

Development of an Automated Storage and Retrieval System

in a Dynamic Knowledge Environment

Liam O’ Shea BEng (Mech.)

MSc

Waterford Institute of Technology

Internal Supervisor: Mr. David Walsh

Submitted to Waterford Institute of Technology, June 2007.

 II

Declaration

Development of an Automated Storage and Retrieval System in a Dynamic

Knowledge Environment.

Presented to: Mr. David Walsh

Department of Engineering Technology

Waterford Institute of Technology

This Thesis is presented in fulfilment of the requirements for the degree of Masters of

Science. It is entirely of my own work and has not been submitted to any other college

or higher institution, or for any other academic award in this College. Where use has

been made of the work of other people it has been fully acknowledged and fully

referenced.

Signed: _______________

Liam O’ Shea

Date: ______________

 III

Abstract

This thesis summarises the development of an Automatic Storage and Retrieval

System (ASRS) test-bed at Waterford Institute of Technology (WIT) within a

dynamic knowledge environment.

The ASRS developed consists of control hardware and software communicating over

a Fieldbus network. A simulation model of the WIT ASRS (capable of modelling any

similar hi-bay storage system) and an order generator were also developed and these

are linked to a database and a results spreadsheet.

This ASRS allows for a range of control strategies and order types to be investigated

utilising the order generator and the database. There was also a facility developed

which allows this mathematical model to run the actual requirements that the ASRS

physical model works with, this allows for complete correlation between both models.

The development of a mathematical model plus a physical model ensures better

understanding of ASRS making the sequence of operations obvious and helping to

clarify the broad range of strategies to interested parties.

The best recorded performance was with current dwell point, simultaneous travel,

dual control, free-nearest storage and nearest retrieval strategies selected in

combination. In general, dual control improved performance (in terms of throughput),

simultaneous travel was found to be better than rectilinear travel, dwell point at origin

gave very poor results, and a dwell point at current, pick point or deposit point

appears best.

Within the Knowledge environment a number of findings were made including: the

development of a physical model is hugely beneficial to the acquisition of tacit

knowledge by the chief researcher and supervisor and greatly benefits the

development of undergraduate students (3 groups). The greater the volume of tacit

and explicit knowledge available the faster the up-take for the students in a structured

knowledge environment. There are great benefits to the college research centre by

having a full time researcher in this area especially when the subject matter becomes

complex, the learning curve for students can then be very steep.

 IV

Acknowledgements

I would like to thank those who gave help and advice during the course of this project.

Their help proved invaluable.

I would like, in particular, to thank my supervisor, David Walsh for his continuous

help, encouragement and guidance and also the following people whose help I greatly

appreciated:

Mr. Joseph Phelan Lecturer

Mr. Ned Cullinan Lecturer

Mr. Paul Allen Lecturer

Mr. Albert Byrne Head of Department of Engineering Technology

Mr. Denis Moran Head of School of Engineering

Mr. Mark Maher Manufacturing Technician

Mr. Billy Walsh Electronic Technician

Mr. Alan Nagle Manufacturing Technician

Mr. Paul O’ Mahoney

I would especially like to thank my wife, Kay, for all her love and on-going life

support and our 3 great daughters, Niamh, Roisin and Grainne for everything they

have brought to my life. I would also like to acknowledge the help, encouragement

and support I got from my parents, brothers and sisters.

 V

Table of Contents

DECLARATION II

ABSTRACT III

ACKNOWLEDGEMENTS IV

TABLE OF CONTENTS V

LIST OF FIGURES X

LIST OF TABLES XII

1 INTRODUCTION 1

1.1 Introduction 1

1.2 WIT Flexible Manufacturing Cell 1

1.2.1 Product 1 3
1.2.2 Product 2 3
1.2.3 Flexible Manufacturing System 3
1.2.4 ASRS Development 7

1.3 Aims and Objectives of Project 7

1.4 Summary 8

2 ASRS DEVELOPMENT IN A KNOWLEDGE ENVIRONMENT 9

2.1 Introduction 9

2.2 Objectives for automating a Company’s Storage Operations 10

2.3 Components and Operating Features of an ASRS 10

2.3.1 Storage Structure 11
2.3.2 S/R Machine 11
2.3.3 Storage Modules 12
2.3.4 Pick and Deposit Stations 12
2.3.5 Control System 12

2.4 Operation of an ASRS 13

 VI

2.5 ASRS Storage Policies 14

2.5.1 Storage Assignment and Interleaving Rules 14
2.5.1.1 Storage Assignment Rules 15
2.5.1.2 Interleaving Rules 15

2.6 ASRS Performance 16

2.7 Dwell Point Analysis 17

2.8 Sizing the ASRS Rack Structure 19

2.9 ASRS Throughput 20

2.10 Current ASRS Research 21

2.11 Knowledge Management 25

2.12 The Value of Knowledge 26

2.13 The Relationship Between Technology and Knowledge 27

2.13.1 Dimensions of Knowledge 28
2.13.2 Technological Knowledge 29
2.13.3 Developing Technological Knowledge Through Learning 30

2.14 Internal and External Technological Knowledge 32

2.14.1 Internal Technological Knowledge 33
2.14.2 External Technological Knowledge 33

2.15 Managing Technological Knowledge 34

2.16 Summary 36

3 ASRS DESIGN AND BUILD 37

3.1 Introduction 37

3.2 ASRS Mechanical and Electrical Design and Build 38

3.2.1 Introduction 38
3.2.2 Storage Configurations 38
3.2.3 S/R Crane 40
3.2.4 Shuttle Movement 43
3.2.5 Electrical Supply 43

3.3 ASRS Control, Communications and Interfacing 46

3.3.1 Introduction 46
3.3.2 PLC Selection 46
3.3.3 Local Communication 47
3.3.4 PLC Software 47
3.3.5 HMI Software 48
3.3.6 Database Design 49
3.3.7 ASRS Order Generator 50
3.3.8 ASRS / FMS communication and Interfacing 51

3.4 System Design 51

3.4.1 Introduction 51
3.4.2 SCADA Programming 51

 VII

3.4.3 PLC Programming 55
3.5 Summary 56

4 ASRS CONTROL AND COMMUNICATIONS 57

4.1 Introduction 57

4.2 Development 57

4.3 Control 59

4.3.1 Introduction 59
4.3.2 Control Sequence 59
4.3.3 Control Interfaces 61

4.3.3.1 User Interface Screens 61
4.3.3.2 Global Script – Project Functions 65
4.3.3.3 Global Actions 74

4.3.4 PLC Programming 78
4.3.4.1 Manual Control X and Y Axes 79
4.3.4.2 5 Second Time Delay 79
4.3.4.3 Home and Reset 79
4.3.4.4 Semi – Automatic Control (X and Y Axes) 80
4.3.4.5 Full Automatic Control (X and Y Axes) 80
4.3.4.6 Pick / Place Time Delay 81
4.3.4.7 Semi-Automatic Pick / Place 81
4.3.4.8 Automatic Pick / Place 81

4.4 Communications 84

4.4.1 SCADA Communication with Database 84
4.4.2 Database 86

4.4.2.1 Database Tables 86
4.4.2.2 Database Queries 89
4.4.2.3 Database Macros 91

4.4.3 Order Generator 92
4.5 Summary 95

5 ASRS MODELLING AND TESTING 96

5.1 Introduction 96

5.2 Mathematical Model 96

5.2.1 User Interface 96
5.2.2 Storage Bays 100
5.2.3 ASRS Input 100
5.2.4 The S/R Machine 100
5.2.5 ASRS Demand 101
5.2.6 Results Display 101

5.3 Model Trials and Results 103

5.3.1 Model Test Conditions / Data 103
5.3.2 Test Results 103

 VIII

5.4 Summary 108

6 DYNAMIC KNOWLEDGE CREATION CASE STUDY 109

6.1 Introduction 109

6.2 Knowledge Creation Model 110

6.2.1 The SECI Process 110
6.2.2 ba: The Shared Context for Knowledge Creation 112
6.2.3 Knowledge Assets 114

6.3 Knowledge Expansion through Spiralling 117

6.4 Knowledge Creation Findings 117

6.5 Summary 119

7 CONCLUSION & RECOMMENDATIONS 120

7.1 Introduction 120

7.2 Summary of Aims and Objectives 121

7.3 Results 122

7.3.1 ASRS Mechanical and Electrical Design & Fabrication 122
7.3.2 ASRS Control 123
7.3.3 Order Generator 124
7.3.4 Database Control 125
7.3.5 Mathematical Model 126
7.3.6 Trial Results 127
7.3.7 Knowledge Management 128
7.3.8 Test-Bed Benefits 129

7.4 Conclusions 129

7.5 Recommendations 130

REFERENCES 132

BIBLIOGRAPHY 138

GLOSSARY 139

APPENDIX A (PLC PROGRAM) 141

 IX

APPENDIX B (SCADA SCREENS) 143

APPENDIX C (SCADA SCRIPTS) 147

APPENDIX D (DATABASE TABLES) 183

APPENDIX E (LIST OF SCADA TAGS AND PLC VARIABLES) 186

APPENDIX F (TRIAL RESULTS) 193

 X

List of Figures
Figure 1-1: Product 1 ...4
Figure 1-2: Product 2 ...4
Figure 1-3: Physical layout of the cell ...6
Figure 2-1: Organisational Knowledge Matrix..29
Figure 3-1: Pallet Design ...39
Figure 3-2: ASRS Racking ..39
Figure 3-3: Top Plate Design...41
Figure 3-4: Guide rail and wheel conceptual design ...41
Figure 3-5: Guide Rail Assembly Conceptual Design...41
Figure 3-6: Base Assembly..42
Figure 3-7: Vertical Drive Drum ...42
Figure 3-8: Top Plate Assembly ..42
Figure 3-9: Shuttle Fork Mechanism ...44
Figure 3-10: Shuttle Forks Speed Control ...44
Figure 3-11: ASRS Control Cabinet ..45
Figure 3-12: Emergency Stops and Start/Reset Switches..45
Figure 3-13: Proposed Control Screen...52
Figure 4-1: Flow Control Diagram ..60
Figure 4-2: Main Menu..62
Figure 4-3: Semi / Full Automatic Screen ...63
Figure 4-4: ASRS Layout and Contents ..63
Figure 4-5: Class-Based Storage..64
Figure 4-6: Dedicated Storage ...64
Figure 4-7: Declaration of Structure Variable in ‘ASRSOp’.......................................69
Figure 4-8: DBEGetVariables in ‘ASRSOp’...69
Figure 4-9: Time Control in ‘ASRSOp’ ..69
Figure 4-10: Sub-Routine Selection in ‘ASRSOp’..69
Figure 4-11: Normal Sub-Routine in ‘ASRSOp’...70
Figure 4-12: Loading of Appropriate Bays into Array in ‘ASRSOp’71
Figure 4-13: Setting of ‘AtXYPosition’ in ‘ASRSOpAction’.....................................72
Figure 4-14: ‘SetPlaceCoOrds’..72
Figure 4-15: ‘ASRSOpComp’ ...76
Figure 4-16: ‘GoToXYCompleteAction’ ..77
Figure 4-17: X Axis Positioning in FC 17 / FC 18 ..82
Figure 4-18: M 0.4 (AtXYPosition) being Set in FC 17 / FC 18.................................82
Figure 4-19: 5 Sec. Time Delay FC 19 / FC 20 ...82
Figure 4-20: PickComplete being Set High in FC 19 ..83
Figure 4-21: PlaceComplete or PlaceComplete2 being Called From FC 2083
Figure 4-22: Forks Extend in FC 21 ..83
Figure 4-23: Pick Control in FC 23 ...83
Figure 4-24: SCADA / Database Communication...87
Figure 4-25: Menu System...93
Figure 4-26: ssVarProducts..93
Figure 4-27: ssVarOperationType ...93
Figure 4-28: ssVarDueDate ...93
Figure 4-29: Order Generator Main Screen ...94
Figure 4-30: Operator Prompt re Order Number ...94
Figure 4-31: Generated Orders in spSchedule ...94
Figure 4-32: Operator Prompt for Database Update..94

 XI

Figure 5-1: ASRS Simulator – Main Screen..98
Figure 5-2: ASRS Simulator – Control Menu ...98
Figure 5-3: Storage Strategy ..99
Figure 5-4: Retrieval Strategy..99
Figure 5-5: Results Summary ..99
Figure 5-6: Output for Spreadsheet..102
Figure 5-7: spStatsTrial..102

 XII

List of Tables
Table 1: Components for Storage in ASRS ...38
Table 2: Proposed PLC Blocks ..56
Table 3: Actual PLC Blocks ..79
Table 4: Bay Co-Ordinates ..103
Table 5: Results - 40 Store Operations ..104
Table 6: Results - 23 Store / 17 retrieve Operations ..105
Table 7: Results – 20 Store / 20 Retrieve Operations..107

 1

1 Introduction

1.1 Introduction
The development of a dynamic integrated manufacturing environment has been on-

going in WIT for the last 10 years with one major obstacle arising on a regular basis,

that is, the retention of knowledge and experience gained by the individual researchers

during the course of their research. This project is designed to utilise the knowledge-

creating process to understand the dynamic nature of knowledge creation and to

manage such a process effectively. This will allow the research staff to build more

effectively on the previous research conducted on dynamic manufacturing in WIT and

also to examine and explore the deep-rooted knowledge inherent in their system.

This lack of continuity in retaining knowledge assets is not altogether unique to

research organisations; it is undoubtedly a major issue for many manufacturing bodies

who would readily admit to an unhealthy reliance on their automation and process

engineers with many stories circulating of major projects being seriously delayed and

sometimes abandoned due to the movement of key personnel to other firms.

We are now living in a “knowledge-based society”; continuous innovation and the

knowledge that enables such innovation have become important sources of

sustainable competitive advantage. Knowledge and the ability to create and utilise

knowledge is essential. However there is very little understanding of how

organisations actually create and manage knowledge.

Specifically this project will concentrate on developing a test-bed for industrial

Automated Storage and Retrieval System (ASRS) research, developing both a

mathematical and a physical model based on an industrial ASRS in the locality. This

facility will be capable of testing both mathematically and empirically a variety of

ASRS control strategies including: dwell point, travel type, control, continuous or

single operation, retrieval and storage strategies.

1.2 WIT Flexible Manufacturing Cell
Over the last ten years Waterford Institute of Technology (WIT) has developed a

complex Flexible Manufacturing System (FMS) through a series of postgraduate

projects (supported by a host of undergraduate projects). This FMS is currently

producing two distinctive in-house products (Product 1 and Product 2).

Postgraduate research in the AMT Lab, began in 1995 when three projects [Crosse,

1997], [Maher, 1997] and [O’ Connor, 1997] were set-up to continue with previous

 2

work carried out by undergraduate students. Since then numerous projects (approx.

300 student years of undergraduate projects and 20 years of full time postgraduate

activity) have been undertaken with the goal of turning individual stand-alone

industrial scale machines of various ages and configurations into a fully functional

Flexible Manufacturing Cell (FMC) with the ambition one day of acquiring flexible

manufacturing system status from the cell. The research concentrated primarily on the

automated manufacturing of one product, Product 1, (Figure 1-1): The process

involved the mechanical integration of the individual machines through the use of a

conveyor system, and the development of SCADA and PLC control systems working

with networked machine-PC interfaces. This single product production development

is described in a series of postgraduate theses by [Crosse, 1997], [O’ Connor, 1997],

[Maher, 1997], [Mitchell, 1998], [McNelis, 2001] and a number of papers by [Phelan,

1997 & 2004].

 Subsequent to this single product focus the emphasis switched to multiple products,

with the introduction of Product 2, (Figure 1-2). “Engineering for Variety in a fully

Automated Multi Production Manufacturing System” [Barry, pending]: describes the

technical and operational development of the facility in the pursuit of this objective.

Research conducted by Ross Alexander entitled “Engineering for Mixed Product

Production in a Flexible Manufacturing and Flexible Assembly System” [Alexander,

2005] focused on development of the cell into a fully functional Mixed Product

Flexible Manufacturing and Flexible Assembly System (FMAS). Running

concurrently with this project were two associated postgraduate projects as follows:

“Automated Storage and Retrieval: Upgrade of an industrial Hibay and Development

of a College Based System”, [O’ Mahoney, 2004] and “Dynamic Scheduling,

Artificial Intelligence and Control in a flexible Manufacturing System”, [Flanagan,

2004].

The current status of the FMAS, after the conclusion of the three projects mentioned

above, has it capable of producing two products with reasonable flexibility but

without complete integration with a storage system. The dynamic scheduling module

of the system is complete but requires a series of physical trials to be completed to

ensure absolute confidence in its reasoning.

 3

1.2.1 Product 1
This 2D product consists of nine Medium Density Fibre (MDF) blocks (64 mm x 64

mm x 12 mm). Eight of these have a slot machined in them to form the letter “M”

(for manufacturing) when assembled, or when viewed the other way round they form

the letter “W” (for WIT). The width of the slot on each is 9 mm. Each block has two

8.5 mm holes that are used to locate the block on a pallet (used for transportation

between stations) by 2 corresponding pins, each of 8mm in diameter and held in place

by a specific clamp. Figure 1-1 shows the composition for a completed Product 1,

containing the nine parts.

1.2.2 Product 2
Product 2 is a cubic 3D structure made of 12mm softwood dowel. The structure

consists of four uprights and 8 struts assembled and screwed together to form a three-

dimensional cube. For production in the WIT system the components of Product 2 are

separated onto 3 pallets and held together in a jig and clamp arrangement specifically

designed for the purpose. The four uprights are machined together on one pallet and

the eight struts are separated equally onto the two remaining pallets. Figure 1-2 shows

a complete Product 2.

1.2.3 Flexible Manufacturing System
The term “Flexible Manufacturing Cell” is commonly used to refer to a machine

grouping that consists of either manually operated or automated machines, or a

combination of the two. The cell may or may not include automated material

handling, and it may or may not be computer controlled. The term “flexible

manufacturing system” generally means a fully automated system consisting of

automated workstations, automated materials handling, and computer control

[Groover, 2001]. In contrast to this Rembold et al (1993) defines a FMC as an

automated computer controlled cell, and a FMC with the addition of Automated

Storage and Retrieval as a FMS.

The three basic elements of any FMS: workstations, material transport and storage

system, computer control system, are detailed below, with a breakdown in the context

of the WIT system.

The FMC workstations in WIT (see Figure 1-3) are as follows:

 4

Figure 1-1: Product 1

Figure 1-2: Product 2

 5

• Holke Milling Machine: A 3-axis CNC milling machine with a retrofitted

controller, networked to the cell controller via an in-house built interface unit

attached to the Holke PC. Assigned to the production of Product 1.

• Deckel Milling Machine: A 3-axis CNC milling machine, networked to the

cell controller via an in-house built interface unit attached to the Deckel PC.

Assigned to the production of Products 1 and 2.

• CMM: A Kemco coordinate measuring machine (originally manual: some

degree of automation achieved during a previous undergraduate project),

networked to the cell controller via the CMM PC through an in-house

developed I/O card and LabView software, set-up for the measurement of

Product 1 only.

• Load/Unload Station: This station consists of a Bosch SCARA pick and place

robot which feeds product into the FMS and removes completed or unwanted

product.

• Assembly Station: This workstation consists of a Staubli robot with an

automatic screw feeder and driver attached, and a complex dedicated

pneumatic Assembly Station for the assembly of Product 2.

The FMC materials transport and storage system consists of:

• A precision palletised conveyor system (Bosch).

• A materials stacking system for storing blanks for Product 1 (raw material

stacker).

• A materials stacking system for storing completed Product 1(finished goods

stacker).

• Bosch load/ unload Robot, (SCARA construction).

The FMC computer control system consists of:

• A Mitsubishi PLC

• A Cell controller (referred to as "cellhost", running Wonderware Intouch

SCADA)

• A Windows NT server linking individual workstations to the cell controller

• A Windows NT workstation which holds the SQL database.

 6

Figure 1-3: Physical layout of the cell

 7

1.2.4 ASRS Development
The long-term vision for the FMS included a fully automatic storage and retrieval

system that would be completely integrated into the FMAS. With this in mind the first

ASRS in WIT was built during a series of undergraduate projects beginning in 1998.

This ASRS was constructed of extruded aluminium conveyor section that was bolted

together using standard bracketing and connected to a supporting brick wall. This set-

up proved to be unstable. Two pneumatic cylinders were connected in series to

perform pick and place operations. This unit was attached to the belt of a vertically

mounted conveyor to enable vertical movement. The assembly was moved

horizontally through attachment to two horizontally mounted conveyors. BOSCH 3-

phase motors powered the horizontal and vertical movements. These motors were

designed for use with long conveyor sections and were oversize for this application.

Basic control was achieved through a GE Fanuc 90/30 PLC and some basic electrical

switchgear.

Contacts were made with a local company who, at that stage (2002), were considering

the upgrade of their own Hi-Bay storage system and agreement was reached that a

joint approach would be taken to the up-grade of both storage and retrieval systems. It

is for this reason that great emphasis has been placed on the correlation of both

systems in terms of hardware chosen and in the control system developed.

The initial work on this new WIT ASRS was conducted as part of a postgraduate

research project [O’ Mahoney, 2004] with the current author acting as supervisor to

this work. Great progress was made during the course of this research project (quite a

lot of the physical build was completed), which is outlined in Chapter 3 and it is the

aim of this current project to further develop the WIT ASRS to ensure that it fulfils its

function as a test-bed for control strategy development.

1.3 Aims and Objectives of Project
The objective of this project was to develop a test-bed for ongoing research in ASRS

design allowing for the analysis of a variety of control strategies both mathematically

and empirically within a knowledge paradigm of knowledge acquisition, tacit

knowledge development, tacit knowledge extension, explicit knowledge extension

and knowledge spiralling. The following aims were identified in order to achieve this:

• Develop an understanding of industrial storage and retrieval systems.

 8

• Develop fieldbus based control utilising SCADA software and integrate this

hardware with a control database and an order generator.

• Develop an entirely flexible ASRS control system which would allow for the

empirical testing of a wide range of control strategies incorporating a

mathematical model to generate a broad spectrum of requirements in terms of

parts, operation and time required.

• Utilise a mathematical model of the ASRS in combination with output to a

spreadsheet to confirm the findings from the physical model and to produce

long-term data on performance etc.

• Carry out extensive testing, troubleshooting and trials on both models

reviewing the results and making recommendations on most suitable settings

for a variety of requirements on the ASRS.

• Develop a deep understanding of the existing ASRS and capture and elaborate

on this as a model in knowledge creation.

• Showcase to the manufacturing and research sectors the benefits of the

knowledge creation process as a practical solution to the on-going problem of

poor retention of knowledge assets.

1.4 Summary
This thesis summarises the development of a highly flexible ASRS test-rig which

allows for the testing of a variety of control strategies for an unlimited range of

demands. It details the application of a SIMUL8TM mathematical model of the ASRS

to confirm the results obtained from the physical model. It makes recommendations

on strategy, in a limited sense, to be employed to best suit the demand. This work has

been conducted as a physical demonstration of a knowledge creation paradigm and

attempts to demonstrate the practical benefits of knowledge creation in a dynamic

knowledge environment.

 9

2 ASRS Development in a Knowledge Environment

2.1 Introduction
This chapter summarises the current status of ASRS development highlighting the

most recent research in this area and then goes on to discuss the topical area of

knowledge management and creation.

Automated storage and retrieval systems were first introduced in the 1950s to

eliminate the walking that accounted for 70 % of manual retrieval time [Groover,

2001]. There have been many advancements in ASRS technology in the last forty

years and their number is predicted to grow rapidly in the next decade.

ASRS have many benefits including savings in labour costs, improved material flow

and inventory control, improved throughput level, high floor-space utilisation,

increased safety and stock rotation.

The efficient operation of ASRS requires planning of (a) physical storage

specifications: height, length, width of storage structure and storage opening, (b)

operating characteristics of AS/R systems: horizontal and vertical velocity,

acceleration rate and number of machines and (c) control strategy.

Typically, ASRS consist of a series of storage aisles each of which is served by a

storage and retrieval (S/R) machine or crane. Each aisle is supported by a pickup and

delivery (P&D) station typically located at the end of the aisle and accessed by the

S/R machine and the external handling system.

Applications of ASRS exist in the assemblies of small electronic components where

assembly work-stations are installed in the openings of the storage racks, in clean-

room manufacturing environments to reduce the contamination of the products from

manual handling, in healthcare distribution centres where pallet loads of medical

products, ranging from IV solutions to heart valves are temporarily stored for later

distribution. Frozen food processing environments where temperature is always kept

at -29°C, making it extremely hostile to human operators represent other

implementations of the ASRS.

A recent application of the ASRS is in the automotive industry. After car bodies have

been painted, they are moved into storage in an ASRS to coordinate the production

schedule with the number of bodies painted a specific colour. The selected bodies are

then retrieved and returned to production.

 10

When it comes to the subject of knowledge creation countries are now marketing

themselves as having a knowledge-based economy. What exactly does this mean?

There are many definitions, but an OECD report “The Knowledge-Based Economy”

(1996) defines them as economies which are directly based on the production,

distribution and use of knowledge and information, leading towards growth in high-

technology investments, high-technology industries, more highly skilled labour and

associated productivity gains.

This chapter attempts to define knowledge, its value and its relationship with

technology. It also concentrates on the various dimensions of knowledge and the

development of knowledge through learning.

2.2 Objectives for automating a Company’s Storage Operations
A list of possible objectives that a company may want to achieve by automating its

storage operations is shown below [Groover, 2001]:

• To increase storage capacity

• To increase storage density

• To recover factory floor space presently used for storing work-in-process.

• To improve security and reduce pilferage

• To reduce labour cost and/or increase labour productivity in storage operations

• To improve safety in the storage function

• To improve control over inventories

• To improve stock rotation

• To improve customer service

• To increase throughput

2.3 Components and Operating Features of an ASRS
The content of this section is in general attributable to Groover (2001).

Virtually all ASRS consist of the following components:

1. Storage structure

2. S/R machine

3. Storage modules

4. P&D stations

5. Control system

 11

2.3.1 Storage Structure
The storage structure is the rack framework typically made of fabricated steel, which

supports the loads contained in the ASRS. This structure must possess sufficient

strength and rigidity that it does not deflect significantly due to the loads in storage or

other forces on the framework. The individual storage compartments in the structure

must be designed to accept and hold the storage modules used to contain the stored

materials. The rack structure may also be used to support the roof and siding of the

building in which the ASRS resides. Another function of the storage structure is to

support the aisle hardware required to align the S/R machines with respect to the

storage compartments of the ASRS. This hardware includes guide rails at the top and

bottom of the structure as well as end stops and other features required to provide safe

operation.

2.3.2 S/R Machine
The S/R machine is used to accomplish storage transactions, delivering loads from the

input station into storage and retrieving loads from storage and delivering them to the

output station. To perform these transactions the S/R machine must be capable of

horizontal and vertical travel to align its carriage (which carries the load) with the

storage compartment in the rack structure. In many cases the S/R machine consists of

a rigid mast on which is mounted a rail system for vertical motion of the carriage.

Wheels are attached at the base of the mast to permit horizontal travel along a rail

system that runs the length of the aisle. A parallel rail at the top of the storage

structure is used to maintain alignment of the mast and carriage with respect to the

rack structure.

The carriage includes a shuttle mechanism to move loads into and from their storage

compartments. The design of the shuttle system must also permit loads to be

transferred from the S/R machine to the Pick and Deposit (P&D) station or other

material handling interface with the ASRS. The carriage and shuttle are positioned

and actuated automatically in the usual ASRS. Man-on-board S/R machines are

equipped for a human operator to ride on the carriage.

To accomplish the desired motions of the S/R machine, three drive systems are

required: horizontal movement of the mast, vertical movement of the carriage and

shuttle transfer between the carriage and a storage compartment. Modern S/R

machines are available with horizontal speeds up to 200 m/min along the aisle and

 12

vertical or lift speeds up to around 50 m/min. These speeds determine the time

required for the carriage to travel from the P&D station to a particular location in the

storage aisle. Acceleration and deceleration have a more significant impact on travel

time over short distances. The shuttle transfer is accomplished by any of several

mechanisms, including forks (for pallet loads) and friction devices for flat bottom tote

bins.

2.3.3 Storage Modules
The storage modules are the unit load containers of the stored material. These include

pallets, steel wire baskets and containers, plastic tote bins and special drawers (used in

mini-load systems). These modules are generally made to a standard base size that can

be handled automatically by the carriage shuttle of the S/R machine. The standard size

is also designed to fit in the storage compartments of the rack structure.

2.3.4 Pick and Deposit Stations
The pick and deposit station is where loads are transferred into and out of the ASRS.

They are generally located at the end of the aisles for access by the external handling

system that brings loads to the ASRS and takes loads away. Pickup stations and

deposit stations may be located at opposite ends of the storage aisle or combined at

the same location. This depends on the origination point of incoming loads and the

destination of output loads. A P&D station must be designed to be compatible with

both the S/R machine shuttle and the external handling system. Common methods to

handle loads at the P&D station include manual load / unload, forklift truck, conveyor

(e.g. roller) and AGVs.

2.3.5 Control System
The principle ASRS control problem is positioning the S/R machine within an

acceptable tolerance at a storage compartment in the rack structure to deposit or

retrieve a load. The locations of materials stored in the system must be determined to

direct the S/R machine to a particular storage compartment. Within a given aisle in the

ASRS each compartment is identified by its horizontal and vertical positions and

whether it is on the right side or left side of the aisle. A scheme based on alpha-

numeric codes can be used for this purpose. Using this location identification scheme,

each unit of material stored in the system can be referenced to a particular location in

the aisle. The record of these locations is called the ‘item location file’. Each time a

 13

storage transaction is completed the transaction must be recorded into the item

location file.

Given a specified storage compartment to go to, the S/R machine must be controlled

to move to that location and position the shuttle for load transfer. One positioning

method uses a counting procedure in which the number of bays and levels are counted

in the direction of travel (horizontally and vertically) to determine position. An

alternative method is a numerical identification procedure in which each compartment

is provided with a reflective target with binary-coded location identifications on its

face. Optical scanners are used to read the target and position the shuttle for

depositing or retrieving a load.

Computer controls and programmable logic controllers are used to determine the

required location and guide the S/R machine to its destination. Computer control

permits the physical operation of the ASRS to be integrated with the supporting

information and record-keeping system. Storage transactions can be entered in real-

time, inventory records can be accurately maintained, system performance can be

monitored and communications can be facilitated with other factory computer

systems. These automatic controls can be superseded or supplemented by manual

controls when required under emergency conditions or for man-on-board operation of

the machine.

2.4 Operation of an ASRS
An ASRS machine usually operates in one of two modes: single cycle (SC) or dual

cycle (DC) also known as Interleaving. For each of the modes the S/R machine starts

at the P&D station, stores and/or retrieves a load, and returns to the P&D station to

complete a cycle. In a SC the S/R machine either stores or retrieves, while in a DC it

both stores and retrieves in one cycle. In a DC, the S/R machine picks up a load from

a P/D station, travels to a storage location to store it, travels to another location to

retrieve a load and then returns to the P&D station to deliver it.

According to Han et al (1987) the effectiveness of an ASRS depends on the methods

of control that govern the scheduling of storages and retrievals. A common practice in

sequencing storage and retrieval requests is that both requests are processed in a first-

come-first-served (FCFS) manner. The FCFS assumption is reasonable for storages,

since most ASRS are interfaced with a conveyor loop for input and output. In this

case, it is difficult to change the sequence of loads presented for storage. However, the

 14

FCFS assumption is less compelling for retrievals since retrieval requests are just

electronic messages and can be easily re-sequenced.

In a DC, storage and retrieval requests can be paired to decrease the time spent

travelling between the storage and retrieval locations. By minimising the travel time,

it is possible to increase system throughput (i.e. the number of storages or retrievals

performed per period) and reduce ASRS operating costs such as wear of mechanical

parts and electric power cost. Han et al (1987) claim that a 50% or more decrease in

the travel-between time component of a dual cycle leads to an increase in throughput

of 10-15%. Such an increase in throughput could help to handle peak demand in the

operation phase and eliminate an aisle in a multi-aisle system in the design phase,

which would lead to considerable savings.

2.5 ASRS Storage Policies
In an ASRS empty storage locations are assigned to an incoming pallet in different

ways. In random storage assignment, a pallet has an equal chance of being stored in

any of the open locations. In a class-based storage assignment the products and

storage racks are divided into a number of classes according to the product turnover

frequencies. The highest turnover product is stored in the class of storage rack closest

to the input / output point (P&D location). A pallet is stored randomly within the

class. In dedicated storage each product is assigned to a specific location or set of

locations in the storage rack again according to their turnover frequencies.

White and Kinney (1982) noted that in comparison to dedicated storage, random

storage generally requires less storage space because the maximum aggregate storage

requirement is generally less than the aggregate maximum storage requirements for

each product in storage. In comparison to random storage, dedicated storage results in

reduced travel time if equal storage areas are assumed. However, since the class-based

and dedicated storage policies are based on turnover frequency for each product it is

difficult to use them if the turnover frequencies of the products vary with time.

Random storage policy is not affected by varying turnover frequencies.

2.5.1 Storage Assignment and Interleaving Rules
Storage assignment is the selection of an open rack location for the storage of an

arriving pallet [Graves et al, 1977]. Interleaving or Dual Cycle operation allows for

the completion of both a store request and a retrieve request on a single trip from the

 15

P&D point. That is, upon completion of a store the S/R machine will not return empty

to the P&D point for its next instruction; instead the crane will move (interleave) to

the location of a retrieve request, make the retrieval and then return to the P&D point.

Interleaving systems are also known as dual-address systems, since the S/R machine

is capable of visiting two locations (or addresses) between successive returns to the

P&D point.

2.5.1.1 Storage Assignment Rules
1. Random storage assignment (RAN): The storage location is chosen

randomly from all open rack locations. This rule has been used to

approximate the performance of the closest-open-location (COL) rule, a

rule widely used in practice.

2. Class-based storage assignment (C2 or C3): The items and the rack

locations are ranked according to turnover and distance (in travel time)

from the P&D point, respectively. These ranked lists are then partitioned

into a small number of matched classes (2 or 3) such that the class of items

with the highest turnover is assigned randomly within the class of locations

closest to the P&D point, etc.

3. Full turnover-based storage assignment (Full): For this rule the highest

turnover item is assigned to the location closest to the P&D point. This

rule represents the limit of class-based rules.

2.5.1.2 Interleaving Rules
1. No interleaving (NIL): All storage and retrieval requests are initiated with

the S/R at the P&D point. These are sometimes referred to as ‘single

address’ or single cycle systems because the S/R unit is only capable of

visiting a single rack location (address) between successive returns to the

P&D point.

2. Mandatory interleaving with FCFS queue discipline of retrieves

(MIL/FCFS): A retrieve is performed every time a store is made and the

retrieve is chosen FCFS from the retrieve queue.

3. Mandatory interleaving with selection queue of K retrieves (MIL/Q=K):

This rule is applicable only when a class-based storage assignment rule is

used. Again, a retrieve is performed every time a store is made; however,

the retrieve is selected from the first K entries in the retrieve queue. These

 16

K retrieves are searched until a retrieve of the same class as the previous

store is found. If a retrieve from the same class is not found, the search is

repeated using the ‘next best’ class.

2.6 ASRS Performance
The performance of ASRS varies by the definition of the measure and the operating

policies adapted [Elsayed & Lee, 1996]. Measures of performance may include:

1. The travel time per storage/retrieval request

2. The total time required to store/retrieve a batch of orders

3. The average waiting time for a storage/retrieval request

Many parameters affect the performance of the ASRS. Although some of the

parameters are interrelated, they are divided into three groups: demand requirements,

physical design and operating policies.

Demand requirements represent the orders that need to be stored or retrieved to meet

the required production (distribution) schedule. The demand may be defined by

several parameters:

(i) Number of orders received per unit time.

(ii) The pattern of retrieving the demand as it arrives to the ASRS: A static

retrieval pattern implies that when demand arrives it is accumulated into

one group and then the storage and retrieval processes are performed on

the group until all orders are completed. New arrivals, while a group of

storage and retrieval is being processed, form a different group that can be

processed after the completion of the current group. A dynamic retrieval

pattern implies that a new arrival during the processing of a group is added

to the group and re-sequencing and batching of orders is made to

accommodate the new arrival(s).

(iii) Number of items to be stored or retrieved per order.

(iv) Weights and sizes of items to be processed.

(v) The due date of the orders.

The second group of parameters that affect the performance of ASRS relate to its

physical design. Some of these parameters are: size of storage bins, length and height

of storage structure (building the aisle too long may cause the S/R machines to

operate at too high a percentage of their capacity), single or double deep rack, and

capacity and number of S/R machines.

 17

The third group of parameters that affect the performance of ASRS are the operating

policies of the system, which involve rules for storage and retrieval (storage cycle,

retrieval cycle, storage and retrieval in the same cycle) of materials, turnover time and

item popularity, order sequencing and batching, order retrieval policies (FCFS, LCFS,

priority, etc.), order storage policies and routing of the S/R machine.

2.7 Dwell Point Analysis
The method of determining the point to position the S/R machines when idle is

referred to as dwell point policy and the point where the S/R machine is positioned as

the dwell point [Egbelu & Wu, 1993].

They also state that in positioning the S/R machine when idle a properly selected

dwell point policy will reduce travel time of the S/R machine in warehouse operation.

Several dwell point policies are available. These dwell point rules are derived from

simple rules-of-thumb or mathematical programming. Some of these rules are static in

nature while others respond dynamically to changes in storage and retrieval demand.

Typical dwell point rules include:

(1) Dynamically position the S/R machine at a location that minimises the

expected S/R machine travel or response time from the dwell point to the

points of need.

(2) Dynamically position the S/R machine at a location that minimises the

maximum S/R machine travel or response time from the dwell point to the

points of need.

(3) Always position the S/R machine at the input station whenever idle.

(4) Always position the S/R machine at the output station whenever idle.

(5) Always position the S/R machine at the mid-point location in the rack

whenever idle.

(6) Dynamically position the S/R machine at the last location it visited following

the completion of either a single command or dual command cycle.

The dynamic dwell point rules (1 and 2) were proposed by Egbelu (1991). These two

rules recognise the dynamic fluctuation in the storage and retrieval demands that are

experienced in ASRS from one scheduling period to another. A period may represent

an hour, a shift or a day depending on the production schedule of the shop or the

distribution centre served by the ASRS. A linear programming model based on

location theory was presented by Egbulu (1991) to minimise the service response time

 18

in an ASRS through the optimal selection of the dwell point of the S/R machine when

idle. For dwell point rule (1) the objective is to minimise the expected travel time or

response time of the S/R machine to the location where it is needed, given that the

machine originates from the dwell point. For dwell point rule (2) the objective is the

minimisation of the maximum travel time to the point of need, again assuming that the

machine originates from the dwell point.

The dwell point rules (3 – 5) are static in nature and are therefore time, traffic and

situation invariant. These rules are mainly concerned with selecting a point along the

aisle where the S/R machine should be positioned. In this respect, these rules consider

the problem as a one-dimensional location problem. Practically, in an ASRS system,

the decision is not only to determine the point along the horizontal guide track to

dwell the machine, but also to specify how high the retrieval arm should be

positioned. The position of the retrieval arm is important since the time required for

the S/R machine to reach a point is determined by the longer of either the horizontal

travel time or the vertical travel time. In rules (1) and (2) the S/R dwell point selection

problem is viewed as a two-dimensional location problem in which the position of the

machine on the linear track and the position of the arm must both be determined

simultaneously.

As would be expected, traffic intensity influences the proportion of the time the S/R

machine remains idle, and consequently, the frequency with which the dwell point

algorithm is invoked. The lower the traffic rate, the higher the frequency of invoking

the dwell point algorithm.

The dwell point rule (6), positioning of the S/R machine at the last location visited,

does not really respond to the dynamic changes in storage and retrieval demands

brought about by the changing production schedule. Rather, it is a function of the

sequencing of the storage and retrieval requests made to the ASRS.

Traditionally, the dwell point selection uses simple rules-of-thumb (rules (3-6)

previously described). These four rules are static in nature as they do not consider the

fluctuation in the level of activities in the ASRS from period to period. Egbelu (1991)

proposed two dwell point rules that are dynamic in nature. These two rules use linear

programming models to dynamically determine the dwell point.

 19

2.8 Sizing the ASRS Rack Structure
The total storage capacity of one storage aisle depends on how many storage

compartments are arranged horizontally and vertically in the aisle [Groover, 2001].

This can be expressed as follows:

 Capacity per aisle = 2nynz Equation 2-1

Where:

ny = number of load compartments along the length of the aisle

nz = number of load compartments that make up the height of the aisle

The constant, 2, accounts for the fact that loads are contained on both sides of the

aisle.

If a standard size compartment is assumed (to accept a standard size unit load), then

the compartment dimensions facing the aisle must be larger than the unit load

dimensions. Let x and y = the depth and width dimensions of a unit load (e.g. a

standard pallet size) and z = the height of the unit load. The width, length and height

of the rack structure of the ASRS aisle are related to the unit load dimensions and

number of compartments as follows:

 W = 3(x + a) Equation 2-2

 L = ny(y + b) Equation 2-3

 H = nz(z + c) Equation 2-4

Where:

W, L and H = width, length and height of one aisle of the ASRS rack structure

respectively

x, y and z = the dimensions of the unit load

a, b and c = allowances designed into each storage compartment to provide clearance

for the unit load and to account for the size of the supporting beams in the rack

structure

For the case of unit loads contained on standard pallets, Groover (2001) recommends

values for the allowances as: a = 150mm, b = 200mm and c = 250mm. For an ASRS

with multiple aisles, W is simply multiplied by the number of aisles to obtain the

overall width of the storage system. The rack structure is built above floor level by

300 – 600 mm and the length of the ASRS extends beyond the rack structure to

provide space for the P&D station.

 20

2.9 ASRS Throughput
System throughput is defined as the hourly rate of S/R transactions that the automated

storage system can perform [Groover, 2001]. A transaction involves depositing a load

into storage or retrieving a load from storage. Either one of these transactions alone is

accomplished in a single command cycle. A dual command cycle accomplishes both

transaction types in one cycle: since this reduces travel time per transaction,

throughput is increased by using dual command cycles when the dwell point is

specified as other than ‘Current’ or ‘Deposit Point’.

Several methods are available to compute ASRS cycle times to estimate throughput

performance. The method presented here is recommended by the Materials Handling

Institute as summarised by Groover (2001). It assumes:

a. Randomised storage of loads in the ASRS (i.e. any compartment in the

storage aisle is equally likely to be selected for a transaction)

b. Storage compartments are of equal size

c. The P&D station is located at the base and end of the aisle

d. Constant horizontal and vertical speeds of the S/R machine

e. Simultaneous horizontal and vertical travel

For a single command cycle, the load to be entered or retrieved is assumed to be

located at the center of the rack structure. Thus, the S/R machine must travel half the

length and half the height of the ASRS, and it must return the same distance. The

single command cycle time can therefore be expressed by:

 TvvTvvT pd
zy

pd
zy

cs

HLMaxHLMax 22 ,5.0,5.0*2 +












=+












= Equation 2-5

Where:

Tcs = cycle time of a single command cycle (min/cycle)

L = length of the ASRS rack structure (m)

vy = velocity of the S/R machine along the length of the ASRS (m/min)

H = height of the rack structure (m)

vz = velocity of the S/R machine in the vertical direction of the ASRS (m/min)

Tpd = pickup and deposit time

Two P&D times are required per cycle, representing load transfers to and from the

S/R machine.

For a dual command cycle, the S/R machine is assumed to travel to the center of the

rack structure to deposit a load and then it travels to ¾ the length and height of the

 21

ASRS to retrieve a load. Thus the total distance travelled by the S/R machine is ¾ the

length and ¾ the height of the rack structure and back. In this case cycle time is given

by:

TvvTvvT pd
zy

pd
zy

cd

HLMaxHLMax 44 5.1,5.175.0,75.0*2 +












=+












=

 Equation 2-6

Where:

Tcd = cycle time for a dual command cycle (min/cycle)

System throughput depends on the relative numbers of single and dual command

cycles performed by the system. Let Rcs = number of single command cycles

performed per hour and Rcd = number of dual command cycles per hour at a specified

or assumed utilisation level. The equation for the amount of time spent in performing

single and dual command cycles each hour is:

 UTRTR cdcdcscs 60=+ Equation 2-7
Where:

U = system utilisation during the hour

The right hand side of the equation gives the total number of minutes of operation per

hour. To solve this equation the relative proportions of Rcs and Rcd must be

determined, or assumptions about these proportions must be made. Then the total

hourly rate is given by:

 RRR cdcsc += Equation 2-8
Where:

Rc = total S/R cycle rate (cycles/hr)

Note that the total number of storage and retrieval transactions per hour will be

greater than this value unless Rcd = 0, since there are two transactions accomplished in

each dual command cycle. Let Rt = the total number of transactions performed per

hour; then:

 RRR cdcst 2+= Equation 2-9

2.10 Current ASRS Research
Lee et al (1997) studied the effect of sequencing storage and/or retrieval requests on

the reduction of travel time by a S/R machine, and consequently on throughput, for

ASRS where storage locations are predetermined. They found that different types of

 22

ASRS (random, dedicated) require different sequencing to be employed and that the

proposed sequencing methods can significantly affect performance, with dynamic

assignment methods clearly outperforming the static methods achieving about 10-20%

reduction of expected travel-between time for dual cycles.

Mansuri et al (1997) present an algorithm which provides a means to investigate a

variety of dedicated type of storage allocation alternatives. A computer program,

developed in QuickBasic, facilitates the ASRS planning process and also allows ‘what

if’ type of questions to be evaluated through alternative plans. This program can also

be used as a tool to determine the initial configuration and specifications of a storage

structure and operating policy.

Keserla & Peters (1994) have analysed a dual shuttle automated storage and retrieval

system with the following results:

• Throughput improvements in the range of 40-45% obtained using a quadruple

command cycle relative to dual command cycles with a single shuttle system.

• With the dual shuttle design, travel between is virtually eliminated for a dual

command cycle.

This dual shuttle system seems to show promise for situations requiring high

throughput. The main disadvantage with the new design is the cost of the extra S/R

machine.

Moon and Kim (2001) report on research to find the tolerance limits and appropriate

strategies for random and class-based storage policies of ASRS as applied to

production plan changes. They conclude that random storage policy performs well

with production quantity variations. This policy tolerates up to 60 % of the variations.

Han et al (1987) address the issue of throughput improvement by retrieval sequencing

in conventional unit load automated storage/retrieval systems when several retrieval

requests are available and dual command cycles are performed. First-come-first-

served is taken as the reference sequencing rule. The following results are presented:

10-15% improvement in throughput can be obtained by reducing the travel-between

component of dual command cycle by 50% or more.

An equation is derived for approximating the mean dual command cycle time using a

nearest-neighbour sequencing heuristic. A further equation is presented for a lower

bound on the mean dual command cycle time for any block sequencing rule. The

 23

nearest-neighbour heuristic obtains average throughput within 5-8% of the maximum

possible average throughput.

Hausman et al (1976) deal with optimal storage assignment. Results are obtained

which compare the operating performance of three storage assignment rules: random

assignment, which is similar to the closest-open-location rule used by many currently

operating systems; full turnover-based assignment; and class-based turnover

assignment. It is shown that significant reductions in crane travel time (and distance)

are obtainable from class-based turnover-based rules rather than closest-open-location

(essentially random) policies. These improvements can, under certain circumstances,

be directly translated into increased throughput capacity for existing systems and may

be used to alter the design (e.g. size and number of racks, speed of cranes, etc.) of

proposed systems in order to achieve a more desirable system balance between

throughput and storage capacity.

Muralidharan et al (1995) highlight the development of a new shuffling heuristic-

based approach that combines random storage and class-based storage. In shuffling,

random storage is employed for the storage location assignment, but, when the S/R

machine is idle, shuffling shifts the more frequently accessed product nearer the I/O

point and shifts the less frequently accessed product away from the I/O point. Random

and class-based storage represent two extreme points of the storage location

assignment of ASRS. Random storage generally requires less storage space but class-

based assignment reduces service time and increases throughput rates. Shuffling or

relocation allows the combination of advantages from both extremes. This is

accomplished by employing random storage location assignment but shuffling is

initiated, when idle time occurs, to shift Class A pallets closer to the I/O points and

Class B or C away from the I/O point. Two heuristics were developed to identify the

shuffling route. The performance of the storage assignment policies were tested by

using a simulation model written in SLAM II. This analysis shows that the SI-based

shuffling (shuffling with insertion) is a better policy than SNN (shuffling with nearest

neighbour) when the product turnover frequencies are not fixed. Shuffling during the

idle time is rated as the better strategy to increase the ASRS operating efficiency.

According to Moon & Kim (2001) shuffling or relocations are helpful to maintain

stable throughputs with all the three types of ASRS operation policies (random, 2

class-based and 3-class-based). They are also helpful to avoid losses caused by crane

travel distance increase and lack of storage with a system under unstable production

 24

plans. Relocation does not cause any crane operation problems since the time to re-

locate items in an ASRS is too minor to affect the crane utilisation. With class-based

storage policies, better throughputs and lower rack and crane utilisations are achieved.

An applicable operation policy can be selected based on the production plan variation,

or a necessary variation point for relocation to the current policy can be determined

using the simulation results.

Bozer & White (1990) have developed travel-time models for ASRS machines. The

S/R machine is taken to travel simultaneously horizontally and vertically as it moves

along a storage aisle. For randomised storage conditions expected travel times are

determined for both single and dual command cycles. Alternative input/output

locations are considered and various dwell-point strategies for the storage/retrieval

machine are examined.

Chow (1986) developed a queuing model and a simulation model to study an AS/RS

system performance under a first-come-first-served dispatching rule

Elsayed & Lee (1996) conclude that a nearest schedule batching rule (machine

capacity not violated and tardiness considered) results in the smallest tardiness of

retrieval and the shortest travel time. Other rules considered include: “Shortest

processing time” (SPT) and “Most common locations” (MCL). Their findings indicate

that the performance of these rules is not significantly affected by the S/R machine

capacity and the “Modified Traffic Congestion Ratio” (MTCR) but is significantly

affected by the order density.

According to Graves et al (1977) the worst scheduling policy presented is random

storage assignment with no interleaving and first come first serve. Systems using this

policy may have throughput dramatically increased in three ways: by adopting class-

based storage assignment, by adopting mandatory interleaving, or both. They also

conclude that class-based storage assignment has a cost: An increase of approximately

2% to 3% in rack size is needed for 2-class systems in order to keep the probability of

default below 0.005; an increase of 4% to 5% is needed for 3-class systems.

Schwarz et al (1978) show with the aid of simulation models that the performance of a

random storage assignment rule is equivalent to that of the closest open location rule.

The system is also shown to be very sensitive to the utilisation or traffic intensity level

as these levels approach one.

Their simulation also demonstrated that substantial increases in system throughput are

obtainable from turnover-based storage assignment rules and from interleaving.

 25

Elsayed & Unal (1989) argue that the optimum sequencing of order storage and

retrieval is a complex problem. Another area highlighted is the effect of demand

parameters (arrival rate of orders, probability distributions of order quantity and order

locations) on the physical design of ASRS. They also suggest that researchers

consider different cost factors such as inventory costs, operating cost of the ASRS and

order delay costs when evaluating the effect of different inventory control policies on

ASRS performance.

Egbelu and Wu (1993) report on the comparison of six dwell point specification

strategies for S/R machines using average order turnaround time. When dedicated

storage is employed a linear program ‘LP Expect’ (minimization of the S/R travel

time) outperformed all other studied strategies.

Taboun and Bhole (1993) state that the performance of an ASRS is a function of both

system configuration and item-pallet assignment. System configurations with mixed

pallet sizes are superior in terms of system throughput (items/year) and other

performance measures when compared to systems with a single standard pallet size.

Van Den Berg & Gademann (2000) report that on the basis of a simulation study the

nearest-neighbour rule gives the best results for selecting an open location within the

storage area for randomised storage or within a class-region for class-based storage.

When an incoming load cannot be stored within its dedicated region it is better to

assign it to a location further away from the input and output station, than to a location

that is nearer than its dedicated region. The latter is likely to fill up the storage space

for fast moving products, which may result in increased mean travel times. They also

considered three criteria when evaluating good due date performance; mean response

time, maximum response time or the number of late requests and report that these

criteria were satisfied better when using a FCFS sequence for the retrievals than by

applying specific urgency rules (giving priority to retrievals with long waiting times).

2.11 Knowledge Management
The concept of knowledge management (KM), which has received a great deal of

attention in recent years, refers to the developing body of methods, tools, techniques

and values through which organisations can acquire, develop, measure, distribute and

provide a return on their intellectual assets [Kamara et al, 2002]. Within project-based

industries the need for KM is fuelled by the need for innovation, improved business

performance and client satisfaction within the dynamic and changing environment in

 26

which it operates. The fragmented nature of some industries means that efficiency in

project delivery is less than desirable, resulting in dissatisfied clients and low

profitability for many firms.

Knowledge is standardly defined as ‘justified true belief’ [Grayling, 2000] because at

the very least it seems that to know something one must believe it, one’s belief must

be true and one’s reason for believing it must be satisfactory in the light of some

standard, because one could not be said to know something if one had, say, arbitrarily

or haphazardly decided to believe it [Trought, 2001].

Another school of thought defines knowledge as belief: While belief is influenced by

information processed by the believer, belief is not wholly influenced by processed

information; there is room for insight, creativity and misconception [Fransman, 1994].

Lave (1993) stresses this with the observation that, ‘Knowledge undergoes

construction and transformation in use’.

There appears to be two schools of thought – both apparent in management research –

on how we actually accumulate knowledge. These are (a) the rationalist school, which

holds that the chief route to knowledge is by the exercise of reason and logic and (b)

the empiricist school, which holds that the chief route to knowledge is through

perception [Grayling, 2000]. These two views are frequently in conflict. This conflict

is generally considered to be caused by the human quality known as ‘consciousness’

which has been defined as ‘the specific nature of our subjective experience of the

world’. A key subject of research in this area is subjectivity which may explain why

workers and managers within manufacturing companies see things differently and

hence so often come to different conclusions [Trought 2001].

2.12 The Value of Knowledge
To generate value, firms must be able to identify, create and continuously manage

knowledge (especially technological knowledge) [Hitt et al, 2000]. Knowledge (that

which is known and is a justified true belief) may be the most strategically significant

resource a firm can possess and on which sustainable competitive advantages can be

built [Marsh & Ranft, 1999]. Some scholars believe that competition is becoming

more knowledge-based and that the sources of competitive advantage are shifting

from physical assets to intellectual capabilities [Subramanium & Venkatraman, 1999].

Thus being able to develop, maintain or nurture and exploit competitive advantages

 27

depends on the firm’s ability to create, diffuse and utilise knowledge throughout the

company [Drucker, 2001].

The increasing competitive importance has led to the development of the knowledge-

based view of the firm [Grant, 1996]. This evolved perspective, suggesting that the

primary rationale for a firm’s existence is to create , transfer and apply knowledge, is

an extension of the resource-based view of the firm [DeCarolis & Deeds, 1999].

Spender & Grant (1996) argued that ‘responding to the changes we see going on

around us means bringing a better understanding of managerial and organisational

knowledge and learning into a central place in the field’s analyses and theories’.

Sanchez & Heene (1997) maintain that organisational knowledge is the ‘shared set of

beliefs about causal relationships held by individuals within a group.

The ability to identify and especially to manage knowledge is the result of the firm’s

continuous effort to engage in learning. Because of the dynamic competitive

landscape, advantage accrues to firms that are particularly adept at technological

learning. Contextual factors that are either internal (e.g. firm size, structure,

managerial ability) or external (e.g. industry) to the organisation may enhance or

impede the firm’s ability to engage in effective technological learning processes.

Technological learning facilitates the firm’s efforts to: (a) take appropriate levels of

risks, (b) pro-act, (c) innovate, (d) develop, maintain and use dynamic core

competencies, (e) build sustained competitive advantages and (f) create value.

Evidence suggests that knowledge is central to how organisations learn and manage

technologies [Oliveira, 1999]. An ability to understand and manage this relationship

affects a firm’s performance. Learning and knowledge are linked closely; knowledge

is a critical outcome of learning. Beyond this, how knowledge is managed influences

the selection and implementation of the firm’s strategies [Teece et al., 1997].

2.13 The Relationship Between Technology and Knowledge
Among the many factors that will influence a firm’s performance in the 21st century’s

competitive landscape, globalisation, technological advances and knowledge are

perhaps the most significant [Hitt et al., 1999]. These three factors have both

independent and interactive effects on the shape of the competitive landscape [Zahra

et al., 1999]. Evidence suggests, for example, that in the biotechnology industry,

technology and knowledge are highly inter-related [DeCarolis & Deeds, 1999].

Technology can be defined as a ‘systematic body of knowledge about how natural and

 28

artificial things function and interact’ [Itami & Numagami, 1992]. It follows that

technology is a form of knowledge and that technological change can be understood

by examining knowledge development [Bettis & Hitt, 1995]. Furthermore, as

competition in global markets becomes driven more intensely and frequently by

technology, technological knowledge may be even more important for firms with

global ambitions [Boudreau et al., 1998].

2.13.1 Dimensions of Knowledge
There are different types of knowledge. The primary distinction among them is tacit

knowledge and explicit knowledge [Polanyi, 1958]. The difference between these is

described as the difference between experiential (i.e. tacit) knowledge and articulated

(i.e. explicit) knowledge.

Tacit knowledge is accumulated through learning and experience; often, it is referred

to as ‘learning by doing’ [Reed & DeFillippi, 1990]. Tacitness suggests that

individuals know more than they can tell [Polanyi, 1967]. Tacit knowledge entails

commitment and involvement in specific contexts and has a ‘personal’ quality

[Nonaka, 1994]. As Polanyi (1958) stated, ‘the aim of a skilful performance is

achieved by the observance of a set of rules which are not known as such to the

person following them’. Tacit knowledge is difficult to codify, articulate and

communicate. Importantly, the tacit dimension does not suggest that knowledge

cannot be codified. One view of this is that tacit knowledge may best be defined as

knowledge that is not yet explained [Spender, 1996]. Terms such as ‘know-how’,

‘subjective knowledge’, ‘personal knowledge’ and ‘procedural knowledge’ have been

used to describe the tacit dimension of knowledge.

In contrast to tacit knowledge, explicit knowledge can be formalised, codified and

communicated. In fact, explicit knowledge is revealed by its communication while

tacit knowledge is revealed through its application [Spender, 1996]. Concepts related

to explicit knowledge include ‘know-what’, ‘objective knowledge’, ‘pre-dispositional

knowledge’ and ‘declarative knowledge’. The tacit and explicit dimensions of

knowledge can reside in an individual or in the collective organisation. Spender

(1996) incorporated these dimensions to develop a 2x2 matrix of organisational

knowledge. The dimensions in his matrix (shown in Figure 2-1) are individual explicit

(i.e. conscious knowledge), individual tacit (i.e. automatic knowledge), collective

explicit (i.e. objectified knowledge) and collective tacit (i.e. collective knowledge).

 29

A second distinction of knowledge types is between component and architectural

knowledge. Component knowledge regards a particular aspect of an organisation’s

product, process or operation. Architectural knowledge, on the other hand, relates to

the various ways in which the components are integrated and linked together into a

complete system [Henderson & Clarke, 1990]. Thus, component knowledge can exist

independently whereas architectural knowledge is embedded in a larger system and

cannot be decomposed into independent parts [Garud & Nayyar, 1994].

Figure 2-1: Organisational Knowledge Matrix

Many complex technologies can be described as a form of architectural innovation

[Singh, 1997]. Component knowledge resides in either the individual or the collective

and can be either tacit or explicit. However, because architectural knowledge is held

throughout the whole organisation, it is collective in nature. Moreover, it is difficult

for any one person to understand (or hold) the whole architectural knowledge, thus

making such knowledge tacit by nature [Matusik & Hill, 1998].

2.13.2 Technological Knowledge
Technological knowledge (that is, knowledge that describes the functions and

interactions of natural and artificial things) can be individual explicit (e.g. individual

skills pertaining to a particular technology that can be codified), individual tacit (e.g.

individual skills pertaining to a particular technology that is personal), collective

explicit (e.g. standard operating procedures) or collective tacit (e.g. an organisation’s

routines and culture regarding technology). Each of these technological knowledge

dimensions can be the source of competitive advantage and value creation [Spender,

Individual
Explicit

Individual
Tacit

Collective
Tacit

Collective
Explicit

Domain

Knowledge Dimension

 30

1996]. However the dimensions that include a tacit component demonstrate the

greatest potential for creating competitive advantages and firm value. Technological

knowledge that is difficult to articulate, codify and explain is also difficult to imitate.

Collective tacit knowledge is an important source of competitive advantage and value

creation.

2.13.3 Developing Technological Knowledge Through Learning
Two outcomes result from the innovation process: innovation and learning. Acquiring

technological knowledge (learning) is valuable because it leads to further innovation.

Miller (1996) suggests that ‘It remains unclear just what learning is, how it takes

place, and when, where and why it occurs’.

The importance of learning has been examined at both the individual and

organisational levels. Cyert & March (1963) stated that organisations are adaptively

rational systems and that a theory of long-term behaviour in organisations must

contain a theory of how organisations learn, unlearn and re-learn. Millar (1996) also

states that ‘organisational learning is the acquisition of new knowledge by actors who

are able and willing to apply that knowledge in making decisions or influencing others

in the organisation’. Thus learning entails acquisition of knowledge and in addition

use of that knowledge in some way. These characteristics suggest two types of

organisational learning, acquisitive and experimental. Acquisitive learning takes place

as the firm acquires and internalises knowledge external to its boundaries.

Experimental learning occurs largely inside the firm and generates new knowledge

that is distinctive to the organisation [Lie et al, 1996]. On a relative basis, individuals

and groups play a more active role in experimental learning than acquisitive learning.

Through active experimentation and processes supporting it, individuals and groups

‘learn’ how to use organisational learning to create competitive advantages and value.

Other learning typologies exist. One typology includes lower-level learning (single-

loop learning or business-level learning), higher-level learning (double-loop learning

or strategic learning) and meta-learning (incorporating a dynamic character). Lower-

level learning involves developing rudimentary links between behaviour and

outcomes through association building. It focuses on the immediate effect of the

learning on some organisational task [Fiol & Lyles, 1985]. It is temporary and affects

only a part of the organisation. Higher-level learning involves the use of heuristics

and insights to develop ‘frames of reference, interpretive schemes or new cognitive

 31

frameworks within which to make decisions’. As such, higher-level learning or

double-loop learning takes place in complex and ambiguous situations. In general,

lower-level learning is short-term orientated while higher-level learning is focused on

the long-term. Although both learning types contribute to organisational success,

higher-level learning is relatively more important when the firm seeks to create

competitive advantage and value. As such, organisations must recognise and

understand the set of factors that lead to higher-level learning.

Lei et al (1996) argue that learning helps build a firm’s dynamic core competences.

They suggest that firms can achieve higher-order learning based on three critical

factors. The first relates to information transfer and retrieval that forms the foundation

for a firm’s universal and tacit knowledge base. The second concerns experimentation

that allows firms to engage in continuous improvement and redefinition of heuristics.

Finally, firms need to cultivate dynamic routines in order to develop firm-specific

skills and capabilities thus achieving meta learning, which is defined as the

simultaneous conceptualisation of different and contradictory forms of knowledge.

Meta learning capability is especially critical for the firm seeking to define a new

competitive space in uncertain, dynamic and volatile environments. A new

competitive space typically is a product of proactive and innovative behaviour.

Three elements are required for an organisation to engage in successful meta learning.

First, the firm must obtain explicit as well as tacit technological knowledge from

internal as well as external sources. Second, the firm must engage in experimentation

that results in continuous improvements. For organisations to survive and prosper,

they must maintain a balance between exploration (i.e. experimentation with new

alternatives) and exploitation (i.e. the refinement and extension of existing

competencies). That is, companies must innovate and reap the benefits of that

innovation. Finally, firms must build routines to effectively integrate technological

knowledge throughout the organisation. This integration occurs primarily through

sharing across individuals and groups.

Common knowledge is essential in developing dynamic routines. Common

knowledge is known to all members of an organisation and enables people to share

and integrate aspects of knowledge which are not common between them. Dynamic

routines (i.e. the organisation’s cognitive maps and particular approaches to framing)

form the foundation for creating new technological knowledge [Lei et al., 1996]. New

 32

technological knowledge, in turn, can disrupt the status quo and thereby lead to

innovation.

Dynamic routines are necessary for creative technological learning [Nelson and

Winter, 1982]. Here, the role of an organisation’s strategic leaders is critical. Strategic

leaders must cultivate the necessary intellectual capital and create an environment in

which innovation and knowledge are developed and exploited through continuous

learning. Thus, the role of setting technology direction must come from the strategic

apex of the organisation.

When a firm uses technological learning as the source of competitive advantage it

cannot assume that its core competencies will remain valuable. Sudden and

unpredictable changes in technological environments can alter the value of a firm’s

existing technological knowledge or render it obsolete. Therefore, firms must

maintain a balance between cultivating core competencies as part of their knowledge-

creation system while ensuring that the competencies do not become core rigidities.

This is challenging because within each competence is the seed of rigidity.

Organisational learning must be used to create dynamic core competencies. Dynamic

core competencies may be grounded in either acquisitive or experimental

organisational learning. However, it is unusual for a competence to endure for any

period of time unless it is primarily a product of experimental learning [Lei et al,

1996].

2.14 Internal and External Technological Knowledge
Firms gain access to or form technological knowledge through two primary avenues.

Experimental or internal technological knowledge is generated as individuals and

groups experiment across multiple projects, including those involving research and

development, manufacturing and marketing activities, Resulting from these

experiments are unique and idiosyncratic insights about technological knowledge and

its commercial application. Acquisitive or external technological knowledge is the

knowledge gained and absorbed from sources outside the firm’s boundaries. A source

used increasingly for this purpose is inter-firm arrangements or collaborations. Both

sources of organisational learning are important to the firm seeking to create

competitive advantage and value.

 33

2.14.1 Internal Technological Knowledge
Nonaka (1994) suggests that firms create knowledge through socialisation,

combination, externalisation and internalisation processes. Developing technological

knowledge is a product of the firm’s ‘transformative capacity’, which is, ‘the ability to

continually redefine a product portfolio based on technological opportunities created

within a firm’ [Garud & Nayyar, 1994].

Kogut & Zander (1992) argue that a firm is a social community specialising in

creating and transferring knowledge. They suggest that the advantage of the firm over

the market does not lie in mitigating opportunism but rather in creating and

transferring knowledge.

 A primary internal source of technological knowledge creation is the firm’s research

and development program and capacity. Research by Cardinal & Hatfield (2000)

shows that firms with separate research laboratories are more innovative than firms

using a centralised R&D unit. Additionally, the location of these R&D laboratories

was found to be important, in that laboratories close to the R&D center enhanced new

product innovations as well as overall yields from basic research. However, corporate

interference in these R&D laboratories had a negative effect on patent productivity.

Another important internal source of technological knowledge is the innovation

resulting from internal projects. March (1991) stated that exploration (i.e. behaviour

entailing the search and experimentation with new alternatives) is critical for the

organisation’s survival.

Cheng & Van de Ven (1996) found that the innovation process is neither orderly nor

random, but rather chaotic. They suggested that organisational learning can be seen as

‘an expanding and diverging process of discovery’.

2.14.2 External Technological Knowledge
Cohen & Levinthal (1990) argue that a firm’s ‘absorptive capacity’ is important.

Absorbtive capacity refers to a firm’s ability to recognise the value of new, external

information, assimilate it and apply it to commercial ends. The ability to recognise,

exploit and utilise external knowledge depends on a firm’s level of prior-related

knowledge. Thus, prior learning influences a firm’s absorptive capacity. Additionally,

to exploit the knowledge gained, it must be diffused to other units inside the

organisation.

 34

Firms often participate in multiple external networks and collaborate with other firms

in multiple ways [Gulati, 1999]. The traditional reasons for collaborative efforts

emphasised reducing risk and uncertainty. However, more recently learning has

become an important motive (i.e. learning alliances) to acquire new knowledge.

Kogut (1988) explains the rationale behind learning alliances, suggesting that firms

can be thought of as knowledge bases and that joint ventures can be regarded as

mechanisms to transfer tacit knowledge.

In addition to strategic learning alliances, inter-organisational networks are a major

source of technological knowledge. For example many innovations occur outside of

the company and even outside the industry that eventually commercialises them.

Liebeskind et al. (1996) found that social networks helped new biotechnology firms

obtain new technological knowledge as well as increase their scope of technological

learning.

One form of external technological knowledge transfer is collaboration between firms

and universities. Results show that knowledge transfer activities are facilitated when

industrial firms have more mechanistic structures, cultures that are more stable and

direction-oriented and when the firm is more trusting of its university research centre

partner. While innovation creation is facilitated by organic structures, mechanistic

structures may be superior for innovation implementation. Furthermore, a stable and

direction-oriented culture imbues members with a common purpose and thereby

reduces internal conflicts. Innovation creation and implementation create tensions in

firms’ cultures that must be managed effectively.

2.15 Managing Technological Knowledge
Despite its criticality, many firms lack the requisite capabilities to manage and make

sense of technological knowledge. There are at least two reasons that organisations

find it difficult to effectively manage technology. First, technology management is a

complex process that encompasses R&D along with management of product, process

and information technologies [Badawy, 1998]. Thus, technology management can be

regarded as a ‘dynamic system of interactions and inter-relationships between the sub-

systems or sub-components of the organisation’. Second the very nature of the

knowledge embedded in many technologies (intangible and tacit) makes it difficult to

manage.

 35

Two issues must be addressed before the firm can effectively manage technological

knowledge. First, various knowledge integrating mechanisms must be in place to

enhance the breadth, depth and speed of technological learning [Zahra et al., 1999].

Second, the firm must integrate technological knowledge with strategy in a dynamic

manner. This integration requires the ‘architecture or configuration of management

systems, policies and procedures governing the strategic and operational functional of

the enterprise in order to achieve its goals and objectives’.

Efficient knowledge integration requires that firms develop the ability to access and

utilise its employees’ specialised knowledge sets. This ability is determined by the

level of common knowledge among the people in the organisation, how well

organisational members communicate with each other and the organisation’s

structure. The second characteristic is the ‘scope of integration’. In this context, scope

refers to the breadth of specialised knowledge on which the organisation can draw.

The greater its breadth of knowledge, the better a firm can develop complex

technological products, in turn leading to ‘uncertain inimitability’. Finally firms need

to access new knowledge or reconfigure existing knowledge to maintain competitive

advantage and create value. These architectural innovations are linked closely to the

stock of ‘architectural knowledge’ and how effectively firms engage in technological

learning. Integration mechanisms are needed to bring together technological

knowledge from within the firm as well as from external sources.

Itami & Numagami (1992) suggest that current strategy can help cultivate future

technological knowledge and current technological knowledge can affect the

cognitive processes of the managers who will form the future strategy.

Fowler et al (2000) suggest that long-term strategic success is created through

strategies that focus on: (1) building market-driven, technological and integration

competencies, and (2) decoupling these competencies from current products to create

and exploit new opportunities. Such strategies then help firms develop dynamic

competencies necessary in environments that are characterised by substantial change

(e.g. the new competitive landscape). They suggest that strategic alliances may be

used as vehicles to help firms integrate market-driven and technological capabilities.

These embedded and often tacit competencies are critical for a firm to be strategically

competitive (i.e. for the firm to create competitive advantages and value across time

and events).

 36

2.16 Summary
This chapter summarises the various components in an automated storage and

retrieval system, listing also the benefits of automating a company’s storage

operation. Details of the various control strategies are included plus a summary of the

performance measures applied to such systems. A thorough examination of current

research topics in this area is also given. The findings from this review are that there

is currently a large amount of research on-going with particular emphasis on

improving throughput by analysing storage, retrieval and dwell point strategies.

The later section of this chapter concentrates on summarising the various aspects of

knowledge management including: the value of knowledge, the relationship between

technology and knowledge, internal and external technological knowledge and the

management of technological knowledge.

The following chapter focuses on the ASRS design in terms of its mechanical and

electrical configuration and a proposed control system.

 37

3 ASRS Design and Build

3.1 Introduction
The ASRS developed in Waterford Institute of Technology is based on the Hi-bay

storage facility in a large multi-national firm based local to the College. The reason

for this correlation is to allow for concurrent research into ASRS control without

incurring excessive downtime in their plant. This facility is currently controlled with

Siemens S5 PLCs and custom-built warehouse management software (Harvest). It is

intended in a planned upgrade to this Hi-Bay that the control hardware be upgraded to

Siemens S7 PLCs utilising Step7TM and WinCCTM SCADA software with local

communication to the company-wide ERP system (SAP).

The decision was therefore taken in the initial development stages of the W.I.T. ASRS

that the hardware and software specified would match those selected by the multi-

national for its Hi-Bay upgrade.

The proposed physical structure of the ASRS closely resembles the Hi-Bay structure

of the partnership company. It consists of a single rack with 68 bays serviced by a

crane with independently controlled horizontal, vertical and shuttle movements

including external speed control. Within the rack are two bays dedicated to load and

unload functions integrated with the existing FMS through forward / reverse

conveyors.

The communications network proposed for the ASRS is a Profibus DP fieldbus

network between the PLC, the remote I/O modules and the desktop PC. This PC

operates under Windows 2000 with a WinCC function library DBExt.DLL, sitting

between the Microsoft database and the ODBC compliant Siemens WinCC SCADA

software. Siemens Step 7 software is used to program and control the Siemens S7-

412-2 PLC. NetDDE.EXE is used to communicate between the WinCC based ASRS

application and the FMS operating under Wonderware Corporation’s In TouchTM

SCADA in combination with G2TM Artificial Intelligence, Microsoft SQL ServerTM

and Visual BasicTM interfaces.

This chapter will outline the steps involved in specifying the above hardware and

software for this ASRS application and describes the physical build of the ASRS

conducted chiefly by O’ Mahoney (2004) under the supervision of the author. It then

goes on to describe the control, communication and interfacing of the ASRS that this

research project was focussed on.

 38

3.2 ASRS Mechanical and Electrical Design and Build

3.2.1 Introduction
This section of the thesis relates to the mechanical and electrical design and build of

the ASRS conducted by O’ Mahoney (2004) under the supervision of the author.

3.2.2 Storage Configurations
The ASRS design proposed was a unit load automated system designed to handle unit

loads on specially designed pallets (Figure 3-1). Storage options in an ASRS consist

of single, double and multiple deep. Double and multiple deep configurations are

typically used to store identical items with loading and unloading at opposite sides of

the racking to ensure correct product rotation (FIFO). Through examination of the

product mix (Table 1) the decision was made to implement a single deep

configuration. This configuration allows equal access to any stored component

without obstruction and results in optimum retrieval times. It also allows for

simplified simulation and comparison of results for a variety of retrieval and storage

strategies.

Table 1: Components for Storage in ASRS

Presently Future
Product 1: Components 1-9. Tooling for robot.
Product 1: Clamps. Probes for CMM.
Product 2: Components (Four
Uprights and Eight Struts).

Product 3: Components.

Product 2: Jigs. Product 3: Jigs and Fixtures.
Product 2: Clamps.
Product 2: Final Assemblies.
Various tool holders with fitted
tools.

The racking material specified in the design has an L-shape cross section. The

material used in the construction was pre-drilled and pre-painted mild steel. Figure 3-

2 shows a section of the racking. The storage capacity of the ASRS is equal to:

(Number of rows x Number of columns) – Unavailable bays

Resulting in:

Storage capacity = (6 x 12) – 4 (load & unload points require 2 bays each) = 68 bays

This number of bays is more than adequate for the product range in the FMS and is

also ideal for testing the various control strategies outlined previously (Sections 2.4 –

2.9).

 39

Figure 3-1: Pallet Design

Figure 3-2: ASRS Racking

 40

3.2.3 S/R Crane
The storage / retrieval crane requires three independent movements: horizontal,

vertical and shuttle (forks forward / reverse).

A three-phase squirrel cage motor (Bosch NEMA Design B) was chosen for both the

horizontal and vertical movement. These have good speed regulation combined with

moderate starting torque.

Mitsubishi 500 series inverters were used (model FR-E540-0.4K) to control the speed,

acceleration and deceleration of these motors. These inverters include a detachable

interactive control keypad and display used for configuration and programming. The

FR-E540-0.4K is a compact three-phase drive with high functionality (number of

steps, pattern, external control options), powerful overload protection, parameter copy

and update capability, low audible motor noise and compatibility with MX500 set-up

and programming software. It has a capacity of 0.4 KW and an output current of 1.6A.

The S/R machine consists of a mast that spans the rack from top to bottom, this mast

has at either end a base and a top assembly (Figures 3-3, 3-4 and 3-5 show the initial

crane design [O’ Mahoney, 2004]). The base assembly consists of a three-phase

induction motor for horizontal movement plus 2 pairs of wheels which guide the unit

along a horizontal track, restricting any lateral movement (Figure 3-6). This base

assembly also contains a drive drum (Figure 3-7) which gathers and releases the steel

cable used for vertical movement. A top plate assembly was mounted at the mast top

(Figure 3-8). This also contains two pairs of wheels which run either side of a

horizontal track at the top of the ASRS. The top assembly has only a guide and

support function. There is no drive requirement at this position with the top horizontal

guide beam also performing a support function.

The vertical movement of the S/R machine is achieved by directing the steel cable

from the drum on the base assembly through guide pulleys on the top assembly and

attaching it to a vertical unit which runs on the vertical mast.

 41

Figure 3-3: Top Plate Design

Figure 3-4: Guide rail and wheel conceptual design

Figure 3-5: Guide Rail Assembly Conceptual Design

 42

Figure 3-6: Base Assembly

Figure 3-7: Vertical Drive Drum

Figure 3-8: Top Plate Assembly

 43

3.2.4 Shuttle Movement
The shuttle design consists of a single DC motor driving a telescopic fork set that has

three individual chains for drive transmission. When the S/R machine reaches the

desired location the single DC motor is activated.

A Bodine model 24A4BEPM-D3 DC geared motor was chosen for this application.

This motor has a peak torque of 4.5 Nm and a horsepower rating of 0.044 kW. It is

controlled using a Minarik XL3025 pulse-width modulated adjustable speed DC drive

controller.

The shuttle forks mechanism consists of three plates and three drive chains which

allow for extension of the forks in either of two directions, this allows for further

expansion of the ASRS to include a second rack which can also be serviced by this

one S/R machine. Figure 3-9 shows the shuttle fork mechanism together with the

Bodine model 24A4BEPM-D3 geared DC motor.

Figure 3-10 illustrates the wiring arrangement for the speed control of the forks. The

Live and Neutral of the 220 VAC supply are connected to L1 and L2 on the controller

terminal block. A speed adjusting potentiometer is connected to terminals S1, S2 and

S3. Terminals A1 and A2 are wired through a series of Allen Bradley four pole

double-throw relays for hardwired interlocking of forward and reverse movement.

Figure 3-11 shows the main control cabinet which includes the Siemens PLC, the two

Mitsubishi inverters, the Minarik DC controller and a number of single and three pole

contactors, MCBs and relays.

3.2.5 Electrical Supply
A Residual Current Device (RCD) protects the main power supply to the AMT

Laboratory. The 3-phase power supply to the ASRS control cabinet is isolated with a

wall mounted isolator switch plus an isolator switch mounted internally in the cabinet.

Phase power is wired directly from this isolator switch to the Siemens S7 PLC and the

24 VDC power supply. Both of the Mitsubishi inverters and the single Minarik DC

drive controller are wired through a contactor which is powered through the

emergency stop circuit. Activation of any one of the emergency stops (Figure 3-12)

will therefore result in power to the motor inverters and controller being shut off,

power to the PLC and 24 VDC power supply will remain on. To reactivate power to

the inverters and DC motor controller, the emergency stops must be depressed and a

restart button pressed.

 44

Figure 3-9: Shuttle Fork Mechanism

Figure 3-10: Shuttle Forks Speed Control

 45

Figure 3-11: ASRS Control Cabinet

Figure 3-12: Emergency Stops and Start/Reset Switches

 46

3.3 ASRS Control, Communications and Interfacing

3.3.1 Introduction
This section of the thesis relates to the selection of the ASRS control hardware and

software including the PLC and programming software, SCADA software, database

selection and design and the development of an order generator. The integration of the

ASRS with the existing FMS is also considered.

The control of this existing FMS is through an intelligent scheduler and dispatcher

developed by Flanagan (2004), communicating with a MS SQL Server database over

a NetDDE communications network with Visual Basic interfaces to individual

machines. Current research by Roche (pending) is on the generation of a business

development interface which will link the existing system to the customer through the

use of an order generator hence allowing for a thorough testing of the scheduler.

3.3.2 PLC Selection
The make and model of the PLC chosen for this application was influenced firstly by

the decision of the partnership organisation to remain faithful to the PLC

manufacturer of their existing system and secondly by their decision to include in the

upgrade specification the use of Profibus as the networking choice.

It was therefore necessary to select a PLC from the Siemens S7 range for the WIT

ASRS which also had to be Profibus compliant. The S7-200 range does not include

Profibus masters, the S7-300 range has Profibus masters in the higher models, from

the 315-2 DP model to the 318-2 DP model. The S7-400 series also includes Profibus

DP masters in its range.

The model chosen by the Partnership organisation to replace their two existing S5-

150U PLCs was the S7-417-2. This model offers a programming memory space of 1.6

MB and an execution time of 0.08 µs. The specification of the PLC for the WIT

ASRS was not quite so demanding on required programming memory and peak

execution time although it was essential that it could perform as a Profibus DP master.

The S7-300 has a totally different rack type than the S7-400 and for this reason was

not considered. From the S7-400 series the model chosen was the S7-412-2 which

contains 144 KB of programming memory combined with 0.2 µs execution time.

 47

3.3.3 Local Communication
The proposed communication between the PLC, I/O modules and PC is with Profibus

DP which allows for the connection of field devices such as I/O modules with

automation systems.

The master PLC and the distributed I/Os both require Profibus ports. This is already

ensured in the specification of the S7-412-2 master PLC. Profibus allows for quick

disconnects, easier wiring and efficiency benefits when equipment is being

disassembled and reinstalled.

Siemens claim that the installation of twisted-pair fieldbus in material handling /

conveyor applications generates savings of 50-60% or more over hardwiring all the

input and output devices directly to the PLC terminals.

Using Profibus, data from field devices can be used to prioritise maintenance jobs.

Instead of routinely pulling and diagnosing components, which may catch them

before maintenance is needed, or after performance degrades significantly, users can

now replace components using data from the devices themselves, which can greatly

reduce costs and downtime.

According to Siemens, Profibus also offers savings in wire, terminations and labelling

and associated labour costs.

3.3.4 PLC Software
The PLC programming software chosen for this design is Siemens Step 7. This

program, Siemens claim, allows for easy creation, testing, start-up, operation and

maintenance of control solutions through the provision of an integrated tool set for all

system components. The software stores all configuration and programming data in a

central database to which all the modules have access. Data is required to be entered

only once and is then available for the entire project.

The Simatic Manager is a graphic user interface which allows configuration and

offline/online editing of S7 objects (projects, user program files, blocks, tools and

hardware stations). Simatic Manager enables the user to:

• Access the PLC online

• Manage libraries and projects

• Use Step 7 tools

• Edit memory card programs

 48

With Simatic Manager data is stored in the form of objects in a project. These are

stored in a hierarchical structure (project tree). The project tree consists of the

following levels:

Level 1: The project icon represents a database where all the relevant project data are

stored.

Level 2: Stations where hardware configurations and parameter assignments are

stored with program folders containing program blocks and sources for writing Step 7

PLC programs and overall network components such as MPI/Profibus/Industrial

Ethernet

Step 7 provides various types of blocks in which programs and related data can be

programmed and stored. The structure of the program will differ with the process

requirements and will consist of some of the following block types:

Organisational Blocks (OB): These provide the interface between the user program

and the operating system. The OS cyclically calls OB1, which can contain the entire

program or calls to other sections of code (functions, function blocks or data blocks).

Function (FC, SFC): A function contains a piece of functionality of the user-defined

program and does not require access to data blocks. A system function has a fixed

functionality and is integral to the CPU’s operating system (time functions, block

transfer)

Function Block (FB, SFB): Function Blocks and System Function Blocks are similar

to Functions and System Functions except they have their own memory area in the

form of instance data blocks.

Data Blocks (DB): Data Blocks are data storage areas for storage of user data.

3.3.5 HMI Software
To ensure full compatibility with the Siemens S7 PLC and to model the Partnership

organisations upgrade the HMI software proposed is Siemens WinCC.

 49

This software is designed for visualisation and operation of processes, production

flows, machines and plants. The base system, which is industry and technology

independent, is suitable for universal use in any automation application according to

Siemens.

WinCC offers simultaneous access to a maximum of six WinCC process data servers

and the representation of all associated information. It also supports multiple users

and Siemens claim that it provides excellent visualisation and communication

functionality.

According to Siemens it has powerful process interfaces, in particular to the Simatic

range including Ethernet / Profibus / AS-i and open communications through OPC /

OLE / DDE and ODBC. The basic package is integrated with Simatic Step 7 for ease

of configuration and includes functions for signalling events, archiving of measured

values, logging of process and configuration data, user administration and

visualisation. The application is designed for visualisation and operation of processes,

production flows, machines and plant. It offers easy to install client server structures

and simultaneous multi-client access of up to six WinCC process data servers. WinCC

version 5 enables process management via the Intranet / Internet using Web Navigator

with no additional configuration required.

3.3.6 Database Design
Recording of the storage details of the ASRS is required at a central location as the

future development of the laboratory requires easy access to all records. Currently the

FMS data is stored in an MS SQL Server database using an ODBC connection for

communication to the control system. Full integration of the ASRS into the FMS

requires communication and data storage at a level comparable with the FMS control

components. This means that the main control FMS database will also contain tables

of data on the ASRS such as contents, classification of bay groupings, allocation of

dedicated storage to bays, requirements etc. These tables can then be checked by the

MRP system to determine the status of various components prior to the launching of

new works orders.

For the current research project a decision was made, for practical reasons of

autonomy, to opt for a local MS Access database on the ASRS PC with

communication through a pre-defined ODBC link to the ASRS control programs. It is

 50

envisaged that this will be altered at a future date to link the control software to the

centrally located MS SQL Server Database for increased security and access control.

To handle the communication between the WinCC SCADA software and both local

and networked SQL applications it is proposed to use the ODBC interface provided

with Windows 2000. This assumes that the applications and database are ODBC

compliant. WinCC, which is ODBC compliant, combined with a communications

add-on (DBExt.DLL) allows for this.

DBExt.DLL consists of a set of synchronous and asynchronous functions for reading

and writing of database records. Synchronous functions wait for a result using time

intensive requests and block global scripting during connection problems.

Asynchronous functions return immediately using a call-back function allowing

global scripting to continue and are characterised by the addition of ‘CB’ at the end of

the function name. DBExt.DLL is a library of database functions, realised as a DLL

and it displays record fields using WinCC standard I/O objects. It has a wide range of

functions to allow for easy and efficient communication between the application and

the database.

3.3.7 ASRS Order Generator
In order to conduct a complete set of tests for pathological conditions on the physical

and mathematical ASRS models it is necessary to create an order generator. This

program has to have the capability of generating a range of orders which covers all

possible conditions for both models including the extremes of requirement type,

demand interval and component type. Such a demand generator will test the ASRS

models to an infinitely greater degree than any set of orders that are developed

manually.

 The system specified is a SIMUL8 model which will allow the user to specify: the

list of components, the required operation, the probability of time interval between

jobs and the total number of jobs required. This model will transfer the generated list

of orders (excluding the time interval) to a temporary Requirements table in a MS

Access database, the time interval values will be transferred to a separate table in the

same database. These two tables will be combined using a macro within the MS

Access database that asks the user for a “Start time” during its operation and outputs

the new list of requirements to a Requirements table. This will allow for the re-

running of the same Requirements by the ASRS control system, with a different start

 51

time, without having to re-run the order generator, ensuring the operator can run a

number of replication trials on the same data.

The proposed mathematical model will have the capability of importing these

requirements from the database and then simulating the actual run data. This will aid

the researcher in building the required confidence in both models.

3.3.8 ASRS / FMS communication and Interfacing
The control of this existing FMS is through an intelligent scheduler and dispatcher

developed by Flanagan (2004), communicating with a MS SQL Server database over

a NetDDE communications network combined with custom applications which

provide interfaces to individual machines.

Future development of the ASRS will concentrate on a complete integration with the

FMS. This will incorporate the development of new tables within the control MS SQL

Server database and the establishment of a communications link between the PCs.

This link will be across a NetDDE network similar to the existing FMS control

network. The planning and control of the FMAS is managed by an MRP/ERP system

which requires this link for it to consider raw materials or finished goods stored in the

ASRS. The scope of this research did not extend to the development of this link. This

really is unacceptable from a planning perspective and will need to be addressed as a

matter of urgency in the on-going development of this system.

3.4 System Design

3.4.1 Introduction
This section of the thesis relates to the design of the PLC and SCADA control

programs to ensure that the system complies with the overall project objectives of

designing an ASRS test rig that is capable of being used as a tool to investigate a

range of ASRS characteristics.

3.4.2 SCADA Programming
The proposed design (Figure 3-13) comprises of a master WinCC HMI screen which

will allow for the setting of a number of ASRS characteristics including: Command

strategy, dwell point location, travel paths, storage strategy, retrieval strategy, single

or multi-product types, bay availability, pick and deposit locations, obsolete strategy

and buffer zones (for pre-retrieval and pre-storage)

 52

Figure 3-13: Proposed Control Screen

Command strategy

This gives the operator the choice between single or dual cycle, this may not always

be significant because at times there may be only a requirement for one type of

operation, i.e. a series of retrievals required, especially at start-up but it is essential for

the analysis of ASRS performance.

Dwell point location

The proposed choices available to the operator are:

Pick Point

Deposit Point

Current Location

Origin (0,0)

User Defined

These options are necessary both to match current research into cycle time analysis

and also to conduct future research into dwell point locations.

 53

Travel paths

The proposed options for this parameter are:

Rectilinear

Simultaneous

There is a large amount of on-going research whose results are based on rectilinear

travel, therefore it is important to include this control option. In general operation, it is

more appropriate to use simultaneous travel (faster, more efficient).

Storage strategy

The six options proposed are:

Free – Random

Free - Nearest

Class-based – Random

Class-based - Nearest

Dedicated - Random

Dedicated - Nearest

The majority of the research into cycle time specifies random storage, however there

is a significant body of research into other strategies. The proposal aims to develop a

control system that can be used to evaluate these various storage strategies. The

selection of class-based storage will be dependent on whether there is single or multi

product types requiring storage. The system proposed will have the capability of

categorising various sections of the racking for the required classes or of allocating

particular bays to particular products (dedicated).

Retrieval strategy

The options proposed here are:

Random

Nearest

FIFO

The most common strategy in current research is random selection of the products for

retrieval. The most common in practice is FIFO to ensure reasonable stock rotation.

 54

Bay availability

For a variety of reasons (restricted access, damage, ease of access) there may be

certain bays in the racking to which an operator may want to restrict access. A

database linked to WinCC will control access to the bays opening and closing access

whenever it is required.

Pick and deposit point locations

In the proposed ASRS these locations are defined by the conveyors to and from the

FMS. In other circumstances it may be necessary to either transpose these locations,

use one conveyor for both pick and deposit etc., flexibility is therefore required in the

specification of these locations. It may also be required to specify a completely

different location for pick and / or deposit.

Obsolete strategy

The option will be available to turn on or off this function. When this strategy is

selected there will be a zone of the racking allocated for obsolete items i.e. items not

required in a defined time period. These items will be moved to this zone during S/R

slack periods. Reports will be available on the contents of this zone and their

movement history. A further option will be available to empty the obsolete zone if

necessary.

Buffer zones

There is proposed to be three options:

Pre-retrieval buffer zone

Pre-storage buffer zone

No buffer zone

The operator can select either option. The pre-retrieval buffer zone is used for

‘kitting’ of components and / or parts prior to delivery to the FMS. This will

theoretically result in improved cycle times by taking advantage of slack time to query

the work order requirements and re-organising product within the ASRS (Shuffling or

Relocation). The Pre-storage buffer is used for rapid storage, if there are a number of

pallets to be stored in a short period then this option will ensure that the travel

 55

distances for the pallets will be as short as possible, thus improving the ASRS reaction

time.

Neither the Obsolete or the Buffer Zone control was developed as part of this research

program. It is planned to develop these in the near future.

Manual control

One additional feature of the WinCC control which is envisaged is the inclusion of

manual control. This will allow the operator to manually select and de-select the

following: S/R machine Up, Down, Forward, Reverse, Forks In and Forks Out, GoTo

X (horizontal travel), GoTo Y (vertical travel), GoTo (X,Y), GoTo Dwell Point,

Home and Reset.

3.4.3 PLC Programming
The proposed Step 7 program will adhere to a structured format as summarised in

Table 2.

The major benefits of adhering to such a rigid structure are:

- Ease of programming

- Efficient fault-finding

- Safe operation

- User-friendly upgrading

- Isolation of program elements

These functions are called from OB1 which allows for complete isolation of the

different strategies and control options. This is ideal for a student learning

environment and also for the on-going development of the ASRS control to analyse

various new and improved strategies. The PLC programming is detailed in Chapter 4

where a number of techniques used to implement this control design are highlighted.

 56

Table 2: Proposed PLC Blocks

Program item Description

OB 1 Main Program Control

FC 1 Manual control, X and Y axes

FC 2 5 Second Time Delay

FC 14 Home & Reset

FC 15 GoTo X

FC 16 GoTo Y

FC 17 GoTo (X,Y) – Simultaneous Movement

FC 18 GoTo (X,Y) – Rectilinear Movement

FC 19 Pick – Time Delay

FC 20 Place – Time Delay

FC 21 Semi-Automatic Pick

FC 22 Semi-Automatic Place

FC 23 Automatic Pick

FC 24 Automatic Place

3.5 Summary
This chapter details the proposed design and build of the test-bed ASRS for W.I.T.

including the mechanical and electrical components plus the communications, control

software and programming requirements.

The main emphasis of the hardware selection process was to ensure reasonable

compatibility with the partnership organisations proposed up-grade. This is achieved

through the design of the racking and S/R machine plus the selection of Siemens

control hardware and software.

The flexibility in control of the ASRS is important from a research stand-point. It is

important for W.I.T. that this ASRS should be capable of a variety of control

strategies to analyse the impact of these strategies on the overall performance of this

ASRS and furthermore to develop theories on a variety of control strategies including:

command strategy, dwell point location, travel paths, storage and retrieval strategies,

obsolete and buffer zone implementation and possibly others into the future. This

chapter highlights the control process to be implemented and summarises the various

programming elements that will be developed.

The next step is to outline the development of the control system for this test-bed.

 57

4 ASRS Control and Communications

4.1 Introduction
This chapter summarises the programming and control of the ASRS in the AMT

laboratory in Waterford Institute of Technology.

Profibus DP, DBExt.DLL, NetDDE are specified for the communications network to

support this ASRS and to link it to the existing FMS control within the AMT space.

Siemens Step7 and WinCC are the proposed PLC programming and HMI software

controlling a Siemens S7-412-2 PLC.

The control of the ASRS includes an inbuilt flexibility to enable the testing of a

number of different control strategies, including: storage, retrieval, command, dwell

point, travel type and buffer and obsolete zone implementation. The programming, in

Step7 and WinCC, to achieve this control is described in this chapter. Also included is

a description of the control database and the order generator.

The linking of the ASRS to the existing FMS was not developed within this research

program.

4.2 Development
There have been a number of significant steps in the development of the control

programs for this test-bed. These have included:

• Initial programming of specific functions by O’ Mahoney (2004)

• Specific strategy related PLC functions

• Manual control of S/R machine and forks

• Button activated SCADA Scripts

• SCADA and PLC programs for specific requirements and locations

• Generic PLC functions

• Integration of database communication into SCADA programming

• Development of SCADA project functions and actions

• SCADA and PLC programs for a variety of strategies

• Integration of more advanced strategies into script

• Integration of project functions and global actions in SCADA script

• Development of database to ensure the re-evaluation of trial data

• Development of Order Generator

• Development of mathematical model

 58

• Trials

• Timing of calculations changed in data control

• Further trials

The initial work completed by O’ Mahoney (2004) under the supervision of the author

concentrated on basic PLC functions and button activated SCADA script to perform

very basic control. Through a series of projects supervised by the author these basic

functions progressed to the development of ASRS strategies including command,

travel type and dwell point with knowledge being continually expanded during this

period.

A major event during the course of this research was the development of generic PLC

functions. One such function (labelled FC 17 in the PLC program) controls the

movement of the S/R machine to a required destination. This particular function is

called on numerous occasions and from a variety of scripts to perform the same

function, i.e. to move the S/R machine to a specified location.

Another progressive step in the development of this test-bed was the integration of

database communication utilising the WinCC function library DBExt.DLL, with

SCADA project functions and then with SCADA global actions. This broadened the

scope of the work and allowed for the loading and completion of a range of

requirements.

Further development then concentrated on the programming of scripts to control the

various strategies selected and the development of an order generator communicating

with the MS Access database. This work allowed for the trialling of the test-bed

performing under the various strategies and a comparison of these results with those

obtained from the ASRS mathematical model developed in SIMUL8. The lack of

correlation between these sets of results led to further refinement of the physical

model in the general area of data flow and control between the project functions,

global actions and the PLC functions.

The correlation between the two models has now been proven for a wide variety of

strategies and future research can concentrate on the development of further strategies

in the physical model and on long term trials on the mathematical model using its own

order generator.

The dispersion and creation of knowledge has been paramount during this

development and this is outlined in Chapter 6 as a case study in Knowledge Creation

 59

based on a specific model proposed by Nonaka et al. (1994). This chapter

concentrates on the description of the current status of the test-bed highlighting some

of the aspects of the various programs integrated into the system.

4.3 Control

4.3.1 Introduction
This section summarises the programming of the ASRS which consists of the

following software: SiemensStep7, SiemensWinCC, MSAccess, SiemensDBExt.DLL

and SIMUL8.

4.3.2 Control Sequence
A flow control diagram for the ASRS is shown below in Figure 4-1. Control consists

of PC based code in the form of WinCC Global Script Project Functions and Actions

and PLC Step 7 functions. One important feature of the state diagram is the timing of

the calculations to determine the co-ordinates of the required bay. During the initial

trials on this system it was noticed that there was a slight pause in the S/R machine

movement at a number of stages in the cycle as the system waited on a decision from

the Windows 2000 based SCADA control. This was overcome by altering the

sequence of these calculations so that they were concurrent with a PLC operation.

This added a large degree of complexity to the control, especially for Dual commands

and continuous operation.

 60

Figure 4-1: Flow Control Diagram

ASRSOpAction: Run GoTo
Pick

GoToXY
CompleteAction: At Pick

PickComplete

SetPlaceCoOrds

GoToXY
CompleteAction: At Place

ASRSOpComp: Update
Database

ASRSOp: Choose Bay Co-
Ordinates

PlaceComplete

GoToXY
CompleteAction: At Dwell

or Pick

@Pick
RunPick

@Dwell
Finish

Start

PlaceComplete2

ASRSDwell: Choose
Dwell Co-Ordinates

ASRSOp: Choose Bay
Co-Ordinates

ASRSOp: Choose Bay Co-
Ordinates

FC 17 / 18
GoToPick

FC 19
Pick

FC 17 / 18
GoToPlace

FC 20
Place

FC 17 / 18
GoToDwell or

Pick

@Dwell
ASRSOpAction

Single Cycle
Dual Cycle

ASRSOpAction: Run
GoTo Pick

Continuous Op.

 61

4.3.3 Control Interfaces
The WinCC SCADA package can be summarised in three distinct categories with a

large degree of interaction between these. The three categories are:

WinCC User Interface Screens

WinCC Project Functions

WinCC Global Actions

These will now be discussed in detail with thought also being given to their

interaction.

4.3.3.1 User Interface Screens
The graphics user interface of the ASRS consists of five WinCC screens developed in

its Graphics Designer:

• Main Menu

• Semi / Full Automatic Screen

• ASRS layout and Contents

• Class-based Storage

• Dedicated Storage

Main Menu
This is an introductory screen to the ASRS control. It consists of a series of control

buttons that allow access to each of the other four screens. It also allows for de-

activation of the WinCC runtime mode. This screen, shown in Figure 4-2, is the

default screen for the ASRS and is the only screen from which the other screens can

be accessed.

Semi / Full Automatic Screen
This screen, shown in Figure 4-3, controls the operation of the ASRS. It requires the

operator to pre-select the various strategies to be employed during automatic

operation including: Dwell Point, Travel Type, Command Type, Operation Type,

Time Control, Fork Control, Obsolete and Buffer Zone Control, Retrieval and Storage

Strategies. This screen also shows, in real time, the current status of the S/R machine:

Current Location, Current Operation Number, Operation Type, Bay Number and Co-

Ordinates selected.

This screen is also used to control the semi-automatic movement of the ASRS. In

semi-automatic mode the ASRS will travel to selected locations and perform chosen

operations, i.e. store, retrieve, GoTo Dwell, Home and Reset.

 62

ASRS layout and Contents
This screen, shown in Figure 4-4, displays the layout of the ASRS plus the contents of

each bay. It is updated when the operator selects the ‘Update’ button. The information

imported onto the screen at that point comes directly from the table ‘ASRSContents’

in the ASRS1.mdb database.

Class-Based Storage
This screen, shown in Figure 4-5, displays the classes allocated to each bay for class-

based storage. It is updated when the operator selects the ‘Update’ button. The

information imported onto the screen at that point comes directly from the table

‘ASRSContents’ in the ASRS1.mdb database.

Dedicated Storage
This screen, shown in Figure 4-6, displays the components allocated to each bay for

dedicated storage. It is updated when the operator selects the ‘Update’ button. The

information imported onto the screen at that point comes directly from the table

‘ASRSContents’ in the ASRS1.mdb database.

Figure 4-2: Main Menu

 63

Figure 4-3: Semi / Full Automatic Screen

Figure 4-4: ASRS Layout and Contents

 64

Figure 4-5: Class-Based Storage

Figure 4-6: Dedicated Storage

 65

4.3.3.2 Global Script – Project Functions
Project functions are C functions which are only valid in the actual project in which

they were created. Project functions are used to make graphic objects and archives

dynamic. They can also be used in other project functions and Global Script actions.

There are five project functions developed for this research:

• ASRSOp

• ASRSOpAction

• SetPlaceCoOrds

• ASRSOpComp

• ASRSDwell

ASRSOp

This function pulls information from the Requirements table in the control database

and determines the appropriate bay location for the next suitable item and then passes

control onto either the project function ‘ASRSOpAction’ to update the appropriate co-

ordinates for the S/R machine or else passes control to the global action

‘GoToXYCompleteAction’ if the S/R machine is already at the required position.

This function is used as the initial starting point in the control sequence. Within this

script the majority of the variables are defined. These are then re-defined as external

variables in the other scripts in which they are required. Figure 4-7 shows the

declaration of a structure variable for use with the WinCC function library

DBExt.DLL and the MicroSoft Access database.

The structure variable shown in this figure is called ‘CoOrdVar []’, this array holds

the BayNumber, XCoOrdinate, YCoOrdinate and ComponentID as variables: BayNo

(long), XCo (int), YCo (int) and AutoID (long). This information is retrieved from the

database table ‘ASRSContents’ in ASRS1.mdb using the command shown in Figure

4-8.

This is very similar to all the interactions with these structures whether they are

retrieving data from database tables, putting data into tables, adding or deleting

records in tables.

The section of script shown in Figure 4-9 is active when the ‘Time Control’ radio

button is selected as “ON” in the ‘Semi / Full Automatic’ WinCC screen. This checks

to see if the time difference between the required time and the actual time is greater

than 5 seconds (arbitrarily chosen to minimise inaccuracy in completion of the

 66

operation and to maximise the PC free time) and if so, then a tag bit is set high which

calls a PLC function, FC 2, which returns control to this script after a 5 second delay.

Thus ensuring that the requirements will be acted on near to the correct time.

Figure 4-10 shows a section of script that is replicated a number of times to select the

appropriate sub-routine for the storage or retrieval strategy chosen in the ‘Semi / Full

Automatic’ WinCC screen. The section shown sends control to the ‘Random’ sub-

routine if the selection is Random and Free and the OpReqd, retrieved from the

‘Requirements’ table in the database, equals 1 for Store.

The sub-routines handling the storage and retrieval strategies are: ‘Random’,

‘Nearest’, ‘Dedicated’, ‘Class-based’ and ‘FIFO’. These routines all work in a similar

way:

• Retrieve the number of records corresponding to a search condition, i.e.

‘Component ID = 101’ from the ‘ASRSContents’ table.

• If no appropriate records exist then GoTo error1, where similar records are

checked in the ‘Requirements’ table and then return to the start of the script to

retrieve a different requirement for which records in the ‘ASRSContents’

table may exist

• If only one record exists then retrieve the Bay Number etc. from the

‘ASRSContents’ table and go to the ‘Normal’ Sub-routine which, as shown in

Figure 4-11 sets various TagWords (external 16 bit unsigned values linked to

logical connections and thus to the appropriate channels) and runs the script

‘ASRSOpAction’, which activates the PLC function FC 17 or FC 18

depending on the travel type selected in the ‘Semi / Full Automatic’ WinCC

screen.

• If more than one appropriate record exists then, as Figure 4-12 shows, these

records are loaded into a suitable array where calculations are performed to

select a record based on the strategy chosen, i.e. random, nearest, class-based,

dedicated or FIFO. The ‘Normal’ sub-routine is then activated which, as stated

above, sets various TagWords and runs the script ‘ASRSOpAction’, which

activates the PLC function FC 17 or FC 18 depending on the travel type

selected in the ‘Semi / Full Automatic’ WinCC screen.

When a situation arises where there are no workable requirements available then a

message is output to the operator stating “No Op. Available – Requirements Need to

 67

be Modified” and the entire control sequence ends. When the ‘Requirements’ table is

modified this then triggers the sequence to begin again. In the future when a link is

created between the ASRS control and the MS SQL Server database controlling the

FMS then updating of the ‘Requirements’ table in this database will trigger the

activation of this function.

This project function is called from three separate locations in the control sequence:

• Initially when the ‘Start’ button on the ‘Semi / Full Automatic’ WinCC screen

is pressed.

• From ‘ASRSOpComp’ after the initial operation of a Dual Cycle.

• From ‘ASRSDwell’ for continuous operation

It hands on control by running ‘ASRSOpAction’ or by setting the tag

‘ASRSOpContinuous’ high which is required by FC 17 or FC 18 to complete before

handing control over to the action ‘GoToXYCompleteAction’ or, when no suitable

requirements are available, the programs ends.

When the S/R machine is already at the required bay then the TagBit ‘AtXYPosition’

is set high which activates the action script ‘GoToXYCompleteAction’.

ASRSOpAction

This project function sets the destination co-ordinates for the S/R machine by forcing

the TagWords ‘xAUTOReqPos’ and ‘yAUTOReqPos’ to either the co-ordinates of

the pick point (4,3) or the co-ordinates of the chosen bay in ‘ASRSOp’. It then sets

the TagBit ‘GoToXY’ high, which activates the Step7 functions FC 17 or FC 18

which results in the S/R machine moving to the required position. It also includes

code which determines if the S/R machine is already at the designated location, this

being the case then the TagBit ‘AtXYPosition’ is set high which results in the script

action ‘GoToXYCompleteAction’ being called. This portion of the script is shown in

Figure 4-13.

This function is called from two separate locations:

• Directly from the project function ‘ASRSOp’ at the very beginning of the

control sequence and after the initial operation in a dual operation.

• From the action ‘GoToXYCompleteAction’ when the control strategy is for

continuous control and the S/R machine has just returned to the Dwell Point

and is ready to begin a new command sequence.

 68

SetPlaceCoOrds

This function script sets the destination for the S/R machine after it completes a pick

operation. This destination will be either to the deposit point or to a chosen bay. It sets

the TagWords ‘xAUTOReqPos’ and ‘yAUTOReqPos’ to the Deposit point (5,3) if the

operation being conducted is a retrieve or to the chosen bay number if the operation is

a store. See Figure 4-14 to view this code.

This function is called from the global action ‘PickComplete’.

It returns control to either PLC function FC 17 or FC 18 by the setting high of the

TagBit ‘GoToXY’.

 69

Figure 4-7: Declaration of Structure Variable in ‘ASRSOp’

Figure 4-8: DBEGetVariables in ‘ASRSOp’

Figure 4-9: Time Control in ‘ASRSOp’

Figure 4-10: Sub-Routine Selection in ‘ASRSOp’

DBEXT_VARIABLE_STRUCT CoOrdVar [] = {
{"BayNumber",&BayNo,DBE_VS_TYP_VARIABLE},
{"XCoOrdinate",&XCo,DBE_VS_TYP_VARIABLE},
{"YCoOrdinate",&YCo,DBE_VS_TYP_VARIABLE},
{"ComponentID",&AutoID,DBE_VS_TYP_VARIABLE},
{NULL,NULL,0}
};

Sprintf(sqlCond,”%s”, strSQLOpReqd);

Result =DBEGetVariables
(PictureName,MyDataSource,TableName2,sqlCond,Requirements,&MyError);
If (!Result)
{
printf(“No Available Bays \n”);
}

if (GetTagBit("TimeControl") ==1)
{
//printf("DateTimeReqd = %lf\n", DateTimeReqd);
//printf("Atime = %lf\n", Atime);
TimeDifference = ((DateTimeReqd - Atime)*86400.0);

//printf("TimeDifference = %lf seconds \n", TimeDifference);
if (TimeDifference > 5)
{
SetTagBit("TimeDelay",1);
printf("5 Sec. Time Delay Operational \n");
goto end;

}

}// end if TimeControl

if ((GetTagWord("Random") ==1) && (OpReqd ==1)&&(GetTagWord("Free")==1))
{
printf("Random Free Storage selected. \n");
goto random;

}//end if Random Free Storage

 70

Figure 4-11: Normal Sub-Routine in ‘ASRSOp’

normal:

//printf("%s\n", strMsg);
SetTagWord("Liam1",wRecs);
SetTagWord("Liam2",BayNo);
SetTagWord("autocomponentID",AutoID1);
SetTagWord("XCoOrdinateDB",XCo);
SetTagWord("YCoOrdinateDB",YCo);
SetTagWord("OpReqdOP", OpReqd);
SetTagWord("OpNumberOP", OpNumber);
if (GetTagBit("ASRSOpCompDual")==1)
{
ASRSOpAction();
}
if (GetTagBit("ASRSDwellContinuous")==1)
{
SetTagBit("PickReqd",1);
SetTagBit("ASRSDwellContinuous",0);
SetTagBit("ASRSOpContinuous",1);
if(GetTagBit("ASRSDwellAtXYPosition")==1)
{
SetTagBit("ASRSDwellAtXYPosition",0);
SetTagBit("AtXYPosition",1);
}
}
//printf("Going to GoToXY in ASRSOp \n");
if (GetTagBit("Start")==1)
{
ASRSOpAction();
}

OpNumber1=OpNumber;
OpNumber = 999;
NoResult = 0;

 71

Figure 4-12: Loading of Appropriate Bays into Array in ‘ASRSOp’

switch (wRecs)
{
case 0 :
 strcpy (strMsg, "None Available");
if (OpReqd == 1)
 sprintf(sqlCond,"%s%d",strSQLOperationReqd,OpReqd);
if (OpReqd == 2)
 sprintf(sqlCond,"%s%dAND%s%d",strSQLOperationReqd,OpReqd,strSQLPartNumber,PartNo);

goto error1;

case 1 :

Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVar,&MyError);
 break;
default :
strcat (sqlCond , " AND Checked = 0");
bCheck = 1;

for (r = 0; r < wRecs ; r++)
{

Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVar,&MyError);
sprintf(sqlCond1, "%s%d", strSQLHoldBay, BayNo);
Result=DBESetVariables(PictureName,MyDataSource,TableName,sqlCond1,CheckedPut,&MyError);

BayArray[r] = BayNo;
}//end for r
strcpy(sqlCond, " Checked = 1 ");
bCheck = 0;
Result=DBESetVariables(PictureName,MyDataSource,TableName,sqlCond,CheckedPut,&MyError);
srand(time(NULL));
r=rand()%wRecs; //random number 0 to No. of data items in the array
sprintf(sqlCond,"%s%d",strSQLHoldBay, BayArray[r]);

Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVar,&MyError);
if (!Result)
{
strcpy (strMsg, "Can't Get Co=ordinates");
goto error;
}
} // end switch wRecs

 72

Figure 4-13: Setting of ‘AtXYPosition’ in ‘ASRSOpAction’

Figure 4-14: ‘SetPlaceCoOrds’

if (GetTagBit("Start")==1)
{
SetTagBit("Start",0);
SetTagBit("ASRSOpStart",1);

if((GetTagBit("DwellPickPoint")==1)&&(OpReqd == 1) &&
(GetTagWord("xAUTOActPos")==4) &&
(GetTagWord("yAUTOActPos")==3))
{
SetTagBit("AtXYPosition",1);
}//end if
else
if((GetTagBit("CurrentLocation")==1)&&(OpReqd == 2) &&
(GetTagWord("xAUTOActPos")==XCo) &&
(GetTagWord("yAUTOActPos")==YCo))
{
SetTagBit("AtXYPosition",1);
}//end if
else
if((GetTagBit("UserDefined")==1)&&(OpReqd == 2) &&
(GetTagWord("xAUTOActPos")==XCo) &&
(GetTagWord("yAUTOActPos")==YCo))
{
SetTagBit("AtXYPosition",1);
}//end if
else
{
SetTagBit("GoToXY",1);
}
}

#include "apdefap.h"

extern int XPick, YPick, XDeposit, YDeposit, XCo, YCo;
extern long OpReqd;
void SetPlaceCoOrds()
{
printf("Start SetPlaceCoOrds \n");
if (OpReqd == 1)
{
SetTagWord("xAUTOReqPos",XCo);
SetTagWord("yAUTOReqPos",YCo);
}//end if
if (OpReqd == 2)
{
SetTagWord("xAUTOReqPos",XDeposit);
SetTagWord("yAUTOReqPos",YDeposit);
}//end if
//SetTagBit("PlaceReqd",1);
SetTagBit("SetPlaceCoOrdsPlaceReqd",1);
SetTagBit("GoToXY",1);
printf("End SetPlaceCoOrds \n");
}

 73

ASRSOpComp

This function updates the relevant database tables when an operation is completed and

calls the project function ‘ASRSOp’ if dual command is operational otherwise it

passes control to the PLC place function. This function, called from the action

‘GoToXYCompleteAction’ consists of a large number of externally declared variables

and structure variables (see Figure 4-15). It updates the ‘ASRSContents’,

‘Requirements’ and ‘Operations Completed’ tables in the ASRS1.mdb database as the

place operation is being completed.

It also creates two different control paths, one for initial Dual operations and another

for Single or secondary Dual operations. The first path activates the ‘ASRSOp’

function to determine the bay co-ordinates for the secondary Dual operation whereas

the second path does not require this calculation and immediately passes control to the

PLC function FC 20.

When the command type chosen is ‘Single’ or when the initial operation in a ‘Dual’

command is completed then this function sets the TagBit ‘ASRSOpCompSingle’

high. This TagBit is required within the PLC function FC 20 to call the action

‘PlaceComplete2’ when both FC 20 and ‘ASRSOpComp’ are complete.

When the second operation in a Dual command is completed this function sets the

TagBit ‘ASRSOpCompDual’ high and also calls the function ‘ASRSOp’.

ASRSDwell

This function determines the co-ordinates for the dwell position and passes control to

the appropriate PLC function to move the S/R machine to this location. For

continuous operation this function passes control to the project function ‘ASRSOp’ to

determine the location for the next requirement otherwise control is passed to the PLC

dwell function and the S/R machine awaits operator intervention. This function is

called from the action ‘PlaceComplete2’ which in turn is called from the PLC

function FC 20 when the place operation of a ‘Single’ or secondary ‘Dual’ command

is completed. This function sets the TagWords ‘xAUTOReqPos’ and

‘yAUTOReqPos’ to the co-ordinates of the selected dwell point, i.e. (4,3) for Pick

Point, (5,3) for Deposit Point, (xActual, yActual) for Current Location, (0,0) for

Origin and (xReqd, yReqd) for User Defined.

If the strategy selected is for continuous operation then this function sets the TagBit

‘GoToXY’ high which activates either FC 17 or FC 18, which brings the S/R machine

 74

to the dwell point and it also calls the project function ‘ASRSOp’ which calculates the

bay co-ordinates for the next requirement. It also sets the TagBit

‘ASRSDwellContinuous’ high which is used in the function ‘ASRSOp’.

If the strategy selected is non-continuous then this function sets the TagBit

‘ASRSDwellNotContinuous’ high which is used in the PLC function FC 17 or FC 18

to call the action ‘GoToXYCompleteAction’ and also sets the TagBit ‘GoToXY’ high

which activates FC 17 or FC 18 bringing the S/R machine to the chosen dwell point.

When the S/R machine is already at the dwell point then the TagBit ‘GoTo XY’ is set

high which activates the action script ‘GoToXYCompleteAction’.

Study of the Flow Control diagram in Figure 4-1 shows that this is one of the

functions in which control is split to ensure that calculations for the next required bay

number are performed off-line thus ensuring no delays are encountered when the S/R

machine arrives at the dwell point.

4.3.3.3 Global Actions
Global actions are used at run time to control the process and are executed by means

of a trigger. There are four global actions developed for this project using WinCC

script:

• GoToXYCompleteAction

• PickComplete

• PlaceComplete

• PlaceComplete2

GoToXYCompleteAction

This action is activated when the S/R machine reaches its destination passing control

to a range of scripts or PLC functions, including, FC19 (Pick), FC 20 (Place),

‘ASRSOpComp’ and ‘ASRSOpAction’ depending on the status of a range of TagBits.

This action is activated by the TagBit ‘AtXYPosition’ changing state. This tag is set

high by the PLC functions FC17 and FC18 when the S/R machine reaches its required

destination and also by the scripts ‘ASRSOp’, ‘ASRSOpAction’ and ‘ASRSDwell’

and the action ‘PlaceComplete’ if the S/R machine is already at the required position.

All the actions are activated by the trigger tag changing state. In order to ensure that

the code is only processed when the tag goes high this action contains the code ‘if

 75

(GetTagBit(“AtXYPosition”)==1)’ which tests for this tag going high. The other

actions contain a similar test.

It is in this script that a test is performed as to whether ‘ForksOn’ has been selected on

the ‘Semi / Full Automatic’ WinCC screen. This code, shown in Figure 4-16, will

activate the required PLC function for automatic pick or place (FC 23 or FC 24).

The other functions performed by this action include:

• When TagBits ‘PickReqd’ and ‘ASRSOpStart’ are high (at pick point after

initial selection of ‘Start’ on ‘Semi / Full Automatic WinCC screen) then this

action sets the TagBit ‘RunPick’ high which activates PLC function FC 19 or

FC 23 resulting in an actual pick operation at the current location.

• When TagBits ‘PickReqd’ and ‘PlaceCompletePickRequired’ are high (at pick

point after the initial place in a dual command) this action performs a pick at

the current location as above.

• When TagBits ‘PickReqd’ and ‘GoToXYCompleteActionPick’ are high (at

pick point at the start of a new requirement in continuous operation) this action

performs a pick at the current location.

• When TagBits ‘PlaceReqd’ and ‘SetPlaceCoOrdsPlaceReqd’ are high

(immediately after a pick operation) this action performs a place at the current

location and also calls ASRSOpComp.

• When TagBits ‘DwellComplete’ and ‘ASRSDwellNotContinuous’ are high

(S/R machine at dwell point) the control sequence ends waiting on the Start

button to be re-pressed.

• When TagBits ‘DwellComplete’, ‘ASRSOpContinuous’ are high and TagBit

‘ASRSOpNoRequirements’ is low (at dwell point and about to move to new

pick point in continuous operation) this action calls the project function

‘ASRSOpAction’ which sets the TagWords ‘xAUTOReqPos’ and

‘yAUTOReqPos’ to either the co-ordinates of the pick point (4,3) or the co-

ordinates of the chosen bay depending on the operation type of the new

requirement. This action also sets the TagBit ‘GoToXY’ high therefore

activating the PLC function FC 17 or FC 18 moving the S/R machine to these

new co-ordinates.

• When TagBits ‘Dwell Complete’, ‘ASRSOpContinuous’ and

‘ASRSOpNoRequirements’ are high (S/R machine at dwell point in

 76

continuous operation but no suitable requirements available) the control

sequence ends waiting on the requirements to be updated.

Figure 4-15: ‘ASRSOpComp’

extern long BayNo, OpNumber, OpNumber1, OpReqd, PartNo, OpType, AutoID;
extern long BayNoRequired, CompID, AutoID1, ClassID; //CompID = DB Update, AutoID = DB
Search
extern long XAct, YAct, XStartPosn, YStartPosn;
extern long OpNo, DateTimeReqd, Checked;
extern long OpComp, DateTimeComp;
extern CMN_ERROR MyError;
extern char* PictureName;
extern char MyDataSource[] ;
extern char sqlCond[100] ;
extern char sqlCond1[100];
extern char sqlCond2[100];
extern char sqlCond3[100];
extern char strIOField[11] ;
extern char strSQLHoldComp[];
extern char strSQLDedicated[];
extern char strSQLHoldBay[];
extern char strSQLClass[];
extern char strSQLORDERBYDate[];
extern char strSQLOpReqd[];
extern char strSQLOpNumber[];
extern char strSQLNULL[];
extern char strSQLOperationReqd[];
extern char strSQLPartNumber[];
extern char TableName[];
extern char TableName1[];
extern char TableName2[];
extern char TableName3[];
extern char strFieldHold[];
extern char strMsg[20];
extern char strMsg1[20];
extern int r, i, j, bCheck, XPick, YPick, XDeposit, YDeposit;
extern int XCo, YCo;
extern DWORD wRecs;
extern struct tm *OldT;
extern time_t LiamTime;

extern DBEXT_VARIABLE_STRUCT CoOrdVarPut [];// = {
//{"ComponentID",&CompID,DBE_VS_TYP_VARIABLE},
//{"DateIn",&Atime,DBE_VS_TYP_VARIABLE},
//{NULL,NULL,0}
//};

extern DBEXT_VARIABLE_STRUCT CheckedPut [];// = {
//{"Checked",&bCheck,DBE_VS_TYP_VARIABLE},
//{NULL,NULL,0}
//};

extern DBEXT_VARIABLE_STRUCT OperationsCompleted [];// = {
//{"OperationNumber",&OpNumber,DBE_VS_TYP_VARIABLE},
//{"PartNumber",&PartNo,DBE_VS_TYP_VARIABLE},
//{"OperationComp",&OpComp,DBE_VS_TYP_VARIABLE},
//{"DateTime",&DateTimeComp,DBE_VS_TYP_VARIABLE},
//{NULL,NULL,0}
//};

 77

Figure 4-16: ‘GoToXYCompleteAction’

if ((GetTagBit("PickReqd")==1)&&(GetTagBit("ASRSOpStart")==1))
{
if (GetTagBit("ForksOn")==1)
{
printf("ForksOn Selected \n");
SetTagBit("RunPick",1);
//printf("PickReqd is set to 1in GoToXYCompleteAction \n");
SetTagBit("PickReqd",0);
SetTagBit("ASRSOpStart",0);
SetTagBit("PlaceCompletePickReqd",0);

}// end if ForksOn
else
{
SetTagBit("RunPick",1);
printf("PictReqd is set to 1in GoToXYCompleteAction \n");
SetTagBit("PickReqd",0);
SetTagBit("ASRSOpStart",0);
SetTagBit("PlaceCompletePickReqd",0);

}// end else
}//end if PickReqd

 78

continuous operation but no suitable requirements available) the control sequence

ends awaiting the updating of the ‘Requirements’ table.

PickComplete

This action is called after the completion of the PLC ‘Pick’ function (FC 19) and

immediately calls the project function ‘SetPlaceCoOrds’ to change the destination for

the S/R machine to the co-ordinates of the place location. This action is activated

when the TagBit trigger ‘PickComplete’ changes state. Similar to the other actions it

contains a test to ensure that the script is only ran when the trigger goes high.

PlaceComplete

This action is activated when the TagBit ‘PlaceComplete’ changes state. It is called by

PLC function FC 20 after the completion of the place for the initial command in a

dual command cycle. If there are no suitable requirements for the second dual

command then this action calls the function ‘ASRSDwell’ to bring the S/R machine to

its dwell point. If there are suitable requirements available then this action sets the

TagBit ‘GoToXY’ high to activate the PLC function FC 17 or FC 18 to bring the S/R

machine to the new pick location. If the S/R machine is already at this location then

this action sets the TagBit ‘AtXYPosition’ high which activates the action

‘GoToXYCompleteAction’.

PlaceComplete2

This action is activated when the TagBit ‘PlaceComplete2’ changes state. This action

is called at the end of a place routine in a single or a secondary dual operation and

calls the function ‘ASRSDwell’ to bring the S/R machine to its dwell point.

4.3.4 PLC Programming
The PLC program developed consists of a single organisation block (OB1) and

thirteen functions (FC 1, 2, FC 14 – 24). The organisation block is called by the PLC

operating system and is used to call the thirteen functions when required. OB1 allows

the user to select a variety of strategies through conditional calling of the functions.

This allows for completely isolated sections of code that are developed independently.

The functions developed are listed in Table 3:

 79

4.3.4.1 Manual Control X and Y Axes
This function is activated when an external switch, which is wired to I 2.4, is made.

When this function is active the operation of a variety of externally wired switches

allows for the manual control of both the X and Y axes. The over-travel sensors are

still active in this function because all drives are hard-wired through these sensors,

therefore protecting the S/R machine from over-zealous or inexperienced operators.

4.3.4.2 5 Second Time Delay
This function is activated when Time Control is selected on the ‘Semi / Full

Automatic’ WinCC screen. When the difference between the current time and the

time at which the action is required is greater than 5 seconds, control is then passed to

this function from the project function ‘ASRSOp’. Control passes back to the function

‘ASRSOp’ after the 5 seconds elapses.

Table 3: Actual PLC Blocks

Program item Description

OB 1 Main Program Control

FC 1 Manual control, X and Y axes

FC 2 5 Second Time Delay

FC 14 Home & Reset

FC 15 GoTo X

FC 16 GoTo Y

FC 17 GoTo (X,Y) – Simultaneous Movement

FC 18 GoTo (X,Y) – Rectilinear Movement

FC 19 Pick – Time Delay

FC 20 Place – Time Delay

FC 21 Semi Automatic Pick

FC 22 Semi Automatic Place

FC 23 Automatic Pick

FC 24 Automatic Place

4.3.4.3 Home and Reset
Function 14 is activated during initial start-up or during a reset of the S/R machine. It

is used to move the S/R machine to the extreme lower left hand corner of the racking

 80

(0,0) and to reset the TagWords storing the actual S/R position, to zero. At this

position there are two travel limit switches that are used by this function to indicate

limits of travel in the horizontal and vertical directions. This function is activated

from the Semi / Full Automatic screen in WinCC. When the S/R machine reaches the

Home position the values for TagWords ‘xAUTOActPos’ (MW 745) and

‘yAUTOActPos’ (MW 725) are reset to zero.

4.3.4.4 Semi – Automatic Control (X and Y Axes)
Functions 15 and 16 allow for independent semi-automatic control of both the X and

Y axes. The operator specifies the X and Y co-ordinates in the relevant input fields on

the Semi / Full Automatic screen. The actual X and Y co-ordinates are displayed in

the relevant output fields on the Automatic screen thus allowing the operator to do a

real time check on the S/R machine’s movement.

4.3.4.5 Full Automatic Control (X and Y Axes)
Functions FC 17 and FC 18 are used to move the S/R machine to the desired location

specified by the TagWords ‘xAUTOReqPos’ (MW 755) and ‘yAUTOReqPos’ (MW

735). These functions are called from a number of different project and action scripts.

FC 17 differs from FC 18 only in the way that the S/R machine travels. FC 17 is for

simultaneous motion and FC 18 is for rectilinear motion (S/R machine moves to X

position initially and then to the Y co-ordinate). Figure 4-17 shows the network

responsible for the correct positioning of the S/R machine at the location required.

Initially after ‘Start’ it is called from the project function, ‘ASRSOp’ to drive the S/R

machine to the pick point (either (4,3) for a store operation or the chosen bay for a

retrieve operation). Later on in the sequence of operations it is called from the

function ‘SetPlaceCoOrds’ to drive the S/R machine to the place location (either (5,3)

for a retrieve operation or to the required free bay for a store operation). FC 17 / FC

18 is called once more in the sequence from either ‘PlaceComplete’ or ‘ASRSDwell’

to move the S/R machine to either of two locations. In the second operation in a dual

command the S/R machine has to be driven to a new pick point and in single

operation the S/R machine is driven to the dwell point at which the operation will end

(not continuous) or a new operation will commence (continuous).

FC 17 / FC 18 always results in the action script ‘GoToXYCompleteAction’ being

called. This is called on the three occasions of the completion of FC 17 / FC 18 and

depending on the status of various tags decisions are taken as to the path followed

 81

within this action script. Figure 4-18 shows the network which results in the action

script ‘GoToXYCompleteAction’ being called.

4.3.4.6 Pick / Place Time Delay
These functions (FC19 and FC 20) both use similar logic, see Figure 4-19, to create a

five second delay imitating the actual time taken to perform either a pick or a place

and are called from the global action ‘GoToXYCompleteAction’. They return control

to quite different action scripts. A tag set high in FC 19 (see Figure 4-20) triggers the

action script ‘PickComplete’. FC 20 returns control to either ‘PlaceComplete’ or

‘PlaceComplete2’ action scripts (see Figure 4-21) depending on whether the

command type is dual or single.

4.3.4.7 Semi-Automatic Pick / Place
The two functions FC 21 and FC 22 are used for semi-automatic control of the forks.

Control buttons on the ‘Semi / Full Automatic’ WinCC screen are used to set certain

tags high which then activate either of these functions allowing the forks to perform a

pick or a place at its current position. Figure 4-22 shows a portion of the code that

controls the fork motion.

4.3.4.8 Automatic Pick / Place
Functions FC 23 and FC 24 are used to control the forks in automatic mode. They are

called from the global action script ‘GoToXYCompleteAction’ when the relevant

radio button on the ‘Semi / Full Automatic’ WinCC screen is selected. Figure 4-23

shows a portion of the ladder diagram used to control the pick action.

 82

Figure 4-17: X Axis Positioning in FC 17 / FC 18

Figure 4-18: M 0.4 (AtXYPosition) being Set in FC 17 / FC 18

Figure 4-19: 5 Sec. Time Delay FC 19 / FC 20

 83

Figure 4-20: PickComplete being Set High in FC 19

Figure 4-21: PlaceComplete or PlaceComplete2 being Called From FC 20

Figure 4-22: Forks Extend in FC 21

Figure 4-23: Pick Control in FC 23

 84

4.4 Communications

4.4.1 SCADA Communication with Database
A chart summarising the data flow between the WinCC SCADA program and the

database is shown in Figure 4-24. With reference to this figure the communication

process consists of:

1. Set Search Criteria

This stage sets the search criteria for choosing an appropriate job from the list of

requirements.

Within the Project Function ‘ASRSOp’ the search criteria, sqlCond is initially set to

‘OperationReqd = 1 OR OperationReqd = 2 AND Checked = 0’. In a dual cycle

operation the search criteria will specify either a store (operation type 1) or a retrieve

(operation type 2) for the second job search.

2. Retrieve Operation

This step retrieves the first job in the ‘Requirements’ table matching the search

criteria set in 1. When no jobs exist of a particular type then the search criteria is

changed to the alternative job type or else the entire process ends waiting on the

‘Requirements’ to be updated.

3. Determine Strategy

Within the Project Function ‘ASRSOp’ the storage or retrieval strategy selected by

the operator on the ‘Semi / Full Automatic’ WinCC screen is used to pass control onto

the appropriate program sub-routine. This sub-routine initially sets the search criteria

for step 4.

4. Retrieve Count of Matching Records

The search criteria set in step 3 is used to determine the number of matching records

in the database table ‘ASRSContents’. This number is then tested using the Case

command.

 85

5. Flag Appropriate Records as Invalid

When zero records match the search criteria set in 4 then all appropriate demands are

flagged, i.e. all store operations, all retrieve operations, all specific part number

retrievals, all specific class type storage, all specific part number storage, etc.. Control

then loops back to the initial search of the ‘Requirements’ table.

6. Retrieve Bay Co-Ordinates

When only one matching record exists in the table ‘ASRSContents’ then the co-

ordinates of this bay are retrieved.

7. Retrieve All Matching Records

When more than one matching record exists then the ‘Bay Number’ of all matching

records are retrieved into an Array.

8. Choose Record

A bay is chosen from all the matching records based on the storage or retrieval

strategy selected by the operator. The co-ordinates of this bay are then retrieved.

9. Perform Operation

In this step various TagBits and TagWords are set ‘High’ passing control onto both

PLC functions and other WinCC scripts to enable the performance of a store or

retrieve operation. END is also set TRUE which terminates the search Do-While loop.

10. Do-While Loop

 If no appropriate records are retrieved then control passes back to the initial search of

the ‘Requirements’ table for a new operation.

11. End Loop

When an operation is performed or when no suitable operation is available then the

loop completes and this script (‘ASRSOp’) finishes.

12. Operation Complete

When the store or retrieve operation is completed control passes to the project

function ‘ASRSOpComp’ which updates a number of tables in the database.

 86

13. Update Database

This step is used to complete the following:

Update ‘ASRSContents’ table

Un-flag records in ‘Requirements’ table

Delete record in ‘Requirements’ table

Add record to ‘Operations Completed’ table

4.4.2 Database
The MS Access database, ASRS1.mdb is accessible from the SIMUL8 Order

Generator, the SIMUL8 ASRS Simulation and the WinCC Script through the ODBC

data source ‘ASRSDatabase’. This database consists of seven tables, three macros and

eight queries (3 delete queries, 3 append queries and 2 update queries). These are all

summarised below:

4.4.2.1 Database Tables

The seven tables are:

• ASRSContents

• ClassType

• InterTimes

• OperationsCompleted

• Requirements

• tmpRequirements

• tmpASRSContents

The structure for these tables is shown in Appendix D.

ASRSContents

This table (shown in Appendix D) stores the Co-Ordinates and contents of each bay

plus the dedicated components and class type associated with these bays. The

‘Checked’ field is used by the WinCC project functions to highlight which bays have

already been considered (i.e. as the array for free bays is being assembled for

instance). The ‘DateIn’ field is used to store the date and time of the last movement

into this record and is also used within the FIFO retrieval strategy in the script

 87

Figure 4-24: SCADA / Database Communication

1. Set Search
Criteria

2. Retrieve
Operation

3. Determine
Strategy

4. Retrieve Count
of Matching
Records

5. Flag Appropriate
Records as Invalid

8. Retrieve Bay
Co-Ordinates

6. Retrieve All Matching
Records

7. Choose Record

9. Perform
Operation, Set
End = TRUE

Error

10. Do – While
Loop

11. End
Loop

12. Operation
Complete

13. Update
Database

Result
No Yes No Op. Available

Change Search
Criteria

Case = 0 Case = 1 Case > 1

Result
No

Yes

End = TRUE

Start / New
Operation

Change Search
Criteria Loop
(unflagged
records)

 88

‘ASRSOp’. The fields ‘KittingZone’ and ‘ObsoleteZone’ are check fields used to

indicate which bays are to be used to store the obsolete or kitted components.

ClassType

This table (shown in Appendix D) allows the operator to associate the components

with a class and is used by the project function ‘ASRSOp’ to select the appropriate

bay for class-based storage.

InterTimes

This table (shown in Appendix D) is used to store the time intervals between

requirements and is generated by the SIMUL8 Order Generator model. It is used by

the query ‘qryUpdatetmpReqTimes’ which adds these time intervals to the ‘Start

Time’ provided by the operator when prompted from this query as it updates the

‘Requirements’ table. This table is not relevant in standard operation mode when the

orders are generated in real time by the FMS MRP system.

OperationsCompleted

This table (shown in Appendix D) is continuously updated by the project function

‘ASRSOpComp’ and contains information on the requirements completed to-date.

Requirements

This table (shown in Appendix D) is generated by the query ‘AddRequirements’

which moves the records from the table ‘tmpRequirements’ into this table. It is used

by the project function ASRSOp when a new requirement is needed. The field

‘Checked’ in all the appropriate records is ticked when the ‘OperationReqd’ cannot be

performed for the next available record. This field is unchecked by the project

function ‘ASRSOpComp’ when a requirement is completed. This function also

deletes the completed record.

In standard operation mode the requirements will be generated by an MRP system

which will update this table. This action will trigger the relevant script to re-check the

‘Requirements’ table for any new additions which require immediate action.

 89

tmpRequirements

The SIMUL8 Order Generator places the generated requirements into this table

(shown in Appendix D) but does not enter the ‘DatetimeReqd’ details. This field is

updated by the query ‘qryUpdatetmpReqTimes’ which adds the time intervals stored

in the table ‘InterTimes’ by the Order Generator to the ‘Start Time’ provided by the

operator when prompted by this query. This table is not relevant in standard operation

mode when the orders are generated in real time by the FMS MRP system.

tmpASRSContents

This table (shown in Appendix D) is used by the query ‘qryUpdateASRSContents’

when the table ‘ASRSContents’ needs to be modified, i.e. to modify the contents of

the ‘Dedicated’, ‘Class’, ‘ComponentID’, ‘KittingZone’ or ‘ObsoleteZone’ fields for

a particular set of trials. This table is not relevant in standard operation mode when

the orders are generated in real time by the FMS MRP system.

4.4.2.2 Database Queries
The eight queries are:

Delete Queries

• DeleteAllReqs

• DeleteASRSContents

• DeleteOperationsComp

Append Queries

• qryAddRequirements

• qryUpdateASRSContents

• qryUpdateReqs

Update Queries

• qryCompUpdateto0

• qryUpdatetmpReqTimes

DeleteAllReqs

This query deletes all records from the ‘Requirements’ table.

 90

DeleteASRSContents

This query deletes all records from the ‘ASRSContents’ table.

DeleteOperationsComp

This query deletes all records from the ‘OperationsCompleted’ table.

qryAddRequirements

This query appends all records in the table ‘tmpRequirements’ to the table

‘Requirements’.

qryUpdateASRSContents

This query appends all records in the table ‘tmpASRSContents’ to the table

‘ASRSContents’.

qryUpdateReqs

This is an older version of the ‘qryAddRequirements’ query which appends all

records from the ‘tmpRequirements’ table to the ‘Requirements’ table but ignores the

‘Checked’ field in the process.

qryCompUpdateto0

This Update query forces the field ‘Component ID’ in the table ‘ASRSContents’ to 0

and the field ‘DateIn’ in the same table to the current date and time using the formula

Now().

qryUpdatetmpReqTimes

This query consists of the following code:

UPDATE tmpRequirements INNER JOIN InterTimes ON

[tmpRequirements].[OpNumber]=[InterTimes].[OpNumber] SET

tmpRequirements.DateTimeReqd =

Now()+[InterTimes]![InterOpTime]+StartTime/60/24

WHERE (([tmpRequirements]![OpNumber]=[InterTimes]![OpNumber]));

It is used to update the ‘DateTimeReqd’ field in the ‘tmpRequirements’ table by

combining the ‘InterOpTime’ field in the ‘InterTimes’ table with a variable called

‘StartTime’ (converted into a fraction of a day) and the current date and time (Now()).

 91

4.4.2.3 Database Macros
The three macros are:

• Start Procedure

• mcrUpdateRequirements

• mcrUpdateREQSandASRSContents

Start Procedure

This macro deletes all existing records in the ‘Requirements’ and ‘OperationsComp’

tables, appends all records from the ‘tmpRequirements’ table to the ‘Requirements’

table and updates the ‘ComponentID’ field in the ‘ASRSContents’ table to 0. It

consists of the following queries:

DeleteAllReqs

qryUpdateReqs

DeleteOperationsComp

qryCompUpdateto0

mcrUpdateRequirements

This macro deletes all the records in the ‘Requirements’ and ‘OperationsComp’

tables , updates the ‘tmpRequirements’ table with the calculation of the

‘DateTimeReqd’ and appends these records to the ‘Requirements’ table and also

updates the ‘ComponentID’ field to 0 in all the records of the ‘ASRSContents’ table.

It consists of the following queries:

DeleteAllReqs

qryUpdatetmpReqTimes

queryAddRequirements

DeleteOperationsComp

qryCompUpDateto0

mcrUpdateREQSandASRSContents

This macro deletes all the records in the ‘ASRSContents’, ‘Requirements’ and

‘OperationsComp’ tables, updates the ‘tmpRequirements’ table with the calculation of

the ‘DateTimeReqd’ and appends these records to the ‘Requirements’ table and also

appends the records in the ‘tmpASRSContents’ table to the ‘ASRSContents’ table. It

consists of the following queries:

 92

DeleteASRSContents

qryUpdateASRSContents

DeleteAllReqs

qryUpdatetmpReqTimes

queryAddRequirements

DeleteOperationsComp

4.4.3 Order Generator
This program allows for the generation of requirements for the ASRS. Using the

menu system shown in Figure 4-25 the operator can alter the following:

Product Range

Operation Type

Scheduled Date / Time

to generate an unlimited quantity of requirements which are transferred into the tables

‘InterTimes’ and ‘tmpRequirements’ of the MSAccess database, ASRS1.mdb,

through the ODBC link ‘ASRSDatabase’. Figure 4-26 shows the spreadsheet

‘VarProducts’ which holds the Product Range information. The spreadsheets for the

Operation Type and Scheduled Date / Time are shown in Figure 4-27 and Figure 4-28

below.

The main screen of this model is shown in Figure 4-29, when the operator ‘Runs’ this

schedule a prompt appears as shown in Figure 4-30, asking for the number of

operation to generate. The generated orders are then displayed as ‘spSchedule’, see

Figure 4-31, and the operator is requested if the database schedule is to be updated,

Figure 4-32.

The benefit of splitting the generated schedule in two and updating the two tables is

that this allows the operator to re-run trials using this schedule and the same date/time

requirement even though the new trials may be running hours or days later than the

original trial.

 93

Figure 4-25: Menu System

Figure 4-26: ssVarProducts

Figure 4-27: ssVarOperationType

Figure 4-28: ssVarDueDate

 94

Figure 4-29: Order Generator Main Screen

Figure 4-30: Operator Prompt re Order Number

Figure 4-31: Generated Orders in spSchedule

Figure 4-32: Operator Prompt for Database Update

 95

4.5 Summary

The chapter summarises the development and control of the ASRS test-bed

concentrating on the Step7, WinCC and MSAccess interaction. A short description of

the SIMUL8 order generator model is also given at the end of this chapter.

The next chapter describes the mathematical model and summarises the results

obtained from it and compares them with those obtained from the physical model.

 96

5 ASRS Modelling and Testing

5.1 Introduction
This chapter concentrates on the modelling and analyses of the proposed ASRS and

predicts its performance under a variety of work conditions and control strategies. The

simulation model, developed by Walsh (2004), used to analyse this design has the

flexibility to include all the various strategies discussed in Chapter 3.

This model was developed using SIMUL8 which is an object oriented software

application. This software also has a proprietary programming language (Visual

Logic) incorporating a relatively straightforward editor. The proposed ASRS in

W.I.T. is a single tier rack with 6 levels and 12 columns. The pick and deposit points

utilise 4 bays, thus reducing the number of bays available for storage to 68. The

storage bays, designed to handle a standard pallet, are all of equal dimensions but are

not uniformly spaced, either horizontally or vertically. The pick-up and deposit

conveyors are incorporated into the rack on level 3, columns 4 and 5. The horizontal

and vertical drives can be driven individually or simultaneously and at fixed speeds.

Three work centres are used to model the S/R machine, work centre 1 is for pre-

loaded movement between the dwell point and the pick point, work centre 2 is for

loaded movement between the pick point and the deposit point and work centre 3 is

for post-loaded movement between the deposit point and the dwell point.

This chapter discusses the options available in the SIMUL8 model and summarises

the results from a number of trials designed to test the capabilities of the proposed

ASRS models with conclusions drawn on these trials.

5.2 Mathematical Model

5.2.1 User Interface
The simulation application contains the essential model components for the S/R

machine, load pick and deposit points, load input generator and load demand

generator. The model objects representing the storage bays are created when the user

defines the capacity and layout of the single-tier storage rack (see main screen, Figure

5-1). The application is menu driven (see Figure 5-2) and requires the following

information to be entered prior to simulation.

 97

Create rack: User enters the ordinates of the rack levels (rows) and columns in a

spreadsheet and the storage bay objects are created in the model. Any particular

model configuration can be saved as a file and repeatedly re-used.

Operational Parameters:

- Shuttle horizontal and vertical travel speeds

- Shuttle Travel – Rectilinear or simultaneous horizontal and vertical

- P & D load / unload times

- Storage bay put and retrieve times

- Pick point location

- Deposit point location

Control Strategies:

- Storage – Random, Nearest, Dedicated or Class-based. In the case of

dedicated and class-based the user is required to specify the bay allocations

on a spreadsheet (see Figure 5-3)

- Retrieval – FIFO or Random (see Figure 5-4)

- Command – Single or Dual

- Dwell point – Pick Point, Deposit Point, Current Location or User defined.

Input / Output:

- ASRS input frequency

- Input load item (product) type

- ASRS demand frequency

- Demand item type

Simulation Conditions:

- Warm-up period

- Results collection period

Results Options:

- View or output to an Excel spreadsheet (See Figure 5-5).

 98

Figure 5-1: ASRS Simulator – Main Screen

Figure 5-2: ASRS Simulator – Control Menu

 99

Figure 5-3: Storage Strategy

Figure 5-4: Retrieval Strategy

Figure 5-5: Results Summary

 100

5.2.2 Storage Bays
The storage bays, although modelled as work centre objects, are defined by the

ordinates of the rows and columns, which are specified by the user when building the

rack. The data is stored in an internal spreadsheet. There is a facility to denote any

rack locations not available for storage. This feature allows for P & D points to be

located at any position in the rack. The status of all bays is recorded in two other

spreadsheets; the stored product ID or blank if the bay is available and the time of

storage of a load. A further spreadsheet is employed to specify dedicated storage.

Each bay is modelled as a work centre object with zero work time and no output

route. When a retrieval is required from a particular bay an output route is created, the

work object released and the output route removed. A work centre object collects data

on the total time that a work centre is blocked which in this case is the total time that a

bay is in use.

5.2.3 ASRS Input
The Work Entry object (ASRS Input) determines the unit loads (Work Item object)

inputted to the ASRS model. The user sets the probability distribution to control inter-

arrival times. Only one Work Item type is used and different products are

distinguished by a Label value attached to the item. The ASRS input object assigns

the product ID values, again using a probability distribution set by the user.

All items entering the system are passed to the queue for the Pick Point work centre

object. The exit event logic performs the tasks of calculating the shuttle travel time to

the pick-up location, determining the storage bay and then calculating the travel time

to the designated bay, including load and unload times. The Pick Point also carries out

the tasks of linking the shuttle to the storage bay objects. In the case that there is not

an available bay for the particular load, the item is routed to the QNoStore queue and

recycled to the front of the queue for pick-up by incrementing a recycle tag. This

model also allows for the inputting of requirements (both Storage and Retrieval) from

a Requirements table in the ASRS Database which is used to control the physical

ASRS.

5.2.4 The S/R Machine
The S/R machine is modelled using three work centre objects which simulate the three

stages of the shuttle operation; travel empty to collect a load (pick-up point or storage

bay – ShuttlePre); travel loaded to deliver the load (storage bay or deposit point –

 101

ShuttleLoaded); travel empty to dwell point (ShuttlePost). Enabling the events, of the

start and end of each motion, gives greater control of the model, particularly under

dual command conditions.

5.2.5 ASRS Demand
The work entry object (ASRS Demand) creates the demand product ID and inter-

arrival times. The Demand Gen work centre determines the bay location, links the

appropriate bay, the S/R machine and the deposit point object. Where the item

required is not available the demand item is routed to the Unprocessed Demand

queue. The reasoning here is similar to that for the handling of unstored loads. The

work entry point is not linked to the queue for the Demand Gen. This link is

automatically enabled at the end of the warm-up period, thus allowing the ASRS to be

partially (or fully) loaded at the start of a run.

5.2.6 Results Display
On completion of a run, collected and calculated results data are presented in

spreadsheet format, and if required by the user output to MS Excel (see Figure 5-6).

This output includes the calculated average cycle times (dual and single command

times where appropriate), operating times for each of the three stages of the S/R

machine, the number of bays full at the start and end of the run, loads stored (and

loads rejected) and loads retrieved (and unavailable loads). Additional data such as

individual bay utilisation and product type of rejected loads is available by accessing

the model objects and the standard results summary. Where the user initiates a trial,

consisting of a number of runs, the data output will be the averages over the number

of runs and also includes the ± 99% range (see Figure 5-7).

 102

Figure 5-6: Output for Spreadsheet

Figure 5-7: spStatsTrial

 103

5.3 Model Trials and Results

5.3.1 Model Test Conditions / Data
The ASRS developed in W.I.T. is configured as shown in Table 4. The horizontal

travel speed is 0.078 m/s and the vertical travel speed is 0.049 m/s.

Table 4: Bay Co-Ordinates

Col.(mm) 0 376 577 819 1019 1261 1462 1664 1906 2107 2309 2550

Row(mm) 0 196 481 801 1044 1284

The Pick Point is located at (4,3) and the Deposit Point is located at (5,3). Bays

located at (4,2) and (5,2) are unavailable for use because of the load and unload

conveyor design.

Trials consist of three runs with results averaged over this number of runs and a ±

99% Confidence Interval (CI) also reported. Three different sets of Requirements

were placed on both models. Each of these sets consisted of a total of 40 operations,

chosen so that each run was for approximately 20 minutes thus ensuring that, on

average, 3 runs could be completed every hour:

• 40 Store operations

• 23 Store Operations / 17 Retrieve Operations

• 20 Store Operations / 20 Retrieve Operations

Trials A, B and C were conducted on both models with a product mix consisting of

ten part numbers (Product ID’s 100 – 109).

A summary of the results obtained for each of these conditions is presented in the

following section with a brief summary of the strategies implemented for each trial.

5.3.2 Test Results
The following three separate sets of trials were conducted:

• Trial A: 40 store operations

• Trial B: 23 store / 17 retrieve operations

• Trial C: 20 store / 20 retrieve operations

Trial A

• 40 store operations

 104

• All bays empty at start of trial

• S/R machine at Dwell point at start of trials

• 3 classes defined

• Bays dedicated in groups (Bay 1 – Bay 7 100, Bay 8 – Bay 14 101, etc.)

Table 5: Results - 40 Store Operations

 Math. Model Phys. Model Diff
(%)

Trial
No Dwell Point Storage Retrieval Avg

(Sec)
Range
(Sec)

Avg
(Sec)

Range
(Sec)

1 User def. @ 6,3 Free - R N / A 40.6 25 38.2 71 5.9

2 User def. @ 6,3 Free - N N / A 34.8 N/A 35.3 7 -1.6

3 User def. @ 6,3 Class - R N / A 38.9 70 37.9 18 2.5

4 User def. @ 6,3 Class - N N / A 34.2 4

5 User def. @ 6,3 Ded. - R N / A 37.3 45 35.6 52 4.6

6 User def. @ 6,3 Ded. - N N / A 34.9 86 6.5

7 Current Free - R N / A 36.5 100 37.3 40 -2.2

8 Current Free - N N / A 29.1 N/A 31.2 6 -7.3

9 Deposit Point Free Random 38.2 38 37.1 38 2.9

10 Deposit Point Free Nearest 31.4 N/A 31.5 28 -0.4

Main Findings

• ‘Random’ results will always be higher or at best equal to ‘Nearest’ results.

• SIMUL8 model not programmed for ‘Class Nearest’ or ‘Dedicated Nearest’

storage strategies.

• Range of results in ‘Random’ expected due to inherent properties of randomly

choosing a bay location.

• Results for ‘Current’ dwell point show a 16.5% improvement from a ‘User

Defined’ dwell point at (6,3)

• Results for ‘Deposit point’ dwell point show a value very close to ‘Current’

dwell point. This is due to the movement of the S/R machine being very

similar for these two strategies, either returning to (6,3) or (5,3) before moving

to (4,3) to pick a new pallet.

• Results for ‘Class Nearest’ show a 3% improvement than ‘Free Nearest’. This

requires further investigation.

• Results for ‘Dedicated Nearest’ show a negligible improvement from ‘Free

Nearest’. This is due to the designation of the bays in a ‘quasi’ random order.

 105

• The correlation between the models varies between 0.4 – 7.3%. This is as

expected for ‘Random’ strategy, however for the ‘Nearest’ trials (6 and 8)

further work will need to be performed to improve the correlation and to gain

a better understanding of this variation. This work will incorporate the S/R

machine acceleration and deceleration profiles and the precision of the

positioning of the S/R machine at the bays among other considerations.

Trial B

• 23 store / 17 retrieve operations

• All bays empty at start of trials

• S/R machine at dwell point at start of trials

• 3 classes defined

• Bays dedicated in groups (Bay 1 – Bay 7 100, Bay 8 – Bay 14 101, etc.)

Table 6: Results - 23 Store / 17 retrieve Operations

 Math Phys

Trial
No Dwell Point Storage Retrieval Travel Command

Type
Avg

(Sec)
Avg

(Sec)
Diff
(%)

1 User def. @ 6,3 Free - R Random Sim. Single 35.8 39.6 -10.8

2 User def. @ 6,3 Free - N Nearest Sim. Single 28.6

3 User def. @ 6,3 Free - R Random Sim. Dual 33.1 28.4 14.3

4 User def. @ 6,3 Free - N Nearest Sim. Dual 22.1

5 User def. @ 6,3 Free - R Random Rect. Single 49.1 46.0 6.2

6 User def. @ 6,3 Free - R Random Rect. Dual 41.7 36.2 13.2

7 Current Free - R Random Sim. Single 29.5 31.6 -6.9

8 Current Free - N Nearest Sim. Single 22.0

9 Current Free - N Nearest Sim. Dual 18.3

10 Pick Point (4,3) Free – R Random Sim. Single 35.0 35.9 -2.6

11 Pick Point (4,3) Free – N Nearest Sim. Single 23.9

12 Pick Point (4,3) Free – N Nearest Sim. Dual 18.5

13 Origin Free - R Random Sim. Single 52.3 62.5 -19.4

14 Origin Free - N Nearest Sim. Single 47.8

15 Origin Free - N Nearest Sim. Dual 32.7

Main Findings

• ‘Random’ results ≥ ‘Nearest’ results.

• Mathematical model not programmed for simulating ‘Nearest’ retrieval.

 106

• ‘Dual’ command shows an average of 23.5% improvement from ‘Single’

command.

• The greatest improvement from ‘Single’ to ‘Dual’ occurs with a Dwell point at

the origin (where travel of the S/R machine is greatest).

• The smallest improvement from ‘Single’ to ‘Dual’ is 16.9% with a ‘Current’

Dwell point (where travel of the S/R machine is least).

• ‘Rectilinear’ travel shows a 16% dis-improvement from ‘Simultaneous’ travel

(‘Random result).

• Best performance observed for: Dwell point – ‘Current’, ‘Free Nearest’

storage, ‘Nearest’ retrieval, ‘Simultaneous’ travel and ‘Dual’ command.

Values for Dwell point at the ‘Pick point’ were very similar.

• These show an improvement of 16% from the user defined position (6,3)

Trial C

• 20 store / 20 retrieve operations

• All bays full at start of trials according to the following patterns:

o Trials 1 – 11: in series Bay 1 – 100, Bay 2 – 101, etc

o Trials 12 – 22: Bay 1 – Bay 7 100, Bay 8 – Bay 14 101, etc.

• S/R machine at dwell point at start of trials

• 3 classes defined

• Bays dedicated in groups (Bay 1 – Bay 7 100, Bay 8 – Bay 14 101, etc.)

Main Findings

• Series of trials show similar good results (trials 2, 3, 6, 7, 8, 9 & 11). These

results are influenced by the fact that all the bays were full at the start of the

trial and therefore a retrieve (‘Nearest’) had to occur initially.

• Trial 8 (‘Dual’) has similar conditions to trial 7 except that all dual operations

are in the sequence S – R with a slight reduction in the result.

• Trial 14 has similar conditions to trial 13 except that all dual operations are in

the sequence S – R with a significant reduction in the result.

• Results for the Dwell point at (0,0) are better than those in Trial B because

retrieval is from the ‘Nearest’, which in this scenario is the nearest to the start

position of the S/R machine i.e. (0,0).

 107

• ‘Dual’ results are on average 23% better than ‘Single’ results.

• ‘Class’ based strategy performs better than ‘Dedicated’ strategy.

Table 7: Results – 20 Store / 20 Retrieve Operations

 Math Phys

Trial
No Dwell Point Storage Retrieval Travel Command

Type
Avg

(Sec)
Avg

(Sec)
Diff
(%)

1 Current Free - N Nearest Sim. Single N/A 24.4

2 Pick Point Free - N Nearest Sim. Single N/A 23.1

3 Deposit Point Free - N Nearest Sim. Single N/A 23.0

4 Origin Free - N Nearest Sim. Single N/A 41.4

5 User def @ (6,3) Free - N Nearest Sim. Single N/A 25.1

6 Current Free - R Nearest Sim. Dual N/A 23.5

7 Pick Point Free - N Nearest Sim. Dual N/A 23.3

8 Pick Point Free - N Nearest Sim. Dual N/A 24.1

9 Deposit Point Free - N Nearest Sim. Dual N/A 23.3

10 Origin Free – N Nearest Sim. Dual N/A 27.8

11 User def @ (6,3) Free - N Nearest Sim. Dual N/A 22.3

12 User def @ (6,3) Free - N Nearest Sim. Single N/A 26.9

13 User def @ (6,3) Free - N Nearest Sim. Dual N/A 24.0

14 User def @ (6,3) Free - N Nearest Sim. Dual N/A 28.0

15 User def @ (6,3) Ded - R Nearest Sim. Single N/A 30.7

16 User def @ (6,3) Ded - R Nearest Sim. Dual N/A 27.0

17 User def @ (6,3) Ded - R Random Sim. Single 38.7 36.0 7.0

18 User def @ (6,3) Ded - R Random Sim. Dual 37.6 31.7 15.7

19 User def @ (6,3) Class - R Nearest Sim. Single N/A 29.7

20 User def @ (6,3) Class - R Nearest Sim. Dual N/A 25.8

21 User def @ (6,3) Class - R Random Sim. Single 38.2 34.0 11.0

22 User def @ (6,3) Class - R Random Sim. Dual 36.9 32.0 13.3

See Appendix F for a complete listing of the SIMUL8 ASRS model results, these

results are shown as outputted from the model to a MSExcel spreadsheet. This model,

as already described, allows for the inputting of requirements (both Storage and

Retrieval) from a Requirements table in the ASRS Database which is used to control

the physical ASRS.

Examination of this output file shows that the details of each trial are listed off in the

relevant column. This includes: Trial number (next available number in next available

row), Date, Storage Strategy, Retrieval Strategy, Command Type, Dwell Point,

 108

Product Range, Travel Type, Racking Configuration, S/R Machine Speeds, Storage

Requirement Interval, Demand Requirement Interval, Warm-Up Period (seconds),

Results Collection Period (seconds), Data Set (Base Random Number Set), Trial

Details, Average Cycle Time, Throughput / Hour, Comment, Run Time, Number of

Loads Put-Away, Number of Loads Retrieved, Bays Full at Start, Pre-Pick-Up (%),

Loaded (%), Post Deposit (%), Utilisation and Operation Time.

There is a great need for much further research to be carried out using both models to

determine the performance of an ASRS depending on the varying requirements

encountered.

5.4 Summary
This chapter of the thesis summarises the mathematical ASRS model generated in

SIMUL8. It explains the range of strategies which can be tested plus the various types

of requirements which can be handled. The one extremely important feature of this

model is its capacity to import its Storage and Demand values from a MSAccess

Database defined over an ODBC link. This database can also be used as the

controlling database for the physical ASRS. This allows total correlation between the

requirements on both models. This is very important in proving both and gives the

user greater confidence in the results from both. Appendix F lists off the trial results

from this model, in summary, however the findings show very good correlation

between both models.

The findings from both models indicate that the ASRS performs best when the

following conditions are met:

Dwell Point: Pick Point, Deposit Point or Current Location

Travel Type: Simultaneous

Storage Strategy: Free – Nearest

Retrieval Strategy: Nearest

More research will need to be conducted to determine the ASRS performance across a

wide range of demands.

The next chapter will comment on the research conducted in the context of a

knowledge creation case study based on the dynamic knowledge creation model

proposed by Nonaka et al (1994).

 109

6 Dynamic Knowledge Creation Case Study

6.1 Introduction
One of the main objectives of this research was to develop a deep understanding of

Automatic Storage and Retrieval Systems and capture and elaborate on this as a case

study in knowledge creation.

As already stated in Chapter 4 the development of this ASRS underwent a number of

significant steps from its initial build. These steps are:

• Initial programming of specific functions by O’ Mahoney (2004)

• Specific strategy related PLC functions

• Manual control of S/R machine and forks

• Button activated SCADA Scripts

• SCADA and PLC programs for specific requirements and locations

• Generic PLC functions

• Integration of database communication into SCADA programming

• Development of SCADA project functions and actions

• SCADA and PLC programs for a variety of strategies

• Integration of more advanced strategies into script

• Integration of project functions and global actions in SCADA script

• Development of database to ensure the re-evaluation of trial data

• Development of Order Generator

• Development of mathematical model

• Trials

• Further program development (Dual command at location)

• Trials

• Timing of calculations changed in data control

• Further trials

In this chapter, the capture and creation of knowledge during these phases is outlined

using the Nonaka model [Nonaka, 1994] outlined in Chapter 2 (Section 2.14).

It is the intention of the author to outline the development of the test-bed as a case

study in knowledge creation with the intention of applying the experience to other

projects in the future. The emphasis during the chapter will be on summarising the

 110

various elements of this model and then linking the work completed to each of these

steps, where possible.

A number of undergraduate projects were initiated and controlled by the author. The

interaction between the previous postgraduate student, the six undergraduate students,

the author and the staff in WIT is a major factor in the research environment that will

also be analysed in this chapter.

6.2 Knowledge Creation Model
The Knowledge Creation model proposed by Nonaka et al. (1994) suggests that

dynamic knowledge creation consists of three elements:

1. The SECI process: The process of knowledge creation via conversion from tacit

to explicit knowledge

2. ba: The shared context for knowledge creation

3. Knowledge assets: The inputs, outputs and moderators of the knowledge-creating

process

These three elements of knowledge creation have to interact with each other to form

the knowledge spiral that creates knowledge.

6.2.1 The SECI Process
An organisation creates knowledge by means of the interactions between explicit

knowledge and tacit knowledge. This interaction is called “knowledge conversion”. In

this conversion process, tacit and explicit knowledge expand in both quality and

quantity. The four modes of knowledge conversion are:

• Socialisation: conversion from tacit knowledge to tacit knowledge

• Externalisation: conversion from tacit knowledge to explicit knowledge

• Combination: conversion from explicit knowledge to explicit knowledge

• Internalisation: conversion from explicit knowledge to tacit knowledge

Socialisation:

This is the process of converting new tacit knowledge through shared experiences.

Throughout the course of this research both the main researcher and a number of

undergraduate students have been exposed to quite intensive hands-on experience in

conjunction with previous researchers in this area. The benefit of the researchers

 111

spending time together on this project has ensured a transfer of tacit knowledge

between them over the last four to five years. It has also helped enormously that the

main researcher has remained in situ for this period and has taken on the role of

supervisor of the other undergraduate researchers.

This mode is seen during the majority of the stages outlined in Section 6.1, especially

those where there was a high degree of interaction between the students and the

author. A large part of the initial programming, both of the PLC and of the button

activated SCADA scripts were a collaboration between researchers. Later on when the

author’s tacit knowledge base was increased, the flow of tacit knowledge was in a

large part uni-directional to the students.

Externalisation:

Externalisation is the process of articulating tacit knowledge as explicit knowledge.

This allows for the sharing of knowledge and becomes the basis of new knowledge.

Throughout the course of this research project great emphasis has been placed on the

recording and documentation of all the researchers work and findings. All code

developed has been thoroughly documented and a number of reports have been

produced outlining the progress of the researchers. This has allowed for a smooth

transfer of knowledge between the various personnel involved.

This mode is most clearly evident in the on-going progress reports and theses

produced by O’ Mahoney (2004), Coffey & Buggy (2004), McKenna & Naughton

(2005) and Shouldice & Kent (2006). This documentation has been invaluable in the

transfer of knowledge to future students.

Combination:

This is the process of converting explicit knowledge into more complicated and

systematic sets of explicit knowledge.

The creation of this thesis plus undergraduate research project theses help to combine

explicit knowledge from both inside and outside the organisation to form new

knowledge.

 112

Internalisation:

Internalisation is the process of embodying explicit knowledge as tacit knowledge.

Via internalisation, explicit knowledge created in the previous step (Combination) is

shared throughout the manufacturing research community in the College and

converted into tacit knowledge by individual students and researchers. This step in the

knowledge creation process involves the new researchers analysing and absorbing the

knowledge presented to them in explicit form and combining it with their own

existing internal tacit knowledge helping to add a deeper understanding of the process

being studied, knowledge being added to knowledge gained through different

experiences and backgrounds.

This mode has been most clearly seen in the way that undergraduate students have

progressed their own final year projects. Initially there is an over-whelming effect on

the students as they attempt to come to terms with the vast amount of knowledge they

are exposed to. Gradually they become familiar with this knowledge and assimilate it

as internal knowledge and then build on this knowledge to advance their own specific

project.

6.2.2 ba: The Shared Context for Knowledge Creation
Knowledge needs a context to be created. Nonaka et al. (1994) state that the

knowledge-creating process is necessarily context-specific in terms of who

participates and how they participate. Knowledge needs a physical context if it is to be

created. ba offers such a context. It is created by means of the interactions among

individuals or between individuals and their environments, rather than by an

individual acting alone. A close physical interaction is important in sharing the

context and forming a common language among participants.

ba is a place (specific time and space) where new knowledge is created.

According to Nonaka et al. (1994) there are four types of ba:

1 originating ba

2 dialoguing ba

3 systemizing ba

4 exercising ba

These are defined by two dimensions:

 113

Type of interaction – that is, whether the interaction takes place individually or

collectively.

Media used in such interactions – face-to-face contact or virtual media

Originating ba:

This is defined by individual and face-to-face interactions.

This is the place where tacit knowledge is shared (socialisation) and in the context of

this research it is the on-going contact between researchers either directly involved in

the ASRS upgrade project or those connected to the AMT research group. The face-

to-face interactions are essential in enabling the transfer of the tacit knowledge

between individual lecturers. Working through problems in combination is a very

efficient way of increasing ones knowledge base and so it has proved during this

project.

Dialoguing ba:

This is defined by collective and face-to-face interactions. It is the place where

individual’s mental models and skills are shared, converted into common terms and

articulated as concepts. This is the perfect forum for externalisation. The tacit

knowledge among participants is shared openly through constructive dialog.

Within the context of this research project this dialoguing ba consisted of the

researchers meeting in formal groups with the lead researchers in the Manufacturing

sector. This gave the project researchers an opportunity to formulise their thoughts

and present their findings in a semi-formal forum and receiving immediate feedback.

Individual’s tacit knowledge is shared and articulated through dialogues among

participants. Each individual at the meeting gains in knowledge immediately and there

is also the added benefit of further expansion in knowledge through self-reflection

(analysing the newly acquired knowledge within the context of their own individual

knowledge and experiences).

Systemizing ba:

This type of ba is defined by collective and virtual interactions. This provides a

context for the knowledge conversion mode of combination. Modern communication

 114

tools such as on-line networks, e-mails, databanks and newsgroups allow for the

dissemination of knowledge and information effectively and efficiently.

Throughout the course of this project there has been extensive use of the GroupWise

e-mail system to inform all interested personnel on the on-going progress and to

acquire their input into the project.

Exercising ba:

Exercising ba is defined by individual virtual interactions and offers a context for the

internalisation of knowledge. This is where the researcher embodies explicit

knowledge that is communicated via virtual media such as written manuals, theses or

simulation programs.

Over the course of this project a number of undergraduate students have internalised

knowledge made available to them from previous undergraduate students by way of

documented programs and descriptive theses written at the end of the particular

student’s time on the project. This has been invaluable to the new students and has

been very beneficial to the project.

The interaction of different types of ba in the process of knowledge creation:

For any group or organisation intent on creating knowledge it is important that

procedures are put in place which support and compliment the development of the

various types of ba. These procedures can include the deliberate use of face-to-face

interactions in an Originating ba environment for all personnel involving extensive

on-the-job training on the shop floor. The tacit knowledge gained in this phase of the

knowledge cycle is converted into explicit knowledge in the form of ‘hypotheses’

about the topic (research, market needs, production issues, etc.). Within a research

environment these hypotheses are freely tested by the individual researchers, allowing

for their further refinement.

6.2.3 Knowledge Assets
Knowledge assets form the basis of the knowledge-creating process. These assets may

be firm-specific resources that are indispensable to creating value for the firm. It is

very difficult to evaluate and manage knowledge assets, unlike most other

 115

commodities they cannot be bought and sold. They are also constantly evolving as a

result of the organisations informal or formulised knowledge creation system. Nonaka

et al. (1994) suggest four categories or types of knowledge assets:

1 experiential

2 conceptual

3 systemic

4 routine

Experiential Knowledge Assets

These consist of shared tacit knowledge, which is built by means of shared, hands-on

experience among the members of the group or organisation. Examples of this type of

knowledge asset include: skills, know-how, care, trust, facial expressions, gestures,

enthusiasm, tension and improvisation.

All the researchers involved in this project developed programming skills in

MSAccess, SIMUL8, WinCC and Step7 which they were able to build on through the

course of their work.

Conceptual knowledge assets

These type of assets have tangible form making them easier to be grasped than

experiential knowledge assets, although there is still a problem clarifying what

members actually perceive.

This type of knowledge asset is best demonstrated by the over-riding concept

influencing the project which was the development of an ASRS test-bed. This had an

impact on all decisions made on design and programming. This was never just the

development of an ASRS to service the existing FMS, if this was the case then many

of the features in the finished design would not be there. An ASRS which is solely

servicing an FMS would have a limited number of options on dwell point, retrieval

and storage strategy, forks control and travel type. The concept of a ‘test-bed’ has

progressed the ASRS development in an entirely new direction.

 116

Systemic knowledge assets

These knowledge assets consist of systematised and packaged explicit knowledge,

such as product specifications, manuals and documented and packaged information

about customers and suppliers.

These assets are best demonstrated in the range of theses and reports published on this

research.

Routine knowledge assets

These type of assets include that tacit knowledge that is routine and embedded in the

actions and practices of the organisation including know-how, organisational routines

and culture in carrying out the daily business of the organisation.

These knowledge assets, having being developed in the students are lost to the college

when the student leaves. Very rarely are these assets documented, it is up to

individual students to develop these for themselves through interaction with various

lecturers, technicians, support staff and students and lecturers. The culture will even

vary between different classes in the same year not to mention between the different

years.

A report issued by the Organisation for Economic Co-Operation and Development

[OECD, 1996] entitled “The Knowledge-Based Economy” also categorises the

different types of knowledge which it is claimed are important in the knowledge-

based economy: know-what, know-why, know-how and know-who. Know-what and

know-why can be obtained through reading books, attending lectures and accessing

databases, the other two types of knowledge are gained through practical experience.

Know-how is typically learned in situations where an apprentice follows a master and

relies upon him as the authority. Know-who is learned in social practice and

sometimes in specialised educational environments and is also developed in day-to-

day dealings with customers, sub-contractors and independent institutes. Know-who is

socially embedded knowledge that cannot easily be transferred through formal

channels of information.

 117

6.3 Knowledge Expansion through Spiralling
According to Nonaka et al (1994) knowledge is dynamic as it is created in social

interactions among individuals and organisations. Knowledge is context specific

because it depends on a particular time and space. Without a context, it is just

information, not knowledge. Knowledge is also humanistic, because it is essentially

related to human action. Information becomes knowledge when it is interpreted by

individuals and given a context and anchored in the beliefs and commitments of

individuals. Hence, knowledge is relational – such things as ‘truth’, ‘goodness’ and

‘beauty’ are in the eye of the beholder.

There are two types of knowledge: explicit knowledge and tacit knowledge. Explicit

knowledge can be expressed in formal and systematic language and shared in the

forms of data, scientific formulae, specifications and manuals. It can be processed,

transmitted and stored relatively easily. In contrast, tacit knowledge is highly

personalised and hard to formalise. Subjective insights, intuitions and hunches fall

into this category of knowledge. Tacit knowledge is deeply rooted in action,

procedures, routines, commitment, ideals, values and emotions. It is difficult to

communicate tacit knowledge to others, as it is an analogue process that requires a

kind of ‘simultaneous processing’.

Tacit and explicit knowledge are complementary and both types of knowledge are

essential to knowledge creation. Explicit knowledge without tacit insight quickly loses

its meaning. Knowledge is created by means of interactions between tacit and explicit

knowledge, rather than from tacit or explicit knowledge alone.

The three elements of knowledge creation, SECI process, ba and knowledge assets,

have to interact with each other to form the knowledge spiral that creates knowledge.

6.4 Knowledge Creation Findings
There have been a number of phases through which the ASRS test-bed has

progressed:

Initially O’ Mahoney (2004) with the author as supervisor designed and built the

ASRS and developed very limited SCADA based control.

The next phase involved the author supervising three groups of under graduate

students in the development of basic button operated SCADA scripts and specific

strategy related PLC functions (approximately forty of these being developed by

Shouldice & Kent (2006)).

 118

After this the author developed, generic PLC functions, to allow for greater control

flexibility, and database communication, which were both included in button operated

SCADA.

The next phase of the development by the author was the writing of SCADA project

functions and global actions that also included advanced strategies for ASRS control.

The integration of the control database, the order simulator and the mathematical

model came next and this allowed the author to conduct a number of trials which

highlighted some control problems with the system.

Further program development and trials followed. A lack of correlation between the

physical and mathematical models led to further program development and finally

more trials.

During each of these phases there has been interactions leading to the creation of

knowledge assets, albeit at a very low level, within the knowledge environment of the

AMT laboratory of WIT.

Initially explicit knowledge was accessed by O’ Mahoney (2004) and the author on

current ASRS research. This explicit knowledge being available through various

books and articles on the subject and also through reports made available by the

partnership company. Explicit knowledge was also provided by the suppliers of the

two main software packages, this being more thoroughly assimilated through

attendance at specific training courses on the software where the explicit knowledge

was shared tacitly in a ‘learning by doing’ environment.

In the originating ba environment of designing and building a particular machine the

internalisation mode of knowledge conversion dominated, both researchers

developing a broad understanding of the hardware, software and the application.

Through progress reports and development group meetings an externalisation process

developed culminating in the production of a Masters thesis by O’ Mahoney (2004).

The author then embarked on a series of SECI processes with groups of undergraduate

students, ending with the development of specific strategy related PLC functions and

button activated SCADA scripts. The process varying or developing slightly from

year to year as the author became more familiar with the hardware and software and

also the knowledge process that was at play.

This resulted in better program documentation and more detailed progress reports and

final theses. The process of passing on of tacit knowledge from the author to the

 119

students also improved, possibly as the authors tacit understanding of the system

increased.

The final phase in the development of the system has seen the author develop an even

deeper understanding of the systems through a further externalisation, combination

and internalisation process resulting in a series of trials which have helped to refine

the system further.

6.5 Summary
Throughout the course of this research great emphasis has been placed on the

retention, transfer and creation of knowledge and the development of an environment

where this could occur. The fact that the chief researcher / author was also a full-time

lecturer in the organisation greatly facilitated this process. Researchers were

encouraged to increase their own tacit knowledge in an environment created by the

research group, the opportunity was also there for researchers to develop their

hypotheses through analysis and testing. Knowledge was retained and passed on to

other undergraduate researchers through a well-developed documentation process and

the production of specific knowledge based theses.

The most significant developments from this were the rapid progress made both by

the undergraduate researchers and the physical development of an actual ASRS test-

bed.

Examples of the documented programs are shown in Appendix A and a range of

theses written by both postgraduate and undergraduate students demonstrate the

wealth of explicit knowledge generated.

It is the intention of the author to apply the information accumulated from this

knowledge case study to other broader applications within WIT.

 120

7 Conclusion & Recommendations

7.1 Introduction
The main goal of this project was to develop a test-bed for ongoing research in ASRS

design allowing for the analysis of a variety of control strategies both mathematically

and empirically within a knowledge paradigm of knowledge acquisition, tacit

knowledge development, tacit knowledge extension, explicit knowledge extension

and knowledge spiralling. This chapter reviews the various areas of work carried out

as described in Chapters 3 to 6, in terms of the outputs achieved. Overall conclusions

(Section 7.4) are presented, examining the value of the work in relation to the

objectives and also in terms of the future evolution of the system. Finally

recommendations are set out for each area of the project’s development, suggesting

improvements and enhancements to bring the ASRS test-bed to the next level of

development.

The major benefits of development of both a SIMUL8 model and physical model

include:

• Better understanding of ASRS control

• Realisation that the timing of calculations is important in the physical model

• Sequence of operations is obvious in a physical model

• Proofing of results in SIMUL8 model

• Clarification of strategies to interested parties

• Knowledge gained on the interaction of dwell point to retrieval strategy

In general, dual control improves performance (in terms of throughput), simultaneous

travel is better than rectilinear travel, dwell point at origin gives very poor results,

dwell point at current, pick point or deposit point is best. The best performance was

observed with current dwell point, simultaneous travel, dual control, free-nearest

storage and nearest retrieval strategies. Similar excellent results were observed with

pick point and deposit point dwell strategies. There is little difference in dual control

storage / retrieval or retrieval / storage operation. The results for FIFO and random

retrieval strategies were very similar. The SIMUL8 ASRS Simulation model shows

greatest correlation with: dwell point, random storage and retrieval. The best

mathematical results were also achieved with the above strategy mix.

In terms of creating a knowledge environment the development of the physical model

was hugely beneficial in the gaining of tacit knowledge by the chief researcher and

 121

supervisor and the development of a number of undergraduate students (3 groups)

plus a realisation that the greater the volume of tacit and explicit knowledge available

the faster the up-take for the students. There are also great benefits to the College

research centre of having a full time researcher in this area, especially when the

subject matter becomes complex and where the learning curve for students can be

very steep. There was previously a loss of knowledge in both tacit and explicit form

(most noticeably from the postgraduate researcher). It was difficult to disseminate and

log this knowledge and an in-house expert is very valuable. The hands-on

involvement of the chief researcher allows for faster learning for all and more

focussed research for undergraduate students. Knowledge reached a critical mass and

then progression, especially for chief researchers was rapid. Documentation is crucial

and a learning program for students is recommended. The knowledge gained by

undergraduate researchers was almost entirely retained due to the involvement of the

chief researcher and supervisor. The chief researcher also passed this knowledge on to

other undergraduate students by incorporating the recently gained knowledge into

lecture material.

7.2 Summary of Aims and Objectives
The aims and objectives set down in Chapter 1 were as follows:

1. Develop an understanding of industrial storage and retrieval systems.

2. Develop fieldbus based control software and integrate this hardware with a

central database and an order generator.

3. Develop an entirely flexible ASRS control system which would allow for the

empirical testing of a wide range of control strategies incorporating a

mathematical model to generate a broad spectrum of requirements in terms of

parts, operation and time required.

4. Utilise a mathematical model of the ASRS in combination with output to a results

spreadsheet to confirm the findings from the physical model and to produce long

term data on performance etc.

5. Carry out extensive testing, troubleshooting and trials on both models reviewing

the results and making recommendations on most suitable settings for a variety of

requirements on the ASRS.

6. Develop a deep understanding of the existing ASRS and capture and elaborate on

this as a model in knowledge creation.

 122

7. Showcase to the sector the benefits of the knowledge creation process as a

practical solution to the on-going problem of poor retention of knowledge assets.

7.3 Results

7.3.1 ASRS Mechanical and Electrical Design & Fabrication
The mechanical and electrical design and fabrication process is outlined in Chapters 3

and 4 of this thesis. Great emphasis was placed on the design of a system that would

allow for flexibility in control, facilitating the testing of a range of parameters into the

future. The knowledge base available in a local partnership company was also tapped

into for this process and major steps were taken to ensure that the system installed in

WIT accurately resembled the Hi-Bay system there albeit at a much smaller scale.

The hardware chosen: Siemens S7, Profibus DP network, remote I/O unit, inverters on

both AC motors, dual direction forks and the S/R machine design are all similar to

the industrial unit in the partnership company.

WIT already had quite a knowledge base in Mitsubishi PLC control and Wonderware

In-Touch SCADA software, however the partnership company’s knowledge was

centered on Siemens hardware and software. This had a major bearing on the decision

to go with Siemens. The outcome of this has been to increase the knowledge base of

WIT in a broader range of PLC control and SCADA software. Hence the

manufacturing research group has now the capacity to make an informed decision on

the benefits or otherwise of both of these systems. This knowledge is also being

passed on to undergraduate students both through specific modules such as PLC

control and SCADA communications and through research based final year degree

program projects.

The hardware design chosen allows for the testing of: X and Y axis speed variation,

rectilinear and simultaneous travel, dual rack design, forks on or off control, various

sequences of store and retrieve functions, various dwell points, including the origin

position.

A variety of safety and protection devices are included in the design to protect the

operators (strategically positioned emergency stops) and the machine itself (over-

travel sensors on all axes), sensors on the forks to ensure the S/R machine is in the

correct position when the forks operate and a facility to isolate all three motors

thereby allowing the PLC to switch on the outputs without actually powering these

 123

outputs). These have all proved invaluable during the course of the research and have

also been refined as the project progressed.

7.3.2 ASRS Control
The programming and display screens developed with Step7 and WinCC are outlined

in Chapter 4. The Step7 programs consist of one organisation block (OB1) and

thirteen functions, four of which are used in full automatic control, the other functions

are used for set-up and manual control. An important feature of the control is that the

main decisions and intelligence is built in to the SCADA script with the PLC code

only performing very basic functions. Initially this was not the case and extremely

complex PLC code was produced with separate functions programmed for each

strategy. At present a total of 11520 individual strategies can be selected. This figure

comprises: Dwell Point (5 options), Travel Type (2 options), Command Type (2

options), Control Type (2 options), Fork Control (2 options), Pre-Store Buffer (2

options), Pre-Retrieve Buffer (2 options), Obsolete Zone (2 Options), Store Strategy

(6 options) and Retrieve Strategy (3 options). It was quickly discovered that the

original plan of individual programs or functions for each strategy was not an option

and the decision was taken to simplify this code and use a combination of WinCC

tools to control the system. These tools include: WinCC code behind individual

buttons setting various tags high and low depending on the status of certain inputs

both external and internal to WinCC (‘Home’, ‘GoTo X’, ‘GoTo Y’, ‘GoTo Dwell’,

‘GoTo Home’, ‘Forks Out’, ‘Start’, etc.), Global script developed project functions

(‘ASRSOp’, ‘SetPlaceCoOrds’, ‘ASRSOpComp’, ‘ASRSDwell’) and actions

(‘GoToXYCompleteAction’, ‘PickComplete’, ‘PlaceComplete’, ‘PlaceComplete2’).

The S/R machine travel is accomplished using two quite short Step7 functions (FC 17

and FC 18), these are called from a number of SCADA script project functions and

global actions and return to a global action script (‘GoToXYCompleteAction’) every

time, with the intelligence built into these scripts. When either FC 17 or FC 18 is

called the two tags that are used by these functions (MW755, ‘xAUTOReqPosn’ and

MW735, ‘yAUTOReqPosn’) are fixed by the calling SCADA script and the PLC

function compares them with the two memory words storing the actual X and Y

positions (MW745, ‘xAUTOActPosn’ and MW725 ‘yAUTOActPosn’).

 124

The design of the control system in this manner allows for great flexibility and

modularisation in the programming. It is therefore possible even in the future to

include other more complex features without having to alter the PLC code. All the

Step7 code is included in Appendix A and all the SCADA script is in Appendix C.

One very important finding discovered during the trials on this system was the delay

in calculating the next required location (Bay No, X and Y co-ordinates). Initially this

calculation was performed when the S/R machine was at rest, either at the Dwell Point

after a Single operation or after the second of a Dual operation or at the place point

after the first of a Dual operation. When this calculation was being performed

(proportional to the number of available bays and the type of storage or retrieval

strategy selected) the S/R machine was not moving. This lack of correlation showed

up a problem with the physical model. By altering the control flow between the

various PLC functions and the SCADA functions and actions this issue was sorted

and the current situation is that there is no delay at the times specified above. This has

improved the correlation between the two models.

7.3.3 Order Generator
This SIMUL8 developed program allows for the automatic creation of orders with the

following factors capable of being controlled: Quantity of Requirements, Part

Number, Operation Type and Operation Interval. A probability profile is supplied by

the user for both the Operation Type and the Operation Interval. When this model is

run the user is prompted to input the total number of orders required. Once the orders

are generated the user is asked if the database linked through an ODBC link is to be

updated.

The two tables that are then updated are ‘tmprequirements’ and ‘interval times’. The

updating of the database in this fashion allows the user to continuously re-use this set

of requirements through a simple macro which:

modifies the contents of the bays

clears the completed jobs table

combines the ‘tmprequirements’ with the ‘interval times’ and the required start time

(which the user is prompted to supply) to update the ‘requirements’ table.

During the testing of the ASRS many sets of requirements were generated using this

model with each one then being utilised for numerous trials. To allow the testing and

re-testing of various strategies with the same set of simulated requirements the

 125

operator simply copies the relevant database into a back-up sub-directory and re-runs

the model to generate a completely new set of requirements in the original copy of the

database. See sections 7.3.5 and Appendix F for a complete set of results for the trials

conducted from orders generated with this model

7.3.4 Database Control
The database used for this research is a MS Access database that is accessed from

various other software through an ODBC link, ‘ASRSDatabase’. This database

consists of a number of tables: ‘ASRS Contents’, ‘Requirements’, ‘Operations

Completed’, ‘InterTimes’ and ‘tmpRequirements’. It also includes macros to

implement start-up procedures and a number of reports and queries.

The communication between this database and the WinCC script is achieved using a

Siemens WinCC add-on called WinCC DBExt-DLL. This program consists of a

number of synchronous and asynchronous functions that allow a number of database

requests including:

DBEGetVariables: Read data from a database table

DBESetVariables: Write data to a database table

DBEDeleteRecord: Deletes a database record from a database table

DBEGetNumber OfRecords: Get the number of records that matches the search

condition

These, as explained in Chapter 4, require an expression, which returns a BOOL value

depending on the success or failure of the request, and typically a variable structure or

array into, or from which, field information for the relevant database record is placed.

The interaction between this database and the Order Generator developed in SIMUL8

is explained in 7.3.3. There is also interaction between this database and the ASRS

model developed in SIMUL8. This is also conducted through the ODBC link,

ASRSDatabase, and allows the SIMUL8 model to use the actual Requirements table

as its input data. Thus allowing for complete correlation between the demands on both

the physical and mathematical models.

The setting-up of this database and its interaction with the two SIMUL8 models and

with the WinCC SCADA scripts has been very successful. There were a number of

initial issues with the communication to SCADA, most noticeably the setting up of

the SQL conditions and the timing of the updating of the variable structure. Chapter 4

outlines the steps taken to progress these issues.

 126

7.3.5 Mathematical Model
A complete listing of the results obtained from the mathematical model are shown in

Appendix F. This model exports the results and the settings to an open spreadsheet

(ASRS Results.xls). This results summary includes: Results collection period (total

run time), average cycle time, throughput / hour, number of loads put-away and

retrieved, pre pick-up time, loaded time, post deposit time, utilisation and operation

time. The settings summary includes: storage type, retrieval type, command type,

dwell point, product range, travel type, racking size and travel speeds.

The results from the model show a high correlation with the results obtained from the

physical model. The following is a summary of the findings from this model:

• Average cycle times for ‘ Free-Random’ storage or retrieval strategies will

always be higher or at best equal to cycle times for ‘Free-Nearest’ strategies

due to the fact that ‘Free-Nearest’ strategies will always provide the shortest

possible cycle times (i.e. the best possible ‘Random’ result).

• SIMUL8 model not capable of ‘Class Nearest’ or ‘Dedicated Nearest’ storage

strategies.

• Range of results in ‘Random’ expected due to inherent properties of randomly

choosing a bay location.

• Results for ‘Current’ dwell point show a 16.5% improvement from a ‘User

Defined’ dwell point at (6,3)

• Results for ‘Deposit point’ dwell point show a value very close to ‘Current’

dwell point. This is due to the movement of the S/R machine being very

similar for these two strategies, either returning to (6,3) or (5,3) before moving

to (4,3) to pick a new pallet.

• Results for ‘Class Nearest’ show a 3% improvement than ‘Free Nearest’. This

requires further investigation.

• Results for ‘Dedicated Nearest’ show a negligible improvement from ‘Free

Nearest’. This is due to the designation of the bays in a ‘quasi’ random order.

• ‘Dual’ command shows an average of 23.5% improvement from ‘Single’

command.

• The greatest improvement from ‘Single’ to ‘Dual’ occurs with a Dwell point at

the origin (where travel of the S/R machine is greatest).

 127

• The smallest improvement from ‘Single’ to ‘Dual’ is 16.9% with a ‘Current’

Dwell point (where travel of the S/R machine is least).

• ‘Rectilinear’ travel shows a 16% reduction from ‘Simultaneous’ travel

(‘Random result).

• Best performance observed for: Dwell point – ‘Current’, ‘Free Nearest’

storage, ‘Nearest’ retrieval, ‘Simultaneous’ travel and ‘Dual’ command.

Values for Dwell point at the ‘Pick point’ were very similar.

• Some results are influenced by the fact that all the bays were full at the start of

some of the trials and therefore a retrieve (‘Nearest’) had to occur initially.

• Results for the Dwell point at (0,0) are not as bad in Trial C as in Trial B

because retrieval is from the ‘Nearest’, which in this scenario is the nearest to

the start position of the S/R machine i.e. (0,0).

• ‘Dual’ results are on average better than ‘Single’ results.

• ‘Class’ based strategy performs better than ‘Dedicated’ strategy.

7.3.6 Trial Results
A complete listing of the results obtained from the physical model are shown in

Appendix F. The results compare favourably with those obtained from the

mathematical model. The findings outlined in 7.3.5 above are also valid for the

physical model. Some interesting additional points discovered with the physical

model:

1) The processing time required by the PC caused a delay in the S/R machine. This

was subsequently corrected to allow off-line calculation and decision making,

where practicable.

2) The finding that in dual command it did not seem to make any difference to

average cycle times whether the majority sequence of operations was a store

followed by a retrieve (traditional operation) or a retrieve followed by a store.

This may be due to the ASRS being fully loaded which dictated the bay

selection or else due to the ‘Dwell point’ strategy being implemented. Further

research in this area could establish how general this finding is over a range of

strategies.

3) That free-nearest retrieval does not always bring the S/R machine in the best

direction, thus arriving at a situation where the S/R machine moves further and

further away from the deposit point in deciding on the nearest retrieval bay.

 128

When the dwell strategy is ‘Current’ or during the second operation in a ‘Dual’

cycle the storage or retrieval strategy ‘Free-Nearest’ may take the S/R machine

in a direction which does not minimise total travel time. Further work is

required to determine the overall effect of this with a view to evaluating the total

travel time prior to deciding on the next bay.

4) When a required component is in the Bay where the S/R machine is currently

positioned the program must allow the S/R machine to immediately pick that

component rather than having to move to a different bay to pick.

7.3.7 Knowledge Management
The approach adopted during the course of this project has been to follow the

dynamic creation model proposed by Nonaka et al. (1994). This model defines the

spiral of knowledge as comprising of three elements: SECI, ba and knowledge assets.

The four elements of SECI (Socialisation, Externalisation, Combination and

Internalisation) combine to help the transformation of knowledge from Tacit to

Explicit to Tacit. Within the confines of this project great emphasis has been placed

on the development of knowledge through this process including the development,

testing and dissemination of hypotheses. This has been accomplished by the close

association between all researchers, past and present, the encouragement of

researchers to ‘try’ things and the development of an environment where all

researchers have an input into all current research, both formally and informally. This

has been one of the major achievements of this research group. The development of a

shared context for knowledge creation (ba) occurs almost by default in a research

environment where the emphasis is placed on the development of a machine or

system, in this case a fully flexible ASRS integrated with two SIMUL8 models. The

majority of the interaction is by necessity individual and face-to-face but by careful

control it has been possible to develop other types of contexts including collective

face-to-face and virtual contexts. All four types of ba (originating, dialoguing,

systemizing and exercising) have been used to good effect during the course of this

project and have helped to define and develop a number of knowledge assets

including very obvious experiential assets but also including conceptual, systemic and

routine assets. It is hoped that the emphasis placed on knowledge creation during the

course of this project will have an impact on future research in WIT and beyond.

 129

7.3.8 Test-Bed Benefits
This project has resulted in an ASRS test-bed that will have major benefits to the

users of hi-bay storage system in the future. The advantages of being able to test the

impact of the complete range of strategies on a number of different requirement

scenarios is limitless especially when fully integrated with a very flexible order

generator and a mathematical model of the ASRS (which can be modified by an

operator to model other much larger single bay storage systems).

It is essential that the research group make public the research asset that has been

developed and encourage its use among the users of ASR systems in the local area

and beyond. This will depend on the publication of future papers and the presentation

of these at local, national and international conferences. There is no reason why WIT

will not become a centre of excellence for ASRS and knowledge creation research.

7.4 Conclusions

The primary goal of this project was to develop a test-bed for on-going research in

ASRS design allowing for the analysis of a variety of control strategies both

mathematically and empirically within a knowledge paradigm: this has been achieved.

The major benefit of developing the two models simultaneously is that the physical

model can be used to gain knowledge on ASRS design and control and can also be

used to prove the results from the mathematical model. The mathematical model can

then be used to run more extensive trials on the various strategies. Initial trials suggest

that optimum results are obtained with the following strategy mix: Dwell Point –

Current, Movement – Simultaneous, Command Type – Dual, Storage – Free Nearest,

Retrieval – Nearest. Further work with a variety of requirements and a mix of

strategies is required with both models to reach more firm conclusions.

In terms of the objectives set out at the beginning of this project the following can be

stated:

1. The primary goal to develop an entirely flexible ASRS control system that

would allow for the empirical testing of a wide range of control strategies

incorporating a mathematical model to generate a broad spectrum of

requirements in the AMT Laboratory at WIT has been achieved (objective 3).

2. A thorough understanding of industrial storage and retrieval systems has been

acquired by the chief researcher and a number of undergraduate researchers

(objective 1).

 130

3. The Control system developed is based on a Profibus-DP fieldbus network

integrated with SCADA WinCC script, Siemens Step7 PLC code, a MSAccess

database and a SIMUL8 based Order Generator (objective 2).

4. A SIMUL8 based Mathematical model of the WIT based ASRS with output to a

MSExcel spreadsheet and input from the ASRS control database (ASRS1.mdb)

has been developed (objective 4).

5. Extensive testing, troubleshooting and trials have been conducted on both the

physical and mathematical models and a variety of initial findings have been

summarised in this report (objective 5).

6. This project has been undertaken as an exercise in knowledge creation and

several positive results from this have been highlighted in this report (objectives

6 and 7).

With regard to the future development of this system the following outcomes can be

claimed for this project:

1. The integration of the SIMUL8 order generator with the ASRS control database

and the further linking of this database to the ASRS schedule simulator allows

for great flexibility in the range of strategies that can be tested both

mathematically and empirically.

2. The development of a dynamic knowledge creation model based on this has

great future benefits within WIT and beyond.

3. Great knowledge has been developed internally in WIT during the course of this

project and this will have major benefits for a broad range of future students.

7.5 Recommendations

Great advances have been made to the ASRS through the course of this project

especially in the flexibility of control and the in the development of the required

hardware. Similar to many other such projects there is always room for improvement

and development. These areas are summarised as follows:

• Develop and implement the link between the FMAS and the ASRS, allowing

for the communication of requirements from one to the other.

• Conduct further trials on all strategies in both models to explore and improve

correlation. Specifically, these trials will incorporate a study of the effect of

 131

S/R machine acceleration and deceleration and also the precision of the S/R

machine location at each bay.

• Conduct further trials on minimising total travel time with ‘Current’ dwell

point, ‘Dual’ operation and ‘Free-Nearest’ retrieval.

• Conduct trials on the ASRS with a variety of requirements and help to

establish the strategies best suited to a range of such requirements.

• Implement kitting and buffer zone control and determine the effect of this

control on the overall efficiency of the ASRS.

• Further develop the SIMUL8 ASRS scheduling model to include the kitting

and buffer zone control plus the inclusion of other storage and retrieval

strategies.

• Utilise this knowledge creation case study developed during the course of this

project in the other manufacturing based projects and possibly further a-field

with the college research environment or beyond.

• Re-design of the fork mechanism to improve its robustness and also include a

second parallel rack that will increase the capacity of the storage system and

require further development of the control system and establish the flexibility

of the existing fork design.

• Develop the MSAccess database or the MS SQL server database to provide a

series of input screens for the operator (class type, initial ASRS Contents,

changing of Contents etc.) and a selection of reports on Operations Completed,

Requirements, Contents etc.

 132

References
1. Alexander, R., Engineering for Mixed Product Production in a Flexible

Manufacturing and Flexible Assembly System, WIT, (2005).

2. Badawy, M.K., Technology Management Education: Alternative Models,

California Management Review, v40, p94-116, (1998).

3. Barry, J., Engineering for Variety in a Fully Automated Multi Production

Manufacturing System, WIT, (Pending 2007).

4. Bettis, R.A. and Hitt, M.A., The New Competitive Landscape, Strategic

Management Journal, v16, p7-19, (1995).

5. Boudreau, M., Loch, K.D., Robey, D. and Straud, D., Going Global: Using

Information Technology to Advance the Competitiveness of the Virtual

Transnational Organisation, Academy of management Executive, v12, p120-

128, (1998).

6. Bozer, Y.A. and White, J. A., Design and Performance Models for End-Of-

Aisle Order Picking Systems, Management Science, v36, n7, (1990).

7. Cardinal, L.B., Hatfield, D.E., Internal knowledge generation: The corporate

research laboratory and innovative productivity in the pharmaceutical

industry, Journal of Engineering and Technology Management, v17, p247-

271, (2000).

8. Coffey, K. and Buggy, L., Development of ASRS in WIT, u/g project report,

WIT, (2004).

9. Cheng, Y.T. and Van de Ven, A.H., Learning the Innovation Journey: Order

Out of Chaos?, Organization Science, v7, p593-614, (1996).

10. Cohen, W.M. and Levinthal, D.A., Absorptive Capacity: A New Perspective

on Learning and Innovation, Administrative Science Quarterly, v35, p128-

152, (1990).

11. Chow, W-M., An Analysis of Automated Storage and Retrieval Systems in

Manufacturing Assembly Lines, IIE Transactions, (1986).

12. Crosse, A., Mechanical Integration of Programmable Machines with Short

Cycle Flexible Manufacturing Cells, WRTC, (1997).

13. Cyert, R. and March, J.G., A Behavioral Theory of the Firm, Prentice-Hall,

(1963).

14. DeCarolis, D.M. and Deeds, D.L., The Impact of Stocks and Flows of

Organisational Knowledge on Firm Performance: An Empirical Investigation

 133

of the Biotechnology Industry, Strategic Management Journal, v20, p953-986,

(1999).

15. Drucker, P.F., Management Challenges for the 21st Century, HarperBusiness,

(1999).

16. Egbulu, P.J., Framework for Dynamic Positioning of Storage/Retrieval

Machines in an Automated Storage/Retrieval System, International Journal of

Production Research, v29, n1, p17-37, (1991).

17. Egbelu, P.J. and Wu, C.T., A Comparison of Dwell Point Rules in an

Automated Storage/Retrieval System, International Journal in Production

Research, v31, n11, p2515-2530, (1993).

18. Elsayed, E.A. and Lee, M.K., Order Processing in Automated

Storage/Retrieval Systems with Due Dates, IIE Transactions, v28, p567-577,

(1996).

19. Elsayed, E.A. and Unal, O.I., Order Batching Algorithms and Travel-Time

Estimation for Automated Storage/Retrieval Systems, International Journal of

Production Research, v27, n7, p1097-1114, (1989).

20. Fiol, M.C. and Lyles, M.A., Organisational Learning, Academy of

Management Review, v10, p803-813, (1985).

21. Flanagan, B., Dynamic Scheduling, Artificial Intelligence and Control in a

Flexible Manufacturing System, WIT, (2004).

22. Fowler, S. W., King, A. W., Marsh, S. J., and Victor, B., Beyond products:

new strategic imperatives for developing competencies in dynamic

environments, Journal of Engineering and Technology Management, v17,

p357-377, (2000).

23. Fransman, M., Information, Knowledge, Vision and Theories of the Firm,

Industrial and Corporate Change v3, n3, p713-757 (1994).

24. Garud, R. and Nayyar, P.R., Transformative Capacity: Continual Structuring

by Intertemporal Technology Transfer, Strategic Management Journal, v15,

p365-385, (1994).

25. Grant, R.M., Toward a Knowledge-Based Theory of the Firm, Strategic

Management Journal, v17, p109-122, (1996).

26. Graves, S.C., Hausman, W. H. and Schwarz, L. B., Storage-Retrieval

Interleaving in Automatic Warehousing Systems, Management Science, v23,

n9, (1977).

 134

27. Grayling, A.C., Philosophy 1, Oxford University Press, (2000).

28. Groover, M. P., Automation, Production Systems, and Computer-Integrated

Manufacturing, Prentice-Hall Inc., New Jersey, (2001).

29. Gulati, R., Network Location and Learning: The Influence of Network

Resources and Firm Capabilities on Alliance Formation, Strategic

Management Journal, v20, p397-420, (1999).

30. Han, M-H., McGinnis, F.F., Shieh, J.S. and White, A., On Sequencing

Retrievals in an Automated Storage/Retrieval System, IIE Transactions, v19

n1, p56-66, (1987).

31. Hausman, W.H., Schwarz, L.B. and Graves, S.C., Optimal Storage

Assignment in Automatic Warehousing Systems, Management Science, v22,

n6, (1976).

32. Henderson, R.M. and Clark, K.B., Architectural Innovation: The

Reconfiguration of Existing Product Technologies and the Failure of

Established Firms, Administrative Science Quarterly, v35, p3-30, (1990).

33. Hitt, M.A., Ireland, R.D. and Hoskisson, R.E., Strategic Management:

Competitiveness and Globalisation, 3rd Ed., Southwestern College Publishing,

(1999).

34. Hitt, M.A., Ireland, R.D. and Lee, H., Technological Learning, Knowledge

Management, Firm Growth and Performance: An Introductory Essay, Journal

of Engineering and Technology Management, v17, n3-4, p231-246, (2000).

35. Hoopes, D.G. and Postrel, S., Shared Knowledge, “Glitches” and Product

Development Performance, Strategic Management Journal, v20, p837-865,

(1999).

36. Itami, H. and Numagami, T., Dynamic Interaction between Strategy and

Technology, Strategic Management Journal, v13, p119-135, (1992).

37. Kamara, J.M., Anumba, C.J. and Carrillo, P.M., A CLEVER Approach to

Selecting a Knowledge Management Strategy, International Journal of Project

Management, v20, n3, p205-211, (2002).

38. Kersala, A. and Peters, B.A., An Analysis of Dual Shuttle Automated

Storage/Retrieval Systems, Journal of Manufacturing Systems, (1994).

39. Kogut, B., Joint Ventures: Theoretical and Empirical Perspectives, Strategic

Management Journal, v9, p319-332, (1988).

 135

40. Kogut, B. and Zander, U., Knowledge of the Firm, Combinative Capabilities,

and the Replication of Technology, Organisation Science, v3, p383-397,

(1992).

41. Lave, J., The practice of learning: Understanding practice: Perspectives on

activity and context, Cambridge University Press: p3-32, (1993).

42. Lee, H.F. and Schaefer, S.K., Sequencing Methods for Automated Storage and

Retrieval Systems with Dedicated Storage, Computers and Industrial

Engineering, v32, n2, p351-362, (1997).

43. Lei, D., Hitt, M.A. and Bettis, R., Dynamic Core Competencies Through

Meta-Learning and Strategic Context, Journal of Management, v22, p549-569,

(1996).

44. Liebeskind, J.P., Oliver, A.L., Zucker, L. and Brewer, M., Social Networks,

Learning and Flexibility: Sourcing Scientific Knowledge in New

Biotechnology Firms, Organization Science, v7,p428-443, (1996).

45. Maher, T., Development and Implementation of a Communication System for

Distributed Control of a Multi-Machine Manufacturing System, WRTC,

(1997).

46. Mansuri, M., Cycle-Time Computation and Dedicated Storage Assignment for

AS/R Systems, Computers and Industrial Engineering, v33, n1-2, p307-310,

(1997).

47. March, J.G., Exploration and Exploitation in Organisational Learning,

Organization Science, v2, p71-87, (1991).

48. Marsh, S.J.and Ranft, A.L., Why Resources Matter: An Empirical Study of the

Influence of Knowledge-Based Resources on New Market Entry, Dynamic

Strategic Resources, Wiley, p 43-66, (1999).

49. Matusik, S.F. and Hill, C.W., The Utilization of Contingent Work, Knowledge

Creation and Competitive Advantage, Academy of Management Review, v23,

p680-697, (1998).

50. McKenna, N. and Naughton, P., Further Development of physical ASRS in

WIT, u/g project report, WIT, (2005).

51. McNelis, G., A System Modelling Approach to the Development of Flexible

Manufacturing and Assembly Cells, WIT, (2001).

52. Miller, D.A., A Preliminary Typology of Organisational Learning:

Synthesizing the Literature, Journal of Management, v22, p484-505, (1996).

 136

53. Mitchell M., The Development of Real-Time Communications and Information

Systems for Cells in a Modern Manufacturing Environment, WIT, (1998).

54. Moon, G. and Kim, G.P., Effects of Relocation to AS/RS Storage Location

Policy with Production Quantity Variation, Computers and Industrial

Engineering, v40, i1-2, p1-13, (2001).

55. Muralidharan, B., Linn, R.J. and Pandit, R., Shuffling Heuristics for the

Storage Location Assignment in an AS/RS, International Journal in Production

Research, v33, n6, p1661-1672, (1995).

56. Nelson, R.R. and Winter, S.G., An Evolutionary Theory of Economic Change,

Belknap Press, (1982).

57. Nonaka, I., A Dynamic Theory of Organisational Knowledge Creation,

Organisation Science, v5, p14-37, (1994).

58. O’ Connor, A., The Evolution of a Progressing Interface for a Networked

Manufacturing System, WRTC, (1997).

59. OECD, The Knowledge-Based Economy, OCDE/GD(96)102, Paris, (1996)

60. Oliveira, M., Core Competencies and the Knowledge of the Firm, Dynamic

Strategic Resources, Wiley, p17-41, (1999).

61. O’ Mahoney, P., Automated Storage and Retrieval: System Development and

Implementation, W.I.T. (2004).

62. Phelan, J., Evolution of a Manufacturing Research Process: experience from

an RTC, IMC-14 conference, TCD, (1997).

63. Phelan, J., and Alexander, R., Fixture Based Flexible Assembly, SME

Automation and Assembly Conference, Forth Worth, Texas (2004).

64. Polanyi, M., Personal Knowledge: Towards a Post-Critical Philosophy,

University of Chicago Press, (1958).

65. Polanyi, M., The Tacit Dimension, Doubleday Press, (1967).

66. Reed, R. and DeFillippi, Causal Ambiguity, Barriers to Imitation, and

Sustainable Competitive Advantage, Academy of Management Review, v15,

p88-102, (1990).

67. Rembold, U., Nnaji, B. O., and Storr, A., Computer Integrated Manufacturing

and Engineering, Addison-Wesley, (1993).

68. Sanchez, R. and Heene, A., A Comparative Perspective on Strategic Learning

and Knowledge Management, Wiley, (1997).

 137

69. Schwarz, L.B., Graves, S.C. and Hausman, W.H., Scheduling Policies for

Automatic Warehousing Systems: Simulation Results, AIIE Transactions, v10,

n3, (1978).

70. Shouldice, C. and Kent, T., Development of SCADA Control of an ASRS Test-

Bed, u/g project report, WIT, (2006).

71. Simonin, B.L., Ambiguity and the Process of Knowledge Transfer in Strategic

Alliances, Strategic Management Journal, v20, p595-623, (1999).

72. Singh, K., The Impact of Technological Complexity and Interfirm

Collaboration on Business Survival, Academy of Management Journal, v40,

p339-367, (1997).

73. Spender, J.C., Making Knowledge the Basis of a Dynamic Theory of the Firm,

Strategic Management Journal, v17, p45-62, (1996).

74. Spender, J.C. and Grant, R.M., Knowledge and the Firm: Overview, Strategic

Management Journal, v17, p5-9, (1996).

75. Subramaniam, M. and Venkatraman, N., The influence of Leveraging Tacit

Overseas Knowledge for Global New Product Development Capability: An

Empirical Examination, Dynamic Strategic Resources, Wiley, (1999).

76. Taboun, S.M. and Bhole, S.D., A Simulator for an Automated Warehousing

System, Computers and Industrial Engineering, v24, n2, p281-290, (1993).

77. Teece, D.J., Pisano, G. and Shuen, A., Dynamic Capabilities and Strategic

Management, Strategic management Journal, v18, p509-533, (1997).

78. Trought, B., The Knowledge Question for Manufacturing, Management

Research International, (2001).

79. Van Den Berg, J.P., and Gademann, A.J.R.M., Simulation Study of an

Automated Storage/Retrieval System, International Journal of Production

Research, v38, n6, p1339-1356, (2000).

80. Walsh, D., An Automated Storage / Retrieval System Simulation Model, IMC

21, (2004).

81. White, J.A., and Kinney, H.D., Storage and Warehousing, Handbook of

Industrial Engineering, John Wiley and Sons Inc., (1982).

82. Zahra, S.A., Melsen, A.P. and Bogner, W.C., Corporate Entrepreneurship,

Knowledge and Competence Development, Entrepreneurship: Theory and

Practice, v23, n3, p169-189, (1999).

 138

Bibliography

1. Siemens AG, SITRAIN Training for Automation and Drives, Revision A, (2002).

2. Siemens AG, Simatic HMI, WinCC V5 Getting Started, (2003).

3. Minarik Automation and Control, Adjustable Speed Drives for DC Motors,

(1997)

4. Siemens AG, SIMATIC WinCC Add-on, DBExt DLL, (2002)

 139

Glossary

2D Two Dimensional

3D Three Dimensional

AGVS Automatic Guided Vehicle System

AMT Advanced manufacturing Technology

ASRS Automated Storage and Retrieval System

CMM Coordinate Measuring Machine

CNC Computer Numerical Control

DC Dual Cycle

DDE Dynamic Data Exchange

DLL Dynamic Link Library

ERP Enterprise Resource Management

FCFS First Come First Served

FIFO First In First Out

FMAS Flexible Manufacturing and Flexible Assembly System

FMC Flexible Manufacturing Cell

FMS Flexible Manufacturing System

HMI Human Machine Interface

I/O Input/Output

KM Knowledge Management

MCL Most Common Locations

MIL Mandatory Interleaving

MTCR Modified Traffic Congestion Ratio

NIL No Interleaving

ODBC Open Data Base Connectivity

OECD Organisation for Economic Co-Operation and Development

OPC Open Connectivity

OLE Object Linking and Embedding

PC Personal Computer

P&D Pickup and Delivery

PLC Programmable Logic Controller

R&D Research and Development

RAN Random Storage Assignment

 140

RCD Residual Current Device

RPM Revolutions per Minute

SC Single Cycle

SCADA Supervisory Control and Data Acquisition

SCARA Selective Compliance Assembly Robot Arm

SECI Socialisation, Externalisation, Combination, Internalisation

SKU Stock Keeping Unit

SPT Shortest Processing Time

SQL Structured Query Language

S/R Storage / Retrieval

WIT Waterford Institute of Technology

 141

Appendix A (PLC Program)

 142

Please consult author for complete PLC program listings.

 143

Appendix B (SCADA Screens)

 144

Figure B-1: Main Menu

Figure B-2: Semi / Full Automatic Screen

 145

Figure B-3: ASRS Layout and Contents

Figure B-4: Class-Based Storage

 146

Figure B-5: Dedicated Storage

 147

Appendix C (SCADA Scripts)

 148

ASRSOp

#include "apdefap.h"

long BayNo, OpNumber, OpNumber1, OpReqd, PartNo, OpType=0, NoResult =0;
long BayNoRequired, CompID, AutoID, AutoID1, ClassID; //CompID = DB Update, AutoID = DB
Search
long XAct, YAct, XStartPosn, YStartPosn;
long BayArray[68] = {0};
//long lUserData = 1234;
long OpNo = 1, Checked;
long OpComp;
CMN_ERROR MyError;
char* PictureName;
char MyDataSource[] = "ASRSDatabase";
char sqlCond[100] ;
char sqlCond1[100];
char sqlCond2[100];
char sqlCond3[100];
char strIOField[11] ;
//char strIOField1[] ="G";
char strSQLHoldComp[]=" ComponentID = ";
char strSQLDedicated[]=" Dedicated = ";
char strSQLHoldBay[]=" BayNumber = ";
char strSQLClass[]=" Class = ";
char strSQLORDERBYDate[]=" ORDER BY DateIn ASC";
char strSQLOpReqd[]=" (OperationReqd = 1 OR OperationReqd = 2) AND Checked = 0";
char strSQLOpNumber[]=" OpNumber= ";
char strSQLNULL[]="\0";
char strSQLOperationReqd[]=" OperationReqd= ";
char strSQLPartNumber[]=" PartNumber = ";
char TableName[] = "ASRSContents";
char TableName1[]="ClassType";
char TableName2[]="Requirements";
char TableName3[]="OperationsCompleted";
char strFieldHold[]="IOField";
char strMsg[20] = "All OK";
char strMsg1[20] = "Finished";
//char strSQLHold2[]=" XCoOrdinate = ";
//char strSQLHold3[]=" YCoOrdinate = ";
int r=0, i=0, j, XCo, YCo, bCheck = 0, XPick = 4, YPick = 3, XDeposit = 5, YDeposit = 3;
//WORD T1=13, T2=23;
DWORD wRecs;
struct tm *OldT;
time_t LiamTime;
double Dist = 0, Disti =1000,Atime = 0.0, TimeDifference = 0.0, DateTimeReqd, DateTimeComp;
BOOL Result ;

DBEXT_VARIABLE_STRUCT CoOrdVar [] = {
{"BayNumber",&BayNo,DBE_VS_TYP_VARIABLE},
{"XCoOrdinate",&XCo,DBE_VS_TYP_VARIABLE},
{"YCoOrdinate",&YCo,DBE_VS_TYP_VARIABLE},
{"ComponentID",&AutoID,DBE_VS_TYP_VARIABLE},
{NULL,NULL,0}
};

DBEXT_VARIABLE_STRUCT CoOrdVarPut [] = {

 149

{"ComponentID",&CompID,DBE_VS_TYP_VARIABLE},
{"DateIn",&Atime,DBE_VS_TYP_VARIABLE},
{NULL,NULL,0}
};

DBEXT_VARIABLE_STRUCT CheckedPut [] = {
{"Checked",&bCheck,DBE_VS_TYP_VARIABLE},
{NULL,NULL,0}
};

DBEXT_VARIABLE_STRUCT BayPut [] = {
{"BayNumber",&BayNo,DBE_VS_TYP_VARIABLE},
{NULL,NULL,0}
};

DBEXT_VARIABLE_STRUCT Classified [] = {
{"Class",&ClassID,DBE_VS_TYP_VARIABLE},
{NULL,NULL,0}
};

DBEXT_VARIABLE_STRUCT Requirements [] = {
{"OpNumber",&OpNumber,DBE_VS_TYP_VARIABLE},
{"PartNumber",&PartNo,DBE_VS_TYP_VARIABLE},
{"OperationReqd",&OpReqd,DBE_VS_TYP_VARIABLE},
{"DateTimeReqd",&DateTimeReqd,DBE_VS_TYP_VARIABLE},
{"Checked",&Checked,DBE_VS_TYP_VARIABLE},
{NULL,NULL,0}
};

DBEXT_VARIABLE_STRUCT OperationsCompleted [] = {
{"OperationNumber",&OpNumber1,DBE_VS_TYP_VARIABLE},
{"PartNumber",&PartNo,DBE_VS_TYP_VARIABLE},
{"OperationComp",&OpComp,DBE_VS_TYP_VARIABLE},
{"DateTime",&DateTimeComp,DBE_VS_TYP_VARIABLE},
{NULL,NULL,0}
};

void ASRSOp()
{
printf("Start ASRSOp \n");

do
{
//printf("Start Do \n");
//SetTagBit("LatchGoToXYSimRect",0);
SetTagBit("TimeDelay",0);

if (OpType !=0)
{
sprintf(sqlCond,"OperationReqd = %d", OpType);
strcat(sqlCond," AND Checked = 0");
}// end if

else
{
sprintf(sqlCond,"%s", strSQLOpReqd);
}//end else
//strcat(sqlCond," AND Checked = 0");

 150

//printf("OpType = %d \n", OpType);
Result =
DBEGetVariables(PictureName,MyDataSource,TableName2,sqlCond,Requirements,&MyError);
if (!Result)
{
if ((OpType !=0) && (NoResult == 0))
{
OpType = 0;
NoResult = 1;
SetTagBit("ASRSOpOpTypeNotAvailable",1);
//printf("!Result & OpType != 0 & NoResult ==0 \n");
//OpNumber = 998;
//ASRSDwell();
goto end;

}// end if OpType & NoResult
printf("No Op. Available - Requirements Need to be Modified \n");
SetTagBit("ASRSOpNoRequirements",0);
goto end;
}// end if !Result
//printf("PartNumber = %ld\n", PartNo);
//printf("OperationReqd = %ld\n", OpReqd);

OpComp = OpReqd;
//printf("OperationNumber = %ld\n", OpNumber);
//printf("PartNumber = %ld\n", PartNo);
//printf("OpComp = %ld\n", OpComp);
//printf("DateTimeComp = %ld\n", DateTimeComp);

//goto finish;
//printf("Test \n");

LiamTime=time(NULL);
OldT = localtime(&LiamTime);
Atime = (LiamTime/3600.0/24.0)+25569.0;
if (OldT->tm_isdst ==1)
 Atime = Atime + 1.0/24.0;
//printf("Time is %ld\n",LiamTime);
SetTagWord("Liam1",0);
SetTagWord("Liam2",0);
SetTagWord("autocomponentID",0);
SetTagWord("XCoOrdinateDB",0);
SetTagWord("YCoOrdinateDB",0);
SetTagWord("OpReqdOP",0);
SetTagWord("OpNumberOP",0);

DateTimeComp = Atime;

AutoID1=PartNo;

if (GetTagBit("TimeControl") ==1)
{
//printf("DateTimeReqd = %lf\n", DateTimeReqd);
//printf("Atime = %lf\n", Atime);
TimeDifference = ((DateTimeReqd - Atime)*86400.0);

//printf("TimeDifference = %lf seconds \n", TimeDifference);
if (TimeDifference > 5)
{

 151

SetTagBit("TimeDelay",1);
printf("5 Sec. Time Delay Operational \n");
goto end;

}

}// end if TimeControl

if (OpReqd == 1)
{
CompID=PartNo;
AutoID = 0;
XStartPosn = XPick;
YStartPosn = YPick;
} // end if Store

if (OpReqd == 2)
{
AutoID =PartNo;
CompID = 0;
XStartPosn = GetTagWord("xAUTOActPos");
YStartPosn = GetTagWord ("yAUTOActPos");
}// end if Retrieve

if ((GetTagWord("Random") ==1) && (OpReqd == 1)&&(GetTagWord("Free")==1))
{
printf("Random Free Storage selected. \n");
goto random;

}//end if Random Free Storage

if ((GetTagWord("Free") ==1) && (OpReqd == 1) && (GetTagWord("nearest") ==1))
{
printf("Nearest Free Storage selected. \n");
goto nearest;

}//end if Nearest Free Storage

if ((GetTagWord("Classbased") ==1) && (OpReqd == 1) && (GetTagWord("Random") ==1))
{
printf("Class-Based Random Storage selected. \n");
goto classbased;

}//end if Class-Based Random Storage

if ((GetTagWord("Classbased") ==1) && (OpReqd == 1) && (GetTagWord("nearest") ==1))
{
printf("Class-Based Nearest Storage selected. \n");
goto classbased;

}//end if Class-Based Nearest Storage

if ((GetTagWord("Dedicated") ==1) && (OpReqd == 1) && (GetTagWord("Random") ==1))

 152

{
printf("Dedicated Random Storage selected. \n");
goto dedicated;

}//end if Dedicated Random Storage

if ((GetTagWord("Dedicated") ==1) && (OpReqd == 1) && (GetTagWord("nearest") ==1))
{
printf("Dedicated Nearest Storage selected. \n");
goto dedicated;

}//end if Dedicated Nearest Storage

if ((GetTagWord("FIFO") ==1) && (OpReqd == 2))
{
printf("FIFO Retrieval selected. \n");
goto fifo;

}//end if FIFO Retrieval

if ((GetTagWord("Random_1") ==1) && (OpReqd == 2))
{
printf("Random Retrieval selected. \n");
goto random;

}//end if Random Retrieval

if ((GetTagWord("nearest_1") ==1) && (OpReqd == 2))
{
printf("Nearest Retrieval selected. \n");
goto nearest;

}//end if Nearest Retrieval

strcpy (strMsg, "Storage / Retrieval strategy not selected");

goto normal;

random:
//ASRSRandom;
sprintf(sqlCond,"%s%d",strSQLHoldComp,AutoID);
Result = DBEGetNumberOfRecords(MyDataSource,TableName,sqlCond,&wRecs,&MyError);

switch (wRecs)
{
case 0 :
 strcpy (strMsg, "None Available");

 153

if (OpReqd == 1)
 sprintf(sqlCond,"%s%d",strSQLOperationReqd,OpReqd);
if (OpReqd == 2)
 sprintf(sqlCond,"%s%dAND%s%d",strSQLOperationReqd,OpReqd,strSQLPartNumber,PartNo);

goto error1;

case 1 :

Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVar,&MyError);
 break;
default :
strcat (sqlCond , " AND Checked = 0");
bCheck = 1;

for (r = 0; r < wRecs ; r++)
{

Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVar,&MyError);
sprintf(sqlCond1, "%s%d", strSQLHoldBay, BayNo);
Result=DBESetVariables(PictureName,MyDataSource,TableName,sqlCond1,CheckedPut,&MyError);

BayArray[r] = BayNo;
}//end for r
strcpy(sqlCond, " Checked = 1 ");
bCheck = 0;
Result=DBESetVariables(PictureName,MyDataSource,TableName,sqlCond,CheckedPut,&MyError);
srand(time(NULL));
r=rand()%wRecs; //random number 0 to No. of data items in the array
sprintf(sqlCond,"%s%d",strSQLHoldBay, BayArray[r]);

Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVar,&MyError);
if (!Result)
{
strcpy (strMsg, "Can't Get Co=ordinates");
goto error;
}
} // end switch wRecs

goto normal;

nearest:

sprintf(sqlCond,"%s%d",strSQLHoldComp,AutoID);
//printf("sqlCond = %s\n",sqlCond);
Result = DBEGetNumberOfRecords(MyDataSource,TableName,sqlCond,&wRecs,&MyError);

switch (wRecs)
{
case 0 :
 strcpy (strMsg, "None Available");
if (OpReqd == 1)
 sprintf(sqlCond,"%s%d",strSQLOperationReqd,OpReqd);
if (OpReqd == 2)
 sprintf(sqlCond,"%s%dAND%s%d",strSQLOperationReqd,OpReqd,strSQLPartNumber,PartNo);
 goto error1;
case 1 :

Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVar,&MyError);
 break;

 154

default :
sprintf(sqlCond ,"%s%d AND Checked = 0",strSQLHoldComp, AutoID);
bCheck = 1;
//printf("sqlCond = %s\n",sqlCond);
for (r = 0; r < wRecs ; r++)
{

Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVar,&MyError);
sprintf(sqlCond1, "%s%d", strSQLHoldBay, BayNo);
Result=DBESetVariables(PictureName,MyDataSource,TableName,sqlCond1,CheckedPut,&MyError);
BayArray[r] = 0;
BayArray[r] = BayNo;
}//end for r
strcpy(sqlCond, " Checked = 1 ");
bCheck = 0;
Result=DBESetVariables(PictureName,MyDataSource,TableName,sqlCond,CheckedPut,&MyError);
Disti=1000;
for (i = 0; i < wRecs ; i++)
{
//printf("wRecs= %d\n", wRecs);

sprintf(sqlCond,"%s%d", strSQLHoldBay, BayArray[i]);
Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVar,&MyError);
//printf("BayNumber = %d\n", BayArray[i]);
Dist = sqrt(((XStartPosn - XCo)*(XStartPosn - XCo)) + ((YStartPosn - YCo)*(YStartPosn - YCo)));
//printf("Distance = %lf\n", Dist);
//printf("Distancei = %lf\n", Disti);

if (Dist < Disti)
{
Disti = Dist;
BayNoRequired = 0;
BayNoRequired = BayArray[i];
}//end if

}//end for i

//printf("BayNoRequired = %d\n", BayNoRequired);

sprintf(sqlCond,"%s%d",strSQLHoldBay, BayNoRequired);
//printf("sqlCond = %s\n",sqlCond);
Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVar,&MyError);
if (!Result)
 {strcpy (strMsg, "Can't Get Co=ordinates");
 goto error;
}
} // end switch wRecs

goto normal;

dedicated:

sprintf(sqlCond,"%s%d",strSQLHoldComp,AutoID);
sprintf(sqlCond2,"%s%d AND%s%d",strSQLHoldComp,AutoID,strSQLDedicated,CompID);
Result = DBEGetNumberOfRecords(MyDataSource,TableName,sqlCond2,&wRecs,&MyError);

//printf("%s \n",sqlCond2);
//printf("\n");

 155

switch (wRecs)
{
case 0 :
 strcpy (strMsg, "None Available");

sprintf(sqlCond,"%s%dAND%s%d",strSQLOperationReqd,OpReqd,strSQLPartNumber,PartNo);
 goto error1;

case 1 :

Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond2,CoOrdVar,&MyError);
 strcpy(sqlCond,sqlCond2);
 break;
default :
strcat (sqlCond2 , " AND Checked = 0");
bCheck = 1;

for (i = 0; i < wRecs ; i++)
{

Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond2,CoOrdVar,&MyError);
sprintf(sqlCond1, "%s%d", strSQLHoldBay, BayNo);
Result=DBESetVariables(PictureName,MyDataSource,TableName,sqlCond1,CheckedPut,&MyError);

BayArray[i] = BayNo;
}//end for i
strcpy(sqlCond, " Checked = 1 ");
bCheck = 0;
Result=DBESetVariables(PictureName,MyDataSource,TableName,sqlCond,CheckedPut,&MyError);
//exit(0);

if (GetTagWord("Random")==1)
{
srand(time(NULL));
r=rand()%wRecs; //random number 0 to No. of data items in the array
sprintf(sqlCond,"%s%d",strSQLHoldBay, BayArray[r]);
}//end if

else
{
Disti=1000;
for (i = 0; i < wRecs ; i++)
{

sprintf(sqlCond,"%s%d", strSQLHoldBay, BayArray[i]);
Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVar,&MyError);

Dist = sqrt(((XStartPosn - XCo)*(XStartPosn - XCo)) + ((YStartPosn - YCo)*(YStartPosn - YCo)));

if (Dist < Disti)
{Disti = Dist;
BayNoRequired = BayArray[i];

}//end if
}//end for i
//printf("BayNoRequired = %d\n", BayNoRequired);
sprintf(sqlCond,"%s%d",strSQLHoldBay, BayNoRequired);

}//end else

 156

Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVar,&MyError);
if (!Result)
 {strcpy (strMsg, "Can't Get Co=ordinates");
 goto error;
}// end if

} // end switch wRecs

goto normal;

classbased:

sprintf(sqlCond,"%s%d",strSQLHoldComp,CompID);
//printf("%s \n",sqlCond);
//printf("\n");
Result=DBEGetVariables(PictureName,MyDataSource,TableName1,sqlCond,Classified,&MyError);

sprintf(sqlCond,"%s%d",strSQLHoldComp,AutoID);
sprintf(sqlCond2,"%s%d AND%s%d",strSQLHoldComp,AutoID,strSQLClass,ClassID);
Result = DBEGetNumberOfRecords(MyDataSource,TableName,sqlCond2,&wRecs,&MyError);

//printf("%s \n",sqlCond2);
//printf("\n");

switch (wRecs)
{
case 0 :
 strcpy (strMsg, "None Available");
sprintf(sqlCond,"%s%dAND%s%d",strSQLOperationReqd,OpReqd,strSQLPartNumber,PartNo);
 goto error1;

case 1 :

Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond2,CoOrdVar,&MyError);
 strcpy(sqlCond,sqlCond2);
 break;
default :
strcat (sqlCond2 , " AND Checked = 0");
bCheck = 1;

for (r = 0; r < wRecs ; r++)
{

Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond2,CoOrdVar,&MyError);
sprintf(sqlCond1, "%s%d", strSQLHoldBay, BayNo);
Result=DBESetVariables(PictureName,MyDataSource,TableName,sqlCond1,CheckedPut,&MyError);

BayArray[r] = BayNo;
}//end for r
strcpy(sqlCond, " Checked = 1 ");
bCheck = 0;
Result=DBESetVariables(PictureName,MyDataSource,TableName,sqlCond,CheckedPut,&MyError);
if (!Result)
{strcpy (strMsg, "Can't Update Checked");
goto error;
}

if (GetTagWord("Random")==1)
{

 157

srand(time(NULL));
r=rand()%wRecs; //random number 0 to No. of data items in the array
sprintf(sqlCond,"%s%d",strSQLHoldBay, BayArray[r]);
}//end if

else
{
Disti=1000;
for (i = 0; i < wRecs ; i++)
{

sprintf(sqlCond,"%s%d", strSQLHoldBay, BayArray[i]);
Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVar,&MyError);

Dist = sqrt(((XStartPosn - XCo)*(XStartPosn - XCo)) + ((YStartPosn - YCo)*(YStartPosn - YCo)));

if (Dist < Disti)
{Disti = Dist;
BayNoRequired = BayArray[i];

}//end if
}//end for i
//printf("BayNoRequired = %d\n", BayNoRequired);
sprintf(sqlCond,"%s%d",strSQLHoldBay, BayNoRequired);

}//end else
Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVar,&MyError);
if (!Result)
 {strcpy (strMsg, "Can't Get Co=ordinates");
 goto error;
}// end if

} // end switch wRecs

goto normal;

fifo:

sprintf(sqlCond,"%s%d%s",strSQLHoldComp,AutoID,strSQLORDERBYDate);
//printf("%s \n",sqlCond);
//printf("\n");

Result=DBEGetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVar,&MyError);
if (!Result)
{ strcpy (strMsg, "None Available");
sprintf(sqlCond,"%s%dAND%s%d",strSQLOperationReqd,OpReqd,strSQLPartNumber,PartNo);
 goto error1;
}
sprintf(sqlCond,"%s%d",strSQLHoldBay,BayNo);
//printf("%s \n",sqlCond);
//printf("\n");

goto normal;

error1:

 158

bCheck = 1;
Result=DBESetVariables(PictureName,MyDataSource,TableName2,sqlCond,CheckedPut,&MyError);

goto finish;

error:
printf("\n%s", strMsg);
goto finish;

normal:

//printf("%s\n", strMsg);
SetTagWord("Liam1",wRecs);
SetTagWord("Liam2",BayNo);
SetTagWord("autocomponentID",AutoID1);
SetTagWord("XCoOrdinateDB",XCo);
SetTagWord("YCoOrdinateDB",YCo);
SetTagWord("OpReqdOP", OpReqd);
SetTagWord("OpNumberOP", OpNumber);

if (GetTagBit("ASRSOpCompDual")==1)
{
ASRSOpAction();
}

if (GetTagBit("ASRSDwellContinuous")==1)
{
SetTagBit("PickReqd",1);
SetTagBit("ASRSDwellContinuous",0);
SetTagBit("ASRSOpContinuous",1);
if(GetTagBit("ASRSDwellAtXYPosition")==1)
{
SetTagBit("ASRSDwellAtXYPosition",0);
SetTagBit("AtXYPosition",1);
}
}

//printf("Going to GoToXY in ASRSOp \n");

if (GetTagBit("Start")==1)
{
ASRSOpAction();
}

//SetTagBit("go3",1);
//SetTagBit("callauto",1);
//SetTagBit("callsemiauto",0);
//sprintf(sqlCond3,"%s",strSQLNULL);
//printf("sqlCond3 = %s\n", sqlCond3);
OpNumber1=OpNumber;
OpNumber = 999;
NoResult = 0;
//printf("Press Enter to Continue");

 159

//fscanf(stdin,"%c");

// WINCC:TAGNAME_SECTION_START
// syntax: #define TagNameInAction "DMTagName"
// next TagID : 1
// WINCC:TAGNAME_SECTION_END

// WINCC:PICNAME_SECTION_START
// syntax: #define PicNameInAction "PictureName"
// next PicID : 1
// WINCC:PICNAME_SECTION_END
finish:

printf("%s\n", strMsg1);
//j++;
//printf("OpNumber = %ld\n", OpNumber);
//printf("Job Number %d complete \n", j);
//printf("End Do \n");
}//end do
while (OpNumber != 999);
printf("End Do-While\n");

end:
printf("End \n");
SetTagBit("GoToX",0);
SetTagBit("GoToY",0);

printf("End ASRSOp \n");

}

 160

ASRSOpAction

void ASRSOpAction()
{
extern long BayNo, OpNumber, OpNumber1, OpReqd, PartNo, OpType, AutoID;
extern long BayNoRequired, CompID, AutoID1, ClassID; //CompID = DB Update, AutoID = DB
Search
extern long XAct, YAct, XStartPosn, YStartPosn;
//extern long BayArray[68];
extern long OpNo, DateTimeReqd, Checked;
extern long OpComp, DateTimeComp;
extern CMN_ERROR MyError;
extern char* PictureName;
extern char MyDataSource[] ;
extern char sqlCond[100] ;
extern char sqlCond1[100];
extern char sqlCond2[100];
extern char sqlCond3[100];
extern char strIOField[11] ;
extern char strSQLHoldComp[];
extern char strSQLDedicated[];
extern char strSQLHoldBay[];
extern char strSQLClass[];
extern char strSQLORDERBYDate[];
extern char strSQLOpReqd[];
extern char strSQLOpNumber[];
extern char strSQLNULL[];
extern char strSQLOperationReqd[];
extern char strSQLPartNumber[];
extern char TableName[];
extern char TableName1[];
extern char TableName2[];
extern char TableName3[];
extern char strFieldHold[];
extern char strMsg[20];
extern char strMsg1[20];
extern int r, i, j, bCheck, XPick, YPick, XDeposit, YDeposit;
extern int XCo, YCo;
extern DWORD wRecs;
extern struct tm *OldT;
extern time_t LiamTime;
extern double Dist, Disti,Atime;
extern BOOL Result ;

printf("Start ASRSOpAction \n");

if (OpReqd == 1)
{
SetTagWord("xAUTOReqPos",XPick);
SetTagWord("yAUTOReqPos",YPick);
}//end if

if (OpReqd == 2)
{
SetTagWord("xAUTOReqPos",XCo);
SetTagWord("yAUTOReqPos",YCo);
}//end if
SetTagBit("PickReqd",1);

 161

if (GetTagBit("ASRSOpCompDual")==1)
{
SetTagBit("ASRSOpCompDual",0);
SetTagBit("ASRSOpDual",1);
}

if (GetTagBit("ASRSDwellContinuous")==1)
{
SetTagBit("ASRSDwellContinuous",0);
SetTagBit("ASRSOpContinuous",1);
}

//printf("Going to GoToXY in ASRSOp \n");

if (GetTagBit("Start")==1)
{
SetTagBit("Start",0);
SetTagBit("ASRSOpStart",1);

if((GetTagBit("DwellPickPoint")==1)&&(OpReqd == 1) && (GetTagWord("xAUTOActPos")==4)
&& (GetTagWord("yAUTOActPos")==3))
{
SetTagBit("AtXYPosition",1);
}//end if
else
if((GetTagBit("CurrentLocation")==1)&&(OpReqd == 2) &&
(GetTagWord("xAUTOActPos")==XCo) && (GetTagWord("yAUTOActPos")==YCo))
{
SetTagBit("AtXYPosition",1);
}//end if
else
if((GetTagBit("UserDefined")==1)&&(OpReqd == 2) && (GetTagWord("xAUTOActPos")==XCo)
&& (GetTagWord("yAUTOActPos")==YCo))
{
SetTagBit("AtXYPosition",1);
}//end if

else
{
SetTagBit("GoToXY",1);
}
}
//printf("Here I am");

printf("End ASRSOpAction \n");
}

 162

SetPlaceCoOrds

#include "apdefap.h"

extern int XPick, YPick, XDeposit, YDeposit, XCo, YCo;
extern long OpReqd;

void SetPlaceCoOrds()
{
printf("Start SetPlaceCoOrds \n");

if (OpReqd == 1)
{
SetTagWord("xAUTOReqPos",XCo);
SetTagWord("yAUTOReqPos",YCo);
}//end if

if (OpReqd == 2)
{
SetTagWord("xAUTOReqPos",XDeposit);
SetTagWord("yAUTOReqPos",YDeposit);
}//end if
//SetTagBit("PlaceReqd",1);
SetTagBit("SetPlaceCoOrdsPlaceReqd",1);
SetTagBit("GoToXY",1);

printf("End SetPlaceCoOrds \n");

}

 163

ASRSOpComp

#include "apdefap.h"

extern long BayNo, OpNumber, OpNumber1, OpReqd, PartNo, OpType, AutoID;
extern long BayNoRequired, CompID, AutoID1, ClassID; //CompID = DB Update, AutoID = DB
Search
extern long XAct, YAct, XStartPosn, YStartPosn;
//extern long BayArray[68];
extern long OpNo, DateTimeReqd, Checked;
extern long OpComp, DateTimeComp;
extern CMN_ERROR MyError;
extern char* PictureName;
extern char MyDataSource[] ;
extern char sqlCond[100] ;
extern char sqlCond1[100];
extern char sqlCond2[100];
extern char sqlCond3[100];
extern char strIOField[11] ;
extern char strSQLHoldComp[];
extern char strSQLDedicated[];
extern char strSQLHoldBay[];
extern char strSQLClass[];
extern char strSQLORDERBYDate[];
extern char strSQLOpReqd[];
extern char strSQLOpNumber[];
extern char strSQLNULL[];
extern char strSQLOperationReqd[];
extern char strSQLPartNumber[];
extern char TableName[];
extern char TableName1[];
extern char TableName2[];
extern char TableName3[];
extern char strFieldHold[];
extern char strMsg[20];
extern char strMsg1[20];
extern int r, i, j, bCheck, XPick, YPick, XDeposit, YDeposit;
extern int XCo, YCo;
extern DWORD wRecs;
extern struct tm *OldT;
extern time_t LiamTime;
extern double Dist, Disti,Atime;
extern BOOL Result ;

//extern DBEXT_VARIABLE_STRUCT CoOrdVar []= {
//{"BayNumber",&BayNo,DBE_VS_TYP_VARIABLE},
//{"XCoOrdinate",&XCo,DBE_VS_TYP_VARIABLE},
//{"YCoOrdinate",&YCo,DBE_VS_TYP_VARIABLE},
//{"ComponentID",&AutoID,DBE_VS_TYP_VARIABLE},
//{NULL,NULL,0}
//};

extern DBEXT_VARIABLE_STRUCT CoOrdVarPut [];// = {
//{"ComponentID",&CompID,DBE_VS_TYP_VARIABLE},
//{"DateIn",&Atime,DBE_VS_TYP_VARIABLE},
//{NULL,NULL,0}
//};

extern DBEXT_VARIABLE_STRUCT CheckedPut [];// = {
//{"Checked",&bCheck,DBE_VS_TYP_VARIABLE},

 164

//{NULL,NULL,0}
//};

//extern DBEXT_VARIABLE_STRUCT BayPut [] = {
//{"BayNumber",&BayNo,DBE_VS_TYP_VARIABLE},
//{NULL,NULL,0}
//};

//extern DBEXT_VARIABLE_STRUCT Classified [] = {
//{"Class",&ClassID,DBE_VS_TYP_VARIABLE},
//{NULL,NULL,0}
//};

//extern DBEXT_VARIABLE_STRUCT Requirements [] = {
//{"OpNumber",&OpNumber,DBE_VS_TYP_VARIABLE},
//{"PartNumber",&PartNo,DBE_VS_TYP_VARIABLE},
//{"OperationReqd",&OpReqd,DBE_VS_TYP_VARIABLE},
//{"DateTimeReqd",&DateTimeReqd,DBE_VS_TYP_VARIABLE},
//{"Checked",&Checked,DBE_VS_TYP_VARIABLE},
//{NULL,NULL,0}
//};

extern DBEXT_VARIABLE_STRUCT OperationsCompleted [];// = {
//{"OperationNumber",&OpNumber,DBE_VS_TYP_VARIABLE},
//{"PartNumber",&PartNo,DBE_VS_TYP_VARIABLE},
//{"OperationComp",&OpComp,DBE_VS_TYP_VARIABLE},
//{"DateTime",&DateTimeComp,DBE_VS_TYP_VARIABLE},
//{NULL,NULL,0}
//};

void ASRSOpComp()
{

printf("Start ASRSOpComp \n");
Result=DBESetVariables(PictureName,MyDataSource,TableName,sqlCond,CoOrdVarPut,&MyError);
if (!Result)
{
strcpy (strMsg, "Did not update");

//goto error;
}// end if (!Result)
else
{
strcpy (strMsg, "All OK");
}

strcpy(sqlCond, " Checked = 1 ");
bCheck = 0;
Result=DBESetVariables(PictureName,MyDataSource,TableName2,sqlCond,CheckedPut,&MyError);

sprintf(sqlCond1,"%s%d",strSQLOpNumber,OpNumber1);
Result = DBEDeleteRecord(MyDataSource,TableName2,sqlCond1,&MyError);

Result =
DBESetVariables(PictureName,MyDataSource,TableName3,NULL,OperationsCompleted,&MyError);

strcpy(sqlCond, " Checked = 1 ");
bCheck = 0;

 165

Result=DBESetVariables(PictureName,MyDataSource,TableName2,sqlCond,CheckedPut,&MyError);

if (GetTagBit("Single")==1)
{
 printf("Single Cycle Selected \n");
 OpType=0;
SetTagBit("ASRSOpCompSingle",1);
}//end if Single

if (GetTagBit("Dual")==1)
{
printf("Dual Cycle Selected \n");
if ((OpType==1)||(OpType==2))
{
OpType=0;
SetTagBit("ASRSOpCompSingle",1);

} //end if
else
{
if (OpReqd == 1)
{
//printf("OpReqd = 1 \n");
OpType=2;
SetTagBit("ASRSOpCompDual",1);
ASRSOp();
}//end if
else
{
if (OpReqd == 2)
{
//printf("OpReqd = 2 \n");
OpType=1;
SetTagBit("ASRSOpCompDual",1);
ASRSOp();
}//end if
}//end else
}// end else

}//end if Dual

printf("End ASRSOpComp \n");

}

 166

ASRSDwell

#include "apdefap.h"

void ASRSDwell()
{
long xActual, yActual, xReqd, yReqd;
extern long OpReqd;
extern int XCo, YCo;

printf("Start ASRSDwell \n");

//SetTagBit("Homepos2",1);
if (GetTagBit("DwellPickPoint") ==1)
{
SetTagWord("xAUTOReqPos",4);
SetTagWord("yAUTOReqPos",3);
printf("Pick Point Selected \n");

}// end if

if (GetTagBit("DwellDepositPoint") == 1)
{
SetTagWord("xAUTOReqPos",5);
SetTagWord("yAUTOReqPos",3);
printf("Deposit Point Selected \n");
}//end if

if (GetTagBit("CurrentLocation")==1)
{
xActual=GetTagWord("xAUTOActPos");
yActual=GetTagWord("yAUTOActPos");
SetTagWord("xAUTOReqPos",xActual);
SetTagWord("yAUTOReqPos",yActual);

printf("Current Location Selected \n");
}//end if

if (GetTagBit("Origin") == 1)
{

SetTagWord("xAUTOReqPos",0);
SetTagWord("yAUTOReqPos",0);
printf ("Origin Selected \n");
}// end if

if (GetTagBit("UserDefined") == 1)
{
xReqd=GetTagWord("xReqdPos");
yReqd=GetTagWord("yReqdPos");
SetTagWord("xAUTOReqPos",xReqd);
SetTagWord("yAUTOReqPos",yReqd);

printf ("User Defined Selected \n");
}// end if

SetTagBit("DwellComplete",1);

if(GetTagBit("ContinuousOperation")==1)

 167

{
SetTagBit("ASRSDwellContinuous",1);
if((GetTagBit("DwellPickPoint")==1)&&(OpReqd == 1) && (GetTagWord("xAUTOActPos")==4)
&& (GetTagWord("yAUTOActPos")==3))
{
SetTagBit("ASRSDwellAtXYPosition",1);
}//end if
else
if((GetTagBit("CurrentLocation")==1)&&(OpReqd == 2) &&
(GetTagWord("xAUTOActPos")==XCo) && (GetTagWord("yAUTOActPos")==YCo))
{
SetTagBit("ASRSDwellAtXYPosition",1);
}//end if
else
if((GetTagBit("UserDefined")==1)&&(OpReqd == 2) && (GetTagWord("xAUTOActPos")==XCo)
&& (GetTagWord("yAUTOActPos")==YCo))
{
SetTagBit("ASRSDwellAtXYPosition",1);
}//end if

else
{
SetTagBit("GoToXY",1);
}

ASRSOp();
}

else
{
SetTagBit("ASRSDwellNotContinuous",1);
if((GetTagBit("DwellPickPoint")==1)&&(OpReqd == 1) && (GetTagWord("xAUTOActPos")==4)
&& (GetTagWord("yAUTOActPos")==3))
{
SetTagBit("AtXYPosition",1);
}//end if
else
if((GetTagBit("CurrentLocation")==1)&&(OpReqd == 2) &&
(GetTagWord("xAUTOActPos")==XCo) && (GetTagWord("yAUTOActPos")==YCo))
{
SetTagBit("AtXYPosition",1);
}//end if
else
if((GetTagBit("UserDefined")==1)&&(OpReqd == 2) && (GetTagWord("xAUTOActPos")==XCo)
&& (GetTagWord("yAUTOActPos")==YCo))
{
SetTagBit("AtXYPosition",1);
}//end if

else
{
SetTagBit("GoToXY",1);
}

}
//SetTagBit("GoToXY",0);

 168

printf("End ASRSDwell \n");

}

 169

GoToXYCompleteAction

#include "apdefap.h"

int gscAction(void)
{

if (GetTagBit("AtXYPosition")==1)
{
printf("Start GoToXYCompleteAction \n");

//printf("PickReqd = %d \n", (GetTagBit("PickReqd")));
//printf("RunPick = %d \n", (GetTagBit("RunPick")));
//printf("PlaceReqd = %d \n", (GetTagBit("PlaceReqd")));
//printf("RunPlace = %d \n", (GetTagBit("RunPlace")));
//printf("DwellComplete = %d \n", (GetTagBit("DwellComplete")));

//printf("Got This Far in GoToXYCompleteAction \n");

if ((GetTagBit("PickReqd")==1)&&(GetTagBit("ASRSOpStart")==1))
{
if (GetTagBit("ForksOn")==1)
{
printf("ForksOn Selected \n");
SetTagBit("RunPick",1);
//printf("PickReqd is set to 1in GoToXYCompleteAction \n");
SetTagBit("PickReqd",0);
SetTagBit("ASRSOpStart",0);
SetTagBit("PlaceCompletePickReqd",0);

}// end if ForksOn
else
{
SetTagBit("RunPick",1);
printf("PictReqd is set to 1in GoToXYCompleteAction \n");
SetTagBit("PickReqd",0);
SetTagBit("ASRSOpStart",0);
SetTagBit("PlaceCompletePickReqd",0);

}// end else
}//end if PickReqd
if((GetTagBit("PickReqd")==1)&&(GetTagBit("PlaceCompletePickReqd")==1))
{
if (GetTagBit("ForksOn")==1)
{
printf("ForksOn Selected \n");
SetTagBit("RunPick",1);
//printf("PickReqd is set to 1in GoToXYCompleteAction \n");
SetTagBit("PickReqd",0);
SetTagBit("ASRSOpStart",0);
SetTagBit("PlaceCompletePickReqd",0);

}// end if ForksOn
else
{
SetTagBit("RunPick",1);
printf("PictReqd is set to 1in GoToXYCompleteAction \n");
SetTagBit("PickReqd",0);
SetTagBit("ASRSOpStart",0);

 170

SetTagBit("PlaceCompletePickReqd",0);

}// end else
}//end if PickReqd

if((GetTagBit("PickReqd")==1)&&(GetTagBit("GoToXYCompleteActionPick")==1))
{
if (GetTagBit("ForksOn")==1)
{
printf("ForksOn Selected \n");
SetTagBit("RunPick",1);
//printf("PickReqd is set to 1in GoToXYCompleteAction \n");
SetTagBit("PickReqd",0);
SetTagBit("ASRSOpStart",0);
SetTagBit("GoToXYCompleteActionPick",0);

}// end if ForksOn
else
{
SetTagBit("RunPick",1);
printf("PictReqd is set to 1in GoToXYCompleteAction \n");
SetTagBit("PickReqd",0);
SetTagBit("ASRSOpStart",0);
SetTagBit("GoToXYCompleteActionPick",0);

}// end else
}//end if PickReqd

if ((GetTagBit("PlaceReqd")==1)&&(GetTagBit("SetPlaceCoOrdsPlaceReqd")==1))
{
if (GetTagBit("ForksOn")==1)
{
printf("ForksOn Selected \n");
SetTagBit("RunPlace",1);
SetTagBit("PlaceReqd",0);
SetTagBit("SetPlaceCoOrdsPlaceReqd",0);
ASRSOpComp();

}// end if ForksOn
else
{
SetTagBit("RunPlace",1);
SetTagBit("PlaceReqd",0);
SetTagBit("SetPlaceCoOrdsPlaceReqd",0);
ASRSOpComp();

}// end else
}//end if PlaceReqd

if ((GetTagBit("DwellComplete")==1)&&(GetTagBit("ASRSDwellNotContinuous")==1))
{
SetTagBit("DwellComplete",0);
SetTagBit("ASRSDwellNotContinuous",0);
}//end if DwellComplete

if
((GetTagBit("DwellComplete")==1)&&(GetTagBit("ASRSOpContinuous")==1)&&(GetTagBit("ASR
SOpNoRequirements")==0))
{
SetTagBit("DwellComplete",0);

 171

SetTagBit("ASRSOpContinuous",0);
SetTagBit("GoToXYCompleteActionPick",1);
ASRSOpAction();
SetTagBit("GoToXY",1);
}

if
((GetTagBit("DwellComplete")==1)&&(GetTagBit("ASRSOpContinuous")==1)&&(GetTagBit("ASR
SOpNoRequirements")==1))
{
SetTagBit("DwellComplete",0);
SetTagBit("ASRSOpContinuous",0);
SetTagBit("ASRSOpNoRequirements",0);
//SetTagBit("GoToXYCompleteActionPick",1);
//ASRSOpAction();
//SetTagBit("GoToXY",1);
}

//printf("PickReqd = %d \n", (GetTagBit("PickReqd")));
//printf("RunPick = %d \n", (GetTagBit("RunPick")));
//printf("PlaceReqd = %d \n", (GetTagBit("PlaceReqd")));
//printf("RunPlace = %d \n", (GetTagBit("RunPlace")));
//printf("DwellComplete = %d \n", (GetTagBit("DwellComplete")));
SetTagBit("AtXYPosition",0);
printf("End GoToXYCompleteAction \n");

}//end if AtXYPosition

// WINCC:TAGNAME_SECTION_START
// syntax: #define TagNameInAction "DMTagName"
// next TagID : 1
// WINCC:TAGNAME_SECTION_END

// WINCC:PICNAME_SECTION_START
// syntax: #define PicNameInAction "PictureName"
// next PicID : 1
// WINCC:PICNAME_SECTION_END

return 0;
}

 172

PickComplete

#include "apdefap.h"

int gscAction(void)
{
//printf("PickComplete = %d \n", (GetTagBit("PickComplete")));

if (GetTagBit("PickComplete")==1)
{
printf("Start PickComplete \n");
SetTagBit ("PickComplete",0);
SetPlaceCoOrds();
printf("End PickComplete \n");

}
// WINCC:TAGNAME_SECTION_START
// syntax: #define TagNameInAction "DMTagName"
// next TagID : 1
// WINCC:TAGNAME_SECTION_END

// WINCC:PICNAME_SECTION_START
// syntax: #define PicNameInAction "PictureName"
// next PicID : 1
// WINCC:PICNAME_SECTION_END

return 0;
}

 173

PlaceComplete

#include "apdefap.h"

int gscAction(void)
{
extern long OpReqd;
extern int XCo, YCo;

if (GetTagBit("PlaceComplete")==1)
{
if(GetTagBit("ASRSOpOpTypeNotAvailable")==0)
{
printf("Start PlaceComplete \n");
SetTagBit("PlaceComplete",0);
SetTagBit("ASRSOpDual",0);
SetTagBit("RunPlace",0);
SetTagBit("PlaceCompletePickReqd",1);
SetTagBit("PickReqd",1);
if((GetTagBit("DwellPickPoint")==1)&&(OpReqd == 1) && (GetTagWord("xAUTOActPos")==4)
&& (GetTagWord("yAUTOActPos")==3))
{
SetTagBit("AtXYPosition",1);
}//end if
else
if((GetTagBit("CurrentLocation")==1)&&(OpReqd == 2) &&
(GetTagWord("xAUTOActPos")==XCo) && (GetTagWord("yAUTOActPos")==YCo))
{
SetTagBit("AtXYPosition",1);
}//end if
else
if((GetTagBit("UserDefined")==1)&&(OpReqd == 2) && (GetTagWord("xAUTOActPos")==XCo)
&& (GetTagWord("yAUTOActPos")==YCo))
{
SetTagBit("AtXYPosition",1);
}//end if

else
{
SetTagBit("GoToXY",1);
}

printf("End PlaceComplete \n");
}

if(GetTagBit("ASRSOpOpTypeNotAvailable")==1)
{
SetTagBit("ASRSOpOpTypeNotAvailable",0);
ASRSDwell();
}

}
// WINCC:TAGNAME_SECTION_START
// syntax: #define TagNameInAction "DMTagName"
// next TagID : 1
// WINCC:TAGNAME_SECTION_END

// WINCC:PICNAME_SECTION_START

 174

// syntax: #define PicNameInAction "PictureName"
// next PicID : 1
// WINCC:PICNAME_SECTION_END

return 0;
}

 175

PlaceComplete2

#include "apdefap.h"

int gscAction(void)
{
//printf("PickComplete = %d \n", (GetTagBit("PickComplete")));

if (GetTagBit("PlaceComplete2")==1)
{
printf("Start PlaceComplete2 \n");
SetTagBit ("PlaceComplete2",0);
SetTagBit("ASRSOpCompSingle",0);
SetTagBit("RunPlace",0);
SetTagBit("PlaceComplete2DwellReqd",1);
ASRSDwell();
printf("End PlaceComplete2 \n");

}

// WINCC:TAGNAME_SECTION_START
// syntax: #define TagNameInAction "DMTagName"
// next TagID : 1
// WINCC:TAGNAME_SECTION_END

// WINCC:PICNAME_SECTION_START
// syntax: #define PicNameInAction "PictureName"
// next PicID : 1
// WINCC:PICNAME_SECTION_END

return 0;
}

 176

Start Button

#include "apdefap.h"
void OnLButtonDown(char* lpszPictureName, char* lpszObjectName, char* lpszPropertyName,
UINT nFlags, int x, int y)
{

extern long OpType;

SetTagBit("PickReqd",0);
SetTagBit("RunPick",0);
SetTagBit("PickComplete",0);
SetTagBit("TimeDelay",0);

SetTagBit("PlaceReqd",0);
SetTagBit("RunPlace",0);
SetTagBit("PlaceComplete",0);

SetTagBit("GoToXY",0);
SetTagBit("LatchGoToXYSimRect",0);
SetTagBit("AtXYPosition",0);

SetTagBit("DwellComplete",0);
SetTagBit("ASRSOpStart",0);
SetTagBit("ASRSDwellNotContinuous",0);
SetTagBit("ASRSOpContinuous",0);
SetTagBit("SetPlaceCoOrdsPlaceReqd",0);
SetTagBit("PlaceCompletePickReqd",0);
SetTagBit("GoToXYCompleteActionPick",0);
SetTagBit("PlaceComplete2",0);
SetTagBit("GoToXYManual",0);

printf("Starting Operation \n");

OpType = 0;
SetTagBit("Start",1);

ASRSOp();

// WINCC:TAGNAME_SECTION_START
// syntax: #define TagNameInAction "DMTagName"
// next TagID : 1
// WINCC:TAGNAME_SECTION_END

// WINCC:PICNAME_SECTION_START
// syntax: #define PicNameInAction "PictureName"
// next PicID : 1
// WINCC:PICNAME_SECTION_END

}

 177

Home and Reset Button

#include "apdefap.h"
void OnLButtonDown(char* lpszPictureName, char* lpszObjectName, char* lpszPropertyName,
UINT nFlags, int x, int y)
{
SetTagBit("Homepos2",1);

SetTagBit("PickReqd",0);
SetTagBit("RunPick",0);
SetTagBit("PickComplete",0);

SetTagBit("PlaceReqd",0);
SetTagBit("RunPlace",0);
SetTagBit("PlaceComplete",0);

SetTagBit("GoToXY",0);
SetTagBit("LatchGoToXYSimRect",0);
SetTagBit("AtXYPosition",0);

SetTagBit("DwellComplete",0);
SetTagBit("ASRSOpStart",0);
SetTagBit("ASRSDwellNotContinuous",0);
SetTagBit("ASRSOpContinuous",0);
SetTagBit("SetPlaceCoOrdsPlaceReqd",0);
SetTagBit("PlaceCompletePickReqd",0);
SetTagBit("GoToXYCompleteActionPick",0);
SetTagBit("PlaceComplete2",0);

// WINCC:TAGNAME_SECTION_START
// syntax: #define TagNameInAction "DMTagName"
// next TagID : 1
// WINCC:TAGNAME_SECTION_END

// WINCC:PICNAME_SECTION_START
// syntax: #define PicNameInAction "PictureName"
// next PicID : 1
// WINCC:PICNAME_SECTION_END

}

 178

GoTo Dwell

#include "apdefap.h"
void OnLButtonDown(char* lpszPictureName, char* lpszObjectName, char* lpszPropertyName,
UINT nFlags, int x, int y)
{
long xActual, yActual, xReqd, yReqd;

SetTagBit("PickReqd",0);
SetTagBit("AtXYPosition",0);
SetTagBit("RunPick",0);
SetTagBit("PlaceReqd",0);
SetTagBit("RunPlace",0);
SetTagBit("DwellComplete",0);
SetTagBit("PickComplete",0);
SetTagBit("PlaceComplete",0);
SetTagBit("PickReqd",0);
SetTagBit("ASRSOpStart",0);
SetTagBit("ASRSDwellNotContinuous",0);
SetTagBit("ASRSOpContinuous",0);
SetTagBit("SetPlaceCoOrdsPlaceReqd",0);
SetTagBit("PlaceCompletePickReqd",0);
SetTagBit("GoToXYCompleteActionPick",0);
SetTagBit("PlaceComplete2",0);
SetTagBit("GoToXYManual",1);
//SetTagBit("Homepos2",1);
if (GetTagBit("DwellPickPoint") ==1)
{
SetTagWord("xAUTOReqPos",4);
SetTagWord("yAUTOReqPos",3);
printf("Pick Point Selected \n");

}// end if

if (GetTagBit("DwellDepositPoint") == 1)
{
SetTagWord("xAUTOReqPos",5);
SetTagWord("yAUTOReqPos",3);
printf("Deposit Point Selected \n");
}//end if

if (GetTagBit("CurrentLocation")==1)
{
xActual=GetTagWord("xAUTOActPos");
yActual=GetTagWord("yAUTOActPos");
SetTagWord("xAUTOReqPos",xActual);
SetTagWord("yAUTOReqPos",yActual);

printf("Current Location Selected \n");
}//end if

if (GetTagBit("Origin") == 1)
{

SetTagWord("xAUTOReqPos",0);
SetTagWord("yAUTOReqPos",0);
printf ("Origin Selected \n");
}// end if

if (GetTagBit("UserDefined") == 1)

 179

{
xReqd=GetTagWord("xReqdPos");
yReqd=GetTagWord("yReqdPos");
SetTagWord("xAUTOReqPos",xReqd);
SetTagWord("yAUTOReqPos",yReqd);

printf ("User Defined Selected \n");
}// end if

SetTagBit("GoToXY",1);
//SetTagBit("GoToY",1);

// WINCC:TAGNAME_SECTION_START
// syntax: #define TagNameInAction "DMTagName"
// next TagID : 1
// WINCC:TAGNAME_SECTION_END

// WINCC:PICNAME_SECTION_START
// syntax: #define PicNameInAction "PictureName"
// next PicID : 1
// WINCC:PICNAME_SECTION_END

}

 180

GoTo X

#include "apdefap.h"
void OnLButtonDown(char* lpszPictureName, char* lpszObjectName, char* lpszPropertyName,
UINT nFlags, int x, int y)
{
long xReqd, yReqd;

xReqd=GetTagWord("xReqdPos");
yReqd=GetTagWord("yReqdPos");
SetTagWord("xAUTOReqPos",xReqd);
SetTagWord("yAUTOReqPos",yReqd);

SetTagBit("GoToX",1);

// WINCC:TAGNAME_SECTION_START
// syntax: #define TagNameInAction "DMTagName"
// next TagID : 1
// WINCC:TAGNAME_SECTION_END

// WINCC:PICNAME_SECTION_START
// syntax: #define PicNameInAction "PictureName"
// next PicID : 1
// WINCC:PICNAME_SECTION_END

}

 181

GoTo Y

#include "apdefap.h"
void OnLButtonDown(char* lpszPictureName, char* lpszObjectName, char* lpszPropertyName,
UINT nFlags, int x, int y)
{

long xReqd, yReqd;

xReqd=GetTagWord("xReqdPos");
yReqd=GetTagWord("yReqdPos");
SetTagWord("xAUTOReqPos",xReqd);
SetTagWord("yAUTOReqPos",yReqd);

SetTagBit("GoToY",1);

// WINCC:TAGNAME_SECTION_START
// syntax: #define TagNameInAction "DMTagName"
// next TagID : 1
// WINCC:TAGNAME_SECTION_END

// WINCC:PICNAME_SECTION_START
// syntax: #define PicNameInAction "PictureName"
// next PicID : 1
// WINCC:PICNAME_SECTION_END

}

 182

GoToXY

#include "apdefap.h"
void OnLButtonDown(char* lpszPictureName, char* lpszObjectName, char* lpszPropertyName,
UINT nFlags, int x, int y)
{
long xReqd, yReqd;

SetTagBit("PickReqd",0);
SetTagBit("AtXYPosition",0);
SetTagBit("RunPick",0);
SetTagBit("PlaceReqd",0);
SetTagBit("RunPlace",0);
SetTagBit("DwellComplete",0);
SetTagBit("PickComplete",0);
SetTagBit("PlaceComplete",0);
SetTagBit("PickReqd",0);
SetTagBit("ASRSOpStart",0);
SetTagBit("ASRSDwellNotContinuous",0);
SetTagBit("ASRSOpContinuous",0);
SetTagBit("SetPlaceCoOrdsPlaceReqd",0);
SetTagBit("PlaceCompletePickReqd",0);
SetTagBit("GoToXYCompleteActionPick",0);
SetTagBit("PlaceComplete2",0);

xReqd=GetTagWord("xReqdPos");
yReqd=GetTagWord("yReqdPos");
SetTagWord("xAUTOReqPos",xReqd);
SetTagWord("yAUTOReqPos",yReqd);

SetTagBit("GoToXYManual",1);
SetTagBit("GoToXY",1);
//SetTagBit("GoToY",1);

// WINCC:TAGNAME_SECTION_START
// syntax: #define TagNameInAction "DMTagName"
// next TagID : 1
// WINCC:TAGNAME_SECTION_END

// WINCC:PICNAME_SECTION_START
// syntax: #define PicNameInAction "PictureName"
// next PicID : 1
// WINCC:PICNAME_SECTION_END

}

 183

Appendix D (Database Tables)

 184

Field Name Data Type

BayNumber (Primary Key) Number (Long Integer)

XCoOrdinate Number (Long Integer)

YCoOrdinate Number (Long Integer)

Dedicated Number (Long Integer)

Class Number (Long Integer)

ComponentID Number (Long Integer)

DateIn Number (Double)

Checked Number (Long Integer)

Date/Time Date/Time

KittingZone Number (Long Integer)

ObsoleteZone Number (Long Integer)

Table D-1: ASRSContents Fields

Field Name Data Type

ComponentID (Primary Key) Number (Long Integer)

Class Number (Long Integer)

Table D-2: ClassType Fields

Field Name Data Type

OpNumber (Primary Key) Number (Long Integer)

InterOpTime Number (Double)

Table D-3: InterTimes Fields

Field Name Data Type

OperationNumber (Primary Key) Number (Long Integer)

PartNumber Number (Long Integer)

OperationComp Number (Long Integer)

DateTime Number (Long Integer)

Table D-4: OperationsCompleted Fields

 185

Field Name Data Type

OpNumber (Primary Key) Number (Long Integer)

PartNumber Number (Long Integer)

OperationReqd Number (Long Integer)

DateTimeReqd Number (Double)

Checked Number (Long Integer)

Table D-5: Requirements Fields

Field Name Data Type

OpNumber (Primary Key) Number (Long Integer)

PartNumber Number (Long Integer)

OperationReqd Number (Long Integer)

DateTimeReqd Number (Double)

Checked Number (Long Integer)

Table D-6: tmpRequirements Fields

Field Name Data Type

BayNumber (Primary Key) Number (Long Integer)

XCoOrdinate Number (Long Integer)

YCoOrdinate Number (Long Integer)

Dedicated Number (Long Integer)

Class Number (Long Integer)

ComponentID Number (Long Integer)

DateIn Number (Double)

Checked Number (Long Integer)

Date/Time Date/Time

KittingZone Number (Long Integer)

ObsoleteZone Number (Long Integer)

Table D-7: tmpASRSContents Fields

 186

Appendix E (List of SCADA Tags and PLC Variables)

 187

List of Variables

Address Name Where Used
C1 Count X FC15 FC17 FC18
C2 Count Y FC16 FC17 FC18
I0.0 X Reflective Sensor FC15 FC17
I0.1 Forks Retracted FC23
I0.3 Y Reflective Sensor FC16
I0.6 Forks Extended FC23
I0.7 Pallet Sensor
I1.0 X Forward Limit
I1.3 Y Home FC14 FC16 FC17 FC23
I1.4 Y Upper Limit FC23
I2.0 Manual OB1 FC1
I2.1 X Forward Manual FC1
I2.2 X Reverse Manual FC1
I2.3 Y Drive On Manual FC1
I2.4 Y High Speed Manual FC1
I3.2 X Home FC14 FC15 FC17
M0.2 YManualOnTag_1 WinCC Tag
M0.3 YManualOnTag_2 WinCC Tag
M0.4 AtXYPosition WinCC Tag
M0.5 AtDwellPoint WinCC Tag
M1.5 Flag T40 Complete FC24
M5.4 3.7 Sec. Complete FC23 FC25
M5.5 2.9 Sec. Complete FC23
M6.1 Neg. Edge T10 FC23
M7.3 FC23
M7.6 Neg. Edge T20 FC23
M6.2 Flag Forks Retracted FC24
M6.5 Flag T30 Complete FC24
M7.2 Neg. Edge M6.5 FC24
M100.0 ASRSLeft WinCC Tag
M100.2 ASRSDown WinCC Tag
M100.3 ASRSUp WinCC Tag
M101.0 ForksExtend WinCC Tag FC21 OB1
M101.1 ForksRetract WinCC Tag FC22 OB1
M101.2 Forks Extend Latch OB1 FC21
M101.3 Forks Retract Latch OB1 FC22
M101.5 Forks Extend End FC21
M101.6 Forks Retract End FC22
M102.0 go_1 WinCC Tag
m102.1 home_1 WinCC Tag
M103.0 go_2 WinCC Tag
M103.1 RESET WinCC Tag
M103.2 Homepos2 WinCC Tag FC14
M104.1 TimeDelay WinCC Tag OB1
M104.2 Time Delay Latch OB1 FC2

 188

M104.3 30SecsComplete WinCC Tag
M104.4 30 Secs. Over FC2
M112.4 Homepos2 Latch FC14 OB1
M112.5 At Home FC14
M201.0 FIFO WinCC Tag
M201.1 Random_1 WinCC Tag
M202.0 DwellPickPoint WinCC Tag
M202.1 DwellDepositPoint WinCC Tag
M202.2 CurrentLocation WinCC Tag
M202.3 Origin WinCC Tag
M202.4 UserDefined WinCC Tag
M203.0 Rectilinear WinCC Tag
M203.1 Simultaneous WinCC Tag
M203.2 GoToX WinCC Tag OB1
M203.3 GoToY WinCC Tag OB1
M203.4 Go to X Latch OB1 FC15
M203.5 Go to Y Latch OB1 FC16
M203.6 GoToXY WinCC Tag OB1 FC17 FC18
M203.7 LatchGoToXYSimRect WinCC Tag OB1
M204.0 Single WinCC Tag
M204.1 Dual WinCC Tag
M204.2 CMP==1 X FC17
M204.3 CMP==1 Y FC17
M204.4 CMP==1 X FC18
M205.0 ForksOn WinCC Tag
M205.1 ForksOff WinCC Tag
M205.2 BufferZoneRetrieval WinCC Tag
M205.3 BufferZoneStorage WinCC Tag
M205.4 ObsoleteZoneON WinCC Tag
M205.5 ObsoleteZoneOFF WinCC Tag

M210.0 Fc Complete
FC14 -
FC20

M210.1 20 ms Complete FC16 FC17 FC18
M300.0 Random WinCC Tag
M300.1 nearest WinCC Tag
M300.2 Dedicated WinCC Tag
M300.3 Classbased WinCC Tag
M300.4 Free WinCC Tag
M301.0 nearest_1 WinCC Tag
M302.0 TimeControl WinCC Tag
M310.2 xAUTOPos_3 WinCC Tag
M310.3 xAUTOPos_4 WinCC Tag
M310.4 xAUTOPos_5 WinCC Tag
M310.5 xAUTOPos_6 WinCC Tag
M310.6 xAUTOPos_7 WinCC Tag
M310.7 xAUTOPos_8 WinCC Tag
M311.2 yAUTOPos_3 WinCC Tag
M311.3 yAUTOPos_4 WinCC Tag

 189

M311.4 yAUTOPos_5 WinCC Tag
M311.5 yAUTOPos_6 WinCC Tag
M311.6 yAUTOPos_7 WinCC Tag
M311.7 yAUTOPos_8 WinCC Tag
M500.1 ASRSright WinCC Tag
M600.0 Homepos WinCC Tag
M780.2 Neg. Edge Y FC16 FC17
M790.2 Neg. Edge X FC15 FC17
M888.0 TagWait WinCC Tag
M888.6 LiamTrigger1 WinCC Tag
M888.7 LiamTrigger WinCC Tag
M943.0 FC16 FC17
M943.4 FC15 FC17
M946.2 CMP < 1 X FC15 FC17
M946.3 CMP > 1 X FC15 FC17
M946.4 CMP < 1 Y FC16 FC17
M946.5 CMP > 1 Y FC16 FC17
M950.0 Store WinCC Tag FC23 OB1
M950.1 Retrieve WinCC Tag OB1 FC24 FC25
M950.3 Retrieve Latch OB1 FC24
M951.0 FC25 Flag FC23 FC25
M951.1 Store Latch OB1 FC23
M952.0 Stop StoreRetreive FC23 FC24
M960.0 FC 25 Set FC25
M960.2 FC25 Flag FC25
M960.3 Forks Retracted 1 FC25
M960.4 Forks Retracted 2 FC25
M978.0 classbased_update WinCC Tag
M978.1 dedicated_update WinCC Tag
M978.2 ASRSlayout_update WinCC Tag
M1100.0 PickReqd WinCC Tag
M1100.1 RunPick WinCC Tag FC19 OB1
M1100.2 PickComplete WinCC Tag
M1100.3 Run Pick Latch OB1 FC19
M1100.4 T1 Complete FC19
M1101.0 PlaceReqd WinCC Tag
M1101.1 RunPlace WinCC Tag OB1 FC20
M1101.2 PlaceComplete WinCC Tag
M1101.3 Run Place Latch OB1 FC20
M1102.0 DwellReqd WinCC Tag
M1102.1 DwellComplete WinCC Tag
M1102.2 JobComplete WinCC Tag
M1102.3 ContinuousOperation WinCC Tag
M1103.0 Start WinCC Tag
M1103.1 ASRSOpStart WinCC Tag
M1103.2 ASRSOpCompDual WinCC Tag
M1103.3 ASRSOpCompSingle WinCC Tag
M1103.4 ASRSOpDual WinCC Tag

 190

M1103.5 PlaceComplete1 WinCC Tag
M1103.6 PlaceComplete2 WinCC Tag
M1103.7 ASRSDwellContinuous WinCC Tag
M1104.0 ASRSDwellNotContinuous WinCC Tag
M1104.1 ASRSOpContinuous WinCC Tag
M1104.2 SetPlaceCoOrdsPlaceReqd WinCC Tag
M1104.3 PlaceCompletePickReqd WinCC Tag
M1104.4 PlaceComplete2DwellReqd WinCC Tag
M1104.5 GoToXYCompleteActionPick WinCC Tag
M1104.6 GoToXYManual WinCC Tag
M1104.7 ASRSOpOpTypeNotAvailable WinCC Tag
M1105.0 ASRSOpNoRequirements WinCC Tag
M1105.1 ASRSDwellAtXYPosition WinCC Tag
M1200.0 Callauto WinCC Tag
M1200.1 CallSemiauto WinCC Tag
M1200.2 Store2Tag WinCC Tag
M1200.3 go3 WinCC Tag
M1200.4 RetrieveTag WinCC Tag
M1200.5 Storenew WinCC Tag
M1200.6 Retrievenew WinCC Tag
MW1000 classbased1-2 WinCC Tag
MW1002 classbased1-1 WinCC Tag
MW1004 classbased1-3 WinCC Tag
MW1006 classbased1-4 WinCC Tag
MW1008 classbased1-5 WinCC Tag
MW1010 classbased1-6 WinCC Tag
MW1012 classbased2-1 WinCC Tag
MW1014 classbased2-2 WinCC Tag
MW1016 classbased2-3 WinCC Tag
MW1018 classbased2-4 WinCC Tag
MW1020 classbased2-5 WinCC Tag
MW1022 dedicated1-1 WinCC Tag
MW1024 dedicated1-2 WinCC Tag
MW1026 dedicated1-5 WinCC Tag
MW1028 dedicated1-6 WinCC Tag
MW1030 classbased2-6 WinCC Tag
MW1032 dedicated2-1 WinCC Tag
MW1034 dedicated2-2 WinCC Tag
MW1036 dedicated2-3 WinCC Tag
MW1038 dedicated2-4 WinCC Tag
MW1040 dedicated2-5 WinCC Tag
MW1042 dedicated2-6 WinCC Tag
MW1044 ASRSlayout1-1 WinCC Tag
MW1046 ASRSlayout1-2 WinCC Tag
MW1048 ASRSlayout1-3 WinCC Tag
MW1050 ASRSlayout1-4 WinCC Tag
MW1052 ASRSlayout1-5 WinCC Tag
MW1054 ASRSlayout1-6 WinCC Tag

 191

MW1056 ASRSlayout2-1 WinCC Tag
MW1058 ASRSlayout2-2 WinCC Tag
MW1060 ASRSlayout2-4 WinCC Tag
MW1062 ASRSlayout2-3 WinCC Tag
MW1064 ASRSlayout2-5 WinCC Tag
MW1068 ASRSlayout2-6 WinCC Tag
MW1070 dedicated1-3 WinCC Tag
MW1072 dedicated1-4 WinCC Tag
MW1080 SemiautoXReqPos WinCC Tag
MW1082 SemiautoYReqPos WinCC Tag
MW1084 TestTag WinCC Tag
MW1086 XCoOrdinateDB WinCC Tag
MW1088 YCoOrdinateDB WinCC Tag
MW1090 autocomponentID WinCC Tag
MW1210 Liam1 WinCC Tag
MW1212 Liam2 WinCC Tag
MW1214 GotThisFar WinCC Tag
MW1216 OpReqdOP WinCC Tag
MW1218 OpNumberOP WinCC Tag
MW312 OPreq_1 WinCC Tag
MW316 Opreq_2 WinCC Tag
MW320 OPreq_3 WinCC Tag
MW324 OPreq_4 WinCC Tag
MW328 OPreq_5 WinCC Tag
MW332 OPreq_6 WinCC Tag
MW336 OPreq_7 WinCC Tag
MW340 OPreq_8 WinCC Tag
MW344 xAUTOPos_1 WinCC Tag
MW348 yAUTOPos_1 WinCC Tag
MW352 xAUTOPos_2 WinCC Tag
MW356 yAUTOPos_2 WinCC Tag
MW700 xReqPos WinCC Tag
MW702 YReqPos WinCC Tag
MW710 XActPosn WinCC Tag
MW720 YActPosn WinCC Tag
MW725 yAUTOActPos WinCC Tag FC16 FC17
MW730 yReqdPos WinCC Tag
MW735 yAUTOReqPos WinCC Tag FC16 FC17
MW745 xAUTOActPos WinCC Tag FC15 FC17
MW750 xReqdPos WinCC Tag
MW755 xAUTOReqPos WinCC Tag FC15 FC17
Q0.0 Y Drive On FC14 FC16 FC17
Q0.1 Y High Speed FC14 FC16 FC17
Q0.2 Y Drive Down FC14 FC16 FC17 FC23
Q0.5 X Forward FC15 FC17
Q0.6 X Reverse FC14 FC15 FC17
Q0.7 Forks On FC23
Q3.0 Forks Extend FC23

 192

Q3.1 Forks Retract FC23
T1 20 ms Pulse on Y Home FC16 FC17
T10 3.7 Sec. Timer FC23
T20 2.9 Sec. Timer FC23
T30 2.1 Sec. Timer FC24
T40 0.08 Sec. Timer FC24
T41 5 Sec. Timer FC2
T50 2.5 Sec. Timer Fc25

 193

Appendix F (Trial Results)

 194

 195

 196

