operation of a sensor measuring speed was varied. Instead, the first
CAN message received into Mailbox 7 dictated what colour was statically displayed on
the monitor. For instance, if the first CAN message received into Mailbox 7 resulted in
CAN_MB7_DATA3 containing a value less than 513 the colour red was continuously
displayed regardless of any further deviations in received data into this specific message

buffer.

7.2.2 Final Strategy

A review was carried out to eradicate the reoccurring problem and establish how to
exploit the received CAN data to continuously refresh the connected monitor’s display
with new information. It was found that once any device controlled through
VisualDSP++ utilities is opened the dataflow method for the specific device, particularly
the DMA, must only be set once [68], [71]. This therefore was the fault in the initial
synthesis strategy; the dataflow method for the ADV7179 device driver was configured
during the initialisation stage and again inside the while(1) loop, thus violating standard
procedure. Consequently, it can be seen that the employment of a while(l) loop to
continuously update the connected television’s display would not suffice as the dataflow

method can only be configured once.
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An alternative methodology was found through the exploitation of the Callback function.
Recall that this function was invoked as soon as the PPI (via the ADV7179 device driver)
completed the processing of the last component in the buffers chains. The Callback
function was used to write the appropriate ITU-R BT.656 chrominance information,
representing vehicle speed, to the data buffers based on the value of the global variable
clr_screen. In other words, the switch-case C statement outlined earlier was modified and

incorporated into the Callback function:

switch(clr_screen) // Update data buffer with new colour

{
case 0: // Fill frame with BLACK colour

adi_itu656_FrameFill (pBuffer->Data,Frame,black);
break;

case 1: // Fill frame with BLUE colour
adi_itu656_FrameFill (pBuffer->Data,Frame,blue);
break;

case 6: // Fill frame with YELLOW colour
adi_itu656_FrameFill (pBuffer->Data,Frame,yellow);
break;

default: // Fill frame with WHITE colour
adi_itu656_FrameFill (pBuffer->Data,Frame,white);
break;

}
break;

Therefore, upon completion of processing of the last component in both buffer chains

fresh data was given to the ADV7179 IC for conversion to a standard analogue video

signal for display on the monitor — see Appendix F.
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This exploitation of the Callback function meant that an interrupt policy, in opposition to
a polling strategy embedded within a while(1) loop, was employed for continuously
refreshing the ADV7179 video encoder with new data. This implicitly made more
efficient use of both hardware and software resources. The interrupt policy involved
initialising all of the incorporated VisualDSP++ utilities and configuring the relevant
components for dataflow etc. Once all of this was completed the system simply waited
for suitable data to arrive for video processing via the CAN network, thus invoking

CAN_RCV_HANDLER.

The value of clr_screen was again determined within the CAN_RCV_HANDLER ISR by
evaluating the value contained within the CAN_MB7_DATA3 register of Mailbox 7:

if(bit_pos = = 0x8) // if Mailbox7 IRQ
{
if((*(pCAN_MB_DATA3(7)) >= 128) && (*(pCAN_MB_DATA3(7)) <= 255))
{
clr_screen = 1; // Display BLUE
}

if(*(pCAN_MB_DATA3(7)) >=256) && (*(pCAN_MB_DATA3(7)) <= 383))
{

clr_screen = 2; // Display RED
}

if((*(pCAN_MB_DATA3(7)) >= 768) && (*(pCAN_MB_DATA3(7)) <= 895))
{
clr_screen = 6; // Display YELLOW

}

if(*(pCAN_MB_DATA3(7)) >= 896)
{
clr_screen = 7; // Display WHITE

}
} // end if Mailbox 7
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7.2.2.1 Testing of Final Strategy

The devised application methodology was tested by connecting the Blackfin ADSP-
BF537 EZ Kit Lite development board to the constructed CAN network described in

Section 5.2. In addition, a television monitor was interfaced to the video terminals of the

A/V daughter board.
it
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Figure 70: Application Components

Once the system was powered up the potentiometer incorporated onto the CAN On-
Board node was rotated to simulate the action of an automobile sensor measuring speed.
This resulted in the colour on the monitor’s display varying in line with the rotation of the
potentiometer; hence proving that the simulated vehicle data, transmitted via the CAN
network, was correctly processed by the video module and represented visually.

Therefore the application operated successfully as desired.

7.2.3 Capacity for Expansion

Earlier it was outlined that a modular approach was adopted in order to develop the
application’s synthesis in steps. However due to project timing constraints the devised
methodology only accounted for the visual representation of a single CAN message’s
contents on a connected graphical display. Nonetheless, room for expansion in terms of
CAN message processing is contained within the CAN_RCV_HANDLER ISR. As
mentioned previously, source code for the processing of CAN messages received into

Mailbox 6 is incorporated into CAN_RCV_HANDLER to allow for future development.
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Therefore it can be envisaged that the potential exists for the processing of suitably
configured multiple CAN mailboxes. Consequently this allows for the handling of

numerous quantities of simulated automobile data.

In addition simulated automobile data was represented visually upon a connected display
monitor using colour information only. The derivation of a system to symbolise data in a
graphical manner, using dial and gauges, was not fulfilled due to timing constraints.
However a groundwork mechanism, incorporating CAN and video processing, which
would form the cornerstone of a graphical system representing vehicle data, has been

successfully established.

7.3 Summary

This chapter discussed the steps taken to formulate the system’s implementation through
the combination of the CAN and video processing methodologies described in previous

chapters. The major points to behold are as follows:

e (Care was taken with the initialisation sequence to ensure that all parameters were

correctly configured in the appropriate order.

e To achieve desirable functionality the system was implemented with a full
interrupt policy; i.e. once initialisation had concluded and all ISRs were defined

the application only commenced processing when a particular interrupt occurred.

e Simulated vehicle data extracted from the constructed CAN network was visually

represented using colour upon a connected display device.
® Due to project timing constraints it was not possible to devise a methodology to

visually represent more than a single quantity of vehicle data at the same time; nor

was it achievable to represent vehicle data in a graphical manner.
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e The successfully devised application methodology can be used as the foundation

stone of a graphical system used to symbolise vehicle data.
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Chapter 8 - Conclusion

8.1 Introduction

This chapter summarises the research and methodologies carried out for this thesis, it
outlines the results and conclusions that have been drawn from the project and offers

suggestions on how to possibly further the research.

This research project commenced by outlining the protocols, technologies and
components reviewed to formulate a suitable methodology for this application. Chapter 2
discussed CAN with a view to automotive networking and highlighted the durability and
reliability of the protocol. Chapter 3 described to the reader the fundamentals of video
processing and gave a detailed account of the ITU-R BT.656 digital video standard.
Chapter 4 explained how numerous intelligent-devices were evaluated under several

headings to establish the most suitable for employment in this research project.

The research project then moved on to synthesising the application with respect to the
findings of Chapters 2, 3 and 4. Chapter 5 described the steps taken to simulate vehicle
data and detailed how the CAN network employed in this system was constructed.

Chapter 6 discussed how a correct video module strategy was devised for the intelligent-
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device selected in Chapter 4. Chapter 7 portrayed how the developed CAN and video

algorithms were combined to formulate the overall application.

8.2 Conclusion

A system that visually represents simulated automobile data has been successfully
implemented. The synthesised application illustrated, using colour variation, vehicle
speed upon a connected graphical display. The operation of automobile sensing-devices
was mimicked using potentiometers located within developed CAN nodes. The simulated
speed data was received from the constructed CAN network operating at 500kBits/s. This
information was then manipulated into ITU-R BT.656 format by the selected Blackfin
ADSP-537 convergent processor. Once appropriately configured the data was given to a
video encoder IC which converted the digital stream into an analogue video signal for

display upon a connected television monitor.

Problems such as memory allocation, compiler glitches and ISR registration were
overcome on the way to devising the successful system implementation. These problems
were eradicated through the combination of the review of pertinent literature,

consultation with the relevant bodies and software debugging.

The search for the appropriate intelligent-device required for this research project, with
respect to the factors outlined in Section 4.2, yielded the Blackfin ADSP-BF537 as the
most suitable processor. This component adequately met all of the key considerations

thus justifying it’s selection over the other devices evaluated.

As mentioned above the implemented system represented vehicle data using colour. The
chrominance data displayed on the screen updated in synchronisation with the rotation of
a specific potentiometer. Thus real-time vehicle data representation was achieved. This is
obviously paramount in an actual implementation of this system within an automobile as
a driver requires a live feed of critical vehicle data such as speed. However due to time

constraints it was only possible to display a single item of simulated vehicle data on the
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monitor. The derivation of a system to symbolise multiple data items in a graphical
manner, using dials and gauges, was not fulfilled. In conclusion, the devised system
nevertheless possesses the potential to form the cornerstone of a graphical system to

represent automobile data in real-time.

An actual implementation of this system would lead to economies of scale as the same
graphical display could be incorporated into all vehicle models developed by a particular
automotive manufacturer. Style variations between vehicle models could be still

maintained by simply devising different software graphics for each model — see Appendix

G.

8.3 Recommendations for Further Research &

Development

As mentioned previously in Section 7.2.3 the developed system could support the
representation of multiple data items by expanding the devised software algorithms. In
conjunction with this, the application’s functionality could be enhanced by constructing a
graphical mechanism to illustrate automobile information using dials and gauges; thus

formulating a digital dash-display.

The monitor used in a practical implementation of the devised system would be much
smaller than the television used in this project. It would be located where the dash-panel
of an automobile is located; i.e. it would replace the analogue dash-panel located behind
the steering wheel. This application displays video data dynamically upon the connected
monitor. As a result the potential exists to integrate additional vehicle information into
the graphical display. For example, GPS (Global Positioning System) systems are
typically located on the centre console of a vehicle cabin. The GPS information could be
displayed on the screen located behind the steering wheel resulting in the driver deviating
his/her attention from the road for less time. Research into the actual benefits realisable

with such a system would be similar to previous studies such as [73] and [74].
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Figure 71: CAN On-Board Circuit Schematic
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Appendix B - CAN On-Board Source Code

O 001NN B W=

M BE DA DD R DA DD 0L L 0L WL LWL WLWERDNNDNINIEDNNND — s s —m
— O VP AT NBELVNN OV IANTNEORNN OO AANNELVNN—,OOOIANN R W —O

/*****************************************************************************
k

* Device: PIC Microcontroller P18F258
* Osc: 16MHz

* File Name: "CAN_On_Board.c"

* Author: Dominick O' Brien

* Date: 29-Mar-06

* Version 1.00

*
et st st ke shestes s sheste sk sk st e st s ke steske s seste st sk e sfestes ke steste st steste stk st st s steste sttt st stk stttk skoloskostotokoskolekokoskokskolokolkololokskek /

[ st sk e ke ste s s st st stk e sk sk ke st st skt stesteskskeste skt stesteskske stesteskoleste stttk steskosieolstestostol stk skolototokosokotokoskolokoskokokokokokokolok
*

* Type Declarations

*

et st st ke sfestese sk skeste sk sk st st stk ke stesteskoskeste stk sfesteskske stestesieolstestesiol stk stttk st stol stk skokotokokoskokotokoskolokokoskoskokoskok skolokokskok /

typedef unsigned char uchar;
typedef long 1_ID;
typedef unsigned int iadc;

[ st e e ke ste st s ste st st s she sk sk ke st sk s ke steste sk sheste st sk ke e st sk ke steske st ste st sk st st stk st steste st steste stk st stttk stestolkoskostetolkoskolokokoskok skolokoskolok
*

* Variable Declarations

*

et st s ke sfestese s skeste sk sk st st stk ke steste skt skt sfesteskske etk stestesiol e steskoststestesteok stttk stk skoskokokokosokotokoskolokskokoskokokok skolokokskok /

uchar aa =0;

uchar aal =0;

uchar len = 0; // CAN DLC
uchar data[8]; // CAN Data Bytes
1_IDid =0; // CAN ID

iadc chO_res = 0; // ADC Channel O result variable
uchar ms_chO_res = 0; // ADC Channel 0 MSB result variable
uchar Is_chO_res = 0; // ADC Channel 0 LSB result variable

iadc chl_res = 0; // ADC Channel 1 result variable
uchar ms_chl_res = 0; // ADC Channel 1 MSB result variable
uchar Is_chl_res = 0; // ADC Channel 1 LSB result variable

void main()
{
TRISC.f2 = 0;
PORTC.f2 =0;
PORTC.f0 = 1; // Chip Select line of MCP2510
TRISC.10 = 0; // Make Port C Pin 0 an Output
ADCONI1 = 0x00; // Configure ALL analog inputs, Result RIGHT justified & Fosc/2
TRISA = 0xFF; // PORTA all inputs

aa = CAN_CONFIG_SAMPLE_THRICE & // form value to be used with CANInitialize()

CAN_CONFIG_PHSEG2_PRG_ON &
CAN_CONFIG_ALL_MSG &
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_LINE_FILTER_OFF;

aal = CAN_TX_PRIORITY_0 & // form value to be used with CANWTite()
CAN_TX_STD_FRAME &
CAN_TX_NO_RTR_FRAME;

PORTC.f2=1;
PORTC.f0 = 1; // CS line of MCP2510 HIGH

CANSetOperationMode(CAN_MODE_CONFIG,0xFF); // Set CONFIGURATION mode
// 16MHz, BRP = 16 => 62.5kbits/sec

// 16MHz, BRP = 8 => 125kbits/sec

// 16MHz, BRP = 4 => 250kbits/sec

// 16MHz, BRP = 2 => 500kbits/sec

// 8MHz, BRP = 8 => 62.5kbits/sec

// 8MHz, BRP = 4 => 125kbits/sec

// 8MHz, BRP = 2 => 250kbits/sec

// 8MHz, BRP =1 => 500kbits/sec

CANInitialize( 2,2,3,3,1,aa); // Initialise CAN module. BAUD = 500kbits/sec
CANSetOperationMode(CAN_MODE_NORMAL,0); // Set NORMAL mode

while (1)
{

[ st stesieke e stk s sheste st sk sfeste stk she stk sk st ste stk st stesteskoskeste stk st stk stesteskolste ikl st steokoskoskokosiokstotokok stk skokokokok soloiok skolkok
*

* Remember the PICs ADC result is a 10 bit number

* therefore we need two bytes to hold the 10 bit result
*

/***************************************************************************
chO_res = Adc_Read(0); // Get the ADC conversion result

Is_chO_res = ch0_res; // Get bottom 8 bits of ADC Channel 0 conversion
ms_chO_res = chO_res >> 8; // Get top 2 bits of ADC Channel 0 conversion

chl_res = Adc_Read(1); // Get the ADC conversion result
Is_ch1_res = chl_res; // Get bottom 8 bits of ADC Channel 1 conversion
ms_chl_res = chl_res >> 8; // Get top 2 bits of ADC Channel 1 conversion

data[0] = ms_chl_res; / 2 MSBs of Channel 1 conversion result
data[1] =1s_chl_res; // 8 LSBs of Channel 1 conversion result
data[2] = ms_chO_res; // 2 MSBs of Channel 0 conversion result
data[3] = 1s_chO_res; // 8 LSBs of Channel 0 conversion result

data[4] = 44; // Arbitrary Number
data[5] = 55; // Arbitrary Number
data[6] = 66; // Arbitrary Number
data[7] = 77; // Arbitrary Number

id = 0x411; // Message ID (Decimal 1041)

len = 8; // Data Length Code
CANWrite(id,data,len,aal); // Write CAN message
delay_ms(500); // Delay 500 milliseconds

}

} // EOF
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Appendix C - CAN SPI Source Code

O 001NN B W=

M BE DA DD R DA DD 0L L 0L WL LWL WLWERDNNDNINIEDNNND — s s —m
— O VP AT NBELVNN OV IANTNEORNN OO AANNELVNN—,OOOIANN R W —O

/*****************************************************************************
k

* Device: PIC Microcontroller P16F876A
* Osc: 16MHz

* File Name: "CAN_SPI.c"

* Author: Dominick O' Brien

* Date: 06-Dec-05

* Version 1.00

*
et st st ke shestes s sheste sk s st e st s ke steske s seste st s e shestese ke steste s steste stk ste st s steste sttt ste stk stttk skoloskostotokoskolkokoskokskolokoskolokokskek /

[ st sk e steste s s steste stk e stk sk ke ste st skt stesteskskeste skt stesteskske stesteskoleste sttt stekostosteskosiolk stttk stk skolototokosokotokoskolokoskolkokokokokokolok
*

* Type Declarations

*

et ste st ke sfestese sk skeste sk sk st st stk ke stesteskoskeste skt sfesteskske ekl stestesiol stk stttk st stol stk skoskotokokoskokotokoskolokoskokoskokoskok solokokskok /

typedef unsigned char uchar;
typedef long 1_ID;
typedef unsigned int iadc;

[ st e e skeste st s ste st st s e s sk ke st sk s ke steste sk sheste st sk ke e stesk ke steske skt ste st sk st st st st steste st steste stk sttt stkoskestskolkoskostotolkoskolekokoskok skolokoskolok
*

* Variable Declarations

*

et st s ke shestese sk sheste sk sk st st stk ke steste skt skt sfesteskske sttt stestesiol stk sttt stk st stk stk skoskokokokosokotokoskokokokoskoskokoskok solokokskok /

uchar aa =0;

uchar aal =0;

uchar len = 0; // CAN DLC
uchar data[8]; // CAN Data Bytes
1_IDid =0; // CAN ID

iadc chO_res = 0; // ADC Channel O result variable
uchar ms_chO_res = 0; // ADC Channel 0 MSB result variable
uchar Is_chO_res = 0; // ADC Channel 0 LSB result variable

iadc chl_res = 0; // ADC Channel 1 result variable
uchar ms_chl_res = 0; // ADC Channel 1 MSB result variable
uchar Is_chl_res = 0; // ADC Channel 1 LSB result variable

iadc ch2_res = 0; // ADC Channel 2 result variable
uchar ms_ch2_res = 0; // ADC Channel 2 MSB result variable
iadc Is_ch2_res = 0; // ADC Channel 2 LSB result variable

void main()

{
Spi_Init(); // Initialise SPI

TRISC.f2 = 0;

PORTC.f2 = 0;

PORTC.f0 = 1; // CS line of MCP2510
TRISC.f0 = 0; // Make Port C Pin 0 an Output
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

ADCONI1 = 0x80; // Configure ALL analog inputs, Fosc/2 & Result RIGHT justified
TRISA = 0xFF; // PORTA all inputs

aa = CAN_CONFIG_SAMPLE_THRICE & // form value to be used with CANSPIInitialize()
CAN_CONFIG_PHSEG2_PRG_ON &
CAN_CONFIG_ALL_MSG &
CAN_CONFIG_DBL_BUFFER_ON &
CAN_CONFIG_LINE_FILTER_OFF,;

aal = CAN_TX_PRIORITY_0 & // form value to be used with CANSPIWTite()
CAN_TX_STD_FRAME &
CAN_TX_NO_RTR_FRAME;

PORTC.f2=1;
PORTC.f0 = 1; // CS line of MCP2510 HIGH

CANSPISetOperationMode(CAN_MODE_CONFIG,0xFF); // Set CONFIGURATION mode
// 16MHz, BRP = 16 => 62.5kbits/sec

// 16MHz, BRP = 8 => 125kbits/sec

// 16MHz, BRP = 4 => 250kbits/sec

// 16MHz, BRP = 2 => 500kbits/sec

// 8MHz, BRP = 8 => 62.5kbits/sec

// 8MHz, BRP =4 => 125kbits/sec

// 8MHz, BRP = 2 => 250kbits/sec

// 8MHz, BRP =1 => 500kbits/sec

CANSPIInitialize( 2,2,3,3,1,aa); // Initialise external CAN module. BAUD = 500kbits/sec
CANSPISetOperationMode(CAN_MODE_NORMAL,0); / Set NORMAL mode

while (1)
{

[ s st st st e st s s sheste sk s steste st she sk sk st st stk shesteste sk seste st sk ste ke st skt steske s st ste stesieoste st stk stestestsieolstestesiolk stetokoskokokokokosolokokoskokok
*

* Remember the PICs ADC result is a 10 bit number

* therefore we need two bytes to hold the 10 bit result
*

skke sk sk ok sk sk sk sk ok sk skosk sk skosk sk skeosk shoske sk sk sk sk sk sk sk sk sk sk sk sk skosk skoskosk sk sk sk skosk sk ks sk sk sk sk skeske sk skt sk skosk skoskesk skskeskoskosk skoskosksksk skok
chO_res = Adc_Read(0); // Get the ADC conversion result
Is_chO_res = chO_res; // Get bottom 8 bits of ADC Channel O conversion
ms_ch0_res = chO_res >> 8; // Get top 2 bits of ADC Channel 0 conversion

chl_res = Adc_Read(1); // Get the ADC conversion result
Is_ch1_res = chl_res; // Get bottom 8 bits of ADC Channel 1 conversion
ms_chl_res = chl_res >> 8; // Get top 2 bits of ADC Channel 1 conversion

ch2_res = Adc_Read(2); // Get the ADC conversion result
Is_ch2_res = ch2_res; // Get bottom 8 bits of ADC Channel 2 conversion
ms_ch2_res = ch2_res >> 8; // Get top 2 bits of ADC Channel 2 conversion

data[0] = ms_ch2_res; // 2 MSBs of Channel 2 conversion result
data[1] =1s_ch2_res; // 8 LSBs of Channel 2 conversion result

data[2] = ms_chl_res; / 2 MSBs of Channel 1 conversion result
data[3] =1s_chl_res; // 8 LSBs of Channel 1 conversion result
data[4] = ms_chO_res; // 2 MSBs of Channel 0 conversion result
data[5] = 1s_chO_res; // 8 LSBs of Channel O conversion result

data[6] = 22; // Arbitrary Number
data[7] = 33; // Arbitrary Number
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108

109 id = 0x189; // Message ID (Decimal 393)

110 len = 8; // Data Length Code

111 CANSPIWrite(id,data,len,aal); // Write CAN message
112 delay_ms(500); // Delay 500 milliseconds

113 }

114

115  }//EOF
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Appendix D - Blackfin CAN Module Source
Code

CAN_Test.h
1 /*****************************************************************************
2 *
3 * Device: ADSP-BF537
4 * Osc: SCLK = 120MHz
5 * File Name: "CAN_Test.h"
6 * Author: Dominick O' Brien
7 * Date: 10-May-06
8 * Version 1.00
9 *
10 *****************************************************************************/
11 #ifndef _CAN_RX _H
12 #define _CAN_RX_H
13
14 #include <cdefBF537.h>
15 #include <ccblkfn.h>
16 #include <sys/exception.h>
17
18 /*****************************************************************************
19 *
20 * Constants
21 *
22 *****************************************************************************/
23 #define CAN_TX_MB_LO 0x0000
24 #define CAN_TX_MB_HI 0x0100 // Mailbox24
25 #define CAN_RX_MB_LO 0x00CO0 // Mailbox 7 and Mailbox 6
26 #define CAN_RX_MB_HI 0x0000
27
28 /*****************************************************************************
29 *
30 * Global Data
31 *
32 *****************************************************************************/
33 extern char blink, off, change;
34 extern volatile unsigned int delay;
35 extern short display;
36 extern volatile unsigned short * CAN_MB_ID1[];
37 extern volatile unsigned short * CAN_MB_IDO[];
38 extern volatile unsigned short * CAN_MB_TIMESTAMP[];
39 extern volatile unsigned short * CAN_MB_LENGTH]IJ;
40 extern volatile unsigned short * CAN_MB_DATA3[];
41 extern volatile unsigned short * CAN_MB_DATAZ2[];
42 extern volatile unsigned short * CAN_MB_DATAI1[];
43 extern volatile unsigned short * CAN_MB_DATAGO[];
44
45 /*****************************************************************************
46 *
47 * Function Prototypes
48 *
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49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

et st st sk sfestese sk skeste sk skt st stk ke steste skl ste skt stesteskske etk st stesiol stk stttk st stol stk skoskotokokosokotokoskokokokoskoskokokok solokokskok /

// In Initialization.c

void Init_PLL(void);

void Init_Port(void);

void Init_ CAN_Timing(void);
void Init_ CAN_Mailboxes(void);
void Init_Interrupts(void);

// In CAN_Functions.c

void CAN_Enable(void);

void CAN_Transmit(void);

void CAN_Setup_Interrupts(void);

// In Interrupts.c
EX_INTERRUPT_HANDLER(CAN_RCV_HANDLER);
EX_INTERRUPT_HANDLER(CAN_XMT_HANDLER);

#endif //_CAN_RX H

Initialization.c.

NelNo BEN Bie) NIV, I SN U T S

[SSINUSREUSRLUS RO (O I (ST NS T O I S I SO I O R S R N R O R el
P LN, OO NE WD, OVOIANNDE WD —=O

[ st sk e steste st s st st stk e sk sk ke ste st skt stesteskskestesteskste st stk stestesioleste sttt stk sttt steostostol stk skolotokokosokotok skolokoskolkokokokokokolok
k

* Device: ADSP-BF537

* Osc: SCLK = 120MHz

* File Name: "Initialization.c"
* Author: Dominick O' Brien
* Date: 12-May-06

* Version 1.00

*
et st s ke sfestese sk skeste sk sk st st stk ke stesteskoskeste skt sfesteskske ekl stestesiol sestekosteosteste stk st stk stk skoskostokokosokotokoskolokokoskoskokokok solokokskok /

#include "CAN_Test.h"

[ st sk e steste st s st st stk e sfesk sk ke ste st skt stesteskoskeste skt st steskske st stk sttt etk stttk stesteostol stk skolotokokosokotok skolok skokokokokokokolok

*

* Init_PLL — Configures the PLL so that the CAN BRP can easily be derived. Sets the CCLK to
* 600MHz and SCLK to 120MHz

*

*****************************************************************************/
void Init_PLL()
{
*pPLL_CTL = SET_MSEL(24); // Set PLL: (25MHz X 24 (MSEL = 24)): CCLK=600MHz
idle();
*pPLL_DIV = SET_SSEL(4); // Set SCLK Divisor: (600MHz / (SSEL=5)): SCLK=120MHz
ssync();
} // End Init_PLL

[ st e e skeste s s st ste st s e e sk ke st st s ke steste sk seste st sk ke e stesk ke steske st ste stesi st st stk st steste sttt ste stk st stttk stolkoskostotokoskolokokoskokskolokokolok
*

* Init_Port — Sets up the Ports for CAN use and configured the PFx pins for access to the
* on-board LEDs.

*
et st st sk sfestese s skeste sk sk st st stk ke steste skl ste stk sfesteskske ekl stestesiol sestekostosteste stk st stol stk skoskoskokokosokotokoskolokokoskoskokokokoskolokok kR /

void Init_Port ()
{
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35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

short temp_fix;

/I Configure CAN RX and CAN TX pins on GPIO Port
temp_fix = *pPORT_MUX;

ssync();

*pPORT_MUX = PJCE_CAN; // Enable CAN Pins On Port J

ssync();

*pPORT_MUX = PJCE_CAN; // #22 work-around: write it a few times
ssync();

*pPORT_MUX = PJCE_CAN; // #22 work-around: write it a few times
ssync();

temp_fix = *pPORT_MUX; // #22 work-around: read PORT_MUX after writing
ssync();

/I Configure Port F pins for LED access
*pPORTFIO_DIR = 0xOFCO; // Enable PF6-11 As Outputs (LEDs)
ssync();

} // End Init_Port ()

/*****************************************************************************

k

* Init_CAN_Timing — Sets up the CAN_TIMING & CLOCK Registers

k

*****************************************************************************/

void Init_ CAN_Timing()

{
/!
// BIT TIMING:

/!

/! CCLK 600 MHz

/! SCLK 120 MHz

/

/l CAN_CLOCK : Prescaler (BRP)

/ CAN_TIMING : SJW =2, TSEG2 = 3, TSEG1 =5
/

/ tBIT =TQ x (1 + (TSEGI + 1) + (TSEG2 + 1))

/l 22-6=TQx(1+GB+1)+(B+1))

/! TQ =1.82¢e-7

/!

// TQ = (BRP+1) / SCLK

// 1.82¢-7 = (BRP+1) / 120e6

// (BRP+1) =21.84

/ BRP =20.84 ~ 21

/
/! Set Bit Configuration Registers ...
/
*pCAN_TIMING = 0x0235;

*pCAN_CLOCK = 21; // [0x15] 500kHz CAN Clock :: tBIT = 2us
ssync();

} // End Init_ CAN_Timing()

[ st e skeste s sk ste st st s e e sk ke st sk sk steste sk sheste st sk ke e stesk ke steste s s ste st sk st st st s steste sttt ste stk st skl stkoskestestoloskostotolkostolokokoskokskolokokolok
*

* Init_ CAN_Mailboxes — Configures Mailbox 24 to transmit a specific message ID with a
* message length of 8 bytes. Configures Mailbox 6 and 7 to each receive
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91 * a specific message ID

92 *

93 *****************************************************************************/
94 void Init_ CAN_Mailboxes()

95 {

96 short msgID; // Variable for Mailbox 24 ID

97 short msgID_OnB; // Variable for Mailbox 7 ID

98 short msgID_SPI; // Variable for Mailbox 6 ID

99

100 volatile char mbID;

101 volatile char mbID_OnB; // Variable for Mailbox # for ON_B

102 volatile char mbID_SPI; // Variable for Mailbox # for SP1

103 // Mailbox 24 Will Transmit ACK to the Network via ID 0x007

104 msgID = 0x007;

105 mbID =24;

106

107 *(pCAN_MB_ID1(mbID)) = msgID << 2; // ID1, mask disabled, remote frame disable, 11 bit
108 // identifier

109 *(pCAN_MB_IDO(mbID)) = 0; // IDO = all 0's

110 *(pCAN_MB_LENGTH(mbID)) = 8; // DLC = 8 bytes

111

112 // Mailbox 7 will Receive CAN Command from Network via ID 0x411

113 // Mailbox 6 will Recieve CAN Command from Network via ID 0x189

114 msgID_OnB = 0x411; // ID = dec 1041

115 msgID_SPI = 0x189; // ID = dec 393

116 mbID_OnB = 7; // Mailbox 7

117 mbID_SPI = 6; // Mailbox 6

118

119 *(pCAN_MB_ID1(mbID_OnB)) = msgID_OnB << 2; // ID1, mask disabled, remote frame
120 // disable, 11 bit identifier

121 *(pCAN_MB_IDO(mbID_OnB)) =0; // ID0 = all O's

122 *(pCAN_MB_ID1(mbID_SPI)) = msgID_SPI << 2; // ID1, mask disabled, remote frame
123 // disable, 11 bit identifier

124 *(pCAN_MB_IDO(mbID_SPI)) = 0; // IDO = all 0's

125 *(pCAN_MB_LENGTH(mbID_SPI)) = 8; // DLC = 8 bytes

126 } // End Init_CAN_Mailboxes()

127

128 /*****************************************************************************
129 *

130 * Init_Interrupts — Assigns interrupt priorities for CAN TX and CAN RX.
131 *

132 *****************************************************************************/
133 void Init_Interrupts()

134 {

135 /I Configure Interrupt Priorities

136 *pSIC_IARO = 0x77777777,

137 *pSIC_IAR1 = 0x07777777; // CAN RX IRQ : 0=IVG7
138 *pSIC_IAR2 = 0x77777771; // CAN TX IRQ : 1=IVG8
139 *pSIC_IAR3 = 0x77777777,

140

141 /I Register Interrupt Handlers and Enable Core Interrupts
142 register_handler(ik_ivg7, CAN_RCV_HANDLER);

143 register_handler(ik_ivg8, CAN_XMT_HANDLER);

144 // Enable SIC Level Interrupts

145 *pSIC_IMASK |= (IRQ_CAN_RXIIRQ_CAN_TX);

146 } // End Init_Interrupts
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* Device: ADSP-BF537

* Osc: SCLK = 120MHz

* File Name: "CAN_Functions.c"
* Author: Dominick O' Brien

* Date: 12-May-06

* Version 1.00

*
et st st ke shestese sk sheste sk sk ste e st s ke steske s seste st sk e sfeste s ke steste st steste stk st st s steste sttt ste stk st stttk skokoskostotokoskokokokoskokskoelokoskolokokskek /

#include "CAN_Test.h"

/*****************************************************************************
%k

* CAN_Setup_Interrupts — Enables Mailbox Interrupts for Mailboxes Used

%k

et st st ke sfestese s sheste sk st st stk ke stesteskoskeste skt sfesteskske stestesiolstestesiol stttk stttk stk skoskotokokosokotokoskolokoskokoskokoskok skolokokskok /

void CAN_Setup_Interrupts()

{
*pCAN_MBIMI1 = 0x00C0; // Enable Interrupts for Mailbox 7 and Mailbox 6

*pCAN_MBIM?2 = 0x0100; // Enable Interrupt for Mailbox 24
ssync();
} // End CAN_Setup_Interrupts

[ st sk e steste s sk st ste stk e sk sk ke ste st skt stesteskoskeste skt stesteskskestesteskoleste sttt stekostostetosiolkstostostol stk skoslototokosokotokoskolokoskokoskokokokolkolkok
%k

* CAN_Enable — Writes Mailbox Direction and Enables Registers before issuing a CAN
* Configuration Request and waiting for a CAN Configuration acknowledge

* before continuing.
*

*****************************************************************************/
void CAN_Enable()

{
// Set Mailbox Direction

*pCAN_MDI1 = CAN_RX_MB_LO; // No Low Mailboxes (MB 0-15) Are RX
*pCAN_MD2 = CAN_TX_MB_LO; // Mailbox 24 Enabled For TX

// Enable Mailboxes

*pCAN_MC1 = CAN_RX_MB_LO; // Enables Mailbox 7 and Mailbox 6
*pCAN_MC2 = CAN_TX_MB_HI; // Enables Mailbox 24

ssync();
*pCAN_CONTROL &= ~CCR; // Enable CAN Configuration Mode (Clear CCR)
while(*pCAN_STATUS & CCA); // Wait for CAN Configuration Acknowledge (CCA)

} // End CAN_Enable

Interrupts.c.

1

3
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*

* Device: ADSP-BF537
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* Osc: SCLK = 120MHz

* File Name: "Interrupts.c”

* Author: Dominick O' Brien
* Date: 15-May-06

* Version 1.00

*
et st st e shestes s sheste sk s ste e sk sk shesteske s sheste st sk ste sheste s ke steste st steste skt st st s steste sttt ste sttt stttk stoloskostotokoskolekokoskok skolokoskololokskek /

#include "CAN_Test.h"

[ st sk e skeste st sk steste stk e sk sk ke st st st stesteskskeste skt st steskske stestesiole st stk st stk stekosiolsteosteostol stk skolototokosokotokoskolokoskolkokokokokokolok
%k

* CAN_RCV_HANDLER - This ISR checks for the highest priority RX Mailbox with an

* active interrupt and clears it.

If the IRQ is from MB7, the appropriate operating flags are set
based on the current mode and the contents of MB7.

If the IRQ is from MB®6, the received data in MB6 is transferred to
MB24 and a request to transmit this data is made.

* K K ¥ ¥

*****************************************************************************/
EX_INTERRUPT_HANDLER(CAN_RCV_HANDLER)
{

char highMB; // Which CAN Registers Should Be Used (1 or 2)

/I short data type is 16 bits

short mbim_status; / Temp Location for Interrupt Status

short bit_pos = 0; // Offset Into MBxXIF Registers

mbim_status = *pCAN_MBRIF2;

if (mbim_status == 0) // If High 16 MBoxes Have No Active IRQ
{
mbim_status = *pCAN_MBRIF1; // Check Low 16 MBoxes
highMB = 0; // Clear High/Low* Indicator

}

else // Otherwise, Active High MBox IRQ Found

{ highMB = 1; // Set High/Low* Indicator

}

while (!(mbim_status & 0x8000)) // Scan Status Register For Highest MB IRQ
{

mbim_status <<= 1;
bit_pos++; // bit_pos Contains Offset from MB31

}
if (highMB)
{ *pCAN_MBRIF2 = (1 << (15 - bit_pos));
}
else // Low Mailbox Interrupt
{ if(bit_pos == 0x8) // if Mailbox7 IRQ
{ if((*(pCAN_MB_DATA3(7)) == 0) Il (*(pCAN_MB_DATA3(7)) <= 512))

{
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if(blink) // if blinking already
{

change = 0; // no mode change

}

else // otherwise it was off
{
change = 1; // set mode change
off = 0; // make sure OFF is cleared
blink = 1; // set BLINK flag
display = 0xOFCO; // display all LEDs on
1

if(*(pCAN_MB_DATA3(7)) >=513)
{
if (off) // if not in OFF mode
{
off = 1; // set OFF flag
blink = 0; // clear BLINK flag
} // End if off

}
} // End if Mailbox 7

if(bit_pos == 0x9) /1 if Mailbox 6 IRQ

{
// Place Received Commands Into CAN TX Mailbox
*(pCAN_MB_DATA3(24)) = *(pCAN_MB_DATA3(6));
*(pCAN_MB_DATA2(24)) = *(pCAN_MB_DATA2(6));
*(pCAN_MB_DATA1(24)) = *(pCAN_MB_DATAI1(6));
*(pCAN_MB_DATAO0(24)) = *(pCAN_MB_DATAO0(6));

// Issue CAN Transmit Request for Mailbox 24
*pCAN_TRS2 = CAN_TX_MB_HI;
ssync();

} // End if Mailbox 6

*pCAN_MBRIF1 = (1 << (15 - bit_pos)); // Write-1-to-Clear RX IRQ
} // End Low Mailbox Interrupt

ssync();
} // End CAN_RCV_HANDLER

[ st sk e steste st s st ste stk e sk sk ke ste st skt stesteskskeste skt st steskske stesteskoleste sttt stk stttk stttk stk skolototokosokotokoskolok skolkokokokokokolok
%k

* CAN_XMT_HANDLER - This ISR checks for the highest priority TX Mailbox with an

* active interrupt and clears it.
k

sttt stk stk st st st et et et etttk ke ke sl kel kel st el kol skl st okttt ok ksl ok ko
EX_INTERRUPT_HANDLER(CAN_XMT_HANDLER)

{
char highMB; // Which CAN Registers Should Be Used (1 or 2)
short mbim_status; / Temp Location for Interrupt Status
short bit_pos = 0; /I Offset Into MBXIF Registers

mbim_status = *pCAN_MBTIF2; // Check High Mailboxes First
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if (mbim_status == 0) // If No High MB Interrupts

{
mbim_status = *pCAN_MBTIF1; // Check Low MB Interrupts

highMB = 0; // Clear High/Low* Mailbox Indicator
}

else highMB = 1; // Set High/Low* Mailbox Indicator

while (!(mbim_status & 0x8000)) // Find Highest Mailbox W/ Active IRQ
{

mbim_status <<= 1;
bit_pos++;
} // Interrupting Mailbox Found

if (highMB) // Process High Mailbox IRQ

{ *pCAN_MBTIF2 = (1 << (15 - bit_pos));
}

else // Else, Process Low Mailbox IRQ

{ *pCAN_MBTIF1 = (1 << (15 - bit_pos));
SS}YHC();

} // End CAN_XMT_HANDLER

[ st sk e skeste st s st st stk e sk sk ke st st skt stesteskoskeste skt stesteskske stesteskolestesteskoste st steskoskostesteosiol stttk stk skoslotokokosokotok skolokoskokokokokoskolkolok
k

* Device: ADSP-BF537

* Osc: SCLK = 120MHz

* File Name: "Interrupts.c”

* Author: Dominick O' Brien
* Date: 18-May-06

* Version 1.00

*
et st st ke shestesi s sheste sk sk ste s st s ke steske s seste st sk ste e ste s ke steske st stestesioske st st st steste sttt ste stk sttt skoloskototokoskokekokoskokstolokoskololokskek /

#include "CAN_Test.h"

/*****************************************************************************
k

* Global Data

k

sttt oot e st ol s sl el sl et ol st s ot s sl el s ol st felese sttt stk s stk sk stk sk |
char blink = 0; // Display Select (1=blink, O=scroll)

char change = 0; // Change Display Flag (1=Changed, 0=Same)

char off = 0; // Clear Display (1=Clear, 0=Not)

short display; // LED Display Value

volatile unsigned int delay = 0x400000;

main()

{
Init_PLL(); // Set PLL
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Init_Port(); // Initialize Ports

Init_Interrupts(); Initialize Interrupts

Init_CAN_Timing(); // Setup CAN Timing

Init_ CAN_Mailboxes(); // Initialize CAN Mailbox Area
CAN_Setup_Interrupts(); // Configure CAN Mailbox Interrupts
CAN_Enable(); // Enable CAN

display = 0; // All LEDs off

while(1) // wait for IRQs

{
*pPORTFIO = display; // write display

while(delay--); // wait
delay = 0x400000; // reset delay

if (off) // if OFF flag is set

{
display = 0x0000; // turn LEDs off

}
else if (blink) // else if blink flag is set
{

display = ~display; // toggle display
}

} // End while forever

} // End main
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Appendix E - Blackfin Video Implementation
Source Code

ezkitutilities.h

O 03O\ W B~ W=

st e skeste sk s ste st st s e sk sk ke st sk sk stestesk sheste st sk ke e st sk ke steske skt ste st s st st st st steste sttt ste stk sttt skoskestoskokostototokoskolokokoskokskolokokolok
*

* Device: ADSP-BF537

* Osc: SCLK = 120MHz

* File Name: "ezkitutilities.h"

* Author: Dominick O' Brien

* Date: 13-Nov-06

* Version 1.00

* Modified version of Analog Device’s "ezkitutilities.h" found in VisualDSP++4.5

* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.."

*
et st st ke shestes s sheste sk s st s st s ke steske s sheste st sk e sheste s ke steste st steste stk st st s steste sttt ste stk st sttt skolkokostotokoskokekokoskok soelokoskololokskek /

#ifndef EZKITUTILITIES_H
#define EZKITUTILITIES_H

/*****************************************************************************
£

* Board Specific Info

£

et st st ke sfestese sk skeste sk skt st stk ke steste skt skt sfesteskoske stestesiolstestesiol stk stttk st stol stk skoskokokokoskokotokoskokokokoskoskokokok solokokskok /

#define EZ_NUM_LEDS (6) // Number of LEDs on the board

[ st s e ke ste s sk ste st st s e ek sk ke st sk s ke steste sk seste st skt e st sk ke steske s ste st sk st st st st steste sttt ste stk st stk kot st stolkostostotolkoskolokokoskokskolokoskolok
k

* LED Defines

k

et st st e shestes s sheste sk s ste e st s ke steske s s ste st sk e sheste s st steste st steste stk st st s steste sttt ste stk stttk skoloskototokoskolokokoskokskololokololoksk ek /

#define EZ_FIRST_LED (0) // First LED
#define EZ_LAST_LED (EZ_NUM_LEDS - 1) // Last LED

ADI_FLAG_ID ezLEDToFlag|[]; // Structure containing the pf mappings for flags

/*****************************************************************************
*

* Functions Provided by the Utilities

*
*****************************************************************************/

void ezlnit (u32 NumCores); // Initialises power, ebiu, any async, flash etc.

void ezInitPower u32 NumCores); // Initialises Power

void ezInitLED (u32 Led); // Enables/configures an LED for use

void ezTurnOffLED (u32 Led); / Dims an LED

void ezCycleLEDs (void); // Cycles LEDs

void ezSetDisplay (u32 Display); // Sets the LED pattern

void ezDelay (u32 msec); / Delays for approximately 'n' milliseconds

void ezErrorCheck (u32 Result); // Lights LEDs and spins to indicate an error if Result != 0
void ezEnableVideoEncoder (void); / Enables the 7179 video encoder

#endif // EZKITUTILITIES_H
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adi_itu656.h

O 01O\ WD W=

bbb bbb BRBRPBRDBEWLLLLWLWWLWLWLWLWWINRDNDMNDNDMNDMNDDND DN DN D M o e e e e e e e
ALV, OV IANANNHERVOVFRF OOV NPEWRNDNFRLOOXIANANNEWNN—=OOVOIANNB WD ~—O
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k

* Device: ADSP-BF537

* Osc: SCLK = 120MHz

* File Name: "adi_656.h"

* Author: Dominick O' Brien

* Date: 13-Nov-06

* Version 1.00

* Modified version of Analog Device’s "adi_itu656.h" found in VisualDSP++4.5

* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.."

*
et st st ke shestes s sheste sk s st e st s ke steske s seste st sk e sheste s ke steste st steste stk st st s steste sttt ste stk st stttk skoloskostotokoskokekokoskok sololokololokskek /

#ifndef ADI_ITU656_H // Define adi_itu656.h
#define ADI_ITU656_H

[ st sk e steste s s steste stk e sk sk ke ste st st stesteskskeste skt stesteskske stesteskoleste sttt stk sttt stttk stk skostostotokosokotokoskolokoskolkokokokokolkolok
*

* Common Definitions

*

et st st ke shestesi s sheste sk s ste st s ke steske s s ste st sk e sfeste s ke steske st stestesioste st st sk steste sttt ste stk st stttk skoloskostotokoskokkokoskokskoelokoskolokoksk ek /

#define ADI_ITU656_EAV_SIZE 4 // EAV size (bytes)
#define ADI_ITU656_SAV_SIZE 4 // SAV size (bytes)

/*****************************************************************************
*

* NTSC Definitions: Resolution - 720x480, 525/60 Video System

*
*****************************************************************************/

#define ADI_ITU656_NTSC_WIDTH (720) // NTSC Resolution
#define ADI_ITU656_NTSC_HEIGHT (525) // Including Active & Blank lines
#define ADI_ITU656_NTSC_ACTIVE_FLINES (240) // Active Field lines

// Active Lines in a Frame
#define ADI_ITU656_NTSC_ACTIVE_LINES (ADI_ITU656_NTSC_ACTIVE_FLINES * 2)
#define ADI_ITU656_NTSC_BLANKING (268) // Blanking Size for NTSC

// Total Line Width

#define ADI_ITU656_NTSC_LINE_WIDTH ((ADI_ITU656_NTSC_WIDTH *2) + \
ADI_ITU656_NTSC_BLANKING + \
ADI_ITU656_EAV_SIZE + \
ADI_ITU656_SAV_SIZE)

// Interlaced NTSC Definitions
#define ADI_ITU656_NTSC_ILF1_START (23) // NTSC Interlaced Active Frame Fieldl (odd)
// Start Line
#define ADI_ITU656_NTSC_ILF1_END (262) // NTSC Interlaced Active Frame Field1 (odd)
// Finish Line
#define ADI_ITU656_NTSC_ILF2_START (286) // NTSC Interlaced Active Frame Field2
// start line
#define ADI_ITU656_NTSC_ILF2_END (525) // NTSC Interlaced active frame field2 (even)
// (even) Start Line
/I Progressive NTSC Definitions
#define ADI_ITU656_NTSC_PRF_START (46) // NTSC Progressive Active Frame Start Line
#define ADI_ITU656_NTSC_PRF_END (525) // NTSC Progressive Active Frame Finish Line
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/*****************************************************************************
%k

* PAL Definitions: 720x576, 625/50 Video System

*
*****************************************************************************/

#define ADI_ITU656_PAL_WIDTH (720) // PAL resolution
#define ADI_ITU656_PAL_HEIGHT (625) // Including Active & Blank Lines
#define ADI_ITU656_PAL_ACTIVE_FLINES (288) // Active Field Lines

/I Active Lines in a Frame
#define ADI_ITU656_PAL_ACTIVE_LINES (ADI_ITU656_PAL_ACTIVE_FLINES * 2)
#define ADI_ITU656_PAL_BLANKING (280) // Blanking Size for PAL (Bytes)

// Total Line Width
#define ADI_ITU656_PAL_LINE_WIDTH ((ADI_ITU656_PAL_WIDTH *2) + \
ADI_ITU656_PAL_BLANKING + \
ADI_ITU656_EAV_SIZE + \
ADI_ITU656_SAV_SIZE)
// Interlaced PAL Definitions
#define ADI_ITU656_PAL_ILF1_START (23) // PAL Interlaced Active Frame Fieldl (odd)
// Start Line
#define ADI_ITU656_PAL_ILF1_END (310) // PAL Interlaced Active Frame Fieldl (odd)
// Finish Line
#define ADI_ITU656_PAL_ILF2_START (336) // PAL Interlaced Active Frame Field2 (even)
// Start Line
#define ADI_ITU656_PAL_ILF2_END (623) // PAL Interlaced Active Frame Field2 (even)
// Start Line
/I Progressive PAL Definitions
#define ADI_ITU656_PAL_PRF_START (45) // PAL Progressive Active Frame Start Line
#define ADI_ITU656_PAL_PRF_END (620) // PAL Progressive Active Frame Finish Line

[ st sk e steste s s steste stk e sk sk ke st st skt stesteskskeste skt st steskske stesteskoleste sttt stk stttk stttk stk skolototokosokotokoskolok skolkokokokokokolok
*

* Enumerations for Video Formats

*

et st s ke sfestese sk skeste sk sk st st st sk ke steste skl ste skt sfesteskske ekl stestesiol sttt stk st stk stk skoskokokokosokotokoskokokokoskoskokokok solokokskok /

typedef enum{ // Video Formats
ADI_ITU656_NTSC_IL, // NTSC Interlaced Frame
ADI_ITU656_PAL_IL, // PAL Interlaced Frame
ADI_ITU656_NTSC_PR, // NTSC Progressive Frame
ADI_ITU656_PAL_PR // PAL Progressive Frame

}ADI_ITU656_FRAME_TYPE;

[ st sk e steste st sk st st st e sk skt ste st skt stesteskskeste skt stesteskske stesteskoleste sttt stk stttk stttk stk skolotokokosokotokoskolokoskokokokokokokolok
*

* API Function Declarations

*

stesfe ok sfesfe sk stesfe sk sheshe sk sfeshe sk sfeske sk sfeske st ek steshesk steske sk steske sk stk sk stk skesleosk sk sl skeste sl skesteske skestesk skestesk stesteok stesteok stk stelok slolok solokosolokeskok

void adi_itu656_FrameFormat ( // Formats an Area in Memory into a Video Frame

u8 *frame_ptr, // Pointer to an Area of Memory used for Frame
ADI_ITU656_FRAME_TYPE frametype // Memory will be Formatted for this Frame Type
);

void adi_itu656_FrameFill ( // Fills Active Video Portions of Formatted Frame to Specified
// Colour
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u8 *frame_ptr, // Pointer to a Formatted Video Frame in Memory
ADI_ITU656_FRAME_TYPE frametype, // Formatted Memory Frame Type
u8 *ycber_data // 4 byte Array of 32 bit Colour Value of YCbCr Data

)i

void adi_itu656_RowkFill ( // Fills a Row of Pixels in Active Video Portion of Formatted Frame
/I with Specified Colour
u8 *frame_ptr, // Pointer to a Formatted video frame in memory
ADI_ITU656_FRAME_TYPE frametype, // Formatted Memory Frame Type
u32 row_value, // 32 Bit Value Corresponding to Row Number of Active Field
u8 *ycbcer_data // 4 byte Array of 32 bit Colour Value of YCbCr Data

)i

void adi_itu656_ColumnFill ( // Fills a Column of Pixels in Active Video Portion of Formatted
/l Frame with Specified Colour
u8 *frame_ptr, // Pointer to a formatted video frame in memory
ADI_ITU656_FRAME_TYPE frametype, // Formatted Memory Frame type
u32 column_value, // 32 bit Value Corresponding to Column Number of Active Field
u8 *ycber_data // 4 byte Array of 32 bit Colour Value of YCbCr Data

)i

#endif // End itu656.h definition

ezkitutilities.c

O 0O\ B~ W=

[ st s e skeste sk s steste st s e ek sk she st sk s ke st stk seste st sk ke e st sk ke steske st ste st sk st st stk sk steste sttt ste stk stttk skoskeststolkostoto kol skoloekokoskokskolokokolok
*

* Device: ADSP-BF537

* Osc: SCLK = 120MHz

* File Name: "ezkitutilities.c"

* Author: Dominick O' Brien

* Date: 16-Nov-06

* Version 1.00

* Modified version of Analog Device’s "ezkitutilities.c" found in VisualDSP++4.5

* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.."

*
et st st ke shestesi s sheste sk s ste sk st s ke steske s seste st sk e sheste s ke steske st steste stk st st s skeste sttt ste stk stttk skokoskostotokoskokkokoskokskolokoskolokokskek /

#include <services/services.h> // System Service Includes
#include <sysreg.h> // System Configuration Definitions
#include <defBF537.h> // Include all MMR's and bit definitions
#include "ezkitutilities.h" // EZ-Kit Utility Definitions

ADI_FLAG_ID ezLEDToFlag[] = {
ADI_FLAG_PF6, // LED 0
ADI_FLAG_PF7,//LED 1
ADI_FLAG_PFS, // LED 2
ADI_FLAG_PF9, // LED 3
ADI_FLAG_PF10, //LED 4

ADI_FLAG_PF11 //LED 5

b

[ st s e skeste st s stesteste sk e e sk ke st sk sk stestesk seste steshe ke e stesk ke steske s ste stk s st stk s steste st steste stk st stelkotkoskestestolkoskototokoskolokokoskokskolokokolok
k

* LED Control

%
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static u32 LEDDisplay; // Bit Field representing the LED display
static u32 LEDEnables; // Bit Field representing the Enabled LEDs

/*****************************************************************************
*

* ezInitPower - Initialises and Sets Power management SDRAM parameters on the EZ-Kit.

*
*****************************************************************************/

#define DO_NOT_CHANGE_MMR_SETTINGS 0
static void ezInitPower(u32 NumCores)
{
ADI_EBIU_RESULT EBIUResult;
ADI_PWR_RESULT PWRResult;

// It is important that the EBIU module is configured before Power module so that changes to
// the clock frequencies are correctly reflected in the SDRAM settings.
ADI_EBIU_COMMAND_PAIR ezkit_sdram([] = // Initialises the EBIU module

{

{ ADI_EBIU_CMD_SET_EZKIT, (void*)ADI_EBIU_EZKIT BF537 },

{ ADI_EBIU_CMD_END, 0}

)

EBIUResult = adi_ebiu_Init( ezkit_sdram, DO_NOT_CHANGE_MMR_SETTINGS );

if (EBIUResult != ADI_EBIU_RESULT_SUCCESS) && (EBIUResult !=
ADI_EBIU_RESULT_CALL_IGNORED))

{
ezErrorCheck(EBIUResult);

}

ADI_PWR_COMMAND_PAIR ezkit_power[] = // Initialises the Power Management Module
{

{ ADI_PWR_CMD_SET_EZKIT, (void*)ADI_PWR_EZKIT_BF537_600MHZ },

{ ADI_PWR_CMD_END, 0}

1

PWRResult = adi_pwr_Init(ezkit_power);

if (PWRResult '= ADI_PWR_RESULT_SUCCESS) && (PWRResult !=
ADI_PWR_RESULT_CALL_IGNORED))
{

ezErrorCheck(PWRResult);

}

ezErrorCheck( adi_pwr_SetFreq( 0, 0, ADI_PWR_DF_NONE ) );
ezErrorCheck( adi_pwr_SetMaxFreqForVolt( ADI_PWR_VLEV_115))

}

[ st e skeste st s ste st st s e sk sk ke st sk sk steste sk sheste st sk ke e stesk ke steste s st ste st sk st st st sk ke st sttt ste stk stestelkotkoskestokokostototolkoskolokokoskokskolokolkolok
*

* ezlnit — Initialises the EZ Kit board. Specifically Configuring:

- Async Memory

- Flash

- CCLK = 600MHz, SCLK = 120MHz

* K% ¥ ¥
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void ezlInit(u32 NumCores)
{
/I Configure Async Memory
*pEBIU_AMBCTLO = 0x7bb07bb0; // Write Access Time = 7 Cycles, Read Access Time =
// 11Cycles, No ARDY
*pEBIU_AMBCTL1 = 0x7bb07bb0; // Hold Time = 2 Cycles, Setup time = 3 Cycles,
// Transition time = 4 cycles
*pEBIU_AMGCTL = 0x00FF;

/I Configure Flash

*pFlashA_PortA_Out = 0; // Resets Port A to Initial Value
*pFlashA_PortA_Dir = OxFF; // Configure Everything on Port A as Outputs
*pFlashA_PortB_Out = 0; // Resets Port B to Initial Value
*pFlashA_PortB_Dir = 0x3f; // Configure Everything on Port B as Outputs

ezInitPower(NumCores); // Configure Power

}

/*****************************************************************************
*
* ezInitLEDs - Enables an LED for use
k
*****************************************************************************/
void ezInitLED(u32 LED) // Enables an LED

if (LED >= EZ_NUM_LEDS)

return; // Make sure the LED is Valid

LEDEnables |= (1 << LED); // Set the Enable bit
adi_flag_Open(ezLEDToFlag[LED]); // Configure the Flag for Output
adi_flag_SetDirection(ezLEDToFlag[LED], ADI_FLAG_DIRECTION_OUTPUT);
ezTurnOffLED(LED); // Dim the LED

}

/*****************************************************************************
*
* ezTurnOffLED - Dims an LED
*
*****************************************************************************/
void ezTurnOffLED(u32 LED)
{

ezSetDisplay(LEDDisplay & ~(1 << LED)); // Update
}

/*****************************************************************************
k

* ezCycleLEDs - Cycles LEDs

*
*****************************************************************************/

void ezCycleLEDs(void)

{
static u32 CycleDisplay;

156



143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

if (LEDEnables = = 0) // Insure at least 1 LED is Enabled
{

return;

}

do { // calculate the pattern
CycleDisplay <<= 1;
if (CycleDisplay = = 0)

CycleDisplay = 1;
}
} while ((CycleDisplay & LEDEnables) = = 0);

ezSetDisplay(CycleDisplay); // Update
}

[ st e steste s s steste st s e ek sk ke st sk s ke steste sk seste st skt e st sk ke steste s s ste st sk st st st st steste st steste stk st skl kot st stoloskostetolkoskolokokoskok skolokoskolok
*

* ezSetDisplay - Sets the display pattern
*

et st st ke shestese s sheste sk s st e st s ke steske s sheste st sk e sfeste s ke steste st steste stk st st s steste sttt ste stk st stttk skockokostotokoskokkokoskokskolokoskololokskek /

void ezSetDisplay(u32 Display)
{

u32 i;

u32 Mask;

LEDDisplay = Display & LEDEnables; // Update the Display

for (i=0,Mask = 1;i<EZ_NUM_LEDS; i++, Mask <<= 1) // FOR (each LED)
{
if (LEDDisplay & Mask) // IF (the LED should be lit)
{
adi_flag_Set(ezLEDToFlag[i]); // Light It

}

else if (LEDEnables & Mask)

{
adi_flag_Clear(ezLEDToFlag[i]); // Dim It
} // end if
} // end for

}

[ st sk e steste st sk st ste st e sk sk ke ste st st stesteskoskeste skt st steskske stesteskoleste sttt stk stttk stttk stk skolototokosokotokoskolok skolkokokokokolkolok
k

* ezDelay - Delays for approximately 1msec when running at 600 MHz
k

et st st ke sfestese sk skeste sk skt st stk ke steste skt skt sfesteskske sttt stestesiol stttk st stol stk skoskokoskokosokotokoskokokoskoskoskokokok skolokokskok /

void ezDelay(u32 msec)

{

volatile u32 i,j;

for (j = 0; j < msec; j++) // value of 0x3000000 is about 1 sec so 0xc49b is about 1 msec

{
for i=0;1<0xc49b; i++) ;

}
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}
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*

* ezBErrorCheck - Function is intended to be used as a means to quickly determine if a function
* has returned a non-zero (hence an error) return code. All driver and system
services functions return a value of zero for success and a non-zero value
when a failure occurs. This function makes all LEDs glow dimly when a non
zero value is passed to it.

* K% ¥ ¥
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void ezErrorCheck(u32 Result)

{
while (Result != 0)
{
ezCycleLEDs();
}
}

st e steste st s ste st st s e s sk ke st sk s ke steste s seste st skt e st sk ke steste s s ste stesie st ke stk st steste st steste stk st stelkostkoskestostokostototokoskolokokoskokskolokoskolok
*

* ezEnableVideoEncoder - Enables the AD7179 Video Encoder IC

*
et st st ke sfestese s sheste sk skt st stk ke st st skl ste skt sfesteskske ettt stesiol sestekostkostestesteok st stol stk skoskokokokoskokotokoskolokokoskoskokokokoskolokokskok /

void ezEnableVideoEncoder(void)

{
adi_flag_Open(ADI_FLAG_PF6); // Open PF6

/I ADSP-BF537 Blackfin PF6 pin must be set as an Output
adi_flag_SetDirection(ADI_FLAG_PF6, ADI_FLAG_DIRECTION_OUTPUT);
ssync();

adi_flag_Clear(ADI_FLAG_PF6); // Clear bit to reset ADV7179, Blackfin pin PF6
ssync();

adi_flag_Set(ADI_FLAG_PF6);
ssync();

adi_itu656.c

O 001NN W=

—_— e
LW =O

[ st sk e steste s sk st ste st ke e sk skskeste st skt stesteskoskeste stk ke st steskske stesteskoleste sttt stk stttk steostostol stk skolotokokosokotokoskolokoskolkokokokokokolok
%k

* Device: ADSP-BF537

* Osc: SCLK = 120MHz

* File Name: "adi_itu656.c"

* Author: Dominick O' Brien

* Date: 21-Nov-06

* Version 1.00

* Modified version of Analog Device’s "adi_itu656.c" found in VisualDSP++4.5

* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.."

*
st st st st sfestese sk sheste sk sk st st stk st steste skl ste stk sfesteskoske etk stestesiol sfestekostostestesteok st stk stk skolotokokosokotokoskolokokoskoskoksiok solokokskok /

#include <services/services.h> // System Services Definitions
#include "adi_itu656.h" // ITU-656 Utilities Header File

158



15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
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k

* Constants

k

et st st e shestese s sheste sk sk st e st s ke steske s ke ste sk e sheste s ke steste st stestesieste st st s skeste sttt ste stk st stttk skokoskostotokoskokekokoskokskoelokokolokokskek /

#define ADI_ITU656_EAYV 1 // Defines End of Active Video
#define ADI_ITU656_SAYV 2 // Defines Start of Active video

[ st sk e steste s s st ste stk e sk sk ke st st st stesteskoskeste stk ke stesteskske stesteskoleste sttt stk stk steotostol stk skolototokosokotokoskolok skolkokokokokokolok
*

* Function Prototypes

*

et st st sk sfestese s skeste sk sk st st stk ke steste skt skt sfesteskske etk stestesiol stk stttk st stol stk skoskokokokosokotokoskolokoskoskoskokokok skolokokskok /

static void generate_XY (
u32 scanline, // Current Scanline Number
ADI_ITU656_FRAME_TYPE frametype, // Video Frame Type
u8 *preambleXY, // Holds the Calculated XY Value for EAV/SAV
u32 videostatus // Indicates XY Calculation for EAV or SAV

)i

static void calculate_address (
u8 *frame_ptr, // Pointer to the Formatted Video Frame in Memory
ADI_ITU656_FRAME_TYPE frametype, // Frame Type of the Formatted Memory
u8 **addressl1, // Holds Address of Field 1 First Active Line's Active Data Start
/I Address (for Interlaced Frame Type) OR First Active Line's Active Data Start
/I Address (for Progressive Frame type)
u8 **address2, // Holds Address of Field 2 First Active Line's Active Data Start Address (for
// Interlaced Frame Type)
u32 *flstart, // Holds Field1 Active Line Start Value (for Interlaced Frame Format) OR Active
// Line Start Value (for Progressive Frame Format)
u32 *flend, // Holds Field1 Active Line End Value (for Interlaced Frame Format) OR Active
/I Line End Value (for Progressive Frame Format)
u32 *f2start, // Holds Field2 Active Line Start Value (for Interlaced Frame Format)
u32 *f2end, // Holds Field2 Active Line End Value (for Interlaced Frame Format)
u32 *widthcount // Holds the Value of NTSC/PAL Frame Width

)i

[ st s e skeste sk sk ste st st s e s sk she st sk sk steste sk seste st sk ke e stk ke steske st ste stesie st st st st steste sttt ste stk stttk skoskestestolkostostotolostkolokokoskok skolokokolok
*

* adi_itu656_FrameFormat - This function formats an area in memory into a video frame active
* fields set blank.

*
*****************************************************************************/
void adi_itu656_FrameFormat ( u8 *frame_ptr,ADI_ITU656_FRAME_TYPE frametype )
{

u32 i;

u32 j;

u32 linecount;

u32 blankcount;

u32 widthcount;

u8 preambleXY;

switch (frametype) { // Switch to Frame Type
case (ADI_ITU656_NTSC_IL): // Format frame as NTSC Interlaced or NTSC Progressive
case (ADI_ITU656_NTSC_PR):
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linecount = ADI_ITU656_NTSC_HEIGHT;
blankcount = ADI_ITU656_NTSC_BLANKING;
widthcount = ADI_ITU656_NTSC_WIDTH;
break;

case (ADI_ITU656_PAL_IL): // Format frame as PAL Interlaced or PAL Progressive
case (ADI_ITU656_PAL_PR):

linecount = ADI_ITU656_PAL_HEIGHT;

blankcount = ADI_ITU656_PAL_BLANKING;

widthcount = ADI_ITU656_PAL_WIDTH;

break;

default: // Default as NTSC Frame
linecount = ADI_ITU656_NTSC_HEIGHT;
blankcount = ADI_ITU656_NTSC_BLANKING;
widthcount = ADI_ITU656_NTSC_WIDTH;
break;

}

for(i = 1; i <= linecount; i++) // Formats Frame Memory as EAV, Blanking, SAV, Active lines
{

// Generate BT656 Preamble

generate_ XY (i,frametype,&preambleXY,ADI_ITU656_EAV); // EAV - FF 00 00 XY

*frame_ptr++ = OxFF;

*frame_ptr++ = 0x00;

*frame_ptr++ = 0x00;

*frame_ptr++ = preambleXY;

for(j = 0; j < (blankcount / 2); j++) // Blanking
{

*frame_ptr++ = 0x80;

*frame_ptr++ = 0x10;

}

generate_ XY (i,frametype,&preambleXY,ADI_ITU656_SAV); // SAV - FF 00 00 XY
*frame_ptr++ = OxFF;

*frame_ptr++ = 0x00;

*frame_ptr++ = 0x00;

*frame_ptr++ = preambleXY;

for(j = 0; j < (widthcount); j++) // Output Empty Horizontal Data to Blank All Lines
{
*frame_ptr++ = 0x80;
*frame_ptr++ = 0x10;
}
}
}

/*****************************************************************************
*

* adi_itu656_FrameFill - This function fills the active video portion(s) of a formatted frame with

* a specified colour.
*

et st st ke shestes s sheste sk s ste e st sk ke steske s seste steshe e sheste s ke steske st steste stk st st s steste sttt ste stk st stttk skoloskostotokoskolkokoskokskolokoslkololokskek /

void adi_itu656_FrameFill ( u8 *frame_ptr,ADI_ITU656_FRAME_TYPE frametype,u8
*ycber_data )
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127

128 u32 i;

129 u32 j;

130 u32 flstart;

131 u32 flend;

132 u32 f2start;

133 u32 f2end;

134 u32 widthcount;

135 u8 *addressl1;

136 u8 *address2;

137

138 address1 = frame_ptr; // Initialise the Pointers

139 address2 = frame_ptr;

140

141 /I Calculate the Active Line Address & Update Widthcount, Frame Field Start and End Values
142 calculate_address (frame_ptr,frametype,&address1,&address2,&f1start,&flend,&f2start,
143 &f2end,&widthcount);

144

145 // Paints Active Lines with Provided YCbCr Colour Value

146 // Paints Fieldl if frameformat is Interlaced or Whole frame if frameformat is Progressive
147 for(i = flstart; i <= flend; i++)

148 {

149 for(j = 0; j < (widthcount / 2); j++) // Output YCbCr data (4:2:2 format)
150 {

151 *address1++ = *ycbcer_data;

152 *address1++ = *(ycber_data+1);

153 *address1++ = *(ycber_data+2);

154 *address1++ = *(ycber_data+3);

155 }

156 }

157

158 if ((frametype = = ADI_ITU656_NTSC_IL) Il (frametype = = ADI_ITU656_NTSC_PR))
159 {

160 address1 = address1 + 276;

161 }

162

163 else

164 address1 = address1 + 288;

165

166 // Paints Field2 only when frametype is Interlaced

167 if ((frametype = = ADI_ITU656_NTSC_IL) Il (frametype = = ADI_ITU656_PAL_IL))
168 {

169 for(i = f2start; i <= f2end; i++)

170 {

171 for(j = 0; j < (widthcount / 2); j++) // Output YCbCr data (4:2:2 format)
172 {

173 *address2++ = *ycbcer_data;

174 *address2++ = *(ycber_data+1);

175 *address2++ = *(ycber_data+2);

176 *address2++ = *(ycber_data+3);

177 }

178

179 if (frametype = = ADI_ITU656_NTSC_IL)

180 {

181 address2 = address2 + 276;

182 }
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183 else

184 address2 = address2 + 288;

185 }

186 }

187 }

188

190 *

191 * adi_itu656_RowFill - This function fills a row of pixels in active video portion of formatted
192 * frame with specified colour

193 *

194 sttt oot et s ol el st ol st fofesie ot sl ot el el st sl sttt ok s stk sk stk sk |
195 void adi_itu656_RowFill ( u8 *frame_ptr,ADI_ITU656_FRAME_TYPE frametype,u32
196 row_value,u8 *ycbcr_data )

197 {

198 u32  ij,flstart,flend,f2start,f2end, widthcount;

199 u8  *addressl,*address2;

200

201 // Initialise the pointers

202 address1 = frame_ptr;

203 address2 = frame_ptr;

204

205 /I Calculate the active line address & update widthcount, frame field start and end values
206 calculate_address(frame_ptr,frametype,&address1,&address2,&f1start,&flend, &f2start,
207 &f2end,&widthcount);

208

209 // Paints active lines with provided YCbCr color value

210 // Paints Fieldl if frameformat is interlaced OR whole frame if frameformat is Progressive
211 for(i = flstart; i <= flend; i++)

212 {

213 if (i == row_value) // Is this the row to be painted with YCbCr data?

214 {

215 for(j = 0; j < (widthcount / 2); j++) // Output YCbCr data (4:2:2 format)

216 {

217 *address1++ = *ycbcer_data;

218 *address1++ = *(ycber_data+1);

219 *address1++ = *(ycber_data+2);

220 *address1++ = *(ycber_data+3);

221 }

222 }

223

224 else // Paint all other rows as blank

225 {

226 for(j = 0; j < (widthcount); j++)

227 {

228 *address1++ = 0x80;

229 *address1++ = 0x10;

230 }

231 }

232

233 if ((frametype == ADI_ITU656_NTSC_IL) Il (frametype == ADI_ITU656_NTSC_PR))
234 {

235 address1 = address1 + 276;

236 }

237

238 else
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{
address1 = address1 + 288;
}
}

// Paints Field2 only when frametype is Interlaced
if ((frametype == ADI_ITU656_NTSC_IL) Il (frametype == ADI_ITU656_PAL_IL))
{
for(i = f2start; i <= f2end; i++)
{
if (i == row_value) // Is this the row to be painted with YCbCr data?
{
for(j = 0; j < (widthcount / 2); j++) // Output YCbCr data (4:2:2 format)
{
*address2++ = *ycbcr_data;
*address2++ = *(ycber_data+1);
*address2++ = *(ycber_data+2);
*address2++ = *(ycber_data+3);
}
}

else // Paint all other rows as blank
{
for(j = 0; j < (widthcount); j++)
{
*address2++ = 0x80;
*address2++ = 0x10;
}
}

if (frametype == ADI_ITU656_NTSC_IL)
{
address2 = address2 + 276;

}

else

{
address2 = address2 + 288;
}
1
}
}

[ st sk e steste st sk st ste st e sk sk ke ste st st stesteskoskeste skt st steskske stesteskoleste sttt stk stttk stttk stk skolototokosokotokoskolok skolkokokokokolkolok
k

* adi_itu656_ ColumnFill - This function fills a column of pixels in active video portion of

* formatted frame with a specified colour.
k
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void adi_itu656_ColumnFill ( u8 *frame_ptr,ADI_ITU656_FRAME_TYPE frametype,u32
column_value,u8 *ycbcer_data )

{
u32  ij,flstart,flend,f2start,f2end, widthcount;

u8 *address1,*address2;

address1 = frame_ptr; // Initialise the pointers
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address2 = frame_ptr;

/I Calculate the active line address & update widthcount, frame field start and end values
calculate_address(frame_ptr,frametype,&address1,&address2,&f1start,&flend, &f2start,
&f2end,&widthcount);

// Paints active lines with provided YCbCr color value
// Paints Fieldl if frameformat is interlaced OR whole frame if frameformat is Progressive
for(i = flstart; i <= flend; i++)
{
for(j = 0; j < (widthcount / 2); j++)
{
if (j == column_value) // Is this the column to be painted with YCbCr data?
{ // Yes, Output YCbCr data (4:2:2 format)
*address1++ = *ycbcer_data;
*address1++ = *(ycber_data+1);
*address1++ = *(ycber_data+2);
*address1++ = *(ycber_data+3);

}

else

{ // No - Paint the column as blank
*address1++ = 0x80;
*address1++ = 0x10;
*address1++ = 0x80;
*address1++ = 0x10;

}

}

if ((frametype == ADI_ITU656_NTSC_IL) Il (frametype == ADI_ITU656_NTSC_PR))
{
address1 = address1 + 276;

}

else

{
address1 = address1 + 288;
}
}

// Paints Field2 only when frametype is Interlaced
if ((frametype == ADI_ITU656_NTSC_IL) Il (frametype == ADI_ITU656_PAL_IL))

for(i = f2start; i <= f2end; i++)
{
for(j = 0; j < (widthcount / 2); j++) // Output YCbCr data (4:2:2 format)
{
if (j == column_value) // Is this the column to be painted with YCbCr data?
{ // Yes, Output YCbCr data (4:2:2 format)
*address2++ = *ycbcer_data;
*address2++ = *(ycber_data+1);
*address2++ = *(ycber_data+2);
*address2++ = *(ycber_data+3);

}

else
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{ // No - Paint the column as blank
*address2++ = 0x80;
*address2++ = 0x10;
*address2++ = 0x80;
*address2++ = 0x10;

}

}

if (frametype == ADI_ITU656_NTSC_IL)
{
address2 = address2 + 276;

}

else
{
address2 = address2 + 288;
}
}
}
}

[ st sk e ke ste st s st ste stk e sk sk ke st st skt stesteskskeste skt st steskske stesteskoleste steskosle st steskosk stttk stttk stk skolototokosokotok skolokoskolkoskokokokokolok
%k

* generate_XY - This function generates the XY preamble for EAV & SAV
%k

et ste st ke sfestese s skeste sk skt st stk ke steste skl ste stk sfesteskske ettt stesiol e stekoslostestesteok st stol stk skokotokokoskokotokoskokokokoskoskokokok skolokokskok /

static void generate_XY (u32 scanline,ADI_ITU656_FRAME_TYPE frametype,u8
*preambleXY,u32 videostatus )
{if(frametype == ADI_ITU656_NTSC_IL) // Frame type is NTSC interlaced
{ if((scanline >= 1) && (scanline <= 3)) // 1-3 Blanking Field 2
{ if(videostatus == ADI_ITU656_EAV)
{ *preambleXY = O0xF1;

}

else if(videostatus == ADI_ITU656_SAYV)
{
*preambleXY = OxEC;
1
}

else if((scanline >= 4) && (scanline <= 22)) // 4-22 Blanking Field 1

{
if(videostatus == ADI_ITU656_EAYV)

{
*preambleXY = 0xB6;

}

else if(videostatus == ADI_ITU656_SAYV)

{
*preambleXY = OxAB;

}
}

165



407

408 else if((scanline >= 23) && (scanline <= 262)) // 23-262 Active Video Field 1
409 {

410 if(videostatus == ADI_ITU656_EAYV)

411 {

412 *preambleXY = 0x9D;

413 }

414

415 else if(videostatus == ADI_ITU656_SAYV)
416 {

417 *preambleXY = 0x80;

418 }

419 }

420

421 else if((scanline >= 263) && (scanline <= 265)) // 263-265 Blanking Field 1
422 {

423 if(videostatus == ADI_ITU656_EAYV)
424 {

425 *preambleXY = 0xB6;

426 }

427

428 else if(videostatus == ADI_ITU656_SAYV)
429 {

430 *preambleXY = 0xAB;

431 }

432 }

433

434 else if((scanline >= 266) && (scanline <= 285)) // 266-285 Blanking Field 2
435 {

436 if(videostatus == ADI_ITU656_EAYV)
437 {

438 *preambleXY = OxF1;

439 }

440

441 else if(videostatus == ADI_ITU656_SAV)
442 {

443 *preambleXY = 0xEC;

444 }

445 }

446

447 else if((scanline >= 286) && (scanline <= 525)) // 286-525 Active Video Field 2
448 {

449 if(videostatus == ADI_ITU656_EAYV)
450 {

451 *preambleXY = 0xDA;

452 }

453

454 else if(videostatus == ADI_ITU656_SAV)
455 {

456 *preambleXY = 0xC7;

457 }

458 }

459 }

460

461 else if(frametype == ADI_ITU656_PAL_IL) // Frame type is PAL interlaced
462 {
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463 if((scanline >= 1) && (scanline <= 22)) // 1-22 Blanking Field 1
464 {

465 if(videostatus == ADI_ITU656_EAV)
466 {

467 *preambleXY = 0xB6;

468 }

469

470 else if(videostatus == ADI_ITU656_SAYV)
471 {

472 *preambleXY = 0xAB;

473 }

474 }

475

476 else if((scanline >= 23) && (scanline <= 310)) //23-310 Active Video Field 1
477 {

478 if(videostatus == ADI_ITU656_EAYV)
479 {

480 *preambleXY = 0x9D;

481 }

482

483 else if(videostatus == ADI_ITU656_SAYV)
484 {

485 *preambleXY = 0x80;

486 }

487 }

488

489 else if((scanline >= 311) && (scanline <= 312)) // 311-312 Blanking Field 1
490 {

491 if(videostatus == ADI_ITU656_EAYV)
492 {

493 *preambleXY = 0xB6;

494 }

495

496 else if(videostatus == ADI_ITU656_SAYV)
497 {

498 *preambleXY = 0xAB;

499 }

500 }

501

502 else if((scanline >= 313) && (scanline <= 335)) // 313-335 Blanking Field 2
503 {

504 if(videostatus == ADI_ITU656_EAYV)

505 {

506 *preambleXY = O0xF1;

507 }

508

509 else if(videostatus == ADI_ITU656_SAV)
510 {

511 *preambleXY = 0xEC;

512 }

513 }

514

515 else if((scanline >= 336) && (scanline <= 623)) // 336-623 Active Video Field 2
516 {

517 if(videostatus == ADI_ITU656_EAYV)

518 {
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*preambleXY = 0xDA;
}

else if(videostatus == ADI_ITU656_SAYV)

{
*preambleXY = 0xC7;
}
}

else if((scanline >= 624) && (scanline <= 625)) // 624-625 Blanking Field 2
{
if(videostatus == ADI_ITU656_EAV)
{
*preambleXY = O0xF1;

}

else if(videostatus == ADI_ITU656_SAYV)

{
*preambleXY = OxEC;
}
}
}

else if(frametype == ADI_ITU656_NTSC_PR) // Frame type is NTSC Progressive
{ if((scanline >= 1) && (scanline <= 45)) // 1-45 Blanking
{ if(videostatus == ADI_ITU656_EAV)
{ *preambleXY = 0xB6;

}

else if(videostatus == ADI_ITU656_SAYV)
{
*preambleXY = 0xAB;
}
}

else if((scanline >= 46) && (scanline <= 525)) // 46-525 Active Video
{
if(videostatus == ADI_ITU656_EAV)
{
*preambleXY = 0x9D;

}

else if(videostatus == ADI_ITU656_SAYV)
{
*preambleXY = 0x80;
}
}
}

else if(frametype == ADI_ITU656_PAL_PR) // Frame type is PAL Progressive

{
if((scanline >= 1) && (scanline <= 44)) // lines 1-44 Blanking

{
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if(videostatus == ADI_ITU656_EAV)

{
*preambleXY = 0xB6;

}

else if(videostatus == ADI_ITU656_SAYV)

{
*preambleXY = OxAB;

}
}

else if((scanline >= 45) && (scanline <= 620)) // lines 46-620 Active Video

{
if(videostatus == ADI_ITU656_EAYV)

{
*preambleXY = 0x9D;
}
else if(videostatus == ADI_ITU656_SAYV)
{

*preambleXY = 0x80;

}
}

else if((scanline >= 621) && (scanline <= 625)) // lines 621-625 Blanking

{
if(videostatus == ADI_ITU656_EAV)

{
*preambleXY = 0xB6;
}
else if(videostatus == ADI_ITU656_SAYV)
{

*preambleXY = 0xAB;
1
1
1
1

[ st s e skeste st s ste st st s e s sk ke st sk s ke stestesk sheste st skt e st sk ke steske st ste st sk st st st sk steste st steste stk st stelotkoskesteskokostototolkoskolokokoskokskolokokolok
*

* calculate_address - This function calculates active line address & updates widthcount, frame

* field start and end values
*

et st st sk sfestese s skeste sk sk st st stk ke steste skt stk sfesteskske etk stestesiol stesteskostosteste stk st stol stk skoskokokokosokotokoskolokskokoskoksiokoskolokokskok /

static void calculate_address (u8 *frame_ptr,ADI_ITU656_FRAME_TYPE frametype,u8
**address1,u8 **address2,u32 *flstart,
u32 *flend,u32 *f2start,u32 *f2end,u32 *widthcount)
{
switch (frametype)
{ // Switch to Frame Type
case (ADI_ITU656_NTSC_IL): // Frame format is NTSC Interlaced
*widthcount = ADI_ITU656_NTSC_WIDTH;
*flstart = ADI_ITU656_NTSC_ILF1_START; // active line start - Field1
*flend = ADI_ITU656_NTSC_ILF1_END:; // active line end - Fieldl
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631 // Calculate Field 1 first active line's active data start address

632 *address1 = frame_ptr + ((ADI_ITU656_NTSC_ILF1_START-1) * 1716) + 276;
633 *f2start = ADI_ITU656_NTSC_ILF2_START; // active line start - Field2
634 *f2end = ADI_ITU656_NTSC_ILF2_END; // active line end - Field2
635
636 // Calculate Field 2 first active line's active data start address
637 *address2 = frame_ptr + ((ADI_ITU656_NTSC_ILF2_START-1) * 1716) + 276;
638 break;
639
640 case (ADI_ITU656_PAL_IL): // Frame format is PAL Interlaced
641 *widthcount = ADI_ITU656_PAL_WIDTH,;
642 *f1start = ADI_ITU656_PAL_ILF1_START; // active line start - Field1
643 *flend = ADI_ITU656_PAL_ILF1_END:; // active line end - Field1l
644
645 // Calculate Field 1 first active line's active data start address
646 *address1 = frame_ptr + ((ADI_ITU656_PAL_ILF1_START-1) * 1728) + 288;
647 *f2start = ADI_ITU656_PAL_ILF2_START; // active line start - Field2
648 *f2end = ADI_ITU656_PAL_ILF2_END:; // active line end - Field2
649
650 // Calculate Field 2 first active line's active data start address
651 *address2 = frame_ptr + ((ADI_ITU656_PAL_ILF2_START-1) * 1728) + 288;
652 break;
653
654 case (ADI_ITU656_NTSC_PR): // Frame format is NTSC Progressive
655 *widthcount = ADI_ITU656_NTSC_WIDTH,;
656 *f1start = ADI_ITU656_NTSC_PRF_START; // active line start
657 *flend = ADI_ITU656_NTSC_PRF_END; // active line end
658
659 // Calculate First active line's active data start address
660 *address1 = frame_ptr + ((ADI_ITU656_NTSC_PRF_START-1)* 1716) + 276;
661 break;
662
663 case (ADI_ITU656_PAL_PR): // Frame format is PAL Progressive
664 *widthcount = ADI_ITU656_PAL_WIDTH,;
665 *f1start = ADI_ITU656_PAL_PRF_START; // active line start
666 *flend = ADI_ITU656_PAL_PRF_END:; // active line end
667
668 // Calculate First active line's active data start address
669 *address1 = frame_ptr + ((ADI_ITU656_PAL_PRF_START-1)* 1728) + 288;
670 break;
671
672 default: // Default as NTSC Progressive
673 *widthcount = ADI_ITU656_NTSC_WIDTH;
674 *f1start = ADI_ITU656_NTSC_PRF_START; // active line start
675 *flend = ADI_ITU656_NTSC_PRF_END:; // active line end
676
677 // Calculate First active line's active data start address
678 *address1 = frame_ptr + ((ADI_ITU656_NTSC_PRF_START-1)* 1716) + 276;
679 break;
680 }
681 }
adv7179.c
1 /********>l<>l<>l<*****>l<>k*********>l<>k**>l<>l<>l<***>l<>l<>l<>k********>l<>l<>l<*************************
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%

* Device: ADSP-BF537

* Osc: SCLK = 120MHz

* File Name: "adv7179.c"

* Author: Dominick O' Brien

* Date: 21-Nov-06

* Version 1.00

* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.."
10 *

O 00N N B WK

11 et st st sk sfestese sk sheste sk sk st st st sk ke steste skl ste stk sfesteskske ettt stesiol stesteskosteostestesteok st stk stk skokotokokoskokotokoskolokokoskoskokokok solokokskok /
12
13 /*****************************************************************************
14 * Description - This is the driver source code for the ADV7179 Video Encoder. It is layered
15 * on top of the PPI and TWI device drivers, which are configured for the specific
16 * use ADV7179 peripheral.
17 *****************************************************************************/
18
19 /*****************************************************************************
20 *
21 * ADV7179 device macro define
22 *
23 et st st ke sfestese s sheste sk sk st st stk ke steste sk ste skt sfesteskske ekl st stesiol stk stttk st stol stk skoskotokokosokotokoskolokokoskoskokokok solokokskok /
1 _ _

24 #define ADI_ADV7179_DEVICE

inclu i_adv717x. 1V 1 u
25 #include "adi_adv717x.c" /I Driver Register Access Includes

adv717x.c - Note: This is a standard system service that is un-modified within this
application. Reference "..\VisualDSP4.5\Blackfin\lib\src\drivers\encoder" directory. To
utilise this program it must not be directly included within a VisualDSP++4.5 project;

however it has to be situated within a project directory.

main.c
1 /*****************************************************************************
2 *
3 * Device: ADSP-BF537
4 * Osc: SCLK = 120MHz
5 * File Name: "main.c"
6 * Author: Dominick O' Brien
7 * Date: 24-Nov-06
8 * Version 1.00
9 * Modified version of Analog Device’s "ezkitutilities.c" found in VisualDSP++4.5
10 * References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.."
11 * Target Processor: ADSP-BF537
12 * Target Tools Revision: ADSP VisualDSP++ v4.5 (September 2006 Update)
1 *
li *****************************************************************************/
15 #include <services\services.h> // System Services
16 #include <drivers\adi_dev.h> // Device Manager Includes
17 #include <drivers\ppi\adi_ppi.h> // PPI Driver Includes
18 #include <defBF537.h> // Include all MMR's and bit defs
19 #include <drivers\encoder\adi_adv717x.h> // 7179 Device Driver Includes
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75

#include "ezkitutilities.h" // EZ-Kit Utilities
#include "adi_itu656.h" // ITU656 Utilities

/*****************************************************************************
*

* ADSP-BF537 Switch Settings

*

s she sk she sk sk sk sk e sk st sfe st sfe she s she sk sk ske sk sk st ste ke st st ste sfe sfe sk she she sk sk sk sk st skt ste ste s st s sfe s she sk ske sk sk sttt sk st ste st sfeoste sk skt skoskokokookok ok ok
*

*SW1: ALL OFF

* SW2: ALL ON

* SW3: ALL OFF

* SW4: OFF, ON, OFF, ON

* SW5: ALL ON

* SW6: ALL ON

*SW7: ALL ON

* SW8: ON, ON, OFF, OFF, OFF, OFF

*
et st st ke shestes s sheste sk s st she st sk ke steske s seste st sk e shestese ke steste st steste stk st st s steste sttt ste stk st sttt st stk stotokoskokkokoskok skolokoskololokskek /

[ st e steste sk s steste st s e stk sk ke st sk s ke steste sk seste st skt e st sk st steske s ste st sk st ke st st steste st steste stk stttk kot st stoloskostetokoskolokokoskokskolokoskolok
*

* A/V Extender Board Jumper Settings

*

stesfe ok stesfe sk stesfe sk sheshe sk sfeshe sk sfeske sk sfeske st ek stesheosk steshe sk steske sk stk sk stk skesleosk sk sl skeste sl skeste sk skestesk skestesk stesteok stesteok stk stelok slolok soloksolkokeskok
*

* JP1: NOT USED

* JP2: NOT USED

* JP3: JP3.5/7 & JP3.6/8 --> Processor's TWI

* JP4: JP4.1/2 & JP4.3/4 --> 27MHz A V extender card onboard clock to source PPI CLK
* JP5: JP5.3/4 --> Enables PPIO to drive VID_OUT

* JP6: NOT USED

* JP7: NOT USED

* JP8: JP8.1/3 & JP8.2/4 --> Selects PPIO as source

* JP8.7/8 -->Enables VID_OUT bus sync

*JP9: JP9.1/3 --> Connect AD7179 reset to reset flag
* JP10: NOT USED

k
et st st e shestes s sheste sk sk st e st sk ke steske s sheste st sk e sheste s ke steste st stestesioste st st s steste sttt ste stk ke stttk stolkokostotokoskokekokoskokskolokoskolokokskek /

[ st s e skeste s s st ste st s e s sk ke st sk s ke steste sk seste st sk ke e st sk ke steske s s ste st sk st st st sk steste sttt ste stk st steolostkostestestokostototolkoskolokokoskokskolokoskolok
k

* External Connections

*

sttt ookttt etk e st ol sl stttk etttk ettt el sttt sl ettt okl
k

* Connect a monitor to the A-V Extender card video-out connector. The video connectors are
* the bank of 6 RCA-style jacks on the A-V Extender card labelled as J7.

7 + +
| (0] O < Video out (0] | (white)

| (0] (0] (0] | (red)

+ 4+
T T

* X K Kk K ¥ ¥

et st st ke sfestese sk skeste sk sk st st stk st steste skl ste skt sfesteskske ekl stestesiol sfestekoststeste stk st stol stk skoslokokokosokotokoskoslokskokoskokokok skolokokskok /
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[ st sk e steste st sk steste stk e sk sk ke st st skt stesteskoskeste skt st steskske stesteskoleste stk st steskosk sttt stttk stk skolotokokosokotokoskolokoskolkokokokokokolok
k

* Enumerations and defines

*k

et st st ke shestese s sheste sk s st e st s ke steske s sheste st s e sheste s ke steste st steste stk st st s steste sttt ste stk st stttk skokoskostotokoskolekokoskok skoelokokolokokskek /

#define ENCODER_PPI (0) // ADSP-BF537 has only 1 PPI called PPI0

#define NUM_BUFFERS (30) // Colour Change Rate = (NUM_BUFFERS/30)/second
// Colour Patterns

static u8 black[] = {0x80,0x10,0x80,0x10}; // Black pixel YCbCr format

static u8 blue[] = {0xF0,0x29,0x6E,0x29}; // Blue pixel YCbCr format

static u8 red[] = {0x5A,0x51,0xF0,0x51}; // Red pixel YCbCr format

static u8 magenta[] = {0xCA,0x6A,0xDE,0x6A}; // Magenta pixel YCbCr format
static u8 green[] = {0x36,0x91,0x22,0x91}; // Green pixel YCbCr format

static u8 cyan[] = {0xA6,0xAA,0x10,0xAA}; // Cyan pixel YCbCr format

static u8 yellow[] = {0x10,0xD2,0x92,0xD2}; // Yellow pixel YCbCr format
static u8 white[] = {0x80,0xEB,0x80,0xEB }; // White pixel YCbCr format

[ st e steste st s ste st st s e shesi sk ke st sk s ke steste sk seste st sk ke e st sk ke steste s s ste st sk st ke stk st steste sttt ste stk st stelostkoskestestokostosto kol skolokokoskokskolokokolok
k

* Static data

*k

sttt ekt e ettt ol et gl sl ettt ottt etttk sl ot ittt el ettt okl |

// Create two areas in SDRAM that will each hold a 656 Frame
static u8 PingFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT];
static u8 PongFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT];

ADI_DEV_2D_BUFFER PingBufferfNUM_BUFFERS]; // Create two buffer chains.
ADI_DEV_2D_BUFFER PongBuffer[NUM_BUFFERS];

// DMA Manager data (base memory + memory for 1 DMA channel)

static u§ DMAMgrData[ADI_DMA_BASE_MEMORY + (ADI_DMA_CHANNEL_MEMORY
* DI

/I Deferred Callback Manager data (memory for 1 service plus 4 posted callbacks)

static u§ DCBMgrData[ADI_DCB_QUEUE_SIZE + (ADI_DCB_ENTRY_SIZE)*4];

/I Device Manager data (base memory + memory for 3 devices)

/I Memory for 3 devices is required because usage of a 717x device results in the usage of the
// PPI and SPI devices.

static u8§ DevMgrData[ ADI_DEV_BASE_MEMORY + (ADI_DEV_DEVICE_MEMORY *
3l

ADI_DEV_DEVICE_HANDLE AD7179DriverHandle; // Handle to the ADV7179 Driver

[ st sk e steste st s st st st s e sk skskeste st sk st stesteskskeste stk ke st steskske stesteskoleste sttt stekostosteskosiolksteotostol stk skolotokokosokotokoskolok skokokokokokokolok
k

* ExceptionHandler - An Exception error should never happen but just in case if one occurs all
* the LEDs will light up.

*
sttt oottt st ol sl el st st ol ot st ot ol sl el sl st el ot el ok s stk sk stk sk |
static ADI_INT_HANDLER(ExceptionHandler) // Exception Handler

{
ezErrorCheck(1);

return(ADI_INT_RESULT_PROCESSED);
}

[ st sk e steste s s steste stk e sfesk sk ke ste st skt stesteskskeste skt stesteskske stesteskoleste skt st stk stttk stttk stk skolototokosokotokoskolok skokokokokokolkolok
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132 *

133 * HWErrorHandler - A Hardware error should never happen but just in case if one occurs all
134 * the LEDs will light up.

135 *

137 static ADI_INT_HANDLER(HWErrorHandler) // Hardware Error Handler

138 {

139 ezErrorCheck(1);

140 return(ADI_INT_RESULT_PROCESSED);

141 }

142

144 *

145 * Callback - Callback occurs when the PPI has completed processing of the last buffer in the
146 * Ping & Pong Buffer chains.

147 *

149 static void Callback(void *AppHandle,u32 Event,void *pArg)

150 {

151 ADI_DEV_BUFFER *pBuffer; // Pointer to the Buffer that was processed

152

153 switch (Event)

154 { // Case Of (event type)

155 case ADI_DEV_EVENT_BUFFER_PROCESSED: // CASE (buffer processed)

156 // When the buffer chain was created, the CallbackParameter value for the buffer that was
157 /I generating the callback was set to be the address of the first buffer in the chain.
158 /I So here in the callback that value is passed in as the pArg parameter.

159 pBuffer = (ADI_DEV_BUFFER *)pArg;

160 break;

161

162 case ADI_DEV_EVENT_DMA_ERROR_INTERRUPT: // Case (an Error)

163 case ADI_PPI_EVENT_ERROR_INTERRUPT:

164 ezTurnOnAllILEDs(); // Turn on all LEDs and wait for help

165 while (1) ;

166 }

167 }

168

169 void main(void)

170 {

171 // Table of PPI driver configuration values

172 ADI_DEV_CMD_VALUE_PAIR ConfigurationTable [] =

173 {

174 {ADI_DEV_CMD_SET_DATAFLOW_METHOD,

175 (void*)ADI_DEV_MODE_CHAINED_LOOPBACK},

176 {ADI_PPI_CMD_SET_CONTROL_REG, (void *)0x0082},

177 {ADI_PPI_CMD_SET_LINES_PER_FRAME_REG,

178 (void*)ADI_ITU656_NTSC_HEIGHT},

179 {ADI_DEV_CMD_SET_STREAMING, (void *)TRUE},

180 {ADI_DEV_CMD_END, NULL},

181 I

182

183 ADI_DCB_HANDLE DCBManagerHandle; // Handle to the Callback Service Manager
184 ADI_DMA_MANAGER_HANDLE DMAManagerHandle; // Handle to the DMA Manager
185 ADI_DEV_MANAGER_HANDLE DeviceManagerHandle; // Handle to the Device Manager
186

187 u32 ResponseCount; // Response Counter

174



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

int i = 0; // Counter

ezInit(1); // Initialise the EZ-Kit
ezTurnOffAIILEDs();// Turn off all LEDs

// Initialise the Interrupt Manager and hook the exception and hardware error interrupts
ezErrorCheck(adi_int_Init(NULL, 0, &ResponseCount, NULL));
ezErrorCheck(adi_int_CECHook(3, ExceptionHandler, NULL, FALSE));
ezErrorCheck(adi_int_CECHook(5, HWErrorHandler, NULL, FALSE));

// Initialise the Deferred Callback Manager and setup a queue
ezErrorCheck(adi_dcb_Init(&DCBMgrData[0],
ADI_DCB_QUEUE_SIZE,
&ResponseCount,
NULL));

ezErrorCheck(adi_dcb_Open(14,
&DCBMgrData[ ADI_DCB_QUEUE_SIZE],
(ADI_DCB_ENTRY_SIZE)*4,
&ResponseCount,
&DCBManagerHandle));

// Initialise the flag service, memory is not passed because callbacks are not being used
ezErrorCheck(adi_flag_Init(NULL, 0, &ResponseCount, NULL));

for (i = EZ_FIRST_LED; i < EZ_NUM_LEDS; i++) // Enable all LEDs
{

ezInitLED();
}

ezErrorCheck(adi_dma_Init(DMAMgrData, // Initialise the DMA Manager
sizeof(DMAMgrData),
&ResponseCount,
&DMAManagerHandle,
NULL));

ezErrorCheck(adi_dev_Init(DevMgrData, // Initialise the Device Manager
sizeof(DevMgrData),
&ResponseCount,
&DeviceManagerHandle,
NULL));

// Initialise the two frames and make them both different colours
adi_itu656_FrameFormat (PingFrame,ADI_ITU656_NTSC_PR);
adi_itu656_FrameFormat (PongFrame,ADI_ITU656_NTSC_PR);
adi_itu656_FrameFill (PingFrame,ADI_ITU656_NTSC_PR,white); // WHITE
adi_itu656_FrameFill (PongFrame,ADI_ITU656_NTSC_PR,blue); // BLUE

ezEnableVideoEncoder(); // Enable video encoder (7179)
ezDelay(300); // Give the encoder time to sync

/I Open the AD7179 Driver for Output

ezErrorCheck(adi_dev_Open(DeviceManagerHandle, / Handle controlling the Device
&ADIADV7179EntryPoint, // Address of Entry Point
ENCODER_PPI, // Number identifying which Device is Opened
NULL, // No Client Handle
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244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

&AD7179DriverHandle, // Handle Address
ADI_DEV_DIRECTION_OUTBOUND, // Data Direction
DMAManagerHandle, // Handle to DMA Manager
DCBManagerHandle, // Handle to Callback Manager
Callback)); // Callback

// Set PPI Device Number

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
// Command Identifier
ADI_ADV717x_CMD_SET_PPI_DEVICE_NUMBER,
(void*)0)); // PPI Device Number

/I Open PPI Device

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
ADI_ADV717x_CMD_SET _PPI_STATUS, // Command Identifier
/I Address of Command Specific Parameter
(void*)ADI_ADV717x_PPI_OPEN));

/I Create a buffer chain that points to the PingFrame. Each buffer points to the same PingFrame
/I so the PingFrame will be displayed NUM_BUFFERS times. NUM_BUFFERS is sized to

/l keep the display busy for 1 second. Place a callback on only the last buffer in the chain.

/I Make the CallbackParameter (the value that gets passed to the callback function as the pArg
/l parameter) point to the first buffer in the chain. This way, when the callback goes off, the

/I callback function can requeue the whole chain if the loopback mode is off.

for (i = 0; i < NUM_BUFFERS; i++) // Populate the PingBuffer
{
PingBuffer[i
PingBuffer[i

.Data = PingFrame; // Point to PingFrame Data
.ElementWidth = 2;
PingBuffer[i]. XCount = (ADI_ITU656_NTSC_LINE_WIDTH/2);
PingBuffer[i]. XModify = 2;
PingBuffer[i]. YCount = ADI_ITU656_NTSC_HEIGHT;
PingBuffer[i]. YModify = 2;
PingBuffer[i].CallbackParameter = NULL,;
PingBuffer[i].pNext = &PingBuffer[i + 1];
}

PingBuffer[NUM_BUFFERS - 1].CallbackParameter = &PingBuffer[0];
PingBuffer[NUM_BUFFERS - 1].pNext = NULL;

— e —

for (i = 0; i < NUM_BUFFERS; i++) // Populate the PongBuffer
{
PongBuffer[i].Data = PongFrame; // Point to PongFrame Data
PongBuffer[i].ElementWidth = 2;
PongBuffer[i].XCount = (ADI_ITU656_NTSC_LINE_WIDTH/2);
PongBuffer[i]. XModify = 2;
PongBuffer[i]. YCount = ADI_ITU656_NTSC_HEIGHT;
PongBuffer[i]. YModify = 2;
PongBuffer[i].CallbackParameter = NULL;
PongBuffer[i].pNext = &PongBuffer[i + 1];
}

PongBufferNUM_BUFFERS - 1].CallbackParameter = &PongBuffer[0];
PongBuffer[NUM_BUFFERS - 1].pNext = NULL;

/I Configure the AD7179 Dataflow Method
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}

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
ADI_DEV_CMD_SET _DATAFLOW_METHOD, // Command Parameter
(void *)ADI_DEV_MODE_CHAINED_LOOPBACK)); // Outbound Loopback

/I Give the device the Ping and Pong buffer chains
ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device
ADI_DEV_2D, // 2D Buffer
(ADI_DEV_BUFFER *)&PingBuffer)); // Point to PingBuffer

ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device
ADI_DEV_2D, // 2D Buffer
(ADI_DEV_BUFFER *)&PongBuffer)); // Point to PongBuffer

// Enable data flow

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
ADI_DEV_CMD_SET_DATAFLOW// Command Parameter
(void *)TRUE)); // Turn on Dataflow

while(1);
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Appendix F - Application Source Code

ezkitutilities.h - Note: See Appendix E — ezkitutilities.h

adi_itu656.h - Note: See Appendix E — adi_itu656.h

CAN.h - Note: See Appendix E - CAN_Test.h. CAN.h and CAN_Test.h (Appendix E) are
identical except that Line 51 of CAN_Test.h is omitted from CAN.h

ezkitutilities.c - Note: See Appendix E — ezkitutilities.c

adi_itu656.c - Note: See Appendix E — adi_itu656.c

adv7179.c - Note: See Appendix E — adv7179.c

adv717x.c - Note: See Appendix E — adv717x.c

CAN_Init.c.
1 /***********>|<>|<****>|<>|<*********>|<>|<*****>|<****>|<>|<****>|<>|<*****************************
2 *
3 * Device: ADSP-BF537
4 * Osc: SCLK = 120MHz
5 * File Name: "CAN_Init.c"
6 * Author: Dominick O' Brien
7 * Date: 19-Jan-07
8 * Version 1.00
9 k
11 #include " CAN.h" // CAN Ultilities
12
14 *
15 * Init_ CAN_Port — Sets up the Ports for CAN use and configured the PFx pins for access to the
16 * on-board LEDs.
17 *
19 void Init_CAN_Port ()
20 {
21 short temp_fix;
22 /I Configure CAN RX and CAN TX pins on GPIO Port
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23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78

temp_fix = ¥pPORT_MUX;
ssync();

*pPORT_MUX = PJCE_CAN; // Enable CAN Pins On Port J

ssync();

*pPORT_MUX = PJCE_CAN; // #22 work-around: write it a few times
ssync();

*pPORT_MUX = PJCE_CAN; // #22 work-around: write it a few times
ssync();

temp_fix = *pPORT_MUX; // #22 work-around: read PORT_MUX after writing
ssync();

/I Configure Port F pins for LED access
*pPORTFIO_DIR = 0xOFCO; // Enable PF6-11 As Outputs (LEDs)
ssync();

} // End Init_Port ()

/*****************************************************************************

*

* Init_CAN_Timing — Sets up the CAN_TIMING & CLOCK Registers

k

*****************************************************************************/

void Init_ CAN_Timing()

{
//
// BIT TIMING:

//

// CCLK 600 MHz

// SCLK 120 MHz

/!

// CAN_CLOCK : Prescaler (BRP)

// CAN_TIMING : SJW =2, TSEG2 = 3, TSEGI1 =5
//

// tBIT =TQ x (1 + (TSEG1 + 1) + (TSEG2 + 1))

/l 22-6=TQx(1+GB+1)+@B+1))

// TQ =1.82e-7

//

// TQ = (BRP+1) / SCLK

// 1.82¢-7 = (BRP+1) / 120e6

// (BRP+1) =21.84

// BRP =20.84 ~ 21

//
/! Set Bit Configuration Registers ...
//
*pCAN_TIMING = 0x0235;

*pCAN_CLOCK =21; // [0x15] 500kHz CAN Clock :: tBIT = 2us
ssync();

} // End Init_ CAN_Timing()

[ st e e skeste s s ste st st s e s sk ke st sk s ke steste sk seste st sk ke e st sk ke steske s st ste st sk st st st st steste sttt ste stk sttt kot stttk tokoskolokokoskokskolokokolok
*

* Init_ CAN_Mailboxes — Configures Mailbox 24 to transmit a specific message ID with a

* message length of 8 bytes. Configures Mailbox 6 and 7 to each receive

* a specific message ID
k
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79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

et st st ke sfestese s skeste sk sk st st stk ke stesteskoskeste skt sfesteskoske ekl stestesiol sestekostostestestok st stol stk skokotokokoskokotokoskolokokoskoskokoiok skolokokskok /

void Init_ CAN_Mailboxes()

{
short msgID; // Variable for Mailbox 24 ID
short msgID_OnB; // Variable for Mailbox 7 ID
short msgID_SPI; // Variable for Mailbox 6 ID

volatile char mbID;

volatile char mbID_OnB; // Variable for Mailbox # for ON_B
volatile char mbID_SPI; // Variable for Mailbox # for SP1

// Mailbox 24 Will Transmit ACK to the Network via ID 0x007
msgID = 0x007;

mbID =24;

*(pCAN_MB_ID1(mbID)) = msgID << 2; // ID1, mask disabled, remote frame disable, 11 bit
// identifier

*(pCAN_MB_IDO(mbID)) = 0; // IDO = all 0's

*(pCAN_MB_LENGTH(mbID)) = 8; // DLC = 8 bytes

// Mailbox 7 will Receive CAN Command from Network via ID 0x411
// Mailbox 6 will Recieve CAN Command from Network via ID 0x189
msgID_OnB = 0x411; // ID = dec 1041

msgID_SPI = 0x189; // ID = dec 393

mbID_OnB = 7; // Mailbox 7

mbID_SPI = 6; // Mailbox 6

*(pCAN_MB_ID1(mbID_OnB)) = msgID_OnB << 2; // ID1, mask disabled, remote frame
// disable, 11 bit identifier
*(pCAN_MB_IDO(mbID_OnB)) =0; // ID0 = all 0's
*(pCAN_MB_ID1(mbID_SPI)) = msgID_SPI << 2; // ID1, mask disabled, remote frame
// disable, 11 bit identifier
*(pCAN_MB_IDO(mbID_SPI)) = 0; // IDO = all 0's
*(pCAN_MB_LENGTH(mbID_SPI)) = 8; // DLC = 8 bytes
} // End Init_CAN_Mailboxes()

/>l<>k>l<>l<>l<>k***********************************************************************
%k

* Init_Interrupts — Assigns interrupt priorities for CAN TX and CAN RX.

*
*****************************************************************************/

void Init_Interrupts()

{
/I Configure Interrupt Priorities
*pSIC_IARO = 0x77717777; // PPIDMA IRQ : 1 =IVGS
*pSIC_IAR1 = 0x47777777; // CAN RX IRQ : 4 =1IVG11
*pSIC_IAR2 = 0x77777775; // CAN TX IRQ : 5 =1IVG12
*pSIC_IAR3 = 0x77777777,

/I Register Interrupt Handlers and Enable Core Interrupts
register_handler(ik_ivgl1, CAN_RCV_HANDLER);
register_handler(ik_ivgl12, CAN_XMT_HANDLER);

/I Enable SIC Level Interrupts

*pSIC_IMASK |= (IRQ_CAN_RXIIRQ_CAN_TX);
} // End Init_Interrupts
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CAN_Functions.c

1 /*****************************************************************************

2 %

3 * Device: ADSP-BF537

4 * Osc: SCLK = 120MHz

5 * File Name: "CAN_Functions.c"

6 * Author: Dominick O' Brien

7 * Date: 22-Jan-07

8 * Version 1.00

9 *

10 *****************************************************************************/

11 #include "CAN.h" // CAN Utilities

12

13 /*****************************************************************************

14 *

15 * CAN_Setup_Interrupts — Enables Mailbox Interrupts for Mailboxes Used

16 *

17 et st st ke sfestese s sheste sk st st stk ke stesteskoskeste skt sfesteskske stestesiolstestesiol stttk stttk stk skoskotokokosokotokoskolokoskokoskokoskok skolokokskok /

18 void CAN_Setup_Interrupts()

19 {

20 *pCAN_MBIMI1 = 0x00C0; // Enable Interrupts for Mailbox 7 and Mailbox 6

21 *pCAN_MBIM?2 = 0x0100; // Enable Interrupt for Mailbox 24

22 ssync();

23 } // End CAN_Setup_Interrupts

24

25 /*****************************************************************************

26 *

27 * CAN_Enable — Writes Mailbox Direction and Enables Registers before issuing a CAN

28 * Configuration Request and waiting for a CAN Configuration acknowledge

29 * before continuing.

30 *

31 *****************************************************************************/

32 void CAN_Enable()

33 {

34 // Set Mailbox Direction

35 *pCAN_MDI1 = CAN_RX_MB_LO; // No Low Mailboxes (MB 0-15) Are RX

36 *pCAN_MD2 = CAN_TX_MB_LO; // Mailbox 24 Enabled For TX

37

38 // Enable Mailboxes

39 *pCAN_MC1 = CAN_RX_MB_LO; // Enables Mailbox 7 and Mailbox 6

40 *pCAN_MC2 = CAN_TX_MB_HI; // Enables Mailbox 24

41 ssync();

42

43 *pCAN_CONTROL &= ~CCR; // Enable CAN Configuration Mode (Clear CCR)

44

45 while(*pCAN_STATUS & CCA); // Wait for CAN Configuration Acknowledge (CCA)

46

47 } // End CAN_Enable

CAN_ISR.c

1 /*****************************************************************************
*

3 * Device: ADSP-BF537
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* Osc: SCLK = 120MHz

* File Name: "CAN_ISR.c"
* Author: Dominick O' Brien
* Date: 24-Jan-07

* Version 1.00

*
et st st e shestes s sheste sk s ste e sk sk shesteske s sheste st sk ste sheste s ke steste st steste skt st st s steste sttt ste sttt stttk stoloskostotokoskolekokoskok skolokoskololokskek /

#include "CAN_Test.h" // CAN Utilities

[ st sk e skeste st sk steste stk e sk sk ke st st st stesteskskeste skt st steskske stestesiole st stk st stk stekosiolsteosteostol stk skolototokosokotokoskolokoskolkokokokokokolok
%k

* CAN_RCV_HANDLER - This ISR checks for the highest priority RX Mailbox with an

* active interrupt and clears it.
%k

sttt oot el st ol sl el sl st ol st st ottt el st sttt sttt ok s stk sk stk ek
EX_INTERRUPT_HANDLER(CAN_RCV_HANDLER)
{

char highMB; // Which CAN Registers Should Be Used (1 or 2)

// short data type is 16 bits

short mbim_status; / Temp Location for Interrupt Status

short bit_pos = 0; // Offset Into MBxXIF Registers

mbim_status = *pCAN_MBRIF2;

if (mbim_status == 0) // If High 16 MBoxes Have No Active IRQ
{
mbim_status = *pCAN_MBRIF1; // Check Low 16 MBoxes
highMB = 0; // Clear High/Low* Indicator

}

else // Otherwise, Active High MBox IRQ Found

{ highMB = 1; // Set High/Low* Indicator

}

while (!(mbim_status & 0x8000)) // Scan Status Register For Highest MB IRQ
{

mbim_status <<= 1;
bit_pos++; // bit_pos Contains Offset from MB31

}
if (highMB)
{ *pCAN_MBRIF2 = (1 << (15 - bit_pos));
}
else // Low Mailbox Interrupt
{ if(bit_pos = = 0x8) // if Mailbox7 IRQ
{ if(*(pCAN_MB_DATA3(7)) <= 127))
{ clr_screen = 0; // Display BLACK
}

if((*(pPCAN_MB_DATA3(7)) >= 128) && (*(pCAN_MB_DATA3(7)) <= 255))
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60 {

61 clr_screen = 1; // Display BLUE

62 }

63

64 if(*(pCAN_MB_DATA3(7)) >=256) && (*(pCAN_MB_DATA3(7)) <= 383))
65 {

66 clr_screen = 2; // Display RED

67 }

68

69 if((*(pCAN_MB_DATA3(7)) >=384) && (*(pCAN_MB_DATA3(7)) <=511))
70 {

71 clr_screen = 3; // Display MAGENTA

72 }

73

74 if((*(pCAN_MB_DATA3(7)) >=512) && (*(pCAN_MB_DATA3(7)) <= 639))
75 {

76 clr_screen = 4; // Display GREEN

77 }

78

79 if(*(pCAN_MB_DATA3(7)) >= 640) && (*(pCAN_MB_DATA3(7)) <= 767))
80 {

81 clr_screen = 5; // Display CYAN

82 }

83

84 if((*(pCAN_MB_DATA3(7)) >=768) && (*(pCAN_MB_DATA3(7)) <= 895))
85 {

86 clr_screen = 6; // Display YELLOW

87 }

88

89 if(*(pCAN_MB_DATA3(7)) >= 896)

90 {

91 clr_screen = 7; // Display WHITE

92 }

93 } // end if Mailbox 7

94

95 if(bit_pos = = 0x9) // if Mailbox 6 IRQ

96 {

97 // Place Received Commands Into CAN TX Mailbox

98 *(pCAN_MB_DATA3(24)) = *(pCAN_MB_DATA3(6));

99 *(pCAN_MB_DATA2(24)) = *(pCAN_MB_DATAZ2(6));

100 *(pCAN_MB_DATA1(24)) = *(pCAN_MB_DATAI1(6));

101 *(pCAN_MB_DATAO0(24)) = *(pCAN_MB_DATAO0(6));

102

103 // Issue CAN Transmit Request for Mailbox 24

104 *pCAN_TRS2 = CAN_TX_MB_HI;

105 ssync();

106 } // end if Mailbox 6

107

108 *pCAN_MBRIF1 = (1 << (15 - bit_pos)); // Write-1-to-Clear RX IRQ

109 } // end Low Mailbox Interrupt

110 } // end CAN_RCV_HANDLER

111

113 *

114 * CAN_ XMT_HANDLER - This ISR checks for the highest priority TX Mailbox with an
115 * active interrupt and clears it.
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main.c
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*
et st st ke sfestese sk skeste sk sk st st stk ke stesteskoskeste stk sfesteskske ettt stesiol stk stttk stttk stk skoskotokokosokotokoskolokoskokoskokokok skolokokskok /

EX_INTERRUPT_HANDLER(CAN_XMT_HANDLER)

{
char highMB; // Which CAN Registers Should Be Used (1 or 2)
short mbim_status; / Temp Location for Interrupt Status
short bit_pos = 0; /I Offset Into MBXIF Registers

mbim_status = *pCAN_MBTIF2; // Check High Mailboxes First
if (mbim_status == 0) // If No High MB Interrupts
{
mbim_status = *pCAN_MBTIF1; // Check Low MB Interrupts
highMB = 0; // Clear High/Low* Mailbox Indicator

}

else highMB = 1; // Set High/Low* Mailbox Indicator

while (!(mbim_status & 0x8000)) // Find Highest Mailbox W/ Active IRQ
{

mbim_status <<= 1;
bit_pos++;
} // Interrupting Mailbox Found

if (highMB) // Process High Mailbox IRQ

{ *pCAN_MBTIF2 = (1 << (15 - bit_pos));
}

else // Else, Process Low Mailbox IRQ

{ *pCAN_MBTIF1 = (1 << (15 - bit_pos));
ss}ynco;

} // End CAN_XMT_HANDLER

[ st s e skeste s s ste st st s e s sk ke st sk s ke steste sk seste st sk ke e st sk ke steske s s ste st s st st stk st steste st steste stk st skl kot stttk tolkoskolokokoskokskolokokolok
*

* Device: ADSP-BF537

* Osc: SCLK = 120MHz

* File Name: "main.c”

* Author: Dominick O' Brien

* Date: 30-Jan-07

* Version 1.00

* Modified version of Analog Device’s "ezkitutilities.c” found in VisualDSP++4.5

* References: "..\Blackfin\Examples\ADSP-BF533 EZ-Kit Lite\Drivers\PPI\Streaming.."
* Target Processor: ADSP-BF537

* Target Tools Revision: ADSP VisualDSP++ v4.5 (September 2006 Update)

*
*****************************************************************************/
#include <services\services.h> // System Services

#include <drivers\adi_dev.h> // Device Manager Includes

#include <drivers\ppi\adi_ppi.h> // PPI Driver Includes
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#include <defBF537.h> // Include all MMR's and bit defs

#include <drivers\encoder\adi_adv717x.h> // 7179 Device Driver Includes
#include "ezkitutilities.h" // EZ-Kit Utilities

#include "adi_itu656.h" // ITU656 Utilities

#include "CAN.h" // CAN Utilities

/*****************************************************************************
*

* ADSP-BF537 Switch Settings

%k

setosoR s ok s o st R Rtk sk R sk R sl R sl st Rl Rk R s R R R s R Rl R sk ok
%k

*SW1: ALL OFF

* SW2: ALL ON

* SW3: ALL OFF

* SW4: OFF, ON, OFF, ON

* SW5: ALL ON

* SW6: ALL ON

* SW7: ALL ON

* SW8: ON, ON, OFF, OFF, OFF, OFF

*
et st st ke sfestese s skeste sk sk st st stk ke steste skl ste stk sfesteskoske ekl stestesiol st stekostkostestestok stttk stk skoskotokokosokotokoskolokokoskoskokokokoskolokokskok /

[ st sk e skeste st s steste stk e sk sk ke st st skt stesteskoskeste skt st stk stesteskoleste sttt steskosk stestosieolsteostostol stk skolototokosokotokoskolok skolkokokokokolkolok
*

* A/V Extender Board Jumper Settings

*

steske sk sk s sk sk stk sk sk st sk sk sk st sk sk sk sk stk st sk sk stk ste sk sk sk stk stk sk sk sk ste sk stk sl stk stk sk sk sk stk stk stk stok sk skostok ok koo sk
*

* JP1: NOT USED

* JP2: NOT USED

* JP3: JP3.5/7 & JP3.6/8 --> Processor's TWI

* JP4: JP4.1/2 & JP4.3/4 --> 27MHz A V extender card onboard clock to source PPI CLK
* JPS: JP5.3/4 --> Enables PPIO to drive VID_OUT

* JP6: NOT USED

* JP7: NOT USED

* JP8: JP8.1/3 & JP8.2/4 --> Selects PPIO as source

* JP8.7/8 -->Enables VID_OUT bus sync

*JP9: JP9.1/3 --> Connect AD7179 reset to reset flag
* JP10: NOT USED

*
et st st ke shestes sk sheste sk sk st s st s ke steske s ke ste st s e sfeste s ke steste s steste stk st st s skeste sttt ste stk st steskeoslkoskesk kool stotokoskokokokoskok skolokokololokskek /

[ st sk e steste st sk st ste st e sk sk ke ste st st stesteskoskeste skt st steskske stesteskoleste sttt stk stttk stttk stk skolototokosokotokoskolok skolkokokokokolkolok
*

* External Connections

*

stesfe ok stesfe sk stesfe sk sfeshe sk steshe sk sfeske sk sleske st ek stesheosk steske sk steske sk stk sk stk skesleosk sk sl skeste sl skesteske skestesk skestesk stesteok stesteok stk stelok slolok solokosoloreskok
*

* Connect a monitor to the A-V Extender card video-out connector. The video connectors are
* the bank of 6 RCA-style jacks on the A-V Extender card labelled as J7.

7 + +
| (0] O < Video out (0] | (white)

* K K K X

| o) o) o) | (red)
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*
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* Enumerations and defines

*k
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#define ENCODER_PPI (0) // ADSP-BF537 has only 1 PPI called PPI0

#define NUM_BUFFERS (1) // Colour Change Rate = (NUM_BUFFERS/30)/second
/I Colour Patterns

static u8 black[] = {0x80,0x10,0x80,0x10}; // Black pixel YCbCr format

static u8 blue[] = {0xF0,0x29,0x6E,0x29}; // Blue pixel YCbCr format

static u8 red[] = {0x5A,0x51,0xF0,0x51}; // Red pixel YCbCr format

static u8 magenta[] = {0xCA,0x6A,0xDE,0x6A }; // Magenta pixel YCbCr format
static u8 green[] = {0x36,0x91,0x22,0x91}; // Green pixel YCbCr format

static u8 cyan[] = {0xA6,0xAA,0x10,0xAA}; // Cyan pixel YCbCr format

static u8 yellow[] = {0x10,0xD2,0x92,0xD2}; // Yellow pixel YCbCr format
static u8 white[] = {0x80,0xEB,0x80,0xEB }; // White pixel YCbCr format
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* Static data

*
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// Create two areas in SDRAM that will each hold a 656 Frame
static u8 PingFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHT];
static u8 PongFrame[ADI_ITU656_NTSC_LINE_WIDTH * ADI_ITU656_NTSC_HEIGHTT;

ADI_DEV_2D_BUFFER PingBufferfNUM_BUFFERS]; // Create two buffer chains.
ADI_DEV_2D_BUFFER PongBuffer[NUM_BUFFERS];

// DMA Manager data (base memory + memory for | DMA channel)

static u§ DMAMgrDatalADI_DMA_BASE_MEMORY + (ADI_DMA_CHANNEL_MEMORY
* DI

/I Deferred Callback Manager data (memory for 1 service plus 4 posted callbacks)

static u§ DCBMgrData[ ADI_DCB_QUEUE_SIZE + (ADI_DCB_ENTRY_SIZE)*4];

/I Device Manager data (base memory + memory for 3 devices)

/I Memory for 3 devices is required because usage of a 717x device results in the usage of the
// PPI and SPI devices.

static u8 DevMgrData[ADI_DEV_BASE_MEMORY + (ADI_DEV_DEVICE_MEMORY *
3l

ADI_DEV_DEVICE_HANDLE AD7179DriverHandle; // Handle to the ADV7179 Driver

[ st sk e steste s s st st st e sk skskeste st st stesteskskeste skt st steskske stesteskoleste sttt stk sttt stttk stk skolototokosokotokoskolok skokokokokokokolok
*

* Global data

*
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ADI_ITU656_FRAME_TYPE Frame; // ITU Frame Type
short clr_screen = 0;
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* ExceptionHandler - An Exception error should never happen but just in case if one occurs all
* the LEDs will light up.

*
*****************************************************************************/
static ADI_INT_HANDLER(ExceptionHandler) // Exception Handler
{

ezErrorCheck(1);

return(ADI_INT_RESULT_PROCESSED);

}
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* HWErrorHandler - A Hardware error should never happen but just in case if one occurs all
* the LEDs will light up.

*
*****************************************************************************/
static ADI_INT_HANDLER(HWErrorHandler) // Hardware Error Handler
{

ezErrorCheck(1);

return(ADI_INT_RESULT_PROCESSED);

}

[ st sk e steste s s steste stk e sk sk ke st st st stesteskskeste skt st steskske stesteskoleste stttk seskosiolksteosteostol stk skolototokosokotok skolokoskokokokokokokolok
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* Callback - Callback occurs when the PPI has completed processing of the last buffer in the
* Ping & Pong Buffer chains.

*
et st st ke shestes sk sheste sk s st e st s ke steske s seste st s e sheste s ke steste st steste stk ste st s steste sttt ste stk st stttk stoloskostotokoskokekokoskok skolokoskololokskek /

static void Callback(void *AppHandle,u32 Event,void *pArg)

{
ADI_DEV_BUFFER *pBuffer; // Pointer to the Buffer that was processed

switch (Event)
{
case ADI_DEV_EVENT_BUFFER_PROCESSED: // CASE (buffer processed)
// When the buffer chain was created, the CallbackParameter value for the buffer that was
/I generating the callback was set to be the address of the first buffer in the chain.
/I 'So here in the callback that value is passed in as the pArg parameter.
pBuffer = (ADI_DEV_2D_BUFFER *)pArg;

switch(clr_screen) // Update data buffer with new colour
{
case 0: // Fill frame with BLACK colour
adi_itu656_FrameFill (pBuffer->Data,Frame,black);
break;

case 1: // Fill frame with BLUE colour
adi_itu656_FrameFill (pBuffer->Data,Frame,blue);
break;

case 2: // Fill frame with RED colour
adi_itu656_FrameFill (pBuffer->Data,Frame,red);
break;

case 3: // Fill frame with MAGENTA colour
adi_itu656_FrameFill (pBuffer->Data,Frame, magenta);
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break;

case 4: // Fill frame with GREEN colour
adi_itu656_FrameFill (pBuffer->Data,Frame,green);
break;

case 5: // Fill frames with CY AN colour
adi_itu656_FrameFill (pBuffer->Data,Frame,cyan);
break;

case 6: // Fill frame with YELLOW colour
adi_itu656_FrameFill (pBuffer->Data,Frame,yellow);
break;

default: // Fill frame with WHITE colour
adi_itu656_FrameFill (pBuffer->Data,Frame,white);
break;

}

break;

// CASE (an error)
case ADI_DEV_EVENT_DMA_ERROR_INTERRUPT:
case ADI_PPI_EVENT_ERROR_INTERRUPT:
ezTurnOnAlILEDs();// Turn on all LEDs and wait for help
while (1) ;
}
}

void main(void)
{
// Table of PPI driver configuration values
ADI_DEV_CMD_VALUE_PAIR ConfigurationTable [] =
{
{ADI_DEV_CMD_SET_DATAFLOW_METHOD,
(void*)ADI_DEV_MODE_CHAINED_LOOPBACK},
{ADI_PPI_CMD_SET_CONTROL_REG, (void *)0x0082},
{ADI_PPI_CMD_SET_LINES_PER_FRAME_REG,
(void*)ADI_ITU656_NTSC_HEIGHT},
{ADI_DEV_CMD_SET_STREAMING, (void *)TRUE},
{ADI_DEV_CMD_END, NULL},

}s

ADI_DCB_HANDLE DCBManagerHandle; // Handle to the Callback Service Manager
ADI_DMA_MANAGER_HANDLE DMAManagerHandle; // Handle to the DMA Manager
ADI_DEV_MANAGER_HANDLE DeviceManagerHandle; // Handle to the Device Manager

u32 ResponseCount; // Response Counter
int i = 0; // Counter
Frame = ADI_ITU656_NTSC_PR; // Frame Type

ezInit(1); // Initialise the EZ-Kit
/I - Configure Async Memory
/I - Configure Power & SDRAM Parameters
/I - Configure Clock, CCLK = 600MHz, SCLK = 120MHz
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Init_ CAN_Port(); // Initialise CAN Ports

Init_CAN_Timing(); // Setup CAN Timing Parameters
Init_CAN_Mailboxes(); // Initialise CAN Mailboxes' Registers
CAN_Setup_Interrupts(); // Configure CAN Mailbox Interrupts
CAN_Enable(); // Enable CAN

ezTurnOffAIILEDs(); / Turn off all LEDs

// Initialise the Interrupt Manager and hook the exception and hardware error interrupts
ezErrorCheck(adi_int_Init(NULL, 0, &ResponseCount, NULL));
ezErrorCheck(adi_int_ CECHook(3, ExceptionHandler, NULL, FALSE));
ezErrorCheck(adi_int_CECHook(5, HWErrorHandler, NULL, FALSE));

// Initialise the Deferred Callback Manager and setup a queue
ezErrorCheck(adi_dcb_Init(&DCBMgrData[0],
ADI_DCB_QUEUE_SIZE,
&ResponseCount,
NULL));

ezErrorCheck(adi_dcb_Open(14,
&DCBMgrData[ ADI_DCB_QUEUE_SIZE],
(ADI_DCB_ENTRY_SIZE)*4,
&ResponseCount,
&DCBManagerHandle));

// Initialise the flag service, memory is not passed because callbacks are not being used
ezErrorCheck(adi_flag_Init(NULL, 0, &ResponseCount, NULL));

for (i = EZ_FIRST_LED; i < EZ_NUM_LEDS; i++) // Enable all LEDs
{

ezInitLED();
}

ezErrorCheck(adi_dma_Init(DMAMgrData, // Initialise the DMA Manager
sizeof(DMAMgrData),
&ResponseCount,
&DMAManagerHandle,
NULL));

ezErrorCheck(adi_dev_Init(DevMgrData, // Initialise the Device Manager
sizeof(DevMgrData),
&ResponseCount,
&DeviceManagerHandle,
NULL));

// Initialise the two frames and make them both BLACK in colour
adi_itu656_FrameFormat (PingFrame, Frame);
adi_itu656_FrameFormat (PongFrame, Frame);
adi_itu656_FrameFill (PingFrame,ADI_ITU656_NTSC_PR black);
adi_itu656_FrameFill (PongFrame,ADI_ITU656_NTSC_PR,black);

ezEnableVideoEncoder(); // Enable video encoder (7179)
ezDelay(300); // Give the encoder time to sync

/I Open the AD7179 Driver for Output
ezErrorCheck(adi_dev_Open(DeviceManagerHandle, / Handle controlling the Device
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&ADIADV7179EntryPoint, // Address of Entry Point
ENCODER_PPI, // Number identifying which Device is Opened
NULL, // No Client Handle

&AD7179DriverHandle, // Handle Address
ADI_DEV_DIRECTION_OUTBOUND, // Data Direction
DMAManagerHandle, // Handle to DMA Manager
DCBManagerHandle, // Handle to Callback Manager

Callback)); // Callback

// Set PPI Device Number

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device

// Command Identifier

ADI_ADV717x_CMD_SET_PPI_DEVICE_NUMBER,

(void*)0)); // PPI Device Number

/I Open PPI Device

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
ADI_ADV717x_CMD_SET_PPI_STATUS, // Command Identifier

/I Address of Command Specific Parameter
(void*)ADI_ADV717x_PPI_OPEN));

/I Create a buffer chain that points to the PingFrame. Each buffer points to the same PingFrame
/I so the PingFrame will be displayed NUM_BUFFERS times. NUM_BUFFERS is sized to

/I keep the display busy for 1 second. Place a callback on only the last buffer in the chain.

/I Make the CallbackParameter (the value that gets passed to the callback function as the pArg
/I parameter) point to the first buffer in the chain. This way, when the callback goes off, the

/I callback function can requeue the whole chain if the loopback mode is off.

for (i = 0; i < NUM_BUFFERS; i++) // Populate the PingBuffer
{
PingBuffer[i].Data = PingFrame; // Point to PingFrame Data
PingBuffer[i].ElementWidth = 2;
PingBuffer[i]. XCount = (ADI_ITU656_NTSC_LINE_WIDTH/2);
PingBuffer[i].XModify = 2;
PingBuffer[i]. YCount = ADI_ITU656_NTSC_HEIGHT;
PingBuffer[i]. YModify = 2;
PingBuffer[i].CallbackParameter = NULL,;
PingBuffer[i].pNext = &PingBuffer[i + 1];
}

PingBuffer[NUM_BUFFERS - 1].CallbackParameter = &PingBuffer[0];
PingBuffer[NUM_BUFFERS - 1].pNext = NULL;

for (i = 0; i < NUM_BUFFERS; i++) // Populate the PongBuffer
{
PongBuffer[i].Data = PongFrame; // Point to PongFrame Data
PongBuffer[i].ElementWidth = 2;
PongBuffer[i]. XCount = (ADI_ITU656_NTSC_LINE_WIDTH/2);
PongBuffer[i]. XModify = 2;
PongBuffer[i]. YCount = ADI_ITU656_NTSC_HEIGHT;
PongBuffer[i]. YModify = 2;
PongBuffer[i].CallbackParameter = NULL;
PongBuffer[i].pNext = &PongBuffer[i + 1];
}

PongBuffer[NUM_BUFFERS - 1].CallbackParameter = &PongBuffer[0];
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}

PongBuffer[NUM_BUFFERS - 1].pNext = NULL;

/I Configure the AD7179 Dataflow Method

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
ADI_DEV_CMD_SET_DATAFLOW_METHOD, // Command Parameter
(void *)ADI_DEV_MODE_CHAINED_LOOPBACK)); // Outbound Loopback

/I Give the device the Ping and Pong buffer chains
ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device
ADI_DEV_2D, // 2D Buffer
(ADI_DEV_BUFFER *)&PingBuffer)); // Point to PingBuffer

ezErrorCheck(adi_dev_Write(AD7179DriverHandle, // Handle identifying Device
ADI_DEV_2D, // 2D Buffer
(ADI_DEV_BUFFER *)&PongBuffer)); // Point to PongBuffer

Init_Interrupts(); // Assign Interrupt priorities for CAN RX/TX

// Enable data flow

ezErrorCheck(adi_dev_Control(AD7179DriverHandle, // Handle identifying Device
ADI_DEV_CMD_SET_DATAFLOW// Command Parameter
(void *)TRUE)); // Turn on Dataflow

while(1);
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ABSTRACT

Thi |l:4|l:l'|'ﬂl'r; diezument dsclsses the benafile achiesad
Irom |I'I'|:I|-:II'I1E'I'I|:|I'Q a n:llgl:al dash-pansl wihin  an
aulomobile. It details the synthesis of the digital display
E}‘E‘IE’l’ﬂ LIBl'IQ e appropriata hardsare components and
software stralegies. The jusbfications behind  the
sefeclion of the Blackin processcr 1or l:l:ll'ltrl:ﬂll'lg ihe
E‘r‘E'IE'l'ﬂ are oulined. In addilion, 8 briel dicussion of 1he
safely aspeck oblained from e dighal dash-display is
discuzaed.

INTRODUCTIGN

AL prezanl 1he automolise |I'I:|L|31f}' (2] E-EHHI'Q an
BSJ:-EIHUI'Q Irend in e customears desire 10 Nave New
H'l:ij-:lrl'l-ljil}' [-:ll:l'l'll:il:l-mE'E- II'IEI-;H‘EIIZI Inka the wahide. This
= dug o the Tact that drivars are |I'GI'E|EIB|'IQ:' E'E'IZ-EC'IIHQ
more from iher aulomoblles than st the fundamental
Hea of awal. Thase rew 1E‘:TII'!:IFIQHB are D—:ﬂl’lg
nciudad within the venicle o salisly the consumer's
raguest for comfar, covenianss, I:fl:l-:lLEﬂ'l'lTr' and 5:'I1E'1]-'
whilsl oriwing. Digtal dsplays are one of 1he new
fechnalogical imegration trends [1].

GPRE
Havigation Digriel.
Syebams Dizplzye
Auda Intsmad
Eystam Bormss
] [
waming Sycteme

Flgure 1: Modern ine graed Technologle s

Digital display lechnologies, such &5 TFT LGOD panels,
are beng Increasingly used within he autbomobie as hey
possess a numbsr of benelits, some of which hawe
dlready bean listed. Addilional advanages can be
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chtaned from thesa LCOS I ey are usad a5 2 dgital
dash-dispay, thus replazing the aged analogus dash
Fanel. The reason Dehind this i 1nat they can exnipik a
largar wolums of wehizlke information than hair analegus
predecaszars and can do =0 in 8 mors desthalicaly
pleasing manrer [1] [2].

The use of LGD panels can also lead to streamiined
produclion 8s ihe sems moniiof can be placed ine a
mumtsr of diffarenl wehizke modals, therafors reducing
cosls and Increasing productivity. Wih thess dgial
dasr-pansls manufeshrers can inloduce B degree ol
fexbiity imc e graphics displays. For axampls, & driver
can kel that fhe speedometsr presands readrgs n
either mEn of kmvh. In addiion 0 1his, stde variaions
t=hvean autamcohile modals can sl be mantaned oe
vehicle manufachursrs by simply developing diffaranl
solwere rephicsdisplays far @ach mads [2).

Tharalore It is proposed o design and synthesze a
doial  dashesysiem  that  graphicalty  dlustratas
fundamental wehick Indormalich swCch as spesd, ual
kvel, engne temperalure etc. The vanous vehkie data
can ba reldewad from a CAM rebsa. A EBlackiin
procaszar will 1hen be used o exiract this wehick
infarmation fram CAM massages. Tha Blackin processor
Wik then Imerprat ihese messages and uss the data
drive the graphics dsplay upon the LCD panel,

SYSTEM DESIGH & SYNTHESIS

Tha deaign and s¢nihesia of s dgital dash-system can
= drelded Inds BwD main GEIIE'Q:I”-:IE — hardware and
sCikware,

EYSTEM HARDWARE

The hardware for this paricglar dgrial dash-dsplay
containg & numbar of components 83 se2n In Figurs 2,
Firsl and leremoet, in order 1o gererabe vshicle data
mumefous potsnliomelers are amplyad 1o mimic
BENSOrE Measuring physical parametars SLCh &3 2ngine
bemperabre and speed. These potenliameters Tom g
ol a number of CAN nodeE The GAN nodes used within
thiz spslem ara implemandad using PIC microoontrodiars
[4]: This I8 due 12 the fasl hat he PIC MCU i relatively



ashmalgnifceward to program, sewveral of s 165 senes
comlain Imegraled AN Tealuras and ils unit cost = Rghnly
compatitve.
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Flgure 2: Sysam's Harde ame Componsns

CAN Profccol Cwerdew

CAM 15 an asynchronous saniak bua protosct with MRZ bil
codng desigred o effizienly supporl dsributsd cardral
Fyslems. b was dewalopad by Bosch in he late 1880°.
CaN's popuanty wihin the automotve indusiy and
teyord & owed to s inherent rabust sblity 1o ranstar
data at ralaliealy high speads within harzh ervironmeants
[E] [E). For ihase reasons ds employment wilhin thia
gyalem, o sene 1he pupess of ransmiting simulated
wahkde data, Is juslilied.

The selecion of & sutable posassor wilhin his system
i crukdal ta iks Implemaniation as ihe processor kesif will
act a3 the syslem controller. The syetem condraliar wihin
ihi= applicaticn has to parfom tplcal funclions such &s
condiional  opsrabions, computaions and  data
manipuialiona/cony ersions i, 1wl also be required Lo
conlain CAM pocessing capabliies. Howewar, with
referanca bo Figure 2, i &5 Implclt hat & suisbl system
conirolier Tor 1his apphication must also possess EWP
funclionalty. Therslors & number of processar oplions
axist. The bwo main chokses being 1he faliesng:

1. MCU
2 [DEP

MCU

A hpical MCU could Tullil the role of 1he sysbem
conircliar 'wilh relalive ease as It hardies condiional
cparafiore ard instruchon jumps comforiably. Whals
more, & bipleal MCU's code ks wriken using 3 higheleval
languags §ks C ar G4+ therafore it is not a necassity to
lzarn & parliciar MCLU's asssmbler language [F].

WMCUE can vary from 3-bit, o 160t or evan 1o 22kt
Howeear, applcaticns requiring EMP unclionality usually
MUk out & of 18- Dt processors. This I8 due 10 the 1ect that
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g-bil proecessors do nol conlain 1he bandwidih and
compulstional powsr ragquirsd 1o process reaktime
sigraling in this category of application. 16-bil processors
do have an obwvicus advanlage over lher &bl
courierparts {alhough they typicaly cost double), but on
e alher hand 15-bik processors usually require a
complats new code developmant atiort As & result ol
this, 1ha majorty of developars would rathar skip ovar
16-bit processors and mowe siralght 1o 8 32- bk controliar
sinca & mew kaming process would have to b=
embarked upon In any cass. The leap ovar 16-bil
procassora Ig also jusiiied due o 1he high keel of on-
chip peripheral Inlegralion  asscclated  with 32-bil
procassars, The use of @ 32-bN system leads Lo
Improved code denslly and greaier compier support 35 a
rasult of graglar bit capaciy within the daia and addreas
register Tes [F]. Whilk a typical 226t MCU can
sullicientty act as a system confroller in & low-end EMP
gpplication, 1l does nol possass the number-crunching
capabiities required for more demarding EMP systems.

oeF

To agdress the average MCU's shorkcomings DSPs
have matarialzad. OSPs are compriead o an
archiieciure dasigned seplicitly b periorm as many MAC
operalions as possbke In & sngle chok oypele [
Cplimzad DSP cods i3 ypicaly writtan using assemblar
glgoriinms. Thius, a delalled knowledge of a DSP's
gszambler language s required o develop  highty
cphimizsd algoriihme. In 2 typical EMP application a
stand-alone OSP woukld not accomplish e role of a
sy stem controlier adequately s i 1S primariy focusad on
completing mathamatizal algorthms.

Syebem Conircller Comprized of & Discrabe MCU & DEP

After culining the advantages and disedvantages of both
MCUs and DSPs, one may be Indinad to kan towards
the concapl ol ublizing a discrate MGLU and DEP to &sl
together collechvely a5 e system confralier. Such a
midel would sxplafl he benefis of both the MCU and
DP. Addiicnalty, the Imitationa of each discrats devics
waouk ba counter-balanced by the ather device. Tha DSP
coui ooncaniraks on I'I'IE1|1E'I'I'IEUE-E':' ImiErEiva
E]g:ﬂ'UTHE-. while The MCU ooul Tous s attantion upon
control functionality [7].

Corearsely, ihis parficular conceptual design & nol
without faws. If the system s2en i Figue 3 was
developed, the designer must ensure Hal adeguats
pariiicning is In plass 1o ansure 1hat he compuaationally:
intereive DSP dossnt steal resources reaquined by 1he
MCU. ko, anclher limiabon would be cost. The Sost o
implementing & system conlaining & discrats MCU and
D2P, albng with lher indivikdual solware suiles, oould
oubwelgh he bensits achisved by such 2 system.
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Flgura 2: Systams Hardware Companamswith a
Frocessor Comprised of Discrae MG & DSP

Blacklin —A Gorwarganl Frocassor

The Blacklin procassor Is an axample of a comeargan
procassor. Hols an ideal system condroler far EMP
applications as it combines an MCU and DSP ondo &
singe chip [7]. It obviously provides & cheapar and
amalier solbcn than 1he concept discussad in 1he
Frevious seslion. 1 musl be nobed 1hat the Elackiin s no
a2 O5P wih sddiknal microcanralier Eelures; nor s it a
MCU wilh advancad computalional periormance. The
Blackiin amply marges 1he b=st from boh wonda, This
FroesE0r Soncurmently cperales 8 & 16-bil DSP and 22-
bit MCU. Conssguentty, It means ihat Elackfin
Froo28s0rE conlain adeguale resowces capabk ol
handing both signal processing and control funclians, ar
a combination of both depanding on the partcular
applization [3). This condergenl processor allows for he
dewalcpment of afficient codng as MCLU roubines can be
writtan In & highvlewsl language like C, while more
ntensive algorihms can be wiilen usng assembly
larguags.

The Elackln ACSP-BFS27 processor, aiusales=d upon an
EZ-KIt Uta dewvalcpment board, was dhcsan a3 1he
gyslem condrolier In ihis applization's synihesis as i
conlaing edequate on-board featuras such as:

= CAN {32 Message Buffers)
*  DMA
« PP {Alowing ITU-R 656 Video Dala Procesaing

The ADEP-BFEIT cpargles at speads of up o E00MHz
ard contains E4MB ol SDRAK with 4ME of Flagh. From
this it can b= s2en hat It this s a powerlul processing
deviza, and the oubined fealores again prove B
aeleclion for nis s¥stem's Implemanlalion & warranied.

A block diagram of the imemal corderts of the ADSP-
BFS37 can b s2en in Figure 4 [3],
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Diagram

Tre ADSP-BFSIF board alk> has an audisisual
dawghier board which wunderstandably  1adiiies 1he
generation of & vidao stream Tor display upen the dgial
panal. This & board containg tath wideo ancadars ard
decoders which can e neriacad wilh using 1he
Blazkfin's PPl The hardware syslem amploged for the
applicalian synthesis can b= 5e=n In Fgure 5

CAN Motwork
CAMMod | ———--- CAM Mods
I I
ol ] Sanami
Lo Widea
[ PRY Sirgam

Flgure 5: Syst=m Design

LB ETE0) STV ET.ESS DI VIden PIOtecals

Tha Blacklin's PR porl In conjunchon with the A
daughier board supparls the TU-A BT.GS6 prolocol.
BTE56, alkng with ihe BTED1 protoool, spedfies
methods Tor 1he digital coding end  streaming o

Lncomprassad video dala. Thess prokecok: empky 1he
YODhOr colour space Tor effident use of bandwidth [10].

BTE52 and BTE01 can be usad o mpkement PAL o
WT2C streams [11]. In this discussion howeear,
rafarences 1o the PAL mplementalion wil only 0=
discugged.




BT.656 can be implemanted in o farmats — bit paraliel
and bit-senal mode. The bi-panlel mode I8 usad in His
gvslem as the Blackiin processor ooasn't support the bt
serial mode. This |5 advantagecus s the bik-sarial mode,
a]ﬂ'ﬂ.!;h i usea El'll:" ane channel, requires complex
synchranzation. The frame pariioning and data straam
charactariztics of ITU-A BT 656 can ba saen in Figures &
and 7 respeciivaly [12].
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Flgure &: ITU-R BT.65 Frame Fanhilaning fora PaL
SysEm.

WiHHin this probacel, an entirz fieldframe is composad of
achve vidao, horizontal blarking and verlical blarkng.
E&zh pi=sl component can b= quantzed o aidher &or 10-
bits. PAL has 720 pials of acive video per ling and i
wartical resciution i picaly 525 lines [10].

Lag

J3520200Ma0aE0C IR 0EIT0 TR

=

Flgure 7: ITU-R BT.656 &bt Paralle| Data Stream for
HTEE (PAL)

The 2AV and EAY signals are used to ndcale the
begginning ard end of Wideo slemants. An SAY ocours
dunirg a 1-te-0 fransition of the horontal b, H, while an
E&Y coours upon & O-1c-1 fransilbon of H. &2 Be=n In
Figure 7, there I3 a oefined pre-amble of ihres bybes
{0=FF, 0200 and 0=00} Tor SAY ard EAY. This B then
Tollowed by 8 condral word containing the horzontal (Hj,
wartical {V) and Mgl (F) bils along with & numbsr of arror
detection ard comeztion bits [10]. The chrominance and
uminance data rodiows the contral tlﬁEl B3 s2en in FELIE'
7.

Thus, with a wiew 1o this sysiems realization, specilic
dala recefsad Trom  within CAM messa]es  are
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manipulated by the Blacklin and &% board, and insaried
inta & BT.G84 wideo siream for displsy upon the LCD N
FAL formal.

Imlertacing PRI Port and Vidao Encoder

The ADSP-EFEST conlains two PRI ports. Bodh ports ars
hal-duplex and can accommodats 16-bis of dat. The
highesl perfarmance, N ferms of PR {hroughpot, I
achieved with E-Dil data since o &bt sireams can b=
combined Indo 2 single 16-bilwerd [12].

It k5 weorth pointing out that the PPl port doss nct axplcitty
suppar an ITU-A BTESE oulpul mode as | does nol
provide the propar partitioning and framing of preambles,
Howewar 1his can bs  mplementad  manually by
pariorming & streaming cparalion from mamory ol
through the PR, Dala and condrol codes can be storad n
& memory buffar pror o video ransmission. The DA
modue can then fraremi achye wides data no the
buftar on a frame- by-rame basis [12].

The Blacklin's PPI port can Interface wilth & number of
evieae |I'!3l.|ll|l'g ¥idez encoders. In this B}'BIIE'ITI. o ol
the Blacklins PPl pors fransmits data do an ADWT173
video encoder chip situaled upon the AW daughier
board. The ADWT 179 video encoder can b= configured to
acoapl this ITU-R BT.656 viden stream and carert i
inta & staredard PAL signal upon one of s 1hres DAGC
outputs [13]. The resutting PAL signal i then displayed
upon the LSO pansl.

EYSTEM S0OFTWARE

The solkware cragled far use in his sysiem syminesis
CAn be summarzed inkd hwo main seclions:

1. GAN Implmaniation
2. VWieo Graphics Implementation.

Sapimopmentalicn

The CAM network used In ihis design for ihe transter of
simulaled vahicke data cperales al & bawud rak of
EODkbaudses. Slardard 11-bit CAM Idenlfiers are
emnployed throughoul this system. Eafars delving Turther
ity the processes behind Implementng this CAN
retwork, 3 discussion of how ihe smulabed venick data
was aobaired, In lerme of sawars, 1= discussad.

10-bit Anakog-to- Dighal Conversion

Rezall that sadler i was Indizated that a number of
patentiomatars were used o MIMIc BENS0ME MEaswring
vehizk dafs. Thess polenliometers form part af &
mumbsr of GAM nodse. A wolage reading from a
parlizular potentiomeatar is comeried Inlc dgilzed data
by 3 PIC MCU performing en ADC conwarsion. Each
doiized readng can theorsticaly represent  an
automchle Sensocr Maasursment; lor s=ample spesd of
oil {empsrature. The PIC's rasuling ADC convarsian s a
1-bt bnary repressnlation of e appled analcjus



aignal. Howewar, it musl te remembared that the PIC is
an E-bil procsesar,

Conzaquentty the resulting 10-bit ADC result is storad
acroes two S-Dil registers. Within the FIC, the ADG rasui
can ba conligurad to b= efther nght of ek justiied. Whan
nght-justified, the uppar six bits of the mostsignificant
ADGC rasull regiekar raad 7 Thearelore 1he o MEEBs o
1he 10-bit ADGC conearsicn are siored in the Lppsr ADC
rasult ragistar, while 1he remaining eighil bits are slored in
1he lower ADG rasul ragisier.

Upper 86 LeruH Hsgprder
[oJoJofoJoJoEl%]

Flgura &: Right Justfled 10-Elt ADC Rasult

Ag a reeull of this, the impkementsd & program mius
manipulaie the ADC dala appropriakaty in arder to inserd
it nko &Gt CAN dala Dyvies wilhoul the koes of any
nfomation. Taking the sze of an nteger in a paricular
compler to ba 16-bils, the 10-bit ADC resull can b= read
back using 8 funchon ard =kored within an intager data
wariabk. In other words, the 10-bit resul I8 row
conmlalined within 2 variable capable of sloring 1E-bits.

The next slep now IMvoles sxfracting ihe data ino two
bwtes. Thersfore bwo chamcters, La. two 3-bit data
wariables, are declarad. Ore characler wil skore the
kxrwar Eigrl[ bita of 1he conwarsian result, while analhear
charactar wil siore the twa upper bils of the ADC. The
assignirg of the vale of the 16Nt data varisbke 1o the
leasl sigrificant characier rasults in the slght MSE's of
ihe 16-bit Integer baing discarded and the sight LSE's of
1he Integar baing storad in the kast significant charscter,

16Dl | e it i g 1 LS A6 griill
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[ ]

P Chascien siores: s (bt of SN

Flgume : Lowear & bits of 16-bh Integer asslgnad to &
blt Charactar

In order 1o az=ign he two KMSE's of the ADC to the olher
charactar vanable the 15-bil nteger data vanable musl
e manipulabel by the bilshikrigh cperslor. The
conlents of the integer wariabke are =hifted 2ighl places
1o the nght. The resuling value s now assigned to ihe
mizek signilicant charactar. Therafare 1he teo MSE'S o
the ADC conversion ars now 1he two LSE's aof ihe
charactar wariabla.
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the revo LSEs of ADC eaul

once the data from the potenliomaters has been
appropriataly manpuated il can be nserted Nt CAN
data bebe registers. Subssquenlly, N can then b=
ransmilted aver the GAM natwomk and used as simulated
wehkck magsuraments for the purpcsa of Nustrabion
upcn the digital dash-pansl.

Blazkiin CAN Inlerface

The  ADEZP-BFEIT  contans  Ihify-two GAN
buffers'malboces. Eight of thess mallbazes are for
ransmision, El;l'ﬂ oihers are dadicated Tor mRESalR
racepton, while the rernahlng seen can be DIZII'IHQIJTE'EI
for either drection. Each of the thiry-two malboass
contans sighl 160t contrd and data regiskers [14).
These ragislers musl bs programmed accardingly N
oroar to sek-up the Blackin's CAM imerface.

The simulaled vehick dala ransmitted upan the GAN
nebwirk needs o be received and inerpreled corracty
by the ADER-BFEIT. Hencs, rumercus CAM bulfers ars
configured  Bppropriately with the aim of recewing
mezsagas wilh sp=ciic 108, As e Blackin i 1ha
gystem corralier wihin this design It hes do peromm
tasks N aodiion b GAN reception. Consequentlly ihe
BlackAn's GAN Inferface i Implemarisd usng intermups.
This 5 In appos fian 1o e poling methodolegy emplored
wiih the PIC. Poiling i suflicieni for use with the PIC n
thiz syslem &3 he PICE ok duty is to periorm ADC
I'EB:“I'QB upon the patendometers and fransmit 1he
ragUlE over the AN nework,

Hlde0 SEpRCE IMCISMmanialian

On Inbal powar-up of 1he sestam wanous Blackin
components nead o be Infialzad through acteare. For
ingtanca, the vider encoder and SDRAM haws 1o b=
configured, 8= do=es he PRI porl and DMA. Once this
has baen camied out the s¥stem 18 raady to support 1he
deplay olvideo dala.

The CAM meszages recaiead Oy 1he Blackiin musl b=
ransfarrad from 1he varicus maibo=2s Intd SDRAM N
odar o b2 conwertad inke an ITU-A BTEES wided
siream. Cnce the DMA and PRI porl heee besn enabled
the conlents of SDAAM Can be fransterred o ihe PP via
DA, The use of he DA relievas the BElackin of this
transfar duty thus alkawing il o parfom sdditional 1asks.
Az 800N &2 the data has Desan ransfamed 1o the P EOrl
il i passed onto Ne vidao encoder. Tha ADWT 1749 vided



ancoder conerls he BT.856 wided siream into PAL data
and this PAL dala iz then displaead upon ihe LCD panel.
& Now chart summarizing 1his process can be g62n In

Figure 11.
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ADDITIONAL BENEFITS OF DIGITAL DASH-
PAMELS

The Implemented syslem dsoussed In ihis documant
lads 1o panafts thatl are not easily aflainabke with he
use ol anakipue dash-dsplays.

An exoromiesolzcale can be sohigead N E'I'I'I'I:il:lj'll'!; a
digital dash-panel. The same digtal dash-system can be
nsertad Ik all of a parbicular manulaslurer's vahide
mcdala tharafars I'EIIZIIJII.II'Q = pErdibrs. 5-[}19 vanaticn:z
betwaen aulomobile madels can =1l be maintained |.IB|I'IQ
diftaring kvels of graphical alegance.

A5 the humen &ye I Mofe responsie o oolour
resclulion then spatial resolution Imporlant wahide
nfomatcn displayed upon the digital dash-panel can be
brought ta the diiver's atiention more quickly [2]. Taking
a ek level display for axample; Inskeed of displaying the
typical gauge represaniaive of fueklevals, the system
can display a green fuel tank for ample fud lewsls, a blue
18nk for moderate amcunts and a rad &k for low [evals
[2). The us= of kcons to represant wehicle data upon the
LCD as opposad o using gauges resulls in addiional
nfomation baing displayed in & smalker area [2).
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A palety @spedl can alks be realzed wilh 1his dgial
dash-dizpey syetam 82 klemalic feahures sUch a8 GPS
data could b= displayed behind the stearing whesl oniha
LCO as opposad to ihe  cenire-conscle  display.
Tharatore divers will nawe 1o spend less ime searching
for iInformiticn as the data could b= displayed dirscly n
front of them. Further research can be camied cal in this
area o evaluate any Improsements  In driear
conceniration kEdels.

CONCGLUSION

LCD parsls are bean used more requandy wilhin he
automcble. Tha corslnucion of a digtal dash-panal,
implementad usnNg 4 TFT LGD display, requires an
adequate swslem coniroller 10 manage the recessary
hardware ard software dulies. The Blackln processor 18
gutatle for thie purpoee as e combined FCU and DEP
feahuras are more han capable of adaguakely sUpporting
he required tasks within this synthesis. The nheanl
EMP capatililies of 1he Blackiin allow far the relatively
siralgnt-fopward imerfacing o the LCD pand, whie s
CAM hardling capabillies smociy handie simulated
vehicle data.
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DEFINITIONS, ACRONYMS, ABBREVIATIONS

TFT: Thin AIm Transistor

LCD: Liquid Crystal Digplay

CAM: Conroler Area Metsark

MGU: Microcontrodier
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MRZ: Mer-Fetum to Zera

EMP: Embesddad Meda Prooassing

DEP: Digital Signal Processor

MIAC : MAUHIEh-Accumulats Cperations

DMA: Drect Memary Access

PPI: Parallel Periphersl Interiacs

AN AudiVisual

F&aL: Phase Allemation Line. This |5 8 colour encoding
grstem used In 1he broadoast ielevision sactor It 1S
predominarlly Lsad n Eurcpa and Soulh ATerica.
NTSC: Malional Tekwision System Commiltes. This Is
anciner brcadcast system mpemented o encode
luminancs and chrominance. MTSG 1B mosiy ussd n
Morth Amenca and Asia.

HSYNC: This Is the horizondal synchronization signal
wilhin & vidao staam. I indizates he siart of active vkl
on each row of awide Trame.

WSYNC: This I8 The wartica srnchronizabion signal within
a vidao sleam. It demarcakes the starl of & new vided
imags.

SAV: Starl of Active Videa

EA&V: End of Active Viden

DA Digitak1o-4 nakig Corvarler
ADE: Analng-io- Digital Corwaraian
MSE: Mast Significant Bit

LEE: Least Signilizant Ei



