

REAL-TIME OPTIMISATION

OF TTCAN NETWORKS

A DISSERTATION

SUBMITTED TO THE DEPARTEMENT OF ENGINEERING TECHNOLOGY

OF WATERFORD INSTITUTE OF TECHNOLOGY

IN COMPLETE FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF ENGINEERING

By:

Henry L. Acheson.

Supervised By:

John Manning.

June 2007

Dedicated to:

My Wife: Patricia

And

My Children: Sinéad, Paul, Susan, and Gail.

 i

Declaration

I hereby certify that the material presented in this document is entirely my own work

and has not been submitted previously as an exercise or degree at this or any other

establishment of higher education. I the author alone have undertaken the work except

where otherwise stated.

Signed: ________________________

Date: ________________

 ii

Acknowledgements

I hereby acknowledge the contributions to this thesis and offer my thanks to the

people who have helped and supported me during my work over the past three years.

My Family: I would like to formally acknowledge the tremendous patience,

understanding an encouragement shown to me by my wife Patricia and my children

Sinéad, Paul, Susan, and Gail.

My Supervisor: Mr. John Manning, I would like to express my gratitude to John for

his continuous supervision, support, assistance, and invaluable guidance in all aspects

of the research.

Additional Support: I would like to thank Mr Denis O’Shea for his help and

cooperation over the past three years and the financial support of Waterford Institute

of Technology .

There are also many other people who have contributed in both direct and indirect

ways, and they deserve my thanks – Thank you all.

 iii

Abstract

Controller Area Network is widely used as a communications network in automotive

applications, typically motor cars, commercial vehicles, and utility vehicles. CAN is

operated either by spontaneous messaging or by time triggered messaging. Time

triggered messaging is the preferred option on modern systems as it allows all

messages access to the bus at some defined period in time. Using time triggered

messaging alone does not allow real-time access to the network, therefore

spontaneous messaging is used in conjunction with the time triggered messaging to

ensure this.

Presently there are two types of schedulers available for the development of TTCAN

message sets. They are the stochastic and heuristic scheduler, which are both useful,

but they do not provide the capability of ensuring real-time messages arrive within

their deadline.

Stochastic schedulers generate message sets by a probability distribution and heuristic

schedulers develop a message set solution by trial and error. They both define the

optimum message set as the one with the least jitter by use of a cost function analysis.

Neither of the two methods take into account the effect the schedules may have on

spontaneous real-time messaging.

Real-time messages have the best opportunity of meeting their deadline, if the

TTCAN messages are not sent sequentially, in fact the larger the arbitration window

size between TTCAN messages, the more successful will be the real-time

performance of the network.

Schedulers are essentially designed to load balance system resources and in the case

of a TTCAN network, the ideal situation is that all messages are separated by the

same size arbitration window. This provides the optimum real-time performance,

however with messages of different time periods being broadcast, it should be realised

that arbitration windows will nearly always be of different sizes. A statistical

message scheduler has been devised and demonstrated to produced an optimum

message set for real-time operation on a TTCAN network and hence improve the

results produced by stochastic or heuristic techniques.

 iv

Table of Contents

Table of Contents..iv

Figures List ...ix

List of Tables ...xii

List of Tables ...xii

List of Abbreviations ..xiii

List of Abbreviations ..xiii

Chapter 1: Introduction ..1

1.1 Introduction..2

1.2 History..2

1.3 Thesis Contributions ..4

Chapter 2: Literature Review and Technical Background...5

2.1 Introduction..6

2.2 CAN Data Link Layer..6

2.2.1 Introduction...7

2.2.2 Vehicle Applications...8

2.2.2.1 Multiplex Applications ..8

2.2.2.2 Mobile Communications Applications ..9

2.2.2.3 Diagnostic Applications...9

2.2.2.4 Real-time Applications ..9

2.2.3 Network Configuration ...9

2.2.4 OSI Model...10

2.2.5 Content-based addressing ...11

2.2.6 Bus Arbitration: ..12

2.2.7 CAN Bus “Wired – AND”..13

2.2.8 CAN Frames ...15

2.2.8.1 Data Frame or Message Frame ..15

2.2.8.2 Remote Frame..17

2.2.8.3 Error Frame..18

2.2.8.4 Overload Frame ...19

2.2.8.5 Interframe Space ..19

2.2.9 Error Detection..20

2.2.9.1 CRC Error ..20

 v

2.2.9.2 Acknowledge Error (ACK)..21

2.2.9.3 Frame Check ..22

2.2.9.4 Bit Error ...22

2.2.9.5 Bit-Stuffing Check ...23

2.2.9.6 Error Handling ...24

2.2.10 Protocol Versions..25

2.2.11 Message Coding..27

2.2.12 Bus Synchronisation ...27

2.2.13 Bit Construction ..28

2.2.13.1 Baud-rate Prescaler ..29

2.2.13.2 Synchronisation Segment...30

2.2.13.3 Propagation Time Segment..30

2.2.13.4 Phase Segment Buffer 1...30

2.2.13.5 Phase Segment Buffer 2...31

2.2.14 Information Processing Time..31

2.2.15 Re-Synchronisation...31

2.2.15.1 Bit Lengthening ...31

2.2.15.2 Bit Shortening ..33

2.2.15.3 Re-Synchronisation Jump Width ...34

2.2.17 Programming the Sample Point ..34

2.3 CAN Physical Layer ..35

2.3.1 Bus Construction...36

2.3.2 Wires and Connectors ...37

2.3.2.1 Bus Lengths ...37

2.3.2.2 Propagation Delay..38

2.3.3.3 Connections..39

2.3.3 Oscillator Tolerance..40

2.3.4 Cable ...40

2.4 CAN Controllers ..41

2.4.1 Introduction...41

2.4.2 CPU Loading ..41

2.5 Message Sending ...44

2.5.1 Introduction...44

2.5.2 Event Triggered CAN...44

 vi

2.5.2.1 Event Triggered Problems ...45

2.5.3 Time Triggered CAN..48

2.5.3.1 TTCAN Extension Level 1 ..48

2.5.3.2 TTCAN Extension Level 2 ..49

2.5.3.3 The Reference Message ...49

2.5.3.4 TTCAN Basic Cycle ..49

2.5.3.5 Node Specific Knowledge ...50

2.5.3.6 System Matrix..52

2.5.3.7 Time and Base Marks ..52

2.5.3.8 TTCAN Network Time Units (NTU) ..53

2.5.3.9 Global Time Extension Level 2 ...53

2.5.3.10 Initialisation ...54

2.6 Message Scheduling Algorithms ...54

2.6.1 Introduction...54

2.6.2 Scheduling...55

2.6.2.1 Deadline-monotonic Scheduling..55

2.6.2.2 Earliest Deadline First Scheduling...56

2.6.2.3 Rate Monotonic Scheduling...57

2.6.3 Stochastic Optimisation Algorithm...57

2.6.3.1 TTCAN Scheduling Using Stochastic Optimisation58

2.6.3.2 Stochastic Scheduling ..59

2.6.3.3 Stochastic Optimisation ...61

2.6.4 Heuristic Scheduling Concepts ...62

2.6.4.1 TTCAN Scheduling Using Heuristic Methods62

2.6.4.2 Heuristic Message Strategies ...64

2.6.4.3 Allocation of Message Slots ..65

2.7 Summary..66

Chapter 3: Designing the Optimum TTCAN Message Scheduler...............................68

3.1 Introduction..69

3.2. Stochastic and Heuristic Scheduler Problems...69

3.2.1 Introduction...69

3.2.2 Stochastic Scheduling ...69

3.2.2.1 Designing a Stochastic Message Set..71

3.2.3 Heuristic Scheduling...74

 vii

3.2.4 How Optimised are Stochastic and Heuristic Schedules78

3.3 The Mathematical Approach to TTCAN Scheduling ..79

3.3.1 Introduction...79

3.3.2 The Mathematical Design Process..79

3.3.2.1 Mathematical Two Message SM ...79

3.3.2.2 Modelling Results of Two Message SM..80

3.3.2.3 Statistical Approach to SM Design..85

3.3.2.4 A Statistical Approach to the Scheduling Problem in Example 386

3.3.2.5 A Statistical Approach to the Scheduling Problem in Example 488

3.3.3 Is There a Trend? ..89

3.4 Statistical Software Scheduler Development...92

3.4.1 Introduction...92

3.4.2 Software Design..92

3.4.2.1 Programming Language...92

3.4.2.2 Number of Message Sets to Be Developed..92

3.4.2.3 Software Flow Chart ..94

3.4.2.4 Program Flow of the Statistical Scheduler...95

3.5.1 Extended Testing with Three Periodic Messages100

3.6. Summary...105

Chapter 4: Implementation and Testing...107

4.1 Introduction..108

4.2.1 Hardware Implementation ..108

4.2.1.1 Physical Interface...108

4.2.1.2 Embedded Tool Chain ...111

4.2.1.3 Equations for Propagation Delay and Oscillator Tolerance111

4.2.1.4 Calculation of Bit Timing and Oscillator Tolerance..........................114

4.2.1.5 Node Implementation...115

4.3.1 Embedded Software Development ...115

4.4.1 Testing Procedure ...116

4.4.1.1 Data Acquisition ..117

4.4.1.2 Test 1..119

4.4.1.3 Test 2..120

4.4.1.4 Test 3..121

4.4.1.5 Testing for Errors...122

 viii

4.5.1 Summary...123

Chapter 5: Conclusions ..124

5.1 Introduction..125

5.2 Conclusions..125

5.3 Further Research ..131

Reference List ..133

Appendix 1: Scheduling Algorithms ...138

Appendix 2: Example 4, System Matrix Data ...139

Appendix 3: Example 5, System Matrix Data ...141

Appendix 4: VB Code to Develop System Matrix ..144

Appendix 5: CSV File..162

Appendix 6: Output from Statistical Scheduler, Periods 20, 30 and 40ms................163

Appendix 7: TTCAN Node Schematic ..190

Appendix 8: Embedded ‘C’ Software..191

Appendix 9: Write Data for Message Periods 20ms and 30ms.193

Appendix 10: Write Data for Message Periods 20ms, 30ms and 40ms.194

Appendix 11: Write Data for Message Periods 20ms, 30ms, 40ms and 50ms..........195

 ix

Figures List

Figure 1.1 : Network Communication System ..3

Figure 2.1: Conventional Wiring of ECUs ..7

Figure 2.2: Linear Bus Topology...8

Figure 2.3 : Ring Bus and Star Bus Topology...10

Figure 2.4: Two Lower Layers Implemented from ISO Model...................................10

Figure 2.5: Addressing & Message Filtering...11

Figure 2.6: CAN Bus Bit Arbitration...13

Figure 2.7: Wired-AND (recessive state) ..14

Figure 2.8: Wired-AND (dominant state)..15

Figure 2.9: CAN Data Frame Standard Format ...16

Figure 2.10: Remote Frame ...17

Figure 2.11: Error Frame ...18

Figure 2.12: Overload Frame...19

Figure 2.13: Interframe Space..20

Figure 2.14: CRC Error..21

Figure 2.15: Acknowledge Field..21

Figure 2.16: Frame Check..22

Figure 2.17 Bit-Stuffing...23

Figure 2.18: Error Frame Transmitted ...24

Figure 2.19: Node Error Counters ...25

Figure 2.20: CAN Standard and Extended Data Frames ...26

Figure 2.21: CAN Version Modules..26

Figure 2-22: Message Coding..27

Figure 2-23: Hard Synchronisation..28

Figure 2-24: Re-synchronisation..28

Figure 2.25: Bit Construction ..28

Figure 2.26: Baud Rate Prescaler...29

Figure 2.27: The Four Segments of 1 Bit Time ...30

Figure 2.28: Re-Synchronisation Edge Delayed..32

Figure 2.29: Re-Synchronisation by Increasing Phase Segment Buffer 1...................32

Figure 2.30: Re-Synchronisation Edge Increased..33

Figure 2.31: Re-Synchronisation by Decreasing Phase Segment Buffer 233

 x

Figure 2.32: Two Timing Segments ..34

Figure 2.33: Early Sampling Point...35

Figure 2.34: Late Sampling Point ..35

Figure 2.35: The Differential CAN bus ...36

Figure 2.36: ISO 11898 Nominal Bus Voltage Levels ...37

Figure 2.37: “Bus Length” v “Baud-rate”..38

Figure 2.38: Propagation Delay ...38

Figure 2.39: Nine Pole SUB-D Connector ..40

Figure 2.40: Stand Alone CAN Controller Layout..41

Figure 2.41: Integrated CAN Controller..42

Figure 2.42: Message Delivery Time...45

Figure 2.43: Queuing Time..46

Figure 2.44: Queuing Delay Due to Blocking ...47

Figure 2.45: Reference Message – TTCAN Basic Cycle ..49

Figure 2.46: Exclusive and Arbitration Windows – TTCAN Basic Cycle..................50

Figure 2.47: TTCAN Communication...51

Figure 2.48: TTCAN System Matrix ...51

Figure 2.49: Merging Arbitration Windows ..52

Figure 2.50: Time and Base Marks..53

Figure 2.51: Basic Heuristic Message Schedule..63

Figure 2.52: Heuristic Scheduling showing Arbitration Windows..............................64

Figure 2.53: Heuristic Dense Message Allocation ..65

Figure 2.54: Heuristic Sparse Message Allocation..65

Figure 3.1: Spontaneous Message Waiting with Single Columns...............................70

Figure 3.2: Spontaneous Message Waiting with Double Columns70

Figure 3.3: Stochastic Message Set 1 ..72

Figure 3.4: Stochastic Message Set 2 ..73

Figure 3.5: Initial Heuristic Message Set...75

Figure 3.6: Initial Arbitration Windows with Heuristic SM..76

Figure 3.7: Arbitration Window Adjustment Heuristic SM ..77

Figure 3.8: Mathematical Design “A” of Period 10ms..80

Figure 3.9: Mathematical Design “B” of Period 10ms..82

Figure 3.10: SM for Example 4 using Equation 3.1 and Equation 3.284

Figure 3.11: Optimum SM for Example 4, by Inspection ...85

 xi

Figure 3.12: Graph Developed by use of MATLAB for Example 388

Figure 3.13: Graph Developed with MATLAB for Example 4...................................89

Figure 3.14: Graph Developed with MATLAB for Example 5...................................90

Figure 3.15: Graph for Example 5 over the first 5ms ..91

Figure 3.16: Flow Chart for Development and Evaluation of TTCAN Message Sets 94

Figure 3.17: Statistical Scheduler ..95

Figure 3.18: Finding All Possible SMs..96

Figure 3.19: Message Schedule for 20ms and 30ms Messages98

Figure 3.20: Optimum Position for Message Periods 20ms and 30ms........................99

Figure 3.21: Implementation of Figure 3.19..100

Figure 3.22: Graphed Data for Message Periods 20ms, 30ms, and 40ms101

Figure 3.23: GUI Output for Message Periods 20ms, 30ms, and 40ms102

Figure 3.24: Graphed Data for Message Periods 20ms, 30ms, and 40ms104

Figure 3.25: GUI Output for Message Periods 20ms, 30ms, 40ms, and 50ms..........105

Figure 4.1: Propagation Delay of Oscilloscope Channel 1 and Channel 2 Leads109

Figure 4.2: Propagation Delay for 1.5m of CAN Cable. ...109

Figure 4.3: Testing Network Cable Skew..110

Figure 4.4: Embedded Software Flow Chart ...116

Figure 4.5: CANalyzer...118

Figure 4.6: Parser for CANalyzer ..118

Figure 4.7: Data Acquisition 20ms and 30ms Message Periods................................120

Figure 4.8: Data Acquisition 20ms, 30ms, and 40ms Message Periods121

Figure 4.9: Data Acquisition 20ms, 30ms, 40ms, and 50ms Message Periods122

Figure 4.10: Extended Testing for Errors ..123

Figure 5.1: Stochastic Message set devised from Example 1, page 71……………..129

Figure 5.2: Heuristic Message set devised from Example 1, page 71………..……..130

Figure 5.3: Statistical Message set devised from Example 1, page 71………….......130

 xii

List of Tables

Table 2.1: Truth Table for “Wired AND” ...13

Table 2.2: ISO 11898 (CAN High Speed) ...36

Table 2.3: ISO 11519 (CAN Low Speed)..36

Table 2.4: CiA DS 102-1 Nine Pole SUB-D Pin-outs ...39

Table 2.5: CAN Node Communication Tasks ...42

Table 2.6: CPU Loading ..43

Table 2.7: Steps Required for Stochastic Optimisation of a TTCAN SM...................61

Table 3.1: The Mean and Standard Deviation of Message Times Example 3.............87

Table 5.1: Statistical Scheduler v Hardware Implementation………………………128

Table 5.2: Comparison of Real-time Messages with different message schedules…131

 xiii

List of Abbreviations

ABS Anti-lock Braking System

ACC Adaptive Cruise Control

ACK Acknowledge

ANSI American National Standards Institute

BRP Baud Rate Prescaler

CAN Controller Area Network

CAN_H CAN High

CAN_L CAN Low

CiA CAN in Automation

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSMA/CD Carrier Sense Multiple Access/Collision Detection

csv comma-separated values

DLC Data Length Code

DoR Distinctness of Reaction

ESP Electronic Stability Control

f Frequency

GUI Graphical User Interface

HIL Hardware-in-the-Loop

ID Identifier

IPT Information Processing Time

ISO International Standards Organisation

kbits/s Kilobits per second

 xiv

LAN Local Area Network

LCM Lowest Common Multiple

LED Light Emitting Diode

MCU Microcontroller

MDI Medium Dependant Interface

ms Millisecond

NBR Nominal Bit Rate

NBT Nominal Bit Time

ns/m nanosecond/metre

NTU Network Time Unit

OSI Open Systems Interconnection

PCB Printed Circuit Board

PMA Physical Medium Attachment

PS Physical Signalling

PSB1 Phase Segment Buffer 1

PSB2 Phase Segment Buffer 2

RAM Random Access Memory

RJW Re-Synchronisation Jump Width

SAE Society of Automotive Engineers

SJW Synchronization Jump Width

SM System Matrix

SOF Start of Frame

TCS Traction Control System

TFT Thin-Film Transistor

 xv

TQ Time Quantum

TT Time Triggered

TTCAN Time Triggered Controller Area Network

TUR Time Unit Ratio

 1

Chapter 1: Introduction

 2

1.1 Introduction

This chapter gives a brief outline of the complete research. It starts with a historical

look at how automotive networks evolved within the automobile industry. It states

how the material uncovered during the study will be presented and describes the

sequence that will be followed in the design and testing of the solution.

1.2 History

The past four decades have witnessed an exponential increase in the number and

sophistication of electronic systems in vehicles. In developed countries, the average

cost of electronic devices per vehicle accounts for 20-25% of the total, or even as high

as 50% for limousines[1]. Analysts estimate that more than 80 percent of all

automotive innovation now stems from electronics. To gain an appreciation of the

change in the average Euro amount of electronic systems and silicon components such

as transistors, microprocessors, and diodes in motor vehicles, we need only note that

in 1977 the average amount was €90, while in 2001 it had increased to €1500.

Meanwhile China's total automotive output sales value for automotive electronic

products in 2005 reached €6.1 billion[1].

The growth of electronic systems has had implications for vehicle engineering. For

example, high-end vehicles in 1995 may have had more than 4 kilometers of wiring

compared to 45 meters in vehicles manufactured in 1955. In the past, wiring was the

standard means of connecting one element to another. As electronic content increased,

however, the use of more and more discrete wiring hit a technological wall.

Added wiring increases vehicle weight, weakens performance, and makes adhering to

reliability standards difficult. For an average vehicle, every extra 50 kilograms of

wiring increases fuel consumption by 0.2 liters for each 100 kilometers travelled.

Also, complex wiring harnesses take up large amounts of vehicle volume, limiting

expanded functionality. Eventually, the wiring harness had become the single most

expensive and complicated component in vehicle electrical systems [2].

Today's control and communications networks are based on serial protocols that

counter the problems of large amounts of discrete wiring. For example, in a 1998

press release, Motorola reported that by replacing the wiring harnesses with a LAN in

the four doors of a BMW, which is just one sub-system, it had reduced the weight by

 3

15 kilograms while enhancing functionality[3]. Figure 1.1 shows the sheer number of

systems and applications contained in a modern automobile's network architecture.

Figure 1.1 : Network Communication System

Controller Area Network is widely used as a communications network in automotive

applications, typically motor cars, commercial vehicles, and utility vehicles. CAN is

also used in trains, medical equipment, building automation, household appliances

and office automation [4].

CAN is operated either by spontaneous messaging or by time triggered messaging.

Time triggered messaging is the preferred option on modern systems as it allows all

messages access to the bus at some defined period in time. Using time triggered

messaging alone does not allow real-time access to the network, therefore

spontaneous messaging is used in conjunction with the time triggered messaging to

ensure this.

This research investigates the scheduling algorithms presently used with TTCAN and

will reveal the flaws with regard to real-time messaging. It will then describe a

technique that ensures all TTCAN messages are broadcast, but also allows sufficient

bandwidth for real-time messaging.

 4

1.3 Thesis Contributions

The material and information presented in this thesis has been compiled on the basis

of:

(i) Literature review, which includes CAN, TTCAN and message scheduling.

(ii) Designing the Optimum TTCAN Message Scheduler.

(iii) Implementation and Testing.

Chapter Two gives an overview of the most relevant information from all literature

reviewed during research for this thesis. It outlines the operation of the CAN protocol

for both spontaneous messaging and time triggered messaging. It takes an in depth

look at scheduling algorithms used with networks and in particular the TTCAN

network.

Chapter Three provides an overview of the methods presently used for scheduling

TTCAN messages and uncovers the disadvantages they possess. The chapter shows

the design process of a new type of message scheduler which negates the problems of

the present schedulers. It also discusses how the designed scheduler is implemented in

software.

Chapter Four focuses on the design, construction and testing of a four node TTCAN

network. It explains how three different message sets, the schedules of which were

developed and documented in Chapter Three were tested and how the results from the

tests were analysed.

Chapter Five outlines the conclusions made by the author based on the research and

testing. A discussion on the further possibilities of research, based on the findings

from this study, are also provided.

 5

Chapter 2: Literature Review and Technical

Background

 6

2.1 Introduction

This chapter outlines the areas of review relevant to the research/study from all

literature assessed. It summarises the possible choices available for CAN messaging

strategies and optimisation.

The literature review chapter is presented as follows:

• Section 2.2 discusses the OSI Data Link Layer as defined by the CAN

specification. It looks at the MAC and LLC within this layer, both of which

manage data encapsulation/de-capsulation, error detection and control, bit

stuffing/destuffing, serialisation of data, overload notification, and recovery

management. It also considers part of the Physical Layer, namely the

Physical Signalling, which includes bit encoding/decoding together with bit

timing and synchronisation. All of these functions are carried out by the

CAN Controller.

• Section 2.3 looks at another part of the Physical Layer, the Physical

Medium Attachment, which is not part of the CAN Specification, but is

defined by ISO-11898.

• Section 2.4 provides an insight into the functionality of the CAN controller

and CAN transceiver.

• Section 2.5 details why message scheduling is required, and investigates

some of the message scheduling strategies that are available at present.

• Section 2.6 looks at message scheduling and its relevance to the automotive

industry.

2.2 CAN Data Link Layer

Robert Bosch GmbH began to create a robust asynchronous serial communication

system for automotive applications which they called CAN[5] in 1983. The CAN

protocol was first officially released in 1986, with Intel and Philips releasing the first

CAN controllers and CAN transceivers in 1987. CAN was designed so that cars

trucks and buses would be more reliable, safe, and fuel-efficient while at the same

time reducing wiring harness weight and complexity. The CAN protocol has gained

widespread popularity in industrial automation, medical equipment and mobile

machines[4].

 7

2.2.1 Introduction

With the widespread use of electronic open and closed loop control systems fitted to

cars such as:

• Electronic engine management

• Electronic transmission shift control

• Anti-lock braking system(ABS)

• Traction control system (TCS)

• Electronic stability programme (ESP)

• Adaptive cruise control (ACC)

and the consequent sharing of information between these systems, it became essential

to interconnect all ECUs by means of a network or networks. The conventional point-

to-point exchange of data through individual wires has reached its practical limits in

the size of the wiring harness and all the associated plugs and sockets (Figure 2.1)[5].

There is also a limit to the number of pins that can be fitted to an ECU and this has

slowed the development of ECUs and their software[6].

Figure 2.1: Conventional Wiring of ECUs

If we use the method of data transfer as shown in Figure 2.1 in the car, the wiring

harness would be made up of approximately one mile of wiring for a medium-size

car, plus approximately 300 plugs and sockets and approximately 2000 ECU plug

pins [4, 7].

CAN has a linear network topology (Figure 2.2) and was specifically designed for

automotive applications, but it is used by several other industries including the

medical and buildings installation industry [7].

 8

Figure 2.2: Linear Bus Topology

Data is sent in serial format and all CAN nodes (ECUs) have access to the network

and can transmit and receive data from the network. This is a multi-master system

where the transmitter is the master and all other nodes are slaves. Once the transmitter

has control of the network all other nodes become slaves [6]. Since all ECUs can be

attached too a single network, this results in far fewer wires being required in the

wiring harness.

2.2.2 Vehicle Applications

There are four areas of application for CAN, each of which has a different

requirement [7]:

• Multiplex applications

• Mobile communications applications

• Diagnostic applications

• Real-time applications

2.2.2.1 Multiplex Applications

Multiplex applications include the open and closed loop control of components in the

body electronics, comfort, and convenience systems. These include such items as

climate control, central locking, and seat adjustments. Transfer rates for the data are

typically between 10 kbaud and 125 kbaud (low speed CAN) [4].

 9

2.2.2.2 Mobile Communications Applications

CAN is used for such components as navigation systems, telephone and audio

installations with the vehicle's central display normally the instrument cluster or a

TFT screen centrally fitted in the vehicle. With these applications large quantities of

data are required and transfer rates are in the order of 100 and 250 kbaud [4].

2.2.2.3 Diagnostic Applications

Using the CAN network, it is possible to integrate several ECU’s on the one network.

Presently there are several protocols used for diagnostics. They include ISO 9141-2,

J1850 VPWM, J1850 PWM, and ISO 14230-4 which are now becoming invalid.

Large quantities of data are also transferred in diagnostic applications and data

transfer rates of 250 kbaud and 500 kbaud are being used presently [4].

2.2.2.4 Real-time Applications

Real-time applications include the open and closed loop control of the vehicle’s

movements. ECUs, such as engine management, transmission control, and electronic

stability programme, are networked together to exchange real-time information. Data

transfer rates are normally between 125 kbaud and 1Mbaud (high-speed CAN). These

bus speeds are required to give real-time response to all situations [4].

2.2.3 Network Configuration

CAN uses a linear bus topology as shown in Figure 2.2. In comparison to other

logical structures, for example the ring bus or star bus, it features a lower bus failure

probability (Figure 2.3). If one node fails, the bus remains fully accessible to all the

other nodes. These nodes can be ECUs, display devices, sensors or actuators, all of

which have equal priority regarding access to the bus [7].

 10

Figure 2.3 : Ring Bus and Star Bus Topology

2.2.4 OSI Model

Almost all network applications follow a layered approach, which allows the

interconnection of different devices from different manufacturers. A standard created

by the ISO to allow manufacturers to follow this layered approach is called the ISO

OSI network layering reference model [8].

CAN is standardised by the ISO and SAE but it only implements the lower two layers

of the ISO reference model (Figure 2.4).

Figure 2.4: Two Lower Layers Implemented from ISO Model

Almost all of these two layers are contained within the CAN controller, such as

Microchip’s MCP2515. The two components that are not contained within the CAN

controller are the PMA which is implemented within the CAN transceiver

 11

(Microchip’s MCP2551) and MDI which are the external connectors and wires [9].

The communication medium, which is the upper five layers, was left out of the Bosch

CAN specification to allow designers to adapt the communication protocol on

multiple media for maximum flexibility i.e. twisted pair, single wire, optically

isolated, etc. [5].

The ISO and the SAE have defined protocols based on CAN that include the Media

Dependent Interface definition such that all of the lower two layers are specified. ISO

11898 is a standard for high-speed CAN applications; ISO 11519 is the standard for

low speed CAN applications. The J1939 protocol is used for truck and bus

applications. All the above protocols are specified at a 5V differential electrical bus as

the physical interface [10]. The system software designer implements the five other

layers of the ISO/OSI protocol stack.

2.2.5 Content-based addressing

The CAN bus system does not address nodes directly but rather according to the

message contents. It gives each message a fixed identifier, that identifies the contents

of the message in question (could be engine rpm). This identifier can be either 11 bits

long (standard format) or 29 bits long (extended format) [6].

Figure 2.5: Addressing & Message Filtering

 12

With content based addressing each node will have to decide if it is interested in the

message or not. If an ECU requires new data which is already on the bus, all it needs

to do is extract the message from the bus, see Figure 2.5 [7].

If the node is not interested in the message, it is filtered out by hardware (Full CAN),

and therefore saves processing time for the ECU’s microprocessor. However, if using

Basic CAN the processor must read all messages. Using content based addressing, as

opposed to allocating node addresses, allows for greater flexibility in that new

equipment is easier to install and operate.

2.2.6 Bus Arbitration:

The identifier used in CAN not only identifies the data content but also defines the

message priority. If the identifier is a low number, then it has a high priority in the

system. Message priorities are used to gain access to the bus rapidly, but there cannot

be two messages allocated the same identifier on the same network [11]. Every node

can attempt to send a message as soon as the bus is unoccupied. The message that

gains access to the bus is determined by applying a bit by bit identifier arbitration,

where the message with the highest priority (lowest identifier) has access to the bus

first, and without loss of data.

The CAN protocol is based on two states, the dominant state “logic zero” and the

recessive state “logic one”. Bus access is handled via the advanced serial

communications protocol called Carrier Sense Multiple Access/Collision Detection

with Non-Destructive Arbitration. This arbitration concept avoids collisions of

messages where transmission of messages are started by more than one node

simultaneously and ensures the most important message is sent first without any time

loss [5].

The arbitration system used allows the dominant bits transmitted by a node to

overwrite the recessive bits written by any node. It can be seen using the example in

Figure 2.6 that all four nodes are at the start of transmitting. The bus initially departs

from the recessive state and switches to a dominant state of logic zero. All four nodes

send a recessive bit logic one next, followed by nodes 2, 3 and 4 sending a dominant

bit and node 1 sending a recessive bit logic one. Node 1 has now lost access to the

bus. Nodes 2 and 4 send a dominant bit next, while node 3 sends a recessive bit, and

therefore, node 3 has lost arbitration on the bus. Nodes 2 and 4 now send recessive

bits each and neither loses arbitration, but then node 2 sends a dominant bit and node

 13

4 sends a recessive bit, and therefore, node 4 loses access to the bus. Node 2 now

continues to send the rest of its message (Figure 2.6).

Figure 2.6: CAN Bus Bit Arbitration

The transmitting nodes with lower priority messages now automatically become

receivers and then attempt to retransmit their messages when the bus becomes vacant

again.

2.2.7 CAN Bus “Wired – AND”

As stated earlier, CAN uses two logic states called “dominant”, which is logic zero,

and “recessive”, logic one. Once a dominant state is issued by any one node

regardless of the state issued by any other node, the bus state will be dominant [5].

This is shown in the truth table (Table 2.1).

Node 1 Node 2 Node 3 Bus

D D D D

D D R D

D R D D

D R R D

R D D D

R D R D

R R D D

R R R R

Table 2.1: Truth Table for “Wired AND”

 14

The physical Wired-AND hardware is shown in Figure 2.7, where all nodes are

transmitting recessively.

Figure 2.7: Wired-AND (recessive state)

The recessive signal entering the inverter is a logic one, 5 volts, but the inverter

outputs a logic zero 0 volts. The transistor is non-conducting due to no base current;

therefore, the bus remains in a recessive state.

In Figure 2.8 node 1 is transmitting a dominant bit, which is logic zero, 0 volts, but

the inverter will place logic 1 to the base of the transistor and make it conductive. The

effect on the circuit is that the supply of 5 volts to the resistor attached to the single

logic line remains at 5 volts, but the side of the resistor nearest the bus drops to 0

volts. This is due to the bus being grounded through the transistor attached to node 1.

The bus is now in a dominant state. If more than one node transmits a dominant bit,

the bus will always be dominant [5].

In both Figure 2.7 and Figure 2.8, the bus consists of a single logic line of 5 volts.

This is not the normal bus configuration for CAN, as high speed CAN requires two

logic lines CAN_High and CAN_Low [11]. The actual connections to the bus are

discussed later in this chapter.

 15

Figure 2.8: Wired-AND (dominant state)

2.2.8 CAN Frames

CAN has five different types of frames:

• Data Frame

• Remote Frame

• Error Frame

• Overload Frame

• Inter-frame space

2.2.8.1 Data Frame or Message Frame

CAN has two different message formats for the identifier, the standard-format

identifier, which is 11 bits long, and the extended-format identifier of 29 bits. Both

formats will operate on the same CAN network providing it meets CAN Specification

2.0 [11]. A Data Frame consists of seven different fields and may be up to 127 bits

long for the standard-format, as seen in Figure 2.9 and 154 bits for the extended-

format.

 16

The bus is always in a recessive state when idle logic one, with a dominant bit

signifying the Start of Frame. This indicates the beginning of the message and it will

synchronise all nodes connected to the network.

The Arbitration Field follows the Start of Frame bit. It is often called the ID, or

identifier, and has an additional control bit within it. While the ID is being transmitted

the transmitter will check to ensure that it is still authorised to transmit the message,

or if another node with a higher priority message has control of the bus. The control

bit following the identifier is the RTR bit (Remote Transmission Request) and

identifies whether the message is a Data Frame for a receiving node or a Remote

Frame (request for some data) from a transmitting node.

Figure 2.9: CAN Data Frame Standard Format

The Control Field has the IDE bit (Identifier Extension Bit), which is used to

determine whether the message is of standard format (IDE = 0) or of the extended

format (IDE = 1), followed by another bit which is reserved for future use. The last

four bits in this field determine the number of data bytes in the data field. This allows

the receiving nodes to determine if all data was received.

The Data Field contains the actual information contained within the message frame

and can consist of between zero and eight data bytes of information.

The CRC Field (Cyclic Redundancy Check) contains the frame check word that is

used for error checking.

The ACK Field is the acknowledgement field of the message and is used by the

receiving nodes to acknowledge receipt of the message in a non-corrupted form.

The End of Frame marks the end of the message and comprises of seven recessive

bits.

 17

The Inter-frame Space has three bits, which are used to separate successive messages

on the bus. This will allow the bus to remain in an idle mode until a node starts

another transmission.

Generally a node starts the data transmission by sending a Data Frame, but it is also

possible to request data by sending a Remote Fame asking for data to be supplied

(Figure 2.10) [7].

2.2.8.2 Remote Frame

Normally data transmission is performed on an autonomous basis with the data source

node (example a sensor) sending the Data Frame, and any another node that requires

the data accepting this data through their filtering system. However, it is possible to

request data from a source node by using a Remote Frame.

There are two differences between a standard Data Frame and a Remote Frame

(Figure 2.10). Firstly the RTR-bit is transmitted as a dominant bit in the Data Frame,

whereas it is transmitted as a recessive bit in the Remote Frame. Also there is no Data

field in the Remote Frame.

Figure 2.10: Remote Frame

In the improbable case of a Data Frame and a Remote Frame with the same identifier

being transmitted simultaneously, the Data Frame will be transmitted due to the

dominant RTR bit following the identifier. In this way, the node that transmitted the

Remote Frame receives the desired data immediately.

 18

2.2.8.3 Error Frame

An Error Frame will be generated by any node that detects a bus error. The Error

Frame has two fields as seen in Figure 2.11, the Error Flag Field and Error Delimiter

Field.

There are two forms of Error Flag fields. The type of Error Flag field depends on the

“error status” of the node that detects the actual error. If an “error-active” node detects

a bus error then that node will interrupt transmission of the current message by

generating an “active error flag”.

Figure 2.11: Error Frame

The “active error flag” is composed of six consecutive dominant bits. This violates the

bit-stuffing rule, which is discussed later. All other nodes recognise the bit stuffing

error, and in turn, generate Error Frames themselves. The Error Flag field will be

between six and twelve dominant bits. The Error Delimiter consists of eight recessive

bits. This permits all nodes to restart bus communications cleanly after such an error.

After completion of the Error Frame the bus returns to normal and the node that

caused the bus error attempts to retransmit the message.

If an “error passive” node detects a bus error then it will transmit a “passive Error

Flag”, followed again by the Error Delimiter field. The “passive Error Flag” consists

of six consecutive recessive bits, and therefore, the Error Frame for an “error passive”

node consists of fourteen recessive bits (Passive Error Flag six recessive bits followed

by the Error Delimiter Field of eight recessive bits). If the node that is transmitting

identifies the bus error, the transmission of an Error Frame by an “error passive” node

will not affect any other node on the bus. If the bus master node generates an “error

 19

passive flag” then this may cause other nodes to generate error frames due to the

resulting bit stuffing violation.

2.2.8.4 Overload Frame

An Overload Frame has the same format as an “Active Error Frame”. However, it can

only be produced during Interframe Space not during the transmission of a message as

seen in Figure 2.12.

Figure 2.12: Overload Frame

The Overload Flag consists of six dominant bits followed by Overload Flags

generated by other nodes as the bit-stuffing rule has been violated. The Overload

Delimiter consists of eight recessive bits. The Overload Frame has two fields, an

Overload Flag followed by an Overload Delimiter.

A node, if due to internal conditions, can generate an Overload Frame; the node is not

yet able to start reception of the next message. A node may only generate a maximum

of two sequential Overload Frames to delay the start of the next message.

2.2.8.5 Interframe Space

The Interframe Space separates a preceding frame from the next Data or Remote

Frame. An Interframe space is made up of at least three recessive bits; these bits are

also known as the “Intermission”. This Interframe Space permits nodes to process

internal data before the next message frame (Figure 2.13). After the Intermission, for

 20

error active nodes the bus remains in the recessive state until the next transmission

starts.

Figure 2.13: Interframe Space

The Interframe Space has a slightly different format for error passive CAN nodes,

which was the transmitter of the previous message. These nodes have to wait an

additional eight recessive bits, often called “Suspended Transmission” before the bus

turns into bus idle for them. After this time, they are allowed to transmit messages

again. This arrangement allows error active nodes to broadcast their messages before

an error passive node is allowed to start the retransmission of messages.

2.2.9 Error Detection

The CAN protocol has several mechanisms for error detection as listed:

• CRC Error

• ACK Error

• Form Error

• Bit Error

• Stuff Error

2.2.9.1 CRC Error

Using the Cyclic Redundancy Check, the transmitter calculates a checksum for the bit

sequence from the start of frame bit to the end of the Data Field. This CRC checksum

is then transmitted in the CRC Field of the message [10]. The receiving node

calculates the CRC checksum of the message using the same formula and compares it

 21

to the CRC of the received message [11]. Figure 2.14 shows a CRC error occurring in

node 2.

Figure 2.14: CRC Error

2.2.9.2 Acknowledge Error (ACK)

The ACK check in the receiving nodes will confirm that the message frame has been

received (Figure 2.15). If the transmitting node does not receive the acknowledgement

then the transmitting node will know an error has been detected and will retransmit

the message [10, 11].

Figure 2.15: Acknowledge Field

 22

2.2.9.3 Frame Check

The Frame Check will check the frame for errors based upon the frame structure. The

CAN protocol has a number of fixed format bit fields, which are checked by all

nodes.

Figure 2.16: Frame Check

If a transmitter detects a dominant bit in one of the following four segments, the CRC

Delimiter, the Acknowledge Delimiter, the End of Frame or the Interframe Space [11,

12] then a Form Error has occurred and an Error Frame will be placed on the bus

(Figure 2.16) and the original message will be retransmitted.

2.2.9.4 Bit Error

A Bit Error occurs if the transmitter places a dominant bit on the bus but then detects

a recessive or sends a recessive bit, but detects a dominant bit. An Error Frame is

generated and the message is retransmitted [12].

There are two exceptions to the above rule. When a dominant bit is detected instead of

a recessive bit, no error will occur during the Arbitration Field or the Acknowledge

Slot. Also these fields may be overwritten by a dominant bit in order to accomplish

arbitration and acknowledge functionality [11].

 23

2.2.9.5 Bit-Stuffing Check

The Bit-stuffing rule stipulates that in every Data Frame or Remote Frame a

maximum of five successive equal priority bits can be sent between the Start of Frame

and the end of the CRC field. As soon as the five identical bits have been transmitted

in succession, the transmitter inserts an opposite priority to those already been sent as

seen in Figure 2.17. The receiving node checks the message, and ignores the opposite

priority bit, after receiving the message [11].

Figure 2.17 Bit-Stuffing

If a Stuff Error occurs, an Error Frame is transmitted, and the message is resent. Code

check is a method to check that Bitstuffing has been carried out correctly. If one of

the nodes detects an error on the bus, it interrupts the actual transmission by sending

an Error Frame comprising of six successive dominant bits [4]. Broadcasting this

Error Frame violates the Bitstuffing rule and this prevents all nodes from receiving

the message [12].

 24

2.2.9.6 Error Handling

All known errors are made public, to all other nodes on the bus via Error Frames. The

transmission of the damaged message is aborted, and the frame is retransmitted as

soon as possible. Each node is in one of three error states, either Error Active, Error

Passive, or Bus Off, depending on the count in the error counter registers (Figure

2.18).

Figure 2.18: Error Frame Transmitted

.

The error-active state is the normal state after a reset for any node. It can actively

receive and transmit messages and transmit active Error Frames without any

limitations. In normal CAN communication, the error counters are updated according

to complex rules [11]. For each error on receipt or transmission of a message, the

relevant error counters are incremented. For each successful transaction, the error

counters are decremented. The error active state is valid as long as both error counters

are less than or equal to 127 [12].

If either receive or transmit error counters exceed a value of 127, the node switches to

the error-passive state. In the error-passive state, messages can still be received and

transmitted, although, after transmission of a message the node must suspend

transmission. It must wait 8-bit times longer than error-active nodes before it may

transmit another message. Error Passive nodes can signal other nodes with only

passive Error Frames.

 25

Figure 2.19: Node Error Counters

If both error counters decrement below 128 due to successful message transmission,

the node switches back to the error-active state (Figure 2.19).

The CAN protocol allows faulty nodes to remove themselves from the bus

automatically. The bus-off error state is entered if the transmit error counter exceeds

the value of 255. All bus activities are stopped for that node (both transmit and

receive). For the error node to reconnect to the bus the node has to be reinitialised

[10].

The error detection capabilities of CAN are such that a vehicle equipped with this

network, running for 2000 hours per year, at a bus speed of 500 kbps with 25% bus

load should only generate one undetected error every 1000 years [12].

2.2.10 Protocol Versions

CAN specifications versions 1.0, 1.2, and 2.0A define an 11-bit message identifier.

They are known as Standard CAN. With an 11-bit identifier, it is only possible to

define 2048 different messages.

There is also a further limit to the messages due to lowest 16 priority messages also

being reserved.

 26

Figure 2.20; CAN Standard and Extended Data Frames

Specification version 2.0A has been updated to version 2.0B to remove this possible

message number limitation and also meet the SAE J1939 standard for the use of CAN

in trucks [13]. Version 2.0B is known as Extended CAN due to its 29-bit identifier.

With a 29-bit identifier, it can now have over 536 million different message identifiers

(Figure 2.20).

The 29-bit identifier consists of the original 11-bit identifier and an 18-bit Extended

Identifier. Version 2.0B allows a message identifier length of 11 bits to be used.

There are three different types of CAN modules available. CAN modules specified

version 2.0 part “A” [11] are only able to transmit and receive Standard Frames

according to the Standard CAN protocol. Messages using the 29-bit identifier sent to a

Standard CAN module will cause errors. If a device is specified CAN V2.0 part “B”

[11], there is one more distinction (Figure 2.21):

Figure 2.21: CAN Version Modules

 27

Modules called version 2.0B Passive can only transmit and receive Standard Frames

but accept Extended Frames without generating Error Frames. Version 2.0B Active

devices are able to transmit and receive both Standard and Extended Frames.

2.2.11 Message Coding

The CAN protocol uses Non-Return-to-Zero or NRZ bit coding. This permits the

signal on the network to remain at the same voltage for one-bit time and only one time

segment is required to represent the one bit (Figure 2.22). A zero corresponds to a

dominant bit, which causes the bus to be placed in a dominant state, and a one

corresponds to a recessive bit, placing the bus in the recessive state.

Figure 2.22: Message Coding

One problem of using NRZ code is that the signal provides no edges for use in re-

synchronisation when transmitting a large number of consecutive bits with the same

priority (Dominant or Recessive bits). To overcome this, bit stuffing is used to

guarantee synchronisation of all bus nodes. As discussed earlier, a maximum of five

consecutive bits may have the same priority, and then the transmitter will insert one

additional bit of the opposite polarity into the bit stream before transmitting further

bits. The receiver also checks the number of bits with the same priority and removes

the stuff bits again from the bit stream. This technique is called “destuffing”.

2.2.12 Bus Synchronisation

CAN uses two types of synchronisation, Hard Synchronisation and Re-

Synchronisation. In contrast to many other field buses, CAN handles message

transfers synchronously. All nodes are synchronised at the beginning of each message

 28

with the first falling edge of a frame, which belongs to the Start of Frame bit. This is

called Hard Synchronization (Figure 2.23).

Figure 2.23: Hard Synchronisation

To ensure correct sampling up to the last bit of the CAN Frame, the CAN nodes need

to re-synchronise throughout the entire frame. This is achieved on each recessive to

dominant edge (Figure 2.24).

Figure 2.24: Re-synchronisation

2.2.13 Bit Construction

One bit time of either a high or a low pulse of the NRZ code is specified as four non-

overlapping time segments (Figure 2.25) [11]. Each segment within the bit time is

made up of an integer multiple of the Time Quantum.

Figure 2.25: Bit Construction

 29

The Time Quantum, or TQ, is the smallest discrete timing resolution used by a CAN

node. Its length of the Time Quantum is generated by a programmable division of the

CAN node's oscillator frequency. A bit time has a minimum of 8 Time Quanta and a

maximum of 25 Time Quanta [14]. The bit time, and therefore the bit rate, is selected

by programming through software the width of the Time Quantum and also the

number of Time Quanta in the various segments [9]. The CAN baud rate can be

determined by dividing 1 by the bit time.

Therefore:

NBR = fbit =
bitt

1

(2.1)

2.2.13.1 Baud-rate Prescaler

The length of the TQ, which is the basic time unit of the bit time is defined by the

CAN Controller’s system clock fsys and the BRP [15].

TQ = BRP/fsys

(2.2)

The relationship between the oscillator and the MCU system clock can be seen in

Figure 2.26.

Figure 2.26: Baud Rate Prescaler

 30

2.2.13.2 Synchronisation Segment

The first segment in a CAN bit is called the Synchronisation Segment and is used to

synchronise all bus nodes. On transmission, at the start of this segment, the current bit

level is output. If a bit state alters between the previous bit and the current bit, the bus

state change should happen within this segment [16]. The length of this segment is

always one Time Quantum (Figure 2.27).

Figure 2.27: The Four Segments of 1 Bit Time

2.2.13.3 Propagation Time Segment

The Propagation Segment is next and is used to compensate for the physical delays in

signal propagation between nodes. The propagation delay is defined as twice the sum

of the signal’s propagation time on the bus line, including the delays associated with

the bus driver [16]. The Propagation Segment is programmable with values between

1TQ and 8TQ. Figure 2.27 shows a Propagation Segment of 4TQ.

2.2.13.4 Phase Segment Buffer 1

Phase Segment Buffer 1 is used to compensate for edge phase errors on the bus. Phase

Segment Buffer 1 can be lengthened for re-synchronisation and will be discussed later

in the chapter. It is programmable from 1TQ to 8TQ. Figure 2.27 shows 2TQ for

 31

Phase Segment Buffer 1 [12, 14]. Some manufacturers describe the Propagation

Segment and Phase segment Buffer 1 as Timing Segment 1.

2.2.13.5 Phase Segment Buffer 2

Phase Buffer Segment 2 is also used to compensate for edge phase errors. This

segment may be shortened only during resynchronisation. Phase Buffer Segment 2

may be between 2TQ to 8 TQ long, and has to be at least as long as the information

processing time, but may not be more than the length of Phase Buffer Segment 1.

Figure 2.27 shows Phase Segment Buffer 2 to equal 2 TQ [11, 14]. Phase Segment

buffer 2 is sometimes described as Timing Segment 2.

Therefore:

PSB2min = IPT = 2TQ

(2.3)

2.2.14 Information Processing Time

The Information Processing Time is necessary for the logic to determine the bit level

of a sampled bit. The IPT begins at the sample point and is measured in TQ. For the

Microchip CAN module, it is fixed at 2TQ. Since phase segment 2 also begins at the

sample point and is the last segment in the bit time [14, 16], it is a prerequisite that

Phase Segment Buffer 2 be a minimum of 2 TQ as shown in Figure 2.27.

2.2.15 Re-Synchronisation

All oscillators do no run exactly at the specified frequency. Therefore, each node

being independently operated, using separate oscillators, runs at a slightly different

frequency. This could cause problems for CAN message receiving nodes as they

could be running at a slightly different frequency to the transmitting node. To

overcome this problem the transition from recessive to dominant provides a re-

synchronisation edge, as discussed above, but extra TQ will have to be added or

removed in order to achieve re-synchronisation.

2.2.15.1 Bit Lengthening

Either lengthening Phase Buffer Segment 1or reducing Phase Buffer Segment 2 by a

given TQ carries out the resynchronisation of a Bit Time.

 32

Figure 2.28: Re-Synchronisation Edge Delayed

Figure 2.28 above shows that the transmitter oscillator is slower than the receiver

oscillator. The next falling edge used for resynchronization will have to be delayed for

the receiving node, so Phase Buffer Segment 1 is lengthened for the receiver in order

to align the sample points of the message as depicted in Figure 2.29.

Figure 2.29: Re-Synchronisation by Increasing Phase Segment Buffer 1

 33

2.2.15.2 Bit Shortening

If the transmitter node oscillator is faster than the receiver node oscillator then the

next falling edge used for resynchronisation could be too early as shown in Figure

2.30.

Figure 2.30: Re-Synchronisation Edge Increased

Figure 2.31 shows Phase Buffer Segment 2 in bit N has been shortened so the sample

points are realigned.

Figure 2.31: Re-Synchronisation by Decreasing Phase Segment Buffer 2

 34

2.2.15.3 Re-Synchronisation Jump Width

The RJW or SJW is the amount by which a bit length can be readjusted during a re-

synchronisation. It is the TQ by which Phase Segment Buffer 1 can be lengthened or

Phase Segment Buffer 2 can be shortened. The SJW is programmable in software and

can have a value of between 1 TQ and 4 TQ, but it may not be longer than Phase

Segment Buffer 2 [14].

2.2.16 Bit Timing

For ease of programming many CAN Modules often combine the Propagation Time

Segment and Phase Buffer Segment 1, as shown below in Figure 2.32, and is known

as Timing Segment 1.

Figure 2.32: Two Timing Segments

2.2.17 Programming the Sample Point

Programming of the sample point allows for some of the bus characteristics to be

taken into account. Early sampling allows greater TQ in Phase Segment Buffer 2 so

the SJW can be programmed to its maximum of 4 TQ [14]. Using this maximum TQ

to shorten or lengthen the bit time decreases the effect of node oscillator tolerances,

therefore lower cost oscillators may be used with these nodes (Figure 2.33).

 35

Figure 2.33: Early Sampling Point

Figure 2.34 shows a late sampling point, allowing for the maximum signal

propagation time, and therefore, long bus lengths with poor bus topologies can be

handled with ease [12].

Figure 2.34: Late Sampling Point

2.3 CAN Physical Layer

The Physical Layer as defined under the OSI Model is defined in three parts:

• Physical Signalling

• Physical Medium Attachment

• Medium Dependant Interface

Physical Signalling is implemented within the CAN controller and has been discussed

in Section 2.2. The PMA is not part of the CAN Specification, but is defined by ISO-

11898. ISO 11898-2 specifies high-speed CAN, with transmission rates of up to 1

Mbit/s, with the PMA and some MDI features defined by ISO 8802-3, which

comprises of the physical layer of the controller area network [17].

 36

ISO 11898-3 defines the exchange of digital information between electronic control

units using CAN at transmission rates of between 40kbit/s and 125kbit/s [18].

2.3.1 Bus Construction

The CAN bus line has two logic states: a recessive and a dominant state. The ISO-

11898 defines a differential voltage to represent both states (Figure 2.35) [9].

Figure 2.35: The Differential CAN bus

These differential voltages help to reduce electrical interference on the bus, but the

actual voltage levels depend on the standard being used and are shown in Table 2.2

and Table 2.3 [19].

Signal Recessive State Dominant State

 Min Nominal Max Min Nominal Max

CAN_H 2.0V 2.5V 3.0V 2.75V 3.5V 4.5V

CAN_L 2.0V 2.5V 3.0V 0.5V 1.5V 2.25V

Table 2.2: ISO 11898 (CAN High Speed)

Signal Recessive State Dominant State

 Min Nominal Max Min Nominal Max

CAN_H 1.6V 1.75V 1.9V 3.85V 4.0 V 5.0V

CAN_L 3.1V 3.25V 3.4V 0.0V 1.0V 1.15V

Table 2.3: ISO 11519 (CAN Low Speed)

In the case of ISO 11898, the recessive state, nominal voltage for the two wires is

always the same voltage at 2.5 volts. This decreases the power consumption of the

network when the nodes are not transmitting as seen in Figure 2.36.

 37

Figure 2.36: ISO 11898 Nominal Bus Voltage Levels

2.3.2 Wires and Connectors

For the CAN bus lines, a physical medium must be chosen that is able to transmit the

two possible bit states. One of the most common and cheapest ways is to use a twisted

pair of wires. The two bus lines CAN_H and CAN_L are then driven by the

transceivers attached to the CAN controllers with a differential voltage signal. These

twisted pair of wires, are terminated in accordance with ISO 11898 by 120 ohm

resistors at each end of the bus line (Figure 2.18). An optical medium for the CAN

bus may also be employed under CAN specification. In this case, the recessive state

would be represented by the signal LED being off, the dominant state by the signal

LED being switched on.

As discussed earlier the differential nature of the bus makes it virtually insensitive to

electromagnetic interference. In order to reduce sensitivity even further the wires are

twisted and are often shielded when fitted in a very harsh electrical environment. This

also reduces the electromagnetic emission of the bus itself, especially when high

baud-rates are being used [12].

2.3.2.1 Bus Lengths

ISO 11898 states that a transceiver must be able to drive a 40m bus at 1 Mbit/s. Bus

lines of longer length may be used by decreasing the baud rate, as can be seen in

Figure 2.37 [17].

 38

Figure 2.37: “Bus Length” v “Baud-rate”

2.3.2.2 Propagation Delay

The CAN protocol defined a recessive and dominant state for the implementation of a

non-destructive bit-wise arbitration scheme. This arbitration methodology is affected

most by propagation delays. Each node involved in arbitration has to be able to

sample each bit level within the same bit time. For example, if two nodes at opposite

ends of the bus network start transmitting their messages at the same time, they must

arbitrate for control of the bus. Arbitration will only be effective if both nodes are able

to sample the bus during the same bit time. Figure 2.38 shows a possible one-way

propagation delay between two nodes. Any propagation delays outside the sample

point will result in invalid arbitration.

Figure 2.38: Propagation Delay

 39

A CAN system’s propagation delay can be calculated as being a signal’s round-trip

time on the physical bus (tbus), the output driver delay (tdriver) and the input comparator

delay (tcmp) [9]. Assuming all nodes in the system have similar component delays, the

propagation delay mathematically is:

Propagation Time (t) = 2 * (tbus + tdriver + tcmp)

(2.4)

2.3.3.3 Connections

In order to use CAN as an industrial field bus, the CiA created a standard called CiA

DS 102-1, which is based on ISO 11898. Of importance in this standard is the use of a

9 pole SUB-D connector for the connection of nodes to the CAN bus lines, as shown

in Figure 2.39 [20].

The bus signals CAN_H and CAN_L are available on pins 7 and 2 of the 9 pin

connector, while the other pins serve as power or ground wires, or are reserved for

future extensions of the standard (Table 2.4).

Pin Function

1 Reserved

2 CAN_L

3 0V Ground

4 Reserved

5 Reserved

6 0V Ground

7 CAN_H

8 Reserved

9 V+ Power Supply

Table 2.4: CiA DS 102-1 Nine Pole SUB-D Pin-outs

 40

Figure 2.39: Nine Pole SUB-D Connector

2.3.3 Oscillator Tolerance

The CAN system clock for each CAN node will be based upon the individual

oscillators of the node. Therefore, the actual CAN system clock frequency for each

node will be slightly different, and hence, the actual bit time will be subject to a

tolerance. The initial tolerance of the oscillators will also differ due to operating

temperature, age, voltage supply, etc. All of these factors will have an effect on the

operating frequency. The CAN system clock tolerance is defined as a relative

tolerance, where f is the actual frequency and fn is the nominal frequency [15].

∆f =
n

n

f

)f - (f

(2.5)

To guarantee error free communication, the minimum requirement for a CAN

network is that two nodes, each at opposite ends of the network with the largest

propagation delay between them, and also each of them having a CAN system clock

frequency at the opposite limits of the specified frequency tolerance of the oscillators,

must be able to correctly receive and decode every message transmitted on the

network. If this is adhered to, all nodes should be able to sample the correct bit of any

message [16].

2.3.4 Cable

According to ISO-11898-2, cables chosen for use in a CAN network as bus lines

should have a nominal impedance of 120Ω, and a specific line delay of nominal 5

ns/m. Bus line termination has to be provided through termination resistors of 120Ω

located at each end of the bus line. The length related resistance should be 70 MΩ/m.

 41

2.4 CAN Controllers

2.4.1 Introduction

This section looks at the differences between the stand alone CAN controller and an

integrated CAN controller. It will consider this device by the load placed on the CPU.

2.4.2 CPU Loading

Figure 2.40 shows a Stand Alone CAN controller layout, which requires three

devices: a microcontroller, a standalone CAN controller, and a CAN bus transceiver.

The interface between the microcontroller and the CAN controller is an address/data

bus or a serial link such as the SPI protocol. The CAN controller is driven by a low-

tolerance input clock supplied by a crystal oscillator. The microcontroller also uses a

crystal oscillator. The system uses an interrupt line from the stand-alone CAN

controller to the microcontroller to signal the reception of a message or the occurrence

other CAN events.

Figure 2.40: Stand Alone CAN Controller Layout

Figure 2.41 implements a microcontroller with an on-chip CAN controller, which

clearly simplifies hardware design. In addition, this system uses less printed circuit

board area and generates less board noise by eliminating board traces used to interface

the microcontroller to the CAN controller. Software development costs are nearly the

same for integrated or stand-alone CAN peripherals. In both cases, software must be

developed for the microcontroller to read and to write messages to the CAN controller

[21].

 42

Figure 2.41: Integrated CAN Controller

Table 2.5 shows the communications duties carried out by each CAN node with

respect to the protocol, messaging, and system/error response. The CAN protocol

involves the controller transmitting and receiving bits according to arbitration rules

defined by the CAN protocol. It must also calculate a 15-bit CRC code, which is

transmitted with each message and is verified by each receiving CAN node. The CAN

Controller must implement all the protocol tasks without CPU intervention.

Bitwise reception/transmission

Bus arbitration Protocol

Error code generation/checking

Write data to be transmitted

Read received data Messaging

Manage control/status registers

Node configuration

System commands
System/Error

Response
Local Bus off

Table 2.5: CAN Node Communication Tasks

The CPU must service all messaging tasks. It requires the CPU to write the data to be

transmitted, to read received data back from the controller and manage the

status/control registers in the CAN peripheral. Since the CPU uses the CAN

peripheral as a smart RAM, messaging tasks are fundamentally CPU read/write

operations. A CPU with an inbuilt CAN controller will read/write to register locations

using its own internal bus. For a CPU with an interface to a stand-alone CAN chip,

 43

these read/write operations typically use the external address/data bus or a serial link

using the SPI protocol [21].

In addition to these read/write operations, the CPU may be required to manipulate

message identifier bits and data fields. For example, a data byte may contain two or

more parameters such as engine airflow and engine temperature within the one byte of

information. In this case, the CPU must execute bit shifting and masking operations to

extract the correct data bit/bits.

The CPU burden required to manipulate this data is the same for on-chip and stand-

alone CAN peripherals. The CPU demand differs for on-chip and stand-alone CAN,

due to the access time of CAN registers for the different controllers [21].

 CPU Load

Stand Alone CAN 250kbits/s 500kbits/s 1Mbit/s

8 bit A/D Bus 5.5% 11% 21.9%

16 bit A/D Bus 4.2% 8.4% 16.7%

Integrated CAN

Registered RAM 2.0% 4.0% 8.0%

Table 2.6: CPU Loading

System/error response is a category of infrequent use and is initiated by the system or

by an unusual number of bus errors. The CPU executes error recovery routines when

the CAN peripheral is in bus off state. Recovery from bus-off requires a hardware or

software reset of the CAN peripheral. The CPU burden to communicate with the CAN

peripheral is dependent on a few factors. The most critical factor is the amount of time

required to read/write to the CAN peripheral. In the case of an on-chip CAN

peripheral, the CAN registers are addressed using the internal address/data bus

designed for high-speed access. In the case of a stand-alone CAN chip, the CPU uses

an external address/data bus or a serial communications link. Table 2.6 shows the

level of CPU burden while receiving CAN messages for three CAN bus transmission

 44

rates. This analysis compared the CPU burden of an Intel 82527 stand-alone CAN

chip to an Intel 87C196CA 16-bit microcontroller with on-chip CAN.

2.5 Message Sending

2.5.1 Introduction

This section will look at the various types of message scheduling that are available to

the system designer in order to leverage the optimum benefits from the network.

There are broadly two types of scheduling available to the designer, namely:

• Event Triggered

• Time Triggered

There is a trend towards an increased number of interconnected devices on a network

with the use of smart sensors giving increased data throughput, which results in an

increased functionality of the system. This increased data reduces available bandwidth

on the bus, thus message scheduling systems that maximise the utilisation factor,

while supporting message deadlines together with optimising microcontroller loads

are very important in reducing costs.

2.5.2 Event Triggered CAN

CAN is a serial bus system with multi-master capabilities. All CAN nodes are able to

transmit data and several CAN nodes can request the bus simultaneously. The serial

bus system with real-time capabilities is the subject of the ISO 11898. In a CAN

network there is no addressing of subscribers or stations in a conventional sense, but a

prioritised message is transmitted instead whenever an event occurs, e.g. coolant

temperature changes. The transmitter sends a message to all CAN nodes and each

node decides on the basis of the identifier received whether it should process the

message or not. The identifier of the message determines its priority, and is defined by

the network designer. The message priority is critical in that it will dictate the

message’s success in arbitration for bus access, although a high priority identifier

does not always ensure immediate access to the bus. Also low priority messages may

never gain access to the bus under certain circumstances. Some of the problems

associated with real time event triggered systems will be discussed in the next section.

 45

2.5.2.1 Event Triggered Problems

In order to show some of the problems that can affect an event triggered network

some definitions regarding message transfer will be given.

The response time, Rm, of a CAN message, is the time interval from when the

message is ready for transmission until the time it is acknowledged, and successfully

received by any other node or nodes. The message does not have to be repeated in any

sense and will thus not demand any further bus resource.

The delivery time Dm of a message can be defined as the time interval from when the

message is delivered by an application in a node, until it becomes available at other

nodes (Figure 2.42).

Figure 2.42: Message Delivery Time

The CAN network is a single user resource; once allocated it cannot be shared, and

once its message is started, it is guaranteed to complete its transmission unless it loses

arbitration or an error occurs. The message schedule is determined by CAN message

identifiers since CAN uses a Fixed Priority Scheduling system.

The transmission time of a message is constant, since once the message length is

known as well as the baud rate, then the transmission time can be calculated [22].

The total message delivery time, Dm, for a message, m, is the time from which it has

been disposed of by an application to the CAN controller in the sending node, until

the message is available for another application in the receiving node. The message

delivery time in total is the sum of the following:

• The time taken to format the message for transmission on the network.

• The queuing time (waiting time due to loss of bus arbitration).

• The transmission time depending on the message length and the bit rate.

• The time required to de-format the message and notify the receiver of safe

message arrival.

 46

While the time for formatting and de-formatting the message are normally constant,

depending on the actual CAN controller and operating system, and while the

transmission time can be calculated for each message, the queuing time depends on

the actual schedule of priorities of message identifiers.

For a message m, in a set schedule of N periodic messages (m = 1….N) with a period

of pm, a queuing time of Qm and transmission time of Tm the message response time Rm

is calculated as follows [22].

Rm = Qm + Tm

(2.6)

If three messages, M1, M2, and M3 are to be transmitted from different nodes, it can

be shown that the worst case queuing time occurs if all three messages become

available for transmission at the same time, as seen in Figure 2.43.

Figure 2.43: Queuing Time

In addition, Message 1 has the highest priority and Message 3 has the lowest priority.

Message 1 will not have any delay in queuing since the CAN arbitration protocol will

resolve the bus conflict in favour of Message 1.

Tj is the transmission time for a higher priority message j and Pj is the period time of

the higher priority message j. Equation 2.7, provides the solution to the maximum

queuing time [22].

()j
1

hp(m):j j

m

m T
P

Q
 Q ∑∀=

(2.7)

 47

Due to the non pre-emptive property of a CAN message transmission, we also have to

consider message blocking. This can cause additional queuing delays for a message of

high priority, when a lower priority message has control of the bus. This event can

occur when a low priority message becomes available for transmission just before a

high priority message requires use of the bus. Since the transmission is non pre-

emptive, the entire low priority message is transmitted and delays the high priority

message from point P2 to D1, as shown in Figure 2.44.

Figure 2.44: Queuing Delay Due to Blocking

The equation for blocking is:

Bm = max (Tk) {∀ k lp (m)}

(2.8)

Where Bm is the blocking term for message m which is obtained by getting the

transmission time for the longest message of a lower priority [22].

To calculate the complete response time we use:

Rm = Bm + Tm + Qm

(2.9)

Where:

• Rm is the total response time for message m.

• Bm is the blocking time for message m as a result of interference from lower

priority messages.

 48

• Qm is the queuing time for message m as a result of higher priority

messages being transmitted and thus delaying the message m.

• Tm is the transmission time for message m.

It can be seen that event message handling does not guarantee the arrival of any

message on time, even the messages with the highest priority can be delayed by the

lowest priority message under certain conditions. The lower the priority of the

message, the higher the latency jitter is likely to be [23] and in some instances the

message may never get access to the bus due to being blocked by higher priority

messages. The goal of Time Triggered CAN is to avoid these latency jitters and to

guarantee a deterministic communication pattern on the bus [24].

2.5.3 Time Triggered CAN

TTCAN allows the designer to use the physical bandwidth of the network more

efficiently, under the constraint of determinism [24]. The TTCAN protocol is

specified in ISO 11898-4.

TTCAN is based on the CAN data link layer protocol ISO 11898-1 and does not

infringe any part of that protocol. Time-triggered communication means that activities

are triggered by the elapsing of time segments. In a time-triggered communication

system, all points of time of message transmission are defined during the development

of a system. A time-triggered communication system is ideal for applications in which

all or most data traffic is of a periodic nature [25].

TTCAN provides the possibility to schedule CAN messages in a time-triggered mode

as well as in an event-triggered mode. This type of message strategy is very effective

when a network is used for a closed-loop control system such as the powertrain in a

vehicle. Also the real-time performance of a CAN network increases with the use of

TTCAN.

Most vehicle networks dictate that data traffic must usually be both event-triggered

e.g. temperature change in the transmission system and time-triggered e.g. gearbox

torque output versus engine speed.

2.5.3.1 TTCAN Extension Level 1

ISO 11898-4 defines two levels of TTCAN. Extension level 1 guarantees the Time

Triggered operation of CAN based on a reference message of a time master. Fault

 49

tolerance of the functionally is determined by using redundant time masters. This type

of TTCAN is capable of being fully implemented in software [24].

2.5.3.2 TTCAN Extension Level 2

Extension level 2 uses a globally synchronised time base, which is established on the

network and any drift due to oscillator differences are corrected by the TTCAN

controllers. This category of TTCAN is implemented in hardware [24].

2.5.3.3 The Reference Message

TTCAN Extension Level 1 is based on a periodic reference message, which all nodes

can recognise by its identifier. This reference message only holds the control

information of one byte and the rest of the CAN message can be used for data transfer

if required. In Extension level 2, the reference message holds the actual global time of

the current TTCAN time master and uses four bytes of data to execute this. The

remaining 4 bytes of this message may be used for data communication [24, 26].

2.5.3.4 TTCAN Basic Cycle

The period between two reference messages is called the basic cycle (Figure 2.45). A

basic cycle can involve the use of several time windows of different sizes and allows

other necessary messages to be transmitted.

Figure 2.45: Reference Message – TTCAN Basic Cycle

The time windows of the basic cycle can be used for periodic messages and/or for

unplanned messages, which will use arbitration to obtain control of the TTCAN

network. A time window for periodic messages is known as an exclusive time

window (Figure 2.46). Within exclusive time windows, the beginning of the time

 50

window determines the sending point of a predefined message from a node. If the

system was properly specified, the design tool used for TTCAN should analyse the

communication time periods, and ensure no conflicts will occur. If a conflict occurs

due to poor system design, the CAN protocol properties of bit arbitration are valid.

The system designer has to determine which message will be sent in each exclusive

time window, as the automatic retransmission of CAN messages due to errors or loss

of arbitration problems is not allowed in the exclusive time window; therefore the use

of “one shot mode” [27] must be used.

Figure 2.46: Exclusive and Arbitration Windows – TTCAN Basic Cycle

A time window for event messages is called an arbitrating time window and control of

the arbitrating time window is by bitwise arbitration, as with event triggered

messages. The designer can allow all messages to compete for the arbitrating time

window. This permits the application to elect at runtime which messages should use

the arbitrating time window and in which time period. The automatic retransmission

of CAN messages is also not authorised within the arbitrating time windows.

During the design phase of the network message set, it is also possible to reserve free

time windows for further extensions of the network. These reserved arbitrating, or

exclusive, time windows can be reconfigured as required if additional nodes require

bandwidth on an existing network [24].

2.5.3.5 Node Specific Knowledge

A TTCAN node does not need knowledge of all messages on the network; it only

needs to be familiar with the time for sending and receiving of exclusive messages in

particular to itself, and where the arbitration window time slots are set. An example of

this strategy is seen in Figure 2.47.

 51

Figure 2.47: TTCAN Communication

This arrangement gives maximum memory optimisation with sufficient information

for the node regarding the actual message scheduling. It also offers a high level of

flexibility during the development stages as only the message schedule would require

updating if there were changes to the network message communication structure [26].

Figure 2.48: TTCAN System Matrix

 52

2.5.3.6 System Matrix

Due to system complexity, a simple basic cycle would not suffice in a modern

vehicle, which has many control functions and tasks operating on the one network.

TTCAN allows the use of more than one basic cycle. By connecting several basic

cycles together we can build what is termed a System Matrix (Figure 2.48) [28].

Figure 2.49: Merging Arbitration Windows

This arrangement gives great flexibility to the designer and even permits the use of

different column widths by joining two or more time windows together within a

System Matrix (Figure 2.49).

The network designer must formulate the column widths in such a way that a CAN

message including stuff bits can be transmitted within the allotted time. Failure to

enforce this rule will cause the failure of the next message within the System Matrix.

2.5.3.7 Time and Base Marks

TTCAN is enforced by the progression of time within the basic cycle. After every

Reference Message, the basic cycle time, or time mark, is set to zero, with time marks

dictating the beginning of the exclusive or arbitrating time windows. Base marks are

used to track the number of basic cycles within a System Matrix and are set to zero at

the beginning of a System Matrix (Figure 2.50) [28].

 53

Figure 2.50: Time and Base Marks

2.5.3.8 TTCAN Network Time Units (NTU)

The basic cycle time is the prime time used by TTCAN, and all timing within the

TTCAN network utilises the NTU. For Extension level 1 TTCAN, the NTU is based

on the nominal CAN bit time and Extension level 2 employs the physical second as

the time base. Extension level 2 establishes a system wide NTU by setting a

relationship between the node’s physical oscillator attached to the TTCAN controller

and the data in the Reference Message [28].

2.5.3.9 Global Time Extension Level 2

All level 2 nodes sample their time value at the frame synchronisation (SOF) of the

Reference Message sent by the TTCAN Master, and is known as the global time.

Following the receipt of the reference message the local node can calculate the local

offset as the difference between the SOF of the reference and its own value for global

time.

Global Time = Local Time + Local Offset

(2.10)

It is of utmost importance that local time and global time are synchronised, so that all

nodes have the same view of time in the network. Global time and local time

differences occur due to slightly different clock drift within the CAN nodes. To solve

 54

this problem a mechanism is built into level 2 CAN controllers, which continuously

updates the local time offset, by use of a TUR. To achieve this, the local node

measures in clock cycles, the time between two successive frame synchronisations

and then calculates the TUR and re-establishes the correct global time [29].

2.5.3.10 Initialisation

The TTCAN, as previously stated, has a Reference Message broadcast by the Time

Master. In the event of a problem with the Time Master on initialisation, there would

be no Reference Message broadcast, so the protocol has allowed for up to 8 potential

time masters on any level 1 or level 2 TTCAN network. If the time master level 1

node fails to start then another node will take over its role until the network is

switched off. On re-initialisation, the time master will resume its normal function, if it

can restart. With level 2 TTCAN, there are 8 potential time masters, which are

distinguished by the three-bit time master priority in the Reference Message. The time

master priority is given by the three least significant bits of the Reference Message

that is transmitted by the respective potential time master. If the original time master

gets reattached to the network it will take over the position of global time master [30].

2.6 Message Scheduling Algorithms

2.6.1 Introduction

In computer science, a scheduling algorithm is a method by which a process is given

access to system resources, usually processor time, RAM, etc. This is usually done to

effectively load balance a system. The need for a scheduling algorithm arises from the

requirement for most modern systems to perform multitasking, or execute more than

one process at a given time. Scheduling algorithms are generally only used in a time

slice-multiplexing kernel (the core of the operating system). The reason is that in

order to effectively load balance a system the kernel must be able to forcibly suspend

execution of some processes in order to begin execution of the next process. In the

case of some embedded systems, this can be achieved by the use of system interrupts.

The algorithm used may be as simple as “round-robin” in which each process is given

equal time, for instance 1 ms in a cycling list.

More advanced algorithms can take into account process priorities, or the importance

of the process. This allows some processes to use more time than other processes. It

 55

should be noted that the kernel always uses whatever resources it needs to ensure

proper functioning of the system, and so can be said to have infinite priority [31].

2.6.2 Scheduling

Time-triggered CAN (TTCAN) combines the advantages of event and time triggered

communication to fulfil the requirements of a distributed real-time system. Of crucial

importance is the generation of the communication schedule, which should consider

the demands of the time-triggered system on the one hand, while maintaining a good

real-time performance for the event-triggered part of the system on the other.

Scheduling is a key requirement for a real-time operating system and regulates the

order in which processes are assigned priorities in a priority queue. This message

assignment is usually carried out by a piece of software known as a scheduler. In real-

time environments such as a braking system on a car, the scheduler ensures that

processes can meet the deadlines set, therefore keeping the system stable. Scheduling

concepts with particular emphasis on TTCAN networks have been reviewed from the

following articles [22, 32, 33].

Long-term schedulers decide which processes can be admitted to the queue. It will

decide when an attempt will be made to execute part of the process or program. Its

admission to the set of currently executing processes is either authorised or delayed

by the long-term scheduler. Thus the scheduler dictates what processes are to run on a

system and the degree of concurrency to be supported at any one time - i.e. whether a

large or small amount of processes are to be executed concurrently, and how the split

between input/output intensive and CPU intensive processes is to be handled. Long-

term scheduling is very important in real-time systems, as the ability to meet process

deadlines may be compromised by the slowdowns and contention resulting from the

admission of more processes than the system can safely handle.

The main purposes of scheduling algorithms, is to minimise resource starvation and to

ensure fairness amongst all processes using the resources [31, 34].

The next few sub-sections will discuss some of the schedulers that are suitable for use

within a real-time automotive network. An extensive list of scheduling algorithms is

shown in Appendix 1.

2.6.2.1 Deadline-monotonic Scheduling

Deadline-monotonic priority assignment is a priority assignment policy used with

fixed priority pre-emptive scheduling. Using deadline-monotonic priority assignment,

 56

tasks are assigned priorities according to their deadlines. The task with the shortest

deadline, being assigned the highest priority. This priority assignment policy is

optimal for a set of periodic or sporadic tasks that comply with the following:

1. All tasks have deadlines less than or equal to their minimum inter-arrival times

(or periods).

2. All tasks have worst-case execution times that are less than or equal to their

deadlines.

3. All tasks are independent and so do not block each other’s execution.

4. No task voluntarily suspends itself.

5. There is some point in time, referred to as a critical instant, where all of the

tasks become ready to execute simultaneously.

6. Scheduling overheads (changing from one task to another) are zero.

7. All tasks have zero release jitter (the time from the task arriving to it becoming

ready to execute).

If restriction seven is not adhered to, then "deadline minus jitter" monotonic priority

assignment is the optimal solution. Deadline monotonic priority assignment is not an

optimal solution for fixed priority non-pre-emptive scheduling [35].

2.6.2.2 Earliest Deadline First Scheduling

Earliest Deadline First (EDF) scheduling is a dynamic scheduling principle used in

real-time operating systems. It places processes in a priority queue. Whenever a

scheduling event occurs (task finishes, new task released, etc.) the queue will be

searched for the process closest to its deadline. This process will then be scheduled

for execution next. EDF is an optimal scheduling algorithm on pre-emptive single

processors in the following sense: if a collection of independent tasks, each

characterised by an arrival time, an execution requirement, and a deadline, can be

scheduled, such that all the tasks are completed by their deadlines, the EDF will

schedule this collection of tasks such that they all complete by their deadlines.

When scheduling periodic processes that have deadlines equal to their periods, EDF

has an utilisation of 100 percent. That is, EDF can guarantee that all deadlines are met

if the total CPU utilisation is not more than 100 percent. So, compared to fixed

 57

priority scheduling techniques like rate-monotonic scheduling, EDF can guarantee all

the deadlines in the system at higher loading.

However, when the system is overloaded and tasks miss their deadlines, this is largely

unpredictable and is a considerable disadvantage to a real time systems designer [36].

2.6.2.3 Rate Monotonic Scheduling

Operating systems are generally pre-emptive and have deterministic guarantees with

regard to response times. Rate monotonic analysis is used in conjunction with those

systems to provide scheduling guarantees for a particular application.

A simple version of rate-monotonic analysis assumes that processes have the

following properties:

1. No resource sharing (processes do not share resources, e.g. a hardware

resource, a queue, or other blocking mechanism).

2. Deterministic deadlines are exactly equal to periods.

3. Static priorities with the task with the highest static priority that is available,

immediately pre-empts all other tasks

4. Static priorities assigned according to the rate monotonic conventions (tasks

with shorter periods/deadlines are given higher priorities)

It is a mathematical model that contains a calculated simulation of periods in a closed

system, where round robin and time-share schedulers fail to meet the scheduling

needs. Rate monotonic scheduling looks at a run modelling of all tasks in the system

and determines how much time is needed to meet the guarantees for the set of tasks in

question [37].

2.6.3 Stochastic Optimisation Algorithm

Stochastic is derived from the Greek word “stochos”, which translates to a meaning of

conjecture and randomness and is a process that can be described best by a probability

distribution when used in the scheduling of messages on a TTCAN network. This

section is based on work carried out by three Higher Institutes of Education for the

2002 International CAN Conference [33].

 58

2.6.3.1 TTCAN Scheduling Using Stochastic Optimisation

The process of building a message scheduling set for a TTCAN network using

stochastic optimisation consists in building the SM. This SM typically includes the

following elements:

• The determination of the number of columns required in the matrix

• Establishing the number of rows

• The definition of the duration of each column

• The message to be transmitted in each cell (row, column)

It is important with this approach to keep the average period of each message identical

to the respective instantaneous period. This is done using the appropriate number of

message instances in the system matrix. The average period is equal to the duration of

SM divided by the number of message instances [33].

The message duration will determine the column width and despite the restriction

imposed to the number of basic cycles as indicated in section 2.5.3.6, it is usually

possible to build several distinct system matrices for the same message set. If several

different messages sets are built, then we will have to assess the optimum schedule in

the generated SM’s according to some pre-defined criterion.

In most cases a cost function based on the sum of the message jitter values is used as

the criteria, which is used extensively by the automotive industry [33]. Jitter is

determined for every instance of every message, covering the complete SM. The cost

function is weighted by the SM duration and can be tested by using the following

expression:

Jitter =
i

p

i

p

ip

ae
M

1 ∑∑

(2.11)

Where ei
p
 is the expected beginning time of transmission of instance i of message p

and ai
p
 is the actual beginning time and M is the duration of the system matrix.

In order to build the SM some type of software will have to be written and must be

capable of scheduling all messages and optimise the message set.

 59

2.6.3.2 Stochastic Scheduling

The scheduler must be capable of generating a series of feasible message sets of

which all are distinctly different SMs. The optimisation part of the software must be

capable of selecting the best SM based on the cost function in Equation 2.11. In order

to be able to maintain the average period of every message, the SM’s duration M ,

must be the least common multiple of the message periods, or an integer multiple of

it. The average period is kept with M / Pi instances of every message i of period Pi

during the SM [33].

In order to schedule a set of messages we must:

• Determine the maximum number of lines of the system matrix

• Set the message allocation.

• Calculate the free time redistribution.

If we disregard the restriction of the number of basic cycles, it is obvious that the

maximum number of lines in the SM is bounded by:

max

max

T

M
L =

(2.12)

Where Lmax is the maximum number of lines and Tmax is the maximum transmission

time of all the messages in the set.

Before starting the allocation process, the software will have to generate ordered set I,

which includes every instance of every message in the initial set. This set is organised

in decreasing order of the message transmission time T:

},.....,,.....,,....,,......,,{ 1
2

1
21

2
1

1
1

21 nK
nn

KK IIIIIiII =

(2.13)

With n being the number of different messages in the initial set and:

i

i

P

M
K =

(2.14)

12 T.....TTT maxmax >>>=

(2.15)

 60

The software would now need to define a random number of lines for the SM, where:

maxLL ≤

(2.16)

It is now necessary to remove the first L instances in I and allocate them to the first

column of the matrix. We repeat this cycle until all instances of I are dealt with. We

now have a SM with #C columns.

L

I#
C# =

(2.17)

As the longer messages are taken into account first, #C is now at its minimum. It

would now be possible to determine the minimum duration of the basic cycle for this

particular matrix also by using:

∑
=

=

C#

i

iBC DD
1

(2.18)

In Equation 2.18, Di is the duration in time for each column of the matrix. With this

value, it is possible to ascertain if the set is schedulable by using Equation 2.19:

L

M
Dbc ≤

(2.19)

If the set is schedulable, then we should check for any free time that is available

within the basic cycle. This can be checked by using Equation 2.20.

BCfree D
L

M
t −=

(2.20)

Free columns are placed between each two occupied columns and then there is a

redistribution of the free time randomly between the first columns. This is the only

random factor in the construction of the first set of system matrices.

 61

2.6.3.3 Stochastic Optimisation

The optimisation process uses a set of system matrices built under the rules for the

stochastic scheduler. These matrices are deemed as the initial population and will be

subject to random alterations.

The alterations to the SM must assure that the matrices are still feasible after the

random changes. The cost function defined above is now used to determine the jitter

within the matrices [33].The steps in the optimisation process are shown in Table 2.7

below. Step 1 is the user defining the number of elements that constitute the initial

population of an SM. The scheduler then generates a usable system matrix based on

Section 2.6.2.2.

1 Generate an initial population

2 Diversify the population.

3 Select a SM.

4 Randomly transform the selected matrix.

5 Evaluate the cost function for this SM.

6
If the cost function (jitter) is lower for this SM, keep this matrix and

eliminate the old SM.

7
Repeat steps 4 to 6 until the pre-defined maximum number of

iterations is attained (normally 1000).

Table 2.7: Steps Required for Stochastic Optimisation of a TTCAN SM

In step 2, the elements of the population are randomly moved as each new SM is

developed. The random movement of the elements provides diversity in the initial

population and produces a number of different SMs made up from the one population

(set of messages).

Steps 3 to 7 is the optimisation stage of the process. Step 3 selects a SM, with step 4

using an algorithm based on a modified steady state genetic algorithm [33] which

eliminates the problem of crossover, therefore, keeping all transformed system

matrices useable. Another issue regarding the completion of the algorithm is the

number of iterations that should be used, as jitter depends on the transmission load

 62

and on the relationship between message periods. The number of iterations must be

determined by the user, but must be the same for all SMs.

The focus of this optimisation process is to use as many different transformations of

the message schedule in order to reduce or eliminate message jitter. It should be

remembered the lower the message jitter the greater optimisation of the system.

2.6.4 Heuristic Scheduling Concepts

Heuristic is derived from the Greek word “heurisko”, which translates directly to “I

find”. The definition given in the Oxford English Dictionary is “proceeding to a

solution by trial and error or by rules which are loosely defined” [38]. This section is

based on work carried out by Robert Bosch GmbH for the 2005 International CAN

Conference [32]. The use of heuristic scheduling will provide a resolution to the

message-scheduling problem, but this solution may not be the optimum schedule.

2.6.4.1 TTCAN Scheduling Using Heuristic Methods

Designing a message schedule is comparatively simple using the heuristic method. It

involves sorting the messages according to:

• Repetition rate (period)

• Message length (total bits per message)

• Are they periodic or spontaneous messages?

• Deciding the maximum response time to a spontaneous message

• Knowing the dependencies between messages

Once the messages have been sorted, a basic attempt at Rate Monotonic (Section

2.6.2.3) scheduling can be implemented. The length of the basic cycle is chosen

according to the shortest period and the number of basic cycles is derived from the

longest period [32].

Below in Figure 2.51 depicts an example of a Heuristic Schedule based around the

following data:

• CAN baud rate is set at 62.5 kbits/s.

• Message 101 has a period of 10ms. It is a standard frame message with 7

data bytes, so the message can be up to 118 bits long.

• Message 201 has a period of 20ms. It is a standard frame message with 7

data bytes, so the message can be up to 118 bits long.

 63

• Message 202 has a period of 20ms. It is a standard frame message with 7

data bytes, so the message can be up to 118 bits long.

• Message 301 has a period of 30ms. It is a standard frame message with 7

data bytes, so the message can be up to 118 bits long.

• Message 302 has a period of 30ms. It is a standard frame message with 7

data bytes, so the message can be up to 118 bits long.

The first schedule is generated in a rate monotonic fashion and any unused windows

in Figure 2.51 can be used as arbitration windows for spontaneous messages or for

further expansion of the network.

Each message has been calculated to take 1.888ms of bus time, therefore, if message

101 is sent at zero time, message 201 can be sent at the start of 2ms.

Figure 2.51: Basic Heuristic Message Schedule

This gives a time between message 101 and message 201 of 0.112 ms. This time

period between these two messages is too small to allow for an arbitration window.

Looking at the first 12 milliseconds of the schedule, we cannot have any arbitration

windows, but from the beginning of the 12ms until the end of the 19ms, we can have

an arbitration window.

The rest of the schedule has different sized arbitration windows, which can be seen in

Figure 2.52. If we use this message schedule, there will be no transmission of

spontaneous messages for the first 12 ms of the schedule, but after this, there is a large

arbitration window. This will have an impact on a real-time application. The

 64

microcontroller will also be tied up with the CAN message schedule for most of this

time and have little time to look after other events.

Figure 2.52: Heuristic Scheduling showing Arbitration Windows

If the arbitration windows can be distributed more evenly throughout the SM a

significant improvement can be made in real-time performance [32]. Testing of real-

time performance can be carried out by evaluating the ability of the CAN network to

react to an asynchronous event by the “Distinctness of Reaction”, based on the

orthogonal Walsh correlation and gives a reliability measure, which will give the

average latency response time and the jitter when reacting to asynchronous external

events [32].

2.6.4.2 Heuristic Message Strategies

There are two distinct message strategies available with heuristic scheduling. The first

strategy minimises the number of basic cycles in order to produce a useable schedule

which will use the greatest amount of triggers in the SM. The second strategy is to

minimise the length of the basic cycle in order to minimise the number of triggers

required to operate the system. TTCAN level 2 relies on hardware triggers and has to

be in the order of 2
n
 up to a maximum value of 2

6
. Level 1 systems do not have this

constraint.

Robert Bosch GmbH found from DoR testing that it was advantageous to use long

basic cycles since they use less reference messages. Also, as additional basic cycles

0ms 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms

101 201

101

101 201

101

101 201

301

101

202

202

202 302

Arbitration Window

Arbitration Window

Arbitration Window

Arbitration Window

Arbitration Window

 65

are incorporated into a SM, the real-time performance will deteriorate and the jitter

and average latency increase and this, in turn, will increase bandwidth usage [32].

2.6.4.3 Allocation of Message Slots

From a message point of view it doesn’t matter where the actual time slots are within

the SM, the only constraint being the Reference message that has to be sent by the

system Master at time zero. There are two methods of allocating message time slots;

one uses what is termed “dense” allocation and the other uses “sparse” allocation.

The dense allocation is suitable in some instances where, for example, sensor data is

gathered from different nodes and broadcast on the bus.

Figure 2.53: Heuristic Dense Message Allocation

These values should be available as soon as possible to minimise control system

delays and therefore, a dense allocation is preferable (Figure 2.53). This method will

create long intervals where spontaneous messages that use arbitration will be blocked

and therefore, if the data has a deadline, it may be exceeded.

Figure 2.54: Heuristic Sparse Message Allocation

The second option is sparse allocation were the TTCAN messages are spread out as

far as possible. This results in shorter blocking periods with more arbitration windows

available for spontaneous messages (Figure 2.54) and is better suited to real-time

applications.

 66

Optimisation of a heuristic schedule is calculated by using the cost function based on

the sum of the message jitter as with stochastic message scheduling. The schedule

with the lowest cost function is deemed the optimum schedule.

2.7 Summary

This chapter examined reasons for the development of CAN for the automotive

industry. It scrutinised the CAN specification, including the OSI Data Link Layer and

the Physical Medium Attachment as defined by ISO-11898. The physical layer

wasinvestigated in terms of functionality and operation, as was the bus differential

voltage and physical attachment to the transceivers. It considered the effect of

propagation delay and the oscillator tolerances on network stability, and how these

can be compensated by use of the CAN bit timing. Microcontroller CPU loading was

explored, with particular attention being focused on the effects of stand alone CAN

and integrated CAN on the CPU.

CAN message sending was researched in respect of both event triggered messages

(real-time) and time triggered messages. It found serious drawbacks in using event

triggered messaging due to the type of arbitration used with CAN e.g. high priority

messages will always control the bus. Time triggered messaging guaranteed all time

triggered messages would have access to the bus at some time and would allow event

triggered messaging at slack periods.

TTCAN was investigated and it was found that there are two different

implementations available. A level 1 system, executed through software and a level 2

system, implemented through hardware.

Several scheduling algorithms were investigated, but only the stochastic and heuristic

schedulers showed any promise with a TTCAN network. After detailed analysis of the

schedulers, it was found that they can develop useable schedules, either by probability

distribution or by trial and error, but are unable to generate every possible message set

from any group of message periods. Neither can they elicit any information about the

arbitration window size. Message scheduling algorithms were examined from a

viewpoint of dense and sparse allocation. It was found that sparse allocation was the

preferred option for real-time messaging.

The next chapter will illustrate the methods used to solve both problems endured by

the stochastic and heuristic scheduler. It demonstrates a methodology, which ensures

 67

all message sets can be developed from a group of periodic messages and also solves

the problem of finding the optimum message set with regard to real-time messaging.

 68

Chapter 3: Designing the Optimum TTCAN

Message Scheduler

 69

3.1 Introduction

This chapter investigates the reasons why optimisation of a TTCAN System Matrix is

necessary and introduces a design process to produce the most effective solution. The

chapter is set out in the following sections:

• Section 3.2 explores the reasons why an effective scheduler is required and

illustrates the problems with the stochastic and heuristic schedulers

presently used.

• Section 3.3 seeks to find a method to solve the shortcomings of the

stochastic and heuristic schedulers.

• Section 3.4 demonstrates the mathematical solution to the above problems

and implements it in software.

3.2. Stochastic and Heuristic Scheduler Problems

3.2.1 Introduction

A scheduling algorithm is a means by which a process is given access to system

resources and is used to efficiently load balance the system at all times, as described

in section 2.6.1. It was outlined in section 2.6.4.3 that when dense scheduling was

employed in the System Matrix, the TTCAN network could be operating at maximum

load for the duration of time that these messages were being sent. Whereas, in sparse

message scheduling the load on the TTCAN network had the load spread evenly and

arbitration windows inserted between each TTCAN message.

3.2.2 Stochastic Scheduling

The stochastic scheduler, as described in section 2.6.3, relies on devising usable

message sets by randomly distributing TTCAN messages and arbitration windows

[33]. Distributing message windows and free time in an indiscriminate way indicates

that the optimum schedule may result only by chance.

The manner in which the arbitration windows are distributed can increase the time a

spontaneous or real time message has to wait in order to access the TTCAN network

in a worst-case scenario. In Figure 3.1, the spontaneous message in a worst-case

situation will have to wait approximately 1.3 milliseconds for transmission on the

network, if we use single columns in the SM. Figure 3.2 shows the waiting time for

 70

the spontaneous message to be in the order of about 2.3 milliseconds if the TTCAN

messages are distributed in pairs.

Figure 3.1: Spontaneous Message Waiting with Single Columns

It should be noted that the message waiting time for a spontaneous message is longer

than the message time allocated for an actual TTCAN message. The spontaneous

message must complete its message transmission prior to the TTCAN message

starting to send its own message.

Figure 3.2: Spontaneous Message Waiting with Double Columns

Stochastic scheduling generates a large number of different message sets. Some of

these message sets are not usable, and of the usable message sets, it applies the cost

function analysis to find the optimum message set. Using this type of scheduling does

not mean that the best message schedule has been developed; it means that it has

found the best message set with the lowest cost function from the generated message

sets. Other message sets may be available outside those that were generated.

 71

3.2.2.1 Designing a Stochastic Message Set

A stochastic Message Set is developed by placing the message population onto the

SM randomly, and then testing for usable Message Sets and finally testing their

optimisation by using a cost function as described in section 2.6.3.1.

Example 1: Three CAN standard messages with periods of 20ms, 30ms and 40ms

operating on a bus with a baud-rate of 62.5kbits/s and each message has 7 data bytes.

Longest message duration:

bits

bitsbits

sec

rateBaud

StuffbitsLength_Message
t

+
=

ms888.1
62500

18100
=

+

Length of the SM:

LCM (20, 30, 40) = 120ms

Number of Triggers in SM:

∑=

N

i iM

)M(LCM
Triggers

13
40

120

30

120

20

120
=++

Figure 3.3 and Figure 3.4 show two stochastic message sets using the data from

Example 1. Both have valid message sets, consequently the cost function, as outlined

in section 2.6.3.1, will be used to find the optimum message set.

Cost Function (Message Set 1)

Jitter =
i

p

i

p

ip

ae
M

−∑∑
1

 72

025.0)]106106()100100()8281(

)8080() 7676()6060()4646()4241(

)4040()2020()1616()21()00[(*
120

1

131312121111

101099887766

5544332211

=+++

+++++

++++

Figure 3.3: Stochastic Message Set 1

 73

Cost Function (Message Set 2)

Jitter =
i

p

i

p

ip

ae
M

1 ∑∑

Figure 3.4: Stochastic Message Set 2

 74

0)]106106()100100()8383(

)8080() 7676()6060()4646()4343(

)4040()2020()1616()33()00[(*
120

1

131312121111

101099887766

5544332211

=+++

+++++

++++

The cost function for Message Set 1 is -0.025 whereas Message Set 2 shows a cost

function of zero which denotes that Message Set 2 is the optimum stochastic Message

Set.

3.2.3 Heuristic Scheduling

The heuristic scheduler as described in section 2.6.4 relies on developing a usable

message set by placing the messages in columns starting with the messages having the

shortest period in the first column and messages with longer time periods in new

columns in ascending order. A message set will now be developed using heuristic

scheduling and employing the same data that was used for the stochastic message sets.

Example 2: Three CAN standard messages with periods of 20ms, 30ms and 40ms

operating on a bus with a baud-rate of 62.5kbits/s and each message has 7 data bytes.

Longest message duration:

bits

bitsbits

sec

rateBaud

StuffbitsLength_Message
t

+
=

ms888.1
62500

18100
=

+

Length of the SM:

LCM (20, 30, 40) = 120ms

 75

Number of Triggers in SM:

∑=

N

i iM

)M(LCM
Triggers

13
40

120

30

120

20

120
=++

Figure 3.5: Initial Heuristic Message Set

 76

Figure 3.5 shows the initial layout of the heuristic message set, where the Reference

message of period 20ms is placed in the first column. The 30ms message is now

placed in the next column, which starts at 2ms. The rationale for starting at 2ms is that

the Reference message will take 1.888ms to transmit. All of the 30ms messages are

inserted in the correct place on the SM. Next, the 40ms message is inserted into the

SM again 2ms later, as the previous message will again take 1.888ms to transmit. All

instances of the 40ms message are incorporated into the SM.

Figure 3.6: Initial Arbitration Windows with Heuristic SM

 77

This message set is now a valid SM, but two problems are associated with it. Firstly,

spontaneous real-time messages cannot be broadcast until the start of the 6ms slot, of

the SM. Secondly, the spread of arbitration windows across the SM is not the

optimum for spontaneous messages, as can be seen in Figure 3.6.

Figure 3.7 shows a valid message set but the arbitration windows have been adjusted

by observation, so we can have real-time spontaneous messages while the first three

TTCAN messages are being sent.

Figure 3.7: Arbitration Window Adjustment Heuristic SM

 78

0)]100100()9494()8888(

)8080() 6464()6060()4848()4040(

)3434()2020()88()44()00[(*
120

1

131312121111

101099887766

5544332211

=+++

+++++

++++

The cost functions for the heuristic message set shown in Figure 3.6 and Figure 3.7

are both zero, which denotes that there are two optimum heuristic message sets. The

message set shown in Figure 3.6 will have to wait during the first 6ms before a

spontaneous message can be sent, whereas in Figure 3.7 a spontaneous message can

be sent between each of the first three TTCAN messages. Although the message set in

Figure 3.7 offers a more optimised message set, it still does not mean it is the best

solution for real-time messaging within the TTCAN network for those message

periods.

3.2.4 How Optimised are Stochastic and Heuristic Schedules

The word optimum is a derivative of optimal and has a meaning of “best or most

favourable” [38]. This implies that using either stochastic or heuristic scheduler, we

should be able to produce the most favourable message set in regards of spreading the

load across the TTCAN network and microcontrollers.

It should be apparent that using the rules for stochastic and heuristic message

scheduling, several optimised message sets could be developed, as can be seen in

Figures 3.5, 3.6, and 3.7. As previously stated, the stochastic scheduler develops

sufficient message sets to generate several usable message sets and then uses the cost

function analysis to calculate the optimum message set. The cost function analysis

will normally find several message sets, each with a cost function of zero. However,

all message sets having a cost function of zero are not equally the most favourable, as

will be proven later.

Heuristic scheduling relies on trial and error in order to obtain an optimised message

set. Again as with stochastic message scheduling, there can be several heuristic

schedules with a zero cost function, but without indication that all are optimised to the

same extent, or if not, then an indication of the most optimised message set in relation

to real-time messaging.

 79

3.3 The Mathematical Approach to TTCAN Scheduling

3.3.1 Introduction

This section will look at mathematics as a possible way of solving the optimum

message set. It will not rely on obtaining a solution, by “randomly” (Stochastic)

generating a message set or by finding the solution by “trial and error” (Heuristic).

3.3.2 The Mathematical Design Process

This section will outline the design of a very simplified SM consisting of just two

messages, using mathematics, and will investigate what rules were applied to the

building of it. If the rules developed hold true, then software can be designed to

accomplish the process.

The rules for an optimum TTCAN schedule are as follows:

• The messages should have no jitter

• Arbitration Windows to be such that spontaneous real-time messages can

operate within their deadlines

• The system resources are to be used as efficiently as possible by load

balancing the system at all times

3.3.2.1 Mathematical Two Message SM

Example 3: Two CAN standard messages with message periods of 20ms each

operating on a bus with a baud-rate of 125kbits/s and each message has 7 data bytes.

Message M1 is the Reference message with system data within the message and M2 is

a normal data message in the TTCAN network.

Longest message duration:

bits

bitsbits

sec

rateBaud

StuffbitsLength_Message
t

+
=

ms944.0
125000

18100
=

+

 80

Length of the SM:

LCM (20, 20) = 20ms

Number of Triggers in SM:

∑=

N

i iM

)M(LCM
Triggers

2
20

20

20

20
=+

Figure 3.8 shows a SM designed by observation and it is a possible solution to an

optimum Message set. Does it comply with the rules of an optimum SM as stated in

section 3.3.2?

It shows that no message jitter would occur and that the arbitration windows are

constant at 9ms although the full 9ms would not be able to be used due to constraints

shown in section 3.2.2. The load on system resources is spread evenly.

Figure 3.8: Mathematical Design “A” of Period 10ms

3.3.2.2 Modelling Results of Two Message SM

The SM has two messages, M1 is the Reference message and message M2 is

broadcast at 10ms. Evaluating the message set above, shows a relationship between

M1 and M2. Inspection of the message set in Figure 3.8, shows that the 20ms message

 81

is at the midpoint between the Reference message. This association could be

described by Equation 3.1, which gives the position of the messages within the SM:

Triggers_of_Number

Matrix_System
SM_in_Position_Optmum =

2

20
10 =

(3.1)

Alternatively, by using equation 3.2 we can find the optimum position from the

previous message.

Triggers_of_Number

Time_nArbitratio
Position_Optmum

∑
=

9
2

99
=

+

(3.2)

Both equations 3.1 and 3.2 have given the correct position in the message set. Figure

3.9 uses the data from Example 3, but used a stochastic approach to designing the

message set. The cost function analysis shows that the message set is valid and the

cost factor is zero.

Inspecting the message set it can be seen that no jitter will occur, but the arbitration

windows are of different sizes. Applying Equation 3.1 to the problem shows that the

SM is not the optimum, as the message M2 should be located in the 10ms time slot.

Equation 3.1:

2

20
10 =

 82

Figure 3.9: Mathematical Design “B” of Period 10ms

Applying equation 3.2 to the SM shows that the message is not the optimum. Message

M2 should be located 9ms after the Reference message.

Equation 3.2:

2

153
9

+
=

Example 4: Two CAN standard messages with periods of 20ms and 30ms

respectively, operating on a bus with a baud-rate of 125kbits/s and each message has

7 data bytes. Message M1 is the Reference message with system data within the

message and M2 is a normal data message in the TTCAN network.

Longest message duration:

bits

bitsbits

sec

rateBaud

StuffbitsLength_Message
t

+
=

ms944.0
125000

18100
=

+

Length of the SM:

LCM (20, 30) = 60ms

 83

Number of Triggers in SM:

∑=

N

i iM

)M(LCM
Triggers

5
30

60

20

60
=+

Using Equation 3.1 and Equation 3.2:

Triggers_of_Number

Matrix_System
SM_in_Position_Optmum =

12
5

60
=

Triggers_of_Number

Time_nArbitratio
Position_Optmum

∑
=

11
5

17119711
=

++++

Figure 3.10 shows that Equation 3.1 and Equation 3.2 give the same solution to the

problem. If the message M2 of period 30ms could be moved further away from the

Reference message M1 at the 40ms time slot, it would have an effect on the real-time

messages within the system. It would increase the arbitration window in the message

set, which may enable two or more real-time messages to be broadcast during this

arbitration window. Figure 3.11 shows such an arrangement, which has the benefits of

the largest arbitration windows possible, while providing the best load balance for the

complete system.

It can be seen with this message set, that there are five arbitration windows in total,

but the two smallest arbitration windows are at time slots 16ms to 19ms inclusive and

41ms to 44ms inclusive.

 84

Figure 3.10: SM for Example 4 using Equation 3.1 and Equation 3.2

These two windows are 4ms in duration. By decreasing the arbitration window size,

starting at time slot 13ms in Figure 3.10, and moving it towards the Reference

message at time slot 20ms, it has given an increase in the arbitration window starting

a time slot 45 as seen in Figure 3.11.

Using Equation 3.1 or Equation 3.2 by themselves does not provide the optimum

message set. The optimum schedule for Example 3 was found by calculating the mean

or average time between messages, but this method did not give the optimum result in

Example 4. This can be attributed to the fact that in Example 3 both messages have

the same periodic time, whereas for Example 4 the periodic time is different for both

messages and therefore it could not achieve the same result. Although Example 4 was

completed by inspection, it showed there is a relationship between the size of the

arbitration windows and this may be the key to the solution.

In Example 4, it was calculated that the optimum message was to be sent at 12ms, but

the actual optimum position was found by inspection to be 3ms from the calculated

value. A statistical approach, will now be outline, which provides a message set that

ensures the optimum real-time performance for the TTCAN network.

 85

Figure 3.11: Optimum SM for Example 4, by Inspection

3.3.2.3 Statistical Approach to SM Design

A statistical approach to the scheduling problem in Example 3 was undertaken using

Microsoft Excel. Care was taken to ensure that the correct analysis tools were used

since there are several formulae for Standard Deviation.

The formula to calculate the Standard Deviation of a sample of a population is:

1n

)xx(
2

−

−∑

(3.3)

Whereas the formula required to determine the Standard Deviation of the complete

population is:

n

)xx(
2

∑ −

(3.4)

 86

Analysing a SM for standard deviation was completed using the “STDVEP”

command within Excel. This calculated the standard deviation of a complete

population, rather than a sample of the population [39] as all developed message sets

were complete populations. The data was further evaluated using MATLAB, which is

a mathematical computation, analysis and visualisation tool. It is used extensively for

rapid design and testing of systems [40].

3.3.2.4 A Statistical Approach to the Scheduling Problem in Example 3

Two CAN standard messages with periods of 20ms each operating on a bus with a

baud-rate of 125kbits/s and each message has 7 data bytes. Message M1 is the

Reference message with system data within the message and M2 is a normal data

message in the TTCAN network.

Table 3.1 demonstrates 21 possible message sets using the data in Example 3.

Heading “Message Set Number” lists the SMs and is incremented in 1 millisecond

intervals. The next column shows the start time of the Reference message and will

always be zero time.

Column 3 contains the proposed start time of message M2 and, as shown in the list, it

is incremented by 1ms throughout the column. Column 4 gives the SM length in

milliseconds.

Columns 5 and 6 state the time in milliseconds between the start time of each message

in the message set, for example, for message set 1, the Reference message is sent at

time zero and finishes broadcasting at just 1ms. Message M2 is proposed to be

broadcast at 1ms, therefore, there is zero time between messages M1 and M2.

Message M2 will complete transmitting its message just before the 2ms time slot. The

network will not broadcast any TTCAN messages for the next 18ms until message

M1 is retransmitted to repeat the message set.

Column 8 holds the value of the calculated “Mean” time between messages and it

should be noted that it does not remain constant across the data. Column 9 has

calculated the standard deviation for that particular message set and shows that there

is no standard deviation in message set 10, which is the optimum message set. The

worst usable message sets in the set are message set 1 and message set 19.

Figure 3.12 displays the mean and standard deviation graphed against time. It should

be noted that it is symmetrically built around the 10ms time slot. Message set 0 and

message set 20 are not usable as messages M1 and M2 cannot be transmitted at the

 87

same instance. All other message sets are usable with no jitter and any of these could

have been developed by either stochastic or heuristic methods.

Table 3.1: The Mean and Standard Deviation of Message Times Example 3

It is evident that the message sets developed using statistical methods produced the

optimum message set by sending message M2 at 10 milliseconds. This gives two

arbitration windows of 9ms each and a minimum wait time for spontaneous messages

(Figure 3.10). This is the point at which the standard deviation is at its minimum.

The graph in Figure 3.12 shows some peculiarities in the “mean”. It changes from 9 to

9.5 when two messages attempt to transmit at the same period of time (message set 0

and message set 20). This is where the Reference messages M1 and the data message

M2 are attempting to broadcast at the same instance. The standard deviation is also at

M
es

sa
g

e
S

et

N
u

m
b

er

R
ef

er
en

ce
 M

es
sa

g
e

M
1

 S
ta

rt
 T

im
e

D
at

a
M

es
sa

g
e

M
2

 S
ta

rt
 T

im
e

S
y

st
em

 M
at

ri
x

 T
im

e
(2

0
m

s)

T
im

e
D

if
fe

re
n

ce
 B

et
w

ee
n

 M
1

an
d

 M
2

T
im

e
D

if
fe

re
n

ce
 B

et
w

ee
n

 M
2

an
d

 E
n
d

 o
f

S
M

M
ea

n
 T

im
e

o
f

M
es

sa
g

e
D

ep
ar

tu
re

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

 F
ro

m
 t

h
e

M
ea

n
 T

im
e

0 0 0 20 0 19 9.5 9.5

1 0 1 20 0 18 9 9

2 0 2 20 1 17 9 8

3 0 3 20 2 16 9 7

4 0 4 20 3 15 9 6

5 0 5 20 4 14 9 5

6 0 6 20 5 13 9 4

7 0 7 20 6 12 9 3

8 0 8 20 7 11 9 2

9 0 9 20 8 10 9 1

10 0 10 20 9 9 9 0

11 0 11 20 10 8 9 1

12 0 12 20 11 7 9 2

13 0 13 20 12 6 9 3

14 0 14 20 13 5 9 4

15 0 15 20 14 4 9 5

16 0 16 20 15 3 9 6

17 0 17 20 16 2 9 7

18 0 18 20 17 1 9 8

19 0 19 20 18 0 9 9

20 0 20 20 19 0 9.5 9.5

 88

its maximum value when Reference messages and data messages are attempting to be

transmitted at the same instance.

Figure 3.12: Graph Developed by use of MATLAB for Example 3

3.3.2.5 A Statistical Approach to the Scheduling Problem in Example 4

Two CAN standard messages with periods of 20ms and 30ms respectively each,

operating on a bus with a baud-rate of 125kbits/s and each message has 7 data bytes.

Message M1 is the Reference message with system data within the message and M2 is

a normal data message in the TTCAN network.

If the statistical approach holds true from Example 3, the optimum point for message

transfers is when the standard deviation is at its minimum. This point is the lowest

part of the standard deviation curve.

Appendix 2 shows all message sets developed from Example 4. The data was

analysed in MATLAB and a graph produced, which is shown in Figure 3.13. From

the graph, it can be ascertained that the optimum point to send a message would be at

the minimum standard deviation. It can also be seen that any of the following points

could be the optimum; 5ms, 15ms, 25ms, 35ms, 45ms or 55ms. The scheduling

problem in Example 4 had been optimised by inspection in Figure 3.11 and the time

 89

slot for message M2 coincides with one of the values calculated by this statistical

method at 15ms.

Figure 3.13: Graph Developed with MATLAB for Example 4

Again, the same peculiarities appear in the graph for Example 4 (Figure 3.13) as in

the graph for Example 3 (Figure 3.12). The “mean” in this instance changes from 11

to 11.2 when two messages are transmitted in the same period of time, as in message

set 0, 10, 20, 30, 40, 50 and message set 60. These points on the graph equate to the

Reference Message. Again, the standard deviation is at its maximum when two

messages are to be transmitted in the same instance and the standard deviation is at its

minimum value when it is the optimum time to transmit a message.

3.3.3 Is There a Trend?

Examining the results of Example 3 and Example 4 it seems a trend or set of rules are

starting to be formed, namely:

1. Develop all possible message sets from the data supplied.

2. Calculate the Mean for each message set.

3. Calculate the Standard Deviation for each message set.

 90

4. If the Mean increases in value sharply to a maximum, then it is likely that two

messages have been scheduled to be transmitted at once.

5. The point at which the Standard Deviation is at its maximum it is also likely to

be the position where more than one message is scheduled to be transmitted.

6. When the Standard Deviation is at its minimum value, this is the optimum

position for transmitting the data message or messages.

7. The Mean and Standard Deviation are cyclical throughout the message set.

These set of rules have only been developed by generating two SMs with two

messages each. A third test set will be generated using the above rules for Example 5

in order to determine if the rules hold true.

Example 5: Two CAN standard messages with periods of 20ms and 25ms

respectively each operating on a bus with a baud-rate of 125kbits/s and each message

has 7 data bytes. Message M1 is the Reference message with system data within the

message and M2 is a normal data message in the TTCAN network.

Figure 3.14: Graph Developed with MATLAB for Example 5

 91

Appendix 3 shows all developed message sets from the data in Example 5. This data

was developed in the same manner as for Examples 3 and 4. It appears to exhibit the

same traits with the change in Mean from 10.11 to 10.22. The standard deviation’s

maximum value coincides with the maximum value of the mean. This should be the

position where two messages could be transmitted at once if the message set was

implemented. The minimum value of the standard deviation is flat, for example,

between 2ms and 3ms. It was felt that this problem occurred due to the time slots been

at 1ms intervals (Figure 3.14).

Part of the graph was redrawn with intervals of 0.5ms (Figure 3.15), but only covers

the first 10ms of the message sets. This clearly shows that the optimum time for

message M2 is to start at 2.5ms or 7.5ms and that maximum mean and maximum

standard deviation occur at 5ms. All the rules that were stated at the beginning of this

section hold true for Example 5.

Figure 3.15: Graph for Example 5 over the first 5ms

 92

3.4 Statistical Software Scheduler Development

3.4.1 Introduction

This section will seek to find a software solution to the Statistical Scheduler. As can

be seen in Appendix 3, even with just two messages in the SM, there was a possible

100 different message sets available. The 100 message sets were developed by the use

of Microsoft Excel and imported into MATLAB in order to graph these results. This

was extremely time consuming. The number of possible message sets to be developed

is dependant on two factors; the LCM of the message periods and the number of

actual messages in the SM.

3.4.2 Software Design

For the software to be useable it must be able to complete the following steps:

1. Allow user input of data.

2. Develop all possible message sets from the data supplied.

3. Calculate the mean for each message set.

4. Calculate the standard deviation for each message set.

5. Find the maximum standard deviation of all developed message sets.

6. Display which message set exhibits the maximum standard deviation.

7. Find the minimum standard deviation of all developed message sets.

8. Display which message set exhibits the minimum standard deviation.

3.4.2.1 Programming Language

Several programming languages were investigated in order to develop the Statistical

Scheduler. Amongst these were Microsoft VB 2005, Visual C# 2005, Visual C++

2005, and Sun Micro Systems Java.

It was decided to use Microsoft VB 2005 Express Edition as it is a free tool which

offers an easy to learn language [41-43] and enables the Rapid Application

Development (RAD) of Graphical User Interface (GUI) applications.

3.4.2.2 Number of Message Sets to Be Developed

As shown in Example 4, 60 message sets were developed (Appendix 2). This was in

spite of the Reference message having a time period of 20ms. As was evident in

Examples 3, 4, and 5, there is symmetry to the data values and graphs. Taking the

examples above, the same answers could have resulted, had the mean and standard

 93

deviation only been found from one Reference message to the next in the SM. In

Example 4, this would mean building only the first 20 message sets and therefore, a

reduction of 67% in the workload.

Example A: If a TTCAN SM has to be developed with a Reference message M1 and

two data messages M2 and M3 with periods of 20ms, 30ms, and 40ms respectively.

i) Calculate the number of message sets possible, using the full SM.

ii) Calculate the number of message sets possible, using the time frame from one

Reference message to the next.

First, find the LCM.

SMsize = LCM

LCM {20, 30, 40} = 120

Since the Reference message is always set at zero time it has no effect on the

combinations of possible message sets, but the data messages have, therefore:

a) Take the number of periodic messages, in this example 3 and subtract 1:

n = Messagestotal – 1

3 – 1 = 2

b) Possible number of different message sets in a given SM, in this case 120, it

can be found by:

QMessage_sets = SM
n

14400 = 120
2

c) If , as stated above, we use only span from one Reference message to the next

we get:

QMessage_sets = M
n

400 = 20
2

 94

d) Percentage saving on processing time:

100*)
14400

400
1(%2.97 -=

It can be seen form Example A that if the full SM is used, 14,400 message sets will be

built and evaluated, whereas if the period between Reference messages is used, only

400 possible message sets are available. By using only the period times between

Reference messages, the processing time can be reduced by over 97% for the example

above.

3.4.2.3 Software Flow Chart

Figure 3.16 shows the flow chart that was developed prior to writing of any code. It

shows the sequence of events that are required to produce the optimised schedule.

Figure 3.16: Flow Chart for Development and Evaluation of TTCAN Message Sets

 95

3.4.2.4 Program Flow of the Statistical Scheduler

Once the user executes the application software (Figure 3.17), the message periods

have to be input into the application.

When all message periods are entered including the Reference message (Appendix 4,

lines 31 to 45), the user presses the button marked “Press to Built System Matrix”

(Figure 3.17). The application now sorts the message periods in ascending order,

displaying them in the window marked “Message Periods” on the GUI. It proceeds to

calculate the LCM of all message periods, as this determines the size of the SM and

displays this in the window marked “LCM”.

Figure 3.17: Statistical Scheduler

The application next calls a function for building of message sets, but this function is

dependant on the number of message periods that the user originally input. This

application is only suitable for 2, 3, or 4 different message periods, but could be

expanded to accommodate additional message periods.

 96

The scheduler starts the process of building all message sets for the required number

of message periods and uses the range from one Reference message to the next

Reference message as shown in Figure 3.18. Example B shows the process required to

find all possible SMs and develop them.

Example B: Find the first 5 message sets that are schedulable without zero crossing if

the Reference message period is 20ms and Data Message A and B have message

periods of 30ms and 40ms respectively.

Figure 3.18 shows the layout of the periodic messages. The Reference message will

always start at time zero and the next Reference message will be at 20ms. If message

A and B both start at zero time, we will have “zero crossing” at time zero; in other

words a collision of messages will take place on the TTCAN network.

Figure 3.18: Finding All Possible SMs

It is clear that only the Reference message can be sent at time zero and that messages

A and B will have to be sent at different times. Taking this in to account the first

occasion that a useable message set arises is when the Reference message is sent at

time zero, message A is sent at time 1ms and message B is transmitted at 2ms. This is

the start position for the three messages and the message set can now be developed as:

 97

Reference Message Transmitting time (ms) = 0, 20, 40, 60, 80, and 100

Message A Transmitting time (ms) = 1, 31, 61 and 91

Message B Transmitting time (ms) = 2, 42, and 82

The actual message schedule for message set 1 is:

Message set 1 = 0R, 1A, 2B, 20R, 31A, 40R, 42B, 60R, 61A, 80R, 82B, 91A, 100R

Where: MR = Reference Message, MA = Message A and MB = Message B.

The messages are structured in the above format within the software application to

ensure that zero crossings are recognised (Appendix 4 lines 347 to 464). Message B is

now incremented in 1ms intervals to obtain the other four SM. Therefore the other

four message sets are:

Message set 2 = 0R, 1A, 3B, 20R, 31A, 40R, 43B, 60R, 61A, 80R, 83B, 91A, 100R

Message set 3 = 0R, 1A, 4B, 20R, 31A, 40R, 44B, 60R, 61A, 80R, 84B, 91A, 100R

Message set 4 = 0R, 1A, 5B, 20R, 31A, 40R, 45B, 60R, 61A, 80R, 85B, 91A, 100R

Message set 5 = 0R, 1A, 6B, 20R, 31A, 40R, 46B, 60R, 61A, 80R, 86B, 91A, 100R

If the application finds a zero crossing, the calculating of the mean and standard

deviation are not completed with that particular message set, but the data is displayed

within the GUI (Appendix 4 lines 462 to 492).

If the message set is useable (no zero crossing) then the application will calculate the

mean (Appendix 4 lines 497 to 502), followed by the standard deviation (Appendix 4

lines 503 to 510). The results of these calculations are written to the GUI and

displayed in the window called “All usable message sets, etc” (Appendix 4 lines 511

to 515).

The software locates and displays the mean, the maximum and minimum standard

deviation, and the start location of the messages in the “Maximum and Minimum

Standard Deviation” window. The next stage of the process is to create a “.csv” file

that can be used for further data analysis by applications such as Microsoft Excel or

MATLAB.

 98

Figure 3.19 shows the results from message periods 20ms and 30ms. The user can see

clearly the following data when the application has completed its calculations:

• Number of messages input.

• Smallest message period (normally the Reference message).

• Calculated LCM, which is the length of the SM.

• The message periods for all messages input for calculation.

• It displays which message times will cause a zero crossing.

• Displays the Mean, the maximum and minimum Standard Deviation

• It displays all useable message sets together with their Mean, the maximum

and minimum Standard Deviation together with the start times of the message.

• The user can further use the data that is made available on the hard drive of

his/her computer in the form of a “.csv” file

Figure 3.19: Message Schedule for 20ms and 30ms Messages

It can be seen in Figure 3.19, that the maximum standard deviation is 6.99 (correct to

two decimal places) and the minimum standard deviation is 6. Using the minimum

 99

standard deviation ensures the largest possible arbitration window size, which

provides the optimum real-time performance. If we use the largest standard deviation,

there will be two TTCAN messages broadcast consecutively and this will produce the

worst real-time performance.

Appendix 5 shows the .csv file, which was generated by the message periods, used in

Figure 3.19. This file was imported into MATLAB [40] and used to generate the

graph in Figure 3.20. It shows the optimum transmitting point of 5ms for the message

with a period of 30ms.

Figure 3.20: Optimum Position for Message Periods 20ms and 30ms

Implementation of the message set can be seen in Figure 3.21, and shows the smallest

arbitration window to be 4ms.

If the 30ms message period is decrement from its present position by 1ms, the

smallest arbitration window will now be 3ms down from 4ms. If the same message is

incremented by 1ms from its present position, it will also leave the message set with

the smallest arbitration window of 3ms. Therefore, the present position is optimum.

 100

The Statistical Scheduler also found another start position with the same standard

deviation at the 15ms slot. This second position offers the same optimisation and, as

stated before, there can be more than one optimum position in a message set.

Figure 3.21: Implementation of Figure 3.19

3.5.1 Extended Testing with Three Periodic Messages

Example 6: Three CAN standard messages with periods of 20ms, 30ms and 40ms

respectively, operating on a bus with a baud-rate of 125kbits/s and each message has

7 data bytes. Message M1 is the Reference message with system data within the

message and M2 and M3 is a normal data messages in the TTCAN network.

Longest message duration:

bits

bitsbits

sec

rateBaud

StuffbitsLength_Message
t

+
=

ms944.0
125000

18100
=

+

Length of the SM:

LCM (20, 30, 40) = 120ms

 101

Number of Triggers in SM:

∑=

N

i iM

)M(LCM
Triggers

13
40

120

30

120

20

120
=++

Using Equations 3.1 and 3.2 above will not give us a solution to this problem, as the

message periods are different. In addition, the number of message sets to be

developed will be:

QMessage_sets = M
n

21
2
 = 441

Figure 3.22: Graphed Data for Message Periods 20ms, 30ms, and 40ms

The Statistical Scheduler will be used and the answer analysed by MATLAB.

Appendix 6 shows the complete output from the Statistical Scheduler for the message

 102

periods in Example 6. It can be seen that there was 441 message sets developed along

with their statistical data. The GUI also output a .csv file, which was manipulated in

MATLAB to graph all data as before, and is shown in Figure 3.22. The graph looks

somewhat different to the previous graphs, but in this instance, we are using three

message periods instead of two.

The graph is symmetrical as before, but differs in that it forms a curve. Although there

are 441 iterations, the actual duration in time is from one Reference message until the

next which is 21ms including both Reference messages. This gives us a possible 21

different message combinations per millisecond.

Inspecting Figure 3.22, it shows the minimum standard deviation to be approximately

the 215 message set to be developed. Figure 3.23, shows clearly that the minimum

standard deviation occurred when the start time for the message of period 20ms is

0ms in the SM. The periodic message of 30ms should start at 5ms in the SM, and the

periodic message of 40ms should start at 10ms in the SM. This coincides with

message set 216 in the “All Usable Message sets…….” of the GUI.

Figure 3.23: GUI Output for Message Periods 20ms, 30ms, and 40ms

 103

Example 7: Four CAN standard messages with periods of 20ms, 30ms, 40ms, and

50ms respectively each, operating on a bus with a baud-rate of 125kbits/s and each

message has 7 data bytes. Message M1 is the Reference message with system data

within the message and M2, M3, and M4 are normal data messages in the TTCAN

network.

Longest message duration:

bits

bitsbits

sec

rateBaud

StuffbitsLength_Message
t

+
=

ms944.0
125000

18100
=

+

Length of the SM:

LCM (20, 30, 40, 50) = 600ms

Number of Triggers in SM:

∑=

N

i iM

)M(LCM
Triggers

77
50

600

40

600

30

600

20

600
==++

Using Equations 3.1 and 3.2 above will not give us a solution to this problem, as the

message periods are different. Also the number of message sets to be developed will

be:

QMessage_sets = M
n

9261 = 21
3

The Statistical Scheduler was used to develop all message sets for the message

periods stated in Example 7. The output data from the scheduler was again used in

MATLAB to construct the graph in Figure 3.24.

 104

Figure 3.24: Graphed Data for Message Periods 20ms, 30ms, and 40ms

The graph is again symmetrical with minimum and maximum points of standard

deviation. The minimum standard deviation occurs in two places on the graph. The

first at next message set 2000 and again near message set 6400. The optimum

message set was at calculated as message set 1981. The optimum start position in the

SM for the for the periodic message of 20ms is 0ms, the start point of the periodic

message of 30ms is at 6ms in the SM, the message of period 40ms should start at

10ms in the SM, and the periodic message of 50ms message duration should begin at

4ms in the SM (Figure 3.25).

 105

Figure 3.25: GUI Output for Message Periods 20ms, 30ms, 40ms, and 50ms

The output of message sets from the Statistical Scheduler for the message periods in

Example 7 were not included in the Appendix, as they would fill in excess of 300

pages.

3.6. Summary

This chapter has examined the drawbacks associated with both stochastic and

heuristic schedulers. These problems mainly stem from either trying to make the best

schedule by virtue of using the best probability as with the stochastic scheduler or by

endeavouring to find the best solution by trial and error in the case of heuristic

scheduler. With both types of scheduling, there is no way of checking the

optimisation of two different usable message sets.

Surely with today’s computing power there must be a method of building all message

sets and then calculating the optimised in relation to arbitration window size, which

has a direct effect on real-time performance.

 106

This thesis has shown that there is a solution available for the building of message

sets from any group of periodic messages. The developed software is capable of

excluding all message sets that have zero crossing. If these message sets were to be

included in the final result, they would be a cause of jitter for the TTCAN network.

Finally, the Statistical Scheduler can find the message set with the largest arbitration

windows by the use of standard deviation. It can therefore guarantee the optimum

spontaneous response from any set of periodic messages used and therefore improve

the real-time performance of the TTCAN network.

 107

Chapter 4: Implementation and Testing

 108

4.1 Introduction

This chapter seeks to confirm that the Statistical Scheduler introduced in the previous

chapter can develop a TTCAN network that will return the optimum results when

implemented in hardware. Testing was performed on a physical TTCAN network to

prove that the actual optimisation levels predicted by the Statistical Scheduler can be

actually attained once invoked in hardware.

The chapter is laid out in the following sections:

• Section 4.2 deals with the hardware implementation of the system, which is

built around four CAN nodes

• Section 4.3 illustrates the procedure involved in writing the embedded C

code for the TTCAN network.

• Section 4.4 details the testing procedure including the test results.

4.2.1 Hardware Implementation

Hardware implementation was divided into two areas:

• Physical Interface

• TTCAN nodes

4.2.1.1 Physical Interface

A twisted pair of cables is the normal medium used for the connection of nodes in a

CAN network. Cable propagation delay and skew are factors that effect the operation

of this physical medium.

Propagation delay is the time taken for a signal to travel the length of a cable. Large

propagation delays lead to bus errors, which ultimately cause malfunctions within the

network system.

Prior to building the network, it was decided to test the wire being used in the network

to ensure that it conformed to the CAN standard ISO 11898-2. Figure 4.1 shows the

inherent propagation delay in the oscilloscope and leads when tested, which was 10ns.

 109

Figure 4.1: Propagation Delay of Oscilloscope Channel 1 and Channel 2 Leads

Figure 4.2 shows the result from a piece of CAN cable of length 1.5m being tested for

propagation delay. The delay shown is 16 ns, of which 10 ns is due to the equipment

leads, as shown in Figure 4.1.

Figure 4.2: Propagation Delay for 1.5m of CAN Cable.

 110

This leaves an actual propagation delay per metre of:

ns/m4=
5.1

10-16

ISO 11898 demands a propagation delay < 5 ns/m; therefore, the cable tested was

within the specified value.

Skew is the difference in delay between the data signal travelling along a pair of

wires. In the case of the CAN network this is the difference between the CAN bit

arriving at the receiver on CAN_H and CAN_L. A large skew reading indicates a

considerable delay between the data arriving on CAN_High and CAN_Low and this

can lead to bus errors.

Skew delay should be zero, but as seen in Figure 4.3, the skew is 19ns. This is made

up of the actual 19 ns shown on the oscilloscope but minus the inherent propagation

delays in the equipment, which is 10 ns.

Figure 4.3: Testing Network Cable Skew

This leaves an actual skew:

19-10 = 9ns

 111

The skew of 9ns was due to different lengths of cable for CAN_H and CAN_L. All

cables used in the TTCAN network were adjusted so that the skew result was always

zero.

4.2.1.2 Embedded Tool Chain

It was decided to develop CAN nodes using the minimum number of components

possible so that interfacing problems would be minimised. The next stage of the

process was to decide whether to use an 8 or 16-bit platform. Other than the fact that a

16-bit device could handle a Standard CAN identifier in one operation of the CPU

there is no advantage to using such a device for testing in this research. It was

therefore decided to use an 8-bit device. Atmel, Freescale, and Microchip all produce

8-bit devices. Further research was carried out in order to determine the most suitable

device for the project. It was eventually decided to use Microchip as they had the

Microchip PIC18F2480, which included a CAN v2.0B interface and could be

interfaced to their MCP2551 CAN transceiver.

The development tool chain was investigated next and three manufacturers were

identified: Microchip, Custom Computer Services and MikroElektronika. The

decision was made to use the MikroElektronika development environment for the

following reasons:

• They offered a fully featured development board.

• The development board included a USB on board programmer

• A CAN daughter board was available.

• The compiler provided was ANSI C compatible.

• Cost

4.2.1.3 Equations for Propagation Delay and Oscillator Tolerance

To ensure effective communication, the minimum requirement for a CAN network is

that two nodes, each at opposite ends of the network with the largest propagation

delay between them, and each having a CAN system clock frequency at the opposite

limits of the specified frequency tolerance, must be able to correctly receive and

decode every message transmitted on the network. This requires that all nodes sample

the correct value for each bit [15, 44].

 112

The minimum time for the propagation delay segment to ensure correct sampling of

bit values is given by:

tPROP_SEG = tProp (A, B) + tProp (B, A)

(4.1)

Where nodes A and B are at opposite ends of the network, i.e. the propagation delay

is a maximum between nodes A and B.

tPROP_SEG = 2(tBus + tTx + tRx)

(4.2)

Where tBus is the propagation delay of the signal along the longest length of the bus

between two nodes and tTx is the propagation delay of the transmitter part of the

physical interface and tRx is the propagation delay of the receiver part of the physical

interface. If the propagation delay of the transmitters and receivers on a network is not

uniform, the maximum delay values should be used in the equation.

The minimum number of Time Quanta that must be allocated to the PROP_SEG

segment is therefore:

PROP_SEG = Round_UP (
Q

PROP_SEG

t

t
)

(4.3)

Where the function ROUND_UP() returns the argument rounded up to the next

integer value [45].

The oscillators in a CAN network will drift due to a change of temperature, a change

in voltage, age, etc. This will cause the oscillators at each node to operate at slightly

different frequencies. In the absence of bus errors due to, for example electrical

disturbances, bit stuffing guarantees a maximum of 10-bit periods between re-

synchronisation edges (5 dominant bits followed by 5 recessive bits will then be

followed by a dominant bit). This represents the worst-case condition for the

accumulation of phase error during normal communication. The accumulated phase

error must be compensated for by re-synchronisation following the recessive to

dominant edge and, therefore, the accumulated phase error must be less than the

programmed Re-synchronisation Jump Width (tRJW).

 113

The accumulated phase error is due to the tolerance in the CAN system clock, and this

requirement can be expressed as:

(2 * ∆f) * 10 * tNBT < tRJW

(4.4)

However, real systems must operate in the presence of electrical noise which may

induce errors on the CAN bus. In the event of an error being detected, an Error Flag is

transmitted on the bus. In the case of a local error, only the node that detects the error

will transmit the Error Flag and all other nodes receive the Error Flag and then

transmit their own Error Flags as an echo. If the error is global, all nodes will detect it

within the same bit time and will, therefore, transmit Error Flags simultaneously. A

node can, therefore, differentiate between a local error and a global error by detecting

whether there is an echo after its Error Flag. This requires that a node can correctly

sample the first bit after transmitting its Error Flag.

An Error Flag from an Error Active node consists of 6 dominant bits, and there could

be up to 6 dominant bits before the Error Flag, if, for example, the error was a stuff

error. A node must, therefore, correctly sample the 13th bit after the last re-

synchronisation [45]. This can be expressed as:

(2 * ∆f) * (13 * tNBT - tPHASE_SEG2) < MIN (tPHASE_SEG1, tPHASE_SEG2)

(4.5)

where the function MIN () returns the smaller of the two arguments. Thus, there are

two clock tolerance requirements, which must be satisfied. It should be noted that at

high bit rates (small Nominal Bit Time), the CAN clock tolerance is specified over a

relatively short time: 10
th

 tNBT in the case of Equation 4.4, and 13
th

 tNBT in the case of

Equation 4.5. This is important for systems that derive the CAN clock from a Phase

Locked Loop circuit for which the relative accuracy decreases over short time periods

due to output jitter.

The selection of bit timing values involves consideration of various fundamental

system parameters [46]. The requirement of the PROP_SEG value imposes a trade-off

between the maximum achievable bit rate and the maximum propagation delay, due to

the bus length and the characteristics of the bus driver circuit. The maximum

achievable bit rate is also influenced by the tolerance of the CAN clock source. The

highest bit rate can only be achieved with a short bus length, a fast bus driver circuit

and a high-frequency high-tolerance CAN clock source. In many systems, the bus

 114

length will be the least variable system parameter, which will impose the fundamental

limit on bit rate. However, the actual bit rate chosen may involve a trade-off with

other system constraints, such as cost [45].

4.2.1.4 Calculation of Bit Timing and Oscillator Tolerance

The following calculations relate to the bit segments required for the TTCAN network

being developed in this thesis [44].

The following are the constraints of the proposed system:

Bit rate = 125k bit per second

Bus length = 4m

Bus propagation delay = 5 x 10
-9

 sm
-1

Physical Interface (MCP2551) transmitter plus receiver propagation delay = 150ns

MCU oscillator frequency = 8MHz

Step 1: Physical delay of bus = 4 x 5 x 10
-9

 = 20ns

tPROP_SEG = 2(20ns + 150ns) = 340ns

Step 2: A prescaler value of 8 gives a CAN system clock of 1MHz and a TQ of

1000ns.

8000 / 1000 = 8 time TQ bit.

Step 3:

PROP_SEG = Round_UP)
1000ns

340ns
(⇒ 1

Step 4: From 8 TQ per bit, subtract 1 for PROP_SEG and 1 for SYNC_SEG. This

leaves 6 TQ, so PHASE_SEG1 = 3 and PHASE_SEG2 = 3.

Step 5: RJW is the smallest of 4 and PHASE_SEG1, so RJW will be 3.

Step 6:

∆f =
NBT*20

RJW =
8*20

3 = 0.01875

 115

∆f <
)2SEG_PHASENBT*13(2

)2SEG_PHASE,1SEG_PHASE(M ⇒
)38*13(2

3

-
 = 0.01485

The required oscillator tolerance is the smaller of these values, i.e. 0.01485 (1.485%).

In summary:

Prescaler = 8

Nominal Bit Time = 8

PROP_SEG = 1

PHASE_SEG1 = 3

PHASE_SEG2 = 3

RJW = 3

Oscillator tolerance = 1.485%

4.2.1.5 Node Implementation

Four nodes were constructed on veroboard, using the Microchip PIC18F2480

microcontroller with on-board CAN. The CAN transceivers were the Microchip

MCP2551 and the oscillators conformed to the calculations made in section 4.2.1.5.

Other items to complete the node included a voltage regulator and smoothing

capacitors. All components were wire wrapped, as required. A diagram of the

complete node can be viewed in Appendix 7.

4.3.1 Embedded Software Development

The embedded software for the testing was developed using a version of

MikroElektronika ‘C’, call MikroC [47]. A software flow chart for the Reference

Message node is shown in Figure 4.4.

The program starts by loading the timer registers with values that will cause an

interrupt at 20ms (Appendix 8 lines 20 and 21). The prescaler for Timer0 and 16-bit

mode are executed (Appendix 8 line 22). All CAN registers are set to the values as

calculated in section 4.2.1.5 (Appendix 8 lines 34 to 43 inclusive).

Following this, the CAN is set to “normal mode” (Appendix 8 line 44). All data bytes

of the CAN message are loaded with default values and the ID is given to the

Reference message, as is its DLC (Appendix 8 lines 45 to 52). Timer0 interrupt is set

to expire at 20ms (Appendix 8 line 53).

 116

Figure 4.4: Embedded Software Flow Chart

In Appendix 8, lines 54 to 68 is the main loop where the system waits for the interrupt

from Timer0 and checks to see if the number of interrupts exceeds 30, as this is the

number of interrupts that occur in the SM of 600ms.

The program shown in Appendix 8 is one of nine such programs that were developed

while testing the various message sets.

4.4.1 Testing Procedure

Embedded software was written so that three different message sets could be tested,

namely:

• A TTCAN network with two nodes with the Reference message period was set

at 20ms and another message was used with a period of 30ms. Both messages

were capable of carrying 7 bytes of data.

 117

• A TTCAN network with three nodes, the Reference message with period

20ms, and two other messages with periods of 30ms and 40ms. All messages

were capable of carrying 7 bytes of data.

• A TTCAN network with four nodes with the Reference message period of

20ms and three other messages with periods of 30ms, 40ms and 50ms

respectfully. All messages are capable of carrying 7 bytes of data.

4.4.1.1 Data Acquisition

CAN data acquisition was undertaken by use of CANalyzer. This tool is the

automotive research and design preferred tool for analysis of any CAN network [48].

The tool was set to ‘listen only’ mode so it would not interfere with the TTCAN

network during data collection.

Figure 4.5 shows the layout of the GUI CANalyzer. It has five windows which are

used for interpreting all data on the CAN network.

The “Write” window displays statistical data at the end of a testing session that shows

the average message periods, with their minimum and maximum transmission periods

and the standard deviation from the mean. It also exhibits the number of messages

processed during the test, together with the start and stop time. This data can be saved

directly to a “.txt” file.

The “Statistics” window allows the user to check at a glance the message rates on the

bus for each individual message in the form of a bar graph. Both transmitted and

received messages are displayed in the same window.

The “Graphics” window displays individual messages rates against time. In Figure 4.5

it is used to collect data about error messages. It is set to give a cumulative response

over time.

The “Bus Statistics” window provides a real-time view of the CAN network. It gives

information relating to the actual load and peak load on the bus, total number of CAN

frames on the network, number of error frames generated, etc.

The “Trace” window presents streamed information about message activity on the

network. Individual components of the CAN message are displayed separately and all

messages are time stamped in real-time. The output from this window cannot be

directly saved to a file, it can only be “cut and pasted” into another document as a

“.txt” file.

 118

Figure 4.5: CANalyzer

The time stamped information for all messages was very useful for determining the

size of the arbitration windows between messages. The data needed to be extracted

from the “.txt” file and converted into a “.csv” file for statistical analysis in Microsoft

Excel or MATLAB. CANalyzer does not provide a function to generate or export

“.csv” files from this window. It was necessary to implement in software a parser,

which would deal with this extraction process. This was accomplished by use of VB

2005 Express Edition (Figure 4.6).

Figure 4.6: Parser for CANalyzer

 119

4.4.1.2 Test 1

It was decided to initially test a network having nodes with two different messages.

The message structure to be used was the same as in Figure 3.19, where the Reference

message had a period of 20ms and the data message was of period 30ms. Figure 3.19

shows that the optimum message strategy is to send message of period 20ms at 0ms

and message of period 30ms at 5ms. The calculated mean for the message set was 12

and a standard deviation 6.

These message periods were invoked in hardware by the use of software similar to

that shown in Appendix 8.

The TTCAN network was tested using CANalyzer as seen in Figure 4.7. The Write

window shows the duration of the test was 152 seconds, while the total messages

processed were 12,623. The average message periods for the 20ms and 30ms

messages were 20.005ms and 30.007ms respectively. The exported document from

this Write window can be seen in Appendix 9.

It can be seen in the Bus Statistic’s window Figure 4.7 that the total Bus load was

7.71%. The Trace window stores a maximum of 5000 messages regardless of how

many messages are dealt with. The Graphics window shows that errors on the

TTCAN network were zero.

The contents of the Trace window was processed through the parser and then

evaluated in Microsoft Excel. The data from the Trace window is not documented in

this thesis as it exceeds 100 pages.

Microsoft Excel derived the mean of the messages as 12.00131304 compared to 12

for the Statistical Scheduler and the standard deviation was 5.999744 compared to 6

for the Statistical Scheduler. The above results show a slight difference between the

values that were determined by the Statistical Scheduler and those found under

testing. The error for the mean is 0.0109% and for the standard deviation is 0.0042%.

The discrepancies occurred due to the TTCAN network being implemented at level 1

(software). This can be seen in the report in Appendix 9, where the mean time for

each message is not exactly 20ms and 30ms, but 20.005ms and 30.007ms

respectively.

 120

Figure 4.7: Data Acquisition 20ms and 30ms Message Periods

4.4.1.3 Test 2

The second test is based around Example 6 in section 3.5.1. The Statistical Scheduler

gave an optimum message strategy, which sends message of period 20ms at 0ms and

message 30ms at 5ms and message 40ms at 10ms. This gives a mean for the message

set of 9.2307 and a standard deviation of 4.742.

Again, embedded software was written to implement this message scheme.

Appendix 10 shows the data derived from the Write window. 20,036 messages were

sent across the network, with a busload of 9.98%. The test took 186 seconds to

complete and the 5000 messages saved in the Trace window were again parsed and

imported into Microsoft Excel for evaluation. The results from Microsoft Excel

showed a mean of 9.2324 and a standard deviation of 4.7425. The Statistical

Scheduler calculated the mean to be 9.2307 and the standard deviation to be 4.7419.

The error between the Statistical Scheduler and Test 2 for the mean was 0.0184% and

the standard deviation was 0.0126%.

Again, the discrepancies are due to the TTCAN network being implemented in level 1

(software). This can be seen in Appendix 10, where the mean time for each message

 121

is not exactly 20ms, 30ms and 40ms, but 20.005ms, 30.007ms and 40.01ms

respectively.

Figure 4.8: Data Acquisition 20ms, 30ms, and 40ms Message Periods

4.4.1.4 Test 3

The third test was based on Example 7 in section 3.5.1. The Statistical Scheduler gave

an optimum message strategy, requiring the sending of message of period 20ms at

0ms, message of period 30ms at 6ms, message of period 40ms at 10ms and message

of period 50ms at 4ms. The scheduler gave a mean for the message set of 7.7922 and

a standard deviation of 4.5308. Again, embedded software was written to implement

the message set.

The Write window data is available in Appendix 12. The test was conducted for 158

seconds, with a busload of 11.91%. This allowed in excess of 20,000 messages to use

the bus. Again, the Graphics window shows zero cumulative error frames.

The 5000 messages stored in the Trace window were again analysed in Microsoft

Excel, where the mean was found to be 7.7981 and the standard deviation was 4.5321.

 122

The error between the Statistical Scheduler and Test 3 for the mean was 0.0012% and

for the standard deviation was 0.0286%. Again, the discrepancies are due to the

TTCAN network being implemented in level 1 (software). The mean time for each

message is not exactly 20ms, 30ms, 40ms and 50ms, but 20.011ms, 30.016ms,

40.01ms and 50.027 respectively.

Figure 4.9: Data Acquisition 20ms, 30ms, 40ms, and 50ms Message Periods

4.4.1.5 Testing for Errors

Tests 1 to 3 were limited to approximately 20,000 message frames, and no error

frames were generated during this period. Figure 4.10 shows the output windows of

CANalyzer while extended testing for message errors was conducted.

The message set used was taken from Test 3, but as can be seen from the Bus

Statistics window the system was monitored while in excess of 250,000 message

frames were transmitted. The Graphics window shows the time to be at approximately

2000 seconds, but during this time no error messages occurred.

 123

Figure 4.10: Extended Testing for Errors

4.5.1 Summary

The chapter explains the methodology required to successfully implement a TTCAN

network in hardware. It began by verifying the propagation delay and skew of the

physical medium used to connect all nodes. An illustration was given of the problems

associated with propagation delay and how oscillator tolerances of different nodes can

affect the CAN network. Included in the chapter is the calculation for CAN Bit timing

and it explains the methods used for compensation of the oscillator tolerance. The

design process for the hardware was considered together with the selection and

integration of the software tool chain.

The embedded software was reviewed and example code for one node was given in

the Appendix. The testing procedure was examined and the data acquisition tool

discussed. The problems associated with the data acquisition tool were scrutinised and

strategies were devised to surmount those difficulties, which included the

development of a software parser.

The testing phase was documented and it showed that the physical test scenarios

virtually attained the same results as the Statistical Schedule. Any inconsistencies in

message timing were caused by the level 1 implementation of TTCAN network.

 124

Chapter 5: Conclusions

 125

5.1 Introduction

This chapter summarises the research project. Chapter One takes a historical look at

the automotive electronics and networking systems. It sets out the reasons for

undertaking this research and lists the benefits to be gained.

Chapter Two investigates the CAN data link layer in detail, the physical layer,

methods of message sending, and message scheduling algorithms.

Chapter Three explores the problems associated with both stochastic and heuristic

schedulers, which are presently used to implement automotive TTCAN networks. It

examines the potential for using a mathematical model for the design and optimisation

of a message schedule.

Chapter Four covers the hardware implementation of level 1 TTCAN, with sections

covering the challenges posed by propagation delays and oscillator tolerances. It

presents the CAN bit timing of the various segments within the NBT. The embedded

software is explained and example code is shown in the appendix. It then details the

four test scenarios used to verify the accuracy of the message sets developed by the

statistical scheduler and confirmed all findings.

5.2 Conclusions

Modern motor vehicles are efficient and safe when they can operate in real-time.

TTCAN is a network topology used in modern motor vehicles, which can offer the

potential of real-time capability providing the messages have unhindered access to the

network.

This research has highlighted some of the shortcomings of an event driven CAN

system operating by arbitration only. This type of system cannot guarantee the

delivery of low priority messages at any time and even reasonably high priority

messages may have problems broadcasting a message if the highest priority message

of the network uses all available bandwidth.

An obvious improvement is TTCAN, which can ensure the transmission of all valid

messages within a message set. All other messages, which are not included within the

message set, are not guaranteed a time of broadcast, but rely on arbitration. These

messages can be of low priority, such as engine rpm or could be a very high priority

message such as engine oil pressure failure.

 126

TTCAN requires a message schedule to be generated from the message periods within

the message set. If all message periods within the message set are the same e.g. 20ms,

it is relatively simple to develop a message set, but message periods within a message

set are normally all different, therefore, it is much more difficult to develop useable

message sets.

TTCAN schedules are often generated by use of a stochastic or heuristic scheduler.

Stochastic schedulers attempt to generate the best SM by a probability distribution. It

then uses a ‘cost function’ to check all message sets for jitter and uses the message set

with the least jitter. There may be several message sets with the same jitter, perhaps

zero, but the stochastic scheduler cannot differentiate between these message sets and

therefore, cannot tell which set is actually the most optimised, with regard to real-time

messaging.

Heuristic schedulers initially place all message periods on the SM, using a predefined

method and then adjust the arbitration window sizes by trial and error. They again

check all message sets for jitter using the cost function and again cannot differentiate

between message sets as to their level of optimisation, with regard to real-time

messaging.

If the above schedulers devise a message set with three messages broadcast

consecutively, then any spontaneous real-time message will have to wait in excess of

the time interval of the three messages before making an attempt to broadcast its

message. This implies that a TTCAN scheduler should attempt to place arbitration

windows between each TTCAN message in order to achieve real-time performance.

Also, these arbitration windows should be as large as possible to allow as many

spontaneous messages as possible to be broadcast before the next TTCAN message is

sent.

This research has shown two problems associated with the stochastic and heuristic

schedulers:

• Neither scheduler can produce all available message sets from a group of

periodic messages.

• Neither scheduler has a method to verify the real-time performance of the

SM.

 127

Both problems were examined in great detail in Chapter 3 of the thesis and a system

was devised so all possible message sets within a SM were constructed. This was

accomplished by use of software, but requires large computational processes.

It was shown that if two periodic messages of the same time period were used (e.g.

20ms) in a SM then the optimum position for messages are 10ms apart. This is the

midpoint or mean of the two messages, allowing two arbitration windows of 5ms each

and this will give an optimum SM, with respect to real-time performance. It was

observed if two periodic messages were of different periods the optimum position in

the SM was not the midpoint or mean, but at a place relative to the midpoint or mean.

If three periodic messages of the same period (e.g. 30ms) were used it was found that

the mean period was the optimum position in the SM. If the three messages were of

different periods then the optimum position was unclear, but it appeared to relate to a

position relative to the mean.

This gave the researcher a direction for further study and it was found that the

solution lay in finding the mean and standard deviation of each message set. Once this

was achieved the message set with the lowest standard deviation was the optimum

message set for real-time operation.

Additional software was written to extract the required data from all SM message sets.

If a developed message set had two different messages within the same time period,

this was deemed a ‘zero crossing’. A message set with zero crossing is not useable

and was therefore excluded from statistical analysis. All other message sets were

evaluated sequentially, calculating the mean and standard deviation. The message set

with the lowest standard deviation is the message set with the largest average

arbitration window size and will provide the best real-time performance.

It was decided to confirm the Statistical Schedulers results on a physical TTCAN

network by devising three tests.

• Test 1: TTCAN network using two messages and two nodes.

• Test 2: TTCAN network using three messages and three nodes.

• Test 3: TTCAN network using four messages and four nodes.

In order to complete the test plan, the following would be required:

• A complete TTCAN network with up to four nodes.

• Implement the optimum message sets, using level 1, TTCAN.

 128

• Collect all network data with a data acquisition tool.

• Analyse data extracted from the TTCAN network with the use of Microsoft

Excel and MATLAB.

Four TTCAN nodes were constructed for testing. All CAN cables were validated to

ISO11898 standards for propagation delay and skew and the oscillator tolerances

were verified. CAN bit timing was calculated and implemented.

Embedded C software was written for all TTCAN nodes, using the optimum message

sets developed by the Statistical Scheduler. The C code used interrupts for timing of

all TTCAN messages; this minimised the CPU load for all nodes.

The automotive industry’s standard tool for data acquisition for CAN networks is

CANalyzer. This tool was used and has the ability to calculate the mean and standard

deviation for each periodic message. CANalyzer cannot directly calculate the mean or

standard deviation between two different periodic messages. In order to calculate the

mean and standard deviation of a message set it was necessary to use the time stamp

data from each message transmitted on the TTCAN network. This involved

implementing a software parser, which could extract the time stamped data from

CANalyzer. The parser then manipulated the data, and change the data file type to a

“.csv”. It could then be imported into either Microsoft Excel or MATLAB for

statistical analysis.

The results from the hardware testing compared very favourably with that of the

Statistical Scheduler as can be seen in Table 5.1.

 Statistical Scheduler Hardware Testing

 Mean
Standard

Deviation
Mean

Standard

Deviation

Test 1: 20ms, 30ms 12 6 12.0013 5.9997

Test 2: 20ms, 30ms, 40ms 9.2037 4.7419 9.2324 4.7425

Test 3: 20ms, 30ms, 40ms, 50ms 7.7922 4.5308 7.7981 4.5321

Table 5.1: Statistical Scheduler v Hardware Implementation

 129

The research and subsequent testing has shown that message sets without jitter often

do not enable a system to operate in real-time and that considerable improvements in

the real-time performance of a TTCAN network can be achieved by using the correct

message set.

The major drawback with both the heuristic and stochastic schedulers are that a cost

function of zero can be attained, but the arbitration windows may not be set at the

optimum number or size for real-time messaging. The devised statistical scheduler

overcomes these major disadvantages by distributing the message sets in such a

manner that allows the optimum number and size of arbitration windows for real-time

messaging within a given message set.

Using the message data taken from “Example 1” page 71, three message schedules

were devised employing a stochastic scheduler, a heuristic scheduler and a statistical

scheduler. These schedules can be seen in Figures 5.1, 5.2 and 5.3.

Figure 5.1: Stochastic Message set devised from Example 1, page 71

 130

Figure 11: Heuristic Message set devised from Example 1, page 71

Figure 12: Statistical Message set devised from Example 1, page 71

 131

Table 5.2 compares the effectiveness of real-time messaging within each schedule and

to the number of arbitration windows available for real-time messaging.

Type of

Scheduler

Maximum wait

time to send

Real-time

Message

Minimum time

between

periodic

messages

Maximum time

between

periodic

messages

Number of

arbitration

slots in

message set

Stochastic 6ms 0ms 18ms 8

Heuristic 8ms 0ms 18ms 10

Statistical 4ms 3ms 18ms 13

Table 5.2: Comparison of Real-time Messages with different message schedules.

The table shows that the maximum wait time for an arbitration slot can be as long as

8ms; this is for the heuristic scheduler. The stochastic scheduler has a maximum wait

time of 6ms, which is an improvement, whereas the statistical scheduler has the least

wait time of 4ms. The minimum time between periodic messages being broadcast on

the network, for both the stochastic and heuristic schedulers, which is 0ms. The

minimum time between periodic messages being broadcast on a network, for the

statistical scheduler is 3ms. All schedulers gave the same maximum time between

periodic messages, which were 18ms. The stochastic and heuristic schedulers had

eight and ten arbitration slots respectively, but the statistical scheduler achieved

thirteen arbitration slots.

The statistical message scheduler has been devised and demonstrated to produced an

optimum message set for real-time operation on a TTCAN network and hence

improve the results produced by stochastic or heuristic techniques.

5.3 Further Research

There are opportunities for further development of this system. It was evaluated using

four periodic messages on four different nodes. Time constraints prevented further

testing and the building of message sets was extremely computational, taking initially

up to 24 hours to develop and evaluate some large SMs.

 132

It was noted during the appraisal of the Statistical Scheduler that there appeared to be

a linear correlation between message periods. This needs further investigation and if

correct, means that the system is scaleable.

The greatest possibility for further research lies in the investigation of a mathematical

formula for the generation and statistical analysis of all message sets using any

number of periodic messages forming a SM.

 133

Reference List

1. Research and Markets, China Car Electronics Configuration Report 2007,

available at:http://www.electronics.ca/reports/automotive/car_electronics.html

(accessed 3
rd

 September 2007).

2. Gabriel Leen Donal Heffernan, Expanding Automotive Electronic Systems,

I.E.E.E, Computer and Control Engineering Journal, Volume 35, Issue 1, Jan

2002 Page(s): 88 - 93.

3. G. Leen D. Heffernan and A. Dunne, Digital Networks in the Automotive

Vehicle. I.E.E.E, Computer and Control Engineering Journal, Volume: 10,

Issue: 6, Dec 1999, Page(s): 257 - 266.

4. Robert Bosch, 2004. Gasoline Engine Management. Second edition, H. Bauer,

ed. Bosch, Page(s) 324 - 329.

5. CAN in Automation, Controller Area Network. 1998. available at: http://

www.can-cia.org/can/ (accessed 3
rd

 September 2007).

6. Lembke., M., 1996. Automotive Electric/Electronic Systems. Second edition,

Bosch. Page(s) 256-257.

7. Robert Bosch, 2004. Diesel Engine Management. Third edition, H. Bauer. ed.

Page(s) 410 - 415.

8. Hubert Zimmermann, OSI Reference Model. IEEE Communications,

Volume 28, Issue 4, Apr 1980, Page(s): 425 - 432.

9. Pat Richards. Microchip Technology Inc., A CAN Physical Layer Discussion,

2002, available at: http://www.microchip.com/stellent/idcplg?IdcService=SS_

GET_PAGE&nodeId=1824&appnote=en012057 (accessed 3
rd

 September

2007).

10. Keith Pazul, M.I., Controller Area Network (CAN) Basics. 2002, available at:

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&node

Id=1824&appnote=en011694 (accessed 3
rd

 September 2007).

 134

11. Robert Bosch, CAN Specification Version 2. 1995, available at:

http://esd.cs.ucr.edu/webres/can20.pdf (accessed 3
rd

 September 2007).

12. Siemens, Controller Area Network. 1998, available at: staticweb.rasip.fer.hr/

rip/seminari/can_atlas/can_doc/canpres.pdf (accessed 3
rd

 September 2007).

13. SAE, Recommended Practice for a Serial Control and Communications

Vehicle Network. 2005, available at: http://www.sae.org/servlets/product

Detail?PROD_TYP=STD&PROD_CD=J1939&HIER_CD=TETES7&WIP_S

W=YES (accessed 3rd September 2007).

14. Florian Hartwich. Armin Bassemir, The Configuration of the CAN Bit Timing.

2001, available at: http://www.semiconductors.bosch.de/pdf/CiA99Paper.pdf

(accessed 3
rd

 September 2007).

15. Freescale, CAN Bit Timing Requirements. 1999, available at; http://www.

freescale.com/files/microcontrollers/doc/app_note/AN1798.pdf (accessed 3rd

September 2007)

16. Pat Richards. Microchip Technology Inc., CAN Bit Timing. 2001, available at:

http://ww1.microchip.com/downloads/en/AppNotes/00754.pdf (accessed 3
rd

September 2007).

17. ISO, Controller area network (CAN) -- Part 2: High-speed medium access

unit. 2003, available at: http://www.iso.org/iso/iso_catalogue/catalogue

_tc/catalogue_detail.htm?csnumber=33423 (accessed 3
rd

 September 2007).

18. ISO, Controller area network (CAN) -- Part 3: Low-speed, fault-tolerant,

medium-dependent interface. 2006, available at: http://www.iso.org/iso/iso

_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=36055. (accessed 3rd

September 2007).

19. Tom Denton, Advanced Automotive Fault Diagnosis. Second ed. 2006:

Butterworth-Heinemann. Page(s) 59-60, 202-203. ISBN-13: 978-0750669917

20. CAN in Automation, The CAN Physical Layer. 2005, available at: http://www.

can-cia.org/can/physical-layer/index.html. (accessed 3rd September 2007).

 135

21. Craig Szydlowski, Intel Corporation, Tradeoffs Between Stand-alone and

integrated CAN peripherals. 1994. available at: http://www.sae.org/technical

/papers/941655. (accessed 3
rd

 September 2007).

22. Roger Johansson, Time and event triggered communication scheduling for

automotive applications. 2004. available at: http://www.cedes.se/

Registrerade%20dokument/15%20MF%20DU%20A%20TTCAN%20referenc

e%20application.pdf (accessed 3
rd

 September 2007).

23. K. Tindell & A. Burns, Guaranteed Message Latencies for Distributed Safety-

Critical Hard Real-Time Control Networks. 1994. available at:

http://www.cs.york.ac.uk/ftpdir/reports/YCS-94-229.pdf (accessed 3
rd

September 2007).

24. Thomas Fuhrer. Bernd Muller. Werner Dieterle. Florian Hartwich. Robert

Hugel. Michael Walther, Time Triggered Communication on CAN (Time

Triggered CAN - TTCAN). 2000. available at: http://www.canopen.org/can

/ttcan/fuehrer.pdf (accessed 3
rd

 September 2007).

25. ISO, Road vehicles -- Controller area network (CAN) -- Part 4: Time-

triggered communication. 2004. available at: http://www.iso.org/iso/search.

htm?qt=11898-4&searchSubmit=Search&sort=rel&type=simple&published=

true (accessed 3
rd

 September 2007).

26. Thilo Schumann. Holger Zeltwanger, TTCAN an improvement of CAN. 2002.

available at: http://cl-web1.techonline.com/community/member_company/non

_member/tech_paper/2091/content_40033 (accessed 3
rd

 September 2007).

27. Microchip, MCP2515 Stand alone CAN Controller with SPI Interface. 2005.

available at: http://ww1.microchip.com/downloads/en/DeviceDoc/21801d.pdf

(accessed 3
rd

 September 2007).

28. Bernd Müller. Thomas Führer. Robert Hugel. Robert Bosch GmbH, Timing in

the TTCAN Network. 2004.

29. Florian Hartwich. Bernd Müller. Thomas Führer. Robert Hugel. Robert Bosch

GmbH, CAN Network with Time Triggered Communication. 2002. available

 136

at: http://www.semiconductors.bosch.de/pdf/CiA2000Paper_2.pdf (accessed

3
rd

 September 2007).

30. B. Moller, T.F., F. Hartwich, R. Hugel, H. Weiler, Robert Bosch GmbH, Fault

tolerant TTCAN networks. 2003. available at: http://www.semiconductors.

bosch.de/pdf/Fault_Tolerant_TTCAN.pdf (accessed 3
rd

 September 2007).

31. K M Zuberi. K G Shin. Microsoft Corp. WA Redmond, Design and

Implementation of Efficient Message Scheduling for Controller Area Network.

I.E.E.E, Computer Journal, Volume: 49, Issue2, Feb 2000, Page(s): 182 - 188.

32. A. Albert, R. Hugel, Heuristic scheduling concepts for TTCAN networks.

2005. available at: http://www.semiconductors.bosch.de/pdf/Heuristic_

Scheduling_Concept.pdf (accessed 3
rd

 September 2007).

33. Jose Fonseca*, Fernanda Coutinho, Jorge Barreiros**, Scheduling for a

TTCAN network with a stochastic optimization algorithm. 2002. available at:

http://www.canopen.org/can/ttcan/fonseca.pdf (accessed 3rd September 2007).

34. Pau Marti. Richard Villa. Josep Fuertes. Gerhard Fohler, Real Time

Scheduling Methods Requirements in Distributed Control Systems. 2000.

available at: http://www.upcnet.es/~pmc16/WRTP2000.pdf (accessed 3
rd

September 2007).

35. Ken Tindell, Deadline Monotonic Analysis. 2003. available at:

http://www.embedded.com/2000/0006/0006feat1.htm (accessed 3
rd

 September

2007).

36. Paulo Pedreiras, EDF Message Scheduling on Controller Area Network.

I.E.E.E, Computer & Control Engineering Journal, Volume: 13, Issue 4, Aug

2002 Page(s): 163 - 170.

37. C. L. Liu and J. Layland, Scheduling algorithms for multiprogramming in a

hard real-time environment. IEICE Transactions on Fundamentals of

Electronics, Volume: 20, Issue 1, 1973 Page(s) 46–61

 137

38. Oxford University Press, The Concise Oxford English Dictionary. 10th

edition, editor. J. Pearsall. 2002: Oxford University Press.

39. P. McFedries, Formulas and Functions with Microsoft Excel 2003. 2004

Page(s) 248-282. ISBN-13: 9780789731531.

40. B. Hunt. Ronald Lipsman. J Rosenberg. Kevin R. Coombes. John E. Osborn.

Garrett J. Stuck, A Guide to MATLAB: For Beginners and Experienced Users.

2 ed. Jun 2006: Cambridge University Press,.

41. Parsons, A., Visual Basic 2005 Express Edition Starter Kit. 2006: Wiley Press.

ISBN-13: 978-0764595738

42. SAMS, Visual Basic .Net 2003, ed. C. Hall. 2003: SAMS Publishing. ISBN-

13: 978-0672325311

43. Evangelos Petroutsos; Acey Bunch, Mastering Microsoft Visual Basic 2005

Express Edition. 2006: Sybex Inc,. ISBN-13: 978-0782143980

44. Christopher Albert Lupini, Vehicle Multiplex Communication. 2004: SAE

International. ISBN-13: 978-0-7680-1218-7

45. Stuart Robb. Freescale Semiconductor Inc, CAN Bit Timing Requirements.

2004. available at: http://www.freescale.com/files/microcontrollers/doc/app_

note/AN1798.pdf (accessed 3
rd

 September 2007).

46. Peter Steffan and Kevin Lavery, Frequency-Modulated PLL Impact on

Controller Area Network (CAN) Communication. 2004. available at: http://

focus.ti.com/lit/an/spna090/spna090.pdf (accessed 3
rd

 September 2007).

47. MickroElektronika Team, MikroC Language Reference. 2006: available at:

http://www.mikroe.com/pdf/mikroc/mikroc_manual.pdf (accessed 3
rd

September 2007).

48. Vector Informatik GmbH, CANalyser. 2006: Vector Informatik GmbH.

available at: http://www.vector-worldwide.com/portal/medien/cmc/application

_notes/AN-AND-1-110_Quick_Introduction_to_CANalyzer.pdf (accessed 3
rd

September 2007).

 138

Appendix 1: Scheduling Algorithms

1. Borrowed-Virtual-Time Scheduling (BVT)

2. Critical Path Method of Scheduling

3. Deadline-monotonic scheduling (DMS)

4. Deficit round robin (DRR)

5. Earliest deadline first scheduling (EDF)

6. Elastic Round Robin

7. Fair-share scheduling

8. First In, First Out (FIFO), also known as First Come First Served (FCFS)

9. Gang scheduling

10. Genetic Anticipatory

11. Highest response ratio next (HRRN)

12. Interval scheduling

13. Last In, First Out (LIFO)

14. Job Shop Scheduling (see Job shops)

15. Least-connection scheduling

16. Least slack time scheduling (LST)

17. List scheduling

18. Lottery Scheduling

19. Multilevel queue

20. Multilevel Feedback Queue

21. Never queue scheduling

22. O(1) scheduler

23. Proportional Share Scheduling

24. Rate-monotonic scheduling (RMS)

25. Round-robin scheduling (RR)

26. Shortest expected delay scheduling

27. Shortest job next (SJN)

28. Shortest remaining time (SRT)

29. "Take" scheduling

30. Two-level scheduling

31. Weighted fair queuing (WFQ)

 139

Appendix 2: Example 4, System Matrix Data

 M1 M2
M

a
tr

ix
 N

u
m

b
e
r

Message Start Times (ms)

M
e
a
n

S
ta

n
d
a
rd

 D
e
v
ia

ti
o

n

0 0 0 20 30 40 60 11.2 7.17

1 0 1 20 31 40 60 11 6.99

2 0 2 20 32 40 60 11 6.57

3 0 3 20 33 40 60 11 6.26

4 0 4 20 34 40 60 11 6.07

5 0 5 20 35 40 60 11 6

6 0 6 20 36 40 60 11 6.07

7 0 7 20 37 40 60 11 6.26

8 0 8 20 38 40 60 11 6.57

9 0 9 20 39 40 60 11 6.99

10 0 10 20 40 40 60 11.2 7.17

11 0 11 20 40 41 60 11 6.99

12 0 12 20 40 42 60 11 6.57

13 0 13 20 40 43 60 11 6.26

14 0 14 20 40 44 60 11 6.07

15 0 15 20 40 45 60 11 6

16 0 16 20 40 46 60 11 6.07

17 0 17 20 40 47 60 11 6.26

18 0 18 20 40 48 60 11 6.57

19 0 19 20 40 49 60 11 6.99

20 0 20 20 40 50 60 11.2 7.17

21 0 20 21 40 51 60 11 6.99

22 0 20 22 40 52 60 11 6.57

23 0 20 23 40 53 60 11 6.26

24 0 20 24 40 54 60 11 6.07

25 0 20 25 40 55 60 11 6

26 0 20 26 40 56 60 11 6.07

27 0 20 27 40 57 60 11 6.26

28 0 20 28 40 58 60 11 6.57

29 0 20 29 40 59 60 11 6.99

30 0 20 30 40 60 60 11.2 7.17

31 0 1 20 31 40 60 11 6.99

32 0 2 20 32 40 60 11 6.57

33 0 3 20 33 40 60 11 6.26

34 0 4 20 34 40 60 11 6.07

35 0 5 20 35 40 60 11 6

36 0 6 20 36 40 60 11 6.07

37 0 7 20 37 40 60 11 6.26

38 0 8 20 38 40 60 11 6.57

39 0 9 20 39 40 60 11 6.99

 140

40 0 10 20 40 40 60 11.2 7.17

41 0 11 20 40 41 60 11 6.99

42 0 12 20 40 42 60 11 6.57

43 0 13 20 40 43 60 11 6.26

44 0 14 20 40 44 60 11 6.07

45 0 15 20 40 45 60 11 6

46 0 16 20 40 46 60 11 6.07

47 0 17 20 40 47 60 11 6.26

48 0 18 20 40 48 60 11 6.57

49 0 19 20 40 49 60 11 6.99

50 0 20 20 40 50 60 11.2 7.17

51 0 20 21 40 51 60 11 6.99

52 0 20 22 40 52 60 11 6.57

53 0 20 23 40 53 60 11 6.26

54 0 20 24 40 54 60 11 6.07

55 0 20 25 40 55 60 11 6

56 0 20 26 40 56 60 11 6.07

57 0 20 27 40 57 60 11 6.26

58 0 20 28 40 58 60 11 6.57

59 0 20 29 40 59 60 11 6.99

60 0 20 30 40 60 60 11.2 7.17

 141

Appendix 3: Example 5, System Matrix Data

 M1 M2
M

a
tr

ix
 N

u
m

b
e
r

Message Start Times (ms)

M
e
a
n

S
ta

n
d
a
rd

 D
e
v
ia

ti
o

n

0 0 0 20 25 40 50 60 75 80 100 10.2 6.39

1 0 1 20 26 40 51 60 76 80 100 10.1 6.3

2 0 2 20 27 40 52 60 77 80 100 10.1 6.15

3 0 3 20 28 40 53 60 78 80 100 10.1 6.15

4 0 4 20 29 40 54 60 79 80 100 10.1 6.3

5 0 5 20 30 40 55 60 80 80 100 10.2 6.39

6 0 6 20 31 40 56 60 80 81 100 10.1 6.3

7 0 7 20 32 40 57 60 80 82 100 10.1 6.15

8 0 8 20 33 40 58 60 80 83 100 10.1 6.15

9 0 9 20 34 40 59 60 80 84 100 10.1 6.3

10 0 10 20 35 40 60 60 80 85 100 10.2 6.39

11 0 11 20 36 40 60 61 80 86 100 10.1 6.3

12 0 12 20 37 40 60 62 80 87 100 10.1 6.15

13 0 13 20 38 40 60 63 80 88 100 10.1 6.15

14 0 14 20 39 40 60 64 80 89 100 10.1 6.3

15 0 15 20 40 40 60 65 80 90 100 10.2 6.39

16 0 16 20 40 41 60 66 80 91 100 10.1 6.3

17 0 17 20 40 42 60 67 80 92 100 10.1 6.15

18 0 18 20 40 43 60 68 80 93 100 10.1 6.15

19 0 19 20 40 44 60 69 80 94 100 10.1 6.3

20 0 20 20 40 45 60 70 80 95 100 10.2 6.39

21 0 20 21 40 46 60 71 80 96 100 10.1 6.3

22 0 20 22 40 47 60 72 80 97 100 10.1 6.15

23 0 20 23 40 48 60 73 80 98 100 10.1 6.15

24 0 20 24 40 49 60 74 80 99 100 10.1 6.3

25 0 20 25 40 50 60 75 80 100 100 10.2 6.39

26 0 1 20 26 40 51 60 76 80 100 10.1 6.3

27 0 2 20 27 40 52 60 77 80 100 10.1 6.15

28 0 3 20 28 40 53 60 78 80 100 10.1 6.15

29 0 4 20 29 40 54 60 79 80 100 10.1 6.3

30 0 5 20 30 40 55 60 80 80 100 10.2 6.39

31 0 6 20 31 40 56 60 80 81 100 10.1 6.3

32 0 7 20 32 40 57 60 80 82 100 10.1 6.15

33 0 8 20 33 40 58 60 80 83 100 10.1 6.15

34 0 9 20 34 40 59 60 80 84 100 10.1 6.3

35 0 10 20 35 40 60 60 80 85 100 10.2 6.39

36 0 11 20 36 40 60 61 80 86 100 10.1 6.3

37 0 12 20 37 40 60 62 80 87 100 10.1 6.15

38 0 13 20 38 40 60 63 80 88 100 10.1 6.15

39 0 14 20 39 40 60 64 80 89 100 10.1 6.3

40 0 15 20 40 40 60 65 80 90 100 10.2 6.39

 142

41 0 16 20 40 41 60 66 80 91 100 10.1 6.3

42 0 17 20 40 42 60 67 80 92 100 10.1 6.15

43 0 18 20 40 43 60 68 80 93 100 10.1 6.15

44 0 19 20 40 44 60 69 80 94 100 10.1 6.3

45 0 20 20 40 45 60 70 80 95 100 10.2 6.39

46 0 20 21 40 46 60 71 80 96 100 10.1 6.3

47 0 20 22 40 47 60 72 80 97 100 10.1 6.15

48 0 20 23 40 48 60 73 80 98 100 10.1 6.15

49 0 20 24 40 49 60 74 80 99 100 10.1 6.3

50 0 20 25 40 50 60 75 80 100 100 10.2 6.39

51 0 1 20 26 40 51 60 76 80 100 10.1 6.3

52 0 2 20 27 40 52 60 77 80 100 10.1 6.15

53 0 3 20 28 40 53 60 78 80 100 10.1 6.15

54 0 4 20 29 40 54 60 79 80 100 10.1 6.3

55 0 5 20 30 40 55 60 80 80 100 10.2 6.39

56 0 6 20 31 40 56 60 80 81 100 10.1 6.3

57 0 7 20 32 40 57 60 80 82 100 10.1 6.15

58 0 8 20 33 40 58 60 80 83 100 10.1 6.15

59 0 9 20 34 40 59 60 80 84 100 10.1 6.3

60 0 10 20 35 40 60 60 80 85 100 10.2 6.39

61 0 11 20 36 40 60 61 80 86 100 10.1 6.3

62 0 12 20 37 40 60 62 80 87 100 10.1 6.15

63 0 13 20 38 40 60 63 80 88 100 10.1 6.15

64 0 14 20 39 40 60 64 80 89 100 10.1 6.3

65 0 15 20 40 40 60 65 80 90 100 10.2 6.39

66 0 16 20 40 41 60 66 80 91 100 10.1 6.3

67 0 17 20 40 42 60 67 80 92 100 10.1 6.15

68 0 18 20 40 43 60 68 80 93 100 10.1 6.15

69 0 19 20 40 44 60 69 80 94 100 10.1 6.3

70 0 20 20 40 45 60 70 80 95 100 10.2 6.39

71 0 20 21 40 46 60 71 80 96 100 10.1 6.3

72 0 20 22 40 47 60 72 80 97 100 10.1 6.15

73 0 20 23 40 48 60 73 80 98 100 10.1 6.15

74 0 20 24 40 49 60 74 80 99 100 10.1 6.3

75 0 20 25 40 50 60 75 80 100 100 10.2 6.39

76 0 1 20 26 40 51 60 76 80 100 10.1 6.3

77 0 2 20 27 40 52 60 77 80 100 10.1 6.15

78 0 3 20 28 40 53 60 78 80 100 10.1 6.15

79 0 4 20 29 40 54 60 79 80 100 10.1 6.3

80 0 5 20 30 40 55 60 80 80 100 10.2 6.39

81 0 6 20 31 40 56 60 80 81 100 10.1 6.3

82 0 7 20 32 40 57 60 80 82 100 10.1 6.15

83 0 8 20 33 40 58 60 80 83 100 10.1 6.15

84 0 9 20 34 40 59 60 80 84 100 10.1 6.3

85 0 10 20 35 40 60 60 80 85 100 10.2 6.39

86 0 11 20 36 40 60 61 80 86 100 10.1 6.3

87 0 12 20 37 40 60 62 80 87 100 10.1 6.15

88 0 13 20 38 40 60 63 80 88 100 10.1 6.15

89 0 14 20 39 40 60 64 80 89 100 10.1 6.3

90 0 15 20 40 40 60 65 80 90 100 10.2 6.39

91 0 16 20 40 41 60 66 80 91 100 10.1 6.3

92 0 17 20 40 42 60 67 80 92 100 10.1 6.15

 143

93 0 18 20 40 43 60 68 80 93 100 10.1 6.15

94 0 19 20 40 44 60 69 80 94 100 10.1 6.3

95 0 20 20 40 45 60 70 80 95 100 10.2 6.39

96 0 20 21 40 46 60 71 80 96 100 10.1 6.3

97 0 20 22 40 47 60 72 80 97 100 10.1 6.15

98 0 20 23 40 48 60 73 80 98 100 10.1 6.15

99 0 20 24 40 49 60 74 80 99 100 10.1 6.3

100 0 20 25 40 50 60 75 80 100 100 10.2 6.39

 144

Appendix 4: VB Code to Develop System Matrix

1 Imports System

2 Imports System.IO

3

4 Public Class Form1

5

6 ' Public Declarations

7

8 Public a, b, q, r, s, t, v, w, x, y, l As Integer

9 Public Array1(9) As Integer ' Time between messages (ms)

10 Public ArrayTime0(200) As Integer

11 Public ArrayTime1(w, v) As Integer

12 Public ArrayTime2(w, v) As Integer

13 Public ArrayTime3(w, v) As Integer

14 Public ArrayMessage0(t, v) As Integer

15 Public ArrayFinalSort(s) As Integer

16 Public ArraySTD(r) As Double

17 Public ArrayOut(q) As Double

18 Public ArrayOut1(q) As Double

19 Public ArrayOut2(q) As Integer

20 Public ArrayOut30(q, r) As Double

21 Public ArrayOut31(q, r) As Double

22 Public ArrayOut32(q, r) As Integer

23 Public ArrayOut33(q, r) As Integer

24 Public LCM As Integer ' Find Basic Matrix Size

25 Public Message_Time(a, b) As Integer ' Messages time(ms)

26 Public Message_List(50, 50) As Integer 'Complete message list

27 Public count As Integer ' Find end of array of messages

28

29 ' Enter Message durations

30

31
 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles Button1.Click

32 Try

33 Array1(x) = TextBox1.Text

34 x = x + 1

35 TextBox13.Text = x

36

37 ' Error check for data input

38

39 Catch

40 If TextBox1.Text = "" Then

41 MsgBox("You Haven't Entered a Value")

42 End If

43 End Try

44 TextBox1.Text = ""

45 End Sub

46

47 ' Sort Message data and calculate System Matrix size (LCM)

48

49 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

 145

Handles Button2.Click

50 Dim swap, index, index1, ItemCount, ItemCount1, temp1 As Integer

51 index = 0

52 ItemCount = x

53 ItemCount1 = x

54

55 ' Sort data to get smallest time into position in Array1(0)"Reference Message"

56 ' Check the other data remains intact in the other arrays

57

58 Do

59 swap = False

60 For index = 1 To ItemCount - 1

61 If Array1(index - 1) > Array1(index) Then

62 temp1 = Array1(index - 1)

63 Array1(index - 1) = Array1(index)

64 Array1(index) = temp1

65 swap = True

66 End If

67 Next index

68 Loop Until swap = False

69 Do

70 For index1 = 0 To x - 1

71 TextBox6.Text = Array1(index1) & vbNewLine & TextBox6.Text

72 Next index1

73 Loop Until ItemCount1 = x

74

75 ' Calculate system matrix size "LCM"

76

77 Dim SystemMatrix, Counter, Increment As Integer

78 TextBox11.Text = Array1(0)

79 LCM = Array1(0)

80 Do

81 For Counter = 1 To (x - 1)

82 SystemMatrix = LCM Mod Array1(Counter)

83 If SystemMatrix > 0 Then

84 Counter = 0

85 Increment = (Increment + 1)

86 LCM = Array1(0) * (Increment + 1)

87 End If

88

89 Next

90

91 Loop Until Counter = x

92

93 ' Print to Screen LCM value

94

95 TextBox12.Text = LCM

96

97 'Use this section of code if System Matrix has 2 Messages

98

99 If x = 2 Then

100 Call Message_Timing2()

101 Call Message_List2()

102 Call Sort2()

 146

103 Call CsvFile2()

104 End If

105

106 'Use this section of code if System Matrix has 3 Messages

107

108 If x = 3 Then

109 Call Message_Timing3()

110 Call Message_List3()

111 Call Sort3()

112 Call CsvFile3()

113 End If

114

115 'Use this section of code if System Matrix has 2 Messages

116

117 If x = 4 Then

118 Call Message_Timing4()

119 Call Message_List4()

120 Call Sort4()

121 Call CsvFile4()

122 End If

123

124 End Sub

125

126 'Calculate initial timings between each message ID in Array(0) positions

127

128 Private Sub Message_Timing2()

129 Dim i, k, a, b, d, e, f, count As Integer

130 y = LCM / Array1(0)

131 ReDim ArrayTime0(y)

132 w = LCM / Array1(1)

133 ReDim ArrayTime1(Array1(0), (w - 1))

134 d = 0

135 k = 0

136 f = 0

137 count = 0

138 k = 0

139 b = Array1(count)

140 a = LCM / b

141 e = b

142 For i = 0 To a

143 d = d + Array1(count)

144 e = d - b

145 f = 0

146 ArrayTime0(i) = e

147 Next i

148 count = count + 1

149 d = 0

150 k = 0

151 b = Array1(1)

152 a = LCM / b

153 f = 0

154 For k = 0 To Array1(0)

155 For i = 0 To a - 1

156 d = d + Array1(count)

 147

157 e = d - b

158 ArrayTime1(k, i) = e

159 Next i

160 i = 0

161 f = f + 1

162 d = f

163 Next k

164 End Sub

165

166 'Generate Message timing list for each ID and put into an array

167

168 Private Sub Message_List2()

169 Dim u, i, k As Integer

170 ReDim ArrayMessage0((Array1(0)), (LCM / Array1(0)) + (LCM / Array1(1)))

171 t = 0

172 u = 0

173 i = 0

174 k = 0

175 For k = 0 To (Array1(0))

176 For i = 0 To (LCM / Array1(0))

177 ArrayMessage0(t, u) = ArrayTime0(i)

178 u = u + 1

179 Next i

180 For i = 0 To ((LCM / Array1(1)) - 1)

181 ArrayMessage0(t, u) = ArrayTime1(k, i)

182 u = u + 1

183 Next i

184 t = t + 1

185 u = 0

186 Next k

187

188 End Sub

189

190 'Sort the TTCAN Messages in to a useable message sequence and carry out statistical calculations

191

192 Private Sub Sort2()

193 Dim b, d, i, j, k, l, m, n, swap, index, ItemCount, temp1, s0, s1, s2, s3, r0, r1 As Integer

194 Dim sum, mean, mean1, st, std, stddev, stddev1, stddev2 As Double

195 ReDim ArrayFinalSort(LCM / Array1(0) + (LCM / (Array1(1))))

196 ReDim ArraySTD((LCM / Array1(0) + ((LCM / Array1(1)))))

197 ReDim ArrayOut(Array1(0))

198 ReDim ArrayOut1(Array1(0))

199 ReDim ArrayOut2(Array1(0))

200 t = 0

201 n = 0

202 b = 0

203 stddev1 = 100

204 stddev2 = 0

205 index = 0

206 ItemCount = ((LCM / Array1(0)) + (LCM / Array1(1)))

207 For m = 0 To Array1(0)

208 For i = 0 To ((LCM / Array1(0)) + (LCM / Array1(1)))

209 ArrayFinalSort(i) = ArrayMessage0(t, i)

210 Next i

 148

211 r0 = ArrayFinalSort(0)

212 r1 = ArrayFinalSort((LCM / Array1(0) + 1))

213

214

215 ' Sort data to get smallest time into position in Array1(0)

216 ' and make sure all other data remains intact in other arrays

217

218 Do

219 swap = False

220 For index = 1 To ItemCount

221 If ArrayFinalSort(index - 1) > ArrayFinalSort(index) Then

222 temp1 = ArrayFinalSort(index - 1)

223 ArrayFinalSort(index - 1) = ArrayFinalSort(index)

224 ArrayFinalSort(index) = temp1

225 swap = True

226 End If

227 Next index

228 Loop Until swap = False

229

230 For j = 0 To ItemCount - 1

231 ArraySTD(j) = ArrayFinalSort(j + 1) - ArrayFinalSort(j)

232

233 ' If two messages in matrix are in the same position

234 ' don't do the statistical maths

235

236 If ArraySTD(j) = 0 Then

237 b = b + 1

238
 TextBox14.Text = b & " Zero crossing when " & Array1(0) & " = " & r0 & " and when "

& Array1(1) & " = " & r1 & vbNewLine & TextBox14.Text

239 GoTo Zero_Crossing2

240 End If

241 Next j

242

243 'Start the statistical maths

244 'Find the Mean

245

246 For k = 0 To ItemCount - 1

247 sum = sum + ArraySTD(k)

248 Next k

249 mean = sum / k

250 For l = 0 To ItemCount - 1

251 st = ((ArraySTD(l) - mean) ^ 2)

252 std = std + st

253 Next l

254

255 ' Calculate the Standard Deviation

256

257 stddev = Math.Sqrt(std / k)

258 ArrayOut(n) = stddev

259 ArrayOut1(n) = mean

260 ArrayOut2(n) = t

261 d = d + 1

262
 TextBox2.Text = d & " Mean = " & mean & " STDdev = " & stddev & " When " &

Array1(0) & " = " & r0 & " , " & Array1(1) & " = " & r1 & vbNewLine & TextBox2.Text

263

 149

264 ' Find the highest Standard Deviation in the Matrix

265

266 If stddev1 > stddev Then

267 stddev1 = stddev

268 mean1 = mean

269 s0 = r0

270 s1 = r1

271 End If

272

273 ' Find the highest Standard Deviation in the Matrix

274

275 If stddev2 < stddev Then

276 stddev2 = stddev

277 mean1 = mean

278 s2 = r0

279 s3 = r1

280 End If

281

282 'Set Constant Values back to zero and increment arrays

283

284 Zero_Crossing2:

285 mean = 0

286 sum = 0

287 st = 0

288 std = 0

289 stddev = 0

290 n = n + 1

291 t = t + 1

292 index = 0

293 Next m

294

295 ' Print highest and lowest Mean, Standard Deviation and positions in Matrix to the screen

296

297
 TextBox10.Text = "Mean = " & mean1 & ", STDdevL = " & stddev1 & ", when " & Array1(0)

& " = " & s0 & ", " & Array1(1) & " = " & s1 & vbNewLine & TextBox10.Text

298
 TextBox10.Text = "Mean = " & mean1 & ", STDdevH = " & stddev2 & ", when " & Array1(0)

& " = " & s2 & ", " & Array1(1) & " = " & s3 & vbNewLine & TextBox10.Text

299

300 End Sub

301

302 'Output all data to a CSV file for further analysis in Excel and MATLAB

303

304 Private Sub CsvFile2()

305 Dim t As Double

306 Dim u, v, n As Integer

307 t = 0

308 n = 0

309

310 ' Create an instance of StreamWriter to write text to a file.

311

312 Using sw As StreamWriter = New StreamWriter("C:\TestFile.csv")

313 ' Add some text to the file.

314 For u = 0 To Array1(0)

315 t = ArrayOut2(n)

316 sw.Write(t)

 150

317 sw.Write(",")

318 n = n + 1

319 Next u

320 sw.WriteLine("")

321 n = 0

322 For v = 0 To Array1(0)

323 t = ArrayOut1(n)

324 sw.Write(t)

325 sw.Write(",")

326 n = n + 1

327 Next v

328 sw.WriteLine("")

329 n = 0

330 For w = 0 To Array1(0)

331 t = ArrayOut(n)

332 sw.Write(t)

333 sw.Write(",")

334 n = n + 1

335 Next w

336 n = 0

337 sw.WriteLine("")

338 sw.WriteLine(TextBox14.Text)

339 sw.Close()

340

341 End Using

342

343 End Sub

344

345 'Calculate initial timings between each message ID in Array(0) positions

346

347 Private Sub Message_Timing3()

348 Dim i, k, a, b, d, e, f, z, count As Integer

349 y = LCM / Array1(0)

350 ReDim ArrayTime0(y)

351 w = LCM / Array1(1)

352 ReDim ArrayTime1((Array1(0)), (w - 1))

353 z = LCM / Array1(2)

354 ReDim ArrayTime2((Array1(0)), (z - 1))

355 d = 0

356 k = 0

357 f = 0

358 count = 0

359 k = 0

360 b = Array1(count)

361 a = LCM / b

362 e = b

363 For i = 0 To a

364 d = d + Array1(count)

365 e = d - b

366 f = 0

367 ArrayTime0(i) = e

368 Next i

369 count = count + 1

370 d = 0

 151

371 k = 0

372 b = Array1(1)

373

374 f = 0

375 a = LCM / Array1(count)

376 For k = 0 To Array1(0)

377 For i = 0 To a - 1

378 d = d + Array1(count)

379 e = d - b

380 ArrayTime1(k, i) = e

381 Next i

382 i = 0

383 f = f + 1

384 d = f

385 Next k

386 count = count + 1

387 k = 0

388 f = 0

389 b = Array1(count)

390 d = 0

391 a = LCM / Array1(count)

392 For k = 0 To Array1(0)

393 For i = 0 To a - 1

394 d = d + Array1(count)

395 e = d - b

396 ArrayTime2(k, i) = e

397 Next i

398 i = 0

399 f = f + 1

400 d = f

401 Next k

402 End Sub

403

404 'Generate Message timing list for each ID and put into an array

405

406 Private Sub Message_List3()

407 Dim i, k, l, h, u As Integer

408
 ReDim ArrayMessage0((Array1(0) * (Array1(0) + 2)), ((LCM / Array1(0))) + ((LCM /

Array1(1))) + ((LCM / Array1(2))))

409 t = 0

410 u = 0

411 h = 0

412 i = 0

413 k = 0

414 l = 0

415 For h = 0 To (Array1(0))

416 For k = 0 To (Array1(0))

417 For i = 0 To (LCM / Array1(0))

418 ArrayMessage0(t, u) = ArrayTime0(i)

419 u = u + 1

420 Next i

421 For i = 0 To ((LCM / Array1(1)) - 1)

422 ArrayMessage0(t, u) = ArrayTime1(l, i)

423 u = u + 1

 152

424 Next i

425

426 For i = 0 To ((LCM / Array1(2)) - 1)

427 ArrayMessage0(t, u) = ArrayTime2(h, i)

428 u = u + 1

429 Next i

430 t = t + 1

431 u = 0

432 l = l + 1

433 Next k

434

435 l = 0

436

437 Next h

438

439 End Sub

440

441 'Sort the TTCAN Messages in to a useable message sequence

442

443 Private Sub Sort3()

444
 Dim a, e, d, g, h, i, j, k, l, m, n, c, s0, s1, s2, s3, s4, s5, r0, r1, r2, swap, index, ItemCount, temp1

As Integer

445 Dim sum, mean, mean1, st, std, stddev, stddev1, stddev2 As Double

446 ReDim ArrayFinalSort((LCM / Array1(0) + LCM / Array1(1) + LCM / Array1(2)))

447 ReDim ArraySTD(LCM / Array1(0) + ((LCM / Array1(1)) - 1) + LCM / Array1(2))

448 ReDim ArrayOut30(Array1(0), Array1(0))

449 ReDim ArrayOut31(Array1(0), Array1(0))

450 ReDim ArrayOut32(Array1(0), Array1(0))

451 t = 0

452 n = 0

453 c = 0

454 d = 0

455 stddev1 = 100

456 index = 0

457 ItemCount = (LCM / Array1(0) + LCM / Array1(1) + LCM / Array1(2))

458 For h = 0 To Array1(0)

459 For m = 0 To Array1(0)

460 For i = 0 To (LCM / Array1(0) + LCM / Array1(1) + LCM / Array1(2))

461 ArrayFinalSort(i) = ArrayMessage0(t, i)

462

463 Next i

464 r0 = ArrayFinalSort(0)

465 r1 = ArrayFinalSort((LCM / Array1(0) + 1))

466 r2 = ArrayFinalSort((LCM / Array1(0) + LCM / Array1(1) + 1))

467

468 ' Sort data to get smallest time into position in Array1(0)

469 ' and make sure all other data remains intact in other arrays

470

471 Do

472 swap = False

473 For index = 1 To ItemCount

474 If ArrayFinalSort(index - 1) > ArrayFinalSort(index) Then

475 temp1 = ArrayFinalSort(index - 1)

476 ArrayFinalSort(index - 1) = ArrayFinalSort(index)

 153

477 ArrayFinalSort(index) = temp1

478 swap = True

479 End If

480 Next index

481 Loop Until swap = False

482

483 For j = 0 To ItemCount - 1

484 ArraySTD(j) = ArrayFinalSort(j + 1) - ArrayFinalSort(j)

485

486 ' If two messages in matrix are in the same value

487 ' don't do the statistical maths

488

489 If ArraySTD(j) = 0 Then

490 e = e + 1

491
 TextBox14.Text = e & " Zero crossing when " & Array1(0) & " = " & r0 & ", " &

Array1(1) & " = " & r1 & ", " & Array1(2) & " = " & r2 & vbNewLine & TextBox14.Text

492 GoTo Zero_Crossing1

493 End If

494 Next j

495

496 'Start the statistical maths

497 'Find the Mean

498

499 For k = 0 To ItemCount - 1

500 sum = sum + ArraySTD(k)

501 Next k

502 mean = sum / k

503 For l = 0 To ItemCount - 1

504 st = ((ArraySTD(l) - mean) ^ 2)

505 std = std + st

506 Next l

507

508 ' Calculate the Standard Deviation

509

510 stddev = Math.Sqrt(std / k)

511 ArrayOut30(a, g) = stddev

512 ArrayOut31(a, g) = mean

513 ArrayOut32(a, g) = t

514 d = d + 1

515

 TextBox2.Text = d & " Mean = " & mean & " STDdev = " & stddev & " When " &

Array1(0) & " = " & r0 & " , " & Array1(1) & " = " & r1 & " , " & Array1(2) & " = " & r2 &

vbNewLine & TextBox2.Text

516

517 ' Find the highest Standard Deviation in the Matrix

518

519 If stddev1 > stddev Then

520 stddev1 = stddev

521 mean1 = mean

522 s0 = r0

523 s1 = r1

524 s2 = r2

525 c = t

526 End If

527

528 ' Find the Lowest Standard Deviation in the Matrix

 154

529

530 If stddev2 < stddev Then

531 stddev2 = stddev

532 mean1 = mean

533 s3 = r0

534 s4 = r1

535 s5 = r2

536 End If

537 Zero_Crossing1:

538 mean = 0

539 sum = 0

540 st = 0

541 std = 0

542 stddev = 0

543 g = g + 1

544 t = t + 1

545 Next m

546 a = a + 1

547 g = 0

548 Next h

549

550 ' Print highest and lowest Mean, Standard Deviation and positions in Matrix to the screen

551

552

 TextBox10.Text = "Mean = " & mean1 & ", & STDdevL = " & stddev1 & ", when " &

Array1(0) & " = " & s0 & ", " & Array1(1) & " = " & s1 & ", " & Array1(2) & " = " & s2 &

vbNewLine & TextBox10.Text

553

 TextBox10.Text = "Mean = " & mean1 & ", & STDdevH = " & stddev2 & ", when " &

Array1(0) & " = " & s3 & ", " & Array1(1) & " = " & s4 & ", " & Array1(2) & " = " & s5 &

vbNewLine & TextBox10.Text

554

555 End Sub

556

557 'Output all data to a CSV file for further analysis in Excel and MATLAB

558

559 Private Sub CsvFile3()

560 Dim t As Double

561 Dim a, b, c, d, g, u, n As Integer

562 t = 0

563 n = 0

564

565 ' Create an instance of StreamWriter to write text to a file.

566

567 Using sw As StreamWriter = New StreamWriter("C:\TestFile.csv")

568 ' Add some text to the file.

569 For d = 0 To (Array1(0))

570 For u = 0 To (Array1(0))

571 t = ArrayOut32(a, g)

572 sw.Write(t)

573 sw.Write(",")

574 g = g + 1

575 Next u

576 sw.WriteLine("")

577 g = 0

578 For b = 0 To (Array1(0))

579 t = ArrayOut31(a, g)

 155

580 sw.Write(t)

581 sw.Write(",")

582 g = g + 1

583 Next b

584 sw.WriteLine("")

585 g = 0

586 For c = 0 To Array1(0)

587 t = ArrayOut30(a, g)

588 sw.Write(t)

589 sw.Write(",")

590 g = g + 1

591 Next c

592 g = 0

593 a = a + 1

594 Next d

595 sw.WriteLine("")

596 sw.WriteLine(TextBox14.Text)

597 sw.Close()

598

599 End Using

600

601 End Sub

602

603 'Calculate initial timings between each message ID in Array(0) positions

604

605 Private Sub Message_Timing4()

606 Dim i, k, a, b, d, e, f, z, z1, g, count As Integer

607 y = LCM / Array1(0)

608 ReDim ArrayTime0(y)

609 w = LCM / Array1(1)

610 ReDim ArrayTime1(Array1(0), (w - 1))

611 z = LCM / Array1(2)

612 ReDim ArrayTime2(Array1(0), (z - 1))

613 z1 = LCM / Array1(3)

614 ReDim ArrayTime3(Array1(0), (z1 - 1))

615 g = 0

616 d = 0

617 k = 0

618 f = 0

619 count = 0

620 k = 0

621 b = Array1(count)

622 a = LCM / b

623 e = b

624 For i = 0 To a

625 d = d + Array1(count)

626 e = d - b

627 f = 0

628 ArrayTime0(i) = e

629 Next i

630 count = count + 1

631 d = 0

632 k = 0

633 b = Array1(1)

 156

634

635 f = 0

636 a = LCM / Array1(count)

637 For k = 0 To Array1(0)

638 For i = 0 To a - 1

639 d = d + Array1(count)

640 e = d - b

641 ArrayTime1(k, i) = e

642 Next i

643 i = 0

644 f = f + 1

645 d = f

646 Next k

647 count = count + 1

648 k = 0

649 f = 0

650 b = Array1(count)

651 d = 0

652 a = LCM / Array1(count)

653 For k = 0 To Array1(0)

654 For i = 0 To a - 1

655 d = d + Array1(count)

656 e = d - b

657 ArrayTime2(k, i) = e

658 Next i

659 i = 0

660 f = f + 1

661 d = f

662 Next k

663 count = count + 1

664 k = 0

665 f = 0

666 b = Array1(count)

667 d = 0

668 a = LCM / Array1(count)

669 For k = 0 To Array1(0)

670 For i = 0 To a - 1

671 d = d + Array1(count)

672 e = d - b

673 ArrayTime3(k, i) = e

674 Next i

675 i = 0

676 f = f + 1

677 d = f

678 Next k

679 End Sub

680

681 ''Generate Message timing list for each ID and put into an array

682

683 Private Sub Message_List4()

684 Dim i, k, l, h, g, m, n, u As Integer

685
 ReDim ArrayMessage0(((Array1(0) * (Array1(0) + 2) * (Array1(0) + 2))), (LCM / Array1(0)) +

(LCM / Array1(1)) + (LCM / Array1(2)) + (LCM / Array1(3)))

686 t = 0

 157

687 u = 0

688 g = 0

689 h = 0

690 i = 0

691 k = 0

692 l = 0

693 n = 0

694 For g = 0 To (Array1(0))

695 For h = 0 To (Array1(0))

696 For k = 0 To (Array1(0))

697 For i = 0 To (LCM / Array1(0))

698 ArrayMessage0(t, u) = ArrayTime0(i)

699 u = u + 1

700 Next i

701 For i = 0 To ((LCM / Array1(1)) - 1)

702 ArrayMessage0(t, u) = ArrayTime1(l, i)

703 u = u + 1

704 Next i

705

706 For i = 0 To ((LCM / Array1(2)) - 1)

707 ArrayMessage0(t, u) = ArrayTime2(m, i)

708 u = u + 1

709 Next i

710

711 For i = 0 To ((LCM / Array1(3)) - 1)

712 ArrayMessage0(t, u) = ArrayTime3(n, i)

713 u = u + 1

714 Next i

715

716 t = t + 1

717 u = 0

718 l = l + 1

719 Next k

720 m = m + 1

721 l = 0

722

723 Next h

724 l = 0

725 m = 0

726 n = n + 1

727 Next g

728 End Sub

729

730 ‘Sort Data in correct order and carry out statistical Maths

731 Private Sub Sort4()

732
 Dim a, aa, aaa, b, g, h, i, j, k, l, m, n, c, d, s0, s1, s2, s3, s4, s5, s6, s7, r0, r1, r2, r3, swap, index,

ItemCount, temp1 As Integer

733 Dim sum, mean, mean1, st, std, stddev, stddev1, stddev2 As Double

734
 ReDim ArrayFinalSort((LCM / Array1(0) + LCM / Array1(1) + LCM / Array1(2) + LCM /

Array1(3)))

735
 ReDim ArraySTD(LCM / Array1(0) + ((LCM / Array1(1)) - 1) + LCM / Array1(2) + LCM /

Array1(3))

736 ReDim ArrayOut30(Array1(0) * (Array1(0) + 2), Array1(0))

737 ReDim ArrayOut31(Array1(0) * (Array1(0) + 2), Array1(0))

738 ReDim ArrayOut32(Array1(0) * (Array1(0) + 2), Array1(0))

 158

739 ReDim ArrayOut33(Array1(0) * (Array1(0) + 2), Array1(0))

740 t = 0

741 n = 0

742 c = 0

743 d = 0

744 stddev1 = 100

745 index = 0

746 ItemCount = (LCM / Array1(0) + LCM / Array1(1) + LCM / Array1(2) + LCM / Array1(3))

747 For b = 0 To Array1(0)

748 For h = 0 To Array1(0)

749 For m = 0 To Array1(0)

750
 For i = 0 To (LCM / Array1(0) + LCM / Array1(1) + LCM / Array1(2) + LCM /

Array1(3))

751 ArrayFinalSort(i) = ArrayMessage0(t, i)

752

753 Next i

754 r0 = ArrayFinalSort(0)

755 r1 = ArrayFinalSort((LCM / Array1(0) + 1))

756 r2 = ArrayFinalSort((LCM / Array1(0) + LCM / Array1(1) + 1))

757 r3 = ArrayFinalSort((LCM / Array1(0) + LCM / Array1(1) + LCM / Array1(2) + 1))

758

759 ' Sort data to get smallest time into position in Array1(0)

760 ' and make sure all other data remains intact in other arrays

761

762 Do

763 swap = False

764 For index = 1 To ItemCount

765 If ArrayFinalSort(index - 1) > ArrayFinalSort(index) Then

766 temp1 = ArrayFinalSort(index - 1)

767 ArrayFinalSort(index - 1) = ArrayFinalSort(index)

768 ArrayFinalSort(index) = temp1

769 swap = True

770 End If

771 Next index

772 Loop Until swap = False

773

774 ' If two messages in matrix are in the same position

775 ' don't do the statistical maths

776

777 For j = 0 To ItemCount - 1

778 ArraySTD(j) = ArrayFinalSort(j + 1) - ArrayFinalSort(j)

779

780 If ArraySTD(j) = 0 Then

781 c = c + 1

782

 TextBox14.Text = c & " Zero crossing when " & Array1(0) & " = " & r0 & ", " &

Array1(1) & " = " & r1 & ", " & Array1(2) & " = " & r2 & ", " & Array1(3) & " = " & r3 & ", " &

vbNewLine & TextBox14.Text

783 aaa = 1

784 GoTo Zero_Crossing

785 End If

786 Next j

787

788 'Start the statistical maths

789 'Find the Mean

790

 159

791 For k = 0 To ItemCount - 1

792 sum = sum + ArraySTD(k)

793 Next k

794 mean = sum / k

795 For l = 0 To ItemCount - 1

796 st = ((ArraySTD(l) - mean) ^ 2)

797 std = std + st

798 Next l

799

800 ' Calculate the Standard Deviation

801

802 stddev = Math.Sqrt(std / k)

803 ArrayOut30(a, g) = stddev

804 ArrayOut31(a, g) = mean

805 ArrayOut32(a, g) = t

806 d = d + 1

807

 TextBox2.Text = d & " Mean = " & mean & " STDdev = " & stddev & " When " &

Array1(0) & " = " & r0 & " , " & Array1(1) & " = " & r1 & " , " & Array1(2) & " = " & r2 & " , " &

Array1(3) & " = " & r3 & vbNewLine & TextBox2.Text

808 aa = 1

809 Zero_Crossing:

810 ' Find the highest Standard Deviation in the Matrix

811

812 If ((aa = 1) And (aaa = 0)) Then

813 If stddev1 > stddev Then

814 stddev1 = stddev

815 mean1 = mean

816 s0 = r0

817 s1 = r1

818 s2 = r2

819 s3 = r3

820 c = t

821 End If

822

823 ' Find the Lowest Standard Deviation in the Matrix

824

825 If stddev2 < stddev Then

826 stddev2 = stddev

827 mean1 = mean

828 s4 = r0

829 s5 = r1

830 s6 = r2

831 s7 = r3

832 End If

833 aa = 0

834 End If

835 aaa = 0

836 mean = 0

837 sum = 0

838 st = 0

839 std = 0

840 stddev = 0

841 g = g + 1

842 t = t + 1

843 Next m

 160

844 a = a + 1

845 g = 0

846 Next h

847 Next b

848

849 ' Print highest and lowest Mean, Standard Deviation and positions in Matrix to the screen

850

851

 TextBox10.Text = "Mean = " & mean1 & ", & STDdevL = " & stddev1 & ", when " &

Array1(0) & " = " & s0 & ", " & Array1(1) & " = " & s1 & ", " & Array1(2) & " = " & s2 & ", " &

Array1(3) & " = " & s3 & vbNewLine & TextBox10.Text

852

 TextBox10.Text = "Mean = " & mean1 & ", & STDdevH = " & stddev2 & ", when " &

Array1(0) & " = " & s4 & ", " & Array1(1) & " = " & s5 & ", " & Array1(2) & " = " & s6 & ", " &

Array1(3) & " = " & s7 & vbNewLine & TextBox10.Text

853 End Sub

854

855 'Output all data to a CSV file for further analysis in Excel and MATLAB

856

857 Private Sub CsvFile4()

858 Dim t As Double

859 Dim a, b, c, d, g, u, n As Integer

860 t = 0

861 n = 0

862

863 ' Create an instance of StreamWriter to write text to a file.

864

865 Using sw As StreamWriter = New StreamWriter("C:\TestFile1.csv")

866 ' Add some text to the file.

867 For d = 0 To (Array1(0))

868 For u = 0 To (Array1(0))

869 t = ArrayOut32(a, g)

870 sw.Write(t)

871 sw.Write(",")

872 g = g + 1

873 Next u

874 sw.WriteLine("")

875 g = 0

876 For b = 0 To (Array1(0))

877 t = ArrayOut31(a, g)

878 sw.Write(t)

879 sw.Write(",")

880 g = g + 1

881 Next b

882 sw.WriteLine("")

883 g = 0

884 For c = 0 To Array1(0)

885 t = ArrayOut30(a, g)

886 sw.Write(t)

887 sw.Write(",")

888 g = g + 1

889 Next c

890 g = 0

891 a = a + 1

892 Next d

893 sw.WriteLine("")

894 sw.WriteLine(TextBox14.Text)

 161

895 sw.Close()

896

897 End Using

898

899 End Sub

900 End Class

 162

Appendix 5: CSV File

Generated from Messages with periods of 20ms and 30ms.

0,1,2,3,4,5,6,7,8,9,0,11,12,13,14,15,16,17,18,19,0,

0,12,12,12,12,12,12,12,12,12,0,12,12,12,12,12,12,12,12,12,0,

0,6.98569967862919,6.57267069006199,6.26099033699941,6.06630035524124,6,6.

06630035524124,6.26099033699941,6.57267069006199,6.98569967862919,0,6.985

69967862919,6.57267069006199,6.26099033699941,6.06630035524124,6,6.066300

35524124,6.26099033699941,6.57267069006199,6.98569967862919,0,

3 Zero crossing when 20 = 0 and when 30 = 20

2 Zero crossing when 20 = 0 and when 30 = 10

1 Zero crossing when 20 = 0 and when 30 = 0

 163

Appendix 6: Output from Statistical Scheduler, Periods 20, 30

and 40ms

441 Mean = 9.23076923076923 STDdev = 8.28486893405308 When 20 = 0 , 30 =

20 , 40 = 20

440 Mean = 9.23076923076923 STDdev = 7.9435880882619 When 20 = 0 , 30 =

19 , 40 = 20

439 Mean = 9.23076923076923 STDdev = 7.66765279653976 When 20 = 0 , 30 =

18 , 40 = 20

438 Mean = 9.23076923076923 STDdev = 7.46431352043582 When 20 = 0 , 30 =

17 , 40 = 20

437 Mean = 9.23076923076923 STDdev = 7.33960642577019 When 20 = 0 , 30 =

16 , 40 = 20

436 Mean = 9.23076923076923 STDdev = 7.2975638311578 When 20 = 0 , 30 =

15 , 40 = 20

435 Mean = 9.23076923076923 STDdev = 7.33960642577019 When 20 = 0 , 30 =

14 , 40 = 20

434 Mean = 9.23076923076923 STDdev = 7.46431352043582 When 20 = 0 , 30 =

13 , 40 = 20

433 Mean = 9.23076923076923 STDdev = 7.66765279653976 When 20 = 0 , 30 =

12 , 40 = 20

432 Mean = 9.23076923076923 STDdev = 7.9435880882619 When 20 = 0 , 30 =

11 , 40 = 20

431 Mean = 9.23076923076923 STDdev = 8.28486893405308 When 20 = 0 , 30 =

10 , 40 = 20

430 Mean = 9.23076923076923 STDdev = 7.9435880882619 When 20 = 0 , 30 =

9 , 40 = 20

429 Mean = 9.23076923076923 STDdev = 7.66765279653976 When 20 = 0 , 30 =

8 , 40 = 20

428 Mean = 9.23076923076923 STDdev = 7.46431352043582 When 20 = 0 , 30 =

7 , 40 = 20

427 Mean = 9.23076923076923 STDdev = 7.33960642577019 When 20 = 0 , 30 =

6 , 40 = 20

 164

426 Mean = 9.23076923076923 STDdev = 7.2975638311578 When 20 = 0 , 30 =

5 , 40 = 20

425 Mean = 9.23076923076923 STDdev = 7.33960642577019 When 20 = 0 , 30 =

4 , 40 = 20

424 Mean = 9.23076923076923 STDdev = 7.46431352043582 When 20 = 0 , 30 =

3 , 40 = 20

423 Mean = 9.23076923076923 STDdev = 7.66765279653976 When 20 = 0 , 30 =

2 , 40 = 20

422 Mean = 9.23076923076923 STDdev = 7.9435880882619 When 20 = 0 , 30 =

1 , 40 = 20

421 Mean = 9.23076923076923 STDdev = 8.28486893405308 When 20 = 0 , 30 =

0 , 40 = 20

420 Mean = 9.23076923076923 STDdev = 7.83634379182464 When 20 = 0 , 30 =

20 , 40 = 19

419 Mean = 9.23076923076923 STDdev = 7.65761407061219 When 20 = 0 , 30 =

19 , 40 = 19

418 Mean = 9.23076923076923 STDdev = 7.35007949882539 When 20 = 0 , 30 =

18 , 40 = 19

417 Mean = 9.23076923076923 STDdev = 7.11611222890968 When 20 = 0 , 30 =

17 , 40 = 19

416 Mean = 9.23076923076923 STDdev = 6.96313198931283 When 20 = 0 , 30 =

16 , 40 = 19

415 Mean = 9.23076923076923 STDdev = 6.89653029990551 When 20 = 0 , 30 =

15 , 40 = 19

414 Mean = 9.23076923076923 STDdev = 6.9188020990058 When 20 = 0 , 30 =

14 , 40 = 19

413 Mean = 9.23076923076923 STDdev = 7.02910264711426 When 20 = 0 , 30 =

13 , 40 = 19

412 Mean = 9.23076923076923 STDdev = 7.22340050065753 When 20 = 0 , 30 =

12 , 40 = 19

411 Mean = 9.23076923076923 STDdev = 7.49516609508418 When 20 = 0 , 30 =

11 , 40 = 19

410 Mean = 9.23076923076923 STDdev = 7.83634379182465 When 20 = 0 , 30 =

10 , 40 = 19

 165

409 Mean = 9.23076923076923 STDdev = 7.65761407061219 When 20 = 0 , 30 =

9 , 40 = 19

408 Mean = 9.23076923076923 STDdev = 7.35007949882539 When 20 = 0 , 30 =

8 , 40 = 19

407 Mean = 9.23076923076923 STDdev = 7.11611222890968 When 20 = 0 , 30 =

7 , 40 = 19

406 Mean = 9.23076923076923 STDdev = 6.96313198931283 When 20 = 0 , 30 =

6 , 40 = 19

405 Mean = 9.23076923076923 STDdev = 6.89653029990551 When 20 = 0 , 30 =

5 , 40 = 19

404 Mean = 9.23076923076923 STDdev = 6.9188020990058 When 20 = 0 , 30 =

4 , 40 = 19

403 Mean = 9.23076923076923 STDdev = 7.02910264711426 When 20 = 0 , 30 =

3 , 40 = 19

402 Mean = 9.23076923076923 STDdev = 7.22340050065753 When 20 = 0 , 30 =

2 , 40 = 19

401 Mean = 9.23076923076923 STDdev = 7.49516609508418 When 20 = 0 , 30 =

1 , 40 = 19

400 Mean = 9.23076923076923 STDdev = 7.83634379182464 When 20 = 0 , 30 =

0 , 40 = 19

399 Mean = 9.23076923076923 STDdev = 7.42297728111681 When 20 = 0 , 30 =

20 , 40 = 18

398 Mean = 9.23076923076923 STDdev = 7.21274348906526 When 20 = 0 , 30 =

19 , 40 = 18

397 Mean = 9.23076923076923 STDdev = 7.08360888198236 When 20 = 0 , 30 =

18 , 40 = 18

396 Mean = 9.23076923076923 STDdev = 6.81800609420318 When 20 = 0 , 30 =

17 , 40 = 18

395 Mean = 9.23076923076923 STDdev = 6.63503343164549 When 20 = 0 , 30 =

16 , 40 = 18

394 Mean = 9.23076923076923 STDdev = 6.54162819245209 When 20 = 0 , 30 =

15 , 40 = 18

393 Mean = 9.23076923076923 STDdev = 6.54162819245209 When 20 = 0 , 30 =

14 , 40 = 18

 166

392 Mean = 9.23076923076923 STDdev = 6.63503343164549 When 20 = 0 , 30 =

13 , 40 = 18

391 Mean = 9.23076923076923 STDdev = 6.81800609420318 When 20 = 0 , 30 =

12 , 40 = 18

390 Mean = 9.23076923076923 STDdev = 7.08360888198236 When 20 = 0 , 30 =

11 , 40 = 18

389 Mean = 9.23076923076923 STDdev = 7.42297728111681 When 20 = 0 , 30 =

10 , 40 = 18

388 Mean = 9.23076923076923 STDdev = 7.21274348906526 When 20 = 0 , 30 =

9 , 40 = 18

387 Mean = 9.23076923076923 STDdev = 7.08360888198236 When 20 = 0 , 30 =

8 , 40 = 18

386 Mean = 9.23076923076923 STDdev = 6.81800609420318 When 20 = 0 , 30 =

7 , 40 = 18

385 Mean = 9.23076923076923 STDdev = 6.63503343164549 When 20 = 0 , 30 =

6 , 40 = 18

384 Mean = 9.23076923076923 STDdev = 6.54162819245209 When 20 = 0 , 30 =

5 , 40 = 18

383 Mean = 9.23076923076923 STDdev = 6.54162819245209 When 20 = 0 , 30 =

4 , 40 = 18

382 Mean = 9.23076923076923 STDdev = 6.63503343164548 When 20 = 0 , 30 =

3 , 40 = 18

381 Mean = 9.23076923076923 STDdev = 6.81800609420318 When 20 = 0 , 30 =

2 , 40 = 18

380 Mean = 9.23076923076923 STDdev = 7.08360888198236 When 20 = 0 , 30 =

1 , 40 = 18

379 Mean = 9.23076923076923 STDdev = 7.42297728111681 When 20 = 0 , 30 =

0 , 40 = 18

378 Mean = 9.23076923076923 STDdev = 7.05095570340368 When 20 = 0 , 30 =

20 , 40 = 17

377 Mean = 9.23076923076923 STDdev = 6.80671440173198 When 20 = 0 , 30 =

19 , 40 = 17

376 Mean = 9.23076923076923 STDdev = 6.64661679299322 When 20 = 0 , 30 =

18 , 40 = 17

 167

375 Mean = 9.23076923076923 STDdev = 6.57681061532279 When 20 = 0 , 30 =

17 , 40 = 17

374 Mean = 9.23076923076923 STDdev = 6.36279868458776 When 20 = 0 , 30 =

16 , 40 = 17

373 Mean = 9.23076923076923 STDdev = 6.24073277445287 When 20 = 0 , 30 =

15 , 40 = 17

372 Mean = 9.23076923076923 STDdev = 6.21603195410367 When 20 = 0 , 30 =

14 , 40 = 17

371 Mean = 9.23076923076923 STDdev = 6.28984341438758 When 20 = 0 , 30 =

13 , 40 = 17

370 Mean = 9.23076923076923 STDdev = 6.45879062451795 When 20 = 0 , 30 =

12 , 40 = 17

369 Mean = 9.23076923076923 STDdev = 6.71569741098989 When 20 = 0 , 30 =

11 , 40 = 17

368 Mean = 9.23076923076923 STDdev = 7.05095570340369 When 20 = 0 , 30 =

10 , 40 = 17

367 Mean = 9.23076923076923 STDdev = 6.80671440173198 When 20 = 0 , 30 =

9 , 40 = 17

366 Mean = 9.23076923076923 STDdev = 6.64661679299322 When 20 = 0 , 30 =

8 , 40 = 17

365 Mean = 9.23076923076923 STDdev = 6.57681061532279 When 20 = 0 , 30 =

7 , 40 = 17

364 Mean = 9.23076923076923 STDdev = 6.36279868458776 When 20 = 0 , 30 =

6 , 40 = 17

363 Mean = 9.23076923076923 STDdev = 6.24073277445287 When 20 = 0 , 30 =

5 , 40 = 17

362 Mean = 9.23076923076923 STDdev = 6.21603195410367 When 20 = 0 , 30 =

4 , 40 = 17

361 Mean = 9.23076923076923 STDdev = 6.28984341438758 When 20 = 0 , 30 =

3 , 40 = 17

360 Mean = 9.23076923076923 STDdev = 6.45879062451795 When 20 = 0 , 30 =

2 , 40 = 17

359 Mean = 9.23076923076923 STDdev = 6.71569741098989 When 20 = 0 , 30 =

1 , 40 = 17

 168

358 Mean = 9.23076923076923 STDdev = 7.05095570340368 When 20 = 0 , 30 =

0 , 40 = 17

357 Mean = 9.23076923076923 STDdev = 6.72714187971552 When 20 = 0 , 30 =

20 , 40 = 16

356 Mean = 9.23076923076923 STDdev = 6.4468697968483 When 20 = 0 , 30 =

19 , 40 = 16

355 Mean = 9.23076923076923 STDdev = 6.25304659473895 When 20 = 0 , 30 =

18 , 40 = 16

354 Mean = 9.23076923076923 STDdev = 6.15384615384615 When 20 = 0 , 30 =

17 , 40 = 16

353 Mean = 9.23076923076923 STDdev = 6.15384615384615 When 20 = 0 , 30 =

16 , 40 = 16

352 Mean = 9.23076923076923 STDdev = 6.00197206250189 When 20 = 0 , 30 =

15 , 40 = 16

351 Mean = 9.23076923076923 STDdev = 5.95048603255807 When 20 = 0 , 30 =

14 , 40 = 16

350 Mean = 9.23076923076923 STDdev = 6.00197206250189 When 20 = 0 , 30 =

13 , 40 = 16

349 Mean = 9.23076923076923 STDdev = 6.15384615384615 When 20 = 0 , 30 =

12 , 40 = 16

348 Mean = 9.23076923076923 STDdev = 6.39896441325705 When 20 = 0 , 30 =

11 , 40 = 16

347 Mean = 9.23076923076923 STDdev = 6.72714187971552 When 20 = 0 , 30 =

10 , 40 = 16

346 Mean = 9.23076923076923 STDdev = 6.4468697968483 When 20 = 0 , 30 =

9 , 40 = 16

345 Mean = 9.23076923076923 STDdev = 6.25304659473895 When 20 = 0 , 30 =

8 , 40 = 16

344 Mean = 9.23076923076923 STDdev = 6.15384615384615 When 20 = 0 , 30 =

7 , 40 = 16

343 Mean = 9.23076923076923 STDdev = 6.15384615384615 When 20 = 0 , 30 =

6 , 40 = 16

342 Mean = 9.23076923076923 STDdev = 6.00197206250189 When 20 = 0 , 30 =

5 , 40 = 16

 169

341 Mean = 9.23076923076923 STDdev = 5.95048603255807 When 20 = 0 , 30 =

4 , 40 = 16

340 Mean = 9.23076923076923 STDdev = 6.00197206250189 When 20 = 0 , 30 =

3 , 40 = 16

339 Mean = 9.23076923076923 STDdev = 6.15384615384615 When 20 = 0 , 30 =

2 , 40 = 16

338 Mean = 9.23076923076923 STDdev = 6.39896441325705 When 20 = 0 , 30 =

1 , 40 = 16

337 Mean = 9.23076923076923 STDdev = 6.72714187971552 When 20 = 0 , 30 =

0 , 40 = 16

336 Mean = 9.23076923076923 STDdev = 6.45879062451795 When 20 = 0 , 30 =

20 , 40 = 15

335 Mean = 9.23076923076923 STDdev = 6.14133343268064 When 20 = 0 , 30 =

19 , 40 = 15

334 Mean = 9.23076923076923 STDdev = 5.91157724825872 When 20 = 0 , 30 =

18 , 40 = 15

333 Mean = 9.23076923076923 STDdev = 5.77998996743668 When 20 = 0 , 30 =

17 , 40 = 15

332 Mean = 9.23076923076923 STDdev = 5.75331136963543 When 20 = 0 , 30 =

16 , 40 = 15

331 Mean = 9.23076923076923 STDdev = 5.83298111080888 When 20 = 0 , 30 =

15 , 40 = 15

330 Mean = 9.23076923076923 STDdev = 5.75331136963543 When 20 = 0 , 30 =

14 , 40 = 15

329 Mean = 9.23076923076923 STDdev = 5.77998996743668 When 20 = 0 , 30 =

13 , 40 = 15

328 Mean = 9.23076923076923 STDdev = 5.91157724825872 When 20 = 0 , 30 =

12 , 40 = 15

327 Mean = 9.23076923076923 STDdev = 6.14133343268064 When 20 = 0 , 30 =

11 , 40 = 15

326 Mean = 9.23076923076923 STDdev = 6.45879062451795 When 20 = 0 , 30 =

10 , 40 = 15

325 Mean = 9.23076923076923 STDdev = 6.14133343268064 When 20 = 0 , 30 =

9 , 40 = 15

 170

324 Mean = 9.23076923076923 STDdev = 5.91157724825872 When 20 = 0 , 30 =

8 , 40 = 15

323 Mean = 9.23076923076923 STDdev = 5.77998996743668 When 20 = 0 , 30 =

7 , 40 = 15

322 Mean = 9.23076923076923 STDdev = 5.75331136963543 When 20 = 0 , 30 =

6 , 40 = 15

321 Mean = 9.23076923076923 STDdev = 5.83298111080888 When 20 = 0 , 30 =

5 , 40 = 15

320 Mean = 9.23076923076923 STDdev = 5.75331136963543 When 20 = 0 , 30 =

4 , 40 = 15

319 Mean = 9.23076923076923 STDdev = 5.77998996743668 When 20 = 0 , 30 =

3 , 40 = 15

318 Mean = 9.23076923076923 STDdev = 5.91157724825872 When 20 = 0 , 30 =

2 , 40 = 15

317 Mean = 9.23076923076923 STDdev = 6.14133343268064 When 20 = 0 , 30 =

1 , 40 = 15

316 Mean = 9.23076923076923 STDdev = 6.45879062451795 When 20 = 0 , 30 =

0 , 40 = 15

315 Mean = 9.23076923076923 STDdev = 6.25304659473895 When 20 = 0 , 30 =

20 , 40 = 14

314 Mean = 9.23076923076923 STDdev = 5.8985506192864 When 20 = 0 , 30 =

19 , 40 = 14

313 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

18 , 40 = 14

312 Mean = 9.23076923076923 STDdev = 5.46532912871742 When 20 = 0 , 30 =

17 , 40 = 14

311 Mean = 9.23076923076923 STDdev = 5.40873717884521 When 20 = 0 , 30 =

16 , 40 = 14

310 Mean = 9.23076923076923 STDdev = 5.46532912871742 When 20 = 0 , 30 =

15 , 40 = 14

309 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

14 , 40 = 14

308 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

13 , 40 = 14

 171

307 Mean = 9.23076923076923 STDdev = 5.73992557113158 When 20 = 0 , 30 =

12 , 40 = 14

306 Mean = 9.23076923076923 STDdev = 5.95048603255807 When 20 = 0 , 30 =

11 , 40 = 14

305 Mean = 9.23076923076923 STDdev = 6.25304659473895 When 20 = 0 , 30 =

10 , 40 = 14

304 Mean = 9.23076923076923 STDdev = 5.8985506192864 When 20 = 0 , 30 =

9 , 40 = 14

303 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

8 , 40 = 14

302 Mean = 9.23076923076923 STDdev = 5.46532912871742 When 20 = 0 , 30 =

7 , 40 = 14

301 Mean = 9.23076923076923 STDdev = 5.40873717884521 When 20 = 0 , 30 =

6 , 40 = 14

300 Mean = 9.23076923076923 STDdev = 5.46532912871742 When 20 = 0 , 30 =

5 , 40 = 14

299 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

4 , 40 = 14

298 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

3 , 40 = 14

297 Mean = 9.23076923076923 STDdev = 5.73992557113158 When 20 = 0 , 30 =

2 , 40 = 14

296 Mean = 9.23076923076923 STDdev = 5.95048603255807 When 20 = 0 , 30 =

1 , 40 = 14

295 Mean = 9.23076923076923 STDdev = 6.25304659473895 When 20 = 0 , 30 =

0 , 40 = 14

294 Mean = 9.23076923076923 STDdev = 6.11623119442591 When 20 = 0 , 30 =

20 , 40 = 13

293 Mean = 9.23076923076923 STDdev = 5.72650848321069 When 20 = 0 , 30 =

19 , 40 = 13

292 Mean = 9.23076923076923 STDdev = 5.42294053292756 When 20 = 0 , 30 =

18 , 40 = 13

291 Mean = 9.23076923076923 STDdev = 5.22057830798682 When 20 = 0 , 30 =

17 , 40 = 13

 172

290 Mean = 9.23076923076923 STDdev = 5.1314092554332 When 20 = 0 , 30 =

16 , 40 = 13

289 Mean = 9.23076923076923 STDdev = 5.16130344529731 When 20 = 0 , 30 =

15 , 40 = 13

288 Mean = 9.23076923076923 STDdev = 5.3082496920265 When 20 = 0 , 30 =

14 , 40 = 13

287 Mean = 9.23076923076923 STDdev = 5.56297991746601 When 20 = 0 , 30 =

13 , 40 = 13

286 Mean = 9.23076923076923 STDdev = 5.64533634827962 When 20 = 0 , 30 =

12 , 40 = 13

285 Mean = 9.23076923076923 STDdev = 5.83298111080888 When 20 = 0 , 30 =

11 , 40 = 13

284 Mean = 9.23076923076923 STDdev = 6.11623119442591 When 20 = 0 , 30 =

10 , 40 = 13

283 Mean = 9.23076923076923 STDdev = 5.72650848321069 When 20 = 0 , 30 =

9 , 40 = 13

282 Mean = 9.23076923076923 STDdev = 5.42294053292756 When 20 = 0 , 30 =

8 , 40 = 13

281 Mean = 9.23076923076923 STDdev = 5.22057830798682 When 20 = 0 , 30 =

7 , 40 = 13

280 Mean = 9.23076923076923 STDdev = 5.1314092554332 When 20 = 0 , 30 =

6 , 40 = 13

279 Mean = 9.23076923076923 STDdev = 5.16130344529731 When 20 = 0 , 30 =

5 , 40 = 13

278 Mean = 9.23076923076923 STDdev = 5.3082496920265 When 20 = 0 , 30 =

4 , 40 = 13

277 Mean = 9.23076923076923 STDdev = 5.56297991746601 When 20 = 0 , 30 =

3 , 40 = 13

276 Mean = 9.23076923076923 STDdev = 5.64533634827962 When 20 = 0 , 30 =

2 , 40 = 13

275 Mean = 9.23076923076923 STDdev = 5.83298111080888 When 20 = 0 , 30 =

1 , 40 = 13

274 Mean = 9.23076923076923 STDdev = 6.11623119442591 When 20 = 0 , 30 =

0 , 40 = 13

 173

273 Mean = 9.23076923076923 STDdev = 6.05302017627877 When 20 = 0 , 30 =

20 , 40 = 12

272 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

19 , 40 = 12

271 Mean = 9.23076923076923 STDdev = 5.29373862587239 When 20 = 0 , 30 =

18 , 40 = 12

270 Mean = 9.23076923076923 STDdev = 5.05590053081692 When 20 = 0 , 30 =

17 , 40 = 12

269 Mean = 9.23076923076923 STDdev = 4.93268293596351 When 20 = 0 , 30 =

16 , 40 = 12

268 Mean = 9.23076923076923 STDdev = 4.93268293596351 When 20 = 0 , 30 =

15 , 40 = 12

267 Mean = 9.23076923076923 STDdev = 5.05590053081692 When 20 = 0 , 30 =

14 , 40 = 12

266 Mean = 9.23076923076923 STDdev = 5.29373862587239 When 20 = 0 , 30 =

13 , 40 = 12

265 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

12 , 40 = 12

264 Mean = 9.23076923076923 STDdev = 5.79328319500392 When 20 = 0 , 30 =

11 , 40 = 12

263 Mean = 9.23076923076923 STDdev = 6.05302017627877 When 20 = 0 , 30 =

10 , 40 = 12

262 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

9 , 40 = 12

261 Mean = 9.23076923076923 STDdev = 5.29373862587239 When 20 = 0 , 30 =

8 , 40 = 12

260 Mean = 9.23076923076923 STDdev = 5.05590053081692 When 20 = 0 , 30 =

7 , 40 = 12

259 Mean = 9.23076923076923 STDdev = 4.93268293596351 When 20 = 0 , 30 =

6 , 40 = 12

258 Mean = 9.23076923076923 STDdev = 4.93268293596351 When 20 = 0 , 30 =

5 , 40 = 12

257 Mean = 9.23076923076923 STDdev = 5.05590053081692 When 20 = 0 , 30 =

4 , 40 = 12

 174

256 Mean = 9.23076923076923 STDdev = 5.29373862587239 When 20 = 0 , 30 =

3 , 40 = 12

255 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

2 , 40 = 12

254 Mean = 9.23076923076923 STDdev = 5.79328319500392 When 20 = 0 , 30 =

1 , 40 = 12

253 Mean = 9.23076923076923 STDdev = 6.05302017627877 When 20 = 0 , 30 =

0 , 40 = 12

252 Mean = 9.23076923076923 STDdev = 6.06571507806656 When 20 = 0 , 30 =

20 , 40 = 11

251 Mean = 9.23076923076923 STDdev = 5.61801834969545 When 20 = 0 , 30 =

19 , 40 = 11

250 Mean = 9.23076923076923 STDdev = 5.24996477869279 When 20 = 0 , 30 =

18 , 40 = 11

249 Mean = 9.23076923076923 STDdev = 4.97924687159454 When 20 = 0 , 30 =

17 , 40 = 11

248 Mean = 9.23076923076923 STDdev = 4.8222855442023 When 20 = 0 , 30 =

16 , 40 = 11

247 Mean = 9.23076923076923 STDdev = 4.79027614675085 When 20 = 0 , 30 =

15 , 40 = 11

246 Mean = 9.23076923076923 STDdev = 4.88567523329244 When 20 = 0 , 30 =

14 , 40 = 11

245 Mean = 9.23076923076923 STDdev = 5.10133988664285 When 20 = 0 , 30 =

13 , 40 = 11

244 Mean = 9.23076923076923 STDdev = 5.42294053292756 When 20 = 0 , 30 =

12 , 40 = 11

243 Mean = 9.23076923076923 STDdev = 5.83298111080889 When 20 = 0 , 30 =

11 , 40 = 11

242 Mean = 9.23076923076923 STDdev = 6.06571507806656 When 20 = 0 , 30 =

10 , 40 = 11

241 Mean = 9.23076923076923 STDdev = 5.61801834969545 When 20 = 0 , 30 =

9 , 40 = 11

240 Mean = 9.23076923076923 STDdev = 5.24996477869279 When 20 = 0 , 30 =

8 , 40 = 11

 175

239 Mean = 9.23076923076923 STDdev = 4.97924687159454 When 20 = 0 , 30 =

7 , 40 = 11

238 Mean = 9.23076923076923 STDdev = 4.8222855442023 When 20 = 0 , 30 =

6 , 40 = 11

237 Mean = 9.23076923076923 STDdev = 4.79027614675085 When 20 = 0 , 30 =

5 , 40 = 11

236 Mean = 9.23076923076923 STDdev = 4.88567523329244 When 20 = 0 , 30 =

4 , 40 = 11

235 Mean = 9.23076923076923 STDdev = 5.10133988664285 When 20 = 0 , 30 =

3 , 40 = 11

234 Mean = 9.23076923076923 STDdev = 5.42294053292756 When 20 = 0 , 30 =

2 , 40 = 11

233 Mean = 9.23076923076923 STDdev = 5.83298111080888 When 20 = 0 , 30 =

1 , 40 = 11

232 Mean = 9.23076923076923 STDdev = 6.06571507806656 When 20 = 0 , 30 =

0 , 40 = 11

231 Mean = 9.23076923076923 STDdev = 6.15384615384615 When 20 = 0 , 30 =

20 , 40 = 10

230 Mean = 9.23076923076923 STDdev = 5.6860672654081 When 20 = 0 , 30 =

19 , 40 = 10

229 Mean = 9.23076923076923 STDdev = 5.29373862587239 When 20 = 0 , 30 =

18 , 40 = 10

228 Mean = 9.23076923076923 STDdev = 4.99467171715321 When 20 = 0 , 30 =

17 , 40 = 10

227 Mean = 9.23076923076923 STDdev = 4.80630749286563 When 20 = 0 , 30 =

16 , 40 = 10

226 Mean = 9.23076923076923 STDdev = 4.74185692536075 When 20 = 0 , 30 =

15 , 40 = 10

225 Mean = 9.23076923076923 STDdev = 4.80630749286563 When 20 = 0 , 30 =

14 , 40 = 10

224 Mean = 9.23076923076923 STDdev = 4.99467171715321 When 20 = 0 , 30 =

13 , 40 = 10

223 Mean = 9.23076923076923 STDdev = 5.29373862587239 When 20 = 0 , 30 =

12 , 40 = 10

 176

222 Mean = 9.23076923076923 STDdev = 5.6860672654081 When 20 = 0 , 30 =

11 , 40 = 10

221 Mean = 9.23076923076923 STDdev = 6.15384615384615 When 20 = 0 , 30 =

10 , 40 = 10

220 Mean = 9.23076923076923 STDdev = 5.6860672654081 When 20 = 0 , 30 =

9 , 40 = 10

219 Mean = 9.23076923076923 STDdev = 5.29373862587239 When 20 = 0 , 30 =

8 , 40 = 10

218 Mean = 9.23076923076923 STDdev = 4.99467171715321 When 20 = 0 , 30 =

7 , 40 = 10

217 Mean = 9.23076923076923 STDdev = 4.80630749286563 When 20 = 0 , 30 =

6 , 40 = 10

216 Mean = 9.23076923076923 STDdev = 4.74185692536075 When 20 = 0 , 30 =

5 , 40 = 10

215 Mean = 9.23076923076923 STDdev = 4.80630749286563 When 20 = 0 , 30 =

4 , 40 = 10

214 Mean = 9.23076923076923 STDdev = 4.99467171715321 When 20 = 0 , 30 =

3 , 40 = 10

213 Mean = 9.23076923076923 STDdev = 5.29373862587239 When 20 = 0 , 30 =

2 , 40 = 10

212 Mean = 9.23076923076923 STDdev = 5.6860672654081 When 20 = 0 , 30 =

1 , 40 = 10

211 Mean = 9.23076923076923 STDdev = 6.15384615384615 When 20 = 0 , 30 =

0 , 40 = 10

210 Mean = 9.23076923076923 STDdev = 6.06571507806656 When 20 = 0 , 30 =

20 , 40 = 9

209 Mean = 9.23076923076923 STDdev = 5.83298111080888 When 20 = 0 , 30 =

19 , 40 = 9

208 Mean = 9.23076923076923 STDdev = 5.42294053292756 When 20 = 0 , 30 =

18 , 40 = 9

207 Mean = 9.23076923076923 STDdev = 5.10133988664285 When 20 = 0 , 30 =

17 , 40 = 9

206 Mean = 9.23076923076923 STDdev = 4.88567523329244 When 20 = 0 , 30 =

16 , 40 = 9

 177

205 Mean = 9.23076923076923 STDdev = 4.79027614675085 When 20 = 0 , 30 =

15 , 40 = 9

204 Mean = 9.23076923076923 STDdev = 4.8222855442023 When 20 = 0 , 30 =

14 , 40 = 9

203 Mean = 9.23076923076923 STDdev = 4.97924687159454 When 20 = 0 , 30 =

13 , 40 = 9

202 Mean = 9.23076923076923 STDdev = 5.24996477869279 When 20 = 0 , 30 =

12 , 40 = 9

201 Mean = 9.23076923076923 STDdev = 5.61801834969545 When 20 = 0 , 30 =

11 , 40 = 9

200 Mean = 9.23076923076923 STDdev = 6.06571507806656 When 20 = 0 , 30 =

10 , 40 = 9

199 Mean = 9.23076923076923 STDdev = 5.83298111080888 When 20 = 0 , 30 =

9 , 40 = 9

198 Mean = 9.23076923076923 STDdev = 5.42294053292756 When 20 = 0 , 30 =

8 , 40 = 9

197 Mean = 9.23076923076923 STDdev = 5.10133988664285 When 20 = 0 , 30 =

7 , 40 = 9

196 Mean = 9.23076923076923 STDdev = 4.88567523329244 When 20 = 0 , 30 =

6 , 40 = 9

195 Mean = 9.23076923076923 STDdev = 4.79027614675085 When 20 = 0 , 30 =

5 , 40 = 9

194 Mean = 9.23076923076923 STDdev = 4.8222855442023 When 20 = 0 , 30 =

4 , 40 = 9

193 Mean = 9.23076923076923 STDdev = 4.97924687159454 When 20 = 0 , 30 =

3 , 40 = 9

192 Mean = 9.23076923076923 STDdev = 5.24996477869279 When 20 = 0 , 30 =

2 , 40 = 9

191 Mean = 9.23076923076923 STDdev = 5.61801834969545 When 20 = 0 , 30 =

1 , 40 = 9

190 Mean = 9.23076923076923 STDdev = 6.06571507806656 When 20 = 0 , 30 =

0 , 40 = 9

189 Mean = 9.23076923076923 STDdev = 6.05302017627877 When 20 = 0 , 30 =

20 , 40 = 8

 178

188 Mean = 9.23076923076923 STDdev = 5.79328319500392 When 20 = 0 , 30 =

19 , 40 = 8

187 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

18 , 40 = 8

186 Mean = 9.23076923076923 STDdev = 5.29373862587239 When 20 = 0 , 30 =

17 , 40 = 8

185 Mean = 9.23076923076923 STDdev = 5.05590053081692 When 20 = 0 , 30 =

16 , 40 = 8

184 Mean = 9.23076923076923 STDdev = 4.93268293596351 When 20 = 0 , 30 =

15 , 40 = 8

183 Mean = 9.23076923076923 STDdev = 4.93268293596351 When 20 = 0 , 30 =

14 , 40 = 8

182 Mean = 9.23076923076923 STDdev = 5.05590053081692 When 20 = 0 , 30 =

13 , 40 = 8

181 Mean = 9.23076923076923 STDdev = 5.29373862587239 When 20 = 0 , 30 =

12 , 40 = 8

180 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

11 , 40 = 8

179 Mean = 9.23076923076923 STDdev = 6.05302017627877 When 20 = 0 , 30 =

10 , 40 = 8

178 Mean = 9.23076923076923 STDdev = 5.79328319500392 When 20 = 0 , 30 =

9 , 40 = 8

177 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

8 , 40 = 8

176 Mean = 9.23076923076923 STDdev = 5.29373862587239 When 20 = 0 , 30 =

7 , 40 = 8

175 Mean = 9.23076923076923 STDdev = 5.05590053081692 When 20 = 0 , 30 =

6 , 40 = 8

174 Mean = 9.23076923076923 STDdev = 4.93268293596351 When 20 = 0 , 30 =

5 , 40 = 8

173 Mean = 9.23076923076923 STDdev = 4.93268293596351 When 20 = 0 , 30 =

4 , 40 = 8

172 Mean = 9.23076923076923 STDdev = 5.05590053081692 When 20 = 0 , 30 =

3 , 40 = 8

 179

171 Mean = 9.23076923076923 STDdev = 5.29373862587239 When 20 = 0 , 30 =

2 , 40 = 8

170 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

1 , 40 = 8

169 Mean = 9.23076923076923 STDdev = 6.05302017627877 When 20 = 0 , 30 =

0 , 40 = 8

168 Mean = 9.23076923076923 STDdev = 6.11623119442591 When 20 = 0 , 30 =

20 , 40 = 7

167 Mean = 9.23076923076923 STDdev = 5.83298111080888 When 20 = 0 , 30 =

19 , 40 = 7

166 Mean = 9.23076923076923 STDdev = 5.64533634827962 When 20 = 0 , 30 =

18 , 40 = 7

165 Mean = 9.23076923076923 STDdev = 5.56297991746601 When 20 = 0 , 30 =

17 , 40 = 7

164 Mean = 9.23076923076923 STDdev = 5.3082496920265 When 20 = 0 , 30 =

16 , 40 = 7

163 Mean = 9.23076923076923 STDdev = 5.16130344529731 When 20 = 0 , 30 =

15 , 40 = 7

162 Mean = 9.23076923076923 STDdev = 5.1314092554332 When 20 = 0 , 30 =

14 , 40 = 7

161 Mean = 9.23076923076923 STDdev = 5.22057830798682 When 20 = 0 , 30 =

13 , 40 = 7

160 Mean = 9.23076923076923 STDdev = 5.42294053292756 When 20 = 0 , 30 =

12 , 40 = 7

159 Mean = 9.23076923076923 STDdev = 5.72650848321069 When 20 = 0 , 30 =

11 , 40 = 7

158 Mean = 9.23076923076923 STDdev = 6.11623119442591 When 20 = 0 , 30 =

10 , 40 = 7

157 Mean = 9.23076923076923 STDdev = 5.83298111080888 When 20 = 0 , 30 =

9 , 40 = 7

156 Mean = 9.23076923076923 STDdev = 5.64533634827962 When 20 = 0 , 30 =

8 , 40 = 7

155 Mean = 9.23076923076923 STDdev = 5.56297991746601 When 20 = 0 , 30 =

7 , 40 = 7

 180

154 Mean = 9.23076923076923 STDdev = 5.3082496920265 When 20 = 0 , 30 =

6 , 40 = 7

153 Mean = 9.23076923076923 STDdev = 5.16130344529731 When 20 = 0 , 30 =

5 , 40 = 7

152 Mean = 9.23076923076923 STDdev = 5.1314092554332 When 20 = 0 , 30 =

4 , 40 = 7

151 Mean = 9.23076923076923 STDdev = 5.22057830798682 When 20 = 0 , 30 =

3 , 40 = 7

150 Mean = 9.23076923076923 STDdev = 5.42294053292756 When 20 = 0 , 30 =

2 , 40 = 7

149 Mean = 9.23076923076923 STDdev = 5.72650848321069 When 20 = 0 , 30 =

1 , 40 = 7

148 Mean = 9.23076923076923 STDdev = 6.11623119442591 When 20 = 0 , 30 =

0 , 40 = 7

147 Mean = 9.23076923076923 STDdev = 6.25304659473895 When 20 = 0 , 30 =

20 , 40 = 6

146 Mean = 9.23076923076923 STDdev = 5.95048603255807 When 20 = 0 , 30 =

19 , 40 = 6

145 Mean = 9.23076923076923 STDdev = 5.73992557113158 When 20 = 0 , 30 =

18 , 40 = 6

144 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

17 , 40 = 6

143 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

16 , 40 = 6

142 Mean = 9.23076923076923 STDdev = 5.46532912871742 When 20 = 0 , 30 =

15 , 40 = 6

141 Mean = 9.23076923076923 STDdev = 5.40873717884521 When 20 = 0 , 30 =

14 , 40 = 6

140 Mean = 9.23076923076923 STDdev = 5.46532912871742 When 20 = 0 , 30 =

13 , 40 = 6

139 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

12 , 40 = 6

138 Mean = 9.23076923076923 STDdev = 5.8985506192864 When 20 = 0 , 30 =

11 , 40 = 6

 181

137 Mean = 9.23076923076923 STDdev = 6.25304659473895 When 20 = 0 , 30 =

10 , 40 = 6

136 Mean = 9.23076923076923 STDdev = 5.95048603255807 When 20 = 0 , 30 =

9 , 40 = 6

135 Mean = 9.23076923076923 STDdev = 5.73992557113158 When 20 = 0 , 30 =

8 , 40 = 6

134 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

7 , 40 = 6

133 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

6 , 40 = 6

132 Mean = 9.23076923076923 STDdev = 5.46532912871742 When 20 = 0 , 30 =

5 , 40 = 6

131 Mean = 9.23076923076923 STDdev = 5.40873717884521 When 20 = 0 , 30 =

4 , 40 = 6

130 Mean = 9.23076923076923 STDdev = 5.46532912871742 When 20 = 0 , 30 =

3 , 40 = 6

129 Mean = 9.23076923076923 STDdev = 5.63169391314558 When 20 = 0 , 30 =

2 , 40 = 6

128 Mean = 9.23076923076923 STDdev = 5.8985506192864 When 20 = 0 , 30 =

1 , 40 = 6

127 Mean = 9.23076923076923 STDdev = 6.25304659473895 When 20 = 0 , 30 =

0 , 40 = 6

126 Mean = 9.23076923076923 STDdev = 6.45879062451795 When 20 = 0 , 30 =

20 , 40 = 5

125 Mean = 9.23076923076923 STDdev = 6.14133343268064 When 20 = 0 , 30 =

19 , 40 = 5

124 Mean = 9.23076923076923 STDdev = 5.91157724825872 When 20 = 0 , 30 =

18 , 40 = 5

123 Mean = 9.23076923076923 STDdev = 5.77998996743668 When 20 = 0 , 30 =

17 , 40 = 5

122 Mean = 9.23076923076923 STDdev = 5.75331136963543 When 20 = 0 , 30 =

16 , 40 = 5

121 Mean = 9.23076923076923 STDdev = 5.83298111080888 When 20 = 0 , 30 =

15 , 40 = 5

 182

120 Mean = 9.23076923076923 STDdev = 5.75331136963543 When 20 = 0 , 30 =

14 , 40 = 5

119 Mean = 9.23076923076923 STDdev = 5.77998996743668 When 20 = 0 , 30 =

13 , 40 = 5

118 Mean = 9.23076923076923 STDdev = 5.91157724825872 When 20 = 0 , 30 =

12 , 40 = 5

117 Mean = 9.23076923076923 STDdev = 6.14133343268064 When 20 = 0 , 30 =

11 , 40 = 5

116 Mean = 9.23076923076923 STDdev = 6.45879062451795 When 20 = 0 , 30 =

10 , 40 = 5

115 Mean = 9.23076923076923 STDdev = 6.14133343268064 When 20 = 0 , 30 =

9 , 40 = 5

114 Mean = 9.23076923076923 STDdev = 5.91157724825872 When 20 = 0 , 30 =

8 , 40 = 5

113 Mean = 9.23076923076923 STDdev = 5.77998996743668 When 20 = 0 , 30 =

7 , 40 = 5

112 Mean = 9.23076923076923 STDdev = 5.75331136963543 When 20 = 0 , 30 =

6 , 40 = 5

111 Mean = 9.23076923076923 STDdev = 5.83298111080888 When 20 = 0 , 30 =

5 , 40 = 5

110 Mean = 9.23076923076923 STDdev = 5.75331136963543 When 20 = 0 , 30 =

4 , 40 = 5

109 Mean = 9.23076923076923 STDdev = 5.77998996743668 When 20 = 0 , 30 =

3 , 40 = 5

108 Mean = 9.23076923076923 STDdev = 5.91157724825872 When 20 = 0 , 30 =

2 , 40 = 5

107 Mean = 9.23076923076923 STDdev = 6.14133343268064 When 20 = 0 , 30 =

1 , 40 = 5

106 Mean = 9.23076923076923 STDdev = 6.45879062451795 When 20 = 0 , 30 =

0 , 40 = 5

105 Mean = 9.23076923076923 STDdev = 6.72714187971552 When 20 = 0 , 30 =

20 , 40 = 4

104 Mean = 9.23076923076923 STDdev = 6.39896441325705 When 20 = 0 , 30 =

19 , 40 = 4

 183

103 Mean = 9.23076923076923 STDdev = 6.15384615384615 When 20 = 0 , 30 =

18 , 40 = 4

102 Mean = 9.23076923076923 STDdev = 6.00197206250189 When 20 = 0 , 30 =

17 , 40 = 4

101 Mean = 9.23076923076923 STDdev = 5.95048603255807 When 20 = 0 , 30 =

16 , 40 = 4

100 Mean = 9.23076923076923 STDdev = 6.00197206250189 When 20 = 0 , 30 =

15 , 40 = 4

99 Mean = 9.23076923076923 STDdev = 6.15384615384615 When 20 = 0 , 30 =

14 , 40 = 4

98 Mean = 9.23076923076923 STDdev = 6.15384615384615 When 20 = 0 , 30 =

13 , 40 = 4

97 Mean = 9.23076923076923 STDdev = 6.25304659473895 When 20 = 0 , 30 =

12 , 40 = 4

96 Mean = 9.23076923076923 STDdev = 6.4468697968483 When 20 = 0 , 30 =

11 , 40 = 4

95 Mean = 9.23076923076923 STDdev = 6.72714187971552 When 20 = 0 , 30 =

10 , 40 = 4

94 Mean = 9.23076923076923 STDdev = 6.39896441325705 When 20 = 0 , 30 =

9 , 40 = 4

93 Mean = 9.23076923076923 STDdev = 6.15384615384615 When 20 = 0 , 30 =

8 , 40 = 4

92 Mean = 9.23076923076923 STDdev = 6.0019720625019 When 20 = 0 , 30 = 7

, 40 = 4

91 Mean = 9.23076923076923 STDdev = 5.95048603255807 When 20 = 0 , 30 =

6 , 40 = 4

90 Mean = 9.23076923076923 STDdev = 6.00197206250189 When 20 = 0 , 30 =

5 , 40 = 4

89 Mean = 9.23076923076923 STDdev = 6.15384615384615 When 20 = 0 , 30 =

4 , 40 = 4

88 Mean = 9.23076923076923 STDdev = 6.15384615384615 When 20 = 0 , 30 =

3 , 40 = 4

87 Mean = 9.23076923076923 STDdev = 6.25304659473895 When 20 = 0 , 30 =

2 , 40 = 4

 184

86 Mean = 9.23076923076923 STDdev = 6.4468697968483 When 20 = 0 , 30 = 1

, 40 = 4

85 Mean = 9.23076923076923 STDdev = 6.72714187971552 When 20 = 0 , 30 =

0 , 40 = 4

84 Mean = 9.23076923076923 STDdev = 7.05095570340368 When 20 = 0 , 30 =

20 , 40 = 3

83 Mean = 9.23076923076923 STDdev = 6.71569741098989 When 20 = 0 , 30 =

19 , 40 = 3

82 Mean = 9.23076923076923 STDdev = 6.45879062451795 When 20 = 0 , 30 =

18 , 40 = 3

81 Mean = 9.23076923076923 STDdev = 6.28984341438758 When 20 = 0 , 30 =

17 , 40 = 3

80 Mean = 9.23076923076923 STDdev = 6.21603195410367 When 20 = 0 , 30 =

16 , 40 = 3

79 Mean = 9.23076923076923 STDdev = 6.24073277445287 When 20 = 0 , 30 =

15 , 40 = 3

78 Mean = 9.23076923076923 STDdev = 6.36279868458776 When 20 = 0 , 30 =

14 , 40 = 3

77 Mean = 9.23076923076923 STDdev = 6.57681061532279 When 20 = 0 , 30 =

13 , 40 = 3

76 Mean = 9.23076923076923 STDdev = 6.64661679299322 When 20 = 0 , 30 =

12 , 40 = 3

75 Mean = 9.23076923076923 STDdev = 6.80671440173198 When 20 = 0 , 30 =

11 , 40 = 3

74 Mean = 9.23076923076923 STDdev = 7.05095570340369 When 20 = 0 , 30 =

10 , 40 = 3

73 Mean = 9.23076923076923 STDdev = 6.71569741098989 When 20 = 0 , 30 =

9 , 40 = 3

72 Mean = 9.23076923076923 STDdev = 6.45879062451795 When 20 = 0 , 30 =

8 , 40 = 3

71 Mean = 9.23076923076923 STDdev = 6.28984341438758 When 20 = 0 , 30 =

7 , 40 = 3

70 Mean = 9.23076923076923 STDdev = 6.21603195410367 When 20 = 0 , 30 =

6 , 40 = 3

 185

69 Mean = 9.23076923076923 STDdev = 6.24073277445287 When 20 = 0 , 30 =

5 , 40 = 3

68 Mean = 9.23076923076923 STDdev = 6.36279868458776 When 20 = 0 , 30 =

4 , 40 = 3

67 Mean = 9.23076923076923 STDdev = 6.57681061532279 When 20 = 0 , 30 =

3 , 40 = 3

66 Mean = 9.23076923076923 STDdev = 6.64661679299322 When 20 = 0 , 30 =

2 , 40 = 3

65 Mean = 9.23076923076923 STDdev = 6.80671440173198 When 20 = 0 , 30 =

1 , 40 = 3

64 Mean = 9.23076923076923 STDdev = 7.05095570340368 When 20 = 0 , 30 =

0 , 40 = 3

63 Mean = 9.23076923076923 STDdev = 7.42297728111681 When 20 = 0 , 30 =

20 , 40 = 2

62 Mean = 9.23076923076923 STDdev = 7.08360888198236 When 20 = 0 , 30 =

19 , 40 = 2

61 Mean = 9.23076923076923 STDdev = 6.81800609420318 When 20 = 0 , 30 =

18 , 40 = 2

60 Mean = 9.23076923076923 STDdev = 6.63503343164548 When 20 = 0 , 30 =

17 , 40 = 2

59 Mean = 9.23076923076923 STDdev = 6.54162819245209 When 20 = 0 , 30 =

16 , 40 = 2

58 Mean = 9.23076923076923 STDdev = 6.54162819245209 When 20 = 0 , 30 =

15 , 40 = 2

57 Mean = 9.23076923076923 STDdev = 6.63503343164549 When 20 = 0 , 30 =

14 , 40 = 2

56 Mean = 9.23076923076923 STDdev = 6.81800609420318 When 20 = 0 , 30 =

13 , 40 = 2

55 Mean = 9.23076923076923 STDdev = 7.08360888198236 When 20 = 0 , 30 =

12 , 40 = 2

54 Mean = 9.23076923076923 STDdev = 7.21274348906526 When 20 = 0 , 30 =

11 , 40 = 2

53 Mean = 9.23076923076923 STDdev = 7.42297728111681 When 20 = 0 , 30 =

10 , 40 = 2

 186

52 Mean = 9.23076923076923 STDdev = 7.08360888198236 When 20 = 0 , 30 =

9 , 40 = 2

51 Mean = 9.23076923076923 STDdev = 6.81800609420318 When 20 = 0 , 30 =

8 , 40 = 2

50 Mean = 9.23076923076923 STDdev = 6.63503343164549 When 20 = 0 , 30 =

7 , 40 = 2

49 Mean = 9.23076923076923 STDdev = 6.54162819245209 When 20 = 0 , 30 =

6 , 40 = 2

48 Mean = 9.23076923076923 STDdev = 6.54162819245209 When 20 = 0 , 30 =

5 , 40 = 2

47 Mean = 9.23076923076923 STDdev = 6.63503343164548 When 20 = 0 , 30 =

4 , 40 = 2

46 Mean = 9.23076923076923 STDdev = 6.81800609420318 When 20 = 0 , 30 =

3 , 40 = 2

45 Mean = 9.23076923076923 STDdev = 7.08360888198236 When 20 = 0 , 30 =

2 , 40 = 2

44 Mean = 9.23076923076923 STDdev = 7.21274348906526 When 20 = 0 , 30 =

1 , 40 = 2

43 Mean = 9.23076923076923 STDdev = 7.42297728111681 When 20 = 0 , 30 =

0 , 40 = 2

42 Mean = 9.23076923076923 STDdev = 7.83634379182464 When 20 = 0 , 30 =

20 , 40 = 1

41 Mean = 9.23076923076923 STDdev = 7.49516609508418 When 20 = 0 , 30 =

19 , 40 = 1

40 Mean = 9.23076923076923 STDdev = 7.22340050065753 When 20 = 0 , 30 =

18 , 40 = 1

39 Mean = 9.23076923076923 STDdev = 7.02910264711426 When 20 = 0 , 30 =

17 , 40 = 1

38 Mean = 9.23076923076923 STDdev = 6.9188020990058 When 20 = 0 , 30 =

16 , 40 = 1

37 Mean = 9.23076923076923 STDdev = 6.89653029990551 When 20 = 0 , 30 =

15 , 40 = 1

36 Mean = 9.23076923076923 STDdev = 6.96313198931283 When 20 = 0 , 30 =

14 , 40 = 1

 187

35 Mean = 9.23076923076923 STDdev = 7.11611222890968 When 20 = 0 , 30 =

13 , 40 = 1

34 Mean = 9.23076923076923 STDdev = 7.35007949882539 When 20 = 0 , 30 =

12 , 40 = 1

33 Mean = 9.23076923076923 STDdev = 7.65761407061219 When 20 = 0 , 30 =

11 , 40 = 1

32 Mean = 9.23076923076923 STDdev = 7.83634379182465 When 20 = 0 , 30 =

10 , 40 = 1

31 Mean = 9.23076923076923 STDdev = 7.49516609508418 When 20 = 0 , 30 =

9 , 40 = 1

30 Mean = 9.23076923076923 STDdev = 7.22340050065753 When 20 = 0 , 30 =

8 , 40 = 1

29 Mean = 9.23076923076923 STDdev = 7.02910264711426 When 20 = 0 , 30 =

7 , 40 = 1

28 Mean = 9.23076923076923 STDdev = 6.9188020990058 When 20 = 0 , 30 = 6

, 40 = 1

27 Mean = 9.23076923076923 STDdev = 6.89653029990551 When 20 = 0 , 30 =

5 , 40 = 1

26 Mean = 9.23076923076923 STDdev = 6.96313198931283 When 20 = 0 , 30 =

4 , 40 = 1

25 Mean = 9.23076923076923 STDdev = 7.11611222890968 When 20 = 0 , 30 =

3 , 40 = 1

24 Mean = 9.23076923076923 STDdev = 7.35007949882539 When 20 = 0 , 30 =

2 , 40 = 1

23 Mean = 9.23076923076923 STDdev = 7.65761407061219 When 20 = 0 , 30 =

1 , 40 = 1

22 Mean = 9.23076923076923 STDdev = 7.83634379182464 When 20 = 0 , 30 =

0 , 40 = 1

21 Mean = 9.23076923076923 STDdev = 8.28486893405308 When 20 = 0 , 30 =

20 , 40 = 0

20 Mean = 9.23076923076923 STDdev = 7.9435880882619 When 20 = 0 , 30 =

19 , 40 = 0

19 Mean = 9.23076923076923 STDdev = 7.66765279653976 When 20 = 0 , 30 =

18 , 40 = 0

 188

18 Mean = 9.23076923076923 STDdev = 7.46431352043582 When 20 = 0 , 30 =

17 , 40 = 0

17 Mean = 9.23076923076923 STDdev = 7.33960642577019 When 20 = 0 , 30 =

16 , 40 = 0

16 Mean = 9.23076923076923 STDdev = 7.2975638311578 When 20 = 0 , 30 =

15 , 40 = 0

15 Mean = 9.23076923076923 STDdev = 7.33960642577019 When 20 = 0 , 30 =

14 , 40 = 0

14 Mean = 9.23076923076923 STDdev = 7.46431352043582 When 20 = 0 , 30 =

13 , 40 = 0

13 Mean = 9.23076923076923 STDdev = 7.66765279653976 When 20 = 0 , 30 =

12 , 40 = 0

12 Mean = 9.23076923076923 STDdev = 7.9435880882619 When 20 = 0 , 30 =

11 , 40 = 0

11 Mean = 9.23076923076923 STDdev = 8.28486893405308 When 20 = 0 , 30 =

10 , 40 = 0

10 Mean = 9.23076923076923 STDdev = 7.9435880882619 When 20 = 0 , 30 = 9

, 40 = 0

9 Mean = 9.23076923076923 STDdev = 7.66765279653976 When 20 = 0 , 30 = 8

, 40 = 0

8 Mean = 9.23076923076923 STDdev = 7.46431352043582 When 20 = 0 , 30 = 7

, 40 = 0

7 Mean = 9.23076923076923 STDdev = 7.33960642577019 When 20 = 0 , 30 = 6

, 40 = 0

6 Mean = 9.23076923076923 STDdev = 7.2975638311578 When 20 = 0 , 30 = 5 ,

40 = 0

5 Mean = 9.23076923076923 STDdev = 7.33960642577019 When 20 = 0 , 30 = 4

, 40 = 0

4 Mean = 9.23076923076923 STDdev = 7.46431352043582 When 20 = 0 , 30 = 3

, 40 = 0

3 Mean = 9.23076923076923 STDdev = 7.66765279653976 When 20 = 0 , 30 = 2

, 40 = 0

2 Mean = 9.23076923076923 STDdev = 7.9435880882619 When 20 = 0 , 30 = 1 ,

40 = 0

 189

1 Mean = 9.23076923076923 STDdev = 8.28486893405308 When 20 = 0 , 30 = 0

, 40 = 0

 190

Appendix 7: TTCAN Node Schematic

 191

Appendix 8: Embedded ‘C’ Software

1 //**

2 //PIC microcontroller P18F2480.

3 //

4 // Master in Engineering

5 //

6 // "Master Node sending Message every 20ms for a matrix 600ms long"

7 //

8 // Written by Henry Acheson of Advanced Automotive Electronic Control Group,

9 // WIT, Cork Road, Waterford, Ireland.

10 //

11 //Date: 06-02-2007

12 //Version 1.00

13 //**

14 unsigned count;

15 char aa, aa1, lenn, i;

16 char data[8];

17 long id;

18 void interrupt()

19 {

20 TMR0L = 0xdb;

21 TMR0H = 0xB1;

22 INTCON = 0x20; // Set T0IE, clear T0IF

23 i++; // Increment value of "i" on every interrupt

24 count = i;

25 }

26 void main()

27 {

28 i = 0;

29 count = 1;

30 T0CON = 0x80; // Assign prescaler to TMR0

31 TMR0L = 0xd3;

32 TMR0H = 0x9e;

33

34 aa = 0;

35 aa1 = 0;

36 aa = CAN_CONFIG_SAMPLE_THRICE & CAN_CONFIG_PHSEG2_PRG_ON &

37 CAN_CONFIG_ALL_MSG & CAN_CONFIG_DBL_BUFFER_ON &

38 CAN_CONFIG_LINE_FILTER_OFF; //Used with CANInitialize

 192

39 aa1 = CAN_TX_PRIORITY_0 & CAN_TX_STD_FRAME &

40 CAN_TX_NO_RTR_FRAME; //Used with CANSendMessage

41

42 //CAN Baudrate = 4 = 125kbits/sec 8MHz clock

43 CANInitialize(2,4,3,3,1,aa); //Initialize CAN Controller

44 CANSetOperationMode(CAN_MODE_NORMAL,0); //Configure Normal Mode

45 data [0] = 1;

46 data [2] = 0;

47 data [3] = 0;

48 data [4] = 0;

49 data [5] = 0;

50 data [6] = 0;

51 id = 20;

52 lenn = 7;

53 INTCON = 0xA0; // Enable TMRO interrupt

54 do

55 {

56 if (count == i)

57 {

58 data [1] = i;

59 CANWRITE(id,data,lenn,aa1);

60 count = count + 1;

61 if (count == 31)

62 {

63 count = 1;

64 i = 0;

65 }

66 }

67 }

68 while(1); // loop

69 }//~!

 193

Appendix 9: Write Data for Message Periods 20ms and 30ms.

System Start of measurement 05:13:51 pm

System CAN 1 Bus with 125000 BPS.

System -----

System Statistics report AR0038, 05:13:51 pm

System Statistics for transmit spacing of messages in [ms]

System

System N Aver StdDev MIN MAX

System

System 20 RX 7574 20.005 0.0093935 19.98 20.03 CAN 1

System 30 RX 5049 30.007 0.017355 29.98 30.04 CAN 1

System

System End of measurement 05:16:23 pm

 194

Appendix 10: Write Data for Message Periods 20ms, 30ms and

40ms.

System Start of measurement 08:32:41 pm

System CAN 1 Bus with 125000 BPS.

System -----

System Statistics report AR0059, 08:32:41 pm

System Statistics for transmit spacing of messages in [ms]

System

System N Aver StdDev MIN MAX

System

System 20 RX 9296 20.005 0.01305 19.97 20.04 CAN 1

System 30 RX 6197 30.007 0.028232 29.93 30.06 CAN 1

System 40 RX 4648 40.01 0.025572 39.93 40.08 CAN 1

System

System End of measurement 08:35:47 pm

 195

Appendix 11: Write Data for Message Periods 20ms, 30ms,

40ms and 50ms.

System Start of measurement 01:13:17 pm

System CAN 1 Bus with 125000 BPS.

System -----

System Statistics report AR0042, 01:13:17 pm

System Statistics for transmit spacing of messages in [ms]

System

System N Aver StdDev MIN MAX

System

System 20 RX 7885 20.011 0.0088368 19.98 20.03 CAN 1

System 30 RX 5256 30.016 0.027868 29.93 30.09 CAN 1

System 40 RX 3942 40.022 0.017549 39.97 40.08 CAN 1

System 50 RX 3154 50.027 0.027818 49.93 50.10 CAN 1

System

System End of measurement 01:15:55 pm

