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Abstract 

Controller Area Network is widely used as a communications network in automotive 

applications, typically motor cars, commercial vehicles, and utility vehicles. CAN is 

operated either by spontaneous messaging or by time triggered messaging. Time 

triggered messaging is the preferred option on modern systems as it allows all 

messages access to the bus at some defined period in time. Using time triggered 

messaging alone does not allow real-time access to the network, therefore 

spontaneous messaging is used in conjunction with the time triggered messaging to 

ensure this. 

Presently there are two types of schedulers available for the development of TTCAN 

message sets. They are the stochastic and heuristic scheduler, which are both useful, 

but they do not provide the capability of ensuring real-time messages arrive within 

their deadline. 

Stochastic schedulers generate message sets by a probability distribution and heuristic 

schedulers develop a message set solution by trial and error. They both define the 

optimum message set as the one with the least jitter by use of a cost function analysis. 

Neither of the two methods take into account the effect the schedules may have on 

spontaneous real-time messaging.  

Real-time messages have the best opportunity of meeting their deadline, if the 

TTCAN messages are not sent sequentially, in fact the larger the arbitration window 

size between TTCAN messages, the more successful will be the real-time 

performance of the network. 

Schedulers are essentially designed to load balance system resources and in the case 

of a TTCAN network, the ideal situation is that all messages are separated by the 

same size arbitration window. This provides the optimum real-time performance, 

however with messages of different time periods being broadcast, it should be realised 

that arbitration windows will nearly always be of  different sizes. A statistical 

message scheduler has been devised and demonstrated to produced an optimum 

message set for real-time operation on a TTCAN network and hence improve the 

results produced by stochastic or heuristic techniques. 
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Chapter 1: Introduction 
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1.1 Introduction 

This chapter gives a brief outline of the complete research. It starts with a historical 

look at how automotive networks evolved within the automobile industry. It states 

how the material uncovered during the study will be presented and describes the 

sequence that will be followed in the design and testing of the solution. 

 

1.2 History 

The past four decades have witnessed an exponential increase in the number and 

sophistication of electronic systems in vehicles. In developed countries, the average 

cost of electronic devices per vehicle accounts for 20-25% of the total, or even as high 

as 50% for limousines[1]. Analysts estimate that more than 80 percent of all 

automotive innovation now stems from electronics. To gain an appreciation of the 

change in the average Euro amount of electronic systems and silicon components such 

as transistors, microprocessors, and diodes in motor vehicles, we need only note that 

in 1977 the average amount was €90, while in 2001 it had increased to €1500.  

Meanwhile China's total automotive output sales value for automotive electronic 

products in 2005 reached €6.1 billion[1]. 

The growth of electronic systems has had implications for vehicle engineering. For 

example, high-end vehicles in 1995 may have had more than 4 kilometers of wiring 

compared to 45 meters in vehicles manufactured in 1955. In the past, wiring was the 

standard means of connecting one element to another. As electronic content increased, 

however, the use of more and more discrete wiring hit a technological wall. 

Added wiring increases vehicle weight, weakens performance, and makes adhering to 

reliability standards difficult. For an average vehicle, every extra 50 kilograms of 

wiring increases fuel consumption by 0.2 liters for each 100 kilometers travelled. 

Also, complex wiring harnesses take up large amounts of vehicle volume, limiting 

expanded functionality. Eventually, the wiring harness had become the single most 

expensive and complicated component in vehicle electrical systems [2]. 

Today's control and communications networks are based on serial protocols that 

counter the problems of large amounts of discrete wiring. For example, in a 1998 

press release, Motorola reported that by replacing the wiring harnesses with a LAN in 

the four doors of a BMW, which is just one sub-system, it had reduced the weight by 
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15 kilograms while enhancing functionality[3]. Figure 1.1 shows the sheer number of 

systems and applications contained in a modern automobile's network architecture. 

 

 

Figure 1.1 : Network Communication System 

 

Controller Area Network is widely used as a communications network in automotive 

applications, typically motor cars, commercial vehicles, and utility vehicles. CAN is 

also used in trains, medical equipment, building automation, household appliances 

and office automation [4].  

CAN is operated either by spontaneous messaging or by time triggered messaging. 

Time triggered messaging is the preferred option on modern systems as it allows all 

messages access to the bus at some defined period in time. Using time triggered 

messaging alone does not allow real-time access to the network, therefore 

spontaneous messaging is used in conjunction with the time triggered messaging to 

ensure this. 

This research investigates the scheduling algorithms presently used with TTCAN and 

will reveal the flaws with regard to real-time messaging. It will then describe a 

technique that ensures all TTCAN messages are broadcast, but also allows sufficient 

bandwidth for real-time messaging.  
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1.3 Thesis Contributions 

The material and information presented in this thesis has been compiled on the basis 

of: 

(i) Literature review, which includes CAN, TTCAN and message scheduling. 

(ii) Designing the Optimum TTCAN Message Scheduler. 

(iii) Implementation and Testing. 

 

Chapter Two gives an overview of the most relevant information from all literature 

reviewed during research for this thesis. It outlines the operation of the CAN protocol 

for both spontaneous messaging and time triggered messaging. It takes an in depth 

look at scheduling algorithms used with networks and in particular the TTCAN 

network.  

Chapter Three provides an overview of the methods presently used for scheduling 

TTCAN messages and uncovers the disadvantages they possess. The chapter shows 

the design process of a new type of message scheduler which negates the problems of 

the present schedulers. It also discusses how the designed scheduler is implemented in 

software. 

Chapter Four focuses on the design, construction and testing of a four node TTCAN 

network. It explains how three different message sets, the schedules of which were 

developed and documented in Chapter Three were tested and how the results from the 

tests were analysed. 

Chapter Five outlines the conclusions made by the author based on the research and 

testing. A discussion on the further possibilities of research, based on the findings 

from this study, are also provided. 
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Chapter 2: Literature Review and Technical 

Background 
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2.1 Introduction 

This chapter outlines the areas of review relevant to the research/study from all 

literature assessed. It summarises the possible choices available for CAN messaging 

strategies and optimisation.  

The literature review chapter is presented as follows: 

  

• Section 2.2 discusses the OSI Data Link Layer as defined by the CAN 

specification. It looks at the MAC and LLC within this layer, both of which 

manage data encapsulation/de-capsulation, error detection and control, bit 

stuffing/destuffing, serialisation of data, overload notification, and recovery 

management. It also considers part of the Physical Layer, namely the 

Physical Signalling, which includes bit encoding/decoding together with bit 

timing and synchronisation. All of these functions are carried out by the 

CAN Controller. 

• Section 2.3 looks at another part of the Physical Layer, the Physical 

Medium Attachment, which is not part of the CAN Specification, but is 

defined by ISO-11898. 

• Section 2.4 provides an insight into the functionality of the CAN controller 

and CAN transceiver. 

• Section 2.5 details why message scheduling is required, and investigates 

some of the message scheduling strategies that are available at present. 

• Section 2.6 looks at message scheduling and its relevance to the automotive 

industry. 

 

2.2 CAN Data Link Layer 

Robert Bosch GmbH began to create a robust asynchronous serial communication 

system for automotive applications which they called CAN[5] in 1983.  The CAN 

protocol was first officially released in 1986, with Intel and Philips releasing the first 

CAN controllers and CAN transceivers in 1987. CAN was designed so that cars 

trucks and buses would be more reliable, safe, and fuel-efficient while at the same 

time reducing wiring harness weight and complexity. The CAN protocol has gained 

widespread popularity in industrial automation, medical equipment and mobile 

machines[4]. 
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2.2.1 Introduction 

With the widespread use of electronic open and closed loop control systems fitted to 

cars such as: 

 

• Electronic engine management 

• Electronic transmission shift control 

• Anti-lock braking system(ABS) 

• Traction control system (TCS) 

• Electronic stability programme (ESP)   

• Adaptive cruise control (ACC) 

 

and the consequent sharing of information between these systems, it became essential 

to interconnect all ECUs by means of a network or networks. The conventional point-

to-point exchange of data through individual wires has reached its practical limits in 

the size of the wiring harness and all the associated plugs and sockets (Figure 2.1)[5]. 

There is also a limit to the number of pins that can be fitted to an ECU and this has 

slowed the development of ECUs and their software[6]. 

 

 

Figure 2.1: Conventional Wiring of ECUs 

If we use the method of data transfer as shown in Figure 2.1 in the car, the wiring 

harness would be made up of approximately one mile of wiring for a medium-size 

car, plus approximately 300 plugs and sockets and approximately 2000 ECU plug 

pins [4, 7].  

CAN has a linear network topology (Figure 2.2) and was specifically designed for 

automotive applications, but it is used by several other industries including the 

medical and buildings installation industry [7]. 
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Figure 2.2: Linear Bus Topology 

 

Data is sent in serial format and all CAN nodes (ECUs) have access to the network 

and can transmit and receive data from the network. This is a multi-master system 

where the transmitter is the master and all other nodes are slaves. Once the transmitter 

has control of the network all other nodes become slaves [6].  Since all ECUs can be 

attached too a single network, this results in far fewer wires being required in the 

wiring harness. 

2.2.2 Vehicle Applications 

There are four areas of application for CAN, each of which has a different 

requirement [7]: 

• Multiplex applications 

• Mobile communications applications  

• Diagnostic applications 

• Real-time applications 

2.2.2.1 Multiplex Applications 

Multiplex applications include the open and closed loop control of components in the 

body electronics, comfort, and convenience systems. These include such items as 

climate control, central locking, and seat adjustments. Transfer rates for the data are 

typically between 10 kbaud and 125 kbaud (low speed CAN) [4]. 
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2.2.2.2 Mobile Communications Applications 

CAN is used for such components as navigation systems, telephone and audio 

installations with the vehicle's central display normally the instrument cluster or a 

TFT screen centrally fitted in the vehicle. With these applications large quantities of 

data are required and transfer rates are in the order of 100 and 250 kbaud [4].   

2.2.2.3 Diagnostic Applications 

Using the CAN network, it is possible to integrate several ECU’s on the one network. 

Presently there are several protocols used for diagnostics. They include ISO 9141-2, 

J1850 VPWM, J1850 PWM, and ISO 14230-4 which are now becoming invalid. 

Large quantities of data are also transferred in diagnostic applications and data 

transfer rates of 250 kbaud and 500 kbaud are being used presently [4]. 

2.2.2.4 Real-time Applications 

Real-time applications include the open and closed loop control of the vehicle’s 

movements. ECUs, such as engine management, transmission control, and electronic 

stability programme, are networked together to exchange real-time information. Data 

transfer rates are normally between 125 kbaud and 1Mbaud (high-speed CAN). These 

bus speeds are required to give real-time response to all situations [4]. 

2.2.3 Network Configuration 

CAN uses a linear bus topology as shown in Figure 2.2. In comparison to other 

logical structures, for example the ring bus or star bus, it features a lower bus failure 

probability (Figure 2.3). If one node fails, the bus remains fully accessible to all the 

other nodes. These nodes can be ECUs, display devices, sensors or actuators, all of 

which have equal priority regarding access to the bus [7]. 
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Figure 2.3 : Ring Bus and Star Bus Topology 

 

2.2.4 OSI Model 

Almost all network applications follow a layered approach, which allows the 

interconnection of different devices from different manufacturers. A standard created 

by the ISO to allow manufacturers to follow this layered approach is called the ISO 

OSI network layering reference model [8].  

CAN is standardised by the ISO and SAE but it only implements the lower two layers 

of the ISO reference model (Figure 2.4).   

 

 

Figure 2.4: Two Lower Layers Implemented from ISO Model 

 

Almost all of these two layers are contained within the CAN controller, such as 

Microchip’s MCP2515. The two components that are not contained within the CAN 

controller are the PMA which is implemented within the CAN transceiver 
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(Microchip’s MCP2551) and MDI which are the external connectors and wires [9]. 

The communication medium, which is the upper five layers, was left out of the Bosch 

CAN specification to allow designers to adapt the communication protocol on 

multiple media for maximum flexibility i.e. twisted pair, single wire, optically 

isolated, etc. [5]. 

The ISO and the SAE have defined protocols based on CAN that include the Media 

Dependent Interface definition such that all of the lower two layers are specified. ISO 

11898 is a standard for high-speed CAN applications; ISO 11519 is the standard for 

low speed CAN applications. The J1939 protocol is used for truck and bus 

applications. All the above protocols are specified at a 5V differential electrical bus as 

the physical interface [10]. The system software designer implements the five other 

layers of the ISO/OSI protocol stack. 

2.2.5 Content-based addressing 

The CAN bus system does not address nodes directly but rather according to the 

message contents. It gives each message a fixed identifier, that identifies the contents 

of the message in question (could be engine rpm). This identifier can be either 11 bits 

long (standard format) or 29 bits long (extended format) [6]. 

 

 

Figure 2.5: Addressing & Message Filtering 

 



 

  12 

With content based addressing each node will have to decide if it is interested in the 

message or not. If an ECU requires new data which is already on the bus, all it needs 

to do is extract the message from the bus, see Figure 2.5 [7]. 

If the node is not interested in the message, it is filtered out by hardware (Full CAN), 

and therefore saves processing time for the ECU’s microprocessor. However, if using  

Basic CAN the processor must read all messages. Using content based addressing, as 

opposed to allocating node addresses, allows for greater flexibility in that new 

equipment is easier to install and operate. 

2.2.6 Bus Arbitration: 

The identifier used in CAN not only identifies the data content but also defines the 

message priority. If the identifier is a low number, then it has a high priority in the 

system. Message priorities are used to gain access to the bus rapidly, but there cannot 

be two messages allocated the same identifier on the same network [11].  Every node 

can attempt to send a message as soon as the bus is unoccupied. The message that 

gains access to the bus is determined by applying a bit by bit identifier arbitration, 

where the message with the highest priority (lowest identifier) has access to the bus 

first, and without loss of data. 

The CAN protocol is based on two states, the dominant state “logic zero” and the 

recessive state “logic one”. Bus access is handled via the advanced serial 

communications protocol called Carrier Sense Multiple Access/Collision Detection 

with Non-Destructive Arbitration. This arbitration concept avoids collisions of 

messages where transmission of messages are started by more than one node 

simultaneously and ensures the most important message is sent first without any time 

loss [5].  

The arbitration system used allows the dominant bits transmitted by a node to 

overwrite the recessive bits written by any node. It can be seen using the example in 

Figure 2.6 that all four nodes are at the start of transmitting. The bus initially departs 

from the recessive state and switches to a dominant state of logic zero. All four nodes 

send a recessive bit logic one next, followed by nodes 2, 3 and 4 sending a dominant 

bit and node 1 sending a recessive bit logic one. Node 1 has now lost access to the 

bus. Nodes 2 and 4 send a dominant bit next, while node 3 sends a recessive bit, and 

therefore, node 3 has lost arbitration on the bus. Nodes 2 and 4 now send recessive 

bits each and neither loses arbitration, but then node 2 sends a dominant bit and node 
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4 sends a recessive bit, and therefore, node 4 loses access to the bus. Node 2 now 

continues to send the rest of its message (Figure 2.6).   

 

 

Figure 2.6: CAN Bus Bit Arbitration 

 

The transmitting nodes with lower priority messages now automatically become 

receivers and then attempt to retransmit their messages when the bus becomes vacant 

again. 

2.2.7 CAN Bus “Wired – AND” 

As stated earlier, CAN uses two logic states called “dominant”, which is logic zero, 

and “recessive”, logic one. Once a dominant state is issued by any one node 

regardless of the state issued by any other node, the bus state will be dominant [5]. 

This is shown in the truth table (Table 2.1). 

Node 1 Node 2 Node 3 Bus 

D D D D 

D D R D 

D R D D 

D R R D 

R D D D 

R D R D 

R R D D 

R R R R 

Table 2.1: Truth Table for “Wired AND” 
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The physical Wired-AND hardware is shown in Figure 2.7, where all nodes are 

transmitting recessively.  

 

Figure 2.7: Wired-AND (recessive state) 

 

The recessive signal entering the inverter is a logic one, 5 volts, but the inverter 

outputs a logic zero 0 volts. The transistor is non-conducting due to no base current; 

therefore, the bus remains in a recessive state. 

In Figure 2.8 node 1 is transmitting a dominant bit, which is logic zero, 0 volts, but 

the inverter will place logic 1 to the base of the transistor and make it conductive. The 

effect on the circuit is that the supply of 5 volts to the resistor attached to the single 

logic line remains at 5 volts, but the side of the resistor nearest the bus drops to 0 

volts. This is due to the bus being grounded through the transistor attached to node 1. 

The bus is now in a dominant state. If more than one node transmits a dominant bit, 

the bus will always be dominant [5]. 

In both Figure 2.7 and Figure 2.8, the bus consists of a single logic line of 5 volts. 

This is not the normal bus configuration for CAN, as high speed CAN requires two 

logic lines CAN_High and CAN_Low [11]. The actual connections to the bus are 

discussed later in this chapter. 
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Figure 2.8: Wired-AND (dominant state) 

 

2.2.8 CAN Frames 

CAN has five different types of frames: 

 

• Data Frame 

• Remote Frame 

• Error Frame 

• Overload Frame 

• Inter-frame space 

 

2.2.8.1 Data Frame or Message Frame 

CAN has two different message formats for the identifier, the standard-format 

identifier, which is 11 bits long, and the extended-format identifier of 29 bits. Both 

formats will operate on the same CAN network providing it meets CAN Specification 

2.0 [11]. A Data Frame consists of seven different fields and may be up to 127 bits 

long for the standard-format, as seen in Figure 2.9 and 154 bits for the extended-

format. 



 

  16 

The bus is always in a recessive state when idle logic one, with a dominant bit 

signifying the Start of Frame. This indicates the beginning of the message and it will 

synchronise all nodes connected to the network.  

The Arbitration Field follows the Start of Frame bit. It is often called the ID, or 

identifier, and has an additional control bit within it. While the ID is being transmitted 

the transmitter will check to ensure that it is still authorised to transmit the message, 

or if another node with a higher priority message has control of the bus. The control 

bit following the identifier is the RTR bit (Remote Transmission Request) and 

identifies whether the message is a Data Frame for a receiving node or a Remote 

Frame (request for some data) from a transmitting node. 

 

 

Figure 2.9: CAN Data Frame Standard Format 

 

The Control Field has the IDE bit (Identifier Extension Bit), which is used to 

determine whether the message is of standard format (IDE = 0) or of the extended 

format (IDE = 1), followed by another bit which is reserved for future use. The last 

four bits in this field determine the number of data bytes in the data field. This allows 

the receiving nodes to determine if all data was received. 

The Data Field contains the actual information contained within the message frame 

and can consist of between zero and eight data bytes of information. 

The CRC Field (Cyclic Redundancy Check) contains the frame check word that is 

used for error checking. 

The ACK Field is the acknowledgement field of the message and is used by the 

receiving nodes to acknowledge receipt of the message in a non-corrupted form. 

The End of Frame marks the end of the message and comprises of seven recessive 

bits. 
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The Inter-frame Space has three bits, which are used to separate successive messages 

on the bus. This will allow the bus to remain in an idle mode until a node starts 

another transmission. 

Generally a node starts the data transmission by sending a Data Frame, but it is also 

possible to request data by sending a Remote Fame asking for data to be supplied 

(Figure 2.10) [7]. 

2.2.8.2 Remote Frame 

Normally data transmission is performed on an autonomous basis with the data source 

node (example a sensor) sending the Data Frame, and any another node that requires 

the data accepting this data through their filtering system. However, it is possible to 

request data from a source node by using a Remote Frame. 

There are two differences between a standard Data Frame and a Remote Frame 

(Figure 2.10). Firstly the  RTR-bit is transmitted as a dominant bit in the Data Frame, 

whereas it is transmitted as a recessive bit in the Remote Frame. Also there is no Data 

field in the Remote Frame. 

 

 

Figure 2.10: Remote Frame 

 

In the improbable case of a Data Frame and a Remote Frame with the same identifier 

being transmitted simultaneously, the Data Frame will be transmitted due to the 

dominant RTR bit following the identifier. In this way, the node that transmitted the 

Remote Frame receives the desired data immediately. 
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2.2.8.3 Error Frame 

An Error Frame will be generated by any node that detects a bus error. The Error 

Frame has two fields as seen in Figure 2.11, the Error Flag Field and Error Delimiter 

Field. 

There are two forms of Error Flag fields. The type of Error Flag field depends on the 

“error status” of the node that detects the actual error. If an “error-active” node detects 

a bus error then that node will interrupt transmission of the current message by 

generating an “active error flag”.  

 

 

Figure 2.11: Error Frame 

 

The “active error flag” is composed of six consecutive dominant bits. This violates the 

bit-stuffing rule, which is discussed later. All other nodes recognise the bit stuffing 

error, and in turn, generate Error Frames themselves. The Error Flag field will be 

between six and twelve dominant bits. The Error Delimiter consists of eight recessive 

bits. This permits all nodes to restart bus communications cleanly after such an error. 

After completion of the Error Frame the bus returns to normal and the node that 

caused the bus error attempts to retransmit the message. 

If an “error passive” node detects a bus error then it will transmit a “passive Error 

Flag”, followed again by the Error Delimiter field. The “passive Error Flag” consists 

of six consecutive recessive bits, and therefore, the Error Frame for an “error passive” 

node consists of fourteen recessive bits (Passive Error Flag six recessive bits followed 

by the Error Delimiter Field of eight recessive bits). If the node that is transmitting 

identifies the bus error, the transmission of an Error Frame by an “error passive” node 

will not affect any other node on the bus. If the bus master node generates an “error 
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passive flag” then this may cause other nodes to generate error frames due to the 

resulting bit stuffing violation. 

2.2.8.4 Overload Frame 

An Overload Frame has the same format as an “Active Error Frame”. However, it can 

only be produced during Interframe Space not during the transmission of a message as 

seen in Figure 2.12.  

 

 

Figure 2.12: Overload Frame 

 

The Overload Flag consists of six dominant bits followed by Overload Flags 

generated by other nodes as the bit-stuffing rule has been violated. The Overload 

Delimiter consists of eight recessive bits. The Overload Frame has two fields, an 

Overload Flag followed by an Overload Delimiter. 

A node, if due to internal conditions, can generate an Overload Frame; the node is not 

yet able to start reception of the next message. A node may only generate a maximum 

of two sequential Overload Frames to delay the start of the next message. 

2.2.8.5 Interframe Space 

The Interframe Space separates a preceding frame from the next Data or Remote 

Frame. An Interframe space is made up of at least three recessive bits; these bits are 

also known as the “Intermission”. This Interframe Space permits nodes to process 

internal data before the next message frame (Figure 2.13). After the Intermission, for 
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error active nodes the bus remains in the recessive state until the next transmission 

starts. 

 

 

Figure 2.13: Interframe Space 

 

The Interframe Space has a slightly different format for error passive CAN nodes, 

which was the transmitter of the previous message. These nodes have to wait an 

additional eight recessive bits, often called “Suspended Transmission” before the bus 

turns into bus idle for them. After this time, they are allowed to transmit messages 

again. This arrangement allows error active nodes to broadcast their messages before 

an error passive node is allowed to start the retransmission of messages. 

2.2.9 Error Detection 

The CAN protocol has several mechanisms for error detection as listed: 

 

• CRC Error 

• ACK Error 

• Form Error 

• Bit Error 

• Stuff Error 

2.2.9.1 CRC Error 

Using the Cyclic Redundancy Check, the transmitter calculates a checksum for the bit 

sequence from the start of frame bit to the end of the Data Field. This CRC checksum 

is then transmitted in the CRC Field of the message [10]. The receiving node 

calculates the CRC checksum of the message using the same formula and compares it 
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to the CRC of the received message [11]. Figure 2.14 shows a CRC error occurring in 

node 2. 

 

 

Figure 2.14: CRC Error 

2.2.9.2 Acknowledge Error (ACK) 

The ACK check in the receiving nodes will confirm that the message frame has been 

received (Figure 2.15). If the transmitting node does not receive the acknowledgement 

then the transmitting node will know an error has been detected and will retransmit 

the message [10, 11]. 

 

Figure 2.15: Acknowledge Field 
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2.2.9.3 Frame Check 

The Frame Check will check the frame for errors based upon the frame structure. The 

CAN protocol has a number of fixed format bit fields, which are checked by all 

nodes. 

 

 

Figure 2.16: Frame Check 

 

If a transmitter detects a dominant bit in one of the following four segments, the CRC 

Delimiter, the Acknowledge Delimiter, the End of Frame or the Interframe Space [11, 

12] then a Form Error has occurred and an Error Frame will be placed on the bus 

(Figure 2.16) and the original message will be retransmitted. 

2.2.9.4 Bit Error 

A Bit Error occurs if the transmitter places a dominant bit on the bus but then detects 

a recessive or sends a recessive bit, but detects a dominant bit. An Error Frame is 

generated and the message is retransmitted [12]. 

There are two exceptions to the above rule. When a dominant bit is detected instead of 

a recessive bit, no error will occur during the Arbitration Field or the Acknowledge 

Slot. Also these fields may be overwritten by a dominant bit in order to accomplish 

arbitration and acknowledge functionality [11]. 
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2.2.9.5 Bit-Stuffing Check 

The Bit-stuffing rule stipulates that in every Data Frame or Remote Frame a 

maximum of five successive equal priority bits can be sent between the Start of Frame 

and the end of the CRC field. As soon as the five identical bits have been transmitted 

in succession, the transmitter inserts an opposite priority to those already been sent as 

seen in Figure 2.17. The receiving node checks the message, and ignores the opposite 

priority bit, after receiving the message [11]. 

 

 

Figure 2.17 Bit-Stuffing 

 

If a Stuff Error occurs, an Error Frame is transmitted, and the message is resent. Code 

check is a method to check that Bitstuffing has been carried out correctly. If one of 

the nodes detects an error on the bus, it interrupts the actual transmission by sending 

an Error Frame comprising of six successive dominant bits [4]. Broadcasting this 

Error Frame violates the Bitstuffing rule and this prevents all nodes from receiving 

the message [12]. 
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2.2.9.6 Error Handling 

All known errors are made public, to all other nodes on the bus via Error Frames. The 

transmission of the damaged message is aborted, and the frame is retransmitted as 

soon as possible. Each node is in one of three error states, either Error Active, Error 

Passive, or Bus Off, depending on the count in the error counter registers (Figure 

2.18). 

 

 

Figure 2.18: Error Frame Transmitted 

. 

The error-active state is the normal state after a reset for any node. It can actively 

receive and transmit messages and transmit active Error Frames without any 

limitations. In normal CAN communication, the error counters are updated according 

to complex rules [11]. For each error on receipt or transmission of a message, the 

relevant error counters are incremented. For each successful transaction, the error 

counters are decremented. The error active state is valid as long as both error counters 

are less than or equal to 127 [12].  

If either receive or transmit error counters exceed a value of 127, the node switches to 

the error-passive state. In the error-passive state, messages can still be received and 

transmitted, although, after transmission of a message the node must suspend 

transmission. It must wait 8-bit times longer than error-active nodes before it may 

transmit another message. Error Passive nodes can signal other nodes with only 

passive Error Frames. 
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Figure 2.19: Node Error Counters 

 

If both error counters decrement below 128 due to successful message transmission, 

the node switches back to the error-active state (Figure 2.19). 

The CAN protocol allows faulty nodes to remove themselves from the bus 

automatically. The bus-off error state is entered if the transmit error counter exceeds 

the value of 255. All bus activities are stopped for that node (both transmit and 

receive). For the error node to reconnect to the bus the node has to be reinitialised 

[10]. 

The error detection capabilities of CAN are such that a vehicle equipped with this 

network, running for 2000 hours per year, at a bus speed of 500 kbps with 25% bus 

load should only generate one undetected error every 1000 years [12]. 

2.2.10 Protocol Versions 

CAN specifications versions 1.0, 1.2, and 2.0A define an 11-bit message identifier. 

They are known as Standard CAN. With an 11-bit identifier, it is only possible to 

define 2048 different messages. 

There is also a further limit to the messages due to lowest 16 priority messages also 

being reserved. 
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Figure 2.20; CAN Standard and Extended Data Frames 

 

Specification version 2.0A has been updated to version 2.0B to remove this possible 

message number limitation and also meet the SAE J1939 standard for the use of CAN 

in trucks [13]. Version 2.0B is known as Extended CAN due to its 29-bit identifier. 

With a 29-bit identifier, it can now have over 536 million different message identifiers 

(Figure 2.20). 

The 29-bit identifier consists of the original 11-bit identifier and an 18-bit Extended 

Identifier. Version 2.0B allows a message identifier length of 11 bits to be used. 

There are three different types of CAN modules available. CAN modules specified 

version 2.0 part “A” [11] are only able to transmit and receive Standard Frames 

according to the Standard CAN protocol. Messages using the 29-bit identifier sent to a 

Standard CAN module will cause errors. If a device is specified CAN V2.0 part “B” 

[11], there is one more distinction (Figure 2.21): 

 

 

Figure 2.21: CAN Version Modules 
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Modules called version 2.0B Passive can only transmit and receive Standard Frames 

but accept Extended Frames without generating Error Frames. Version 2.0B Active 

devices are able to transmit and receive both Standard and Extended Frames. 

2.2.11 Message Coding 

The CAN protocol uses Non-Return-to-Zero or NRZ bit coding. This permits the 

signal on the network to remain at the same voltage for one-bit time and only one time 

segment is required to represent the one bit (Figure 2.22). A zero corresponds to a 

dominant bit, which causes the bus to be placed in a dominant state, and a one 

corresponds to a recessive bit, placing the bus in the recessive state. 

 

 

Figure 2.22: Message Coding 

 

One problem of using NRZ code is that the signal provides no edges for use in re-

synchronisation when transmitting a large number of consecutive bits with the same 

priority (Dominant or Recessive bits). To overcome this, bit stuffing is used to 

guarantee synchronisation of all bus nodes. As discussed earlier, a maximum of five 

consecutive bits may have the same priority, and then the transmitter will insert one 

additional bit of the opposite polarity into the bit stream before transmitting further 

bits. The receiver also checks the number of bits with the same priority and removes 

the stuff bits again from the bit stream. This technique is called “destuffing”. 

2.2.12 Bus Synchronisation 

CAN uses two types of synchronisation, Hard Synchronisation and Re-

Synchronisation. In contrast to many other field buses, CAN handles message 

transfers synchronously. All nodes are synchronised at the beginning of each message 
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with the first falling edge of a frame, which belongs to the Start of Frame bit. This is 

called Hard Synchronization (Figure 2.23). 

 

 

Figure 2.23: Hard Synchronisation 

 

To ensure correct sampling up to the last bit of the CAN Frame, the CAN nodes need 

to re-synchronise throughout the entire frame. This is achieved on each recessive to 

dominant edge (Figure 2.24). 

 

 

Figure 2.24: Re-synchronisation 

 

2.2.13 Bit Construction 

One bit time of either a high or a low pulse of the NRZ code is specified as four non-

overlapping time segments (Figure 2.25) [11]. Each segment within the bit time is 

made up of an integer multiple of the Time Quantum.  

 

 

Figure 2.25: Bit Construction 
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The Time Quantum, or TQ, is the smallest discrete timing resolution used by a CAN 

node. Its length of the Time Quantum is generated by a programmable division of the 

CAN node's oscillator frequency. A bit time has a minimum of 8 Time Quanta and a 

maximum of 25 Time Quanta [14]. The bit time, and therefore the bit rate, is selected 

by programming through software the width of the Time Quantum and also the 

number of Time Quanta in the various segments [9]. The CAN baud rate can be 

determined by dividing 1 by the bit time.  

Therefore: 

 

NBR = fbit = 
bitt

1
 

(2.1) 

2.2.13.1 Baud-rate Prescaler 

The length of the TQ, which is the basic time unit of the bit time is defined by the 

CAN Controller’s system clock  fsys and the BRP [15]. 

 

TQ = BRP/fsys 

(2.2) 

 

The relationship between the oscillator and the MCU system clock can be seen in 

Figure 2.26. 

 

 

Figure 2.26: Baud Rate Prescaler 
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2.2.13.2 Synchronisation Segment 

The first segment in a CAN bit is called the Synchronisation Segment and is used to 

synchronise all bus nodes. On transmission, at the start of this segment, the current bit 

level is output. If a bit state alters between the previous bit and the current bit, the bus 

state change should happen within this segment [16]. The length of this segment is 

always one Time Quantum (Figure 2.27). 

 

 

Figure 2.27: The Four Segments of 1 Bit Time 

 

2.2.13.3 Propagation Time Segment 

The Propagation Segment is next and is used to compensate for the physical delays in 

signal propagation between nodes. The propagation delay is defined as twice the sum 

of the signal’s propagation time on the bus line, including the delays associated with 

the bus driver [16]. The Propagation Segment is programmable with values between 

1TQ and 8TQ. Figure 2.27 shows a Propagation Segment of 4TQ. 

2.2.13.4 Phase Segment Buffer 1 

Phase Segment Buffer 1 is used to compensate for edge phase errors on the bus. Phase 

Segment Buffer 1 can be lengthened for re-synchronisation and will be discussed later 

in the chapter. It is programmable from 1TQ to 8TQ. Figure 2.27 shows 2TQ for 
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Phase Segment Buffer 1 [12, 14]. Some manufacturers describe the Propagation 

Segment and Phase segment Buffer 1 as Timing Segment 1. 

2.2.13.5 Phase Segment Buffer 2 

Phase Buffer Segment 2 is also used to compensate for edge phase errors. This 

segment may be shortened only during resynchronisation. Phase Buffer Segment 2 

may be between 2TQ to 8 TQ long, and has to be at least as long as the information 

processing time, but may not be more than the length of Phase Buffer Segment 1. 

Figure 2.27 shows Phase Segment Buffer 2 to equal 2 TQ [11, 14]. Phase Segment 

buffer 2 is sometimes described as Timing Segment 2.  

Therefore: 

 

PSB2min = IPT = 2TQ 

(2.3) 

 

2.2.14 Information Processing Time 

The Information Processing Time is necessary for the logic to determine the bit level 

of a sampled bit. The IPT begins at the sample point and is measured in TQ. For the 

Microchip CAN module, it is fixed at 2TQ. Since phase segment 2 also begins at the 

sample point and is the last segment in the bit time [14, 16], it is a prerequisite that 

Phase Segment Buffer 2 be a minimum of 2 TQ as shown in Figure 2.27. 

2.2.15 Re-Synchronisation 

All oscillators do no run exactly at the specified frequency. Therefore, each node 

being independently operated, using separate oscillators, runs at a slightly different 

frequency. This could cause problems for CAN message receiving nodes as they 

could be running at a slightly different frequency to the transmitting node. To 

overcome this problem the transition from recessive to dominant provides a re-

synchronisation edge, as discussed above, but extra TQ will have to be added or 

removed in order to achieve re-synchronisation. 

2.2.15.1 Bit Lengthening 

Either lengthening Phase Buffer Segment 1or reducing Phase Buffer Segment 2 by a 

given TQ carries out the resynchronisation of a Bit Time.  
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Figure 2.28: Re-Synchronisation Edge Delayed 

 

Figure 2.28 above shows that the transmitter oscillator is slower than the receiver 

oscillator. The next falling edge used for resynchronization will have to be delayed for 

the receiving node, so Phase Buffer Segment 1 is lengthened for the receiver in order 

to align the sample points of the message as depicted in Figure 2.29. 

 

 

Figure 2.29: Re-Synchronisation by Increasing Phase Segment Buffer 1 
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2.2.15.2 Bit Shortening 

If the transmitter node oscillator is faster than the receiver node oscillator then the 

next falling edge used for resynchronisation could be too early as shown in Figure 

2.30.  

 

 

Figure 2.30: Re-Synchronisation Edge Increased 

 

Figure 2.31 shows Phase Buffer Segment 2 in bit N has been shortened so the sample 

points are realigned. 

 

 

Figure 2.31: Re-Synchronisation by Decreasing Phase Segment Buffer 2 
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2.2.15.3 Re-Synchronisation Jump Width 

The RJW or SJW is the amount by which a bit length can be readjusted during a re-

synchronisation. It is the TQ by which Phase Segment Buffer 1 can be lengthened or 

Phase Segment Buffer 2 can be shortened. The SJW is programmable in software and 

can have a value of between 1 TQ and 4 TQ, but it may not be longer than Phase 

Segment Buffer 2 [14]. 

 

2.2.16 Bit Timing 

For ease of programming many CAN Modules often combine the Propagation Time 

Segment and Phase Buffer Segment 1, as shown below in Figure 2.32, and is known 

as Timing Segment 1. 

 

 

Figure 2.32: Two Timing Segments 

 

2.2.17 Programming the Sample Point 

Programming of the sample point allows for some of the bus characteristics to be 

taken into account. Early sampling allows greater TQ in Phase Segment Buffer 2 so 

the SJW can be programmed to its maximum of 4 TQ [14]. Using this maximum TQ 

to shorten or lengthen the bit time decreases the effect of node oscillator tolerances, 

therefore lower cost oscillators may be used with these nodes (Figure 2.33). 
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Figure 2.33: Early Sampling Point 

 

Figure 2.34 shows a late sampling point, allowing for the maximum signal 

propagation time, and therefore, long bus lengths with poor bus topologies can be 

handled with ease [12].  

 

 

Figure 2.34: Late Sampling Point 

 

2.3 CAN Physical Layer 

The Physical Layer as defined under the OSI Model is defined in three parts: 

 

• Physical Signalling 

• Physical Medium Attachment 

• Medium Dependant Interface 

 

Physical Signalling is implemented within the CAN controller and has been discussed 

in Section 2.2. The PMA is not part of the CAN Specification, but is defined by ISO-

11898. ISO 11898-2 specifies high-speed CAN, with transmission rates of up to 1 

Mbit/s, with the PMA and some MDI features defined by ISO 8802-3, which 

comprises of the physical layer of the controller area network [17]. 
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ISO 11898-3 defines the exchange of digital information between electronic control 

units using CAN at transmission rates of between 40kbit/s and 125kbit/s [18]. 

2.3.1 Bus Construction 

The CAN bus line has two logic states: a recessive and a dominant state. The ISO-

11898 defines a differential voltage to represent both states (Figure 2.35) [9].  

 

 

Figure 2.35: The Differential CAN bus 

 

These differential voltages help to reduce electrical interference on the bus, but the 

actual voltage levels depend on the standard being used and are shown in Table 2.2 

and Table 2.3 [19]. 

 

Signal Recessive State Dominant State 

 Min Nominal Max Min Nominal Max 

CAN_H 2.0V 2.5V 3.0V 2.75V 3.5V 4.5V 

CAN_L 2.0V 2.5V 3.0V 0.5V 1.5V 2.25V 

Table 2.2: ISO 11898 (CAN High Speed) 

 

Signal Recessive State Dominant State 

 Min Nominal Max Min Nominal Max 

CAN_H 1.6V 1.75V 1.9V 3.85V 4.0 V 5.0V 

CAN_L 3.1V 3.25V 3.4V 0.0V 1.0V 1.15V 

Table 2.3: ISO 11519 (CAN Low Speed) 

 

In the case of ISO 11898,  the recessive state, nominal voltage for the two wires is 

always the same voltage at 2.5 volts. This decreases the power consumption of the 

network when the nodes are not transmitting as seen in Figure 2.36. 
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Figure 2.36:  ISO 11898 Nominal Bus Voltage Levels 

 

2.3.2 Wires and Connectors 

For the CAN bus lines, a physical medium must be chosen that is able to transmit the 

two possible bit states. One of the most common and cheapest ways is to use a twisted 

pair of wires. The two bus lines CAN_H and CAN_L are then driven by the 

transceivers attached to the CAN controllers with a differential voltage signal. These 

twisted pair of wires, are terminated in accordance with ISO 11898 by 120 ohm 

resistors at each end of the bus line (Figure 2.18). An optical medium for the CAN 

bus may also be employed under CAN specification. In this case, the recessive state 

would be represented by the signal LED being off, the dominant state by the signal 

LED being switched on. 

As discussed earlier the differential nature of the bus makes it virtually insensitive to 

electromagnetic interference. In order to reduce sensitivity even further the wires are 

twisted and are often shielded when fitted in a very harsh electrical environment. This 

also reduces the electromagnetic emission of the bus itself, especially when high 

baud-rates are being used [12]. 

2.3.2.1 Bus Lengths 

ISO 11898 states that a transceiver must be able to drive a 40m bus at 1 Mbit/s. Bus 

lines of longer length may be used by decreasing the baud rate, as can be seen in 

Figure 2.37 [17].   
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Figure 2.37: “Bus Length” v “Baud-rate” 

 

2.3.2.2 Propagation Delay 

The CAN protocol defined a recessive and dominant state for the implementation of a 

non-destructive bit-wise arbitration scheme. This arbitration methodology is affected 

most by propagation delays. Each node involved in arbitration has to be able to 

sample each bit level within the same bit time. For example, if two nodes at opposite 

ends of the bus network start transmitting their messages at the same time, they must 

arbitrate for control of the bus. Arbitration will only be effective if both nodes are able 

to sample the bus during the same bit time. Figure 2.38 shows a possible one-way 

propagation delay between two nodes. Any propagation delays outside the sample 

point will result in invalid arbitration. 

 

 

Figure 2.38: Propagation Delay 
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A CAN system’s propagation delay can be calculated as being a signal’s round-trip 

time on the physical bus (tbus), the output driver delay (tdriver) and the input comparator 

delay (tcmp) [9]. Assuming all nodes in the system have similar component delays, the 

propagation delay mathematically is: 

 

Propagation Time (t) = 2 * (tbus + tdriver + tcmp) 

(2.4) 

2.3.3.3 Connections 

In order to use CAN as an industrial field bus, the CiA created a standard called CiA 

DS 102-1, which is based on ISO 11898. Of importance in this standard is the use of a 

9 pole SUB-D connector for the connection of nodes to the CAN bus lines, as shown 

in Figure 2.39 [20].  

The bus signals CAN_H and CAN_L are available on pins 7 and 2 of the 9 pin 

connector, while the other pins serve as power or ground wires, or are reserved for 

future extensions of the standard (Table 2.4). 

 

Pin Function 

1 Reserved 

2 CAN_L 

3 0V Ground 

4 Reserved 

5 Reserved 

6 0V Ground 

7 CAN_H 

8 Reserved 

9 V+ Power Supply 

 

Table 2.4: CiA DS 102-1 Nine Pole SUB-D Pin-outs 
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Figure 2.39: Nine Pole SUB-D Connector 

 

2.3.3 Oscillator Tolerance 

The CAN system clock for each CAN node will be based upon the individual 

oscillators of the node. Therefore, the actual CAN system clock frequency for each 

node will be slightly different, and hence, the actual bit time will be subject to a 

tolerance. The initial tolerance of the oscillators will also differ due to operating 

temperature, age, voltage supply, etc. All of these factors will have an effect on the 

operating frequency. The CAN system clock tolerance is defined as a relative 

tolerance, where f is the actual frequency and fn is the nominal frequency [15]. 

 

∆f = 
n

n

f

)f - (f
 

(2.5) 

 

To guarantee error free communication, the minimum requirement for a CAN 

network is that two nodes, each at opposite ends of the network with the largest 

propagation delay between them, and also each of them having a CAN system clock 

frequency at the opposite limits of the specified frequency tolerance of the oscillators, 

must be able to correctly receive and decode every message transmitted on the 

network. If this is adhered to, all nodes should be able to sample the correct bit of any 

message [16]. 

2.3.4 Cable 

According to ISO-11898-2, cables chosen for use in a CAN network as bus lines 

should have a nominal impedance of 120Ω, and a specific line delay of nominal 5 

ns/m. Bus line termination has to be provided through termination resistors of 120Ω 

located at each end of the bus line. The length related resistance should be  70 MΩ/m. 
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2.4 CAN Controllers 

2.4.1 Introduction 

This section looks at the differences between the stand alone CAN controller and an 

integrated CAN controller. It will consider this device by the load placed on the CPU.  

2.4.2 CPU Loading 

Figure 2.40 shows a Stand Alone CAN controller layout, which requires three 

devices: a microcontroller, a standalone CAN controller, and a CAN bus transceiver. 

The interface between the microcontroller and the CAN controller is an address/data 

bus or a serial link such as the SPI protocol. The CAN controller is driven by a low-

tolerance input clock supplied by a crystal oscillator. The microcontroller also uses a 

crystal oscillator. The system uses an interrupt line from the stand-alone CAN 

controller to the microcontroller to signal the reception of a message or the occurrence 

other CAN events. 

 

 

Figure 2.40: Stand Alone CAN Controller Layout 

 

Figure 2.41 implements a microcontroller with an on-chip CAN controller, which 

clearly simplifies hardware design. In addition, this system uses less printed circuit 

board area and generates less board noise by eliminating board traces used to interface 

the microcontroller to the CAN controller. Software development costs are nearly the 

same for integrated or stand-alone CAN peripherals. In both cases, software must be 

developed for the microcontroller to read and to write messages to the CAN controller 

[21]. 
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Figure 2.41: Integrated CAN Controller 

 

Table 2.5 shows the communications duties carried out by each CAN node with 

respect to the protocol, messaging, and system/error response. The CAN protocol 

involves the controller transmitting and receiving bits according to arbitration rules 

defined by the CAN protocol. It must also calculate a 15-bit CRC code, which is 

transmitted with each message and is verified by each receiving CAN node. The CAN 

Controller must implement all the protocol tasks without CPU intervention. 

 

Bitwise reception/transmission 

Bus arbitration Protocol 

Error code generation/checking 

Write data to be transmitted 

Read received data Messaging 

Manage control/status registers 

Node configuration 

System commands 
System/Error 

Response 
Local Bus off 

Table 2.5: CAN Node Communication Tasks 

 

The CPU must service all messaging tasks. It requires the CPU to write the data to be 

transmitted, to read received data back from the controller and manage the 

status/control registers in the CAN peripheral. Since the CPU uses the CAN 

peripheral as a smart RAM, messaging tasks are fundamentally CPU read/write 

operations. A CPU with an inbuilt CAN controller will read/write to register locations 

using its own internal bus. For a CPU with an interface to a stand-alone CAN chip, 
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these read/write operations typically use the external address/data bus or a serial link 

using the SPI protocol [21].  

In addition to these read/write operations, the CPU may be required to manipulate 

message identifier bits and data fields. For example, a data byte may contain two or 

more parameters such as engine airflow and engine temperature within the one byte of 

information. In this case, the CPU must execute bit shifting and masking operations to 

extract the correct data bit/bits. 

The CPU burden required to manipulate this data is the same for on-chip and stand-

alone CAN peripherals. The CPU demand differs for on-chip and stand-alone CAN, 

due to the access time of CAN registers for the different controllers [21]. 

 

  CPU Load  

Stand Alone CAN 250kbits/s 500kbits/s 1Mbit/s 

8 bit A/D Bus 5.5% 11% 21.9% 

16 bit A/D Bus 4.2% 8.4% 16.7% 

Integrated CAN    

Registered RAM 2.0% 4.0% 8.0% 

Table 2.6: CPU Loading 

 

System/error response is a category of infrequent use and is initiated by the system or 

by an unusual number of bus errors. The CPU executes error recovery routines when 

the CAN peripheral is in bus off state. Recovery from bus-off requires a hardware or 

software reset of the CAN peripheral. The CPU burden to communicate with the CAN 

peripheral is dependent on a few factors. The most critical factor is the amount of time 

required to read/write to the CAN peripheral. In the case of an on-chip CAN 

peripheral, the CAN registers are addressed using the internal address/data bus 

designed for high-speed access. In the case of a stand-alone CAN chip, the CPU uses 

an external address/data bus or a serial communications link. Table 2.6 shows the 

level of CPU burden while receiving CAN messages for three CAN bus transmission 
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rates. This analysis compared the CPU burden of an Intel 82527 stand-alone CAN 

chip to an Intel 87C196CA 16-bit microcontroller with on-chip CAN. 

 

2.5 Message Sending 

2.5.1 Introduction 

This section will look at the various types of message scheduling that are available to 

the system designer in order to leverage the optimum benefits from the network. 

There are broadly two types of scheduling available to the designer, namely: 

 

• Event Triggered 

• Time Triggered 

 

There is a trend towards an increased number of interconnected devices on a network 

with the use of smart sensors giving increased data throughput, which results in an 

increased functionality of the system. This increased data reduces available bandwidth 

on the bus, thus message scheduling systems that maximise the utilisation factor, 

while supporting message deadlines together with optimising microcontroller loads 

are very important in reducing costs. 

2.5.2 Event Triggered CAN 

CAN is a serial bus system with multi-master capabilities. All CAN nodes are able to 

transmit data and several CAN nodes can request the bus simultaneously. The serial 

bus system with real-time capabilities is the subject of the ISO 11898. In a CAN 

network there is no addressing of subscribers or stations in a conventional sense, but a 

prioritised message is transmitted instead whenever an event occurs, e.g. coolant 

temperature changes. The transmitter sends a message to all CAN nodes and each 

node decides on the basis of the identifier received whether it should process the 

message or not. The identifier of the message determines its priority, and is defined by 

the network designer. The message priority is critical in that it will dictate the 

message’s success in arbitration for bus access, although a high priority identifier 

does not always ensure immediate access to the bus. Also low priority messages may 

never gain access to the bus under certain circumstances. Some of the problems 

associated with real time event triggered systems will be discussed in the next section. 



 

  45 

2.5.2.1 Event Triggered Problems 

In order to show some of the problems that can affect an event triggered network 

some definitions regarding message transfer will be given. 

The response time, Rm, of a CAN message, is the time interval from when the 

message is ready for transmission until the time it is acknowledged, and successfully 

received by any other node or nodes. The message does not have to be repeated in any 

sense and will thus not demand any further bus resource. 

The delivery time Dm of a message can be defined as the time interval from when the 

message is delivered by an application in a node, until it becomes available at other 

nodes (Figure 2.42). 

 

 

Figure 2.42: Message Delivery Time 

 

The CAN network is a single user resource; once allocated it cannot be shared, and 

once its message is started, it is guaranteed to complete its transmission unless it loses 

arbitration or an error occurs. The message schedule is determined by CAN message 

identifiers since CAN uses a Fixed Priority Scheduling system.   

The transmission time of a message is constant, since once the message length is 

known as well as the baud rate, then the transmission time can be calculated [22]. 

The total message delivery time, Dm, for a message, m, is the time from which it has 

been disposed of by an application to the CAN controller in the sending node, until 

the message is available for another application in the receiving node. The message 

delivery time in total is the sum of the following: 

• The time taken to format the message for transmission on the network. 

• The queuing time (waiting time due to loss of bus arbitration). 

• The transmission time depending on the message length and the bit rate. 

• The time required to de-format the message and notify the receiver of safe 

message arrival. 
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While the time for formatting and de-formatting the message are normally constant, 

depending on the actual CAN controller and operating system, and while the 

transmission time can be calculated for each message, the queuing time depends on 

the actual schedule of priorities of message identifiers. 

For a message m, in a set schedule of N periodic messages (m = 1….N) with a period 

of pm, a queuing time of Qm and transmission time of Tm the message response time Rm 

is calculated as follows [22]. 

 

Rm = Qm + Tm 

(2.6) 

If three messages, M1, M2, and M3 are to be transmitted from different nodes, it can 

be shown that the worst case queuing time occurs if all three messages become 

available for transmission at the same time, as seen in Figure 2.43.  

 

 

Figure 2.43: Queuing Time 

 

In addition, Message 1 has the highest priority and Message 3 has the lowest priority. 

Message 1 will not have any delay in queuing since the CAN arbitration protocol will 

resolve the bus conflict in favour of Message 1. 

Tj  is the transmission time for a higher priority message j and Pj  is the period time of 

the higher priority message j. Equation 2.7, provides the solution to the maximum 

queuing time [22]. 
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  47 

Due to the non pre-emptive property of a CAN message transmission, we also have to 

consider message blocking. This can cause additional queuing delays for a message of 

high priority, when a lower priority message has control of the bus. This event can 

occur when a low priority message becomes available for transmission just before a 

high priority message requires use of the bus. Since the transmission is non pre-

emptive, the entire low priority message is transmitted and delays the high priority 

message from point P2 to D1, as shown in Figure 2.44.  

 

 

Figure 2.44: Queuing Delay Due to Blocking 

 

The equation for blocking is: 

 

Bm = max (Tk) {∀ k lp (m)} 

(2.8) 

 

Where Bm is the blocking term for message m which is obtained by getting the 

transmission time for the longest message of a lower priority [22].  

To calculate the complete response time we use: 

 

Rm = Bm + Tm + Qm 

(2.9) 

 

Where:  

• Rm is the total response time for message m. 

• Bm is the blocking time for message m as a result of interference from lower 

priority messages.  
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• Qm is the queuing time for message m as a result of higher priority 

messages being transmitted and thus delaying the message m.  

• Tm is the transmission time for message m. 

 

It can be seen that event message handling does not guarantee the arrival of any 

message on time, even the messages with the highest priority can be delayed by the 

lowest priority message under certain conditions. The lower the priority of the 

message, the higher the latency jitter is likely to be [23] and in some instances the 

message may never get access to the bus due to being blocked by higher priority 

messages. The goal of Time Triggered CAN is to avoid these latency jitters and to 

guarantee a deterministic communication pattern on the bus [24]. 

2.5.3 Time Triggered CAN 

TTCAN allows the designer to use the physical bandwidth of the network more 

efficiently, under the constraint of determinism [24]. The TTCAN protocol is 

specified in  ISO 11898-4.  

TTCAN is based on the CAN data link layer protocol ISO 11898-1 and does not 

infringe any part of that protocol. Time-triggered communication means that activities 

are triggered by the elapsing of time segments. In a time-triggered communication 

system, all points of time of message transmission are defined during the development 

of a system. A time-triggered communication system is ideal for applications in which 

all or most data traffic is of a periodic nature [25]. 

TTCAN provides the possibility to schedule CAN messages in a time-triggered mode 

as well as in an event-triggered mode. This type of message strategy is very effective 

when a network is used for a closed-loop control system such as the powertrain in a 

vehicle. Also the real-time performance of a CAN network increases with the use of 

TTCAN. 

Most vehicle networks dictate that data traffic must usually be both event-triggered 

e.g. temperature change in the transmission system and time-triggered e.g. gearbox 

torque output versus engine speed.  

2.5.3.1 TTCAN Extension Level 1 

ISO 11898-4 defines two levels of TTCAN. Extension level 1 guarantees the Time 

Triggered operation of CAN based on a reference message of a time master. Fault 
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tolerance of the functionally is determined by using redundant time masters. This type 

of TTCAN is capable of being fully implemented in software [24].  

2.5.3.2 TTCAN Extension Level 2 

Extension level 2 uses a globally synchronised time base, which is established on the 

network and any drift due to oscillator differences are corrected by the TTCAN 

controllers. This category of TTCAN is implemented in hardware [24]. 

2.5.3.3 The Reference Message 

TTCAN Extension Level 1 is based on a periodic reference message, which all nodes 

can recognise by its identifier. This reference message only holds the control 

information of one byte and the rest of the CAN message can be used for data transfer 

if required. In Extension level 2, the reference message holds the actual global time of 

the current TTCAN time master and uses four bytes of data to execute this. The 

remaining 4 bytes of this message may be used for data communication [24, 26]. 

2.5.3.4 TTCAN Basic Cycle 

The period between two reference messages is called the basic cycle (Figure 2.45). A 

basic cycle can involve the use of several time windows of different sizes and allows 

other necessary messages to be transmitted. 

 

 

Figure 2.45: Reference Message – TTCAN Basic Cycle 

 

The time windows of the basic cycle can be used for periodic messages and/or for 

unplanned messages, which will use arbitration to obtain control of the TTCAN 

network. A time window for periodic messages is known as an exclusive time 

window (Figure 2.46). Within exclusive time windows, the beginning of the time 
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window determines the sending point of a predefined message from a node. If the 

system was properly specified, the design tool used for TTCAN should analyse the 

communication time periods, and ensure no conflicts will occur. If a conflict occurs 

due to poor system design, the CAN protocol properties of bit arbitration are valid. 

The system designer has to determine which message will be sent in each exclusive 

time window, as the automatic retransmission of CAN messages due to errors or loss 

of arbitration problems is not allowed in the exclusive time window; therefore the use 

of “one shot mode” [27] must be used. 

 

 

Figure 2.46: Exclusive and Arbitration Windows – TTCAN Basic Cycle 

 

A time window for event messages is called an arbitrating time window and control of 

the arbitrating time window is by bitwise arbitration, as with event triggered 

messages. The designer can allow all messages to compete for the arbitrating time 

window. This permits the application to elect at runtime which messages should use 

the arbitrating time window and in which time period. The automatic retransmission 

of CAN messages is also not authorised within the arbitrating time windows. 

During the design phase of the network message set, it is also possible to reserve free 

time windows for further extensions of the network. These reserved arbitrating, or 

exclusive, time windows can be reconfigured as required if additional nodes require 

bandwidth on an existing network [24]. 

2.5.3.5 Node Specific Knowledge 

A TTCAN node does not need knowledge of all messages on the network; it only 

needs to be familiar with the time for sending and receiving of exclusive messages in 

particular to itself, and where the arbitration window time slots are set. An example of 

this strategy is seen in Figure 2.47. 
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Figure 2.47: TTCAN Communication 

 

This arrangement gives maximum memory optimisation with sufficient information 

for the node regarding the actual message scheduling. It also offers a high level of 

flexibility during the development stages as only the message schedule would require 

updating if there were changes to the network message communication structure [26]. 

 

 

Figure 2.48: TTCAN System Matrix 
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2.5.3.6 System Matrix 

Due to system complexity, a simple basic cycle would not suffice in a modern 

vehicle, which has many control functions and tasks operating on the one network. 

TTCAN allows the use of more than one basic cycle. By connecting several basic 

cycles together we can build what is termed a System Matrix (Figure 2.48) [28]. 

 

 

Figure 2.49: Merging Arbitration Windows 

 

This arrangement gives great flexibility to the designer and even permits the use of 

different column widths by joining two or more time windows together within a 

System Matrix (Figure 2.49).  

The network designer must formulate the column widths in such a way that a CAN 

message including stuff bits can be transmitted within the allotted time. Failure to 

enforce this rule will cause the failure of the next message within the System Matrix. 

2.5.3.7 Time and Base Marks 

TTCAN is enforced by the progression of time within the basic cycle. After every 

Reference Message, the basic cycle time, or time mark, is set to zero, with time marks 

dictating the beginning of the exclusive or arbitrating time windows. Base marks are 

used to track the number of basic cycles within a System Matrix and are set to zero at 

the beginning of a System Matrix (Figure 2.50) [28]. 
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Figure 2.50: Time and Base Marks 

 

2.5.3.8 TTCAN Network Time Units (NTU) 

The basic cycle time is the prime time used by TTCAN, and all timing within the 

TTCAN network utilises the NTU. For Extension level 1 TTCAN, the NTU is based 

on the nominal CAN bit time and Extension level 2 employs the physical second as 

the time base. Extension level 2 establishes a system wide NTU by setting a 

relationship between the node’s  physical oscillator attached to the TTCAN controller 

and the data in the Reference Message [28]. 

2.5.3.9 Global Time Extension Level 2 

All level 2 nodes sample their time value at the frame synchronisation (SOF) of the 

Reference Message sent by the TTCAN Master, and is known as the global time. 

Following the receipt of the reference message the local node can calculate the local 

offset as the difference between the SOF of the reference and its own value for global 

time.  

 

Global Time = Local Time + Local Offset  

(2.10) 

It is of utmost importance that local time and global time are synchronised, so that all 

nodes have the same view of time in the network. Global time and local time 

differences occur due to slightly different clock drift within the CAN nodes. To solve 
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this problem a mechanism is built into level 2 CAN controllers, which continuously 

updates the local time offset, by use of a TUR. To achieve this, the local node 

measures in clock cycles, the time between two successive frame synchronisations 

and then calculates the TUR and re-establishes the correct global time [29]. 

2.5.3.10 Initialisation 

The TTCAN, as previously stated, has a Reference Message broadcast by the Time 

Master. In the event of a problem with the Time Master on initialisation, there would 

be no Reference Message broadcast, so the protocol has allowed for up to 8 potential 

time masters on any level 1 or level 2 TTCAN network. If the time master level 1 

node fails to start then another node will take over its role until the network is 

switched off. On re-initialisation, the time master will resume its normal function, if it 

can restart. With level 2 TTCAN, there are 8 potential time masters, which are 

distinguished by the three-bit time master priority in the Reference Message. The time 

master priority is given by the three least significant bits of the Reference Message 

that is transmitted by the respective potential time master. If the original time master 

gets reattached to the network it will take over the position of global time master [30]. 

2.6 Message Scheduling Algorithms 

2.6.1 Introduction 

In computer science, a scheduling algorithm is a method by which a process is given 

access to system resources, usually processor time, RAM, etc. This is usually done to 

effectively load balance a system. The need for a scheduling algorithm arises from the 

requirement for most modern systems to perform multitasking, or execute more than 

one process at a given time. Scheduling algorithms are generally only used in a time 

slice-multiplexing kernel (the core of the operating system). The reason is that in 

order to effectively load balance a system the kernel must be able to forcibly suspend 

execution of some processes in order to begin execution of the next process. In the 

case of some embedded systems, this can be achieved by the use of system interrupts. 

The algorithm used may be as simple as “round-robin” in which each process is given 

equal time, for instance 1 ms in a cycling list.  

More advanced algorithms can take into account process priorities, or the importance 

of the process. This allows some processes to use more time than other processes. It 
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should be noted that the kernel always uses whatever resources it needs to ensure 

proper functioning of the system, and so can be said to have infinite priority [31]. 

2.6.2 Scheduling 

Time-triggered CAN (TTCAN) combines the advantages of event and time triggered 

communication to fulfil the requirements of a distributed real-time system. Of crucial 

importance is the generation of the communication schedule, which should consider 

the demands of the time-triggered system on the one hand, while maintaining a good 

real-time performance for the event-triggered part of the system on the other. 

Scheduling is a key requirement for a real-time operating system and regulates the 

order in which processes are assigned priorities in a priority queue. This message 

assignment is usually carried out by a piece of software known as a scheduler. In real-

time environments such as a braking system on a car, the scheduler ensures that 

processes can meet the deadlines set, therefore keeping the system stable. Scheduling 

concepts with particular emphasis on TTCAN networks have been reviewed from the 

following articles [22, 32, 33]. 

Long-term schedulers decide which processes can be admitted to the queue. It will 

decide when an attempt will be made to execute part of the process or program. Its 

admission to the set of currently executing processes is either authorised or delayed 

by the long-term scheduler. Thus the scheduler dictates what processes are to run on a 

system and the degree of concurrency to be supported at any one time - i.e. whether a 

large or small amount of processes are to be executed concurrently, and how the split 

between input/output intensive and CPU intensive processes is to be handled. Long-

term scheduling is very important in real-time systems, as the ability to meet process 

deadlines may be compromised by the slowdowns and contention resulting from the 

admission of more processes than the system can safely handle.  

The main purposes of scheduling algorithms, is to minimise resource starvation and to 

ensure fairness amongst all processes using the resources [31, 34]. 

The next few sub-sections will discuss some of the schedulers that are suitable for use 

within a real-time automotive network. An extensive list of scheduling algorithms is 

shown in Appendix 1. 

2.6.2.1 Deadline-monotonic Scheduling 

Deadline-monotonic priority assignment is a priority assignment policy used with 

fixed priority pre-emptive scheduling. Using deadline-monotonic priority assignment, 
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tasks are assigned priorities according to their deadlines. The task with the shortest 

deadline, being assigned the highest priority. This priority assignment policy is 

optimal for a set of periodic or sporadic tasks that comply with the following: 

 

1. All tasks have deadlines less than or equal to their minimum inter-arrival times 

(or periods). 

2. All tasks have worst-case execution times that are less than or equal to their 

deadlines. 

3. All tasks are independent and so do not block each other’s execution. 

4. No task voluntarily suspends itself. 

5. There is some point in time, referred to as a critical instant, where all of the 

tasks become ready to execute simultaneously. 

6. Scheduling overheads (changing from one task to another) are zero. 

7. All tasks have zero release jitter (the time from the task arriving to it becoming 

ready to execute). 

 

If restriction seven is not adhered to, then "deadline minus jitter" monotonic priority 

assignment is the optimal solution. Deadline monotonic priority assignment is not an 

optimal solution for fixed priority non-pre-emptive scheduling [35]. 

2.6.2.2 Earliest Deadline First Scheduling 

Earliest Deadline First (EDF) scheduling is a dynamic scheduling principle used in 

real-time operating systems. It places processes in a priority queue. Whenever a 

scheduling event occurs (task finishes, new task released, etc.) the queue will be 

searched for the process closest to its deadline. This process will then be scheduled 

for execution next. EDF is an optimal scheduling algorithm on pre-emptive single 

processors in the following sense: if a collection of independent tasks, each 

characterised by an arrival time, an execution requirement, and a deadline, can be 

scheduled, such that all the tasks are completed by their deadlines, the EDF will 

schedule this collection of tasks such that they all complete by their deadlines. 

When scheduling periodic processes that have deadlines equal to their periods, EDF 

has an utilisation of 100 percent. That is, EDF can guarantee that all deadlines are met 

if the total CPU utilisation is not more than 100 percent. So, compared to fixed 
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priority scheduling techniques like rate-monotonic scheduling, EDF can guarantee all 

the deadlines in the system at higher loading. 

However, when the system is overloaded and tasks miss their deadlines, this is largely 

unpredictable and is a considerable disadvantage to a real time systems designer [36].  

2.6.2.3 Rate Monotonic Scheduling 

Operating systems are generally pre-emptive and have deterministic guarantees with 

regard to response times. Rate monotonic analysis is used in conjunction with those 

systems to provide scheduling guarantees for a particular application. 

A simple version of rate-monotonic analysis assumes that processes have the 

following properties: 

1. No resource sharing (processes do not share resources, e.g. a hardware 

resource, a queue, or other blocking mechanism). 

2. Deterministic deadlines are exactly equal to periods. 

3. Static priorities with the task with the highest static priority that is available, 

immediately pre-empts all other tasks 

4. Static priorities assigned according to the rate monotonic conventions (tasks 

with shorter periods/deadlines are given higher priorities) 

 

It is a mathematical model that contains a calculated simulation of periods in a closed 

system, where round robin and time-share schedulers fail to meet the scheduling 

needs. Rate monotonic scheduling looks at a run modelling of all tasks in the system 

and determines how much time is needed to meet the guarantees for the set of tasks in 

question [37]. 

2.6.3 Stochastic Optimisation Algorithm 

Stochastic is derived from the Greek word “stochos”, which translates to a meaning of 

conjecture and randomness and is a process that can be described best by a probability 

distribution when used in the scheduling of messages on a TTCAN network. This 

section is based on work carried out by three Higher Institutes of Education for the 

2002 International CAN Conference [33]. 
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2.6.3.1 TTCAN Scheduling Using Stochastic Optimisation 

The process of building a message scheduling set for a TTCAN network using 

stochastic optimisation consists in building the SM. This SM typically includes the 

following elements: 

• The determination of the number of columns required in the matrix 

• Establishing the number of rows 

• The definition of the duration of each column 

• The message to be transmitted in each cell (row, column) 

 

It is important with this approach to keep the average period of each message identical 

to the respective instantaneous period. This is done using the appropriate number of 

message instances in the system matrix. The average period is equal to the duration of 

SM divided by the number of message instances [33].  

The message duration will determine the column width and despite the restriction 

imposed to the number of basic cycles as indicated in section 2.5.3.6, it is usually 

possible to build several distinct system matrices for the same message set. If several 

different messages sets are built, then we will have to assess the optimum schedule in 

the generated SM’s according to some pre-defined criterion.  

In most cases a cost function based on the sum of the message jitter values is used as 

the criteria, which is used extensively by the automotive industry [33]. Jitter is 

determined for every instance of every message, covering the complete SM. The cost 

function is weighted by the SM duration and can be tested by using the following 

expression: 

Jitter = 
i

p

i

p

ip

ae
M

1 ∑∑  

(2.11) 

Where ei
p
 is the expected beginning time of transmission of instance i of message p 

and ai
p
 is the actual beginning time and M is the duration of the system matrix. 

In order to build the SM some type of software will have to be written and must be 

capable of scheduling all messages and optimise the message set. 
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2.6.3.2 Stochastic Scheduling 

The scheduler must be capable of generating a series of feasible message sets of 

which all are distinctly different SMs. The optimisation part of the software must be 

capable of selecting the best SM based on the cost function in Equation 2.11. In order 

to be able to maintain the average period of every message, the SM’s duration M , 

must be the least common multiple of the message periods, or an integer multiple of 

it. The average period is kept with M / Pi  instances of every message i of period Pi 

during the SM [33].   

In order to schedule a set of messages we must: 

• Determine the maximum number of lines of the system matrix  

• Set the message allocation. 

• Calculate the free time redistribution. 

 

If we disregard the restriction of the number of basic cycles, it is obvious that the 

maximum number of lines in the SM is bounded by: 

max

max

T

M
L =  

(2.12) 

Where Lmax is the maximum number of lines and Tmax is the maximum transmission 

time of all the messages in the set. 

Before starting the allocation process, the software will have to generate ordered set I, 

which includes every instance of every message in the initial set. This set is organised 

in decreasing order of the message transmission time T: 
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With n being the number of different messages in the initial set and: 

 

i

i

P

M
K =  

(2.14) 
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(2.15) 
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The software would now need to define a random number of lines for the SM, where: 

 

maxLL ≤  

(2.16) 

It is now necessary to remove the first L instances in I and allocate them to the first 

column of the matrix. We repeat this cycle until all instances of I are dealt with. We 

now have a SM with #C columns. 

 

L

I#
C# =  

(2.17) 

As the longer messages are taken into account first, #C is now at its minimum. It 

would now be possible to determine the minimum duration of the basic cycle for this 

particular matrix also by using: 

∑
=

=

C#

i

iBC DD
1

 

(2.18) 

In Equation 2.18, Di is the duration in time for each column of the matrix. With this 

value, it is possible to ascertain if the set is schedulable by using Equation 2.19: 

 

L

M
Dbc ≤  

(2.19) 

If the set is schedulable, then we should check for any free time that is available 

within the basic cycle. This can be checked by using Equation 2.20. 

 

BCfree D
L

M
t −=  

(2.20) 

Free columns are placed between each two occupied columns and then there is a 

redistribution of the free time randomly between the first columns. This is the only 

random factor in the construction of the first set of system matrices. 
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2.6.3.3 Stochastic Optimisation 

The optimisation process uses a set of system matrices built under the rules for the 

stochastic scheduler. These matrices are deemed as the initial population and will be 

subject to random alterations.  

The alterations to the SM must assure that the matrices are still feasible after the 

random changes. The cost function defined above is now used to determine the jitter 

within the matrices [33].The steps in the optimisation process are shown in Table 2.7 

below.  Step 1 is the user defining the number of elements that constitute the initial 

population of an SM. The scheduler then generates a usable system matrix based on 

Section 2.6.2.2. 

 

 

1 Generate an initial population 

2 Diversify the population. 

3 Select a SM. 

4 Randomly transform the selected matrix. 

5 Evaluate the cost function for this SM. 

6 
If the cost function (jitter) is lower for this SM, keep this matrix and 

eliminate the old SM. 

7 
Repeat steps 4 to 6 until the pre-defined maximum number of 

iterations is attained (normally 1000). 

Table 2.7: Steps Required for Stochastic Optimisation of a TTCAN SM 

 

In step 2, the elements of the population are randomly moved as each new SM is 

developed. The random movement of the elements provides diversity in the initial 

population and produces a number of different SMs made up from the one population 

(set of messages).  

Steps 3 to 7 is the optimisation stage of the process. Step 3 selects a SM, with step 4 

using an algorithm based on a modified steady state genetic algorithm [33] which 

eliminates the problem of crossover, therefore, keeping all transformed system 

matrices useable. Another issue regarding the completion of the algorithm is the 

number of iterations that should be used, as jitter depends on the transmission load 
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and on the relationship between message periods. The number of iterations must be 

determined by the user, but must be the same for all SMs. 

The focus of this optimisation process is to use as many different transformations of 

the message schedule in order to reduce or eliminate message jitter. It should be 

remembered the lower the message jitter the greater optimisation of the system. 

2.6.4 Heuristic Scheduling Concepts 

Heuristic is derived from the Greek word “heurisko”, which translates directly to “I 

find”. The definition given in the Oxford English Dictionary is “proceeding to a 

solution by trial and error or by rules which are loosely defined” [38]. This section is 

based on work carried out by Robert Bosch GmbH for the 2005 International CAN 

Conference [32]. The use of heuristic scheduling will provide a resolution to the 

message-scheduling problem, but this solution may not be the optimum schedule. 

2.6.4.1 TTCAN Scheduling Using Heuristic Methods 

Designing a message schedule is comparatively simple using the heuristic method. It 

involves sorting the messages according to: 

• Repetition rate (period) 

• Message length (total bits per message) 

• Are they periodic or spontaneous messages? 

• Deciding the maximum response time to a spontaneous message 

• Knowing the dependencies between messages  

 

Once the messages have been sorted, a basic attempt at Rate Monotonic (Section 

2.6.2.3) scheduling can be implemented. The length of the basic cycle is chosen 

according to the shortest period and the number of basic cycles is derived from the 

longest period [32]. 

Below in Figure 2.51 depicts an example of a Heuristic Schedule based around the 

following data:  

• CAN baud rate is set at 62.5 kbits/s. 

• Message 101 has a period of 10ms. It is a standard frame message with 7 

data bytes, so the message can be up to 118 bits long. 

• Message 201 has a period of 20ms. It is a standard frame message with 7 

data bytes, so the message can be up to 118 bits long. 



 

  63 

• Message 202 has a period of 20ms. It is a standard frame message with 7 

data bytes, so the message can be up to 118 bits long. 

• Message 301 has a period of 30ms. It is a standard frame message with 7 

data bytes, so the message can be up to 118 bits long. 

• Message 302 has a period of 30ms. It is a standard frame message with 7 

data bytes, so the message can be up to 118 bits long. 

 

The first schedule is generated in a rate monotonic fashion and any unused windows 

in Figure 2.51 can be used as arbitration windows for spontaneous messages or for 

further expansion of the network. 

Each message has been calculated to take 1.888ms of bus time, therefore, if message 

101 is sent at zero time, message 201 can be sent at the start of 2ms. 

 

Figure 2.51: Basic Heuristic Message Schedule 

 

This gives a time between message 101 and message 201 of 0.112 ms. This time 

period between these two messages is too small to allow for an arbitration window. 

Looking at the first 12 milliseconds of the schedule, we cannot have any arbitration 

windows, but from the beginning of the 12ms until the end of the 19ms, we can have 

an arbitration window. 

The rest of the schedule has different sized arbitration windows, which can be seen in 

Figure 2.52. If we use this message schedule, there will be no transmission of 

spontaneous messages for the first 12 ms of the schedule, but after this, there is a large 

arbitration window. This will have an impact on a real-time application. The 
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microcontroller will also be tied up with the CAN message schedule for most of this 

time and have little time to look after other events. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.52: Heuristic Scheduling showing Arbitration Windows 

 

If the arbitration windows can be distributed more evenly throughout the SM a 

significant improvement can be made in real-time performance [32]. Testing of real-

time performance can be carried out by evaluating the ability of the CAN network to 

react to an asynchronous event by the “Distinctness of Reaction”, based on the 

orthogonal Walsh correlation and gives a reliability measure, which will give the  

average latency response time and the jitter when reacting to asynchronous external 

events [32].  

2.6.4.2 Heuristic Message Strategies 

There are two distinct message strategies available with heuristic scheduling. The first 

strategy minimises the number of basic cycles in order to produce a useable schedule 

which will use the greatest amount of triggers in the SM. The second strategy is to 

minimise the length of the basic cycle in order to minimise the number of triggers 

required to operate the system. TTCAN level 2 relies on hardware triggers and has to 

be in the order of 2
n
 up to a maximum value of 2

6
. Level 1 systems do not have this 

constraint. 

Robert Bosch GmbH found from DoR testing that it was advantageous to use long 

basic cycles since they use less reference messages. Also, as additional basic cycles 
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are incorporated into a SM, the real-time performance will deteriorate and the jitter 

and average latency increase and this, in turn, will increase bandwidth usage [32].  

2.6.4.3 Allocation of Message Slots 

From a message point of view it doesn’t matter where the actual time slots are within 

the SM, the only constraint being the Reference message that has to be sent by the 

system Master at time zero. There are two methods of allocating message time slots; 

one uses what is termed “dense” allocation and the other uses “sparse” allocation. 

The dense allocation is suitable in some instances where, for example, sensor data is 

gathered from different nodes and broadcast on the bus. 

 

 

Figure 2.53: Heuristic Dense Message Allocation 

 

These values should be available as soon as possible to minimise control system 

delays and therefore, a dense allocation is preferable (Figure 2.53). This method will 

create long intervals where spontaneous messages that use arbitration will be blocked 

and therefore, if the data has a deadline, it may be exceeded. 

 

 

Figure 2.54: Heuristic Sparse Message Allocation 

The second option is sparse allocation were the TTCAN messages are spread out as 

far as possible. This results in shorter blocking periods with more arbitration windows 

available for spontaneous messages (Figure 2.54) and is better suited to real-time 

applications. 
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Optimisation of a heuristic schedule is calculated by using the cost function based on 

the sum of the message jitter as with stochastic message scheduling. The schedule 

with the lowest cost function is deemed the optimum schedule. 

 

2.7 Summary 

This chapter examined reasons for the development of CAN for the automotive 

industry. It scrutinised the CAN specification, including the OSI Data Link Layer and 

the Physical Medium Attachment as defined by ISO-11898. The physical layer 

wasinvestigated in terms of functionality and operation, as was the bus differential 

voltage and physical attachment to the transceivers.  It considered the effect of 

propagation delay and the oscillator tolerances on network stability, and how these 

can be compensated by use of the CAN bit timing.  Microcontroller CPU loading was 

explored, with particular attention being focused on the effects of stand alone CAN 

and integrated CAN on the CPU.  

CAN message sending was researched in respect of both event triggered messages 

(real-time) and time triggered messages. It found serious drawbacks in using event 

triggered messaging due to the type of arbitration used with CAN e.g. high priority 

messages will always control the bus. Time triggered messaging guaranteed all time 

triggered messages would have access to the bus at some time and would allow event 

triggered messaging at slack periods. 

TTCAN was investigated and it was found that there are two different 

implementations available. A level 1 system, executed through software and a level 2 

system, implemented through hardware.  

Several scheduling algorithms were investigated, but only the stochastic and heuristic 

schedulers showed any promise with a TTCAN network. After detailed analysis of the 

schedulers, it was found that they can develop useable schedules, either by probability 

distribution or by trial and error, but are unable to generate every possible message set 

from any group of message periods. Neither can they elicit any information about the 

arbitration window size. Message scheduling algorithms were examined from a 

viewpoint of dense and sparse allocation. It was found that sparse allocation was the 

preferred option for real-time messaging. 

The next chapter will illustrate the methods used to solve both problems endured by 

the stochastic and heuristic scheduler. It demonstrates a methodology, which ensures 
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all message sets can be developed from a group of periodic messages and also solves 

the problem of finding the optimum message set with regard to real-time messaging. 
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Chapter 3: Designing the Optimum TTCAN 

Message Scheduler
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3.1 Introduction 

This chapter investigates the reasons why optimisation of a TTCAN System Matrix is 

necessary and introduces a design process to produce the most effective solution. The 

chapter is set out in the following sections: 

• Section 3.2 explores the reasons why an effective scheduler is required and 

illustrates the problems with the stochastic and heuristic schedulers 

presently used. 

• Section 3.3 seeks to find a method to solve the shortcomings of the 

stochastic and heuristic schedulers. 

• Section 3.4 demonstrates the mathematical solution to the above problems 

and implements it in software. 

 

3.2. Stochastic and Heuristic Scheduler Problems 

3.2.1 Introduction 

A scheduling algorithm is a means by which a process is given access to system 

resources and is used to efficiently load balance the system at all times, as described 

in section 2.6.1. It was outlined in section 2.6.4.3 that when dense scheduling was 

employed in the System Matrix, the TTCAN network could be operating at maximum 

load for the duration of time that these messages were being sent. Whereas, in sparse 

message scheduling the load on the TTCAN network had the load spread evenly and 

arbitration windows inserted between each TTCAN message.  

3.2.2 Stochastic Scheduling  

The stochastic scheduler, as described in section 2.6.3, relies on devising usable 

message sets by randomly distributing TTCAN messages and arbitration windows 

[33]. Distributing message windows and free time in an indiscriminate way indicates 

that the optimum schedule may result only by chance.  

The manner in which the arbitration windows are distributed can increase the time a 

spontaneous or real time message has to wait in order to access the TTCAN network 

in a worst-case scenario. In Figure 3.1, the spontaneous message in a worst-case 

situation will have to wait approximately 1.3 milliseconds for transmission on the 

network, if we use single columns in the SM. Figure 3.2 shows the waiting time for 



 

  70 

the spontaneous message to be in the order of about 2.3 milliseconds if the TTCAN 

messages are distributed in pairs.  

 

 

Figure 3.1: Spontaneous Message Waiting with Single Columns 

 

It should be noted that the message waiting time for a spontaneous message is longer 

than the message time allocated for an actual TTCAN message. The spontaneous 

message must complete its message transmission prior to the TTCAN message 

starting to send its own message. 

 

 

Figure 3.2: Spontaneous Message Waiting with Double Columns 

  

Stochastic scheduling generates a large number of different message sets. Some of 

these message sets are not usable, and of the usable message sets, it applies the cost 

function analysis to find the optimum message set. Using this type of scheduling does 

not mean that the best message schedule has been developed; it means that it has 

found the best message set with the lowest cost function from the generated message 

sets. Other message sets may be available outside those that were generated. 
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3.2.2.1 Designing a Stochastic Message Set 

A stochastic Message Set is developed by placing the message population onto the 

SM randomly, and then testing for usable Message Sets and finally testing their 

optimisation by using a cost function as described in section 2.6.3.1.  

 

Example 1: Three CAN standard messages with periods of 20ms, 30ms and 40ms 

operating on a bus with a baud-rate of 62.5kbits/s and each message has 7 data bytes. 
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Figure 3.3 and Figure 3.4 show two stochastic message sets using the data from 

Example 1. Both have valid message sets, consequently the cost function, as outlined 

in section 2.6.3.1, will be used to find the optimum message set. 

 

Cost Function (Message Set 1) 
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Figure 3.3: Stochastic Message Set 1 
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Cost Function (Message Set 2) 
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Figure 3.4: Stochastic Message Set 2 
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The cost function for Message Set 1 is -0.025 whereas Message Set 2 shows a cost 

function of zero which denotes that Message Set 2 is the optimum stochastic Message 

Set. 

3.2.3 Heuristic Scheduling  

The heuristic scheduler as described in section 2.6.4 relies on developing a usable 

message set by placing the messages in columns starting with the messages having the 

shortest period in the first column and messages with longer time periods in new 

columns in ascending order. A message set will now be developed using heuristic 

scheduling and employing the same data that was used for the stochastic message sets. 

 

Example 2: Three CAN standard messages with periods of 20ms, 30ms and 40ms 

operating on a bus with a baud-rate of 62.5kbits/s and each message has 7 data bytes. 

 

Longest message duration:  
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Number of Triggers in SM: 
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Figure 3.5: Initial Heuristic Message Set 
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Figure 3.5 shows the initial layout of the heuristic message set, where the Reference 

message of period 20ms is placed in the first column. The 30ms message is now 

placed in the next column, which starts at 2ms. The rationale for starting at 2ms is that 

the Reference message will take 1.888ms to transmit. All of the 30ms messages are 

inserted in the correct place on the SM. Next, the 40ms message is inserted into the 

SM again 2ms later, as the previous message will again take 1.888ms to transmit. All 

instances of the 40ms message are incorporated into the SM. 

 

 

Figure 3.6: Initial Arbitration Windows with Heuristic SM 
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This message set is now a valid SM, but two problems are associated with it. Firstly, 

spontaneous real-time messages cannot be broadcast until the start of the 6ms slot, of 

the SM. Secondly, the spread of arbitration windows across the SM is not the 

optimum for spontaneous messages, as can be seen in Figure 3.6. 

Figure 3.7 shows a valid message set but the arbitration windows have been adjusted 

by observation, so we can have real-time spontaneous messages while the first three 

TTCAN messages are being sent. 

 

Figure 3.7: Arbitration Window Adjustment Heuristic SM 
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The cost functions for the heuristic message set shown in Figure 3.6 and Figure 3.7 

are both zero, which denotes that there are two optimum heuristic message sets. The 

message set shown in Figure 3.6 will have to wait during the first 6ms before a 

spontaneous message can be sent, whereas in Figure 3.7 a spontaneous message can 

be sent between each of the first three TTCAN messages. Although the message set in 

Figure 3.7 offers a more optimised message set, it still does not mean it is the best 

solution for real-time messaging within the TTCAN network for those message 

periods. 

3.2.4 How Optimised are Stochastic and Heuristic Schedules 

The word optimum is a derivative of optimal and has a meaning of “best or most 

favourable” [38]. This implies that using either stochastic or heuristic scheduler, we 

should be able to produce the most favourable message set in regards of spreading the 

load across the TTCAN network and microcontrollers. 

It should be apparent that using the rules for stochastic and heuristic message 

scheduling, several optimised message sets could be developed, as can be seen in 

Figures 3.5, 3.6, and 3.7. As previously stated, the stochastic scheduler develops 

sufficient message sets to generate several usable message sets and then uses the cost 

function analysis to calculate the optimum message set. The cost function analysis 

will normally find several message sets, each with a cost function of zero. However, 

all message sets having a cost function of zero are not equally the most favourable, as 

will be proven later.  

Heuristic scheduling relies on trial and error in order to obtain an optimised message 

set. Again as with stochastic message scheduling, there can be several heuristic 

schedules with a zero cost function, but without indication that all are optimised to the 

same extent, or if not, then an indication of the most optimised message set in relation 

to real-time messaging. 
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3.3 The Mathematical Approach to TTCAN Scheduling 

3.3.1 Introduction 

This section will look at mathematics as a possible way of solving the optimum 

message set. It will not rely on obtaining a solution, by “randomly” (Stochastic) 

generating a message set or by finding the solution by “trial and error” (Heuristic). 

 

3.3.2 The Mathematical Design Process 

This section will outline the design of a very simplified SM consisting of just two 

messages, using mathematics, and will investigate what rules were applied to the 

building of it. If the rules developed hold true, then software can be designed to 

accomplish the process. 

The rules for an optimum TTCAN schedule are as follows: 

• The messages should have no jitter 

• Arbitration Windows to be such that spontaneous real-time messages can 

operate within their deadlines  

• The system resources are to be used as efficiently as possible by load 

balancing the system at all times 

 

3.3.2.1 Mathematical Two Message SM 

Example 3: Two CAN standard messages with message periods of 20ms each 

operating on a bus with a baud-rate of 125kbits/s and each message has 7 data bytes. 

Message M1 is the Reference message with system data within the message and M2 is 

a normal data message in the TTCAN network. 
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Length of the SM: 
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Figure 3.8 shows a SM designed by observation and it is a possible solution to an 

optimum Message set. Does it comply with the rules of an optimum SM as stated in 

section 3.3.2? 

It shows that no message jitter would occur and that the arbitration windows are 

constant at 9ms although the full 9ms would not be able to be used due to constraints 

shown in section 3.2.2. The load on system resources is spread evenly. 

 

 

Figure 3.8: Mathematical Design “A” of Period 10ms 

 

3.3.2.2 Modelling Results of Two Message SM 

The SM has two messages, M1 is the Reference message and message M2 is 

broadcast at 10ms. Evaluating the message set above, shows a relationship between 

M1 and M2. Inspection of the message set in Figure 3.8, shows that the 20ms message 
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is at the midpoint between the Reference message. This association could be 

described by Equation 3.1, which gives the position of the messages within the SM: 

 

Triggers_of_Number

Matrix_System
SM_in_Position_Optmum =  

 

2

20
10 =  

(3.1) 

 

Alternatively, by using equation 3.2 we can find the optimum position from the 

previous message. 

 

Triggers_of_Number

Time_nArbitratio
Position_Optmum

∑
=  

 

9
2

99
=

+
 

(3.2) 

 

Both equations 3.1 and 3.2 have given the correct position in the message set. Figure 

3.9 uses the data from Example 3, but used a stochastic approach to designing the 

message set. The cost function analysis shows that the message set is valid and the 

cost factor is zero. 

Inspecting the message set it can be seen that no jitter will occur, but the arbitration 

windows are of different sizes. Applying Equation 3.1 to the problem shows that the 

SM is not the optimum, as the message M2 should be located in the 10ms time slot. 

 

Equation 3.1: 

2

20
10 =  
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Figure 3.9: Mathematical Design “B” of Period 10ms 

 

Applying equation 3.2 to the SM shows that the message is not the optimum. Message 

M2 should be located 9ms after the Reference message. 

 

Equation 3.2: 

2

153
9

+
=  

 

Example 4: Two CAN standard messages with periods of 20ms and 30ms 

respectively, operating on a bus with a baud-rate of 125kbits/s and each message has 

7 data bytes. Message M1 is the Reference message with system data within the 

message and M2 is a normal data message in the TTCAN network. 

 

Longest message duration: 

 

bits

bitsbits

sec

rateBaud

StuffbitsLength_Message
t

+
=  

 

ms944.0
125000

18100
=

+
 

 

Length of the SM: 

 

LCM (20, 30) = 60ms 
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Number of Triggers in SM: 

 

∑=

N

i iM

)M(LCM
Triggers  

 

5
30

60

20

60
=+  

 

Using Equation 3.1 and Equation 3.2: 

Triggers_of_Number

Matrix_System
SM_in_Position_Optmum =  

 

12
5

60
=  

 

Triggers_of_Number

Time_nArbitratio
Position_Optmum

∑
=  

 

 

11
5

17119711
=

++++
 

 

Figure 3.10 shows that Equation 3.1 and Equation 3.2 give the same solution to the 

problem. If the message M2 of period 30ms could be moved further away from the 

Reference message M1 at the 40ms time slot, it would have an effect on the real-time 

messages within the system. It would increase the arbitration window in the message 

set, which may enable two or more real-time messages to be broadcast during this 

arbitration window. Figure 3.11 shows such an arrangement, which has the benefits of 

the largest arbitration windows possible, while providing the best load balance for the 

complete system.  

It can be seen with this message set, that there are five arbitration windows in total, 

but the two smallest arbitration windows are at time slots 16ms to 19ms inclusive and 

41ms to 44ms inclusive. 
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Figure 3.10: SM for Example 4 using Equation 3.1 and Equation 3.2 

 

These two windows are 4ms in duration. By decreasing the arbitration window size, 

starting at time slot 13ms in Figure 3.10, and moving it towards the Reference 

message at time slot 20ms, it has given an increase in the arbitration window starting 

a time slot 45 as seen in Figure 3.11. 

Using Equation 3.1 or Equation 3.2 by themselves does not provide the optimum 

message set. The optimum schedule for Example 3 was found by calculating the mean 

or average time between messages, but this method did not give the optimum result in 

Example 4. This can be attributed to the fact that in Example 3 both messages have 

the same periodic time, whereas for Example 4 the periodic time is different for both 

messages and therefore it could not achieve the same result. Although Example 4 was 

completed by inspection, it showed there is a relationship between the size of the 

arbitration windows and this may be the key to the solution. 

In Example 4, it was calculated that the optimum message was to be sent at 12ms, but 

the actual optimum position was found by inspection to be 3ms from the calculated 

value. A statistical approach, will now be outline, which provides a message set that 

ensures the optimum real-time performance for the TTCAN network. 
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Figure 3.11: Optimum SM for Example 4, by Inspection 

 

3.3.2.3 Statistical Approach to SM Design 

A statistical approach to the scheduling problem in Example 3 was undertaken using 

Microsoft Excel. Care was taken to ensure that the correct analysis tools were used 

since there are several formulae for Standard Deviation.   

The formula to calculate the Standard Deviation of a sample of a population is: 

 

 

1n

)xx(
2

−

−∑
 

(3.3) 

 

Whereas the formula required to determine the Standard Deviation of the complete 

population is: 

 

n

)xx(
2

∑ −
 

(3.4) 
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Analysing a SM for standard deviation was completed using the “STDVEP” 

command within Excel. This calculated the standard deviation of a complete 

population, rather than a sample of the population [39] as all developed message sets 

were complete populations. The data was further evaluated using MATLAB, which is 

a mathematical computation, analysis and visualisation tool. It is used extensively for 

rapid design and testing of systems [40]. 

3.3.2.4 A Statistical Approach to the Scheduling Problem in Example 3  

Two CAN standard messages with periods of 20ms each operating on a bus with a 

baud-rate of 125kbits/s and each message has 7 data bytes. Message M1 is the 

Reference message with system data within the message and M2 is a normal data 

message in the TTCAN network. 

Table 3.1 demonstrates 21 possible message sets using the data in Example 3. 

Heading “Message Set Number” lists the SMs and is incremented in 1 millisecond 

intervals. The next column shows the start time of the Reference message and will 

always be zero time. 

Column 3 contains the proposed start time of message M2 and, as shown in the list, it 

is incremented by 1ms throughout the column. Column 4 gives the SM length in 

milliseconds. 

Columns 5 and 6 state the time in milliseconds between the start time of each message 

in the message set, for example, for message set 1, the Reference message is sent at 

time zero and finishes broadcasting at just 1ms. Message M2 is proposed to be 

broadcast at 1ms, therefore, there is zero time between messages M1 and M2. 

Message M2 will complete transmitting its message just before the 2ms time slot. The 

network will not broadcast any TTCAN messages for the next 18ms until message 

M1 is retransmitted to repeat the message set. 

Column 8 holds the value of the calculated “Mean” time between messages and it 

should be noted that it does not remain constant across the data. Column 9 has 

calculated the standard deviation for that particular message set and shows that there 

is no standard deviation in message set 10, which is the optimum message set. The 

worst usable message sets in the set are message set 1 and message set 19.  

Figure 3.12 displays the mean and standard deviation graphed against time. It should 

be noted that it is symmetrically built around the 10ms time slot. Message set 0 and 

message set 20 are not usable as messages M1 and M2 cannot be transmitted at the 
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same instance. All other message sets are usable with no jitter and any of these could 

have been developed by either stochastic or heuristic methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1: The Mean and Standard Deviation of Message Times Example 3 

 

It is evident that the message sets developed using statistical methods produced the 

optimum message set by sending message M2 at 10 milliseconds. This gives two 

arbitration windows of 9ms each and a minimum wait time for spontaneous messages 

(Figure 3.10). This is the point at which the standard deviation is at its minimum. 

The graph in Figure 3.12 shows some peculiarities in the “mean”. It changes from 9 to 

9.5 when two messages attempt to transmit at the same period of time (message set 0 

and message set 20). This is where the Reference messages M1 and the data message 

M2 are attempting to broadcast at the same instance. The standard deviation is also at 
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its maximum value when Reference messages and data messages are attempting to be 

transmitted at the same instance. 

 

Figure 3.12: Graph Developed by use of MATLAB for Example 3 

3.3.2.5 A Statistical Approach to the Scheduling Problem in Example 4 

Two CAN standard messages with periods of 20ms and 30ms respectively each, 

operating on a bus with a baud-rate of 125kbits/s and each message has 7 data bytes. 

Message M1 is the Reference message with system data within the message and M2 is 

a normal data message in the TTCAN network. 

If the statistical approach holds true from Example 3, the optimum point for message 

transfers is when the standard deviation is at its minimum. This point is the lowest 

part of the standard deviation curve. 

Appendix 2 shows all message sets developed from Example 4. The data was 

analysed in MATLAB and a graph produced, which is shown in Figure 3.13. From 

the graph, it can be ascertained that the optimum point to send a message would be at 

the minimum standard deviation. It can also be seen that any of the following points 

could be the optimum; 5ms, 15ms, 25ms, 35ms, 45ms or 55ms. The scheduling 

problem in Example 4 had been optimised by inspection in Figure 3.11 and the time 
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slot for message M2 coincides with one of the values calculated by this statistical 

method at 15ms. 

 

Figure 3.13: Graph Developed with MATLAB for Example 4 

 

Again, the same peculiarities appear in the graph for Example 4 (Figure 3.13) as in 

the graph for Example 3 (Figure 3.12). The “mean” in this instance changes from 11 

to 11.2 when two messages are transmitted in the same period of time, as in message 

set 0, 10, 20, 30, 40, 50 and message set 60. These points on the graph equate to the 

Reference Message. Again, the standard deviation is at its maximum when two 

messages are to be transmitted in the same instance and the standard deviation is at its 

minimum value when it is the optimum time to transmit a message. 

3.3.3 Is There a Trend? 

Examining the results of Example 3 and Example 4 it seems a trend or set of rules are 

starting to be formed, namely: 

1. Develop all possible message sets from the data supplied. 

2. Calculate the Mean for each message set. 

3. Calculate the Standard Deviation for each message set. 
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4. If the Mean increases in value sharply to a maximum, then it is likely that two 

messages have been scheduled to be transmitted at once. 

5. The point at which the Standard Deviation is at its maximum it is also likely to 

be the position where more than one message is scheduled to be transmitted. 

6. When the Standard Deviation is at its minimum value, this is the optimum 

position for transmitting the data message or messages. 

7. The Mean and Standard Deviation are cyclical throughout the message set. 

 

These set of rules have only been developed by generating two SMs with two 

messages each. A third test set will be generated using the above rules for Example 5 

in order to determine if the rules hold true. 

 

Example 5: Two CAN standard messages with periods of 20ms and 25ms 

respectively each operating on a bus with a baud-rate of 125kbits/s and each message 

has 7 data bytes. Message M1 is the Reference message with system data within the 

message and M2 is a normal data message in the TTCAN network. 

 

Figure 3.14: Graph Developed with MATLAB for Example 5 
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Appendix 3 shows all developed message sets from the data in Example 5. This data 

was developed in the same manner as for Examples 3 and 4. It appears to exhibit the 

same traits with the change in Mean from 10.11 to 10.22. The standard deviation’s 

maximum value coincides with the maximum value of the mean. This should be the 

position where two messages could be transmitted at once if the message set was 

implemented. The minimum value of the standard deviation is flat, for example, 

between 2ms and 3ms. It was felt that this problem occurred due to the time slots been 

at 1ms intervals (Figure 3.14). 

Part of the graph was redrawn with intervals of 0.5ms (Figure 3.15), but only covers 

the first 10ms of the message sets. This clearly shows that the optimum time for 

message M2 is to start at 2.5ms or 7.5ms and that maximum mean and maximum 

standard deviation occur at 5ms. All the rules that were stated at the beginning of this 

section hold true for Example 5. 

 

Figure 3.15: Graph for Example 5 over the first 5ms 
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3.4 Statistical Software Scheduler Development 

3.4.1 Introduction 

This section will seek to find a software solution to the Statistical Scheduler. As can 

be seen in Appendix 3, even with just two messages in the SM, there was a possible 

100 different message sets available. The 100 message sets were developed by the use 

of Microsoft Excel and imported into MATLAB in order to graph these results. This 

was extremely time consuming. The number of possible message sets to be developed 

is dependant on two factors; the LCM of the message periods and the number of 

actual messages in the SM. 

3.4.2 Software Design 

For the software to be useable it must be able to complete the following steps: 

1. Allow user input of data. 

2. Develop all possible message sets from the data supplied. 

3. Calculate the mean for each message set. 

4. Calculate the standard deviation for each message set. 

5. Find the maximum standard deviation of all developed message sets. 

6. Display which message set exhibits the maximum standard deviation.  

7. Find the minimum standard deviation of all developed message sets. 

8. Display which message set exhibits the minimum standard deviation. 

3.4.2.1 Programming Language 

Several programming languages were investigated in order to develop the Statistical 

Scheduler. Amongst these were Microsoft VB 2005, Visual C# 2005, Visual C++ 

2005, and Sun Micro Systems Java. 

It was decided to use Microsoft VB 2005 Express Edition as it is a free tool which 

offers an easy to learn language [41-43] and enables the Rapid Application 

Development (RAD) of Graphical User Interface (GUI) applications. 

3.4.2.2 Number of Message Sets to Be Developed 

As shown in Example 4, 60 message sets were developed (Appendix 2). This was in 

spite of the Reference message having a time period of 20ms. As was evident in 

Examples 3, 4, and 5, there is symmetry to the data values and graphs. Taking the 

examples above, the same answers could have resulted, had the mean and standard 
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deviation only been found from one Reference message to the next in the SM. In 

Example 4, this would mean building only the first 20 message sets and therefore, a 

reduction of 67% in the workload. 

 

Example A: If a TTCAN SM has to be developed with a Reference message M1 and 

two data messages M2 and M3 with periods of 20ms, 30ms, and 40ms respectively. 

i) Calculate the number of message sets possible, using the full SM. 

ii) Calculate the number of message sets possible, using the time frame from one 

Reference message to the next. 

First, find the LCM. 

SMsize = LCM 

 

LCM {20, 30, 40} = 120 

 

Since the Reference message is always set at zero time it has no effect on the 

combinations of possible message sets, but the data messages have, therefore: 

 

a) Take the number of periodic messages, in this example 3 and subtract 1: 

n = Messagestotal – 1 

 

3 – 1 = 2 

 

b) Possible number of different message sets in a given SM, in this case 120, it 

can be found by: 

QMessage_sets = SM
n
 

 

14400 = 120
2 

 

c) If , as stated above, we use only span from one Reference message to the next 

we get: 

QMessage_sets = M
n
 

 

400 = 20
2 
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d) Percentage saving on processing time: 

 

100*)
14400

400
1(%2.97 -=  

 

It can be seen form Example A that if the full SM is used, 14,400 message sets will be 

built and evaluated, whereas if the period between Reference messages is used, only 

400 possible message sets are available. By using only the period times between 

Reference messages, the processing time can be reduced by over 97% for the example 

above. 

3.4.2.3 Software Flow Chart 

Figure 3.16 shows the flow chart that was developed prior to writing of any code. It 

shows the sequence of events that are required to produce the optimised schedule. 

 

Figure 3.16: Flow Chart for Development and Evaluation of TTCAN Message Sets 
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3.4.2.4 Program Flow of the Statistical Scheduler 

Once the user executes the application software (Figure 3.17), the message periods 

have to be input into the application.  

When all message periods are entered including the Reference message (Appendix 4, 

lines 31 to 45), the user presses the button marked “Press to Built System Matrix” 

(Figure 3.17). The application now sorts the message periods in ascending order, 

displaying them in the window marked “Message Periods” on the GUI. It proceeds to 

calculate the LCM of all message periods, as this determines the size of the SM and 

displays this in the window marked “LCM”. 

 

 

Figure 3.17: Statistical Scheduler 

 

The application next calls a function for building of message sets, but this function is 

dependant on the number of message periods that the user originally input. This 

application is only suitable for 2, 3, or 4 different message periods, but could be 

expanded to accommodate additional message periods.  
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The scheduler starts the process of building all message sets for the required number 

of message periods and uses the range from one Reference message to the next 

Reference message as shown in Figure 3.18. Example B shows the process required to 

find all possible SMs and develop them. 

 

Example B: Find the first 5 message sets that are schedulable without zero crossing if 

the Reference message period is 20ms and Data Message A and B have message 

periods of 30ms and 40ms respectively.  

Figure 3.18 shows the layout of the periodic messages. The Reference message will 

always start at time zero and the next Reference message will be at 20ms. If message 

A and B both start at zero time, we will have “zero crossing” at time zero; in other 

words a collision of messages will take place on the TTCAN network.  

 

 

Figure 3.18: Finding All Possible SMs 

 

It is clear that only the Reference message can be sent at time zero and that messages 

A and B will have to be sent at different times. Taking this in to account the first 

occasion that a useable message set arises is when the Reference message is sent at 

time zero, message A is sent at time 1ms and message B is transmitted at 2ms. This is 

the start position for the three messages and the message set can now be developed as: 
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Reference Message Transmitting time (ms) = 0, 20, 40, 60, 80, and 100  

Message A Transmitting time (ms) = 1, 31, 61 and 91 

Message B Transmitting time (ms) = 2, 42, and 82 

 

The actual message schedule for message set 1 is: 

 

Message set 1 = 0R, 1A, 2B, 20R, 31A, 40R, 42B, 60R, 61A, 80R, 82B, 91A, 100R 

 

Where: MR = Reference Message, MA = Message A and MB = Message B. 

 

The messages are structured in the above format within the software application to 

ensure that zero crossings are recognised (Appendix 4 lines 347 to 464). Message B is 

now incremented in 1ms intervals to obtain the other four SM. Therefore the other 

four message sets are: 

 

Message set 2 = 0R, 1A, 3B, 20R, 31A, 40R, 43B, 60R, 61A, 80R, 83B, 91A, 100R 

Message set 3 = 0R, 1A, 4B, 20R, 31A, 40R, 44B, 60R, 61A, 80R, 84B, 91A, 100R 

Message set 4 = 0R, 1A, 5B, 20R, 31A, 40R, 45B, 60R, 61A, 80R, 85B, 91A, 100R 

Message set 5 = 0R, 1A, 6B, 20R, 31A, 40R, 46B, 60R, 61A, 80R, 86B, 91A, 100R 

 

If the application finds a zero crossing, the calculating of the mean and standard 

deviation are not completed with that particular message set, but the data is displayed 

within the GUI (Appendix 4 lines 462 to 492). 

If the message set is useable (no zero crossing) then the application will calculate the 

mean (Appendix 4 lines 497 to 502), followed by the standard deviation (Appendix 4 

lines 503 to 510). The results of these calculations are written to the GUI and 

displayed in the window called “All usable message sets, etc” (Appendix 4 lines 511 

to 515). 

The software locates and displays the mean, the maximum and minimum standard 

deviation, and the start location of the messages in the “Maximum and Minimum 

Standard Deviation” window. The next stage of the process is to create a “.csv” file 

that can be used for further data analysis by applications such as Microsoft Excel or 

MATLAB.  
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Figure 3.19 shows the results from message periods 20ms and 30ms. The user can see 

clearly the following data when the application has completed its calculations: 

• Number of messages input. 

• Smallest message period (normally the Reference message). 

• Calculated LCM, which is the length of the SM. 

• The message periods for all messages input for calculation. 

• It displays which message times will cause a zero crossing. 

• Displays the Mean,  the maximum and minimum Standard Deviation 

• It displays all useable message sets together with their Mean, the maximum 

and minimum Standard Deviation together with the start times of the message.  

• The user can further use the data that is made available on the hard drive of 

his/her computer in the form of a “.csv” file 

 

 

Figure 3.19: Message Schedule for 20ms and 30ms Messages 

 

It can be seen in Figure 3.19, that the maximum standard deviation is 6.99 (correct to 

two decimal places) and the minimum standard deviation is 6. Using the minimum 
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standard deviation ensures the largest possible arbitration window size, which 

provides the optimum real-time performance. If we use the largest standard deviation, 

there will be two TTCAN messages broadcast consecutively and this will produce the 

worst real-time performance. 

Appendix 5 shows the .csv file, which was generated by the message periods, used in 

Figure 3.19. This file was imported into MATLAB [40] and used to generate the 

graph in Figure 3.20. It shows the optimum transmitting point of 5ms for the message 

with a period of 30ms. 

 

Figure 3.20: Optimum Position for Message Periods 20ms and 30ms 

 

Implementation of the message set can be seen in Figure 3.21, and shows the smallest 

arbitration window to be 4ms.  

If the 30ms message period is decrement from its present position by 1ms, the 

smallest arbitration window will now be 3ms down from 4ms. If the same message is 

incremented by 1ms from its present position, it will also leave the message set with 

the smallest arbitration window of 3ms. Therefore, the present position is optimum.  
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The Statistical Scheduler also found another start position with the same standard 

deviation at the 15ms slot. This second position offers the same optimisation and, as 

stated before, there can be more than one optimum position in a message set. 

 

 

Figure 3.21: Implementation of Figure 3.19 

 

3.5.1 Extended Testing with Three Periodic Messages 

Example 6: Three CAN standard messages with periods of 20ms, 30ms and 40ms 

respectively, operating on a bus with a baud-rate of 125kbits/s and each message has 

7 data bytes. Message M1 is the Reference message with system data within the 

message and M2 and M3 is a normal data messages in the TTCAN network. 

 

Longest message duration: 

bits

bitsbits

sec

rateBaud

StuffbitsLength_Message
t

+
=  

 

ms944.0
125000

18100
=

+
 

Length of the SM: 

LCM (20, 30, 40) = 120ms 
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Number of Triggers in SM: 

∑=

N

i iM

)M(LCM
Triggers  

 

13
40

120

30

120

20

120
=++  

 

Using Equations 3.1 and 3.2 above will not give us a solution to this problem, as the 

message periods are different. In addition, the number of message sets to be 

developed will be: 

QMessage_sets = M
n
 

 

21
2
 = 441 

 

Figure 3.22: Graphed Data for Message Periods 20ms, 30ms, and 40ms 

 

The Statistical Scheduler will be used and the answer analysed by MATLAB. 

Appendix 6 shows the complete output from the Statistical Scheduler for the message 
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periods in Example 6. It can be seen that there was 441 message sets developed along 

with their statistical data. The GUI also output a .csv file, which was manipulated in 

MATLAB to graph all data as before, and is shown in Figure 3.22. The graph looks 

somewhat different to the previous graphs, but in this instance, we are using three 

message periods instead of two. 

The graph is symmetrical as before, but differs in that it forms a curve. Although there 

are 441 iterations, the actual duration in time is from one Reference message until the 

next which is 21ms including both Reference messages. This gives us a possible 21 

different message combinations per millisecond. 

Inspecting Figure 3.22, it shows the minimum standard deviation to be approximately 

the 215 message set to be developed. Figure 3.23, shows clearly that the minimum 

standard deviation occurred when the start time for the message of period 20ms is 

0ms in the SM. The periodic message of 30ms should start at 5ms in the SM, and the 

periodic message of 40ms should start at 10ms in the SM. This coincides with 

message set 216 in the “All Usable Message sets…….” of the GUI. 

 

 

Figure 3.23: GUI Output for Message Periods 20ms, 30ms, and 40ms 
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Example 7: Four CAN standard messages with periods of 20ms, 30ms, 40ms, and 

50ms respectively each, operating on a bus with a baud-rate of 125kbits/s and each 

message has 7 data bytes. Message M1 is the Reference message with system data 

within the message and M2, M3, and M4 are normal data messages in the TTCAN 

network. 

  

Longest message duration: 

bits

bitsbits

sec

rateBaud

StuffbitsLength_Message
t

+
=  

 

ms944.0
125000

18100
=

+
 

 

Length of the SM: 

LCM (20, 30, 40, 50) = 600ms 

 

Number of Triggers in SM: 

∑=

N

i iM

)M(LCM
Triggers  

 

77
50

600

40

600

30

600

20

600
==++  

Using Equations 3.1 and 3.2 above will not give us a solution to this problem, as the 

message periods are different. Also the number of message sets to be developed will 

be: 

QMessage_sets = M
n
 

 

9261 = 21
3
 

 

The Statistical Scheduler was used to develop all message sets for the message 

periods stated in Example 7. The output data from the scheduler was again used in 

MATLAB to construct the graph in Figure 3.24. 
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Figure 3.24: Graphed Data for Message Periods 20ms, 30ms, and 40ms 

 

The graph is again symmetrical with minimum and maximum points of standard 

deviation. The minimum standard deviation occurs in two places on the graph. The 

first at next message set 2000 and again near message set 6400. The optimum 

message set was at calculated as message set 1981. The optimum start position in the 

SM for the for the periodic message of 20ms is 0ms, the start point of the periodic 

message of 30ms is at 6ms in the SM, the message of period 40ms should start at 

10ms in the SM, and the periodic message of 50ms message duration should begin at 

4ms in the SM (Figure 3.25). 
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Figure 3.25: GUI Output for Message Periods 20ms, 30ms, 40ms, and 50ms 

 

The output of message sets from the Statistical Scheduler for the message periods in 

Example 7 were not included in the Appendix, as they would fill in excess of 300 

pages. 

 

3.6. Summary 

This chapter has examined the drawbacks associated with both stochastic and 

heuristic schedulers. These problems mainly stem from either trying to make the best 

schedule by virtue of using the best probability as with the stochastic scheduler or by 

endeavouring to find the best solution by trial and error in the case of heuristic 

scheduler. With both types of scheduling, there is no way of checking the 

optimisation of two different usable message sets.  

Surely with today’s computing power there must be a method of building all message 

sets and then calculating the optimised in relation to arbitration window size, which 

has a direct effect on real-time performance.  
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This thesis has shown that there is a solution available for the building of message 

sets from any group of periodic messages.  The developed software is capable of 

excluding all message sets that have zero crossing. If these message sets were to be 

included in the final result, they would be a cause of jitter for the TTCAN network.  

Finally, the Statistical Scheduler can find the message set with the largest arbitration 

windows by the use of standard deviation. It can therefore guarantee the optimum 

spontaneous response from any set of periodic messages used and therefore improve 

the real-time performance of the TTCAN network. 
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Chapter 4: Implementation and Testing 
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4.1 Introduction 

This chapter seeks to confirm that the Statistical Scheduler introduced in the previous 

chapter can develop a TTCAN network that will return the optimum results when 

implemented in hardware. Testing was performed on a physical TTCAN network to 

prove that the actual optimisation levels predicted by the Statistical Scheduler can be 

actually attained once invoked in hardware.  

The chapter is laid out in the following sections: 

• Section 4.2 deals with the hardware implementation of the system, which is 

built around four CAN nodes 

• Section 4.3 illustrates the procedure involved in writing the embedded C 

code for the TTCAN network. 

• Section 4.4 details the testing procedure including the test results. 

 

4.2.1 Hardware Implementation 

Hardware implementation was divided into two areas: 

• Physical Interface 

• TTCAN nodes 

 

4.2.1.1 Physical Interface 

A twisted pair of cables is the normal medium used for the connection of nodes in a 

CAN network. Cable propagation delay and skew are factors that effect the operation 

of this physical medium.  

Propagation delay is the time taken for a signal to travel the length of a cable. Large 

propagation delays lead to bus errors, which ultimately cause malfunctions within the 

network system. 

Prior to building the network, it was decided to test the wire being used in the network 

to ensure that it conformed to the CAN standard ISO 11898-2. Figure 4.1 shows the 

inherent propagation delay in the oscilloscope and leads when tested, which was 10ns. 
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Figure 4.1: Propagation Delay of Oscilloscope Channel 1 and Channel 2 Leads 

 

Figure 4.2 shows the result from a piece of CAN cable of length 1.5m being tested for 

propagation delay. The delay shown is 16 ns, of which 10 ns is due to the equipment 

leads, as shown in Figure 4.1.  

 

 

Figure 4.2: Propagation Delay for 1.5m of CAN Cable. 
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This leaves an actual propagation delay per metre of: 

 

ns/m4=
5.1

10-16  

 

ISO 11898 demands a propagation delay < 5 ns/m; therefore, the cable tested was 

within the specified value. 

Skew is the difference in delay between the data signal travelling along a pair of 

wires. In the case of the CAN network this is the difference between the CAN bit 

arriving at the receiver on CAN_H and CAN_L. A large skew reading indicates a 

considerable delay between the data arriving on CAN_High and CAN_Low and this 

can lead to bus errors. 

Skew delay should be zero, but as seen in Figure 4.3, the skew is 19ns. This is made 

up of the actual 19 ns shown on the oscilloscope but minus the inherent propagation 

delays in the equipment, which is 10 ns.  

 

 

Figure 4.3: Testing Network Cable Skew 

This leaves an actual skew: 

 

19-10 = 9ns 
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The skew of 9ns was due to different lengths of cable for CAN_H and CAN_L. All 

cables used in the TTCAN network were adjusted so that the skew result was always 

zero. 

 

4.2.1.2 Embedded Tool Chain 

It was decided to develop CAN nodes using the minimum number of components 

possible so that interfacing problems would be minimised. The next stage of the 

process was to decide whether to use an 8 or 16-bit platform. Other than the fact that a 

16-bit device could handle a Standard CAN identifier in one operation of the CPU 

there is no advantage to using such a device for testing in this research. It was 

therefore decided to use an 8-bit device. Atmel, Freescale, and Microchip all produce 

8-bit devices. Further research was carried out in order to determine the most suitable 

device for the project. It was eventually decided to use Microchip as they had the 

Microchip PIC18F2480, which included a CAN v2.0B interface and could be 

interfaced to their MCP2551 CAN transceiver.   

The development tool chain was investigated next and three manufacturers were 

identified: Microchip, Custom Computer Services and MikroElektronika. The 

decision was made to use the MikroElektronika development environment for the 

following reasons: 

• They offered a fully featured development board. 

• The development board included a USB on board programmer 

• A CAN daughter board was available. 

• The compiler provided was ANSI C compatible. 

• Cost 

 

4.2.1.3 Equations for Propagation Delay and Oscillator Tolerance 

To ensure effective communication, the minimum requirement for a CAN network is 

that two nodes, each at opposite ends of the network with the largest propagation 

delay between them, and each having a CAN system clock frequency at the opposite 

limits of the specified frequency tolerance, must be able to correctly receive and 

decode every message transmitted on the network. This requires that all nodes sample 

the correct value for each bit [15, 44]. 
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The minimum time for the propagation delay segment to ensure correct sampling of 

bit values is given by: 

 

tPROP_SEG = tProp (A, B) + tProp (B, A) 

(4.1) 

Where nodes A and B are at opposite ends of the network, i.e. the propagation delay 

is a maximum between nodes A and B.  

 

tPROP_SEG = 2(tBus + tTx + tRx) 

(4.2) 

Where tBus is the propagation delay of the signal along the longest length of the bus 

between two nodes and tTx is the propagation delay of the transmitter part of the 

physical interface and tRx is the propagation delay of the receiver part of the physical 

interface. If the propagation delay of the transmitters and receivers on a network is not 

uniform, the maximum delay values should be used in the equation. 

The minimum number of Time Quanta that must be allocated to the PROP_SEG 

segment is therefore: 

PROP_SEG = Round_UP (
Q

PROP_SEG

t

t
) 

(4.3) 

Where the function ROUND_UP( ) returns the argument rounded up to the next 

integer value [45]. 

The oscillators in a CAN network will drift due to a change of temperature, a change 

in voltage, age, etc. This will cause the oscillators at each node to operate at slightly 

different frequencies. In the absence of bus errors due to, for example electrical 

disturbances, bit stuffing guarantees a maximum of 10-bit periods between re-

synchronisation edges (5 dominant bits followed by 5 recessive bits will then be 

followed by a dominant bit). This represents the worst-case condition for the 

accumulation of phase error during normal communication. The accumulated phase 

error must be compensated for by re-synchronisation following the recessive to 

dominant edge and, therefore, the accumulated phase error must be less than the 

programmed Re-synchronisation Jump Width (tRJW).  
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The accumulated phase error is due to the tolerance in the CAN system clock, and this 

requirement can be expressed as: 

(2 * ∆f) * 10 * tNBT < tRJW 

(4.4) 

However, real systems must operate in the presence of electrical noise which may 

induce errors on the CAN bus. In the event of an error being detected, an Error Flag is 

transmitted on the bus. In the case of a local error, only the node that detects the error 

will transmit the Error Flag and all other nodes receive the Error Flag and then 

transmit their own Error Flags as an echo. If the error is global, all nodes will detect it 

within the same bit time and will, therefore, transmit Error Flags simultaneously. A 

node can, therefore, differentiate between a local error and a global error by detecting 

whether there is an echo after its Error Flag. This requires that a node can correctly 

sample the first bit after transmitting its Error Flag. 

An Error Flag from an Error Active node consists of 6 dominant bits, and there could 

be up to 6 dominant bits before the Error Flag, if, for example, the error was a stuff 

error. A node must, therefore, correctly sample the 13th bit after the last re-

synchronisation [45]. This can be expressed as: 

 

(2 * ∆f) * (13 * tNBT - tPHASE_SEG2) < MIN (tPHASE_SEG1, tPHASE_SEG2) 

(4.5) 

where the function MIN ( ) returns the smaller of the two arguments. Thus, there are 

two clock tolerance requirements, which must be satisfied. It should be noted that at 

high bit rates (small Nominal Bit Time), the CAN clock tolerance is specified over a 

relatively short time: 10
th

 tNBT in the case of Equation 4.4, and 13
th

 tNBT in the case of 

Equation 4.5. This is important for systems that derive the CAN clock from a Phase 

Locked Loop circuit for which the relative accuracy decreases over short time periods 

due to output jitter. 

The selection of bit timing values involves consideration of various fundamental 

system parameters [46]. The requirement of the PROP_SEG value imposes a trade-off 

between the maximum achievable bit rate and the maximum propagation delay, due to 

the bus length and the characteristics of the bus driver circuit. The maximum 

achievable bit rate is also influenced by the tolerance of the CAN clock source. The 

highest bit rate can only be achieved with a short bus length, a fast bus driver circuit 

and a high-frequency high-tolerance CAN clock source. In many systems, the bus 
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length will be the least variable system parameter, which will impose the fundamental 

limit on bit rate. However, the actual bit rate chosen may involve a trade-off with 

other system constraints, such as cost [45]. 

4.2.1.4 Calculation of Bit Timing and Oscillator Tolerance 

The following  calculations relate to the bit segments required for the TTCAN network 

being developed in this thesis [44]. 

The following are the constraints of the proposed system: 

Bit rate = 125k bit per second 

Bus length = 4m 

Bus propagation delay = 5 x 10
-9

 sm
-1 

Physical Interface (MCP2551) transmitter plus receiver propagation delay = 150ns 

MCU oscillator frequency = 8MHz 

 

Step 1: Physical delay of bus = 4 x 5 x 10
-9

 = 20ns 

 

tPROP_SEG = 2(20ns + 150ns) = 340ns 

 

Step 2: A prescaler value of 8 gives a CAN system clock of 1MHz and a TQ of 

1000ns.  

8000 / 1000 = 8 time TQ bit. 

 

Step 3:  

PROP_SEG = Round_UP )
1000ns

340ns
( ⇒ 1 

 

Step 4: From 8 TQ per bit, subtract 1 for PROP_SEG and 1 for SYNC_SEG. This 

leaves 6 TQ, so PHASE_SEG1 = 3 and PHASE_SEG2 = 3. 

 

Step 5: RJW is the smallest of 4 and PHASE_SEG1, so RJW will be 3. 

Step 6: 

∆f = 
NBT*20

RJW  = 
8*20

3  = 0.01875 
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∆f < 
)2SEG_PHASENBT*13(2

)2SEG_PHASE,1SEG_PHASE(M  ⇒ 
)38*13(2

3

-
 = 0.01485 

 

The required oscillator tolerance is the smaller of these values, i.e. 0.01485 (1.485%).  

In summary:   

Prescaler = 8 

Nominal Bit Time = 8 

PROP_SEG = 1 

PHASE_SEG1 = 3 

PHASE_SEG2 = 3 

RJW = 3 

Oscillator tolerance = 1.485% 

4.2.1.5 Node Implementation 

Four nodes were constructed on veroboard, using the Microchip PIC18F2480 

microcontroller with on-board CAN. The CAN transceivers were the Microchip 

MCP2551 and the oscillators conformed to the calculations made in section 4.2.1.5. 

Other items to complete the node included a voltage regulator and smoothing 

capacitors. All components were wire wrapped, as required. A diagram of the 

complete node can be viewed in Appendix 7. 

4.3.1 Embedded Software Development 

The embedded software for the testing was developed using a version of 

MikroElektronika ‘C’, call MikroC [47]. A software flow chart for the Reference 

Message node is shown in Figure 4.4. 

The program starts by loading the timer registers with values that will cause an 

interrupt at 20ms (Appendix 8 lines 20 and 21). The prescaler for Timer0 and 16-bit 

mode are executed (Appendix 8 line 22). All CAN registers are set to the values as 

calculated in section 4.2.1.5 (Appendix 8 lines 34 to 43 inclusive). 

Following this, the CAN is set to “normal mode” (Appendix 8 line 44). All data bytes 

of the CAN message are loaded with default values and the ID is given to the 

Reference message, as is its DLC (Appendix 8 lines 45 to 52). Timer0 interrupt is set 

to expire at 20ms (Appendix 8 line 53).  
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Figure 4.4: Embedded Software Flow Chart 

 

In Appendix 8, lines 54 to 68 is the main loop where the system waits for the interrupt 

from Timer0 and checks to see if the number of interrupts exceeds 30, as this is the 

number of interrupts that occur in the SM of 600ms. 

The program shown in Appendix 8 is one of nine such programs that were developed 

while testing the various message sets. 

4.4.1 Testing Procedure 

Embedded software was written so that  three different message sets could be tested, 

namely: 

• A TTCAN network with two nodes with the Reference message period was set 

at 20ms and another message was used with a period of 30ms. Both messages 

were capable of carrying 7 bytes of data. 
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•  A TTCAN network with three nodes, the Reference message with period 

20ms, and two other messages with periods of 30ms and 40ms. All messages 

were capable of carrying 7 bytes of data. 

• A TTCAN network with four nodes with the Reference message period of 

20ms and three other messages with periods of 30ms, 40ms and 50ms 

respectfully. All messages are capable of carrying 7 bytes of data. 

 

4.4.1.1 Data Acquisition 

CAN data acquisition was undertaken by use of CANalyzer. This tool is the 

automotive research and design preferred tool for analysis of any CAN network [48]. 

The tool was set to ‘listen only’ mode so it would not interfere with the TTCAN 

network during data collection. 

Figure 4.5 shows the layout of the GUI CANalyzer. It has five windows which are 

used for interpreting all data on the CAN network. 

The “Write” window displays statistical data at the end of a testing session that shows 

the average message periods, with their minimum and maximum transmission periods 

and the standard deviation from the mean. It also exhibits the number of messages 

processed during the test, together with the start and stop time. This data can be saved 

directly to a “.txt” file. 

The “Statistics” window allows the user to check at a glance the message rates on the 

bus for each individual message in the form of a bar graph. Both transmitted and 

received messages are displayed in the same window. 

The “Graphics” window displays individual messages rates against time. In Figure 4.5 

it is used to collect data about error messages. It is set to give a cumulative response 

over time. 

The “Bus Statistics” window provides a real-time view of the CAN network. It gives 

information relating to the actual load and peak load on the bus, total number of CAN 

frames on the network, number of error frames generated, etc. 

The “Trace” window presents streamed information about message activity on the 

network. Individual components of the CAN message are displayed separately and all 

messages are time stamped in real-time. The output from this window cannot be 

directly saved to a file, it can only be “cut and pasted” into another document as a 

“.txt” file.    
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Figure 4.5: CANalyzer 

 

The time stamped information for all messages was very useful for determining the 

size of the arbitration windows between messages. The data needed to be extracted 

from the “.txt” file and  converted into a “.csv” file for statistical analysis in Microsoft 

Excel or MATLAB. CANalyzer does not provide a function to generate or export 

“.csv” files from this window. It was necessary to implement in software a parser, 

which would deal with this extraction process. This was accomplished by use of VB 

2005 Express Edition (Figure 4.6). 

 

 

Figure 4.6: Parser for CANalyzer 
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4.4.1.2 Test 1 

It was decided to initially test a network having nodes with two different messages. 

The message structure to be used was the same as in Figure 3.19, where the Reference 

message had a period of 20ms and the data message was of period 30ms. Figure 3.19 

shows that the optimum message strategy is to send message of period 20ms at 0ms 

and message of period 30ms at 5ms. The calculated mean for the message set was 12 

and a standard deviation 6. 

These message periods were invoked in hardware by the use of software similar to 

that shown in Appendix 8.  

The TTCAN network was tested using CANalyzer as seen in Figure 4.7. The Write 

window shows the duration of the test was 152 seconds, while the total messages 

processed were 12,623. The average message periods for the 20ms and 30ms 

messages were 20.005ms and 30.007ms respectively. The exported document from 

this Write window can be seen in Appendix 9. 

It can be seen in the Bus Statistic’s window Figure 4.7 that the total Bus load was 

7.71%. The Trace window stores a maximum of 5000 messages regardless of how 

many messages are dealt with. The Graphics window shows that errors on the 

TTCAN network were zero. 

The contents of the Trace window was processed through the parser and then 

evaluated in Microsoft Excel. The data from the Trace window is not documented in 

this thesis as it exceeds 100 pages. 

Microsoft Excel derived the mean of the messages as 12.00131304 compared to 12 

for the Statistical Scheduler and the standard deviation was 5.999744 compared to 6 

for the Statistical Scheduler. The above results show a slight difference between the 

values that were determined by the Statistical Scheduler and those found under 

testing. The error for the mean is 0.0109% and for the standard deviation is 0.0042%.  

The discrepancies occurred due to the TTCAN network being implemented at level 1 

(software). This can be seen in the report in Appendix 9, where the mean time for 

each message is not exactly 20ms and 30ms, but 20.005ms and 30.007ms 

respectively. 
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Figure 4.7: Data Acquisition 20ms and 30ms Message Periods 

 

4.4.1.3 Test 2 

The second test is based around Example 6 in section 3.5.1. The Statistical Scheduler 

gave an optimum message strategy, which sends message of period 20ms at 0ms and 

message 30ms at 5ms and message 40ms at 10ms. This gives a mean for the message 

set of 9.2307 and a standard deviation of 4.742. 

Again, embedded software was written to implement this message scheme.  

Appendix 10 shows the data derived from the Write window. 20,036 messages were 

sent across the network, with a busload of 9.98%. The test took 186 seconds to 

complete and the 5000 messages saved in the Trace window were again parsed and 

imported into Microsoft Excel for evaluation. The results from Microsoft Excel 

showed a mean of 9.2324 and a standard deviation of 4.7425. The Statistical 

Scheduler calculated the mean to be 9.2307 and the standard deviation to be 4.7419. 

The error between the Statistical Scheduler and Test 2 for the mean was 0.0184% and 

the standard deviation was 0.0126%. 

Again, the discrepancies are due to the TTCAN network being implemented in level 1 

(software). This can be seen in Appendix 10, where the mean time for each message 



 

  121 

is not exactly 20ms, 30ms and 40ms, but 20.005ms, 30.007ms and 40.01ms 

respectively. 

 

 

Figure 4.8: Data Acquisition 20ms, 30ms, and 40ms Message Periods 

 

4.4.1.4 Test 3 

The third test was based on Example 7 in section 3.5.1. The Statistical Scheduler gave 

an optimum message strategy, requiring the sending of message of period 20ms at 

0ms, message of period 30ms at 6ms, message of period 40ms at 10ms and message 

of period 50ms at 4ms. The scheduler gave a mean for the message set of 7.7922 and 

a standard deviation of 4.5308. Again, embedded software was written to implement 

the message set.  

The Write window data is available in Appendix 12. The test was conducted for 158 

seconds, with a busload of 11.91%. This allowed in excess of 20,000 messages to use 

the bus. Again, the Graphics window shows zero cumulative error frames. 

The 5000 messages stored in the Trace window were again analysed in Microsoft 

Excel, where the mean was found to be 7.7981 and the standard deviation was 4.5321. 
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The error between the Statistical Scheduler and Test 3 for the mean was 0.0012% and 

for the standard deviation was 0.0286%. Again, the discrepancies are due to the 

TTCAN network being implemented in level 1 (software). The mean time for each 

message is not exactly 20ms, 30ms, 40ms and 50ms, but 20.011ms, 30.016ms, 

40.01ms and 50.027 respectively. 

 

 

Figure 4.9: Data Acquisition 20ms, 30ms, 40ms, and 50ms Message Periods 

 

4.4.1.5 Testing for Errors 

Tests 1 to 3 were limited to approximately 20,000 message frames, and no error 

frames were generated during this period. Figure 4.10 shows the output windows of 

CANalyzer while extended testing for message errors was conducted. 

The message set used was taken from Test 3, but as can be seen from the Bus 

Statistics window the system was monitored while in excess of 250,000 message 

frames were transmitted. The Graphics window shows the time to be at approximately 

2000 seconds, but during this time no error messages occurred. 
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Figure 4.10: Extended Testing for Errors 

 

4.5.1 Summary 

The chapter explains the methodology required to successfully implement a TTCAN 

network in hardware. It began by verifying the propagation delay and skew of the 

physical medium used to connect all nodes. An illustration was given of the problems 

associated with propagation delay and how oscillator tolerances of different nodes can 

affect the CAN network. Included in the chapter is the calculation for CAN Bit timing 

and it explains the methods used for compensation of the oscillator tolerance. The 

design process for the hardware was considered together with the selection and 

integration of the software tool chain. 

The embedded software was reviewed and example code for one node was given in 

the Appendix. The testing procedure was examined and the data acquisition tool 

discussed. The problems associated with the data acquisition tool were scrutinised and 

strategies were devised to surmount those difficulties, which included the 

development of a software parser. 

The testing phase was documented and it showed that the physical test scenarios 

virtually attained the same results as the Statistical Schedule. Any inconsistencies in 

message timing were caused by the level 1 implementation of TTCAN network.  
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Chapter 5: Conclusions  
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5.1 Introduction 

This chapter summarises the research project. Chapter One takes a historical look at 

the automotive electronics and networking systems. It sets out the reasons for 

undertaking this research and lists the benefits to be gained. 

Chapter Two investigates the CAN data link layer in detail, the physical layer, 

methods of message sending, and message scheduling algorithms.  

Chapter Three explores the problems associated with both stochastic and heuristic 

schedulers, which are presently used to implement automotive TTCAN networks. It 

examines the potential for using a mathematical model for the design and optimisation 

of a message schedule.  

Chapter Four covers the hardware implementation of level 1 TTCAN, with sections 

covering the challenges posed by propagation delays and oscillator tolerances. It 

presents the CAN bit timing of the various segments within the NBT. The embedded 

software is explained and example code is shown in the appendix. It then details the 

four test scenarios used to verify the accuracy of the message sets developed by the 

statistical scheduler and confirmed all findings. 

 

5.2 Conclusions 

Modern motor vehicles are efficient and safe when they can operate in real-time. 

TTCAN is a network topology used in modern motor vehicles, which can offer the 

potential of real-time capability providing the messages have unhindered access to the 

network.  

This research has highlighted some of the shortcomings of an event driven CAN 

system operating by arbitration only. This type of system cannot guarantee the 

delivery of low priority messages at any time and even reasonably high priority 

messages may have problems broadcasting a message if the highest priority message 

of the network uses all available bandwidth.  

An obvious improvement is TTCAN, which can ensure the transmission of all valid 

messages within a message set. All other messages, which are not included within the 

message set, are not guaranteed a time of broadcast, but rely on arbitration. These 

messages can be of low priority, such as engine rpm or could be a very high priority 

message such as engine oil pressure failure.  
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TTCAN requires a message schedule to be generated from the message periods within 

the message set. If all message periods within the message set are the same e.g. 20ms, 

it is relatively simple to develop a message set, but message periods within a message 

set are normally all different, therefore, it is much more difficult to develop useable 

message sets. 

TTCAN schedules are often generated by use of a stochastic or heuristic scheduler. 

Stochastic schedulers attempt to generate the best SM by a probability distribution. It 

then uses a ‘cost function’ to check all message sets for jitter and uses the message set 

with the least jitter. There may be several message sets with the same jitter, perhaps 

zero, but the stochastic scheduler cannot differentiate between these message sets and 

therefore, cannot tell which set is actually the most optimised, with regard to real-time 

messaging.  

Heuristic schedulers initially place all message periods on the SM, using a predefined 

method and then adjust the arbitration window sizes by trial and error. They again 

check all message sets for jitter using the cost function and again cannot differentiate 

between message sets as to their level of optimisation, with regard to real-time 

messaging. 

If the above schedulers devise a message set with three messages broadcast 

consecutively, then any spontaneous real-time message will have to wait in excess of 

the time interval of the three messages before making an attempt to broadcast its 

message. This implies that a TTCAN scheduler should attempt to place arbitration 

windows between each TTCAN message in order to achieve real-time performance. 

Also, these arbitration windows should be as large as possible to allow as many 

spontaneous messages as possible to be broadcast before the next TTCAN message is 

sent. 

This research has shown two problems associated with the stochastic and heuristic 

schedulers: 

• Neither scheduler can produce all available message sets from a group of 

periodic messages. 

• Neither scheduler has a method to verify the real-time performance of the 

SM. 
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Both problems were examined in great detail in Chapter 3 of the thesis and a system 

was devised so all possible message sets within a SM were constructed. This was 

accomplished by use of software, but requires large computational processes.  

It was shown that if two periodic messages of the same time period were used (e.g. 

20ms) in a SM then the optimum position for messages are 10ms apart. This is the 

midpoint or mean of the two messages, allowing two arbitration windows of 5ms each 

and this will give an optimum SM, with respect to real-time performance. It was 

observed if two periodic messages were of different periods the optimum position in 

the SM was not the midpoint or mean, but at a place relative to the midpoint or mean. 

If three periodic messages of the same period (e.g. 30ms) were used it was found that 

the mean period was the optimum position in the SM. If the three messages were of 

different periods then the optimum position was unclear, but it appeared to relate to a 

position relative to the mean. 

This gave the researcher a direction for further study and it was found that the 

solution lay in finding the mean and standard deviation of each message set. Once this 

was achieved the message set with the lowest standard deviation was the optimum 

message set for real-time operation.  

Additional software was written to extract the required data from all SM message sets. 

If a developed message set had two different messages within the same time period, 

this was deemed a ‘zero crossing’. A message set with zero crossing is not useable 

and was therefore excluded from statistical analysis. All other message sets were 

evaluated sequentially, calculating the mean and standard deviation. The message set 

with the lowest standard deviation is the message set with the largest average 

arbitration window size and will provide the best real-time performance. 

It was decided to confirm the Statistical Schedulers results on a physical TTCAN 

network by devising three tests.  

• Test 1: TTCAN network using two messages and two nodes. 

• Test 2: TTCAN network using three messages and three nodes. 

• Test 3: TTCAN network using four messages and four nodes. 

 

In order to complete the test plan, the following would be required: 

• A complete TTCAN network with up to four nodes. 

• Implement the optimum message sets, using level 1, TTCAN. 
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• Collect all network data with a data acquisition tool. 

• Analyse data extracted from the TTCAN network with the use of Microsoft 

Excel and MATLAB. 

 

Four TTCAN nodes were constructed for testing. All CAN cables were validated to 

ISO11898 standards for propagation delay and skew and the oscillator tolerances 

were verified. CAN bit timing was calculated and implemented. 

Embedded C software was written for all TTCAN nodes, using the optimum message 

sets developed by the Statistical Scheduler. The C code used interrupts for timing of 

all TTCAN messages; this minimised the CPU load for all nodes.  

The automotive industry’s standard tool for data acquisition for CAN networks is 

CANalyzer. This tool was used and has the ability to calculate the mean and standard 

deviation for each periodic message. CANalyzer cannot directly calculate the mean or 

standard deviation between two different periodic messages. In order to calculate the 

mean and standard deviation of a message set it was necessary  to use the  time stamp 

data from each message transmitted on the TTCAN network. This involved 

implementing a software parser, which could extract the time stamped data from 

CANalyzer. The parser then manipulated the data, and change the data file type to a 

“.csv”. It could then be imported into either Microsoft Excel or MATLAB for 

statistical analysis.   

The results from the hardware testing compared very favourably with that of the 

Statistical Scheduler as can be seen in Table 5.1. 

 

 Statistical Scheduler Hardware Testing 

 Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Test 1: 20ms, 30ms 12 6 12.0013 5.9997 

Test 2: 20ms, 30ms, 40ms 9.2037 4.7419 9.2324 4.7425 

Test 3: 20ms, 30ms, 40ms, 50ms 7.7922 4.5308 7.7981 4.5321 

Table 5.1: Statistical Scheduler v Hardware Implementation 
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The research and subsequent testing has shown that message sets without jitter often 

do not enable a system to operate in real-time and that considerable improvements in 

the real-time performance of a TTCAN network can be achieved by using the correct 

message set.  

The major drawback with both the heuristic and stochastic schedulers are that a cost 

function of zero can be attained, but the arbitration windows may not be set at the 

optimum number or size for real-time messaging. The devised statistical scheduler 

overcomes these major disadvantages by distributing the message sets in such a 

manner that allows the optimum number and size of arbitration windows for real-time 

messaging within a given message set.  

Using the message data taken from “Example 1” page 71, three message schedules 

were devised employing a stochastic scheduler, a heuristic scheduler and a statistical 

scheduler. These schedules can be seen in Figures 5.1, 5.2 and 5.3.  

 

 

Figure 5.1: Stochastic Message set devised from Example 1, page 71 
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Figure 11: Heuristic Message set devised from Example 1, page 71 

 

 

Figure 12: Statistical Message set devised from Example 1, page 71 
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Table 5.2 compares the effectiveness of real-time messaging within each schedule and 

to the number of arbitration windows available for real-time messaging. 

 

Type of 

Scheduler 

Maximum wait 

time to send 

Real-time 

Message 

Minimum time 

between 

periodic 

messages 

Maximum time 

between 

periodic 

messages 

Number of 

arbitration 

slots in 

message set 

Stochastic  6ms 0ms 18ms 8 

Heuristic 8ms 0ms 18ms 10 

Statistical 4ms 3ms 18ms 13 

Table 5.2: Comparison of Real-time Messages with different message schedules. 

 

The table shows that the maximum wait time for an arbitration slot can be as long as 

8ms; this is for the heuristic scheduler. The stochastic scheduler has a maximum wait 

time of 6ms, which is an improvement, whereas the statistical scheduler has the least 

wait time of 4ms. The minimum time between periodic messages being broadcast on 

the network, for both the stochastic and heuristic schedulers, which is 0ms. The 

minimum time between periodic messages being broadcast on a network, for the 

statistical scheduler is 3ms. All schedulers gave the same maximum time between 

periodic messages, which were 18ms. The stochastic and heuristic schedulers had 

eight and ten arbitration slots respectively, but the statistical scheduler achieved 

thirteen arbitration slots. 

The statistical message scheduler has been devised and demonstrated to produced an 

optimum message set for real-time operation on a TTCAN network and hence 

improve the results produced by stochastic or heuristic techniques. 

 

5.3 Further Research 

There are opportunities for further development of this system. It was evaluated using 

four periodic messages on four different nodes. Time constraints prevented further 

testing and the building of message sets was extremely computational, taking initially 

up to 24 hours to develop and evaluate some large SMs.  
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It was noted during the appraisal of the Statistical Scheduler that there appeared to be 

a linear correlation between message periods. This needs further investigation and if 

correct, means that the system is scaleable.  

The greatest possibility for further research lies in the investigation of a mathematical 

formula for the generation and statistical analysis of all message sets using any 

number of periodic messages forming a SM. 
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Appendix 1: Scheduling Algorithms 

1. Borrowed-Virtual-Time Scheduling (BVT) 

2. Critical Path Method of Scheduling 

3. Deadline-monotonic scheduling (DMS) 

4. Deficit round robin (DRR) 

5. Earliest deadline first scheduling (EDF) 

6. Elastic Round Robin 

7. Fair-share scheduling 

8. First In, First Out (FIFO), also known as First Come First Served (FCFS) 

9. Gang scheduling 

10. Genetic Anticipatory 

11. Highest response ratio next (HRRN) 

12. Interval scheduling 

13. Last In, First Out (LIFO) 

14. Job Shop Scheduling (see Job shops) 

15. Least-connection scheduling 

16. Least slack time scheduling (LST) 

17. List scheduling 

18. Lottery Scheduling 

19. Multilevel queue 

20. Multilevel Feedback Queue 

21. Never queue scheduling 

22. O(1) scheduler 

23. Proportional Share Scheduling 

24. Rate-monotonic scheduling (RMS) 

25. Round-robin scheduling (RR) 

26. Shortest expected delay scheduling 

27. Shortest job next (SJN) 

28. Shortest remaining time (SRT) 

29. "Take" scheduling 

30. Two-level scheduling 

31. Weighted fair queuing (WFQ) 
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Appendix 2: Example 4, System Matrix Data 

 

 M1  M2      
M

a
tr

ix
 N

u
m

b
e
r 

Message Start Times (ms) 

M
e
a
n
 

S
ta

n
d
a
rd

 D
e
v
ia

ti
o

n
 

0 0 0 20 30 40 60 11.2 7.17 

1 0 1 20 31 40 60 11 6.99 

2 0 2 20 32 40 60 11 6.57 

3 0 3 20 33 40 60 11 6.26 

4 0 4 20 34 40 60 11 6.07 

5 0 5 20 35 40 60 11 6 

6 0 6 20 36 40 60 11 6.07 

7 0 7 20 37 40 60 11 6.26 

8 0 8 20 38 40 60 11 6.57 

9 0 9 20 39 40 60 11 6.99 

10 0 10 20 40 40 60 11.2 7.17 

11 0 11 20 40 41 60 11 6.99 

12 0 12 20 40 42 60 11 6.57 

13 0 13 20 40 43 60 11 6.26 

14 0 14 20 40 44 60 11 6.07 

15 0 15 20 40 45 60 11 6 

16 0 16 20 40 46 60 11 6.07 

17 0 17 20 40 47 60 11 6.26 

18 0 18 20 40 48 60 11 6.57 

19 0 19 20 40 49 60 11 6.99 

20 0 20 20 40 50 60 11.2 7.17 

21 0 20 21 40 51 60 11 6.99 

22 0 20 22 40 52 60 11 6.57 

23 0 20 23 40 53 60 11 6.26 

24 0 20 24 40 54 60 11 6.07 

25 0 20 25 40 55 60 11 6 

26 0 20 26 40 56 60 11 6.07 

27 0 20 27 40 57 60 11 6.26 

28 0 20 28 40 58 60 11 6.57 

29 0 20 29 40 59 60 11 6.99 

30 0 20 30 40 60 60 11.2 7.17 

31 0 1 20 31 40 60 11 6.99 

32 0 2 20 32 40 60 11 6.57 

33 0 3 20 33 40 60 11 6.26 

34 0 4 20 34 40 60 11 6.07 

35 0 5 20 35 40 60 11 6 

36 0 6 20 36 40 60 11 6.07 

37 0 7 20 37 40 60 11 6.26 

38 0 8 20 38 40 60 11 6.57 

39 0 9 20 39 40 60 11 6.99 
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40 0 10 20 40 40 60 11.2 7.17 

41 0 11 20 40 41 60 11 6.99 

42 0 12 20 40 42 60 11 6.57 

43 0 13 20 40 43 60 11 6.26 

44 0 14 20 40 44 60 11 6.07 

45 0 15 20 40 45 60 11 6 

46 0 16 20 40 46 60 11 6.07 

47 0 17 20 40 47 60 11 6.26 

48 0 18 20 40 48 60 11 6.57 

49 0 19 20 40 49 60 11 6.99 

50 0 20 20 40 50 60 11.2 7.17 

51 0 20 21 40 51 60 11 6.99 

52 0 20 22 40 52 60 11 6.57 

53 0 20 23 40 53 60 11 6.26 

54 0 20 24 40 54 60 11 6.07 

55 0 20 25 40 55 60 11 6 

56 0 20 26 40 56 60 11 6.07 

57 0 20 27 40 57 60 11 6.26 

58 0 20 28 40 58 60 11 6.57 

59 0 20 29 40 59 60 11 6.99 

60 0 20 30 40 60 60 11.2 7.17 
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Appendix 3: Example 5, System Matrix Data 

 

 M1  M2          
M

a
tr

ix
 N

u
m

b
e
r 

Message Start Times (ms) 

M
e
a
n
 

S
ta

n
d
a
rd

 D
e
v
ia

ti
o

n
 

0 0 0 20 25 40 50 60 75 80 100 10.2 6.39 

1 0 1 20 26 40 51 60 76 80 100 10.1 6.3 

2 0 2 20 27 40 52 60 77 80 100 10.1 6.15 

3 0 3 20 28 40 53 60 78 80 100 10.1 6.15 

4 0 4 20 29 40 54 60 79 80 100 10.1 6.3 

5 0 5 20 30 40 55 60 80 80 100 10.2 6.39 

6 0 6 20 31 40 56 60 80 81 100 10.1 6.3 

7 0 7 20 32 40 57 60 80 82 100 10.1 6.15 

8 0 8 20 33 40 58 60 80 83 100 10.1 6.15 

9 0 9 20 34 40 59 60 80 84 100 10.1 6.3 

10 0 10 20 35 40 60 60 80 85 100 10.2 6.39 

11 0 11 20 36 40 60 61 80 86 100 10.1 6.3 

12 0 12 20 37 40 60 62 80 87 100 10.1 6.15 

13 0 13 20 38 40 60 63 80 88 100 10.1 6.15 

14 0 14 20 39 40 60 64 80 89 100 10.1 6.3 

15 0 15 20 40 40 60 65 80 90 100 10.2 6.39 

16 0 16 20 40 41 60 66 80 91 100 10.1 6.3 

17 0 17 20 40 42 60 67 80 92 100 10.1 6.15 

18 0 18 20 40 43 60 68 80 93 100 10.1 6.15 

19 0 19 20 40 44 60 69 80 94 100 10.1 6.3 

20 0 20 20 40 45 60 70 80 95 100 10.2 6.39 

21 0 20 21 40 46 60 71 80 96 100 10.1 6.3 

22 0 20 22 40 47 60 72 80 97 100 10.1 6.15 

23 0 20 23 40 48 60 73 80 98 100 10.1 6.15 

24 0 20 24 40 49 60 74 80 99 100 10.1 6.3 

25 0 20 25 40 50 60 75 80 100 100 10.2 6.39 

26 0 1 20 26 40 51 60 76 80 100 10.1 6.3 

27 0 2 20 27 40 52 60 77 80 100 10.1 6.15 

28 0 3 20 28 40 53 60 78 80 100 10.1 6.15 

29 0 4 20 29 40 54 60 79 80 100 10.1 6.3 

30 0 5 20 30 40 55 60 80 80 100 10.2 6.39 

31 0 6 20 31 40 56 60 80 81 100 10.1 6.3 

32 0 7 20 32 40 57 60 80 82 100 10.1 6.15 

33 0 8 20 33 40 58 60 80 83 100 10.1 6.15 

34 0 9 20 34 40 59 60 80 84 100 10.1 6.3 

35 0 10 20 35 40 60 60 80 85 100 10.2 6.39 

36 0 11 20 36 40 60 61 80 86 100 10.1 6.3 

37 0 12 20 37 40 60 62 80 87 100 10.1 6.15 

38 0 13 20 38 40 60 63 80 88 100 10.1 6.15 

39 0 14 20 39 40 60 64 80 89 100 10.1 6.3 

40 0 15 20 40 40 60 65 80 90 100 10.2 6.39 
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41 0 16 20 40 41 60 66 80 91 100 10.1 6.3 

42 0 17 20 40 42 60 67 80 92 100 10.1 6.15 

43 0 18 20 40 43 60 68 80 93 100 10.1 6.15 

44 0 19 20 40 44 60 69 80 94 100 10.1 6.3 

45 0 20 20 40 45 60 70 80 95 100 10.2 6.39 

46 0 20 21 40 46 60 71 80 96 100 10.1 6.3 

47 0 20 22 40 47 60 72 80 97 100 10.1 6.15 

48 0 20 23 40 48 60 73 80 98 100 10.1 6.15 

49 0 20 24 40 49 60 74 80 99 100 10.1 6.3 

50 0 20 25 40 50 60 75 80 100 100 10.2 6.39 

51 0 1 20 26 40 51 60 76 80 100 10.1 6.3 

52 0 2 20 27 40 52 60 77 80 100 10.1 6.15 

53 0 3 20 28 40 53 60 78 80 100 10.1 6.15 

54 0 4 20 29 40 54 60 79 80 100 10.1 6.3 

55 0 5 20 30 40 55 60 80 80 100 10.2 6.39 

56 0 6 20 31 40 56 60 80 81 100 10.1 6.3 

57 0 7 20 32 40 57 60 80 82 100 10.1 6.15 

58 0 8 20 33 40 58 60 80 83 100 10.1 6.15 

59 0 9 20 34 40 59 60 80 84 100 10.1 6.3 

60 0 10 20 35 40 60 60 80 85 100 10.2 6.39 

61 0 11 20 36 40 60 61 80 86 100 10.1 6.3 

62 0 12 20 37 40 60 62 80 87 100 10.1 6.15 

63 0 13 20 38 40 60 63 80 88 100 10.1 6.15 

64 0 14 20 39 40 60 64 80 89 100 10.1 6.3 

65 0 15 20 40 40 60 65 80 90 100 10.2 6.39 

66 0 16 20 40 41 60 66 80 91 100 10.1 6.3 

67 0 17 20 40 42 60 67 80 92 100 10.1 6.15 

68 0 18 20 40 43 60 68 80 93 100 10.1 6.15 

69 0 19 20 40 44 60 69 80 94 100 10.1 6.3 

70 0 20 20 40 45 60 70 80 95 100 10.2 6.39 

71 0 20 21 40 46 60 71 80 96 100 10.1 6.3 

72 0 20 22 40 47 60 72 80 97 100 10.1 6.15 

73 0 20 23 40 48 60 73 80 98 100 10.1 6.15 

74 0 20 24 40 49 60 74 80 99 100 10.1 6.3 

75 0 20 25 40 50 60 75 80 100 100 10.2 6.39 

76 0 1 20 26 40 51 60 76 80 100 10.1 6.3 

77 0 2 20 27 40 52 60 77 80 100 10.1 6.15 

78 0 3 20 28 40 53 60 78 80 100 10.1 6.15 

79 0 4 20 29 40 54 60 79 80 100 10.1 6.3 

80 0 5 20 30 40 55 60 80 80 100 10.2 6.39 

81 0 6 20 31 40 56 60 80 81 100 10.1 6.3 

82 0 7 20 32 40 57 60 80 82 100 10.1 6.15 

83 0 8 20 33 40 58 60 80 83 100 10.1 6.15 

84 0 9 20 34 40 59 60 80 84 100 10.1 6.3 

85 0 10 20 35 40 60 60 80 85 100 10.2 6.39 

86 0 11 20 36 40 60 61 80 86 100 10.1 6.3 

87 0 12 20 37 40 60 62 80 87 100 10.1 6.15 

88 0 13 20 38 40 60 63 80 88 100 10.1 6.15 

89 0 14 20 39 40 60 64 80 89 100 10.1 6.3 

90 0 15 20 40 40 60 65 80 90 100 10.2 6.39 

91 0 16 20 40 41 60 66 80 91 100 10.1 6.3 

92 0 17 20 40 42 60 67 80 92 100 10.1 6.15 
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93 0 18 20 40 43 60 68 80 93 100 10.1 6.15 

94 0 19 20 40 44 60 69 80 94 100 10.1 6.3 

95 0 20 20 40 45 60 70 80 95 100 10.2 6.39 

96 0 20 21 40 46 60 71 80 96 100 10.1 6.3 

97 0 20 22 40 47 60 72 80 97 100 10.1 6.15 

98 0 20 23 40 48 60 73 80 98 100 10.1 6.15 

99 0 20 24 40 49 60 74 80 99 100 10.1 6.3 

100 0 20 25 40 50 60 75 80 100 100 10.2 6.39 
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Appendix 4: VB Code to Develop System Matrix 

 

1 Imports System 

2 Imports System.IO 

3  

4 Public Class Form1 

5  

6     ' Public Declarations 

7  

8     Public a, b, q, r, s, t, v, w, x, y, l As Integer 

9     Public Array1(9) As Integer ' Time between messages (ms) 

10     Public ArrayTime0(200) As Integer 

11     Public ArrayTime1(w, v) As Integer 

12     Public ArrayTime2(w, v) As Integer 

13     Public ArrayTime3(w, v) As Integer 

14     Public ArrayMessage0(t, v) As Integer 

15     Public ArrayFinalSort(s) As Integer 

16     Public ArraySTD(r) As Double 

17     Public ArrayOut(q) As Double 

18     Public ArrayOut1(q) As Double 

19     Public ArrayOut2(q) As Integer 

20     Public ArrayOut30(q, r) As Double 

21     Public ArrayOut31(q, r) As Double 

22     Public ArrayOut32(q, r) As Integer 

23     Public ArrayOut33(q, r) As Integer 

24     Public LCM As Integer   ' Find Basic Matrix Size 

25     Public Message_Time(a, b) As Integer ' Messages time(ms) 

26     Public Message_List(50, 50) As Integer 'Complete message list 

27     Public count As Integer ' Find end of array of messages 

28  

29     ' Enter Message durations 

30  

31 
    Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) 

Handles Button1.Click 

32         Try 

33             Array1(x) = TextBox1.Text 

34             x = x + 1 

35             TextBox13.Text = x 

36  

37             ' Error check for data input 

38  

39         Catch 

40             If TextBox1.Text = "" Then 

41                 MsgBox("You Haven't Entered a Value") 

42             End If 

43         End Try 

44         TextBox1.Text = "" 

45     End Sub 

46  

47     ' Sort Message data and calculate System Matrix size (LCM) 

48  

49     Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) 
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Handles Button2.Click 

50         Dim swap, index, index1, ItemCount, ItemCount1, temp1 As Integer 

51         index = 0 

52         ItemCount = x 

53         ItemCount1 = x 

54  

55         ' Sort data to get smallest time into position in Array1(0)"Reference Message" 

56         ' Check the other data remains intact in the other arrays 

57  

58         Do 

59             swap = False 

60             For index = 1 To ItemCount - 1 

61                 If Array1(index - 1) > Array1(index) Then 

62                     temp1 = Array1(index - 1) 

63                     Array1(index - 1) = Array1(index) 

64                     Array1(index) = temp1 

65                     swap = True 

66                 End If 

67             Next index 

68         Loop Until swap = False 

69         Do 

70             For index1 = 0 To x - 1 

71                 TextBox6.Text = Array1(index1) & vbNewLine & TextBox6.Text 

72             Next index1 

73         Loop Until ItemCount1 = x 

74  

75         ' Calculate system matrix size "LCM" 

76  

77         Dim SystemMatrix, Counter, Increment As Integer 

78         TextBox11.Text = Array1(0) 

79         LCM = Array1(0) 

80         Do 

81             For Counter = 1 To (x - 1) 

82                 SystemMatrix = LCM Mod Array1(Counter) 

83                 If SystemMatrix > 0 Then 

84                     Counter = 0 

85                     Increment = (Increment + 1) 

86                     LCM = Array1(0) * (Increment + 1) 

87                 End If 

88  

89             Next 

90  

91         Loop Until Counter = x 

92  

93         ' Print to Screen LCM value 

94  

95         TextBox12.Text = LCM 

96  

97         'Use this section of code if System Matrix has 2 Messages 

98  

99         If x = 2 Then 

100             Call Message_Timing2() 

101             Call Message_List2() 

102             Call Sort2() 
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103             Call CsvFile2() 

104         End If 

105  

106         'Use this section of code if System Matrix has 3 Messages 

107  

108         If x = 3 Then 

109             Call Message_Timing3() 

110             Call Message_List3() 

111             Call Sort3() 

112             Call CsvFile3() 

113         End If 

114  

115         'Use this section of code if System Matrix has 2 Messages 

116  

117         If x = 4 Then 

118             Call Message_Timing4() 

119             Call Message_List4() 

120             Call Sort4() 

121             Call CsvFile4() 

122         End If 

123         

124     End Sub 

125  

126     'Calculate initial timings between each message ID in Array(0) positions 

127  

128     Private Sub Message_Timing2() 

129         Dim i, k, a, b, d, e, f, count As Integer 

130         y = LCM / Array1(0) 

131         ReDim ArrayTime0(y) 

132         w = LCM / Array1(1) 

133         ReDim ArrayTime1(Array1(0), (w - 1)) 

134         d = 0 

135         k = 0 

136         f = 0 

137         count = 0 

138         k = 0 

139         b = Array1(count) 

140         a = LCM / b 

141         e = b 

142         For i = 0 To a 

143             d = d + Array1(count) 

144             e = d - b 

145             f = 0 

146             ArrayTime0(i) = e 

147         Next i 

148         count = count + 1 

149         d = 0 

150         k = 0 

151         b = Array1(1) 

152         a = LCM / b 

153         f = 0 

154         For k = 0 To Array1(0) 

155             For i = 0 To a - 1 

156                 d = d + Array1(count) 
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157                 e = d - b 

158                 ArrayTime1(k, i) = e 

159             Next i 

160             i = 0 

161             f = f + 1 

162             d = f 

163         Next k 

164     End Sub 

165  

166     'Generate Message timing list for each ID and put into an array 

167  

168     Private Sub Message_List2() 

169         Dim u, i, k As Integer 

170         ReDim ArrayMessage0((Array1(0)), (LCM / Array1(0)) + (LCM / Array1(1))) 

171         t = 0 

172         u = 0 

173         i = 0 

174         k = 0 

175         For k = 0 To (Array1(0)) 

176             For i = 0 To (LCM / Array1(0)) 

177                 ArrayMessage0(t, u) = ArrayTime0(i) 

178                 u = u + 1 

179             Next i 

180             For i = 0 To ((LCM / Array1(1)) - 1) 

181                 ArrayMessage0(t, u) = ArrayTime1(k, i) 

182                 u = u + 1 

183             Next i 

184             t = t + 1 

185             u = 0 

186         Next k 

187  

188     End Sub 

189  

190     'Sort the TTCAN Messages in to a useable message sequence and carry out statistical calculations 

191  

192     Private Sub Sort2() 

193         Dim b, d, i, j, k, l, m, n, swap, index, ItemCount, temp1, s0, s1, s2, s3, r0, r1 As Integer 

194         Dim sum, mean, mean1, st, std, stddev, stddev1, stddev2 As Double 

195         ReDim ArrayFinalSort(LCM / Array1(0) + (LCM / (Array1(1)))) 

196         ReDim ArraySTD((LCM / Array1(0) + ((LCM / Array1(1))))) 

197         ReDim ArrayOut(Array1(0)) 

198         ReDim ArrayOut1(Array1(0)) 

199         ReDim ArrayOut2(Array1(0)) 

200         t = 0 

201         n = 0 

202         b = 0 

203         stddev1 = 100 

204         stddev2 = 0 

205         index = 0 

206         ItemCount = ((LCM / Array1(0)) + (LCM / Array1(1))) 

207         For m = 0 To Array1(0) 

208             For i = 0 To ((LCM / Array1(0)) + (LCM / Array1(1))) 

209                 ArrayFinalSort(i) = ArrayMessage0(t, i) 

210             Next i 
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211             r0 = ArrayFinalSort(0) 

212             r1 = ArrayFinalSort((LCM / Array1(0) + 1)) 

213  

214  

215             ' Sort data to get smallest time into position in Array1(0) 

216             ' and make sure all other data remains intact in other arrays 

217  

218             Do 

219                 swap = False 

220                 For index = 1 To ItemCount 

221                     If ArrayFinalSort(index - 1) > ArrayFinalSort(index) Then 

222                         temp1 = ArrayFinalSort(index - 1) 

223                         ArrayFinalSort(index - 1) = ArrayFinalSort(index) 

224                         ArrayFinalSort(index) = temp1 

225                         swap = True 

226                     End If 

227                 Next index 

228             Loop Until swap = False 

229  

230             For j = 0 To ItemCount - 1 

231                 ArraySTD(j) = ArrayFinalSort(j + 1) - ArrayFinalSort(j) 

232                  

233                 ' If two messages in matrix are in the same position 

234                 ' don't do the statistical maths 

235  

236                 If ArraySTD(j) = 0 Then 

237                     b = b + 1 

238 
                    TextBox14.Text = b & "  Zero crossing when " & Array1(0) & " = " & r0 & " and when " 

& Array1(1) & " = " & r1 & vbNewLine & TextBox14.Text 

239                     GoTo Zero_Crossing2 

240                 End If 

241             Next j 

242  

243             'Start the statistical maths 

244             'Find the Mean 

245  

246             For k = 0 To ItemCount - 1 

247                 sum = sum + ArraySTD(k) 

248             Next k 

249             mean = sum / k 

250             For l = 0 To ItemCount - 1 

251                 st = ((ArraySTD(l) - mean) ^ 2) 

252                 std = std + st 

253             Next l 

254  

255             ' Calculate the Standard Deviation 

256  

257             stddev = Math.Sqrt(std / k) 

258             ArrayOut(n) = stddev 

259             ArrayOut1(n) = mean 

260             ArrayOut2(n) = t 

261             d = d + 1 

262 
            TextBox2.Text = d & "   Mean = " & mean & "    STDdev = " & stddev & " When " & 

Array1(0) & " = " & r0 & " , " & Array1(1) & " = " & r1 & vbNewLine & TextBox2.Text 

263  
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264             ' Find the highest Standard Deviation in the Matrix 

265  

266             If stddev1 > stddev Then 

267                 stddev1 = stddev 

268                 mean1 = mean 

269                 s0 = r0 

270                 s1 = r1 

271             End If 

272  

273             ' Find the highest Standard Deviation in the Matrix 

274  

275             If stddev2 < stddev Then 

276                 stddev2 = stddev 

277                 mean1 = mean 

278                 s2 = r0 

279                 s3 = r1 

280             End If 

281  

282             'Set Constant Values back to zero and increment arrays 

283  

284 Zero_Crossing2: 

285             mean = 0 

286             sum = 0 

287             st = 0 

288             std = 0 

289             stddev = 0 

290             n = n + 1 

291             t = t + 1 

292             index = 0 

293         Next m 

294  

295         ' Print highest and lowest Mean, Standard Deviation and positions in Matrix to the screen 

296  

297 
        TextBox10.Text = "Mean = " & mean1 & ", STDdevL = " & stddev1 & ", when " & Array1(0) 

& " = " & s0 & ", " & Array1(1) & " = " & s1 & vbNewLine & TextBox10.Text 

298 
        TextBox10.Text = "Mean = " & mean1 & ", STDdevH = " & stddev2 & ", when " & Array1(0) 

& " = " & s2 & ", " & Array1(1) & " = " & s3 & vbNewLine & TextBox10.Text 

299  

300     End Sub 

301  

302     'Output all data to a CSV file for further analysis in Excel and MATLAB 

303  

304     Private Sub CsvFile2() 

305         Dim t As Double 

306         Dim u, v, n As Integer 

307         t = 0 

308         n = 0 

309  

310         ' Create an instance of StreamWriter to write text to a file. 

311  

312         Using sw As StreamWriter = New StreamWriter("C:\TestFile.csv") 

313             ' Add some text to the file. 

314             For u = 0 To Array1(0) 

315                 t = ArrayOut2(n) 

316                 sw.Write(t) 
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317                 sw.Write(",") 

318                 n = n + 1 

319             Next u 

320             sw.WriteLine("") 

321             n = 0 

322             For v = 0 To Array1(0) 

323                 t = ArrayOut1(n) 

324                 sw.Write(t) 

325                 sw.Write(",") 

326                 n = n + 1 

327             Next v 

328             sw.WriteLine("") 

329             n = 0 

330             For w = 0 To Array1(0) 

331                 t = ArrayOut(n) 

332                 sw.Write(t) 

333                 sw.Write(",") 

334                 n = n + 1 

335             Next w 

336             n = 0 

337             sw.WriteLine("") 

338             sw.WriteLine(TextBox14.Text) 

339             sw.Close() 

340  

341         End Using 

342  

343     End Sub 

344  

345     'Calculate initial timings between each message ID in Array(0) positions 

346  

347     Private Sub Message_Timing3() 

348         Dim i, k, a, b, d, e, f, z, count As Integer 

349         y = LCM / Array1(0) 

350         ReDim ArrayTime0(y) 

351         w = LCM / Array1(1) 

352         ReDim ArrayTime1((Array1(0)), (w - 1)) 

353         z = LCM / Array1(2) 

354         ReDim ArrayTime2((Array1(0)), (z - 1)) 

355         d = 0 

356         k = 0 

357         f = 0 

358         count = 0 

359         k = 0 

360         b = Array1(count) 

361         a = LCM / b 

362         e = b 

363         For i = 0 To a 

364             d = d + Array1(count) 

365             e = d - b 

366             f = 0 

367             ArrayTime0(i) = e 

368         Next i 

369         count = count + 1 

370         d = 0 
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371         k = 0 

372         b = Array1(1) 

373  

374         f = 0 

375         a = LCM / Array1(count) 

376         For k = 0 To Array1(0) 

377             For i = 0 To a - 1 

378                 d = d + Array1(count) 

379                 e = d - b 

380                 ArrayTime1(k, i) = e 

381             Next i 

382             i = 0 

383             f = f + 1 

384             d = f 

385         Next k 

386         count = count + 1 

387         k = 0 

388         f = 0 

389         b = Array1(count) 

390         d = 0 

391         a = LCM / Array1(count) 

392         For k = 0 To Array1(0) 

393             For i = 0 To a - 1 

394                 d = d + Array1(count) 

395                 e = d - b 

396                 ArrayTime2(k, i) = e 

397             Next i 

398             i = 0 

399             f = f + 1 

400             d = f 

401         Next k 

402     End Sub 

403  

404     'Generate Message timing list for each ID and put into an array 

405  

406     Private Sub Message_List3() 

407         Dim i, k, l, h, u As Integer 

408 
        ReDim ArrayMessage0((Array1(0) * (Array1(0) + 2)), ((LCM / Array1(0))) + ((LCM / 

Array1(1))) + ((LCM / Array1(2)))) 

409         t = 0 

410         u = 0 

411         h = 0 

412         i = 0 

413         k = 0 

414         l = 0 

415         For h = 0 To (Array1(0)) 

416             For k = 0 To (Array1(0)) 

417                 For i = 0 To (LCM / Array1(0)) 

418                     ArrayMessage0(t, u) = ArrayTime0(i) 

419                     u = u + 1 

420                 Next i 

421                 For i = 0 To ((LCM / Array1(1)) - 1) 

422                     ArrayMessage0(t, u) = ArrayTime1(l, i) 

423                     u = u + 1 
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424                 Next i 

425  

426                 For i = 0 To ((LCM / Array1(2)) - 1) 

427                     ArrayMessage0(t, u) = ArrayTime2(h, i) 

428                     u = u + 1 

429                 Next i 

430                 t = t + 1 

431                 u = 0 

432                 l = l + 1 

433             Next k 

434  

435             l = 0 

436         

437         Next h 

438         

439     End Sub 

440  

441     'Sort the TTCAN Messages in to a useable message sequence 

442  

443     Private Sub Sort3() 

444 
        Dim a, e, d, g, h, i, j, k, l, m, n, c, s0, s1, s2, s3, s4, s5, r0, r1, r2, swap, index, ItemCount, temp1 

As Integer 

445         Dim sum, mean, mean1, st, std, stddev, stddev1, stddev2 As Double 

446         ReDim ArrayFinalSort((LCM / Array1(0) + LCM / Array1(1) + LCM / Array1(2))) 

447         ReDim ArraySTD(LCM / Array1(0) + ((LCM / Array1(1)) - 1) + LCM / Array1(2)) 

448         ReDim ArrayOut30(Array1(0), Array1(0)) 

449         ReDim ArrayOut31(Array1(0), Array1(0)) 

450         ReDim ArrayOut32(Array1(0), Array1(0)) 

451         t = 0 

452         n = 0 

453         c = 0 

454         d = 0 

455         stddev1 = 100 

456         index = 0 

457         ItemCount = (LCM / Array1(0) + LCM / Array1(1) + LCM / Array1(2)) 

458         For h = 0 To Array1(0) 

459             For m = 0 To Array1(0) 

460                 For i = 0 To (LCM / Array1(0) + LCM / Array1(1) + LCM / Array1(2)) 

461                     ArrayFinalSort(i) = ArrayMessage0(t, i) 

462  

463                 Next i 

464                 r0 = ArrayFinalSort(0) 

465                 r1 = ArrayFinalSort((LCM / Array1(0) + 1)) 

466                 r2 = ArrayFinalSort((LCM / Array1(0) + LCM / Array1(1) + 1)) 

467  

468                 ' Sort data to get smallest time into position in Array1(0) 

469                 ' and make sure all other data remains intact in other arrays 

470  

471                 Do 

472                     swap = False 

473                     For index = 1 To ItemCount 

474                         If ArrayFinalSort(index - 1) > ArrayFinalSort(index) Then 

475                             temp1 = ArrayFinalSort(index - 1) 

476                             ArrayFinalSort(index - 1) = ArrayFinalSort(index) 
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477                             ArrayFinalSort(index) = temp1 

478                             swap = True 

479                         End If 

480                     Next index 

481                 Loop Until swap = False 

482  

483                 For j = 0 To ItemCount - 1 

484                     ArraySTD(j) = ArrayFinalSort(j + 1) - ArrayFinalSort(j) 

485  

486                     ' If two messages in matrix are in the same value 

487                     ' don't do the statistical maths 

488  

489                     If ArraySTD(j) = 0 Then 

490                         e = e + 1 

491 
                        TextBox14.Text = e & "  Zero crossing when " & Array1(0) & " = " & r0 & ",  " & 

Array1(1) & " = " & r1 & ",  " & Array1(2) & " = " & r2 & vbNewLine & TextBox14.Text 

492                         GoTo Zero_Crossing1 

493                     End If 

494                 Next j 

495  

496                 'Start the statistical maths 

497                 'Find the Mean 

498  

499                 For k = 0 To ItemCount - 1 

500                     sum = sum + ArraySTD(k) 

501                 Next k 

502                 mean = sum / k 

503                 For l = 0 To ItemCount - 1 

504                     st = ((ArraySTD(l) - mean) ^ 2) 

505                     std = std + st 

506                 Next l 

507  

508                 ' Calculate the Standard Deviation 

509  

510                 stddev = Math.Sqrt(std / k) 

511                 ArrayOut30(a, g) = stddev 

512                 ArrayOut31(a, g) = mean 

513                 ArrayOut32(a, g) = t 

514                 d = d + 1 

515 

                TextBox2.Text = d & "   Mean = " & mean & "    STDdev = " & stddev & " When " & 

Array1(0) & " = " & r0 & " , " & Array1(1) & " = " & r1 & " , " & Array1(2) & " = " & r2 & 

vbNewLine & TextBox2.Text 

516  

517                 ' Find the highest Standard Deviation in the Matrix 

518  

519                 If stddev1 > stddev Then 

520                     stddev1 = stddev 

521                     mean1 = mean 

522                     s0 = r0 

523                     s1 = r1 

524                     s2 = r2 

525                     c = t 

526                 End If 

527  

528                 ' Find the Lowest Standard Deviation in the Matrix 
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529  

530                 If stddev2 < stddev Then 

531                     stddev2 = stddev 

532                     mean1 = mean 

533                     s3 = r0 

534                     s4 = r1 

535                     s5 = r2 

536                 End If 

537 Zero_Crossing1: 

538                 mean = 0 

539                 sum = 0 

540                 st = 0 

541                 std = 0 

542                 stddev = 0 

543                 g = g + 1 

544                 t = t + 1 

545             Next m 

546             a = a + 1 

547             g = 0 

548         Next h 

549  

550         ' Print highest and lowest Mean, Standard Deviation and positions in Matrix to the screen 

551  

552 

        TextBox10.Text = "Mean = " & mean1 & ", & STDdevL = " & stddev1 & ", when " & 

Array1(0) & " = " & s0 & ",  " & Array1(1) & " = " & s1 & ",  " & Array1(2) & " = " & s2 & 

vbNewLine & TextBox10.Text 

553 

        TextBox10.Text = "Mean = " & mean1 & ", & STDdevH = " & stddev2 & ", when " & 

Array1(0) & " = " & s3 & ",  " & Array1(1) & " = " & s4 & ",  " & Array1(2) & " = " & s5 & 

vbNewLine & TextBox10.Text 

554  

555     End Sub 

556  

557     'Output all data to a CSV file for further analysis in Excel and MATLAB 

558  

559     Private Sub CsvFile3() 

560         Dim t As Double 

561         Dim a, b, c, d, g, u, n As Integer 

562         t = 0 

563         n = 0 

564  

565         ' Create an instance of StreamWriter to write text to a file. 

566  

567         Using sw As StreamWriter = New StreamWriter("C:\TestFile.csv") 

568             ' Add some text to the file. 

569             For d = 0 To (Array1(0)) 

570                 For u = 0 To (Array1(0)) 

571                     t = ArrayOut32(a, g) 

572                     sw.Write(t) 

573                     sw.Write(",") 

574                     g = g + 1 

575                 Next u 

576                 sw.WriteLine("") 

577                 g = 0 

578                 For b = 0 To (Array1(0)) 

579                     t = ArrayOut31(a, g) 
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580                     sw.Write(t) 

581                     sw.Write(",") 

582                     g = g + 1 

583                 Next b 

584                 sw.WriteLine("") 

585                 g = 0 

586                 For c = 0 To Array1(0) 

587                     t = ArrayOut30(a, g) 

588                     sw.Write(t) 

589                     sw.Write(",") 

590                     g = g + 1 

591                 Next c 

592                 g = 0 

593                 a = a + 1 

594             Next d 

595             sw.WriteLine("") 

596             sw.WriteLine(TextBox14.Text) 

597             sw.Close() 

598  

599         End Using 

600  

601     End Sub 

602  

603     'Calculate initial timings between each message ID in Array(0) positions 

604  

605     Private Sub Message_Timing4() 

606         Dim i, k, a, b, d, e, f, z, z1, g, count As Integer 

607         y = LCM / Array1(0) 

608         ReDim ArrayTime0(y) 

609         w = LCM / Array1(1) 

610         ReDim ArrayTime1(Array1(0), (w - 1)) 

611         z = LCM / Array1(2) 

612         ReDim ArrayTime2(Array1(0), (z - 1)) 

613         z1 = LCM / Array1(3) 

614         ReDim ArrayTime3(Array1(0), (z1 - 1)) 

615         g = 0 

616         d = 0 

617         k = 0 

618         f = 0 

619         count = 0 

620         k = 0 

621         b = Array1(count) 

622         a = LCM / b 

623         e = b 

624         For i = 0 To a 

625             d = d + Array1(count) 

626             e = d - b 

627             f = 0 

628             ArrayTime0(i) = e 

629         Next i 

630         count = count + 1 

631         d = 0 

632         k = 0 

633         b = Array1(1) 
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634  

635         f = 0 

636         a = LCM / Array1(count) 

637         For k = 0 To Array1(0) 

638             For i = 0 To a - 1 

639                 d = d + Array1(count) 

640                 e = d - b 

641                 ArrayTime1(k, i) = e 

642             Next i 

643             i = 0 

644             f = f + 1 

645             d = f 

646         Next k 

647         count = count + 1 

648         k = 0 

649         f = 0 

650         b = Array1(count) 

651         d = 0 

652         a = LCM / Array1(count) 

653         For k = 0 To Array1(0) 

654             For i = 0 To a - 1 

655                 d = d + Array1(count) 

656                 e = d - b 

657                 ArrayTime2(k, i) = e 

658             Next i 

659             i = 0 

660             f = f + 1 

661             d = f 

662         Next k 

663         count = count + 1 

664         k = 0 

665         f = 0 

666         b = Array1(count) 

667         d = 0 

668         a = LCM / Array1(count) 

669         For k = 0 To Array1(0) 

670             For i = 0 To a - 1 

671                 d = d + Array1(count) 

672                 e = d - b 

673                 ArrayTime3(k, i) = e 

674             Next i 

675             i = 0 

676             f = f + 1 

677             d = f 

678         Next k 

679     End Sub 

680  

681     ''Generate Message timing list for each ID and put into an array 

682  

683     Private Sub Message_List4() 

684         Dim i, k, l, h, g, m, n, u As Integer 

685 
        ReDim ArrayMessage0(((Array1(0) * (Array1(0) + 2) * (Array1(0) + 2))), (LCM / Array1(0)) + 

(LCM / Array1(1)) + (LCM / Array1(2)) + (LCM / Array1(3))) 

686         t = 0 
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687         u = 0 

688         g = 0 

689         h = 0 

690         i = 0 

691         k = 0 

692         l = 0 

693         n = 0 

694         For g = 0 To (Array1(0)) 

695             For h = 0 To (Array1(0)) 

696                 For k = 0 To (Array1(0)) 

697                     For i = 0 To (LCM / Array1(0)) 

698                         ArrayMessage0(t, u) = ArrayTime0(i) 

699                         u = u + 1 

700                     Next i 

701                     For i = 0 To ((LCM / Array1(1)) - 1) 

702                         ArrayMessage0(t, u) = ArrayTime1(l, i) 

703                         u = u + 1 

704                     Next i 

705  

706                     For i = 0 To ((LCM / Array1(2)) - 1) 

707                         ArrayMessage0(t, u) = ArrayTime2(m, i) 

708                         u = u + 1 

709                     Next i 

710  

711                     For i = 0 To ((LCM / Array1(3)) - 1) 

712                         ArrayMessage0(t, u) = ArrayTime3(n, i) 

713                         u = u + 1 

714                     Next i 

715  

716                     t = t + 1 

717                     u = 0 

718                     l = l + 1 

719                 Next k 

720                 m = m + 1 

721                 l = 0 

722  

723             Next h 

724             l = 0 

725             m = 0 

726             n = n + 1 

727         Next g 

728     End Sub 

729  

730 ‘Sort Data in correct order and carry out statistical Maths 

731     Private Sub Sort4() 

732 
        Dim a, aa, aaa, b, g, h, i, j, k, l, m, n, c, d, s0, s1, s2, s3, s4, s5, s6, s7, r0, r1, r2, r3, swap, index, 

ItemCount, temp1 As Integer 

733         Dim sum, mean, mean1, st, std, stddev, stddev1, stddev2 As Double 

734 
        ReDim ArrayFinalSort((LCM / Array1(0) + LCM / Array1(1) + LCM / Array1(2) + LCM / 

Array1(3))) 

735 
        ReDim ArraySTD(LCM / Array1(0) + ((LCM / Array1(1)) - 1) + LCM / Array1(2) + LCM / 

Array1(3)) 

736         ReDim ArrayOut30(Array1(0) * (Array1(0) + 2), Array1(0)) 

737         ReDim ArrayOut31(Array1(0) * (Array1(0) + 2), Array1(0)) 

738         ReDim ArrayOut32(Array1(0) * (Array1(0) + 2), Array1(0)) 
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739         ReDim ArrayOut33(Array1(0) * (Array1(0) + 2), Array1(0)) 

740         t = 0 

741         n = 0 

742         c = 0 

743         d = 0 

744         stddev1 = 100 

745         index = 0 

746         ItemCount = (LCM / Array1(0) + LCM / Array1(1) + LCM / Array1(2) + LCM / Array1(3)) 

747         For b = 0 To Array1(0) 

748             For h = 0 To Array1(0) 

749                 For m = 0 To Array1(0) 

750 
                    For i = 0 To (LCM / Array1(0) + LCM / Array1(1) + LCM / Array1(2) + LCM / 

Array1(3)) 

751                         ArrayFinalSort(i) = ArrayMessage0(t, i) 

752  

753                     Next i 

754                     r0 = ArrayFinalSort(0) 

755                     r1 = ArrayFinalSort((LCM / Array1(0) + 1)) 

756                     r2 = ArrayFinalSort((LCM / Array1(0) + LCM / Array1(1) + 1)) 

757                     r3 = ArrayFinalSort((LCM / Array1(0) + LCM / Array1(1) + LCM / Array1(2) + 1)) 

758  

759                     ' Sort data to get smallest time into position in Array1(0) 

760                     ' and make sure all other data remains intact in other arrays 

761  

762                     Do 

763                         swap = False 

764                         For index = 1 To ItemCount 

765                             If ArrayFinalSort(index - 1) > ArrayFinalSort(index) Then 

766                                 temp1 = ArrayFinalSort(index - 1) 

767                                 ArrayFinalSort(index - 1) = ArrayFinalSort(index) 

768                                 ArrayFinalSort(index) = temp1 

769                                 swap = True 

770                             End If 

771                         Next index 

772                     Loop Until swap = False 

773  

774                     ' If two messages in matrix are in the same position 

775                     ' don't do the statistical maths 

776  

777                     For j = 0 To ItemCount - 1 

778                         ArraySTD(j) = ArrayFinalSort(j + 1) - ArrayFinalSort(j) 

779  

780                         If ArraySTD(j) = 0 Then 

781                             c = c + 1 

782 

                            TextBox14.Text = c & "  Zero crossing when " & Array1(0) & " = " & r0 & ",  " & 

Array1(1) & " = " & r1 & ",  " & Array1(2) & " = " & r2 & ",  " & Array1(3) & " = " & r3 & ",  " & 

vbNewLine & TextBox14.Text 

783                             aaa = 1 

784                             GoTo Zero_Crossing 

785                         End If  

786                     Next j 

787  

788                     'Start the statistical maths 

789                     'Find the Mean 

790  
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791                     For k = 0 To ItemCount - 1 

792                         sum = sum + ArraySTD(k) 

793                     Next k 

794                     mean = sum / k 

795                     For l = 0 To ItemCount - 1 

796                         st = ((ArraySTD(l) - mean) ^ 2) 

797                         std = std + st 

798                     Next l 

799  

800                     ' Calculate the Standard Deviation 

801  

802                     stddev = Math.Sqrt(std / k) 

803                     ArrayOut30(a, g) = stddev 

804                     ArrayOut31(a, g) = mean 

805                     ArrayOut32(a, g) = t 

806                     d = d + 1 

807 

                    TextBox2.Text = d & "   Mean = " & mean & "    STDdev = " & stddev & " When " & 

Array1(0) & " = " & r0 & " , " & Array1(1) & " = " & r1 & " , " & Array1(2) & " = " & r2 & " , " & 

Array1(3) & " = " & r3 & vbNewLine & TextBox2.Text 

808                     aa = 1 

809 Zero_Crossing: 

810                     ' Find the highest Standard Deviation in the Matrix 

811  

812                     If ((aa = 1) And (aaa = 0)) Then 

813                         If stddev1 > stddev Then 

814                             stddev1 = stddev 

815                             mean1 = mean 

816                             s0 = r0 

817                             s1 = r1 

818                             s2 = r2 

819                             s3 = r3 

820                             c = t 

821                         End If 

822  

823                         ' Find the Lowest Standard Deviation in the Matrix 

824  

825                         If stddev2 < stddev Then 

826                             stddev2 = stddev 

827                             mean1 = mean 

828                             s4 = r0 

829                             s5 = r1 

830                             s6 = r2 

831                             s7 = r3 

832                         End If 

833                         aa = 0 

834                     End If 

835                     aaa = 0 

836                     mean = 0 

837                     sum = 0 

838                     st = 0 

839                     std = 0 

840                     stddev = 0 

841                     g = g + 1 

842                     t = t + 1 

843                 Next m 
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844                 a = a + 1 

845                 g = 0 

846             Next h 

847         Next b 

848  

849         ' Print highest and lowest Mean, Standard Deviation and positions in Matrix to the screen 

850  

851 

        TextBox10.Text = "Mean = " & mean1 & ", & STDdevL = " & stddev1 & ", when " & 

Array1(0) & " = " & s0 & ",  " & Array1(1) & " = " & s1 & ",  " & Array1(2) & " = " & s2 & ",  " & 

Array1(3) & " = " & s3 & vbNewLine & TextBox10.Text 

852 

        TextBox10.Text = "Mean = " & mean1 & ", & STDdevH = " & stddev2 & ", when " & 

Array1(0) & " = " & s4 & ",  " & Array1(1) & " = " & s5 & ",  " & Array1(2) & " = " & s6 & ",  " & 

Array1(3) & " = " & s7 & vbNewLine & TextBox10.Text 

853     End Sub 

854  

855     'Output all data to a CSV file for further analysis in Excel and MATLAB 

856  

857     Private Sub CsvFile4() 

858         Dim t As Double 

859         Dim a, b, c, d, g, u, n As Integer 

860         t = 0 

861         n = 0 

862  

863         ' Create an instance of StreamWriter to write text to a file. 

864  

865         Using sw As StreamWriter = New StreamWriter("C:\TestFile1.csv") 

866             ' Add some text to the file. 

867             For d = 0 To (Array1(0)) 

868                 For u = 0 To (Array1(0)) 

869                     t = ArrayOut32(a, g) 

870                     sw.Write(t) 

871                     sw.Write(",") 

872                     g = g + 1 

873                 Next u 

874                 sw.WriteLine("") 

875                 g = 0 

876                 For b = 0 To (Array1(0)) 

877                     t = ArrayOut31(a, g) 

878                     sw.Write(t) 

879                     sw.Write(",") 

880                     g = g + 1 

881                 Next b 

882                 sw.WriteLine("") 

883                 g = 0 

884                 For c = 0 To Array1(0) 

885                     t = ArrayOut30(a, g) 

886                     sw.Write(t) 

887                     sw.Write(",") 

888                     g = g + 1 

889                 Next c 

890                 g = 0 

891                 a = a + 1 

892             Next d 

893             sw.WriteLine("") 

894             sw.WriteLine(TextBox14.Text) 
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895             sw.Close() 

896  

897         End Using 

898  

899     End Sub 

900 End Class 
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Appendix 5: CSV File  

Generated from Messages with periods of 20ms and 30ms. 

 

0,1,2,3,4,5,6,7,8,9,0,11,12,13,14,15,16,17,18,19,0, 

0,12,12,12,12,12,12,12,12,12,0,12,12,12,12,12,12,12,12,12,0, 

0,6.98569967862919,6.57267069006199,6.26099033699941,6.06630035524124,6,6.

06630035524124,6.26099033699941,6.57267069006199,6.98569967862919,0,6.985

69967862919,6.57267069006199,6.26099033699941,6.06630035524124,6,6.066300

35524124,6.26099033699941,6.57267069006199,6.98569967862919,0, 

3  Zero crossing when 20 = 0 and when 30 = 20 

2  Zero crossing when 20 = 0 and when 30 = 10 

1  Zero crossing when 20 = 0 and when 30 = 0 



 

  163 

Appendix 6: Output from Statistical Scheduler, Periods 20, 30 

and 40ms 

441   Mean = 9.23076923076923    STDdev = 8.28486893405308 When 20 = 0 , 30 = 

20 , 40 = 20 

440   Mean = 9.23076923076923    STDdev = 7.9435880882619 When 20 = 0 , 30 = 

19 , 40 = 20 

439   Mean = 9.23076923076923    STDdev = 7.66765279653976 When 20 = 0 , 30 = 

18 , 40 = 20 

438   Mean = 9.23076923076923    STDdev = 7.46431352043582 When 20 = 0 , 30 = 

17 , 40 = 20 

437   Mean = 9.23076923076923    STDdev = 7.33960642577019 When 20 = 0 , 30 = 

16 , 40 = 20 

436   Mean = 9.23076923076923    STDdev = 7.2975638311578 When 20 = 0 , 30 = 

15 , 40 = 20 

435   Mean = 9.23076923076923    STDdev = 7.33960642577019 When 20 = 0 , 30 = 

14 , 40 = 20 

434   Mean = 9.23076923076923    STDdev = 7.46431352043582 When 20 = 0 , 30 = 

13 , 40 = 20 

433   Mean = 9.23076923076923    STDdev = 7.66765279653976 When 20 = 0 , 30 = 

12 , 40 = 20 

432   Mean = 9.23076923076923    STDdev = 7.9435880882619 When 20 = 0 , 30 = 

11 , 40 = 20 

431   Mean = 9.23076923076923    STDdev = 8.28486893405308 When 20 = 0 , 30 = 

10 , 40 = 20 

430   Mean = 9.23076923076923    STDdev = 7.9435880882619 When 20 = 0 , 30 = 

9 , 40 = 20 

429   Mean = 9.23076923076923    STDdev = 7.66765279653976 When 20 = 0 , 30 = 

8 , 40 = 20 

428   Mean = 9.23076923076923    STDdev = 7.46431352043582 When 20 = 0 , 30 = 

7 , 40 = 20 

427   Mean = 9.23076923076923    STDdev = 7.33960642577019 When 20 = 0 , 30 = 

6 , 40 = 20 
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426   Mean = 9.23076923076923    STDdev = 7.2975638311578 When 20 = 0 , 30 = 

5 , 40 = 20 

425   Mean = 9.23076923076923    STDdev = 7.33960642577019 When 20 = 0 , 30 = 

4 , 40 = 20 

424   Mean = 9.23076923076923    STDdev = 7.46431352043582 When 20 = 0 , 30 = 

3 , 40 = 20 

423   Mean = 9.23076923076923    STDdev = 7.66765279653976 When 20 = 0 , 30 = 

2 , 40 = 20 

422   Mean = 9.23076923076923    STDdev = 7.9435880882619 When 20 = 0 , 30 = 

1 , 40 = 20 

421   Mean = 9.23076923076923    STDdev = 8.28486893405308 When 20 = 0 , 30 = 

0 , 40 = 20 

420   Mean = 9.23076923076923    STDdev = 7.83634379182464 When 20 = 0 , 30 = 

20 , 40 = 19 

419   Mean = 9.23076923076923    STDdev = 7.65761407061219 When 20 = 0 , 30 = 

19 , 40 = 19 

418   Mean = 9.23076923076923    STDdev = 7.35007949882539 When 20 = 0 , 30 = 

18 , 40 = 19 

417   Mean = 9.23076923076923    STDdev = 7.11611222890968 When 20 = 0 , 30 = 

17 , 40 = 19 

416   Mean = 9.23076923076923    STDdev = 6.96313198931283 When 20 = 0 , 30 = 

16 , 40 = 19 

415   Mean = 9.23076923076923    STDdev = 6.89653029990551 When 20 = 0 , 30 = 

15 , 40 = 19 

414   Mean = 9.23076923076923    STDdev = 6.9188020990058 When 20 = 0 , 30 = 

14 , 40 = 19 

413   Mean = 9.23076923076923    STDdev = 7.02910264711426 When 20 = 0 , 30 = 

13 , 40 = 19 

412   Mean = 9.23076923076923    STDdev = 7.22340050065753 When 20 = 0 , 30 = 

12 , 40 = 19 

411   Mean = 9.23076923076923    STDdev = 7.49516609508418 When 20 = 0 , 30 = 

11 , 40 = 19 

410   Mean = 9.23076923076923    STDdev = 7.83634379182465 When 20 = 0 , 30 = 

10 , 40 = 19 
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409   Mean = 9.23076923076923    STDdev = 7.65761407061219 When 20 = 0 , 30 = 

9 , 40 = 19 

408   Mean = 9.23076923076923    STDdev = 7.35007949882539 When 20 = 0 , 30 = 

8 , 40 = 19 

407   Mean = 9.23076923076923    STDdev = 7.11611222890968 When 20 = 0 , 30 = 

7 , 40 = 19 

406   Mean = 9.23076923076923    STDdev = 6.96313198931283 When 20 = 0 , 30 = 

6 , 40 = 19 

405   Mean = 9.23076923076923    STDdev = 6.89653029990551 When 20 = 0 , 30 = 

5 , 40 = 19 

404   Mean = 9.23076923076923    STDdev = 6.9188020990058 When 20 = 0 , 30 = 

4 , 40 = 19 

403   Mean = 9.23076923076923    STDdev = 7.02910264711426 When 20 = 0 , 30 = 

3 , 40 = 19 

402   Mean = 9.23076923076923    STDdev = 7.22340050065753 When 20 = 0 , 30 = 

2 , 40 = 19 

401   Mean = 9.23076923076923    STDdev = 7.49516609508418 When 20 = 0 , 30 = 

1 , 40 = 19 

400   Mean = 9.23076923076923    STDdev = 7.83634379182464 When 20 = 0 , 30 = 

0 , 40 = 19 

399   Mean = 9.23076923076923    STDdev = 7.42297728111681 When 20 = 0 , 30 = 

20 , 40 = 18 

398   Mean = 9.23076923076923    STDdev = 7.21274348906526 When 20 = 0 , 30 = 

19 , 40 = 18 

397   Mean = 9.23076923076923    STDdev = 7.08360888198236 When 20 = 0 , 30 = 

18 , 40 = 18 

396   Mean = 9.23076923076923    STDdev = 6.81800609420318 When 20 = 0 , 30 = 

17 , 40 = 18 

395   Mean = 9.23076923076923    STDdev = 6.63503343164549 When 20 = 0 , 30 = 

16 , 40 = 18 

394   Mean = 9.23076923076923    STDdev = 6.54162819245209 When 20 = 0 , 30 = 

15 , 40 = 18 

393   Mean = 9.23076923076923    STDdev = 6.54162819245209 When 20 = 0 , 30 = 

14 , 40 = 18 
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392   Mean = 9.23076923076923    STDdev = 6.63503343164549 When 20 = 0 , 30 = 

13 , 40 = 18 

391   Mean = 9.23076923076923    STDdev = 6.81800609420318 When 20 = 0 , 30 = 

12 , 40 = 18 

390   Mean = 9.23076923076923    STDdev = 7.08360888198236 When 20 = 0 , 30 = 

11 , 40 = 18 

389   Mean = 9.23076923076923    STDdev = 7.42297728111681 When 20 = 0 , 30 = 

10 , 40 = 18 

388   Mean = 9.23076923076923    STDdev = 7.21274348906526 When 20 = 0 , 30 = 

9 , 40 = 18 

387   Mean = 9.23076923076923    STDdev = 7.08360888198236 When 20 = 0 , 30 = 

8 , 40 = 18 

386   Mean = 9.23076923076923    STDdev = 6.81800609420318 When 20 = 0 , 30 = 

7 , 40 = 18 

385   Mean = 9.23076923076923    STDdev = 6.63503343164549 When 20 = 0 , 30 = 

6 , 40 = 18 

384   Mean = 9.23076923076923    STDdev = 6.54162819245209 When 20 = 0 , 30 = 

5 , 40 = 18 

383   Mean = 9.23076923076923    STDdev = 6.54162819245209 When 20 = 0 , 30 = 

4 , 40 = 18 

382   Mean = 9.23076923076923    STDdev = 6.63503343164548 When 20 = 0 , 30 = 

3 , 40 = 18 

381   Mean = 9.23076923076923    STDdev = 6.81800609420318 When 20 = 0 , 30 = 

2 , 40 = 18 

380   Mean = 9.23076923076923    STDdev = 7.08360888198236 When 20 = 0 , 30 = 

1 , 40 = 18 

379   Mean = 9.23076923076923    STDdev = 7.42297728111681 When 20 = 0 , 30 = 

0 , 40 = 18 

378   Mean = 9.23076923076923    STDdev = 7.05095570340368 When 20 = 0 , 30 = 

20 , 40 = 17 

377   Mean = 9.23076923076923    STDdev = 6.80671440173198 When 20 = 0 , 30 = 

19 , 40 = 17 

376   Mean = 9.23076923076923    STDdev = 6.64661679299322 When 20 = 0 , 30 = 

18 , 40 = 17 
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375   Mean = 9.23076923076923    STDdev = 6.57681061532279 When 20 = 0 , 30 = 

17 , 40 = 17 

374   Mean = 9.23076923076923    STDdev = 6.36279868458776 When 20 = 0 , 30 = 

16 , 40 = 17 

373   Mean = 9.23076923076923    STDdev = 6.24073277445287 When 20 = 0 , 30 = 

15 , 40 = 17 

372   Mean = 9.23076923076923    STDdev = 6.21603195410367 When 20 = 0 , 30 = 

14 , 40 = 17 

371   Mean = 9.23076923076923    STDdev = 6.28984341438758 When 20 = 0 , 30 = 

13 , 40 = 17 

370   Mean = 9.23076923076923    STDdev = 6.45879062451795 When 20 = 0 , 30 = 

12 , 40 = 17 

369   Mean = 9.23076923076923    STDdev = 6.71569741098989 When 20 = 0 , 30 = 

11 , 40 = 17 

368   Mean = 9.23076923076923    STDdev = 7.05095570340369 When 20 = 0 , 30 = 

10 , 40 = 17 

367   Mean = 9.23076923076923    STDdev = 6.80671440173198 When 20 = 0 , 30 = 

9 , 40 = 17 

366   Mean = 9.23076923076923    STDdev = 6.64661679299322 When 20 = 0 , 30 = 

8 , 40 = 17 

365   Mean = 9.23076923076923    STDdev = 6.57681061532279 When 20 = 0 , 30 = 

7 , 40 = 17 

364   Mean = 9.23076923076923    STDdev = 6.36279868458776 When 20 = 0 , 30 = 

6 , 40 = 17 

363   Mean = 9.23076923076923    STDdev = 6.24073277445287 When 20 = 0 , 30 = 

5 , 40 = 17 

362   Mean = 9.23076923076923    STDdev = 6.21603195410367 When 20 = 0 , 30 = 

4 , 40 = 17 

361   Mean = 9.23076923076923    STDdev = 6.28984341438758 When 20 = 0 , 30 = 

3 , 40 = 17 

360   Mean = 9.23076923076923    STDdev = 6.45879062451795 When 20 = 0 , 30 = 

2 , 40 = 17 

359   Mean = 9.23076923076923    STDdev = 6.71569741098989 When 20 = 0 , 30 = 

1 , 40 = 17 
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358   Mean = 9.23076923076923    STDdev = 7.05095570340368 When 20 = 0 , 30 = 

0 , 40 = 17 

357   Mean = 9.23076923076923    STDdev = 6.72714187971552 When 20 = 0 , 30 = 

20 , 40 = 16 

356   Mean = 9.23076923076923    STDdev = 6.4468697968483 When 20 = 0 , 30 = 

19 , 40 = 16 

355   Mean = 9.23076923076923    STDdev = 6.25304659473895 When 20 = 0 , 30 = 

18 , 40 = 16 

354   Mean = 9.23076923076923    STDdev = 6.15384615384615 When 20 = 0 , 30 = 

17 , 40 = 16 

353   Mean = 9.23076923076923    STDdev = 6.15384615384615 When 20 = 0 , 30 = 

16 , 40 = 16 

352   Mean = 9.23076923076923    STDdev = 6.00197206250189 When 20 = 0 , 30 = 

15 , 40 = 16 

351   Mean = 9.23076923076923    STDdev = 5.95048603255807 When 20 = 0 , 30 = 

14 , 40 = 16 

350   Mean = 9.23076923076923    STDdev = 6.00197206250189 When 20 = 0 , 30 = 

13 , 40 = 16 

349   Mean = 9.23076923076923    STDdev = 6.15384615384615 When 20 = 0 , 30 = 

12 , 40 = 16 

348   Mean = 9.23076923076923    STDdev = 6.39896441325705 When 20 = 0 , 30 = 

11 , 40 = 16 

347   Mean = 9.23076923076923    STDdev = 6.72714187971552 When 20 = 0 , 30 = 

10 , 40 = 16 

346   Mean = 9.23076923076923    STDdev = 6.4468697968483 When 20 = 0 , 30 = 

9 , 40 = 16 

345   Mean = 9.23076923076923    STDdev = 6.25304659473895 When 20 = 0 , 30 = 

8 , 40 = 16 

344   Mean = 9.23076923076923    STDdev = 6.15384615384615 When 20 = 0 , 30 = 

7 , 40 = 16 

343   Mean = 9.23076923076923    STDdev = 6.15384615384615 When 20 = 0 , 30 = 

6 , 40 = 16 

342   Mean = 9.23076923076923    STDdev = 6.00197206250189 When 20 = 0 , 30 = 

5 , 40 = 16 
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341   Mean = 9.23076923076923    STDdev = 5.95048603255807 When 20 = 0 , 30 = 

4 , 40 = 16 

340   Mean = 9.23076923076923    STDdev = 6.00197206250189 When 20 = 0 , 30 = 

3 , 40 = 16 

339   Mean = 9.23076923076923    STDdev = 6.15384615384615 When 20 = 0 , 30 = 

2 , 40 = 16 

338   Mean = 9.23076923076923    STDdev = 6.39896441325705 When 20 = 0 , 30 = 

1 , 40 = 16 

337   Mean = 9.23076923076923    STDdev = 6.72714187971552 When 20 = 0 , 30 = 

0 , 40 = 16 

336   Mean = 9.23076923076923    STDdev = 6.45879062451795 When 20 = 0 , 30 = 

20 , 40 = 15 

335   Mean = 9.23076923076923    STDdev = 6.14133343268064 When 20 = 0 , 30 = 

19 , 40 = 15 

334   Mean = 9.23076923076923    STDdev = 5.91157724825872 When 20 = 0 , 30 = 

18 , 40 = 15 

333   Mean = 9.23076923076923    STDdev = 5.77998996743668 When 20 = 0 , 30 = 

17 , 40 = 15 

332   Mean = 9.23076923076923    STDdev = 5.75331136963543 When 20 = 0 , 30 = 

16 , 40 = 15 

331   Mean = 9.23076923076923    STDdev = 5.83298111080888 When 20 = 0 , 30 = 

15 , 40 = 15 

330   Mean = 9.23076923076923    STDdev = 5.75331136963543 When 20 = 0 , 30 = 

14 , 40 = 15 

329   Mean = 9.23076923076923    STDdev = 5.77998996743668 When 20 = 0 , 30 = 

13 , 40 = 15 

328   Mean = 9.23076923076923    STDdev = 5.91157724825872 When 20 = 0 , 30 = 

12 , 40 = 15 

327   Mean = 9.23076923076923    STDdev = 6.14133343268064 When 20 = 0 , 30 = 

11 , 40 = 15 

326   Mean = 9.23076923076923    STDdev = 6.45879062451795 When 20 = 0 , 30 = 

10 , 40 = 15 

325   Mean = 9.23076923076923    STDdev = 6.14133343268064 When 20 = 0 , 30 = 

9 , 40 = 15 
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324   Mean = 9.23076923076923    STDdev = 5.91157724825872 When 20 = 0 , 30 = 

8 , 40 = 15 

323   Mean = 9.23076923076923    STDdev = 5.77998996743668 When 20 = 0 , 30 = 

7 , 40 = 15 

322   Mean = 9.23076923076923    STDdev = 5.75331136963543 When 20 = 0 , 30 = 

6 , 40 = 15 

321   Mean = 9.23076923076923    STDdev = 5.83298111080888 When 20 = 0 , 30 = 

5 , 40 = 15 

320   Mean = 9.23076923076923    STDdev = 5.75331136963543 When 20 = 0 , 30 = 

4 , 40 = 15 

319   Mean = 9.23076923076923    STDdev = 5.77998996743668 When 20 = 0 , 30 = 

3 , 40 = 15 

318   Mean = 9.23076923076923    STDdev = 5.91157724825872 When 20 = 0 , 30 = 

2 , 40 = 15 

317   Mean = 9.23076923076923    STDdev = 6.14133343268064 When 20 = 0 , 30 = 

1 , 40 = 15 

316   Mean = 9.23076923076923    STDdev = 6.45879062451795 When 20 = 0 , 30 = 

0 , 40 = 15 

315   Mean = 9.23076923076923    STDdev = 6.25304659473895 When 20 = 0 , 30 = 

20 , 40 = 14 

314   Mean = 9.23076923076923    STDdev = 5.8985506192864 When 20 = 0 , 30 = 

19 , 40 = 14 

313   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

18 , 40 = 14 

312   Mean = 9.23076923076923    STDdev = 5.46532912871742 When 20 = 0 , 30 = 

17 , 40 = 14 

311   Mean = 9.23076923076923    STDdev = 5.40873717884521 When 20 = 0 , 30 = 

16 , 40 = 14 

310   Mean = 9.23076923076923    STDdev = 5.46532912871742 When 20 = 0 , 30 = 

15 , 40 = 14 

309   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

14 , 40 = 14 

308   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

13 , 40 = 14 
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307   Mean = 9.23076923076923    STDdev = 5.73992557113158 When 20 = 0 , 30 = 

12 , 40 = 14 

306   Mean = 9.23076923076923    STDdev = 5.95048603255807 When 20 = 0 , 30 = 

11 , 40 = 14 

305   Mean = 9.23076923076923    STDdev = 6.25304659473895 When 20 = 0 , 30 = 

10 , 40 = 14 

304   Mean = 9.23076923076923    STDdev = 5.8985506192864 When 20 = 0 , 30 = 

9 , 40 = 14 

303   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

8 , 40 = 14 

302   Mean = 9.23076923076923    STDdev = 5.46532912871742 When 20 = 0 , 30 = 

7 , 40 = 14 

301   Mean = 9.23076923076923    STDdev = 5.40873717884521 When 20 = 0 , 30 = 

6 , 40 = 14 

300   Mean = 9.23076923076923    STDdev = 5.46532912871742 When 20 = 0 , 30 = 

5 , 40 = 14 

299   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

4 , 40 = 14 

298   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

3 , 40 = 14 

297   Mean = 9.23076923076923    STDdev = 5.73992557113158 When 20 = 0 , 30 = 

2 , 40 = 14 

296   Mean = 9.23076923076923    STDdev = 5.95048603255807 When 20 = 0 , 30 = 

1 , 40 = 14 

295   Mean = 9.23076923076923    STDdev = 6.25304659473895 When 20 = 0 , 30 = 

0 , 40 = 14 

294   Mean = 9.23076923076923    STDdev = 6.11623119442591 When 20 = 0 , 30 = 

20 , 40 = 13 

293   Mean = 9.23076923076923    STDdev = 5.72650848321069 When 20 = 0 , 30 = 

19 , 40 = 13 

292   Mean = 9.23076923076923    STDdev = 5.42294053292756 When 20 = 0 , 30 = 

18 , 40 = 13 

291   Mean = 9.23076923076923    STDdev = 5.22057830798682 When 20 = 0 , 30 = 

17 , 40 = 13 
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290   Mean = 9.23076923076923    STDdev = 5.1314092554332 When 20 = 0 , 30 = 

16 , 40 = 13 

289   Mean = 9.23076923076923    STDdev = 5.16130344529731 When 20 = 0 , 30 = 

15 , 40 = 13 

288   Mean = 9.23076923076923    STDdev = 5.3082496920265 When 20 = 0 , 30 = 

14 , 40 = 13 

287   Mean = 9.23076923076923    STDdev = 5.56297991746601 When 20 = 0 , 30 = 

13 , 40 = 13 

286   Mean = 9.23076923076923    STDdev = 5.64533634827962 When 20 = 0 , 30 = 

12 , 40 = 13 

285   Mean = 9.23076923076923    STDdev = 5.83298111080888 When 20 = 0 , 30 = 

11 , 40 = 13 

284   Mean = 9.23076923076923    STDdev = 6.11623119442591 When 20 = 0 , 30 = 

10 , 40 = 13 

283   Mean = 9.23076923076923    STDdev = 5.72650848321069 When 20 = 0 , 30 = 

9 , 40 = 13 

282   Mean = 9.23076923076923    STDdev = 5.42294053292756 When 20 = 0 , 30 = 

8 , 40 = 13 

281   Mean = 9.23076923076923    STDdev = 5.22057830798682 When 20 = 0 , 30 = 

7 , 40 = 13 

280   Mean = 9.23076923076923    STDdev = 5.1314092554332 When 20 = 0 , 30 = 

6 , 40 = 13 

279   Mean = 9.23076923076923    STDdev = 5.16130344529731 When 20 = 0 , 30 = 

5 , 40 = 13 

278   Mean = 9.23076923076923    STDdev = 5.3082496920265 When 20 = 0 , 30 = 

4 , 40 = 13 

277   Mean = 9.23076923076923    STDdev = 5.56297991746601 When 20 = 0 , 30 = 

3 , 40 = 13 

276   Mean = 9.23076923076923    STDdev = 5.64533634827962 When 20 = 0 , 30 = 

2 , 40 = 13 

275   Mean = 9.23076923076923    STDdev = 5.83298111080888 When 20 = 0 , 30 = 

1 , 40 = 13 

274   Mean = 9.23076923076923    STDdev = 6.11623119442591 When 20 = 0 , 30 = 

0 , 40 = 13 
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273   Mean = 9.23076923076923    STDdev = 6.05302017627877 When 20 = 0 , 30 = 

20 , 40 = 12 

272   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

19 , 40 = 12 

271   Mean = 9.23076923076923    STDdev = 5.29373862587239 When 20 = 0 , 30 = 

18 , 40 = 12 

270   Mean = 9.23076923076923    STDdev = 5.05590053081692 When 20 = 0 , 30 = 

17 , 40 = 12 

269   Mean = 9.23076923076923    STDdev = 4.93268293596351 When 20 = 0 , 30 = 

16 , 40 = 12 

268   Mean = 9.23076923076923    STDdev = 4.93268293596351 When 20 = 0 , 30 = 

15 , 40 = 12 

267   Mean = 9.23076923076923    STDdev = 5.05590053081692 When 20 = 0 , 30 = 

14 , 40 = 12 

266   Mean = 9.23076923076923    STDdev = 5.29373862587239 When 20 = 0 , 30 = 

13 , 40 = 12 

265   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

12 , 40 = 12 

264   Mean = 9.23076923076923    STDdev = 5.79328319500392 When 20 = 0 , 30 = 

11 , 40 = 12 

263   Mean = 9.23076923076923    STDdev = 6.05302017627877 When 20 = 0 , 30 = 

10 , 40 = 12 

262   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

9 , 40 = 12 

261   Mean = 9.23076923076923    STDdev = 5.29373862587239 When 20 = 0 , 30 = 

8 , 40 = 12 

260   Mean = 9.23076923076923    STDdev = 5.05590053081692 When 20 = 0 , 30 = 

7 , 40 = 12 

259   Mean = 9.23076923076923    STDdev = 4.93268293596351 When 20 = 0 , 30 = 

6 , 40 = 12 

258   Mean = 9.23076923076923    STDdev = 4.93268293596351 When 20 = 0 , 30 = 

5 , 40 = 12 

257   Mean = 9.23076923076923    STDdev = 5.05590053081692 When 20 = 0 , 30 = 

4 , 40 = 12 
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256   Mean = 9.23076923076923    STDdev = 5.29373862587239 When 20 = 0 , 30 = 

3 , 40 = 12 

255   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

2 , 40 = 12 

254   Mean = 9.23076923076923    STDdev = 5.79328319500392 When 20 = 0 , 30 = 

1 , 40 = 12 

253   Mean = 9.23076923076923    STDdev = 6.05302017627877 When 20 = 0 , 30 = 

0 , 40 = 12 

252   Mean = 9.23076923076923    STDdev = 6.06571507806656 When 20 = 0 , 30 = 

20 , 40 = 11 

251   Mean = 9.23076923076923    STDdev = 5.61801834969545 When 20 = 0 , 30 = 

19 , 40 = 11 

250   Mean = 9.23076923076923    STDdev = 5.24996477869279 When 20 = 0 , 30 = 

18 , 40 = 11 

249   Mean = 9.23076923076923    STDdev = 4.97924687159454 When 20 = 0 , 30 = 

17 , 40 = 11 

248   Mean = 9.23076923076923    STDdev = 4.8222855442023 When 20 = 0 , 30 = 

16 , 40 = 11 

247   Mean = 9.23076923076923    STDdev = 4.79027614675085 When 20 = 0 , 30 = 

15 , 40 = 11 

246   Mean = 9.23076923076923    STDdev = 4.88567523329244 When 20 = 0 , 30 = 

14 , 40 = 11 

245   Mean = 9.23076923076923    STDdev = 5.10133988664285 When 20 = 0 , 30 = 

13 , 40 = 11 

244   Mean = 9.23076923076923    STDdev = 5.42294053292756 When 20 = 0 , 30 = 

12 , 40 = 11 

243   Mean = 9.23076923076923    STDdev = 5.83298111080889 When 20 = 0 , 30 = 

11 , 40 = 11 

242   Mean = 9.23076923076923    STDdev = 6.06571507806656 When 20 = 0 , 30 = 

10 , 40 = 11 

241   Mean = 9.23076923076923    STDdev = 5.61801834969545 When 20 = 0 , 30 = 

9 , 40 = 11 

240   Mean = 9.23076923076923    STDdev = 5.24996477869279 When 20 = 0 , 30 = 

8 , 40 = 11 
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239   Mean = 9.23076923076923    STDdev = 4.97924687159454 When 20 = 0 , 30 = 

7 , 40 = 11 

238   Mean = 9.23076923076923    STDdev = 4.8222855442023 When 20 = 0 , 30 = 

6 , 40 = 11 

237   Mean = 9.23076923076923    STDdev = 4.79027614675085 When 20 = 0 , 30 = 

5 , 40 = 11 

236   Mean = 9.23076923076923    STDdev = 4.88567523329244 When 20 = 0 , 30 = 

4 , 40 = 11 

235   Mean = 9.23076923076923    STDdev = 5.10133988664285 When 20 = 0 , 30 = 

3 , 40 = 11 

234   Mean = 9.23076923076923    STDdev = 5.42294053292756 When 20 = 0 , 30 = 

2 , 40 = 11 

233   Mean = 9.23076923076923    STDdev = 5.83298111080888 When 20 = 0 , 30 = 

1 , 40 = 11 

232   Mean = 9.23076923076923    STDdev = 6.06571507806656 When 20 = 0 , 30 = 

0 , 40 = 11 

231   Mean = 9.23076923076923    STDdev = 6.15384615384615 When 20 = 0 , 30 = 

20 , 40 = 10 

230   Mean = 9.23076923076923    STDdev = 5.6860672654081 When 20 = 0 , 30 = 

19 , 40 = 10 

229   Mean = 9.23076923076923    STDdev = 5.29373862587239 When 20 = 0 , 30 = 

18 , 40 = 10 

228   Mean = 9.23076923076923    STDdev = 4.99467171715321 When 20 = 0 , 30 = 

17 , 40 = 10 

227   Mean = 9.23076923076923    STDdev = 4.80630749286563 When 20 = 0 , 30 = 

16 , 40 = 10 

226   Mean = 9.23076923076923    STDdev = 4.74185692536075 When 20 = 0 , 30 = 

15 , 40 = 10 

225   Mean = 9.23076923076923    STDdev = 4.80630749286563 When 20 = 0 , 30 = 

14 , 40 = 10 

224   Mean = 9.23076923076923    STDdev = 4.99467171715321 When 20 = 0 , 30 = 

13 , 40 = 10 

223   Mean = 9.23076923076923    STDdev = 5.29373862587239 When 20 = 0 , 30 = 

12 , 40 = 10 
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222   Mean = 9.23076923076923    STDdev = 5.6860672654081 When 20 = 0 , 30 = 

11 , 40 = 10 

221   Mean = 9.23076923076923    STDdev = 6.15384615384615 When 20 = 0 , 30 = 

10 , 40 = 10 

220   Mean = 9.23076923076923    STDdev = 5.6860672654081 When 20 = 0 , 30 = 

9 , 40 = 10 

219   Mean = 9.23076923076923    STDdev = 5.29373862587239 When 20 = 0 , 30 = 

8 , 40 = 10 

218   Mean = 9.23076923076923    STDdev = 4.99467171715321 When 20 = 0 , 30 = 

7 , 40 = 10 

217   Mean = 9.23076923076923    STDdev = 4.80630749286563 When 20 = 0 , 30 = 

6 , 40 = 10 

216   Mean = 9.23076923076923    STDdev = 4.74185692536075 When 20 = 0 , 30 = 

5 , 40 = 10 

215   Mean = 9.23076923076923    STDdev = 4.80630749286563 When 20 = 0 , 30 = 

4 , 40 = 10 

214   Mean = 9.23076923076923    STDdev = 4.99467171715321 When 20 = 0 , 30 = 

3 , 40 = 10 

213   Mean = 9.23076923076923    STDdev = 5.29373862587239 When 20 = 0 , 30 = 

2 , 40 = 10 

212   Mean = 9.23076923076923    STDdev = 5.6860672654081 When 20 = 0 , 30 = 

1 , 40 = 10 

211   Mean = 9.23076923076923    STDdev = 6.15384615384615 When 20 = 0 , 30 = 

0 , 40 = 10 

210   Mean = 9.23076923076923    STDdev = 6.06571507806656 When 20 = 0 , 30 = 

20 , 40 = 9 

209   Mean = 9.23076923076923    STDdev = 5.83298111080888 When 20 = 0 , 30 = 

19 , 40 = 9 

208   Mean = 9.23076923076923    STDdev = 5.42294053292756 When 20 = 0 , 30 = 

18 , 40 = 9 

207   Mean = 9.23076923076923    STDdev = 5.10133988664285 When 20 = 0 , 30 = 

17 , 40 = 9 

206   Mean = 9.23076923076923    STDdev = 4.88567523329244 When 20 = 0 , 30 = 

16 , 40 = 9 
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205   Mean = 9.23076923076923    STDdev = 4.79027614675085 When 20 = 0 , 30 = 

15 , 40 = 9 

204   Mean = 9.23076923076923    STDdev = 4.8222855442023 When 20 = 0 , 30 = 

14 , 40 = 9 

203   Mean = 9.23076923076923    STDdev = 4.97924687159454 When 20 = 0 , 30 = 

13 , 40 = 9 

202   Mean = 9.23076923076923    STDdev = 5.24996477869279 When 20 = 0 , 30 = 

12 , 40 = 9 

201   Mean = 9.23076923076923    STDdev = 5.61801834969545 When 20 = 0 , 30 = 

11 , 40 = 9 

200   Mean = 9.23076923076923    STDdev = 6.06571507806656 When 20 = 0 , 30 = 

10 , 40 = 9 

199   Mean = 9.23076923076923    STDdev = 5.83298111080888 When 20 = 0 , 30 = 

9 , 40 = 9 

198   Mean = 9.23076923076923    STDdev = 5.42294053292756 When 20 = 0 , 30 = 

8 , 40 = 9 

197   Mean = 9.23076923076923    STDdev = 5.10133988664285 When 20 = 0 , 30 = 

7 , 40 = 9 

196   Mean = 9.23076923076923    STDdev = 4.88567523329244 When 20 = 0 , 30 = 

6 , 40 = 9 

195   Mean = 9.23076923076923    STDdev = 4.79027614675085 When 20 = 0 , 30 = 

5 , 40 = 9 

194   Mean = 9.23076923076923    STDdev = 4.8222855442023 When 20 = 0 , 30 = 

4 , 40 = 9 

193   Mean = 9.23076923076923    STDdev = 4.97924687159454 When 20 = 0 , 30 = 

3 , 40 = 9 

192   Mean = 9.23076923076923    STDdev = 5.24996477869279 When 20 = 0 , 30 = 

2 , 40 = 9 

191   Mean = 9.23076923076923    STDdev = 5.61801834969545 When 20 = 0 , 30 = 

1 , 40 = 9 

190   Mean = 9.23076923076923    STDdev = 6.06571507806656 When 20 = 0 , 30 = 

0 , 40 = 9 

189   Mean = 9.23076923076923    STDdev = 6.05302017627877 When 20 = 0 , 30 = 

20 , 40 = 8 
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188   Mean = 9.23076923076923    STDdev = 5.79328319500392 When 20 = 0 , 30 = 

19 , 40 = 8 

187   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

18 , 40 = 8 

186   Mean = 9.23076923076923    STDdev = 5.29373862587239 When 20 = 0 , 30 = 

17 , 40 = 8 

185   Mean = 9.23076923076923    STDdev = 5.05590053081692 When 20 = 0 , 30 = 

16 , 40 = 8 

184   Mean = 9.23076923076923    STDdev = 4.93268293596351 When 20 = 0 , 30 = 

15 , 40 = 8 

183   Mean = 9.23076923076923    STDdev = 4.93268293596351 When 20 = 0 , 30 = 

14 , 40 = 8 

182   Mean = 9.23076923076923    STDdev = 5.05590053081692 When 20 = 0 , 30 = 

13 , 40 = 8 

181   Mean = 9.23076923076923    STDdev = 5.29373862587239 When 20 = 0 , 30 = 

12 , 40 = 8 

180   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

11 , 40 = 8 

179   Mean = 9.23076923076923    STDdev = 6.05302017627877 When 20 = 0 , 30 = 

10 , 40 = 8 

178   Mean = 9.23076923076923    STDdev = 5.79328319500392 When 20 = 0 , 30 = 

9 , 40 = 8 

177   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

8 , 40 = 8 

176   Mean = 9.23076923076923    STDdev = 5.29373862587239 When 20 = 0 , 30 = 

7 , 40 = 8 

175   Mean = 9.23076923076923    STDdev = 5.05590053081692 When 20 = 0 , 30 = 

6 , 40 = 8 

174   Mean = 9.23076923076923    STDdev = 4.93268293596351 When 20 = 0 , 30 = 

5 , 40 = 8 

173   Mean = 9.23076923076923    STDdev = 4.93268293596351 When 20 = 0 , 30 = 

4 , 40 = 8 

172   Mean = 9.23076923076923    STDdev = 5.05590053081692 When 20 = 0 , 30 = 

3 , 40 = 8 
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171   Mean = 9.23076923076923    STDdev = 5.29373862587239 When 20 = 0 , 30 = 

2 , 40 = 8 

170   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

1 , 40 = 8 

169   Mean = 9.23076923076923    STDdev = 6.05302017627877 When 20 = 0 , 30 = 

0 , 40 = 8 

168   Mean = 9.23076923076923    STDdev = 6.11623119442591 When 20 = 0 , 30 = 

20 , 40 = 7 

167   Mean = 9.23076923076923    STDdev = 5.83298111080888 When 20 = 0 , 30 = 

19 , 40 = 7 

166   Mean = 9.23076923076923    STDdev = 5.64533634827962 When 20 = 0 , 30 = 

18 , 40 = 7 

165   Mean = 9.23076923076923    STDdev = 5.56297991746601 When 20 = 0 , 30 = 

17 , 40 = 7 

164   Mean = 9.23076923076923    STDdev = 5.3082496920265 When 20 = 0 , 30 = 

16 , 40 = 7 

163   Mean = 9.23076923076923    STDdev = 5.16130344529731 When 20 = 0 , 30 = 

15 , 40 = 7 

162   Mean = 9.23076923076923    STDdev = 5.1314092554332 When 20 = 0 , 30 = 

14 , 40 = 7 

161   Mean = 9.23076923076923    STDdev = 5.22057830798682 When 20 = 0 , 30 = 

13 , 40 = 7 

160   Mean = 9.23076923076923    STDdev = 5.42294053292756 When 20 = 0 , 30 = 

12 , 40 = 7 

159   Mean = 9.23076923076923    STDdev = 5.72650848321069 When 20 = 0 , 30 = 

11 , 40 = 7 

158   Mean = 9.23076923076923    STDdev = 6.11623119442591 When 20 = 0 , 30 = 

10 , 40 = 7 

157   Mean = 9.23076923076923    STDdev = 5.83298111080888 When 20 = 0 , 30 = 

9 , 40 = 7 

156   Mean = 9.23076923076923    STDdev = 5.64533634827962 When 20 = 0 , 30 = 

8 , 40 = 7 

155   Mean = 9.23076923076923    STDdev = 5.56297991746601 When 20 = 0 , 30 = 

7 , 40 = 7 
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154   Mean = 9.23076923076923    STDdev = 5.3082496920265 When 20 = 0 , 30 = 

6 , 40 = 7 

153   Mean = 9.23076923076923    STDdev = 5.16130344529731 When 20 = 0 , 30 = 

5 , 40 = 7 

152   Mean = 9.23076923076923    STDdev = 5.1314092554332 When 20 = 0 , 30 = 

4 , 40 = 7 

151   Mean = 9.23076923076923    STDdev = 5.22057830798682 When 20 = 0 , 30 = 

3 , 40 = 7 

150   Mean = 9.23076923076923    STDdev = 5.42294053292756 When 20 = 0 , 30 = 

2 , 40 = 7 

149   Mean = 9.23076923076923    STDdev = 5.72650848321069 When 20 = 0 , 30 = 

1 , 40 = 7 

148   Mean = 9.23076923076923    STDdev = 6.11623119442591 When 20 = 0 , 30 = 

0 , 40 = 7 

147   Mean = 9.23076923076923    STDdev = 6.25304659473895 When 20 = 0 , 30 = 

20 , 40 = 6 

146   Mean = 9.23076923076923    STDdev = 5.95048603255807 When 20 = 0 , 30 = 

19 , 40 = 6 

145   Mean = 9.23076923076923    STDdev = 5.73992557113158 When 20 = 0 , 30 = 

18 , 40 = 6 

144   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

17 , 40 = 6 

143   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

16 , 40 = 6 

142   Mean = 9.23076923076923    STDdev = 5.46532912871742 When 20 = 0 , 30 = 

15 , 40 = 6 

141   Mean = 9.23076923076923    STDdev = 5.40873717884521 When 20 = 0 , 30 = 

14 , 40 = 6 

140   Mean = 9.23076923076923    STDdev = 5.46532912871742 When 20 = 0 , 30 = 

13 , 40 = 6 

139   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

12 , 40 = 6 

138   Mean = 9.23076923076923    STDdev = 5.8985506192864 When 20 = 0 , 30 = 

11 , 40 = 6 
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137   Mean = 9.23076923076923    STDdev = 6.25304659473895 When 20 = 0 , 30 = 

10 , 40 = 6 

136   Mean = 9.23076923076923    STDdev = 5.95048603255807 When 20 = 0 , 30 = 

9 , 40 = 6 

135   Mean = 9.23076923076923    STDdev = 5.73992557113158 When 20 = 0 , 30 = 

8 , 40 = 6 

134   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

7 , 40 = 6 

133   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

6 , 40 = 6 

132   Mean = 9.23076923076923    STDdev = 5.46532912871742 When 20 = 0 , 30 = 

5 , 40 = 6 

131   Mean = 9.23076923076923    STDdev = 5.40873717884521 When 20 = 0 , 30 = 

4 , 40 = 6 

130   Mean = 9.23076923076923    STDdev = 5.46532912871742 When 20 = 0 , 30 = 

3 , 40 = 6 

129   Mean = 9.23076923076923    STDdev = 5.63169391314558 When 20 = 0 , 30 = 

2 , 40 = 6 

128   Mean = 9.23076923076923    STDdev = 5.8985506192864 When 20 = 0 , 30 = 

1 , 40 = 6 

127   Mean = 9.23076923076923    STDdev = 6.25304659473895 When 20 = 0 , 30 = 

0 , 40 = 6 

126   Mean = 9.23076923076923    STDdev = 6.45879062451795 When 20 = 0 , 30 = 

20 , 40 = 5 

125   Mean = 9.23076923076923    STDdev = 6.14133343268064 When 20 = 0 , 30 = 

19 , 40 = 5 

124   Mean = 9.23076923076923    STDdev = 5.91157724825872 When 20 = 0 , 30 = 

18 , 40 = 5 

123   Mean = 9.23076923076923    STDdev = 5.77998996743668 When 20 = 0 , 30 = 

17 , 40 = 5 

122   Mean = 9.23076923076923    STDdev = 5.75331136963543 When 20 = 0 , 30 = 

16 , 40 = 5 

121   Mean = 9.23076923076923    STDdev = 5.83298111080888 When 20 = 0 , 30 = 

15 , 40 = 5 
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120   Mean = 9.23076923076923    STDdev = 5.75331136963543 When 20 = 0 , 30 = 

14 , 40 = 5 

119   Mean = 9.23076923076923    STDdev = 5.77998996743668 When 20 = 0 , 30 = 

13 , 40 = 5 

118   Mean = 9.23076923076923    STDdev = 5.91157724825872 When 20 = 0 , 30 = 

12 , 40 = 5 

117   Mean = 9.23076923076923    STDdev = 6.14133343268064 When 20 = 0 , 30 = 

11 , 40 = 5 

116   Mean = 9.23076923076923    STDdev = 6.45879062451795 When 20 = 0 , 30 = 

10 , 40 = 5 

115   Mean = 9.23076923076923    STDdev = 6.14133343268064 When 20 = 0 , 30 = 

9 , 40 = 5 

114   Mean = 9.23076923076923    STDdev = 5.91157724825872 When 20 = 0 , 30 = 

8 , 40 = 5 

113   Mean = 9.23076923076923    STDdev = 5.77998996743668 When 20 = 0 , 30 = 

7 , 40 = 5 

112   Mean = 9.23076923076923    STDdev = 5.75331136963543 When 20 = 0 , 30 = 

6 , 40 = 5 

111   Mean = 9.23076923076923    STDdev = 5.83298111080888 When 20 = 0 , 30 = 

5 , 40 = 5 

110   Mean = 9.23076923076923    STDdev = 5.75331136963543 When 20 = 0 , 30 = 

4 , 40 = 5 

109   Mean = 9.23076923076923    STDdev = 5.77998996743668 When 20 = 0 , 30 = 

3 , 40 = 5 

108   Mean = 9.23076923076923    STDdev = 5.91157724825872 When 20 = 0 , 30 = 

2 , 40 = 5 

107   Mean = 9.23076923076923    STDdev = 6.14133343268064 When 20 = 0 , 30 = 

1 , 40 = 5 

106   Mean = 9.23076923076923    STDdev = 6.45879062451795 When 20 = 0 , 30 = 

0 , 40 = 5 

105   Mean = 9.23076923076923    STDdev = 6.72714187971552 When 20 = 0 , 30 = 

20 , 40 = 4 

104   Mean = 9.23076923076923    STDdev = 6.39896441325705 When 20 = 0 , 30 = 

19 , 40 = 4 
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103   Mean = 9.23076923076923    STDdev = 6.15384615384615 When 20 = 0 , 30 = 

18 , 40 = 4 

102   Mean = 9.23076923076923    STDdev = 6.00197206250189 When 20 = 0 , 30 = 

17 , 40 = 4 

101   Mean = 9.23076923076923    STDdev = 5.95048603255807 When 20 = 0 , 30 = 

16 , 40 = 4 

100   Mean = 9.23076923076923    STDdev = 6.00197206250189 When 20 = 0 , 30 = 

15 , 40 = 4 

99   Mean = 9.23076923076923    STDdev = 6.15384615384615 When 20 = 0 , 30 = 

14 , 40 = 4 

98   Mean = 9.23076923076923    STDdev = 6.15384615384615 When 20 = 0 , 30 = 

13 , 40 = 4 

97   Mean = 9.23076923076923    STDdev = 6.25304659473895 When 20 = 0 , 30 = 

12 , 40 = 4 

96   Mean = 9.23076923076923    STDdev = 6.4468697968483 When 20 = 0 , 30 = 

11 , 40 = 4 

95   Mean = 9.23076923076923    STDdev = 6.72714187971552 When 20 = 0 , 30 = 

10 , 40 = 4 

94   Mean = 9.23076923076923    STDdev = 6.39896441325705 When 20 = 0 , 30 = 

9 , 40 = 4 

93   Mean = 9.23076923076923    STDdev = 6.15384615384615 When 20 = 0 , 30 = 

8 , 40 = 4 

92   Mean = 9.23076923076923    STDdev = 6.0019720625019 When 20 = 0 , 30 = 7 

, 40 = 4 

91   Mean = 9.23076923076923    STDdev = 5.95048603255807 When 20 = 0 , 30 = 

6 , 40 = 4 

90   Mean = 9.23076923076923    STDdev = 6.00197206250189 When 20 = 0 , 30 = 

5 , 40 = 4 

89   Mean = 9.23076923076923    STDdev = 6.15384615384615 When 20 = 0 , 30 = 

4 , 40 = 4 

88   Mean = 9.23076923076923    STDdev = 6.15384615384615 When 20 = 0 , 30 = 

3 , 40 = 4 

87   Mean = 9.23076923076923    STDdev = 6.25304659473895 When 20 = 0 , 30 = 

2 , 40 = 4 
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86   Mean = 9.23076923076923    STDdev = 6.4468697968483 When 20 = 0 , 30 = 1 

, 40 = 4 

85   Mean = 9.23076923076923    STDdev = 6.72714187971552 When 20 = 0 , 30 = 

0 , 40 = 4 

84   Mean = 9.23076923076923    STDdev = 7.05095570340368 When 20 = 0 , 30 = 

20 , 40 = 3 

83   Mean = 9.23076923076923    STDdev = 6.71569741098989 When 20 = 0 , 30 = 

19 , 40 = 3 

82   Mean = 9.23076923076923    STDdev = 6.45879062451795 When 20 = 0 , 30 = 

18 , 40 = 3 

81   Mean = 9.23076923076923    STDdev = 6.28984341438758 When 20 = 0 , 30 = 

17 , 40 = 3 

80   Mean = 9.23076923076923    STDdev = 6.21603195410367 When 20 = 0 , 30 = 

16 , 40 = 3 

79   Mean = 9.23076923076923    STDdev = 6.24073277445287 When 20 = 0 , 30 = 

15 , 40 = 3 

78   Mean = 9.23076923076923    STDdev = 6.36279868458776 When 20 = 0 , 30 = 

14 , 40 = 3 

77   Mean = 9.23076923076923    STDdev = 6.57681061532279 When 20 = 0 , 30 = 

13 , 40 = 3 

76   Mean = 9.23076923076923    STDdev = 6.64661679299322 When 20 = 0 , 30 = 

12 , 40 = 3 

75   Mean = 9.23076923076923    STDdev = 6.80671440173198 When 20 = 0 , 30 = 

11 , 40 = 3 

74   Mean = 9.23076923076923    STDdev = 7.05095570340369 When 20 = 0 , 30 = 

10 , 40 = 3 

73   Mean = 9.23076923076923    STDdev = 6.71569741098989 When 20 = 0 , 30 = 

9 , 40 = 3 

72   Mean = 9.23076923076923    STDdev = 6.45879062451795 When 20 = 0 , 30 = 

8 , 40 = 3 

71   Mean = 9.23076923076923    STDdev = 6.28984341438758 When 20 = 0 , 30 = 

7 , 40 = 3 

70   Mean = 9.23076923076923    STDdev = 6.21603195410367 When 20 = 0 , 30 = 

6 , 40 = 3 
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69   Mean = 9.23076923076923    STDdev = 6.24073277445287 When 20 = 0 , 30 = 

5 , 40 = 3 

68   Mean = 9.23076923076923    STDdev = 6.36279868458776 When 20 = 0 , 30 = 

4 , 40 = 3 

67   Mean = 9.23076923076923    STDdev = 6.57681061532279 When 20 = 0 , 30 = 

3 , 40 = 3 

66   Mean = 9.23076923076923    STDdev = 6.64661679299322 When 20 = 0 , 30 = 

2 , 40 = 3 

65   Mean = 9.23076923076923    STDdev = 6.80671440173198 When 20 = 0 , 30 = 

1 , 40 = 3 

64   Mean = 9.23076923076923    STDdev = 7.05095570340368 When 20 = 0 , 30 = 

0 , 40 = 3 

63   Mean = 9.23076923076923    STDdev = 7.42297728111681 When 20 = 0 , 30 = 

20 , 40 = 2 

62   Mean = 9.23076923076923    STDdev = 7.08360888198236 When 20 = 0 , 30 = 

19 , 40 = 2 

61   Mean = 9.23076923076923    STDdev = 6.81800609420318 When 20 = 0 , 30 = 

18 , 40 = 2 

60   Mean = 9.23076923076923    STDdev = 6.63503343164548 When 20 = 0 , 30 = 

17 , 40 = 2 

59   Mean = 9.23076923076923    STDdev = 6.54162819245209 When 20 = 0 , 30 = 

16 , 40 = 2 

58   Mean = 9.23076923076923    STDdev = 6.54162819245209 When 20 = 0 , 30 = 

15 , 40 = 2 

57   Mean = 9.23076923076923    STDdev = 6.63503343164549 When 20 = 0 , 30 = 

14 , 40 = 2 

56   Mean = 9.23076923076923    STDdev = 6.81800609420318 When 20 = 0 , 30 = 

13 , 40 = 2 

55   Mean = 9.23076923076923    STDdev = 7.08360888198236 When 20 = 0 , 30 = 

12 , 40 = 2 

54   Mean = 9.23076923076923    STDdev = 7.21274348906526 When 20 = 0 , 30 = 

11 , 40 = 2 

53   Mean = 9.23076923076923    STDdev = 7.42297728111681 When 20 = 0 , 30 = 

10 , 40 = 2 
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52   Mean = 9.23076923076923    STDdev = 7.08360888198236 When 20 = 0 , 30 = 

9 , 40 = 2 

51   Mean = 9.23076923076923    STDdev = 6.81800609420318 When 20 = 0 , 30 = 

8 , 40 = 2 

50   Mean = 9.23076923076923    STDdev = 6.63503343164549 When 20 = 0 , 30 = 

7 , 40 = 2 

49   Mean = 9.23076923076923    STDdev = 6.54162819245209 When 20 = 0 , 30 = 

6 , 40 = 2 

48   Mean = 9.23076923076923    STDdev = 6.54162819245209 When 20 = 0 , 30 = 

5 , 40 = 2 

47   Mean = 9.23076923076923    STDdev = 6.63503343164548 When 20 = 0 , 30 = 

4 , 40 = 2 

46   Mean = 9.23076923076923    STDdev = 6.81800609420318 When 20 = 0 , 30 = 

3 , 40 = 2 

45   Mean = 9.23076923076923    STDdev = 7.08360888198236 When 20 = 0 , 30 = 

2 , 40 = 2 

44   Mean = 9.23076923076923    STDdev = 7.21274348906526 When 20 = 0 , 30 = 

1 , 40 = 2 

43   Mean = 9.23076923076923    STDdev = 7.42297728111681 When 20 = 0 , 30 = 

0 , 40 = 2 

42   Mean = 9.23076923076923    STDdev = 7.83634379182464 When 20 = 0 , 30 = 

20 , 40 = 1 

41   Mean = 9.23076923076923    STDdev = 7.49516609508418 When 20 = 0 , 30 = 

19 , 40 = 1 

40   Mean = 9.23076923076923    STDdev = 7.22340050065753 When 20 = 0 , 30 = 

18 , 40 = 1 

39   Mean = 9.23076923076923    STDdev = 7.02910264711426 When 20 = 0 , 30 = 

17 , 40 = 1 

38   Mean = 9.23076923076923    STDdev = 6.9188020990058 When 20 = 0 , 30 = 

16 , 40 = 1 

37   Mean = 9.23076923076923    STDdev = 6.89653029990551 When 20 = 0 , 30 = 

15 , 40 = 1 

36   Mean = 9.23076923076923    STDdev = 6.96313198931283 When 20 = 0 , 30 = 

14 , 40 = 1 
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35   Mean = 9.23076923076923    STDdev = 7.11611222890968 When 20 = 0 , 30 = 

13 , 40 = 1 

34   Mean = 9.23076923076923    STDdev = 7.35007949882539 When 20 = 0 , 30 = 

12 , 40 = 1 

33   Mean = 9.23076923076923    STDdev = 7.65761407061219 When 20 = 0 , 30 = 

11 , 40 = 1 

32   Mean = 9.23076923076923    STDdev = 7.83634379182465 When 20 = 0 , 30 = 

10 , 40 = 1 

31   Mean = 9.23076923076923    STDdev = 7.49516609508418 When 20 = 0 , 30 = 

9 , 40 = 1 

30   Mean = 9.23076923076923    STDdev = 7.22340050065753 When 20 = 0 , 30 = 

8 , 40 = 1 

29   Mean = 9.23076923076923    STDdev = 7.02910264711426 When 20 = 0 , 30 = 

7 , 40 = 1 

28   Mean = 9.23076923076923    STDdev = 6.9188020990058 When 20 = 0 , 30 = 6 

, 40 = 1 

27   Mean = 9.23076923076923    STDdev = 6.89653029990551 When 20 = 0 , 30 = 

5 , 40 = 1 

26   Mean = 9.23076923076923    STDdev = 6.96313198931283 When 20 = 0 , 30 = 

4 , 40 = 1 

25   Mean = 9.23076923076923    STDdev = 7.11611222890968 When 20 = 0 , 30 = 

3 , 40 = 1 

24   Mean = 9.23076923076923    STDdev = 7.35007949882539 When 20 = 0 , 30 = 

2 , 40 = 1 

23   Mean = 9.23076923076923    STDdev = 7.65761407061219 When 20 = 0 , 30 = 

1 , 40 = 1 

22   Mean = 9.23076923076923    STDdev = 7.83634379182464 When 20 = 0 , 30 = 

0 , 40 = 1 

21   Mean = 9.23076923076923    STDdev = 8.28486893405308 When 20 = 0 , 30 = 

20 , 40 = 0 

20   Mean = 9.23076923076923    STDdev = 7.9435880882619 When 20 = 0 , 30 = 

19 , 40 = 0 

19   Mean = 9.23076923076923    STDdev = 7.66765279653976 When 20 = 0 , 30 = 

18 , 40 = 0 
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18   Mean = 9.23076923076923    STDdev = 7.46431352043582 When 20 = 0 , 30 = 

17 , 40 = 0 

17   Mean = 9.23076923076923    STDdev = 7.33960642577019 When 20 = 0 , 30 = 

16 , 40 = 0 

16   Mean = 9.23076923076923    STDdev = 7.2975638311578 When 20 = 0 , 30 = 

15 , 40 = 0 

15   Mean = 9.23076923076923    STDdev = 7.33960642577019 When 20 = 0 , 30 = 

14 , 40 = 0 

14   Mean = 9.23076923076923    STDdev = 7.46431352043582 When 20 = 0 , 30 = 

13 , 40 = 0 

13   Mean = 9.23076923076923    STDdev = 7.66765279653976 When 20 = 0 , 30 = 

12 , 40 = 0 

12   Mean = 9.23076923076923    STDdev = 7.9435880882619 When 20 = 0 , 30 = 

11 , 40 = 0 

11   Mean = 9.23076923076923    STDdev = 8.28486893405308 When 20 = 0 , 30 = 

10 , 40 = 0 

10   Mean = 9.23076923076923    STDdev = 7.9435880882619 When 20 = 0 , 30 = 9 

, 40 = 0 

9   Mean = 9.23076923076923    STDdev = 7.66765279653976 When 20 = 0 , 30 = 8 

, 40 = 0 

8   Mean = 9.23076923076923    STDdev = 7.46431352043582 When 20 = 0 , 30 = 7 

, 40 = 0 

7   Mean = 9.23076923076923    STDdev = 7.33960642577019 When 20 = 0 , 30 = 6 

, 40 = 0 

6   Mean = 9.23076923076923    STDdev = 7.2975638311578 When 20 = 0 , 30 = 5 , 

40 = 0 

5   Mean = 9.23076923076923    STDdev = 7.33960642577019 When 20 = 0 , 30 = 4 

, 40 = 0 

4   Mean = 9.23076923076923    STDdev = 7.46431352043582 When 20 = 0 , 30 = 3 

, 40 = 0 

3   Mean = 9.23076923076923    STDdev = 7.66765279653976 When 20 = 0 , 30 = 2 

, 40 = 0 

2   Mean = 9.23076923076923    STDdev = 7.9435880882619 When 20 = 0 , 30 = 1 , 

40 = 0 
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1   Mean = 9.23076923076923    STDdev = 8.28486893405308 When 20 = 0 , 30 = 0 

, 40 = 0 
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Appendix 7: TTCAN Node Schematic 
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Appendix 8: Embedded ‘C’ Software 

 

1 //******************************************************************** 

2 //PIC microcontroller P18F2480. 

3 // 

4 // Master in Engineering 

5 // 

6 //         "Master Node sending Message every 20ms for a matrix 600ms long" 

7 // 

8 // Written by Henry Acheson of Advanced Automotive Electronic Control Group, 

9 //                         WIT, Cork Road, Waterford, Ireland. 

10 // 

11 //Date: 06-02-2007 

12 //Version 1.00 

13 //******************************************************************** 

14 unsigned count; 

15 char aa, aa1, lenn, i; 

16 char data[8]; 

17 long id; 

18  void interrupt() 

19 { 

20  TMR0L  = 0xdb; 

21 TMR0H = 0xB1; 

22  INTCON = 0x20;     // Set T0IE, clear T0IF 

23  i++;               // Increment value of "i" on every interrupt 

24 count = i; 

25  } 

26 void main() 

27 { 

28  i = 0; 

29 count = 1; 

30 T0CON = 0x80;       // Assign prescaler to TMR0 

31 TMR0L = 0xd3; 

32 TMR0H = 0x9e; 

33  

34 aa = 0; 

35 aa1 = 0; 

36 aa = CAN_CONFIG_SAMPLE_THRICE & CAN_CONFIG_PHSEG2_PRG_ON & 

37 CAN_CONFIG_ALL_MSG & CAN_CONFIG_DBL_BUFFER_ON & 

38 CAN_CONFIG_LINE_FILTER_OFF;                 //Used with CANInitialize 
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39 aa1 = CAN_TX_PRIORITY_0 & CAN_TX_STD_FRAME & 

40 CAN_TX_NO_RTR_FRAME;                       //Used with CANSendMessage 

41  

42 //CAN Baudrate = 4 = 125kbits/sec 8MHz clock 

43  CANInitialize(2,4,3,3,1,aa);                   //Initialize CAN Controller 

44 CANSetOperationMode(CAN_MODE_NORMAL,0);    //Configure Normal Mode 

45 data [0] = 1; 

46 data [2] = 0; 

47 data [3] = 0; 

48 data [4] = 0; 

49 data [5] = 0; 

50 data [6] = 0; 

51 id = 20; 

52 lenn = 7; 

53 INTCON = 0xA0;       // Enable TMRO interrupt 

54  do 

55  { 

56  if (count == i) 

57   { 

58   data [1] = i; 

59   CANWRITE(id,data,lenn,aa1); 

60   count = count + 1; 

61    if (count == 31) 

62    { 

63    count = 1; 

64    i = 0; 

65    } 

66   } 

67  } 

68 while(1);        // loop 

69 }//~! 
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Appendix 9: Write Data for Message Periods 20ms and 30ms. 

 

System Start of measurement 05:13:51 pm 

System CAN 1 Bus with 125000 BPS. 

System ----- 

System Statistics report AR0038, 05:13:51 pm 

System Statistics for transmit spacing of messages in [ms] 

System  

System                    N      Aver        StdDev    MIN      MAX     

System  

System 20          RX    7574   20.005   0.0093935  19.98    20.03  CAN 1 

System 30          RX    5049   30.007   0.017355  29.98    30.04  CAN 1 

System  

System End of measurement 05:16:23 pm 
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Appendix 10: Write Data for Message Periods 20ms, 30ms and 

40ms. 

 

System Start of measurement 08:32:41 pm 

System CAN 1 Bus with 125000 BPS. 

System ----- 

System Statistics report AR0059, 08:32:41 pm 

System Statistics for transmit spacing of messages in [ms] 

System  

System                    N      Aver      StdDev    MIN     MAX     

System  

System 20         RX    9296   20.005    0.01305   19.97   20.04   CAN 1 

System 30         RX    6197   30.007    0.028232  29.93   30.06   CAN 1 

System 40         RX    4648   40.01     0.025572  39.93   40.08   CAN 1 

System  

System End of measurement 08:35:47 pm 
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Appendix 11: Write Data for Message Periods 20ms, 30ms, 

40ms and 50ms. 

 

System Start of measurement 01:13:17 pm 

System CAN 1 Bus with 125000 BPS. 

System ----- 

System Statistics report AR0042, 01:13:17 pm 

System Statistics for transmit spacing of messages in [ms] 

System  

System                    N      Aver        StdDev    MIN     MAX     

System  

System 20          RX    7885   20.011   0.0088368  19.98   20.03   CAN 1 

System 30          RX    5256   30.016   0.027868  29.93   30.09   CAN 1 

System 40          RX    3942   40.022   0.017549  39.97   40.08   CAN 1 

System 50          RX    3154   50.027   0.027818  49.93   50.10   CAN 1 

System  

System End of measurement 01:15:55 pm 


