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ABSTRACT

ABSTRACT

Modern vehicles use a variety of data networks to exchange data between their
different control modules. These networks operate at different communication speeds
to reflect the relative response times of the connected control units. For example,
engine control units are connected to a high-speed network while comfort systems
such as electric seats are connected to a low speed network. In addition, there are a
number of different network operating principles, for example, event-driven and time-
triggered. Gateways are required to exchange data between these different vehicle
networks. Gateways typically exchange messages between connected networks based
solely on the destination and priority of the messages. Such gateways can result in
unpredictable message delays depending on the network loading and vehicle

operating conditions.

The aim of this research is to develop and evaluate a vehicle network gateway model
based on a very general and well designed gateway structure from the automotive
industry, which takes into account factors such as the purpose of network messages,

vehicle operating conditions, network loading, bus topology and message streams.

The network gateway model is used to evaluate the relative performance of different

gateway configurations.
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THESIS OVERVIEW

CHAPTER

THESIS OVERVIEW

1.1 PROBLEM SPECIFICATION

This aim of this research is to investigate how an in-vehicle network gateway works

and how to improve the performance of a gateway optimally.

The automotive industry is entering an exciting and challenging time for electronics
system designers. Applications such as infotainment, telemetry, safety, and control
require the use of several different networking standards. There are a vast array of
networking protocols to choose from, each with advantages and disadvantages. No

one protocol satisfies the requirements of all automotive applications.

Therefore there is a need to consolidate data from these dispersed networks and feed
the relevant processing ECU with the collected data in terms of sending it to its target
destination. A gateway is used as a central hub to interconnect and process data from
the vehicle’s embedded networks. A typical gateway is composed of several
automotive networking interfaces such as CAN, Keyword Protocol over CAN, LIN

and FlexRay in addition to embedded micro-controllers and peripheral functions.
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1.2  SOLUTION REQUIREMENTS

To design an in-vehicle network gateway requires a full understanding of the
infrastructure of the whole in-vehicle network, which includes the in-vehicle network

protocols, the in-vehicle network management, and the in-vehicle network gateway.

In order to design a reliable gateway, those variations must be accounted for during
testing. Even using methodologies such as rapid prototyping, it is difficult to cater for
all the critical physical layer permutations that need to be accounted for, therefore

simulating a virtual prototype of a gateway is a more effective solution.
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1.3 RESEARCH QUESTIONS

The goal of the research is to build a comprehensive gateway simulation model that
allows the AUTOSAR gateways performance to be optimised for different networks

configurations and bus loads.

The research investigates a number of key questions:

1. Which aspects of an AUTOSAR gateway configuration have impact on

gateway performance?

2. Is the Matlab/Simulink and SimEvents a feasible environment to model and

simulate the AUTOSAR defined in-vehicle network gateway system?

3. Can a gateway simulation model be used effectively to optimise gateway

performance?
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1.4 DOCUMENT LAYOoUT

The layout of this thesis is as follows:

Chapter 1: Thesis Overview

This chapter introduces the objectives of this research and the required solutions

related to this research. The key research questions are also addressed.

Chapter 2: Vehicle Network Protocols

This chapter discusses three commonly used in-vehicle network protocols in
automotive industry. The differences between these protocols are also discussed in

detail.

Chapter 3: Vehicle Network Design

This chapter introduces the in-vehicle network design process. In this chapter

traditional and advanced design processes are compared.

Chapter 4: Network Gateway Design

This chapter discusses the different requirements for in-vehicle network gateway

design from two aspects: hardware and software.

Chapter 5: Simulation

This chapter outlines some simulation techniques, which are useful for this research.
Also in this chapter, a very powerful simulation tool in the automotive industry is

introduced.

Chapter 6: Literature Review Summary

This chapter reviews the existing literature, which has been extensively covered

throughout the development of the thesis.

Chapter 7: Methodology

This chapter describes the methodology used to develop and implement the prototype.



THESIS OVERVIEW

Chapter 8: Gateway Model Requirements Specification

This chapter presents the in-vehicle network system specification introduced by
AUTOSAR. This chapter uses sequence diagrams to show different communication
scenarios. The sequence diagrams are grouped into three sections: PDU Reception,

PDU Transmission and PDU Gateway.

Chapter 9: Gateway Simulation Model Design

This chapter describes the in-vehicle network simulation model by using a simulation
tool. The simulation model includes: different protocol controllers (time and event

triggered), communication bus and gateway.

Chapter Ten: Testing
This chapter describes the test environment and test cases used to test the system and

produce the results. In this chapter two testing stages are carried out: Verification and

Validation.

Chapter Eleven: Conclusion

This chapter provides a summary of the work conducted in the present research,
whilst describing how the objectives were met. The potential for future development

is also discussed.
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VEHICLE NETWORKING PROTOCOLS

CHAPTER

VEHICLE NETWORK PROTOCOLS

2.1 INTRODUCTION

There are more than ten in-vehicle network protocols currently in use in the
automotive industry. Generally they are classified into three basic categories based on

network speed and functions (Kopetz, 1993):

® C(Class A Multiplexing is used for convenience features (entertainment,
audio, trip computer, etc.) and does not require high bandwidth;

® (lass B Multiplexing is used for general information transfer (instrument
cluster, vehicle speed, legislated emissions data, etc.) and requires
medium speed;

® (lass C Multiplexing requires high bandwidth, reliability, and high data

integrity (powertrain control, vehicle dynamics, brake by wire, etc.).

CAN is the most widely used of these protocols. The advantages of CAN Bus include
high real-time capabilities, operability in a harsh electrical environment, and easy
configurability of the overall system. The CAN protocol, which corresponds to the
date rates, is used in different automotive control systems. The high-speed data rates
of networking controllers are used for some real-time controls such as engine timing
and ABS. The low-speed data rates of networking controllers, which make vehicles

more comfortable, are for lighting control and air-condition (Etschberger, 2001).

LIN, as a sub-bus of CAN, is an inexpensive serial bus used for distributed body
control electronic systems in vehicles. It enables effective communication for smart
sensors and actuators, where the bandwidth and versatility of CAN are not required.

Typical applications are door control, seats, and climate regulation. LIN bus, offering
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fast time to market, flexible design options, low cost and low power consumption, is a

cost-effective complement to CAN.

FlexRay is a flexible network communications system, which meets the requirements
of high-speed bus systems that are deterministic, fault-tolerant and capable of
supporting distributed control systems. FlexRay protocol is designed to meet the key

automotive requirements of dependability, availability, flexibility and a high data rate.
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2.2 EVENT AND TIME TRIGGERED COMMUNICATION SYSTEMS

As a distributed real time system, an in-vehicle network has two main design
approaches: Event triggered and Time triggered the above support the normal data

distribution requirements of the vehicle network.

An Event Triggered system controls signals from non-time events occurring outside
or inside the system (Kopetz, 1993). In an event triggered system, messages that are
event-based are transmitted right after an event and contain information regarding that
event. Once an event happens in such systems, the signaling of events from the
protocol controller to the micro-controller is made through the use of an interrupt
mechanism. During protocol execution, the event triggered system has to make all
scheduling and communication decisions dynamically, with the proper functions
being executed according to the current event that took place within the network. An
event triggered system is responsible for deciding when a message must be sent

(Dilger, 1998).

A Time Triggered system has all of its activities initiated by the progression of time.
It uses a time division multiple access (TDMA) method to obtain access to the
network bus (Kopetz, 1993). This method gives each node a certain amount of time
so that they each have specific transmission time in the network. All nodes have a
synchronized clock to prevent any node transmitting out of turn, which results in the
concept of a shared global time within the system. Therefore, each node in the
network decides when a message is to be transmitted according to this global time.
All tasks and communication actions within a time triggered system are periodic and
state variables are sampled at predefined points in time. A time triggered system is
less flexible than an event triggered system, but it is easier to analyze and test
(Kopetz, 1993). More details of time triggered system are discussed in the TTCAN
Section 2.3.4 in this chapter.
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2.3 CONTROLLER AREA NETWORK — CAN

The section discuses the Controller Area Network (CAN) (BOSCH, 1991).

2.3.1 CAN AND THE OSI MODEL

The seven layers of the ISO Open System Interconnection (OSI) (ISO, 1994) model
describe most network protocols. Figure 2.1 shows the Data Link Layer and the
Physical Layer of the OSI model corresponding to the Control Area Network (CAN)
(RICHARDS, 2002).

Application

Presentation Logical Link Control (LLC)

- Acceptance filtering
Overload notification
Recovery management

Session

il

Medium Access Control (MAC)
Data encapsulation/ de-capsulation
Frame coding (stuffing/de-stuffing)
Error detection/signaling
Serialization/de-serialization Defined by

Physical CAN Controller

1SO11898

Network

Data Link

il

4111

‘ Transport

Physical Signaling
Bit encoding/de-coding
- Bit timing/synchronization

1

Physical Medium Attachment
— Driver/receiver characteristics

Medium Dependent Interface
- Connectors/wires

Figure 2.1: OSI model and layered architecture of CAN

CAN has the following features (BOSCH, 1991):

® Multi-master: any node can transmit a message to another node when the
CAN bus is free.

® Safety: CAN provides mechanisms for error detection. The CAN bus error
rate is less than 4.7%10™".

® Speed and Distance: when the CAN bus speed is SKB/s, the furthest distance
is 10km; when the CAN bus distance is 40m, the fastest speed is 1MB/s.

@ Arbitration: if two or more nodes start transmitting messages at the same

time the arbitration mechanism is started.

The CAN specification defines the Data Link Layer. The Logical Link Control (LLC)
manages the overload control and notification, message filtering and recovery

management functions. The Medium Access Control (MAC) performs the data
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encapsulation/de-capsulation, error detection and control, bit stuffing/de-stuffing and

the serialization and de-serialization functions.

The International Standards Organization (ISO) has defined a standard, which
incorporates the CAN specification and the physical layer. The standard, ISO-11898
(ISO, 1993) was originally created for high-speed in-vehicle communications using
CAN. ISO-11898 specifies the physical layer to ensure compatibility between CAN

transceivers.

2.3.2 BUS ARBITRATION

The CAN protocol uses carrier sense multiple access with a collision avoidance
(CSMA/CA) mechanism to arbitrate access to the bus (CIA, 2007). It employs a
priority mechanism using numerical identifiers to resolve collisions when two or more
nodes want to transmit simultaneously. On the CAN bus a zero represents the
dominant bit, which is used to overwrite a one (a recessive bit). Therefore, if there are
two nodes, one transmitting a one, another transmitting a zero, the bus results in a

zero level.

When two or more nodes want to transmit, they monitor the entire bus to check if
there is any bus activity. If there is no activity on the bus, they start to transmit their
message identifiers (most significant bit first), yet still monitoring the bus levels. If
one node transmits a recessive bit on the bus and another transmits a dominant bit, the
bus will result in a dominant level. Therefore, the node transmitting a recessive bit
will see a dominant bit on the bus (situation where B loses in Figure 2.2) and stop
transmitting any further information. In this situation, the node with the lowest
number identifier number gains access to the bus and transmits its message. Any node
that has lost during the arbitration process then waits until the bus becomes free

before re-transmitting its message.

10
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Bus Idle

L} L}
e— —  — e i i Recessive
Node A H |_|
L b Dominate
Bus Idle Y
— 1 1 E : Recessive
Node B ol
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Arbitration Lost
Bus Idle by Nodg
— =1 — "o Recessive
CAN Bus H
Level "o .
L — Dominate
[} [}

Figure 2.2: CAN bus Arbitration

The CAN protocol uses the bus arbitration mechanism so that the node with the
highest priority (lowest value in the identifier field) will continue to transmit without
having to back off the bus. It means that CAN has a very predictable behaviour and is

very efficient in its use of the bus bandwidth.

2.3.3 CAN BUS ARCHITECTURE

Figure 2.3 shows an example of a typical CAN bus architecture. Although ISO-
11898-2 (ISO, 1993) does not specify the mechanical wires and connectors, this
specification does require that the wires and connectors meet the electrical
specification. In this specification the data rate is defined up to 1 Mbit/s. The high-
speed standard specifies a two-wire differential bus whereby the number of nodes is
limited by the electrical bus load. The specification also requires 120€2 (nominal)
terminating resistors at each end of the bus. The common mode voltage ranges from
-2V on CAN_L to +7V on CAN_H. The nominal specific propagation delay of the
two-wire bus line is specified at Sns/m. All these figures are valid only for a 1 Mbit/s

transfer rate and a maximum network length of 40m.

Node

MCU

CAN
Controlle

A

Transceiver
Node Node

12002 1200

Figure 2.3: CAN network according to ISO 11898

11
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2.3.4 MESSAGE AND FRAME FORMATS

Each CAN message is transferred in the format of a Frame; there are four types of
message frames (BOSCH, 1991):
® Data Frame: data is transmitted from a transmitter to one or several
receivers.
® Remote Frame: bus nodes (receivers) can request the transmission of a
data frame of the same frame identifier by a source.
® Error Frame: signals an error detected by a bus node (transmitter or
receiver) and destroys the frame.
® Overload Frame: provides for an extra delay between a preceding and a
succeeding data or remote request frame to prevent buffer overruns in a

receiver.

The original CAN specifications, that is, Versions 1.0, 1.2, and 2.0A define the
message identifier as having a length of 11 bits with the possibility of 2048 different
message identifiers. However, the updated version, Version 2.0B extends the

identifier’s length to 29 bits, which means that both 11 and/or 29 bits can be used.

2.3.4.1 DATA FRAME

In CAN bus communication, data is transmitted from a transmitter to one or several

receivers.

A data frame consists of seven different fields, which are SOF (Start-of-Frame),
Arbitration Field (Identifier and RTR), Control Field, Data Field, CRC Field,
Acknowledgement Field and EOF (End-of-Frame). Figure 2.4 shows a data frame.

Arbitration Field

S R|I A
o Identifier T|D]|r0| DLC Data CRC C EOF | IFs
F R|E K

Figure 2.4: Data Frame
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Start of Frame (SOF)
This bit is the beginning of a data frame, and is represented by a single dominant bit.
A bus node is allowed to start bus arbitration only when the bus is idle, and all the

nodes have to be synchronized to the leading edge caused by the start bit of the frame.

Arbitration Field
This field consists of an ID field and a RTR (Remote Transmission Request) bit.

The CAN supports two types of data frame formats: standard frame and extended
frame formats. The essential difference between them is the length of the identifier. A
CAN standard frame uses 11 bits as the identifier (known as CAN 2.0A), while a
CAN extended frame has an identifier with a length of 29 bits (known as CAN 2.0B).

Meanwhile the RTR bit is required to distinguish between the data frame and the
remote frame. If a frame is identified as the data frame, the RTR bit takes a dominant
value; otherwise the RTR bit is set to recessive. Data frames take precedence over

remote frames.

Control Field

This field consists of an Identifier Extension (IDE) bit, which can be used to
distinguish between the CAN standard frame and the CAN extended frame. A
reserved bit (r0) is defined as a dominant bit. The Data Length Code (DLC) consists

of 4 bits, which are used to specify the number of bytes in the Data field.

Data Field
A data field has 0~8 bytes, with each byte consisting of 8 bits.

CRC Field

This field is used to check the integrity of the frame. It consists of a 15 bit CRC
sequence for frame checking and a recessively transmitted delimiter bit. The CRC
field is calculated by a 15 bit generator polynomial (x” + x + X’ + X + X’ + ¥ + ¥ + 1)

followed by a recessive CRC delimiter bit.

13
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Acknowledgement Field

This field consists of the so-called “Acknowledgement Slot” and a succeeding
“Acknowledgement Delimiter” bit. In the Acknowledgement Field, the transmitter
sends two recessive bits. Correct messages are acknowledged by the receivers by
transmitting a dominant bit in the ACK slot regardless of the result of the acceptance

test.

EOF

Every data and remote frame is delimited by a flag sequence of seven recessive bits.

2.3.4.2 REMOTE FRAME

A remote frame is sent by any node to request a message from another node on the
network. Compared to the data frame the remote frame has the RTR bit at the

recessive state and contains no data field.

Node A Node B

Identifier_x, RTR = 1 |

- e
Identifier_x, RTR =0, I

| Data |

Figure 2.5: Remote Frame

In order to recognise which Data Frame is requested, the initiating node sends a
message whose identifier is the same as that of the required Data Frame. Figure 2.5

shows the principle of a data request cycle.

2.3.4.3 ERROR FRAME

Any node detecting a bus error will generate an error frame, which consists of two

fields: an Error Flag field and an Error Delimiter field.

The Error Delimiter uses 8 recessive bits to allow the bus nodes to restart bus

communications clearly after an error.
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The Error Flag (refer to Figure 2.6), of the node detecting the error, decides the
content of the Error Flag field. There are two types of error flags: Active Error flag
and Passive Error flag.
e [f detecting an error in an error state of “error active” on the network, the
node will send out an Active Error flag, which is eight dominant bits.
e [f detecting an error in error state “error passive” on the network, the node

will send out a Passive Error flag, which is eight recessive bits.

2.3.4.4 OVERLOAD FRAME

An overload frame is composed of an overload flag and an overload delimiter. The
overload flag consists of a sequence of six consecutive dominant bits. It also destroys
the fixed form of the intermission field. As a consequence, all other nodes detect an

overload condition, thus they transmit an overload flag.

The overload delimiter consists of eight recessive bits. After transmitting an overload
flag every node monitors the bus until it detects a recessive bit. Subsequently every
node is finished transmitting its overload flag and all nodes transmit a further seven

recessive bits to complete the eight-bit overload delimiter.

2.3.4.5 ERROR DETECTION

The CAN protocol provides the following error detection mechanisms: Bit Check,
Frame Check, CRC (Cyclic Redundancy Check), Acknowledgement Check and Stuff
Rule Check.

1) Error Types
Bit Check

Every transmitting node monitors whether the bus level transmitted differs from the
actual level on the bus. If a transmitted bit value is different from the bit value being

monitored, a “bit error” is detected.
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The overwriting of a recessively transmitted bit level by a dominant level during the
arbitration phase as well as during the ACK slot is not interpreted as a bit error. The
overwriting of a passive error flag is also not interpreted as a bit error by a

transmitting node.

Frame Check
If a fixed-form bit field contains one or more illegal bits, a “form error” is detected. A
receiver monitoring a dominant bit at the last bit of EOF does not interpret this as a

form error.

CRC
The CRC sequence composed of the CRC calculation results from the transceiver. If
the calculated CRC sequence is different from the sequence received, a “CRC error”

is detected.

Acknowledgement Check
If a transmitter determines that a message has not been acknowledged then a ACK

Error is flagged.

Stuff Rule Check
Bit stuffing is generally used for various purposes:
® Bringing bit streams that do not necessarily have the same or rationally
related bit rates to a common rate, or to fill buffers or frames.
® Synchronizing several channels before multiplexing or to rate-match two
single channels to each other.
® Limiting the number of consecutive bits of the same value in the data to

be transmitted.

In CAN frames, a bit of opposite polarity is inserted after five consecutive bits of the
same polarity. This practice is called bit stuffing, and the “Non Return to Zero”” (NRZ)
coding is adopted. Therefore, in data exchange, six consecutive bits of the same type

(111111 or 000000) are considered an error.
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Each node detects a violation of the bit-stuffing rule (“stuffing error””) as soon as it
detects the sixth consecutive bit of equal level in a frame field, which shall be coded

by the bit stuffing method.

2) Fault Confinement
Each node on the bus, depending on the Transmit and Receive error counter’s values,

can be in one of the three states.

Reset and Configuration

Error Active

'Y

RX_Cnt <128 and RX Cnt> 127 or
TX_Cnt <128 TX_Cnt>127

h 4

Error Passive

Sequences of 11 Recessive
Bits.

A 4

Reset, Configuration and
4@Cnt >255 Reception of 128

Bus=Off

Figure 2.6: Error State Diagram of a CAN node

Error-active
An “error-active” network node takes part in bus communication and sends an active

error flag when it detects an error. This is the default node state at reset.

Error-passive
An “error-passive” network node has already accumulated a relatively high transmit
or receive error count, thus it has monitored a significantly higher error rate over a

longer period of time.

Bus-off

A node in the “bus-off” state is not allowed to have any influence on the bus.

Figure 2.6 shows the error state diagram of a CAN node. After a reset, a node is in the
error-active state. If one of the two error counts exceeds the value 127, the monitor

demands the MAC sub-layer node enter the error-passive state. A node becomes error
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active again when both error counts drop to a below that of 128. A node is
disconnected from the bus and is in the bus-off state when the transmit error count
exceeds 255. From this state, a node can re-enter the error-active state, with error
counts reset to 0, only after reset and reconfiguration and when it has detected 128
sequences of eleven consecutive recessive bits. This measure ensures that a possibly
erroneous reset node cannot disturb communication again immediately after reset.
Thus up to 128 further frames can be transmitted undisturbed even at a very high

busload.

2.3.5 TIME-TRIGGERED CAN (TTCAN)

The communication in the classic CAN network is event triggered; peak loads may
occur when the transmission of several messages is requested at the same time
(HARTWICH, 2000). CAN uses an arbitration mechanism to ensure that the
transmission sequence of all messages corresponds to their identifier priority.
However, some mission critical sub-networks within the upcoming generations of
vehicle systems, e.g., the x-by-wire system, will require more deterministic behaviour
during the communication. For example, when the bus load is at maximum all the
safety related messages must still be transmitted. Therefore, it must be possible to
allocate a specific amount of time to the message for a high priority transmission.

TTCAN is one way to solve the issue.

The time manager in TTCAN communication transmits reference messages regularly.
Each individual message to be transmitted is given the time slots in a sequence of
time windows following the reference message. There are three types of time
windows: Exclusive Time Windows, Arbitrating Time Windows and Free Time
Windows.

e Exclusive Time Windows are used for periodic messages.

e Arbitrating Time Windows are used for event messages.

e Free Time Windows are used for future extensions of the network.

The sequence of the time windows is called a basic cycle, which starts with a

reference message and contains an off-line configured set of time windows.
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Figure 2.7 shows an example of a TTCAN message schedule (Thomas Fuhrer).

Transmission Colums

. -
Basic Cycle 0
Reference Msg C Arbitration Free Message D Msg C +—
7| Message E Window 2 2
" —»
Basic Cycle 1
Reference
a 3 MEE R MessageM pRMSEREY MessageM § MsgC 1 —
" —»
Basic Cycle 2
Reference .
P Tsage- Arb. Arbitration Msg T Message D MsgC g

- [) [) [) [) [) [) [)

Reference
Message

Basic Cycle 3

Free
‘Window

> Msg U Message M Message M MsgC —

Figure 2.7: TTCAN Message Schedule

Basic Cycle is the time between two reference frames. It is not always identical in
order to be able to transmit messages at different periodic frequencies. Several basic

cycles are repeated in the vehicle network system unless the vehicle is turned off.

Only one node can send a frame during the exclusive window within a basic cycle.
There are also free windows and arbitrating windows, for which the nodes compete
for bus access, just as in the regular CAN communication. Several arbitrating

windows can be merged. The end of an arbitrating window is always predictable.
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2.4 LOCAL INTERCONNECT NETWORK — LIN

2.4.1 LIN Bus TECHNICAL OVERVIEW

LIN (Local Interconnect Network) (LIN—CONSORTIUM, 2003) is a new low cost
serial communication system. The communication is based on the SCI (UART) data
format, a single-master/multiple-slave concept, a single-wire 12V bus and clock
synchronization for nodes without a stabilized time base. Usually, a LIN bus is used in
some integration equipment, such as doors, steering wheel, seats and air-conditioning.
In these devices, LIN enables a cost-effective communication for smart sensors and
actuators. Furthermore, by using digital interface encoding instead of analog interface
encoding, electronic devices can be easily connected to in-vehicle network systems
and implemented for different diagnosis and maintenance functions including system

reprogramming and updating.

2.4.2 LIN ProrocoL CONCEPT

This section highlights the LIN protocol concept (LIN—CONSORTIUM, 2003)

Basic Operation
LIN bus operation is based on a single-master/multiple-slave concept, as shown in

Figure 2.8.
Master Node
Slave Node Stave Node
Slave Task Slave Task _Slave Task

Figure 2.8: LIN bus topology

Each LIN node is divided into two individual parts:
® Master Task, which decides the frame sequence using a schedule table.
® Slave Task, which is responsible for data transfer on the bus, and to allow

waking up the entire slave nodes from sleep state.

A typical master node includes a master task and a slave task, but each slave node

contains a slave task.
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Frame Format
The data unit transferred by a LIN bus is called a data frame. Each frame consists of
two parts, as shown in Figure 2.9:

® Message header provided by master task,

® Message response managed by slave task.

Master Task

Slave Task

Slave Task

Figure 2.9: LIN bus transmission cycle

Each message header comprises the following parts:
® The synchronization break — at least 13 dominant bits, sent out by the master
task, and included in every LIN frame.
® The synchronization byte -- hex value 0x55, which used to synchronize with
the master’s clock.
® The message identifier — defines unique message content (but not the node

address) for receiver side.

The message response of each LIN frame is supplied by a slave task, and it can be
divided into Data Field and Checksum, as shown in Figure 2.10:

® Data Field — transfers 1~8 bytes of data.

® Checksum — computed as inverted eight bit sum with carry.

y Frame Slot

Inter- |
:“ Frame
Space
>

Frame

A A

Response

Space
. S
L e

Header Response

A

-
-

Break Synch Protef!ed Data 1 Data 2 DataN | Checksum
Identifier

Figure 2.10: LIN Frame

The data content transferred by message responses in the LIN frame consists of three
types:
® Signal — the data field of each response includes bits matrix. Under this

situation, a frame ID must be between 0x00 and 0x3B.
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® Diagnostic information — used to transfer diagnostic and configuration data.
This information is 8 bytes long, and has a reserved ID number. ID 0x3C is
used by a master request, and 0x3D is used by a slave response.

® Reserved information — used for user defined extension, or for the protocol
extension. For example, 0x62 is reserved for user addition, and 0x63 is

reserved for future improvements of the protocol.

The message headers transferred by a master task are based on a master schedule table.
This schedule table defines the transfer sequence of frames and the interval time
between frames. The concept of the schedule table is essentially a mechanism which

avoids network overload and guarantees data transfer latency.

2.4.3 LIN SPECIFICATION

The LIN Standard encompasses the specification (LIN-CONSORTIUM) of the
transmission protocol, the transmission medium, the interface between development
tools and the interfaces for software programming. LIN guarantees the
interoperability of network nodes from the viewpoint of hardware and software and a

predictable EMC (Electromagnetic Compatibility) behavior.

The Specification consists of three main parts:

The LIN Protocol Specification describes the Physical Layer and the Data Link
Layer of LIN. The main features of the LIN bus are:

¢ Single master/multiple slave concept (no bus arbitration),
e () to 8 byte message frame,

e Data checksum security and error detection,

e Minimum cost for semiconductor components and

e Guarantee of latency times for signal transmission.

The LIN Configuration Language Description describes the format of the LIN

configuration file, which is used to configure the complete network and serves as a
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common interface between the OEM and suppliers of the different network nodes, as

well as an input to the development and analysis tools.

The LIN API describes the interface between the network and the Application
Program. This concept allows the implementation of a seamless chain of design and
development tools and enhances the speed of development and the reliability of the
network.

Electronic Control

Unit Tools

LIN Physical
Layer

LIN Physical
Layer

Operating System
Software _ _
Level
LIN Application Configuration Configuration
Interface Language Languare
L)
]
Generator :
Hardware '
]

Figure 2.11: LIN Bus Tool Chain
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2.5 FLEXRAY

The FlexRay protocol (FLEXRAY-CONSORTIUM, 2000) is the current standard for
similar products, which support faster and more highly reliable in-vehicle networks,
thus it will lead the whole vehicle electronic control products development for the
next generation. FlexRay is the latest in-vehicle network protocol after CAN and LIN,
which provides more efficient management for the functionalities of safety and

comfort, such as the “X-by-Wire.”

FlexRay is a registered trademark of Daimler Chrysler Automotive Group. The
FlexRay Consortium promotes the standardization of FlexRay as the next-generation

in-car communication protocol.

2.5.1 FLEXRAY ADVANTAGES

FlexRay (FUJITSU, 2006) focuses on some core requirements including high bit rate,
channel redundancy flexible data communication and comprehensive topology, as

shown in Figure 2.12.

FlexRay is a type of next-generation in-vehicle network protocol which provide high-
reliability and high-speed controls. The CAN network has a speed performance
limitation of 1 Mbps, while with a maximum data rate of 10 Mbps available on two
channels, giving a gross data rate of up to 20 Mbit/sec, FlexRay can potentially offer

20 times higher bandwidth than a CAN when used in similar applications.

Noh

Node Node
4 5

Linear Passive
Bus

Active Star
Network

Passive Star
Network

Figure 2.12: FlexRay Topologies
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FlexRay has many reliability features that are not available in CAN. For example, a
redundant communication capability enables fully duplicated network configurations
and schedule monitoring by hardware. Also, FlexRay has flexible configurations, with
support for topologies such as bus, star and hybrid types, as shown in Figure 2.12.
Designers can configure distributed systems by combining two or more of these

topologies. The topologies of FlexRay will be discussed in the next chapter.

In addition, FlexRay allows both synchronous and asynchronous data transfer to meet
the demand for various vehicle systems. For example, a distributed control system

usually requires synchronous data transmission.

FlexRay provides both static and dynamic communication segments within each
communication cycle. The static segment is configured with the fixed time trigger
method and the dynamic segment is configured with the flexible event trigger method.

Table 2.1 below describes each segment.

Features Slot length Priorities Bus Guardian (BG)
/data length
Static Sends and receives | Fixed length | Fixed by | Because the timing for
Segment messages with time fixed TDMA | sending 1is fixed, it is
triggers protected by BG
Dynamic Sends and receives | Variable Transmission | Because the timing of
Segment messages with event | length in ascending | sending is undetermined, it
triggers order of ID cannot be protected by BG.

Table 2.1: Description of FlexRay Static Segment and Dynamic Segment

In Table 2.1, a concept called Bus Guardian is applied in FlexRay. The bus guardian
(BG) in FlexRay manages the schedules and data independently from the
communication controller. The bus guardian monitors timing independently. If a gap
in timing is found it sends a signal to prohibit the bus driver from transmitting in order
to protect the bus status. Simultaneously, it notifies the host of the error. More details

of the bus guardian will be discussed in chapter four “Network Gateway Design.”
In addition to operating as a single-channel system similar to CAN and LIN, FlexRay

can operate as a dual-channel system. The dual-channel option makes data available

via a redundant network — a vital capability for a high-reliability system.
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Table 2.2 below shows FlexRay’ characteristics meeting real-time control functions.

Class | Communication | Applications LIN CAN FlexRay
A 10K to 125Kbps Lamps, lights, door locks, power
seats, etc. 1
B 125K to 1Mbps Electronic indicators, driving
information, automatic air
conditioner, etc.
C 1M to 10Mbps Engine control, ABS,

transmission control, break
control, etc.

Table 2.2: Vehicle Network Standard

Figure 2.13 shows the comparison of networking standards by node cost and data rate.

A
400M—

22 M—

Bit rate o —

bps
(®bps) 4.2M _|

1M —

125K—

20K —

Information

In-vehicle
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Most
optical ring

Control byteflight
master-slave

FlexRay
time triggered
two channel

optical, star I

CAN-C
CSMA/CD
two wire bus

Body CAN-B
CSMA/CD
one/two wire bus

LIN
Master-slave
one wire bus

Vehicle Network
Functionality

Figure 2.13: Comparisons of Protocol Data Rates
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Table 2.3 gives a detailed comparison of FlexRay and CAN.

No. | Item CAN FlexRay
1 Baud rate 1 Mbps 10 Mbps
2 Number of channel for 1ch 2/1 ch (optional)
one node
3 Network topology Bus type Mix. Of bus and star type
4 Connection node (max.) | 16 nodes at 500 kbps 22 nodes (bus) 22/64 nodes (star)
64 nodes (mixed)
5 Physical layer Metal Metal/POF
6 Communication Event triggered Time triggered,
event triggered
7 ID 11/29 bits 11 bits
8 Data length code (DLC) | 8 bytes 254 bytes
9 Frame Data frame, remote frame, error frame, | Data frame
overload frame
10 Error status transition Error active, error passive, bus off | Normal active, normal passive,
(software restoration possible) halt
11 Error counter Status transition counter value fixed Any status transition counter
value
12 Types of errors Bit error, stuffing error, CRC error, | Clock sync. error
framing error, ACK error
13 oscillator Ceramic and/or crystal Crystal oscillator (BG separated
from CC clock)
14 Network management software Hardware (controlled by BD and
BG)
15 Bus length 40meters at 1 Mbps 22 meters (in an active star, and

between active star)

Table 2.3: FlexRay and CAN Comparison

2.5.2 FLEXRAY APPLICATIONS

FlexRay was developed for X-by-Wire operation in vehicle networks. Suitable

FlexRay applications are:

e EPS (Electronic Power Steering) — specifically uses ECUs, it is based on

Steering-by-Wire technology.

e ABS (Anti-lock Brake System) — includes VSC (Vehicle Stability Control)
and VSA (Vehicle Stability Assist), it is based on Safe-by-Wire technology.

e AT (Automatic Transmission) — replaces existing mechanical control systems

with computerized fuel injector, computerized variable intake control system,

and computerized idling control system. It is based on Drive-by-Wire

technology.

2.5.3 FLEXRAY PROTOCOL

This section highlights the FlexRay protocol (FLEXRAY-CONSORTIUM, 2000).
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2.5.3.1 FLEXRAY NODE OPERATION

Each FlexRay node consists of a controller part and a driver part (FUJITSU, 2006), as

shown in Figure 2.14.

Controller: includes a host processor and a communication controller.

Driver: includes bus drivers and optional bus guardians. The bus driver
connects the communication controller to the bus, and the bus guardian
monitors access to the bus. The host informs the bus guardian which time slots
the communication controller is allocated. The bus guardian then allows the
communication controller to transmit data only within these time slots thus
enabling the bus driver. If the bus guardian detects a gap in the timing it

disconnects the communication channel.
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1 Host CPU H

'

: Controller

: v :

E FlexRay Communication E

' Controller H
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E Bus Driver Bus Driver 5
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< ¥ >Channel A
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Figure 2.14: FlexRay Node

Status Transition

The nodes of FlexRay have the following basic states, as shown in figure 2.15, which

vary from the initial setting to normal communication.

Configuration State (Default config/config) — used for different kinds of initial
setting, including communication cycle and baud rate.

Ready State — used for internal communication setting.

Wakeup State —used for waking up the nodes that are not communicating.
Under this state, a node sends out a wakeup signal, wakes up and enables the
communication controller, bus driver and bus guardians.

Startup State — used for starting up the clock synchronization and is ready for
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communication.
¢ Normal State — used for indicating the communication is ready.

e Halt State — used for indicating the interrupt of a communication.

PowerOFF
Or
Sleep

Default

Normal
Passive

Normal
Active

Figure 2.15: FlexRay State Transitions

Error State Transition

The nodes of FlexRay also have an error processing status transition. These status
transitions are managed based on an error counter, whose values include a clock
synchronization error and clock correction value error depending on the application.
When the clock of a node is different to the FlexRay clock synchronisation, a clock
synchronisation error is detected. Each FlexRay network has one or more
synchronized nodes that transfer synchronisation information. When receiving any
synchronisation information, a node will compare its clock with a synchronisation
nodes clock and make any necessary changes according to the synchronisation

requirements.

Each FlexRay node performs an error count, which counts the number of clock

synchronization errors. Nodes monitor the errors related to frame receive and transmit
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statuses, which consists of the syntax error, content error, bus error and transfer
conflict error. Once a signal node detects one of the errors, it informs the Host CPU.

The use of an error counter depends on the applications and system design.

Normal
Passive

Normal

‘ Active

Figure 2.16: FlexRay Error State Transitions

2.5.3.2 FRAME FORMAT AND SIGNALS

Each communication frame of FlexRay consists of three frame segments: Header

Segment, Payload Segment and Trailer Segment, as shown in Figure 2.17.

Header

Frame ID | Length Cycle
(11 bits) 7 bits) (ﬁ?‘?) ( bits) Data0 | Datal | Data2 Datan CRC CRC CRC
hits

; bits
16 bits N 24 bits

A A
Y
A
Y

>
54 bytes
Header Segment 1o 254 bytes

Payload Segment Trailer Segment

Figure 2.17: FlexRay frame format

Header Segment includes the following bits:

e Reserved bit — used for further expansion.

¢ Payload preamble indicator — indicates the existence of vector information
in the payload segment of the frame. In a static frame, this bit indicates
NWVector; in a dynamic frame, this bit indicates message ID.

¢ Null frame indicator — indicates whether or not the data frame in the
payload segment is NULL.

¢ Sync frame indicator — indicates the existence of a synchronisation frame.

e Start-up frame indicator — indicates whether or not the node-sending
frame is the start-up node.

e Frame ID — assigned to each node at system design.

¢ Length — specifies the data length of the payload segment part.

e Header CRC - specifies the CRC calculation values of Sync Frame
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Indicator, start-up Frame Indicator, Frame ID and Length that are
calculated by the host.
e (Cycle — indicates the cycle count of the node that transfers the frame

during the frame transfer time.

Payload Segment includes three parts:
e Data — valid range is from 0 to 254 bytes.
e Message ID — uses the first two bytes of the payload segment for
definition, and it can be used as the filterable data on the receiving side.
e NWVector — the network management vector length must be from 0 to 12

bytes and common to all nodes.

Trailer Segment includes the CRC value calculated and specified by hardware. It

changes the seed value on the connected channel to prevent incorrect connections.
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CHAPTER

VEHICLE NETWORK DESIGN

3.1 INTRODUCTION

Today's vehicles contain hundreds of circuits, sensors and many other electrical
components. Communication is needed in many circuits and functions of the vehicle.
In-vehicle networking is a method for transferring data in distributed electronic
modules via a serial data bus, such as CAN, LIN and FlexRay. Applying a serial data
bus reduces the number of wires by combining the signals on a single wire through
time division multiplexing. Information is sent to individual control modules that
control each function, such as anti-lock braking, turn signals, and dashboard displays.

(NAVET, 2005)

As the electrical equipment of today's vehicles continues to increase, the need for
networking is critical. For example, some high-end luxury cars contain more than
three miles and nearly 200 pounds of wiring. The resulting number of connectors

creates a reliability nightmare. (NAVET, 2005)

33



VEHICLE NETWORK DESIGN

3.2 NETWORK TOPOLOGIES

A network topology structure is a physical layout, which connects different nodes of a
communication network. For an in-vehicle network, there are various methods of
connection between different protocol nodes, but only few methods can work properly

in vehicle networks.

Typical Network Topologies

The most important topologies adopted in vehicle networks are Star, Bus and Ring

topologies.

Star Network Topology (BROWN, 1996-2000)
The star network, as shown in Figure 3.1, basically works on a central processor unit,
to which all nodes on the network are directly connected. Therefore this central

processor unit controls all the information transmission on the network.

Due to its physical structure, a star network has the following advantages and
disadvantages:
Advantages:

® Each node has its own connection to the central node,

® Simple integration of further nodes and

® FEasy to implement with optical transmission media.

Disadvantages:
® Generally high total length of all connections if nodes are ordered as a
geographical line,
® The central node requires N interfaces for the connection of N nodes,
Communication between nodes only possible via central node and

Communication is no longer possible if the central node fails.
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A

Figure 3.1: Star Topology

Bus Network Topology (BROWN, 1996-2000)

The bus network, as shown in Figure 3.2, is derived from computer bus access control.

It connects all electrically passive nodes to a carrier transfer bus. This topology is also

called a “diffusion network,” because the data transmitted by one node is available to

all nodes. A bus network has the following advantages and disadvantages:

Advantages:
® Lower cabling costs for applications with nodes geographically ordered as
a line,
® Simple connecting of a node,
® Simple extension by further nodes without interruption of the operation,
® Failure or de-activation of one node does not affect the other nodes and
® Arbitrary logical communication structures possible.
Disadvantages:
® Limited bus length and number of nodes if signal regeneration by
repeaters is not applied,
® Generally, for an electrical bus medium both ends of the bus line have to
be terminated by a terminating resistor,
® The implementation of a bus structure with optical media is complicated
by the fact that suitable optical branches are still difficult to implement,
® Node identification required.

Figure 3.2: Bus Topology
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Ring Topology (Brown, 1996-2000)

A ring topology, as shown in Figure 3.3, is implemented by a closed chain of

addressed point-to-point connections.

Advantages:
® Implementation of extended networks possible because every node
provides signal regeneration.
® Suited for the use of optical transmission media due to the applied point-
to-point transmission between nodes.
® Simple identification of nodes possible according to the geographic

position of the nodes in the ring.

Disadvantages:
® Total system fails when one of the nodes fails. Therefore additional
measures are generally taken, e.g. possibility to bridge the failed node or
provision of a redundant ring.
® QOperation has to be interrupted for the integration of a new node or

replacement of a node.

I—Dc»—uu—---
<

Figure 3.3: Ring Topology
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3.3 NETWORK GATEWAYS

A network gateway is a computer system or device that provides communication
between different networks. A gateway is a translator when it uses different network
protocols, data formats or languages, even with two systems with different system
configurations. A gateway repacks the information received, so that this information
can meet system requirements. Meanwhile, a network gateway supplies the functions
of filtering and safety. Depending on their implementation, network gateways can

operate at the application layer of the OSI model.

Gateways become a critical factor in vehicle network design and applications such as
infotainment, telemetry, safety and control which require the use of several
networking standards. There are a vast array of networking protocols to choose from —
each with advantages and disadvantages. No one protocol satisfies the requirements of
all automotive applications. There is a need to consolidate data from these networks
and perform processing in a central location. As such, a gateway is used as a central
hub to interconnect and process data from a vehicle’s embedded networks. A gateway
is composed of several automotive networking interfaces such as CAN, LIN and

FlexRay, in addition to embedded micro controllers and peripheral functions.
General In-vehicle Gateway Types

There are three types of gateway used in vehicle networks: Central Gateway (Super

Gateway), Multi Gateway and Backbone Gateway. (EASIS, 2005b)

Central Gateways (Super Gateways): provide a single central gateway for different

network systems communicating, as shown in Figure 3.4. It is a very sophisticated
gateway, which supports very complex functionalities such as connecting all the
different bus systems (High-speed bus and low-speed bus), routing information and

converting different message formats.
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Multi Gateways: are integrated into a single ECU node with the same functionalities

as central gateways, as shown in Figure 3.5. It means all communications occurs

between ECUs.
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Backbone Gateways: performs as a front door for each vehicle sub-network of the

Figure 3.5: Multi Gateways

whole vehicle network, as shown in Figure 3.6. A high-bandwidth backbone (FlexRay)

is required to connect those different sub-networks.
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Figure 3.6: Backbone Gateways
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3.4 NETWORK DESIGN METHODOLOGIES

3.4.1 BASIC NETWORK DESIGN METHODOLOGIES

In general, each system or network is unique and requires different solutions and
methods for design. There are three basic methods (INS, 2002) which can be used to
design network architectures and system solutions: the Scientific Method, the
Discovery Method, or the Requirements-driven Method. A fourth approach that meets
all of the general design and architectural requirements is a combination of the three

basic methods, and is referred to as the Tried and True Method (INS, 2002).

A general flow process, as shown in Figure 3.7, can be followed for all approaches of
designing network architectures and system solutions. This process begins with a
requirement, followed by an analysis of the existing or new technologies and
concludes with a solution model or suggested solution. Each of these steps is found in
most methods of design when devising a network or system. These steps can be used

to define different phases of network design and implementation.

Problem/ X
Issue Requ}re}rpenl
Definition

Equipment Survey

— —

Application

Survey
X Survey Results iilaullylfi‘: >

Process Survey

—_— >

Proof
of
Operational Staff Concept

Survey Tests

—

Suggested
Solution
Model

Figure 3.7: Design Flow Process

Scientific Method

The Scientific Method is the same as that method used for physical and theoretical

scientific efforts. The process flow begins with the formation of a hypothesis,
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followed by testing of the hypothesis, then revising the hypothesis based on
experimentation, which results in a theory or stated fact. This method can be applied

to a network or systems design using the same order of processes.

Discovery Method

The Discovery Method is a very client-intensive and inclusive process. Generally, the
client has an initial understanding of the problem or issue to be solved, but does not
have the detailed knowledge to select or design the proper solution. This method is

best when the client expects to be completely involved in a team situation.

Requirements Driven Method

The Requirements Driven Method is best applied in two scenarios, for an existing
network with problems or a new network. This method is optimally applied by
breaking the requirements into component parts, developing and testing individual

solutions before they are amalgamated into a network.

Tried and True Method

The Tried and True Method for designing networks and systems draws from all three
of the previously mentioned methods. This design method uses five components or
phases: defining requirements; surveying existing systems and applications; reviewing
“proven” products; testing equipment and application proof of concept; and
developing an integrated design and tests. The above description conforms to the ‘V’
cycle methodology employed in most designs found today in the automotive industry.
The designer develops a high-level solution based on the requirements as well as a

review of the technologies available.

3.4.2 IN-VEHICLE NETWORK DESIGN METHODOLOGIES

“Last minute changes, difficult verification, testing, and similar issues” (HEURUNG)

add to the challenges of in-vehicle network design. So, for better, cheaper, and easier
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network design it is essential that a canonical and structured engineering design

process should be applied.

The Design Process (BROWN, 2006)
The Tried and True Method described earlier in Basic Network Design
Methodologies can be used for an in-vehicle network design. Six components or

phases are covered by the Design Process illustrated in Figure 3.8.

—

Requirements System Node Node Iniegradion & Vehicle
Capture Design Development Testing Syeiom Production
Testing

~

Figure 3.8: Network Design Process

1. Requirements Capture

Integration &
System
Testing

Vehicle
Production

Requirements
Capture

System Node Node
Design Development Testing

The Requirements Capture stage focuses on defining and analyzing the functions and

systems in a vehicle.

Table 3.1 describes different functions in vehicles with their platform versions and
variants. For example, in platform version of XJ540ASIA the function of anti-lock
braking is a standard configuration. Moreover, the collision avoidance, airbags, 5
speed Trans and auto lighting are option configurations only. But for the platform
version X540US, anti-lock braking, airbags and auto lighting are standard
configuration, and the collision avoidance and S5 speed Trans are optional
configurations. Therefore, the system engineers have to capture all these system

requirements, so that these requirements will be considered during the later steps.
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Function Platform Versions & Variants

XJ540ASIA X540US X540AUS | MN280STD
Anti-Lock Braking Standard Standard Option NA
Collision Avoidance Option Option Option NA
Airbags Option Standard Option NA
5 Speed Trans. Option Option Option NA
Auto Lighting Option Standard Standard NA

Table 3.1: Example of functions in vehicle

2. System Design

Integration &
System
Testing

Node Node
Development Testing

Vehicle
Production

Requirements
Capture

The System Design step is a multi-step process, which includes four factors for the
whole vehicle system: Network Architecture, Functional Allocation and Partitioning,

1/0 Control and Timing Behaviour.

Network Architecture

As discussed previously, there are many in-vehicle network protocols, and the ECUs
with their sensors and actuators are gathered and the data buses are connected to their
corresponding protocols (bus architecture, number and position of gateways, etc.),
which can directly influence its working efficiency. For example, in a central gateway
network, the architecture can be regarded as a bus topology. Low-speed, high-speed

and time-triggered buses are connected to the gateway.

Functional Allocation & Partitioning
This sub-step of the system design defines the mapping of hardware and software

systems.

Figure 3.9 shows how a typical function is connected to the environment, and how it
is structured internally (AXELSSON, 1999).
¢ Mode Selection: operates in different modes, which could be selected by
operators such as switches.
e Control: executes according to the current selected mode. They attempt to

control the physical process using the actuators, and base their decision on
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sensor values. The user gives the reference value, for example, turning a knob.
e Diagnosis: classifies the input signals, and gives information to the mode

selector if an error has been found.

v A I
p  Switch e——  Knob Lamp e  Gauge .
| 7 Y
b e |
I I |
S S i
| Y \ l
Mode >

— P —— — ————— 1 1

l_ —»| Selection r %| Diagnosis

>
— — P Control  |—»

—  Scnsor Actuator

) ——  » Continuous
Physical
Process .
— — — — —» Discrete

Figure 3.9: Example of Functional Allocation

Figure 3.10 shows how a function can be implemented by two ECUs with the network
communication in between (AXELSSON, 1999). The same function described in the
functional layer is partitioned in the software layer, for example, parts of it are
allocated to the ECUs and the necessary communication is decided. The ECUs
implement tasks and data, and the communication transmits signals onto the network.
In the support layer, the operating system and device drivers provide the interface
between the application software and hardware. On the network, this corresponds to
the actual bus frames that are used to transport the application signals. Finally, the
hardware layer includes the CPU, memory, sensors and actuators connected to the

ECU, as well as the physical network with its associated communication interfaces.
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ECU 1 ECU 2 ECU 3
Functional Layer Function
Software Layer Tasks Data Signals Tasks Data
Support Layer OS | Dev.driv. Frames OS | Dev.driv.
Hardware Layer CPU [Mem | 1/O | Interf. Bus Interf. | CPU [Mem | 1/0

Figure 3.10: Example of Functional Partitioning

I/0 Control and Timing Behaviour

I/O control can be understood as the system behaviour. Behaviour modelling tools
such as Simulink can model the I/O interfacing by using certain algorithms they
provide themselves. For example, the I/O interfacing in Simulink can be either FIFO

or Priority algorithms.

Timing behaviour of the system depends on the prioritization of the ECU operating
system tasks, to which the software is distributed and the number and prioritization of

bus messages set up for the transmission of signals.

3. Node Development
This step requires the system engineer to generate the application code corresponding

to every signal or frame changing in an ECU node.

Requirements System Node Node
Capture Design Development Testing

Integration &
System
Testing

Vehicle
Production

4. Node Testing

This step focuses on performance to ensure each node satisfies the specific
requirements. These requirements include:

e Power up Conditions
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e Startup Sequences
e Error Recovery
¢ Functional Requirements

¢ Communication Requirements

Requirements System Node Node
Capture Design Development Testing

Integration &
System
Testing

Vehicle
Production

5. Integration & System Testing
This step focuses on checking the entire functionality of the in-vehicle network,
integrating and connecting every function implemented in the software into a total
software system. In this testing environment all the network problems will be
identified, which include:

e Requirements Capture

e System Design Process

e Validation of System Design

e Complexity of Network Design

¢ Feature Content Level

e Testing Environment

Integration &
System
Testing

Vehicle
Production

Requirements System Node Node
Capture Design Development Testing

6. Vehicle Production
This step is required to make decisions regarding production at a certain stage after

testing.

3.4.3 VMODEL

The V model, as shown in Figure 3.11, is one of the most common design processes

used in the automotive industry. Paul Rook originally proposed it in late 1980s to
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improve the efficiency and effect of the software development. The V model reflects

the relationship between testing actions and analyzing actions.

System
Requirements

System
Integration

Requirements  _ Acceptance
Analysis Test

Prellm‘lnary - —mm e > Softwaf‘e
Design Integration
Detailed | _ >l Component
Design Test
Vatidation
Development “Testing and
“Analysis and Design” Code and . Unit Inte ratigon o
Debug Test g

Figure 3.11: the V Model

The left side to right side of this model it represents the basic development process
and testing behaviours, and clearly indicates different levels in a testing process and
the relations between these testing phases and development process. Additionally, the
arrows represent the timing direction, the left side going down representing each
phase of the development process, and the right side going up representing each phase

of the testing process.

The V model has a limitation; it utilizes the testing process only as a phase after
Requirements Analysis, Preliminary Design, Detailed Design and Coding. It is very
easy to misinterpret testing as the last phase, since this phase focuses on searching for
errors in the program. However, the problems hidden in Requirements Analysis could

be found in the later stage of Acceptance Testing.

3.4.4 TRADITIONAL DESIGN PROCESS AND ADVANCED DESIGN PROCESS

Traditionally, when the interaction with other vehicles was low, suppliers were able to
apply the electrical system engineering concepts to isolated ECUs, one by one and to
adopt this engineering alone and without the need to consider the whole system.
However, since multiplexing has become more popular, the interactions between

ECUs and subsystems have increased, resulting in substantially more complex
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systems and design processes. The differences between Traditional and Advanced
design (HEURUNG) focuses on Requirements Analysis, System Design, and Node
Development in the Design Process. More detailed differences in the above steps are

discussed below.

Requirements Capture between Traditional and Advanced

Traditional Requirements, which include signals grouped to generate a signal database
(size, range, priority, and timing) and timing, are mostly based at node level rather
than on the whole system and its functionalities. Signal requirements of this step are
traditionally are grouped to generate a signal database. However, timing requirements
and signals published and subscribed are analyzed for the whole system and its

functionalities in advance.

System Design between Traditional and Advanced

Traditionally, signals are manually grouped together and packed into frames based on
transmit requirements and priority of data. Signal interactions are also checked
manually to verify the system’s functional requirements. In traditional system design,
network utilization and delay calculations are manually made to make a preliminary

assessment of anticipated bus behaviour.

Conversely, advanced system design adopts a network design tool, which provides
efficient methods for design a complete system communication. These efficient
methods include:
e Collecting all necessary network parameters to allow validation of network
concepts prior to starting development.
e (alculating bus loading automatically to confirm network design, which
meets all timing requirements and has deterministic communication

behaviour.

Node Development between Traditional and Advanced
Traditionally, node development can be started after the initial database describing all
the nodes information is distributed. In node development, if the developer makes

changes for a signal or frame, they must refer back to the application source code.
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Additionally, the software written under traditional node development may not

operate the same as the system design level predicated.

In advanced node development, however, network parameter files, which replaced
initial databases, distribute node information. In node development, a developer
usually develops software to describe the system network. Differing from that of the
traditional method, a code generator is used to create the application source code,
which means each node signal or frame is individually coded into its object code, so
that the developer changes the code without opening the whole system code. Thus the
advanced node development provides reconfiguration flexibility and automatic

gateway configuration.

Network Design Process between Traditional and

Advanced

In a traditional design process (WESTMANN, 2006), the effort, as shown in Figure
3.12, focuses more on integration and testing, not on the definition of the specification.
The traditional design process is also called “correct by test,” because many problems
are not discovered until the parts are put together, which makes the effort of fixing

implementation faults or even design faults much higher.

The disadvantages of the traditional design process include:
e The communication validation is not adequate.
e Real worst-case latencies are non-deterministic.
e Limited bus utilisation.
e Software communication requirements are not completely defined by the
design process.
e System reconfiguration is not flexible.
e Time is utilized fixing design during integration.

e  Warranty issues are inherently increased.
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Figure 3.12: Traditional Network Design Process Effect

In advanced design process (WESTMANN, 2006), however, the effort, as shown in

Figure 3.13, focuses more on the analysis and design, which results in less time and

money wasted on integration and testing. Additionally the warranty and recall will be

reduced as much as possible.

The advantages of the advanced design process are:

Effect

The communication validation is more adequate.
Real worst-case latencies are deterministic.

Bus utilization is close to 100%.

System reconfiguration is more flexible.

Warranty issues are inherently decreased.

Gateway timing is validated.

Warranty
. Integration &
Analysis & Recall
&. Test
Design \ _
Time

Figure 3.13: Advance Network Design Process Effect

V Model between Traditional and Advanced (HEURUNG)

The features of the Traditional V model, as numbered in Figure 3.14 include:

1.

Incomplete network design and requirements analysis.

2. Engineers in this model assume the role of system integrator and node owner.
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3.

4,
5.

The configuration of the communication layer is based on incompletely
validated information.

The ECU applications are dependent on network design parameters.

Issues identified during network verification require alteration, which involve

the entire process flow and without proper validation can result in more

network issues.

Network
< Verfication

Requirements
Analysis

E Network @
e

@ Design

ECU
Verfication

Application
Development

Figure 3.14: Traditional V Model

The features of the advanced V model, as numbered in Figure 3.15 include:

1.

N o ok

The requirements analysis and network design are more complete than
traditional models.

Engineers in this model assume the roles of function owner, system integrator
and node owner.

The configuration of communication layer is based on completely validated
information.

The network communication design is more general.

ECU applications are independent of network design and topology.

The network verification occurs after the validation of implementation.

The network related issues are minimized as a result of upfront validation their
changes does not involve entire process however, do not change the entire
process.

The entire network design reconfiguration is very flexible.
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3.5 NETWORK MANAGEMENT

Networking an ECU into a vehicle should provide some certain features such as the
accessibility of authorised entities, the tolerance of temporary failures, and the support
of network diagnostics. As the number of ECUs supplied by various OEM in vehicle
networks increases, a uniform network management mechanism is widely believed to
guarantee the safe operation of safety-relevant, distributed systems (U., 1990). The
main task (K.J, 1995) of the uniform network management in vehicles is to control the
node operation modes, which include:
e Wake up the whole network system, mode switches from sleep to operation
(Wakeup)
e  Shut down the whole network system, mode switches from operation to sleep
(Shut down)
e Mode switches between different application operations, such as initialization,

operation, limp home.

3.5.1 OSEK/VDX

German motor companies such as Mercedes-Benz, BMW, Opel, French Renault
motor company, and some OEMs such as Bosch and Siemens promote a special
project, which is the co-establishment of an open architecture of automotive industry

standard for distributed control equipments in vehicles.

This standard includes the Real-Time Operating System (OS), Network management
(NM) and Communication API (COM). The first version of this standard was
published in 1995 and called the OSEK (Open System and the corresponding
interfaces for automotive electronics) / VDX (Vehicle distributed Executive System).
In 2004, automotive electronic manufacturers and OEMs in Europe, established

another version of OSEK/VDX 2.5.3, which is the latest version.
OSEK/VDX (LEMIEUX, 2001A) is a software interface for real-time systems in

vehicles, which is defined as a communication and network management system. The

OSEK operating system provides a set of services for node monitoring such as: Task

52



VEHICLE NETWORK DESIGN

management, Synchronisation, Interrupt management, Alarms, Intra Processor

Message Handling and Error Treatment.

3.5.2 OSEK/VDX NETWORK MANAGEMENT

The requirement for a communication network for each system and its associated sub-
systems in vehicles is very rigorous (LEMIEUX, 2001A). To ensure safety and
reliability of this communication network, it is essential to create a complete network
management system. The major purpose of this operating system is to create a general
platform combined with software modules from different manufacturers. This
platform can also integrate all operation systems from a vehicle into different types of

ECUs.

3.5.3 OSEK/VDX NETWORK MANAGEMENT COMPONENTS

The Network Management of the in-vehicle network environment was originally
developed to be static, which means the overall nodes on the network are fixed and
known by each other through the assigning of a unique identifier, although not every
node needs to be available in an application. Figure 3.16 shows the in-vehicle network

management environment (MORRISSEY, 2005).
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Figure 3.16: In-vehicle Network Management Environment
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Network Management Methods
There are two network management methods, Direct and Indirect NM, defined in the
NM specification (OSEK/VDX, 2004a). These two methods are classified by the way

of monitoring their nodes.

In Direct NM, nodes on the network actively monitor each other. E.g. when a node

checks another node, it will send a specific NM message to that node.

In Indirect NM, it involves the monitoring of periodic messages that are sent from all

nodes.

In general, OSEK NM uses the specific NM communication to support direct node
monitoring, which means it uses a node to communicate logically. From the OSEK
stance, if a microprocessor with two communication models is connected to two
different Communication Media, it represents two nodes, as shown in Figure 3.17.

Electronic Communication Unit

Commvnication

Communication Media 2

Media 1

Figure 3.17: NM equipment with two CAN systems
(CAN-based Higher Layer Protocols and Profiles) (CIA, 2004)
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3.6 CONCLUSION

There are no right and wrong methodologies for designing a network or system. The
objective of the designer is to ensure that the solution meets the client requirements, is
cost sensitive, provides revenue saving or generation and gives an avenue for future

enhancements and growth.

For in-vehicle network designers, the key to network design is simple. Clearly define
all requirements for the network. Fully understand the issues and problems concerning
the network, both real and perceived. Use the interview and survey processes and
listen very carefully to the users and operators. Therefore, the designers can reduce
design time and increase quality. Some technologies, such as AUTOSAR discussed in
Chapter 4, rely even more on reliable communication infrastructures that ensure data
is delivered on time. AUTOSAR ultimately aims to reduce component cost; design
and validation complexity will increase. Advanced tools and methodologies for in-

vehicle network design have to be adopted to ensure “right first time” is possible.
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CHAPTER

NETWORK GATEWAY DESIGN

4.1 INTRODUCTION

There are lots of network protocols available in the automotive industry, each with
their own advantages and disadvantages. It is impossible for a single protocol to
satisfy all vehicle requirements. Therefore, gateways between different networks are

necessary.
There are three main issues related to in-vehicle networks, which have to be
considered when designing an in-vehicle network gateway. They are Safety/Non-

safety, Time-triggered/Event-triggered and Secure/Non-secure (EASIS, 2005a).

Safety/Non-safety: Communication between different functional networks can cause

faults on the safety-critical and dependability of the functional networks. It is
necessary to handle connections crossing the borders of functional networks based on
their dependability level. Faults in the non-safety network should not impact the

safety network.

Time-triggered/Event-triggered: An in-vehicle network gateway has to deal with a

vast amount of data with different types of protocols, which can be time-triggered (e.g.
FlexRay), or event-triggered (e.g. CAN). In certain situations, if the network is not
designed properly, the performance of the gateway can be compromised. Therefore, it
is essential to pay attention to the interaction between the time-triggered and event-

triggered buses at Lower Layers, by using dedicated hardware.

Secure/Non-secure: More and more Telematics’ equipment are configured into

vehicles to exchange information with external applications. These external

communications require extremely secure communication to protect against any
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intrusion, which maybe regarded as a threat to the entire in-vehicle network. For this

reason, the gateway design should pay attention to both the hardware and software

levels.
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4.2 GATEWAY HARDWARE ARCHITECTURES

4.2.1 GENERAL GATEWAYS ANALYSIS

As mentioned in the introduction section, a gateway ECU has to address three issues,
particularly on the inter-network communication between safety-critical and non
safety-critical communications. Therefore, a basic structure, called Fail Silent Units

(FSU) (TorIN, 2000), as shown in Figure 4.1, is necessary.

Fail Silent technique: “a node is designed so that it can only do correct sending of

messages or no sending at all (be silent), which makes it possible to use only one bus
(with redundancy for permanent failure resistance) for the inter-node

communication.” (TORIN, 2000)
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Figure 4.1: The Basic Structure of Fail Silent Units (FSU)

Figure 4.1 is an example of a basic block of a Fail Silent Unit (EASIS, 2005a). It
includes all the regulators required to supply the FSU’s internal circuitry. Moreover, it
includes the high side drivers necessary to drive the power switches. A switch, once
turned off, cuts power thus, permitting storage information in memory before
complete switch off. Additionally, a hardware block implementing a state machine for
controlling the switch in case of fault of one power supply is included. If one of the
power supplies falls below a certain level, a fault on that line is detected; the state

machine guarantees an immediate switch over.
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The gateway ECU contains a bus guardian mechanism to control the correct node
transmission performance in the safety network. The bus guardian should protect a
faulty node from disturbing the whole network. It can enable and disable the bus-
driver by using the communication schedule and allow each ECU access to the bus

only during its own assigned time slots.

The bus guardian is located in the supervisor. The supervisor should have its own
communication schedule and work independently from the communication controller.
The supervisor will send an error signal to the main processor under two situations:
the communication controller schedule is different from its own schedule, or the
communication controller start cycle is different from the one calculated. Once an

error signal is received, the main processor would ignore any further bus action.

4.2.2 GATEWAY ARCHITECTURES

There are three gateway hardware architectures (EASIS, 2005a): Single-processor
gateway, Dual-processor with services separation and Dual-processor with domain

separation.

Single-process Gateway: this is a gateway for safety critical/non-safety critical
interfacing. It is a FSU concept with the requested communication interface(s) and the
software. Figure 4.2 shows the signal-processor gateway block connecting two
networks: safety-critical and non-safety critical. The single processor in this gateway
processes all the software functions, such as communications, inputs/outputs and

applications independently.
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Dual-processor with Services Separation: this is a gateway consisting of separated

services through the use of two processors; one to execute the applications and 1/0O,

and another to execute the Lower Layer communications. Figure 4.3 shows the dual

processor with services separation gateway connecting three networks, one for safety

critical, and the remaining two for non-safety critical. The communication processor

implements routing services and other Low Layer communications. All Upper Layer

services, such as NM, Upper Layer gateway services, remote access and firewall

services are implemented on the application processor.

Power Supply

<
%

Err. Inj Power Latch
Power on/Power Failure y Status
l v
. v Application Processor
Supervisor L —— Reset < High end MCU
McCU Generator - Single Core
Single Core l
Reset [ b T - Reset
Bus |
- H
| ¢
|
|
: Communication Processor
——»
‘ Com. Contr ‘ ‘ Com. Contr ‘ ‘ Com. Contr ‘
A A T A A
enable T T ¢ T T

!
:} PHY ‘

‘ PHY

‘ ‘PHY‘

4 ¢

¢

Safety-critical

Non Safety-critical
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Dual-processor with Domain Separation: is a gateway using a dual processor. In this
gateway architecture, one of the processors is connected to safety critical/secure,
while the other processor is connected to non-safety/non-secure domains. Application

tasks are executed in one or other processors depending on its safety/security level.
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Figure 4.4: Dual-processor with Domain Separation
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4.3 GATEWAY SOFTWARE MODULES

“In software gateway concepts, the focus is on the definition of a vehicle on-board
electronic gateway software infrastructure that supports the requirements of integrated
safety systems in its main aspects related to safety, security and reliability.” (EASIS,

2005a) Therefore, in this section, two general software modules are described.

OSEK COM (OSEK/VDX, 2004B)

The OSEK standard comprises an agreement on interfaces and protocols for in-
vehicle communication called OSEK COM. OSEK COM provides a standardized API
for the software communication that is independent of the particular communication

media used in a way to ease porting of applications between different hardware.

The OSEK COM (LEMIEUX, 2001B) standard is composed of:

® An Interaction layer which provides communication services for the
transfer of application messages.

® A Network layer which provides services for the unacknowledged and
segmented transfer of application messages. The Network layer provides
flow control mechanisms to enable interfacing of communication peers
featuring different level of performance and capabilities.

® A Data link layer interface which provides services for the
unacknowledged transfer of individual data packets over a network to the

layers above.

AUTOSAR (AUTOSAR)

AUTOSAR was founded in response to the high cost of software. The cost is
comprised of two factors: high development effort and error removal after start of
production. In the automotive industry, “lack of reuse” means that similar functions
are developed more than once and that functions are exercised with a frequency
insufficient for confident quality assurance. AUTOSAR is based on existing standards,
so that some existing implementations can be reused. Reusing software will reduce
development costs, increase the use of modules, and reduce the amount of errors, all

of which will result in fewer software-related recalls.
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AUTOSAR defines the application environment (MORGAN, 2006), which defines a
software component’s interface to the rest of the ECU and the vehicle. The abstraction
of the environment is called the Virtual Function Bus (VFB). The VFB acts as a
communications matrix connecting I/O units and software components, as shown in

Figure 4.5.

SWCI1 SWC2 | eeececemecnenen. SWCn

VFB

Figure 4. 5: Software Components in the system communication via the VFB

In order to build a real system, all software components are connected to the
AUTOSAR Runtime Environment (RTE) (MORGAN, 2006) to implement the VFB.
The RTE, as shown in Figure 4.6, behaves like a telephone exchange, connecting
software components, I/O units and other services. More details of AUTOSAR are

discussed in a later chapter.

SWCI1 SWC2 |  e-ecececccnnnen. SWCn

OS

1/0 Services Communication
Stack

FlexRay

Figure 4.6: Software Architecture of an AUTOSAR ECU
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4.4 OPTIMIZATION OF GATEWAY PERFORMANCE

4.4.1 USE OF ROUTERS FOR OPTIMIZING GATEWAY PERFORMANCE

The basic functionality of a gateway is “the ‘routing’ of interchanged data with
appropriate performance to deal with the possibility of a huge interchange of
information between the different networks (with different timings and payloads).”

(EASIS, 2005a)

Optimising a gateways’ performance is to improve the routing function, so that it can
efficiently:

e Reduce the delay between network communications.

* Increase network reliability and availability.

¢ Improve main or application ECU by off-loading communication functions.

There are two levels to improving the performance of a gateway:

A signal gateway is concerned with the signal level in a gateway. It usually:
¢ Communicates between functions with the exchange of signals.

e Forwards data with protocol independence.

A message router is concerned with the message level. It usually:
e Bridges different protocols.

e Reduces communication delay and increases network efficiency.

4.4.2 HARDWARE/SOFTWARE PARTITIONING AND ROUTING LEVELS

As mentioned earlier, a gateway has two levels, a signal level and a message level.
The signal router at the signal level routes the individual signals or a group of signals
between different COM modules, and the message router routes messages between
different communication controllers (CAN, LIN, FlexRay, etc.). Furthermore, it is
necessary to distinguish between “Signals”, “Message” and “Frame” during the

operation of a gateway, as shown in Figure 4.7.
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Signal Signal 0 Signal 1
Byte 0 | Bytel Byte 2
Message Byte 0 | Bytel | Byte2 Byte n
Frame Header Data (n Bytes) Trailer

Figure 4.7: Message Definition

For each protocol stack with the length defined by protocol specification, signals from
different API functions are mapped into messages. Data transmission on the bus is in
the form of frames. Since each message regarded as a Protocol Data Unit (PDU) has

to be configured with a header and a trailer to form a frame.

Recall how to the hardware/software partitioning is conducted in gateways; it is
necessary to separate a single gateway ECU into a main processor and a
communication process. This can also be related to Computer Architecture

(STALLINGS, 2002).

Communication Processor: takes over the bus controller from the main processor, so

that data exchange is implemented directly between memory and I/O interface
without the main processor. This communication processor does the following work:

e Sends address and control signals to memory.

® Modifies data addresses.

e Counts the data length and

e Sends transmission end signal to main processor by using interrupts.

Main Processor: works as follows:

e Does not take charge of data exchange,
e Does not work as interrupts and
e Realises memory address modification and data transmission counting by

hardware not software.
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By using the communication processor and main processor separately, gateway

performance and efficiency can be improved significantly. The dual processor

gateway discussed in the hardware architecture is an example of a communication

processor and main processor. Figure 4.8 shows the HW/SW partitioning of the dual

processor gateway.
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Figure 4.8: HW/SW partitioning of dual processor gateway

Figure 4.8 illustrates that the routers are more concentrated on software, but can also

be supported by dedicated hardware, such as DMA (Direct Memory Access), with

short connections or deterministic latency and/or very high reliability and availability.

Figure 4.9 shows an example on this kind of gateway.
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Figure 4.9: The Gateway Structure with a Dedicated Hardware

4.4.3 ROUTER STRUCTURE IN GATEWAYS

A basic gateway structure is shown in Figure 4.10. There are different protocol
controllers configured in a vehicle network. It is essential to define a standard

interface in this gateway, so that it can be reused by different protocol controllers.
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Figure 4.10: A Basic Gateway Structure
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Figure 4.11: Router Management Structure

The software for a message router management, as shown in Figure 4.11, consists of
five modules: Module Management, Routing Information, Reception, Transmit and

Application.

Module Management: decides the whole router state, whether it is in receive or

transmit.

If in receive state, the module manager has to look up the routing table to decide if an
incoming message matches that shown. If incoming message matches, the module
manager will inform the Select in Reception to accept that message, then route it to
Application. If the message does not match, the module manager will inform the
Select in Reception not to accept the message. Since it is a time-consuming process,
the module manager avoids copying the entire incoming message data by handling the

message address instead of the message content.

If in transmit state, the module manager has to work with the Select in Transmit to

decide the message sequence according to their priority.

Routing Information: contains statically configured routing tables, which can be

dynamically changed for certain parameters. Each table contains different information
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on each message such as Frame ID, Network Number, Message Length, etc. The

module manager will look up those tables information, when it is in receiving state.

Reception: contains a Select, which works as a filter to decide if it should let an
incoming message pass or not. The Module Management controls those selected in
Reception. Also a received message can be copied into multiple RX-modules in case

it is routed to multiple networks (and/or the application).

Transmit: contains a select, which work with the Module Management to decide the
messages priority to for transmission, according to their identifiers. All the

transmitted messages prioritized will be assigned to appropriate buffers.

Application: requests the Module Management to send its data onto the network or

execute its function once enabled by the Module Management.

4.4.4 DEDICATED HARDWARE FOR ROUTER

As discussed in the Hardware/Software Partitioning and Routing Levels section, a
communication processor can be regarded as dedicated hardware for a message router,
as shown in Figure 4.12. The following factors must be taken into consideration when
using dedicated hardware:

e Appropriate buffer depth with efficient bus arbitration mechanism can
improve the reliability and the speed for the router. Discussed in gateway
design section.

e Task scheduling and prioritization of the routing functions can be well
configured by the operation system such as OSEK.

e The same as in software, the dedicated hardware should also apply good

routing functions such as filter mechanism and routing tables.
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Figure 4.12: Router structure with hardware support

The message router in a dedicated hardware can work autonomously and
independently from that hardware. In Figure 4.13, a hardware message router has

almost the same functions as a software router.

A well-selected dedicated hardware can work as a message router more effectively
than software, because the delay in code execution does not occur in hardware. Figure
4.13 shows the basic structure of a router with message router hardware support for a

single processor gateway.
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Figure 4.13: The Structure of a Hardware Router

4.4.5 PROTOCOL ANALYSIS

As discussed previously, message routers at a low level of the protocol stack must
convert different protocol messages and bridge them between either sides of a

gateway.

It is necessary to define an interface at the bottom of a communication protocol stack

that can carry out conversions between different communication protocols.

Table 4.1 shows the difference between some protocols:

Speed | Payload Size Access Protocol
(Kb/s) | (Bytes)
LIN 20 8 CSMA-CA, Time-triggered
CANB 125 8 CSMA-CD, Event-triggered
CAN A 1000 8
FlexRay 10000 254 TDMA and FTDMA, Time-triggered

Table 4.1: In-vehicle Network Protocol differences

During message transmission and reception, if message routing is required between
networks with the same protocols such as CAN <=> CAN and FlexRay <=> FlexRay,

the message can be implemented without protocol abstraction.
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But if message routing is required between networks with different protocols such as
CAN <=> FlexRay, the message must be implemented with protocol abstraction.

Examples of different protocol network communication are discussed next.

FlexRay €= FlexRay
Using a gateway to connect two or more FlexRay networks can be achieved by

applying compatible configurations on the networks.

CAN €= FlexRay (Dynamic Segment)

This connection case requires low deterministic timing, latency, reliability and
robustness, so that the dynamic segment of FlexRay is the better option. The protocol
allows for configuration and dynamic adaptation of the frame towards the needs of a
common interface. However, if larger FlexRay frames are allowed by the

configuration, some additional facilities will be necessary.

CAN €= FlexRay (Static Segment)

If the communication between a CAN bus and a FlexRay bus requires deterministic
timing, latency, reliability or robustness, the static segment of FlexRay should be
chosen. For the purpose of high requirements, this protocol requires more measures in

the abstraction layer.

Figure 4.14 shows how this communication works.

CAN Framesit @ @ @ FlexRay Frames @

CAN CAN CAN CAN FlexRay

Figure 4.14: CAN and FlexRay Communication
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4.5 CONCLUSION

Ideally, dedicated hardware, such as DMA can be used for data transmission between
a gateway interface and memory or other interfaces. Once a processor is configured,
the DMA controller implements the data transmission, and the embedded processor

implements the application data.

Engineers have several design options, but the most important for consideration is
whether the DMA controller is needed. It depends on the structure of the embedded
processor. For implementing data transmission application, the processor might have
enough idle cycle. But to minimize the data transmission cycle, it is necessary to
consider the transfer capacity and DMA transmission to get every cycle for the

Pprocessor.

Thus, the in-vehicle network gateway structure needs to consider several factors. It
has to meet the requirements of bandwidth and latency requirements for its interface.
The design of the gateway must be customizable, inexpensive and robust in order to

maintain competitiveness.
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CHAPTER

SIMULATION

5.1 INTRODUCTION

Simulation is the study of developing a dynamic model for a system, and it is the
process of applying the research results, based on experiments and investigations, to a
real-world system, such as a production system manufacturing automobiles. Here, the
system is the objective of research, the model is the description of the system, the
simulation is the tool and method of system investigation, and these three are closely

related.

System

A system is a group of entities that are combined in some regular interaction or
interdependence toward the accomplishment of some purpose. For example, an in-
vehicle network system, different protocols, software and hardware are integrated

together to produce a complete network system.

Systems, according to their performance characteristics can be categorized as discrete
or continuous. “Few systems in practice are wholly discrete or continuous, but since
one type of change predominates for most systems, it is usually possible to classify a

system as being either discrete or continuous.” (LAW, 2000)

A system is discrete, if its state variable(s) change only at a discrete set of points in
time, and are driven by stochastic events. (BANKS, 2000B) The vehicle network is an
example of a discrete system, since the state variable, that is, the number of messages
in the network, changes only when a message arrives or when the service providing
that a message is complete. Figure 5.1 shows how the number of messages changes

only at discrete points in time.
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Number of messages waiting
in line or being serveed

Time t

Figure 5.1: The Example of a Discrete System

A system is continuous, if its state variable(s) change continuously over time. A water
dam is an example of a continuous system. (BANKS, 2000B) Water is drawn from the
dam for flood control and to make electricity. Figure 5.2 shows how the state variable,

that is, the head of water behind the dam, changes for this continuous system.

'

Mea! of water behinad the dam

Time

Figure 5.2: The Example of a Continuous System

Model

A model is the description of a real-world system. A model is the simplification and
substitution of the system and it must include the major features of this system. In

generally, models can be classified as being mathematical or physical.

Physical models magnify or minimise the real-world system to certain proportions.
Mathematical models use symbolic notation and mathematical equations to represent
a system. A simulation is a particular type of mathematical model. Simulation models

have different types.
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A simulation is static, if the state variable(s) in its model have no timing factors,
otherwise a simulation is dynamic. Discrete and continuous systems introduced earlier

are also types of simulation models.

System Simulation (ARSHAM, 1995)

To analyse, investigate, integrate and design a system, it is essential to conduct
experiments on it. Sometimes it is possible to carry out experiments directly with the
system itself. It is also possible to do experiments by creating a model based on the

system to be investigated.

Here are some problems, when conducting experiments on a real-world system:
e They can destroy the system operation;
e They can delay the system design cycle;
e They can hinder recovery to the original system;
e They may not provide accurate judgments and estimations under different

conditions each time.

The simulation process creates a system model and a simulation model, whilst

conducting experiments based on these models.
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5.2 SIMULATION METHODOLOGIES

Models, according to their types, can be simulated by two methods: Physical

Simulation and Mathematical Simulation. (GOULD, 2006)

Physical Simulation

Physical simulation is the testing and studying process that creates a physical model
for the system to be simulated in terms of its physical features. The advantages of a
physical model are intuitional and visual. However, creating a physical model
requires high investment cost and time. Conversely, with a physical model, it is

difficult to modify the system structure, so that the research will be restricted.

Mathematical Simulation
Mathematical simulation is the testing and studying process that creates a
mathematical model for the system to be simulated in terms of its relations.
Mathematical models are economical, convenient, time saving and flexible. The steps
of simulating a mathematical model are (Ru, 1995):

1. Converting a mathematical model to a simulation model, which can then be

studied on a computer;
2. Solving the simulation model on a computer;

3. Carrying out analysis and study for this system.

Mathematical simulations can not work without computers, so a mathematical
simulation is called a computer simulation. Computer simulations are used to create a
mathematical model by using computers for analysis and study, and then applying the
analysis and results of the study to the real system. Thus, a computer simulation
includes three essentials: systems, models and computers, and these three essentials
are associated by three basic activities: model establishment, simulation establishment

and simulation experiments.
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5.3 SIMULATION TECHNOLOGY

Queuing Theory, that is, the so called Stochastic Process, is widely used in different
fields, such as communication networks, computer systems and machine plants.
Queuing Theory is considered as applicable for data transmission analysis in vehicle

networks and gateways.

When the process of queuing happens, the part that wants to get service is called a
customer. On the other hand, the part, which provides service, is called a server. As
customers, they want to get service in time whilst waiting as little time as possible. A
busy state on the server is regarded as better than an idle state, as being in a busy state

increases the usage factor.

The preceding sections will demonstrate how queuing theory is applicable to the data

transmission in the vehicle network and gateways.

5.3.1 THE BASIC QUEUING THEORY

Figure 5.3 is a general model of a queuing process. It illustrates that before a message
from source goes to a certain server, it will wait in the queue to be served according to
the queuing discipline. The server will carry out the service following the service
discipline, and a message will leave after being served. The queuing structure in
Figure 5.3 describes the number of the queues and their ranking methods. The
queuing and service disciplines describe the workings of the queuing structure. The

service window provides service according to the queuing and service disciplines.

Message Service
Arrive Discipline e
2
Messages | Queuing Structure P> § P  Departure
Source g g P
: 2
Queuing g
Discipline

Figure 5.3: Basic Model of Queuing Process
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Essentials of Queuing Theory (BANKS, 2000B)
Generally, a queuing system should be provided with three essentials, which are
customers, queuing discipline and servers.

1. Customer
The term “customer” can refer to people, machines, trucks, mechanics, patients,
pallets, airplanes, e-mails, cases, orders, or dirty clothes — anything that arrives at a
facility and requires service. When designing an in-vehicle gateway, all the messages

coming from different transceivers are said to be customers.

The customer sources and the states of queuing systems are various. The sources of
customer could be finite or infinite. Customers can arrive continuously or discretely,
they can come one by one or batch by batch. The interval time between customers’
arrival could be determinate or stochastic. Each customer arriving could be

independent or interrelate with others.

The process of customers queuing is also called input process. If, however, the
intervals between arriving customers, as well as their associated parameters are in no
way affected by timing, we say this process is stationary, otherwise it is non-
stationary. In general, some certain mathematical models can resolve a stationary
input process, but for a non-stationary input process, only simulation models can

resolve it.

2. Queuing Discipline
Losing System and Waiting System
When customers arrive and all the servers are busy, customers can leave or wait.

‘Customers leaving’ is a losing system, and ‘customer waiting’ is a Waiting System.

Mixed System
Queuing systems in in-vehicle network gateways are between a Losing System and a
Waiting System. When a message arrives, if all servers are busy it will queue; if all

servers are busy and every queue is full, this message will leave.

81



SIMULATION

Queuing Discipline

¢  FIFO: (first in, first out): a customer that finds the service centre busy goes to
the end of the queue.

e LIFO: (Last in, First out): a customer that finds the service centre busy
proceeds immediately to the head of the queue. They will then be served next,
provided that no further customers arrive.

¢ Random Service: the customers in the queue are served in random order.

e Round Robin: every customer gets a time slice. If their service is not
completed, they will re-enter the queue.

e Priority Disciplines: every customer has a (static or dynamic) priority; the
server always selects the customers with the highest priority. This scheme can

use pre-emption or not.

3. Server
The term “server” might refer to receptionists, repairpersons, mechanics, tool-crib
clerks, medical personnel, automatic storage and retrieval machines (e.g., cranes),
runways at an airport, automatic packers, order pickers, CPUs in a computer, or
washing machines — that is, any resource (person, machine, etc.) which provides the
requested service. In vehicle networks, gateways are servers that decide how to

Pprocess messages.

Servers can be single or multiple. Multi-servers can be serial or parallel. The services
the server provides can be by single or by batch; the service time can be deterministic,

or stochastic, the distribution of service time can be stationary, or non-stationary.

5.3.2 MARKOV PROCESS AND ITS MAJOR MODELS

5.3.2.1 MARKOV PROCESS

The queuing process (JACOBSEN, 2006) is a stochastic process, while a queuing
problem is a stochastic problem. Customers can come into server system at different
interval times. The service time each customer requires is non-deterministic. Thus,
some times the server can be busy, while sometimes it can be idle. It is quite complex

to solve a stochastic problem than to solve a deterministic problem, because building
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mathematical models is not easy. In some circumstances however, it is possible to
build a mathematical model with simple structure and certain instructions. The

Markov process is based on this kind of mathematical model.

Markov was a Russian mathematician, who after conducting lots of experiments
discovered that under some circumstances, the probabilities in the system states’
transfer process; that is, the probability of n™ result does not depends on the previous

results, but usually on the (n-l)th result.

It is essential to know what the general stochastic process is before building a Markov
process. In nature, the process of system transferring can be classified into
deterministic and stochastic. If the process of system transferring has a certain format,
we say this process is deterministic. A deterministic system can be predicted. If the

process of system transferring cannot be predicated, we say it is a stochastic process.

The basic concept of the Markov process is that of the system states and system
transferring. Essentially, a variable of the system state transfers from one certain value
to another certain value, thus, we say this system carries out a ‘transferring’. For
example, all the CAN nodes in an in-vehicle network functioning correctly represent
one state, while state transferring happens when one or more CAN nodes are

disconnected.

So the Markov Process’s definition is:

The future probabilities of a random process are determined by its most recent values.
A stochastic process * [#)is called Markov if for every #and?t <%z ... < 2, we have:

o itn) 23 | 2 ) 0 2 1)) =F (2 (f0) £ %o | % (fa-1)). (WEISSTEIN)

This is equivalent to:

Flltp) =xy | x(2) forall ¢ 2254)=F ) 2 %0 |2 Feet]) (WEISSTEIN)
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5.3.2.2 DISCRETE AND CONTINUOUS MARKOV PROCESS

A discrete and continuous Markov Process provides big effects in Queuing Theory. A
discrete system is one in which the state variable(s) change only at discrete points in
time. The Chinese takeaway is an example of a discrete system, since the state
variable, the number of customers in the takeaway, changes only when a customer
arrives or when they have received their takeaway, that is, the service is complete.

Figure 5.1 shows how the number of customers changes only at discrete points in time.

A continuous system is one in which the state variable(s) change continuously over
time. For example, one mechanical system has two machine tools, where a machine
tool could fail at any time. Once failure happens, it must be repaired at once. The time

taken to repair will be non-deterministic, before failure happens, or it is stochastic.

The possible states of this mechanical system could be:
So: Both machine tools work properly.
Si: Machine tool 1 works properly, but machine tool 2 does not.
Si3: Machine tool 2 works properly, but machine tool 1 does not.

S4: Both machine tools do not work properly.

In fact, the transfers of system states are instantaneous. Namely, Faults and repairing

are both stochastic.

5.3.2.3 EXAMPLES OF QUEUING MODELS

D.G.Kendall’s classified a queuing system model (KENDALL, 1953). The format of
D.G.Kendall’s classification is as follow:

X/Y/e/N/IK

X represents the inter-arrival-time distribution.
Y represents the service-time distribution.

¢ represents the number of parallel servers.

N represents the system capacity.

K represents the size of the calling population.
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For example, M/M/1/od o indicates a single-server system that has unlimited queuing
capacity and an infinite population of potential aOrrivals. The inter-arrival times and

service times are exponentially distributed.

The data transmission in the vehicle networks can be modeled as a single server
queuing system with a messages arrival process and an exponential distribution for
service time. The gateway is the server and all waiting messages form queues. There
are some common queuing models with Markov Process (JACOBSEN, 2006) give a
general idea on how the single server works and how messages queue to make the

analysis simple.

1. Single-Server Queues with Losing (MIMI010)
There is only one server in this system, so this system has only two states:
So: Server is idle.

Si: Server is busy.

The messages arrival rate is A, and the server’s service capability is 1, as shown in

Figure 5.4.

S() < S1
18

Figure 5.4: MIMIOIO States

2. Single-Servers Queuing with Waiting (MIMI1)

This queuing model is very common in vehicle networks. The messages arrival rate is
A, and the server’s service capability is u, as shown in Figure 5.5. There is only one
server in the system. When messages arrive, if the server is busy, they join the queue
to be severed.

So: There is no message in the system, and the server is idle.

Si: There is only one message in the system, the server is busy, and the queue

is empty.

S,: There are two messages in the system, the server is busy, and one message

is in the queue.
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So

Sk: There are k message s in the system, the server is busy, and there are (K-1)

messages in the queue.

)\' |- l |-
- 1 S | '
n n

S,

—

- — — — —
n

Sk

Figure 5.5: MIMI1 States
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3. Single-Server Queuing with Losing and Waiting (MIMI1Im)

There is only one server in the system, the messages arrival rate is A, and the server’s

service capability is p, as shown in Figure 5.6. When a message arrives and the server

is busy, that message must wait to be severed. As the queue size in the system is m, if

the queue is full, messages have to leave.

So

So: The server is idle.

Si: The server is busy, and there is no message in the queue.

S»: The server is busy, and there is one message in the queue.

Sk: The server is busy, and there are k-1 messages in the queue.

Sm+1: The server is busy, and there are m messages in the queue.

A

A

[

St

[

A

n

S,

n

Sk

Sm+l

Figure 5.6: MIMI1Im States
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5.4 SIMULATION TOOL—- MATLAB/SIMULINK AND SIMEVENTS

5.4.1 BACKGROUND

The name Matlab derived from a combination of the first three letters of both MATrix
and LABoratory. In the late of 1970s, Cleve Moler, the head of the Computer Science
Department of University of New Mexico designed an easy understood interface
using LINPACK (DONGARRA, 1980s) and EISPACK (WILKINSON, 1972-1973)

software packages.

LINPACK is a collection of FORTRAN subroutines for solving linear equations and

EISPACK contains subroutines for solving Eigen value problems.

After widespread used in universities and after a suggestion by John Little, Little,
Moler, and Steve Bangert started working together. In 1984, MathWorks Inc. was
founded and officially introduced to the market as Matlab (MATHWORKS, 1984).

As a software package of Matlab, Simulink is an integrated interactive environment

for modelling, simulating and analyzing dynamic systems.

5.4.2 THE MATLAB SYSTEM

“Matlab is a high-performance language for technical computing. It integrates
computation, visualization and programming in an easy-to-use environment where
problems and solutions are expressed in familiar mathematical notation. Typical uses
include:

¢ Modelling, simulation and prototyping,

e Math and computation,

e Data analysis, exploration and visualization,

e Algorithm development,

e Application development, including graphical user interface building,

e Scientific and engineering graphics and

e Data acquisition. (MATHWORKS, 1997B)
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Matlab is an interactive system with dynamic basic data element array sizes. This
allows for an easy interactive calculation of technical computing problems, especially
those with vector and matrix formulations. To develop the same calculation and write
the program in a non-interactive scalar language would take a much longer period of

time and may prove very difficult.
The Matlab system consists of five main parts: Development Environment, The
Matlab Mathematical Function Library, The Matlab Language, Graphics and

Visualization, and External Interfaces/API.

The Development Environment, like the majority of development environments

includes:
e The Matlab desktop and command window,
e A command history,
® An editor and debugger and

e Browsers for viewing help, the workspace, files and the search path.

The Matlab Mathematical Function Library collects computational algorithms from

simple functions such as sum, sine, cosine and complex arithmetic to more difficult
functions such as matrix inverse, matrix eigenvalue and Fourier transforms.

(MATHWORKS, 1997B)

The Matlab Language is a high-level matrix/array language with control flow

statements, functions, data structures, input/output and object-oriented programming

features. It supports both small and complex application programs.

When using the Matlab Language, there are fifteen fundamental data types. Each of
these data types is formed by a matrix or on array. The matrix or array is a minimum
of 0-by-0 in size and can grow to an n-dimensional array of any size. (MATHWORKS,

19978)

88



SIMULATION

The following Table 5.1 describes these data types in detail.

Data Type Example Description
logical magic (41 > 10 Logical array. Must contain only logical 1
(true) and logical O (false) elements. (Any
nonzero values corverted to logical become
logical 1.) Logical matrices (2-D only) may
be sparse.
char 'Hello!' Character array (each character is 16 bits
long). This array is also referred to as a string.
intd, uints, uints (magic(3)) Signed and unsigned integer arrays that are G,
intlé, wuintle, 16, 32, and B4 bits in length. Enables you to
int32, uintiz, manipulate integer quantities in a mermory
int&4, uintc4 efficient rmanner. These data types cannot be
used in mathematical operations.
single 3*10+38 Single-precision numeric array. Single
precision regquires less storage than double
precision, but has less precision and a smaller
range. This data type cannot be used in
mathematical aoperations.
doub le F*10~300 Double-precision numeric array. This is the
5+61 maost commaon MATLAE variable type. Daouble
matrices (2-D only) may be sparse.
cell {17 'hello’ Cell array. Elernents of cell arrays contain
eye (2]} other arrays. Cell arrays collect related data
and information of a dissimilar size together.
Structure a.day = 12; Structure array. Structure arrays have field
a.color = 'Red': |names. The fields contain other arrays. Like
a.met = cell arrays, structures collect related data and
magic (3 : information together.
function handle |Bhumps Handle to a MATLAB function. A function
handle can be passed in an argument list and
evaluated using fewval.
user class inline ('sini(x) ') |MATLAB class. This user-defined class is
created using MATLAB functions.
java class jawva.awt . Frame Java class. ¥ou can use classes already
defined in the Java APl or by a third party, or
create your own classes in the Java language.

Table 5.1: Data Types in Details

Graphics are the extensive facilities of MATLAB which use graphs to display vectors
and matrices and for annotating and printing these graphs. It includes high-level
functions for two-dimensional and three-dimensional data visualization, image
processing, animation and presentation graphics. It also includes low-level functions
that allow users to fully customize the appearance of graphics, as well as to build
complete graphical user interfaces for your MATLAB applications. (MATHWORKS,
1997B)

&9



SIMULATION

External Interfaces/API allows users to interact with MATLAB by writing C and

FORTRAN programs. It includes facilities for calling routines from MATLAB
(dynamic linking), calling MATLAB as a computational engine, and for reading and

writing MAT-files.

5.4.3 SIMULINK AND STATEFLOW

Simulink is a block-based design environment based on Matlab for modelling,
simulating, and analyzing dynamic systems. It has a comprehensive range of blocks to
model any system represented by math, including linear and nonlinear systems, time
driven and event driven system. Simulink provides plenty of functional models and

different domain models to build a whole dynamic system without writing any code.

Stateflow is an interactive design tool based on Finite-state Machines (MathWorks,
1997b) to model and simulate some complex event driven systems. Stateflow is
integrated with Simulink and Matlab. It is possible to link some complex control logic

created by Stateflow to Simulink models.

5.4.4 SIMEVENTS

SimEvents (MATHWORKS, 2006) is an extensive tool of Simulink for modelling and
simulating discrete-event systems using queues and servers. SimEvents allows users
to build a discrete-event simulation model in Simulink to simulate the passing of
entities through a network of queues, servers, gates and switches based on events.
SimEvents and Simulink provide an integrated environment for modelling hybrid
dynamic systems containing continuous-time, discrete-time, and discrete-event
components. Here, two concepts in SimEvents need to be clearly discussed; namely
Entity and Event.
® Entity: the Discrete-event simulation is typically interested in the discrete
items, which are regarded as entities in SimEvents. In a simulation model,
defined entities have activities in the network of queues, servers, gates and
switches. Those entities can carry different contents, known in SimEvents as
attributes. For example, in vehicle network, each message is an entity having

attributes like data, data rate, data length and message id.
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® Event: in a discrete-event simulation, an event is an instantaneous discrete
incident that changes a state variable, an output and/or the occurrence of

other events.

5.4.4.1 SIMEVENTS QUEUES AND SERVERS

SimEvents Queues
In a discrete-event simulation, a queue stores entities for some length of time that
cannot be determined in advance. The queue attempts to output entities as soon as it
can, but its success depends on whether the next block accepts new entities. An
example of a queue is the buffer in a vehicle network, where one message stands in a
line with other messages to wait for a processor to transmit it and this message cannot
determine in advance how long this message must wait. The features of different
queues are:

e The queue capacity, which defines how many entities the queue can hold

simultaneously.
e The queue discipline, which indicates which entity departs first if the queue

has multiple entities.

SimEvents Servers
In a discrete-event simulation, a server stores entities for some length of time, called
the service time, and then attempts to output the entity. The features of different
servers are:
e The number of entities it can serve simultaneously, which could be finite or
infinite.
e Characteristics of the method of computing the service times of arriving
entities.
e  Whether the server permits certain arriving entities to pre-empt entities that

are already stored in the server.
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5.4.4.2 SIMEVENTS PATHS AND ROUTING TECHNIQUES

SimEvents Paths

An entity path is a connection from an entity output port to an entity input port,
depicted as a line connecting the entity ports of two SimEvents blocks. An entity path
represents the equivalence between an entity’s departure from the first block and
arrival at the second block. Figure 5.7 is an example of any entity that departs from
the FIFO Queue block’s OUT port while simultaneously arriving at the Single Server
block’s IN port.

o

in e
Signal Scope
y #d

t %DUTHIN OUT | IN ﬁ_ﬁ;m 7]

()

Step

Time-Bazed FIFO Queus Single Server Entity Sink

Entity Feneratar

Figure 5.7: The Example of the FIFO Queue Block

SimEvents Routing Techniques
Routing techniques as a special feature in SimEvents provides a supplement to
SimEvents Entities Path design. Before discussing these techniques, some SimEvents

blocks have to be explained, which are shown in Table 5.2.

Block Name Block Description Block Diagram
Output Switch This block selects one of the entity output ports, and the ouTi
selected port can change during the simulation. Blin o Soutz s
OuUT2 B
D utput Swaitch
Input Switch This block selects one of the entity input ports. It selects | zain1 s
exactly one entity input port for potential arrivals and makes | -{INz | A+ 0UT p-
all other entity input ports unavailable. Also, the selected | -a{inz
entity input port can change during the simulation. Input Suitch
Path Combiner This block can merge multiple paths into a single path. BlINT
:} OuUT f
#|Inz

Fath Combiner

Table 5.2: SimEvents Routing Blocks

Table 5.3 shows the Routing Techniques used in SimEvents.

Technique Name Technique Description
Equiprobable It supports the Input Switch and Output Switch blocks randomly
switching selecting ports.

Round-robin switching | The Input Switch and Output Switch cycle through the entity input
and output ports in sequence. In this technique, after the last entity

port, the next selection is the first entity port.

Table 5.3: SimEvents Routing Techniques
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5.6 CONCLUSION

Data transmission in an in-vehicle network is influenced significantly by the intensity
and distribution of message traffic in the network. Data transmission is subject to
time-varying delays due to the latency of messages. Messages may also be corrupted
by noise in the network medium or lost due to buffer saturation in the receiving side.
These problems increase the message transmission delay and degrade the performance
of real-time control systems. For a network such as CAN, which may be shared by
processors, each with a different configuration, design of an appropriate traffic load

distribution is critical.

In-vehicle networks, such as CAN, LIN and FlexRay, can be modelled as a single
channel queuing system with an exponential distribution for service time. The bus is
the server and all waiting messages form a single queue. Therefore, it is worth using
the Markov process to analyse the traffic on different buses. By using an appropriate
simulation tool, the expected traffic characteristics, obtained via simulation, can be
used to verify the analytical results. The analytical result may give the control system
designer some idea on the relationship among message delays, message priorities and
expected loads of the system and help them to choose optimum design parameters.
The simulation tool can also be used as a tool to help system designers to evaluate

their design.
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LITERATURE REVIEW SUMMARY

CHAPTER

LITERATURE REVIEW SUMMARY

The literature review described the technologies/methodologies that the research is

based upon.

Chapter Two presented the current state of in-vehicle network status with regards to
the vehicle network protocols, such as CAN, TTCAN, LIN and FlexRay with their
advantages and disadvantages. In this chapter, some important features and data, such

as the Time-Triggered feature and Message Length, of these protocols are collected.

Chapter Three described the vehicle network design and management with

traditional and advanced methods. Relate to this research, it was found that all
requirements for the network should be clearly defined. Additionally, the issues and

problems concerning the network, both real and perceived should be fully understood.

Chapter Four then presented the key concept of this research: vehicle network
gateway with detailed discussing it from its hardware architecture and software
implementation. The in-vehicle network gateway structure needs to consider several
factors. The design of the gateway must be customizable, inexpensive and robust in

order to maintain competitiveness.

The final chapter of the literature review described a reference theory which is
applicable for the data transmission in the vehicle network gateway. This chapter also
introduced the concept of simulation and a simulation tool was introduced to assist in
the present research. In-vehicle networks can be modelled as a single channel queuing
system with an exponential distribution for service time. Therefore, it is worth using

queuing theory to analyse the traffic on different buses.
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METHODOLOGY

CHAPTER

METHODOLOGY

7.1 METHODOLOGY OVERVIEW

There is a new design paradigm for in-vehicle network systems called model-based
design (AUTOMOTIVE ELECTRONICS, 2004), or electronic system-level (ESL) design.
Virtual Prototypes are the core of the model-based design approach, which consists of
software versions of the silicon systems, ECUs or networks of ECUs. Simulation is

one type of virtual prototype used in automotive industry.

This research aims to develop a detailed gateway simulation model that can be used to
analyze gateway performance, including the Number of Dropped Messages,
Throughput and the Average Message Latency. By evaluating these performance

measures, a better gateway design strategy can be achieved.
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7.2 SIMULATION DESIGN

7.2.1 SIMULATION PROCESS

The simulation process consists of the following steps (BANKS, 2004).

Problem Formulation

Every simulation study begins with a problem statement. The problem statement
should include a set of assumptions regarding the behaviour of the process to be
simulated. Policy makers and analysts are involved in defining the problem
formulation. Regardless of whether the policy makers or analysts define the problem,

the others must clearly understand and agree to it.

Setting of Objectives and Overall Project Plan

This step focuses on whether simulation is a suitable methodology for the system
formulated and objectives, as defined. If at this stage, simulation is thought suitable,
the whole project plan might consist of a statement of alternative systems and a

method for evaluating the effectiveness of these alternatives.

Model Conceptualization

This is a gradually developed step, which aims to abstract the features of the system,
select and modify basic assumptions that characterise the system, whilst enriching and
elaborating the model until a useful approximation of results, from simple to complex,

is attained.

Data Collection

This step requires early progress during all stages of the model development. That is
because as the complexity of the model changes, the required data elements may also
change. There is constant interplay between the construction of the model and the

collection of the input data required (SHANNON, 1975).
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Model Translation

This step involves “programming” the model into a computer-recognizable format.
Simulation languages, which are powerful and flexible or special-purpose simulation
software such as Matlab and Simulink, should be selected to program the system

model.

Verification

This step focuses on helping the simulation model developer determine if the
computer program is working properly, without substantial debugging. Verification
depends on if the input parameters and logical structure of the model are correctly

represented in the computer.

Validation

This step decides if the correct representation of the real system is simulated by a
simulation tool or language. The validation step has to be repeated to improve the
model by calibrating the model, comparing the difference between the model

simulated and actual system behaviour, until it is judged to be accurate and acceptable.

Experimental Design
This step focuses on making decisions on the alternatives to be simulated. For each
simulated system design, the decisions should take into consideration the following
factors:

e The length of the initialization period,

e The length of simulation runs,

e The number of replications to be made of each run.

Production Runs and Analysis

This step focuses on measuring the system’s design performance.
More Runs?

This step decides whether additional runs are necessary and defines additional

experiments required by the design.
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Documentation
This step focuses on two types of documentation: program and progress. Reasons for
program documentation include:
e Reused by the same or different analysts for understanding the program
operation.
¢ Reused by the same or a different analyst for modifying the program.
e Reused by the model users for changing parameters when deciding the input
parameters that output measures of performance.
Musselman (MUSSELMAN, 1998) discusses progress reports that provide the important,

written history of a simulation project.

Implementation

This step decides the result (failure or success) according to the previous steps. It is
contingent upon how thoroughly the analyst has involved the ultimate model user
during the entire simulation process. If the model user has been thoroughly involved
and understands the nature of the model and its outputs, the likelihood of a rigorous

implementation is enhanced. (PRITSKER, 1995)

99



METHODOLOGY

Problem
formulation

y
Setting of
objectives

and overall
project plan
L

M™Model Data
conceptualization collection
1 o ]

Model

I translation

Yes

Ne X e
\|/

Validated?

Yes
v

Experimental |
design

1|

Production

runs and Yes
analysis

Documentatio
n and
reporting

Implementat
ion

Figure 7.1: Simulation Process

7.2.2 SIMULATION PROCESS RELATED TO THIS RESEARCH

This section highlights the relationship between simulation and this research.

Problem Formulation

The current research begins with the problems of in-vehicle network gateways
(Described in the Thesis Overview Chapter). Gateways in vehicle networks have

become a critical factor, which is recognized by automotive industry.
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Setting of objectives and Overall Project Plan

There are many ECUs and variants to consider when designing in-vehicle networks. It
is difficult to build enough physical prototypes to perform adequate testing, even
considering only the most critical variations. Therefore, simulating a virtual prototype

of a gateway is a more effective solution for verifying its performance.

Model Conceptualization
All the basic features of in-vehicle networks are abstracted and selected to
characterise the system to be simulated. These features include time-triggered and

event-triggered transmission and reception.

Data Collection

All the required data elements the system needs are collected and analyzed.

Model Translation
It was decided that the Matlab/Simulink and SimEvents would be used for the model

simulation, because it is widely used in the automotive industry.

Experimental Design
The in-vehicle network model will initially be simulated as different network
components. These components are:
® Protocol controllers: event and time triggered transmission and reception.
® Communication Bus: Bus Loading, Bus Rate and Time Triggered
Communication.
® In-vehicle Network Gateway: Signal Gateway and PDU Router according
to the AUTOSAR defined specification.

Verification
The in-vehicle network simulation model will be verified using Matlab/SimuLink and

SimEvents to make sure the model performs properly.
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Validation

The verified in-vehicle network model will be sent to an expert in automotive industry
for validation. Upon receiving the comments from the expert, the simulation model
will be refined until model accuracy is judged acceptable. In the final stage of this
validation process, a number of gateway model evaluation sets will be setup to
optimise the gateway performance. Some important parameters and expected results
will be chosen to implement this validation process. This step will be implemented by
using a three-step approach, which is described in the Testing Chapter, formulated by
(NAYLOR, 1966).
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7.3 SIMULATION TOOL SELECTION

There are many features that are relevant when selecting simulation software (BANKS,

2000A). The following advice can be applied when evaluating and selecting

simulation tools:

1.

There are a number of issues that need to be considered:
e The accuracy and level of detail obtainable,

¢ Ease of learning,

® Vendor support,

e Applicability to the problems.

The selected tool’s execution speed is important. Speed affects development
time. During debugging, the analyst may have to wait for the model to
approach the point in simulation time where an error occurs many times

before the error is identified.

The advertising claims and demonstrations of the simulation tool the selected
should be read carefully, simply because many advertisements only exploit
the positive features of the software. Similarly, the demonstrations solve the

test problem very well, but perhaps not the problem.

Always contact the vendor, even to solve apparently insignificant problems.

Beware of “checklists” with “yes” and “no” as entries. For instance, many
packages claim to have a conveyor entity; however, implementation and

capability are what are important.

Many Simulation tools provide a feature which can link the simulation model
to, and use code or routines written in external languages such as C, C++, or
VB. This is a good feature, especially when the external routines already exist
and are suitable for the purpose at hand. However, the more important
question is whether the simulation package and language are sufficiently

powerful to avoid having to write logic in any external language.
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There may be significant trade-offs between the graphical model-building
environments and those based on a simulation language. While graphical model
building removes the learning curve due to language syntax, it does not remove the
need for procedural logic in most real-world models and the debugging to get it right.
Beware of “no programming required” unless either the package is a near-perfect fit
to your problem domain, or programming is possible with the supplied blocks, nodes,
or process flow diagram, in which case “no programming required” refers to syntax

only and not the development of procedural logic.

At the beginning of the simulation tool selection, a simulation tool called SIMULS
was used to model the in-vehicle network and gateway. However, it was determined
that it is quite hard to gather all the data requirements using SIMULS to build the
model. There are no existing examples and references on the vehicle network
simulation using this tool. It appears that SIMUL8 cannot be applicable to the

automotive industry.

Matlab/Simulink, however, is a well know simulation tool in the automotive industry.
The new SimEvents package provides additional features such as the Events Generate,
Queues and Servers and Paths and Routing Techniques which are applicable to the

model simulated in this research.
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7.4 CONCLUSION

Today, the number of functions in a vehicle ECU is increasing, which in turn is
causing the number of ECUs in vehicles to increase. The more ECUs that are
connected onto networks, the more burden a gateway will have. Many OEMs have to
consider lots of variations when designing vehicle gateways. In order to design a
reliable gateway, those variations must be accounted for during testing. Using the
prototyping approach it is quite hard to build enough physical prototypes to perform
adequate testing, even with the most critical variations. Simulating a virtual prototype
of a gateway is a more effective solution for verifying its performance. It is for this

reason that Matlab and Simulink were used in the research.
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CHAPTER

GATEWAY MODEL
REQUIREMENTS SPECIFICATION

8.1 SYSTEM ARCHITECTURE OVERVIEW

< Communication Bus >

ECU ECU ECU

Figure 8.1: System Architecture

Figure 8.1 shows an overview of a simple in-vehicle network system and its
components, including the gateway.
e ECUs (Electronic Control Units): control a variety of vehicle functions,
including fuel injection, transmission shifting and anti-lock braking.
e Communication Buses: are the network(s) used in the vehicles, for example
CAN, LIN, FlexRay, etc.
e Gateway ECU: is connected to two or more different networks and controls

the information interchange between these networks.
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8.2 AUTOSAR GATEWAY STRUCTURE

AUTOSAR (AUTOSAR, 2006) has recently released a detailed document on in-
vehicle network gateways. Figure 8.2 shows the basic gateway structure defined by

AUTOSAR.

Tpp
2i 2i i
Galé".‘jlay Sig::lgﬁlg:ﬂ;p cOM
rl
| | FD'TT Router |
Lower [Fle:Ray TF| [ Canm TP |
|F1-exRLa3.rI:tﬂ:e:tf'ace| | A H Irderfacs || LIH Irterfacs |
| FlexRay Driver || CANDriver || LINDriver |

Figure 8.2: AUTOSAR gateway structure

COM is a method of exchanging data between different tasks and between multiple
ECUs over a network. COM is an asynchronous communication model, where the
application is not required to wait for a message transfer before it resumes processing
and it is not blocked if a message is not available when requested. COM defines a
number of notification mechanisms that assist the application in understanding when a

message is sent or received.

Each message defined for an application can have only one sender within the system,
but one or many receivers can receive it. These receivers can be tasks that reside on

the same or a different ECU.

Signal-based Gateway is situated inside of the COM. Signals and signal groups are
stamped with unique static names by signal router. A routing table mechanism is used
to store all the signals or signal groups’ information including their names, destination,

etc. Its main tasks are:
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e Packing signals or signal groups (Complex Data Types) from applications into

message units (PDU).
e Unpacking signals or signal groups from message units (PDU) to applications.

The PDU Router is located between Upper Layer COM and Lower Layer. Its main

tasks are:

¢ Providing a transport platform for messages with different protocol formats on

the Lower Layer.

¢ Providing a transport platform for different functional networks on the Lower

Layer.

e Providing a transport platform for packing/unpacking messages into the

Upper Layer.

The Lower Layer includes Transport Protocols, Protocol Interface and Protocol

Drivers, which are close to the physical layer.
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8.2.1 MESSAGE TRANSMISSION TYPES

According to the AUTOSAR defined Gateway specification, the transmit side of a

controller have three transmission types:

¢ Non TP-PDU-TX without Trigger Transmit: data to be transmitted in this case

is required to send a transmit request first. Data will be transmitted on the

related bus after that transmit request, without delay. After successful

transmission, a transmit confirmation is provided.

Upper Layer

PDU_R

Lower Layer

V. - TX Feedback Information

TX Confirmation

-
-
-

- -

Ccccce= -

TX Request & Messages

X fi ion F k
Seo Confirmation Feedbac! . '

(Y
e

TX Request & Messages

TX Feedback Information

TX Confirmation

Figure 8.3: Non TP-PDU-TX without Triggered

Copy data
to TX
buffer

o
o

110



GATEWAY MODEL REQUIREMENTS SPECIFICATION

e Non TP-PDU-TX with Trigger Transmit: data will not be transmitted right
after a transmit request. Data transmission is implemented by a Trigger
Transmit signal from the gateway. In this case, a buffer is provided by the

gateway ECU.

Upper Layer PDU_R Lower Layer

TX Request /-—\

TX Request

Ve TX Request Feedback e
L - -
v~‘~ TX Request Feedback .o .‘~~.___-_--“—

. ®
-q o®
cCecassee"

Triggered TX Message
Triggered TX Message

Copy data
to TX
buffer

N Triggered TX Message -
S - Feedback e Triggered TX Message
-
Rl DR L ~‘~~ Feedback ,'
.~"~-----"”’
TX Confirmation
TX Confirmation
Seo TX Confirmation Feedback "
-
‘~..._____..o" Seo TX Confirmation Feedback "
) ."'-------""

Figure 8.4: Non TP-PDU-TX with Trigger Transmit
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TP-PDU-TX: data transmission happens via the transport protocol modules.
The transmit request is forwarded by the gateway ECU to the related TP
module. Depending on each message length, an equivalent transmit buffer is
selected. The TP module will transmit the message from the transmit buffer.
For an efficient usage of the transmit buffer, the transmit side should be
configured for multi-sized buffers. After successful transmission, a transmit

confirmation is provided.

Upper Layer PDU_R Lower Layer

TX Request /\

TX Request

ad o TX Request Feedback .

- -
W o TX Request Feedback P ~.'------,.-’—‘

-
- Ll
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equivalent buffer

Copy data
to TX
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TX Confirmation
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e - TX Confirmation Feedback '
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cSeo ee®
AT XY X

Figure 8.5: TP-PDU-TX
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8.2.2 MESSAGE RECEPTION TYPES

According to the AUTOSAR defined gateway specification, each receive operation of
the receive side in a controller shall always be triggered by an indication. The
indication is either invoked by an interrupt or results from polling another
communication controller. There are two types of message reception.

e Non TP-PDU-RX: data to be received is not from the transport protocol

module but from an interface module.

Upper Layer PDU_R Lower Layer

/ijh/\

RX Indication

Copy data
to RX
buffer

RX Feedback Information
Sse Py '

RX Feedback Information
% 4

o
o
-®

Figure 8.6: Non TP-PDU-RX
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e TP-PDU-RX: data to be received is from a transport protocol module.
Depending on each message length, an equivalent receive buffer is selected.
For efficient usage of the receive buffer, the receive side should be configured

for multi-sized buffers.

Upper Layer PDU_R Lower Layer

RX Indication & Select
Equivalent Buffer

RX Indication

Copy data
to RX
buffer

RX Feedback Information
Se o '

-

N RX Feedback Information " Seo .-’
.e o?

Figure 8.7: TP-PDU-RX

Each receive side should be configured by a message filter. The message filter works
on the principle of a front door, that is, deciding which message should be accepted

by checking each message’s identifier number.

8.2.3 AUTOSAR PDU ROUTER

The ECU can act as a direct gateway between two interface modules without rate
conversion. It can also act as a non-direct gateway between two interface modules
with rate conversion and two transport protocol modules. There are three types of

gateway.

114



GATEWAY MODEL REQUIREMENTS SPECIFICATION

Non TP-PDU-Gateway without/with Rate Conversion: this acts as a direct

gateway between two interface modules. Messages received from one

interface shall be forwarded to the other interface. In this case, the TP-PDU-

Gateway contains both triggered and non-triggered gateway transmit

operations. The triggered idea can be referred to the messages transmission

part, discussed in the early this chapter.
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Figure 8.8: Non TP-PDU-Gateway without Rate Conversion (Non-Triggered)
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Figure 8.9: Non TP-PDU-Gateway without Rate Conversion (Triggered)
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Non TP-PDU-Gateway with Rate Conversion: the PDU Router does not

directly support communication between two interface modules with rate

conversion. Rather, the rate conversion is support by the Upper Layer of the

gateway ECU; the signal gateway in the Upper Layer carries out the rate

conversion.
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TP-PDU-Gateway: data received from one bus shall be forwarded to another

bus. In this case, it consists of two parts: TP PDU reception and TP PDU

transmission, both via transport protocol modules. The PDU Router shall

support routing on-the-fly. Therefore data transmission and reception on both

transmit and receive TP modules must happen simultaneously.
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Figure 8.11: Gateway Block
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8.3 GATEWAY BUFFER REQUIREMENTS

In the case of a gateway, transmission of each message routed between different
interface modules shall have a configured buffer in the PDU Router. Different buffer
sizes are possible. There shall be, if configured, a separate buffer for messages with

differing length.

The buffers in the PDU Router can be configured using the following parameters:

e Buffer Length: length of buffers for each PDU router can vary from 1 to n
bytes.

e Buffer Overwrite: if the buffer is full, the buffer shall be flushed and the new
value shall be forwarded to the interface.

e Trigger Transmit in case of Empty Buffer: if the interface requests a value but
the PDU router buffer is empty the most recent value shall be provided. If
there has been no transmission before, the most recent value shall be the

default value.

The PDU Router specifies the strategy, and configures each message for routing. A

PDU can also be configured to contain no buffer.
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8.4 CONCLUSION

The purpose of this chapter is to provide a clear understanding of the PDU Router.
Those sequence diagrams which illustrated different communication scenarios in this

chapter are discussed further in chapter nine.
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CHAPTER

SIMULATION MODEL DESIGN AND IMPLEMENTATION

9.1 INTRODUCTION

The in-vehicle network gateway system was prototyped and tested using the
MathWorks MATLAB/Simulink and SimEvents (MATHWORKS, 1997B). The overall
system was designed based on the AUTOSAR Gateway specification (AUTOSAR,
2006). Firstly, the separate components have to be prototyped. Three main
components of the system were prototyped:

e Simulating different types of protocol interfaces (CAN, LIN and FlexRay)
with the ability to send and receive messages and the transmission types: time-
triggered and event-triggered.

¢ Simulating the communication bus that would communicate with different
protocol interfaces.

¢ Simulating AUTOSAR defined gateway structure, which should have the
ability to connect different protocol interfaces and communication bus

simulations.

Figure 9.1 shows the whole in-vehicle network system to be simulated. The system is
composed of two networks, each with three ECUs and featuring time-triggered and
event triggered communication. A gateway ECU integrates a signal gateway and a

PDU router. The detailed simulation content is described in the following subsections.
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Figure 9.1: In-vehicle Network Simulation Model
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9.2 REST BUS SIMULATION MODEL

The simulation of different protocol interfaces could have two types: Event-triggered
and Time-triggered. Due to the system design requirements, only the features of the
transceivers related to these requirements were considered, such as buffers, message

packing and unpacking.

For the simulation design, it was considered that CAN should be the main protocol for
simulation, as CAN contains event-triggered and time-triggered features (for example

TTCAN).

CAN Block Functionality
To judge in-vehicle network gateway efficiency, it is essential to prototype some
devices. Therefore, some devices were represented as a CAN message request sent to

and received from the Gateway ECU over the communication bus.

Rest-bus

Sg. Priority

TX
(Event-triggered/Time-triggered)

Msg. Data
Buffers

Msg. Length —#

Msg. Rate

sng
uonEIINUNWWO))

Msg. Length

RX

Sg. Priority

Figure 9.2: Rest Bus Block

Gateway ECU is the main component to be simulated, therefore only the major
features, as shown in Figure 9.2, were considered. These include: Packing/unpacking
messages. Each message should consist of Msg. Priority No., Msg. Data, Msg. Length

and Msg. Rate. Table 9.1 contains the definition for each message attribute.
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Msg. Priority No. Indicating the queuing sequence in the buffer
Msg. Data Containing the data of each message
Msg. Length Indicating the length of each message to be transmitted. This attribute

can be used for each message to select the buffer

Msg. Rate Indicating the transmission rate of each message. This attribute can be

used for each message, if this message needs to be converted to a
different rate

Table 9.1: Message Attribute definitions

9.2.1 COMMUNICATION BUS SIMULATION MODEL

The communication bus works as a “super highway” between different networks and

gateways. Therefore, to monitor the whole network system, the communication bus is

a critical factor.

For a gateway design, some communication bus features should be considered.

Bus Rate: as discussed previously, different networks can have different data
transfer speeds.

Bus Load: shows the percentage of the bus capacity being used. It is important,
because the gateway will control the network traffic based on the bus load. For
example, if the bus load is quite high, the gateway will manage the messages
to be transmitted/received under a low frequency, and if the bus load is quite
low, the gateway will manage the messages to be transmitted/received under a
high frequency.

Message Transmission Time: makes an in-vehicle network system more

realistic to the real world. Each message is assigned a time, indicating how
long a single message takes to travel across a communication bus. This
transmission time depends on Bus Rate, Bus Load and Message Length. The
transmission times were derived experimentally for various combinations of

Bus Rate and Bus Load. These were then added to the bus simulation model.

9.2.2 EXPERIMENTAL MEASUREMENT OF MESSAGE TRANSMISSION TIMES

The message transmission time is the time that each single message is transmitted

onto the bus. To determine this time, a hardware device is required. By writing a

small piece of C code, as shown in Figure 9.3, the signal message transmission time

can be monitored from the timer of the Infineon C166® (INFINEON) board. Table 9.2
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shows how to set up the Infineon hardware. In this transmit program, a single message
is transmitted ten times to the bus during each transmit cycle, which can get the
timing of the transmit from the Timer more accurately. The timer is stopped after

transmission of ten messages by setting a break point in the debugger.
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void main(void)

{
MAIN_vInit();

while (1)
{
GPT1_vClearTmr(GPT1_TIMER_3); // Clear Timer once one transmit cycle finished.

GPT1_vStartTmr(GPT1_TIMER_3); // Before another transmit cycle, Timer has to be started.
CANI1_vTransmit(1); // Call the CAN transmit function to start a transmit cycle.

while(1);
}

} /1" End of function main

interrupt (T3INT) void GPT1_viTmr3(void)
{

} /1 End of function GPT1_viTmr3

interrupt (XPOINT) void CAN1_viCAN1(void)
{

uword uwIntID;

while (uwIntID = C1PCIR & 0x00ff)

{
switch (uwIntID & 0x00ff)

{
case 3: // Message Object 1 Interrupt
CANI1_OBJ[0].MCR = 0xfffd; // reset INTPND

// The transmission of the last message object
/I was successful.

GPT1_vStopTmr(GPT1_TIMER_3); // Once one message is transmitted on to the bus, Stopping the Timer.
Check_TX_No(); /I Check how many messages have been transmitted.
GPT1_vClearTmr(GPT1_TIMER_3); // Clear the Timer

GPT1_vStartTmr(GPT1_TIMER_3); // Start Timer again for another transmit cycle.

CANI1_vTransmit(1); // Call the CAN transmit function.

break;

default:
break;

} // end switch()

}  // end while
}

void CAN1_vTransmit(ubyte ubObjNr)

{
CANI1_OBIJ[ubObjNr - 1].MCR = 0xe7ff; // set TXRQ,reset CPUUPD

}

void Check_TX_No(void) // This function checks how many times a single message has been transmitted,
// once the counter i equal to 10, the whole process will start again.

{

j=j+T3;
1++;
if (i==10)
{
i=0;
i=0;

}

Figure 9.3: Single Message Transmission Code
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Function Function Name Function Explain

Timer GPT1_vClearTmr This macro stops the selected GPT1 timer and sets the timer
(GPT1_TIMER_3) register to 0.
GPT1_vStartTmr This macro starts the selected GPT1 timer. The timer
(GPT1_TIMER_3) continues to count from where it had stopped.
GPT1_vStopTmr This macro stops the selected GPT1 timer. The contents of
(GPT1_TIMER_3) the timer register remain unchanged.

Transmit CANI1_vTransmit(1) | This function triggers the CANI controller to send the

selected message.

If the selected message object is a TRANSMIT OBJECT
then this function triggers the sending of a data frame. If
however the selected message object is a RECEIVE
OBIJECT this function triggers the sending of a remote

frame.
Transmit Check_TX_No() This function counts how many times one single message
Times has been transmitted. The initial number is setup to 10.

Table 9.2: Function Description

Collecting these times from the Timer, as shown in Table 9.3, shows each bus load
corresponding to its related simulation time and Msg/Sec. In this table, the value of
Msg/Sec is setup and monitored from the PCAN (PEAK) software, described in the
Bus Load Simulation section. The value of Msg Tim is collected from the device
timer, in this instance, because the same message is transmitted ten times in one
transmit cycle, thus, the Msg Tim is the result of the device timer divided by ten. The

Value of the Sim Time is the Msg Tim multiplied by the device timer prescaler.
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Messages Transmission Parameter Details

.
.

Table 9.3

9.2.3 BUS LOAD SIMULATION

It is essential to apply some industry standard tools to assist with in-vehicle network

design, so that the designed model would be more applicable to other engineers.

“The PCAN Explore is a Windows-based universal monitor for control of the data

stream on a CAN network. The PCAN Explorer shows the data traffic in a CAN

network quickly and clearly.” (PEAK) By generating the network traffic, the bus rate

and bus load will be displayed for monitoring.
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PCAN nets allow the connection of a PCAN program (client) to the CAN hardware.
Miscellaneous nets can be defined in order to allow the installed hardware to operate
with different Bus rates. Figure 9.5 and 9.6 show an example of a bus rate of a 500
Kbits/Sec CAN network. Ten transmit messages are generated on this network. By
changing transmit period of each message, the parameter of Msg/Sec can be
monitored in the PCAN Status Display window. In this example, lower and higher ids
are used to make message transmission more realistic. Therefore, the bus load
percentage and the parameter of Msg/Sec can be manually matched using a formula,
as shown in Figure 9.4:

Bus Rate * Bus Load * 0.01
Msg/Sec =

Maximum Message Length

Figure 9.4: Formula for Messages per Second

In the above formula, the length of a CAN message varies depending on the number
of data bytes transmitted. Table 9.4 shows the effective length of a CAN message as a
function of the data field length.

Number of data bytes 0 |1 |2 |3 [4 |5 |6 7 8
Minimum message length 44 |52 |60 | 68 |76 | 84 | 92 100 | 108
Maximum message length 51 160 |70 |80 |89 |99 | 108 | 118 | 128

Table 9.4: Effective Length of CAN message

\Transmit list1.xmt

j(n} DLC Daka Period Counk Trigger
8 00 00 00 00 00 00 00 00 W1 250258 Time
g 00 00 0O 00 00 00 00 00 w15 166885 Time
g 00 00 00 o0 00 00 00 00 W 50 (5007 Time
8 00 00 00 00 00 00 00 00 w1 250257 Titne
8 00 0o oo 00 00 Q0 00 00 W 10 25027 Time
=1 00 00 00 00 00 OO0 00 00 W 2 125129 Timme
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Figure 9.5: Message transmission details
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Figure 9.6: Network Status Display

Figure 9.7 shows the Bus Load for 250 Kbits/Sec simulation converted from a virtual

network generated by PCAN. The Average Msg Arrival Rate slip bar defines the

message range of the 250 Kbits/Sec bus load.

. La ™l i b
Bus Load Senerator P in +ﬁ]
b » Bus Laed

Constant - 4 Maximum Message Length

HAowerage hisg
Arrival Rate + Duﬁ
Constant1 .04

J» Average Msg Arrival Rate
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| 0 | | 12em7047 | | 211884 |
[ Help ] [ Cloze ]

Figure 9.7: Bus Load for 250 Kbits/Sec Simulations

9.2.4 MESSAGE TRANSMISSION TIME SIMULATION

An equivalent simulation model is displayed in Figure 9.8. Some simulation time S-

Function blocks are programmed for different CAN bus rates.

The output from the Bus Load for 250Kbit/Sec is the percentage of the bus usage, and

this figure goes to the S-Function Builder (explained in section 9.3.1) blocks SimTime
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for 250Kbit/Sec. The SimTime for the 250Kbit/Sec block converts the inputs to the
outputs of the simulation time.

SimTime for 250Khit/Sec

L ™| ou

Outl Busload  MsgSimTime_Generator250  Simtime —>(3

Bus Load for 250Ebit/Sec

Figure 9.8: S-Function Builder for simulation time

9.2.5 TIME-TRIGGERED BUS SIMULATION MODEL

For the time-triggered bus simulation, a time scheduled message subsystem needs to
be created. Each individual message to be transmitted is given a time slot by a
sequence of time windows following the reference message. Figure 9.9 shows this

subsystem in the Bus subsystem. In this figure, each Time-Based Message Generator

block periodically generates a message in a certain predefined time, the Set Attribute
block then assigns an identifier for this message. Table 9.5 shows these predefined

times and identifiers.

Message Identifier Message Period
100 10
101 20
102 30
103 40
104 50
105 60
106 70
107 80

Table 9.5: Time Schedule Message Identifiers and Periods
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Figure 9.9: Time Scheduled Messages Transmission
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9.3 AUTOSAR GATEWAY SIMULATION MODEL

The gateway simulation model is the critical part in this whole in-vehicle network

model. Figure 9.10 displays two main components in this gateway model: COM and

PDU Router. Details of this model are described in more detail later in this section.

sng
uorBIUNUWWo))

COM

TX RX
Buffers Buffers
Signal Signal /
Gateway | Signal group
- :
PDU Router * *
TX RX
Buffers Buffers
v H
. 1
A
Y

Figure 9.10: Gateway Block

sng
uorBIUNUWWIO))

Figure 9.11 shows the structure created by the Matlab/Simulink and SimEvents

packages.
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Figure 9.11: Gateway Simulation Model
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9.3.1 COM MESSAGE GENERATION
The COM message generation includes setting up each message attributes, which are

message length, message data, message priority number and message rate.

|

[ udiulticast_Bus_ Buffer Require yO

Random

message 1endih canerate At No. for Mags Len.
Zom/er
i [ Eﬂ oun

Data Data yvod
GensrattCorversio Random Roundin

sQ. Pricrity Honctio
&y out . IN E!'}OUT%—
Set Message Attributes

Set Data Rate Altribute

Yy

Time-Based
Messages Generator

Figure 9.12: Random Message Generation

All these attributes should be generated randomly, so that each message with these

attributes can be regarded as real world. The Uniform Random Number block can

generate these attributes. Table 9.6 shows the details of these attributes.

Attribute Names Attribute Value

Message Length 0 ~ 4095 Bytes

Message Data 8 Bits

Message Priority Number 1 ~200

Message Rate 125, 250, 500, 1000 Kbits/Sec

Table 9.6: Attribute Details

In these attributes, the “Message Length” is a special one. In the later design stages,
the buffer selection is directly decided by its value. Therefore, the S-function Builder
of Simulink is used. Here the development of the S-function using C is described. The
inputs/outputs of this S-function are shown in Table 9.7. In this table, the input is the
length of each message. Note that a variable length message is limited to a maximum
of 4,095 bytes by the COM specification. To make the outputs of this S-Function

simple, it was decided to use representative values to indicate each message length

range.
S-Function: Multicast_Bus_Buffer_Require
Input Output
(Message Length) (Representative Value)
(0, 1500) Bytes 1
(1500, 3000) Bytes 2
(3000, 4095) Bytes 3

Table 9.7: S-Function Input/Output
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The S-Function Builder implements simple functions such as converting the input to
get the output. Therefore, it was decided to use this block so that the communication

with the C prototype can be developed.

Figure 9.13 shows the S-Function Builder, in which the C prototype was integrated

into the Simulink environment.

. S-Function Builder: Gateway_Backupfinterface 1fTransmit Mod... g@@

rParameters
S-function name: Multicast_Bus_Buffer_|
S-function parameters
’V Marne Data type Walue
|
rPortParameter Continuous Derivatives Dizcrete Update Build Info
-E! Input Ports Intialization Diata Properties Likraries COutputs
Ly un I - 1
I E! [?utput Paorts | | Code description
g 0 w0 Erter your C-code ar call your algarithm. If available, discrete and continuous :
Epa 0 Parameters =D[0]...xD[n], =C[0]...xC[hn] respectively. Input ports, output ports and paramete
symbols specified in the Data Propedies. These references appear directly in-
:Eif (a0 > 0 && *=ul <= 1500 "‘_-
i
[ #w0 = 1,
(1
elze if (xul > 1500 && xul <= 3000}
i
*#w0 = 2 3
Inputs are needed in the output functionidirect feedthrough)
Cancel ] [ Help

Figure 9.13: Message Length S-Function

Each S-Function Builder of the system generates its own S-Function wrapper C-file.

This C file contains all the methods that Simulink calls when a simulation is running.
For example, each message is Packed/Unpacked in the simulation. In this case the

new S-Function Builder Generate Attr. No. for Msgs Len. Block is called. The S-

Function then calls its “Multicast_Bus_Buffer_Require_wrapper.c” class, which

contains functions called when initializing or calculating outputs. When the

simulation needs to calculate the Multicast Bus Buffer Require blocks outputs it

goes through the following process shown in Figure 9.14.
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Simulation S-Function C-File

Call

New Simulation Multicast Bus Buffer

L Timestep .
Begins Require_wrapper.c
output function
A 4 A 4

Output Function
Returns messages to
Multicast Bus Buffer
Require_wrapper.c

Call S-function block
“Multicast Bus Buffer
_Require”

4

Multicast Bus Buffer
Require_wrapper.c
returns message to

Simulink

Figure 9.14: S-Function Process

9.3.2 BUFFER SELECTION

As discussed in the previous section, each message is randomly assigned a message
length attribute. With this attribute, when each message goes into the buffer, it will
select a buffer with an equivalent size. For example, if a message length is between
1500 and 3000 bytes, if will select a buffer size equal to 3000 bytes. However, if there
are no buffers available, messages will be dropped into the Msg. Lost block. Figure

9.15 shows the simulation model of this buffer selection mechanism.

Ad
= 1M (?1
1 outh—s v L Jaur
0 < Msg. Len. <= 15001
Select Q 1500 FIFO Q 1500
OuTT b P
oum M oy
N purs 2 our N [ TouT Buffer Select Scape
Mon Triggered Msgs QLTS o _
elect 01 3000 1800 <Msg. Len <= 3000
Transmit or Drop 1 FIFO @ 3000
Ad
] 1*1
OUT =3 IN ouT
3000 < Msg. Len <= 4095
Select G 4095 FIFO Q 4095
N @ #a —>||:| I
Display
Msg. Lost

Figure 9.15: Buffer Selection
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9.3.3 MESSAGE ROUTING

The PDU Router in the gateway is very complex; therefore, lots of functions of

Simulink are used.

The main task of the PDU router is to control the network traffic, so it must have a
routing table, which contains all the information on network events. For example, the
routing table decides if the transmission is TP or Non-TP according to each message
Interface ID (Table 9.9). The PDU router module is defined to simulate according to
this information. The lookup table block can work as a routing table, statically storing
all the messages’ information like Interface ID, Message Priority Number and Device
Number. Table 9.9 shows an example of a Routing Table while its explanations are

described in Table 9.8.

Value Name Description

Msg. Name Indicates message function

Msg. Priority Used to determine messages queuing sequence
Interface ID Indicates which network each message should go to

Table 9.8: Routing table parameter explanations

Msg. Name Device No. | Msg. Priority Interface ID
DLCT (Drive Line Controller) 1 13 2
TCU (Transmission Control Unit) 2 35 2
EMS (Engine Management System) 3 67 1
SCS (Slip Control System) 4 45 2
IPK (Instrument Pack) 5 34 2
SAS (Steering Angle Sensor) 6 17 3
AIR_SUS (Air Suspension Controller) 7 110 3
ARC (Automatic Roll Control ECU) 8 60 1
TLM (Telemetric Unit) 9 43 1
HEVAC (Heating Ventilation and Air

Conditioning Unit) 10 55 1
EPB (Electric Parking Brake) 11 65 3
ACC (Automatic Cruise Control) 12 70 1
VCS (Vehicle Control System) 13 120 3

Table 9.9: Example of a routing table

The Direct Lookup Table block is used to implement this routing table. The direct

lookup table block uses its block inputs as zero-based indices into an n-d table. Users
define a set of output values as the Table data parameter. Additionally, specify users

what objects the input selects from the table: an element, a column, or a 2-D matrix.
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In the example, shown in Figure 9.16, the Direct Lookup Table block has two inputs,
both from the “msg_ids” of Get Attribute block. Figure 9.16 illustrates how it works.

Lookup Table

Input (Msg. ids) Output (Interface ID)
Parameter 5

Parameter 6

-

Parameter n

Figure 9.16: Routing table steps

Figure 9.17 shows that the direct lookup table block is succeeded by an S-Function

Builder block. The S-Function builder converts the inputs to their corresponding

output values, and then gives the Output Msgs to Diff. Interfaces block the switch

sequence.
ZDTH =
Fﬁ} ul PDU_Pord _Select 0 Y
in ﬂ;
Direct Loakup 5-Funciion Builder .
Table {n-D)1 Signal Scopea1
4 Al (02110 i}—
v X, P ounp-
=1 out 3|IN OUT3 -
ouT4
Get Athibuha 1 Output Msgs ta
Diff. Inberfaces

Figure 9.17: Routing Table Block

9.3.4 RATE CONVERSION

S-Function Builder blocks are used to implement the data rate setup. If the bus rate of
the incoming message is the same as the bus rate of the interface it goes to, the S-

Function builder block passes it directly to the corresponding interface. Otherwise, the

S-Function Builder will forward this message to the Upper layer, so that the signal

gateway can reset the data rate of this message to match its corresponding interface.

An example of a Rate Convert 125 block is shown in Figure 9.18, whereby its input

is the attribute data rate from the Get Attribute block, the Output Switch decides

which way the message should go based on the output of the S-Function Builder, that
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is, either go directly to the corresponding node or to the signal gateway of the upper

layer.
J’ ull RateConverd 125  yD
4+ M \—}p —10UT1
BN S_Function Builder? o e
L] Ut -Funclion Builder = 1M ouT?
Get Athibuted Output Switch 1

Figure 9.18: S-Function Builder for Rate Convert
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9.4 TRANSMISSION TYPE MODELLING

Since the messages can be transmitted as either time-triggered or event-triggered, it is
necessary to implement these features in the simulation. In the AUTOSAR defined
Gateway specification, time-triggered transmission assumes the name Non-triggered
TX, while the event-triggered transmission assumes the name Triggered TX.

¢ Non-triggered Transmission (TP or Non-TP)

In SimEvents, a block called Time-based Event Generator is the ideal option for Non-

triggered message generation. In this case, the block generates each message based on

a constant time.

% ouT

Time-Based
hiessages Fenerator

=] Block Parameters: Time-Based Messages Generator El

Time-Bazed Entity Gernerator
Generate entities uzing intergeneration times from a signal or a statistical distribution.
Lze the Rezponze when blocked and Responze when unblocked parameters to

determine how the block responds when the OUT port becomes blocked and later
unblocked.

E ntity type: | Standard s

Response when blocked: | Pause generation -

Responze when unblocked: | Immediate restart R
Entity Generation Statiztics

Generate entities with: | |ntergeneration time from dialog -

Driztribution: | B | Period:|12
Generation ewent priority: | 300

Generate entity at simulation start

I Ok ] [ Cancel ] [ Help ] [ Apply

Figure 9.19: Non Triggered Message Generation

Figure 9.20 shows the Non-TP TX and TP TX without triggered blocks. As described
in the Message Routing section, the routing table decides if a transmit type is TP or
Non-TP. If a message has the same destination and original Interface ID, it is decided
that this transmit type is Non TP. If a message has different destination and original

Interface IDs, this transmit type is regarded as TP.
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TP-PDU-TX without Trigger Transmitl

Figure 9.20: Non-triggered Transmission (TP or Non-TP)

¢ Triggered Transmission (TP or Non-TP)
For the Triggered TX, some special blocks have to be used. After doing research on

the Simulink and SimEvents package, blocks like Goto, From, Enabled Gate can be

implemented together to solve the problem.

The Goto block passes its input to its corresponding From blocks. Therefore, these
two blocks can be regarded as a commanding side and a commanded side. The
Enabled Gate block is usually connected with a From block. Once the From block is
triggered by a signal from a Goto block, the Enabled Gate block will open its gate to
let the messages pass through. Since the triggered function is also a part of the
gateway, the detailed figure on this will be shown in the Gateway ECU simulation

section.

Figure 9.21 shows one part of a triggered transmission in a PDU router. In this figure,
the Goto block B sends a transmit request to receive sides with a relevant “msg_id”.
The PDU router will not forward message until it receives a triggered command from
a receive side. The Enable Gate block will then enable its gate once it gets a signal

from the From block A, which is from the receive side.
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Figure 9.21: Triggered Transmission in Gateway Simulation Model

Figure 9.22 shows another part of a triggered transmission in receive side. In this
figure, the receive side gets a receive indication signal from From block B. It will not,
however, receive the message straight away. Instead it waits for the Single Server

block to send a triggered command to the Goto block A, which is related to the PDU

router.
e 1 ;4
[B] t q;:) ouT 1N ouT 1N [°%] #a
Fram Goto
Time-Based Single Server Entity Sink1
Entity Generator

Figure 9.22: Triggered Transmission in Receive Node Simulation Model

The Non-TP TX and TP TX mechanism in this Triggered Transmission is the same as

in the Non Triggered Transmission.

142



GATEWAY SIMULATION MODEL DESIGN

9.5 RECEPTION TYPE MODELLING

A receive node is very straightforward; it should be configured with a filter to get rid
of unwanted messages. If this receive node wants to receive message periodically, it

should use Time-Based Entity Generator, an Enabled Gate, a From and Goto blocks.

Figure 9.23 shows the periodic reception of a receive node. This procedure is

described below:

e Time-Based Receive Indication Generator block generates an indication

periodically in a certain time.
e The Goto 2 block is triggered by the Time-Based Receive Indication
Generator block every so often. It will then send a signal to the From 1 block.
e  Once the From 1 block gets a signal from the Goto 2 block, it will enable the

Enabled Gate block, allowing it to receive the messages periodically.

0 = M=g. Len. == 1500
(T

From?1

A
+ —
ED L [T

QuT Fon Triggered Msgs 1500 =h=g. Len == 3000

R id 5 Msg Enabled Gate
3000 = M=g. Len == 4035
Mon_triggered
Transmission
Time-Based
Receive Indication Generatorl Entity Sink2

Figure 9.23: Time Scheduled Messages Reception

As defined in the AUTOSAR Gateway Specification, if the Reception type is Non-TP,
an incoming message must be from the same originating Interface. If the Reception

type is TP, an incoming message must be from a different originating Interface.
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9.6 SIMULATION MODEL DESIGN VALIDATION COMMENTS — FROM AN
EXPERT IN AUTOMOTIVE INDUSTRY

This in-vehicle network simulation model was sent to an expert in ATUOSAR to

evaluate, below is this expert’s general comments:

“One of the things that don’t seem to be covered is the fact that TP routing on the fly
isn't treated in detail. For IF routes I recall that buffering was a property of a route,
whereas for TP routes the idea seems to be to define a pool of memory that got
allocated to TP request dynamically. While this might be useful to cover, it is
probably sensible to skirt around the issue. As implementers of the PDUR for
AUTOSAR's validator, no-one ever managed to explain to us what the spec meant
here and how it was supposed to work without dynamic memory allocation (which
you typically cannot do on an embedded target)... I fear the requirements here were a

bit like "It has to have a 45" screen and still fit into a purse or wallet.”

“However, the overall impression is good — it is an interesting experiment!!”

As a result of these comments the following changes were made to the model:
e TP routing is mentioned in Section 9.3.3 and 9.4.

e Buffer lengths are setup statically rather than dynamically, mentioned in

Section 9.3.2.
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CHAPTER

TESTING

10.1 INTRODUCTION

“One of the most important and difficult tasks facing a model developer is the
verification and validation of the simulation model.” (BANKS, 2000A) Conceptually,
the verification and validation process consists of the following:
e Verification is concerned with building the model correctly. Two questions are
asked:
1. Is the model implemented correctly?
2. Are the input parameters and logical structure of the modelled
system correctly represented?

e Validation is concerned with building the right model, according to the system

requirement.

This process is used to determine whether a simulation model is an accurate
representation of the real system. The basic idea of this process is to repeatedly
compare the created model to the actual system behaviour, while using the

discrepancies between the two to develop an accurate model.

This chapter focuses on the testing process by using the verification and validation
processes. Figure 10.1 shows the stages of Model Building, Verification and
Validation. (BANKS, 2000C)

1. The first step is to analyse the real system to be simulated and the
interactions among its various components and collect data on its
behaviour.

2. The second step is to construct a conceptual model with the collection of
the components and data from the first step, as well as with the hypotheses

on the values of model input parameters.
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The third step is the translation of the operational model into a computer-

recognizable form. Model building, however, is not a linear process with

these three fixed steps. The simulation model has to be iterated through

each of these steps lots of times while building, verification, and validation.

Validation

Real System

Conceptual
Validation

Conceptual model

1. Assumptions on system components
e 2. Structural assumptions, which define the
interactions between system components

3. Input parameters and data assumptions

Model
Verification

—

Operational model
(Computerized
representation)

Figure 10.1: Model Testing
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10.2 TESTING TooLS

There are three methods (MATHWORKS, 1997A) available in Simulink for analysing

the outputs from the simulation model, these methods are:

¢ Feed a signal into a Scope block (Real-time Graphic Representation).
e Use Matlab plotting commands to get the return variables of the output.
L]

Using Matlab plotting commands and To Workspace block to output results to

the workspace.

During the gateway simulation model design, the most common testing methods are

Real-time Graphic Representation (Scope) and Matlab Workspace.

10.2.1 REAL-TIME GRAPHIC REPRESENTATION

The Simulink and SimEvents packages of Matlab provide the Scope and Signal Scope

blocks for analysing the results of simulation models.

The Scope and Signal Scope blocks display signals generated during a simulation.

The advantages of these blocks for designing an in-vehicle network gateway are to
adjust the amount of time and the range of messages displayed. The Scope window
and Scope’s parameter values can be moved, resized and modified during the

simulation.

Figure 10.2 shows an example of the routing information Scope in the PDU Router. In
this Scope, the Y axis displays the message’s ids, and the X axis displays the timing,

showing how often the routing table in the PDU Router checks each message.

Routing Infarmation

Message ids

Figure 10.2: Routing Information Scope
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Figure 10.3 shows an example of the Buffer Selection Scope in one of the receive
nodes. In this Scope, the Y axis displays the Message Length Representation Value,
which is described in the Buffer Selection section in the Gateway Specification

chapter. The X axis displays the timing, showing how often the selected buffer stores

each message.

Figure 10.3: Buffer Selection Scope

10.2.2MATLAB WORKSPACE

The Matlab Workspace can work as either inputs or outputs for the simulation model
testing. As mentioned in the Gateway Specification chapter, a Local Database of the

routing table (Loaded from excel files) is stored in the Workspace, as shown in Figure
10.4.
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[E] simout <1x1 structs 4
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Htout <E01x1 douhle> 7
HH two [2122.525.3 35 -
H yout <501%1 double= -
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Figure 10.4: Routing Table Workspace

For output testing, simply pausing the simulation at any time and using the main
Matlab window to call up the Local Database can access the local database. The Local

Database can also be passed into the SimEvents model and displayed on the Display
Blocks.
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10.3 VERIFICATION OF GATEWAY SIMULATION MODEL

The aim of model verification is to ensure that the conceptual model is accurately

reflected the computerized representation. The conceptual model involves some

abstraction on system operations, or some amount of simplification of actual

operations.

In the next subsection, the Verification Testing Case Table is defined. In this table,

there are the following components, described in Table 10.1:

Component Name

Description

Case Indicates the test case name

Subsystem/Component Indicates the subsystems and blocks simulated in the Matlab &
(Blocks) Simulink

Date Indicates the date that each test case is executed.

Version Indicates the test tool version

Test Case Description

Explains each test case function

Test Procedure

Explains how each case is tested

Expected Results Explain the results of a successful test
Failure Explain the results of a failed test
Result Indicates each test case result

Table 10.1: Verification Testing Case Table Components Description
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10.4 VERIFICATION TESTING CASES

Message Generation:

Test Case 1:

Case Subsystem / Component (Blocks) Date Version
Event—triggered ECU 1’ Transmit Node 1: 02-12-06 MATLAB
Messages Generation | Eyent-base Message Generator R2006a

(message length, data, priority number, data rate)

Event-triggered Messages Checking Scope
Test Case Description: It generates messages with attributes of length, data rate, and priority number.

Test Procedure: Connecting four Scope blocks to the signal outputs of the Set Message Attributes

block and observing results from those four Scope blocks.

Expected Results: if each generated message is attached four different attributes (length, data, data

rate, and priority number) correctly.

Failure: if each generated message is not attached any of its attributes or its attached attributes has

wrong format.

Result: Pass

Test Case 2:
Case Subsystem / Component (Blocks) Date Version
Time-triggered ECU 3’ Transmit Node 3: 02-12-06 MATLAB

Messages Generation R2006a

Event-base Message Generator

(message length, data, priority number, data rate)
Time scheduled Table

Time-triggered Messages Checking Scope

Test Case Description: It generates messages with attributes of length, data rate, and priority number.

Test Procedure: Connecting four Scope blocks to the signal outputs of the Set Message Attributes

block, getting results from those four Scope blocks, and comparing the scope time to the time in Time

scheduled Table. .

Expected Results: if each message is generated according to the Time Scheduled Table and generated

message is attached four different attributes (length, data, data rate, and priority number) correctly.

Failure: if each message is not generated according to the time of the schedule table and each

generated message is not attached any of its attributes or its attached attributes has wrong format.

Result: Pass
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Transmission:

Test Case 3:

Case Subsystem / Component (Blocks) Date Version

Non TP-PDU-TX without Gateway ECU, PDU router, 02-12-06 MATLAB

Trigger Transmit Non TP-PDU-TX without R2006a
Trigger TX:

Enabled Gate
Trigger Transmit Checking Scope

Test Case Description: Messages are transmitted right after a transmit request without any delay.

Test Procedure: Monitoring the Trigger Transmit Checking Scope to see if the message is right after a

transmit request.
Expected Results: if the message to be transmitted is right after a transmit request without any delay.

Failure: if there is no transmit request before a message to be transmitted, or there is no message

following a transmit request.

Result: Pass

Test Case 4
Case Subsystem / Component (Blocks) Date Version
Non TP-PDU-TX with Gateway ECU, PDU router’ Non 02-12-06 MATLAB
Trigger Transmission TP-PDU-TX without Trigger TX: R2006a
ECU 1, Receive Node 1:
Enabled Gate

Time Based Event Generator

Trigger Transmit Checking Scope
Test Case Description: Messages are transmitted after a trigger command from a reception side.

Test Procedure: Monitoring the Trigger Transmit Checking Scope to see if a message is triggered by a

trigger command, which means this transmission allows a certain time delay.

Expected Results: if after a transmit request, there is no message following, and the expected message

is transmitted by a trigger command from a receive side.

Failure: if the message is still transmitted right after the transmit request, or there is no message to be

transmitted after a trigger command from the receive side.

Result: Pass
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Test Case 5
Case Subsystem / Component (Blocks) Date Version
TP-PDU-TX Gateway, PDU Router: 02-12-06 MATLAB

Enabled Gate R2006a
Transport protocol 1 Scope

Transport protocol 2 Scope

Test Case Description: Data transmission happens via the transport protocol modules. The transmit

request is forwarded by the gateway ECU to the related TP module.

Test Procedure: Checking Transport protocol 2 Scope, if there is a message coming from Transport
protocol 1. Checking Transport protocol 1 Scope, if there is a message coming from Transport protocol

2.
Expected Results: if message transmission is between the same or different transport protocols.

Failure Recovery: if message transmission is not between different transport protocols but between

different interfaces.

Result: Pass

Reception:

Test Case 6:
Case Subsystem / Component (Blocks) Date Version
Non-TP-PDU RX ECU 1’ Receive Node 3: 02-12-06 MATLAB

Enabled Gate R2006a
Protocol Interface 1 Scope

Protocol Interface 2 Scope
Test Case Description: The reception of the messages happens between different protocol interfaces.

Test Procedure: Checking Protocol Interface 2 Scope, if there is a message coming from Transport
protocol interface 1. Checking Protocol Interface 1 Scope, if there is a message coming from protocol

interface 2.
Expected Results: if message reception does happen between different interfaces.
Failure Recovery: if message reception does not happen between different interfaces.

Result: Pass
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Test Case 7:
Case Subsystem / Component (Blocks) Date Version
TP-PDU RX Gateway, PDU Router: 02-12-06 MATLAB

Enable Gate R2006a
Transport protocol 1 Scope

Transport protocol 2 Scope
Test Case Description: Data to be received is from a transport protocol module.

Test Procedure: Checking Transport protocol 2 Scope, if there is a message coming from Transport
protocol 1. Checking Transport protocol 1 Scope, if there is a message coming from Transport protocol

2.
Expected Results: if message transmission does happen between different transport protocols.
Failure Recovery: if message transmission does not happen between different transport protocols.

Result: Pass

Gateway:

Test Case 8:

Case Subsystem / Component (Blocks) Date Version
Non TP-PDU-Gateway Gateway’ PDU Router, Non TP- 02-12-06 MATLAB
without rate conversion PDU-TX without Trigger R2006a

(Non-trigger) .
Transmit:

Protocol Interface 1 Scope
Protocol Interface 2 Scope
Data Rate Checking 1 Scope
Data Rate Checking 2 Scope

Test Case Description: It acts as direct gateway between two interface modules. Messages received
from one interface shall be forwarded to the other interface. The transmission of the gateway works the

same as the Non-trigger TX.

Test Procedure: Checking data rate signal has any difference from Data Rate Checking 1 Scope to

Data Rate Checking 2 Scope. The Non-trigger test procedure is the same test case 3.

Expected Results: if messages transferred from one network to another network and both networks

with the same data rate do not need rate conversion.

Failure: if messages transferred from one network to another network and both networks with the

same data rate do need rate conversion.

Result: Pass
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Test Case 9:
Case Subsystem / Component (Blocks) Date Version
Non TP-PDU-Gateway Gateway’ PDU Router: 02-12-06 MATLAB

without Rate Conversion R2006a

Protocol Interface 1 Scope
(Trigger) Protocol Interface 2 Scope
Data Rate Checking 1 Scope
Data Rate Checking 2 Scope

Test Case Description: It acts as direct gateway between two interface modules. Messages received
from one interface shall be forwarded to the other interface. The transmission of the gateway works as

the same as the trigger TX.

Test Procedure: Checking data rate signal has any difference from Data Rate Checking 1 Scope to
Data Rate Checking 2 Scope. The Non-trigger test procedure is the same test case 4.

Expected Results: if messages with the same data rate do transmission and reception between different
interfaces. Also the message transmission works the same as the triggered transmission.

Failure: if messages with the same data rate do not transmit and receive between different interfaces.

Also the message transmission does not work the same as the triggered transmission.

Result: Pass

Test Case 10:

Case Subsystem / Component (Blocks) Date Version

Non TP-PDU-Gateway Gateway, PDU Router, Signal 02-12-06 MATLAB

with Rate Conversion R2006a

Gateway, Rate Conversion:
Tei
(Trigger) Input Switch, Output Switch,

New Rate Setup, Rate Conversion Display.

Test Case Description: It is not a direct gateway between two interface modules. Messages received
from one interface forwarded to a different rate interface needs to be converted. The transmission of the

gateway works as the same as the Non-trigger TX.

Test Procedure: Checking data rate signal has any difference from Data Rate Checking 1 Scope to
Data Rate Checking 2 Scope. The Non-trigger test procedure is the same test case 4.

Expected Results: if messages with different data rate do transmission and reception between different

interfaces. Also the message transmission works the same as the triggered transmission.

Failure: if messages with different data rate do not transmit and receive between different interfaces.

Also the message transmission does not work the same as the triggered transmission.

Result: Pass
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Test Case 11:

Case Subsystem / Component (Blocks) Date Version

TP-PDU Gateway | Gateway, PDU Router, TP-PDU-TX | 02-12-06 | MATLAB
with Triggered, TP-PDU-TX without R2006a

Triggered:

TP-PDU Gateway Input Switch

TP-PDU Gateway Output Switch

Transport protocol 1 Scope

Transport protocol 2 Scope
Test Case Description: Messages transmission and reception happen between two different transport
protocols.
Test Procedure: Checking the Transport protocol 2 Scope, if there is message transmission and
reception in the Transport protocol 1 Scope. Or checking the Transport protocol 1 Scope, if there is

message transmission and reception in the Transport protocol 2 Scope.
Expected Results: if messages transfer happen within the transport protocols of gateway.

Failure Recovery: if messages transmission and reception do not happen within the transport protocols

of gateway.

Result: Pass

Communication Bus

Test Case 12:

Case Subsystem / Component (Blocks) Date Version

Bus Loading Bus: Gain ,Divide 02-12-06 MATLAB

Average Arrival Rate Slip Bar R2006a

Bus Loading Checking Scope

Test Case Description: This case tests if the Bus Loading changes according to the Average Arrival

Rate Slip Bar movement.

Test Procedure: Monitoring the Bus Loading Checking Scope change by moving the Average Arrival

Rate Slip Bar.

Expected Results: if the bus loading is calculated by the maths function blocks Gain and Divide, and

once moving the Average Arrival Rate Slip Bar, the value of the bus loading will be changed.

Failure Recovery: if the bus loading is calculated by the maths function blocks Gain and Divide, and

once moving the Average Arrival Rate Slip Bar, the value of the bus loading does not change.

Result: Pass
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Buffer Selection

Test Case 13:

Case Subsystem / Component (Blocks) Date Version
Buffer Selection ECU3, Buffer Selection: 02-12-06 MATLAB
FIFO Queues R2006a

Buffer Selection S-function Builder,
Buffer Selection Output Switches,
Message Length Representation Value Scope

Test Case Description: This case tests if an incoming message is selecting the right size of the buffer.
Test Procedure:

Expected Results: if a message selects a buffer whose size is equivalent to its message length.
Failure: if a message does not select a proper buffer or selects a wrong buffer.

Result: Pass

Message Routing
Test Case 14:

Case Subsystem / Component (Blocks) Date Version
Routing Table Gateway ECU, PDU Router: 02-12-06 MATLAB
Direct Lookup Table R2006a

PDU_Port_Select (S-Function Builder)
Local Database (Matlab Workspace)

Routing Table Information Scope

Test Case Description: The lookup table block can work as a routing table statically storing all the

messages information like Network Number, Message Priority Number, and Device Number.

Test Procedure: Comparing the routing information in the Routing Table Information Scope to the

values in the Local Database.

Expected Results: if a coming message is sent to its corresponding network according to the

information in the routing table of gateway.

Failure Recovery: if a coming message is not sent to its corresponding network according to the

information in the routing table of gateway.

Result: Pass
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Rate Conversion

Test Case 15:

Case

Message Rate

Conversion

Subsystem / Component (Blocks) Date Version

Gateway ECU, PDU Router, Rate | 02-12-06 | MATLAB

Conversion: R2006a

Rate_Convert (S-Function Builder)

Test Case Description: This case tests if an incoming message with different data rate is to be

converted to the right data rate corresponding to the network it goes to.

Test Procedure:

Rate Conversion works the same as Case 10.

Expected Results: if a message goes to a different data interface or network, and this message’s data

rate is converted.

Failure: if a message goes to a different data interface or network, this message’s data rate is not

converted.

Result: Pass

158



TESTING

10.5 VALIDATION OF GATEWAY SIMULATION MODEL

10.5.1 OBJECT OF VALIDATION

“Validation is the overall process of comparing the model and its behavior to the real

system and its behavior.” ( BANKS, 2000C)

To optimise the gateway performance, it is necessary to evaluate the gateway model
by changing each model parameter against some criteria in the real system. At this
stage of this research, these criteria include:
1. Number of dropped messages
. Throughput rate

2
3. Average message latency for an individual message
4. Average message length

5

. Buffer utilization

10.5.2 VALIDATION PROCEDURE

Naykir abd Finger [1967] formulated a three-step approach (BANKS, 2000C) as an aid

to the validation process, which has been widely followed:
1. Build a model that has high face validity.

This step involves the contraction of a model that is reasonable on its face, to model

users and others who know the real system being simulated.

Sensitivity analysis can be applied to measure a simulation model’s face validity. The
model is questioned if it behaves unexpectedly when input variables are changed. For
example, in vehicle network, if the arrival rate of messages were to increase, the
utilization of the servers’ message waiting time would also be increased. Therefore, in
this case the model builder would have to define some ideas for the output model

when the input variables are either increased or decreased.

2. Validate model assumptions.
There are two general classes of model assumptions: Structural assumptions and Data

assumptions.
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Structural Assumptions ask what the system operation is and deals with the
simplification and abstractions of reality. For example, in vehicle network systems,
messages may wait in one queue, or there may be an individual queue for transmit
server or receive server. If there is more than one queue, messages could be
transmitted or received following FIFO (first-in, first-out) mechanism, or messages
could switch queues if one is executing faster. The number of transmit or receive
servers may be fixed or variable. Therefore, these structural assumptions should be
verified with transmit and receive servers according to the bus loading and real time

implementation.

Data Assumptions should be based on the collection of reliable data and correct
statistical analysis of the data. For example, in vehicle network simulation models,
data is collected from:
e Inter-arrival times of messages during specific periods of peak bus
loading (Heavy Traffic).
e Transmit or receive time for each single message from one interface to
another interface in different bus loading.
¢ Transmit or receive time for each single message from one network to
another network in different bus loading.
¢ Buffer selection and implementation time for messages with different

lengths.

3. Compare the model input-output transformations to
corresponding input-output transformations for the real
system.

The ultimate and only objective test of a simulation model is the ability to predict the
future performance of the real system by simulating the real systems’ inputs and
policy. Additionally, in the real system, when some input variables increase or

decrease, the model should accurately predict what is happening and simulate those

circumstances.
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In this validation step, the simulation model is observed as an input-output
transformation. Essentially, that the simulation model accepts the input parameters

and transforms these inputs into output measures of performance.

The gateway simulation model validation follows these three steps. At the start of this
validation process, the overall simulation model was sent to an expert, who works in
AUTOSAR and is familiar with all aspects of AUTOSAR’s Gateway Specification.
This expert’s comments are in the Section 9.6 of Chapter Nine. Figure 10.5 shows the

basic structure, which can represent the procedure of gateway validation.

Simulation
Parameters

Gateway Simulation
Model

5

Outputs >

uoneangyuo)) sng
XL
uoneangyuo)) sng

Figure 10.5: Gateway Validation Procedures

In Figure 10.5, on both sides of the Gateway Simulation Model, there are two bus
configurations: Bus Configuration RX and Bus Configuration TX. Different block

components and bus parameters are defined during the testing.

In Bus Configuration RX block, there are two components, namely Bus Controller

and Bus Interface. Table 10.2 describes this Bus Configuration RX block.

Block Component Description

Bus Controller This component has one parameter:

H/W Buffer Length: it sets up the buffer length in the controller

Bus Interface This component has one parameter:
RX Overhead Time (ms): it indicates how long a bus interface
takes to receive a message.

Table 10.2: Bus Configuration RX

The Gateway Simulation Model contains a PDU Router and Signal Gateway. Each
has different block components and gateway parameters. Table 10.3 describes this

Gateway Simulation Model.
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Block Component

Description

This component has two parameters:
Cycle Time (ms): it indicates how often a PDU Router opens its gate to
PDU Router process an amount of messages.
Router Table Size: it indicates the size of a lookup table in the PDU
router.
Transmit | This component also has one parameters:
H/W Buffer Length: it indicates the size of a transmit buffer in the
PDU Router for transmitting the messages onto the bus.
Buffer Type: it indicates the queuing mechanism for those
messages temporarily stored in the RAM. (FIFO or Priority)
Signal Gateway This component has only one parameter:

Rate Conversion: it indicates the time needed for a message’s rate to

be converted.

Table 10.3: Gateway Simulation Model

In a Bus Configuration TX block, there are two components, namely a Bus Controller

and a Bus Interface. Table 10.4 describes this Bus Configuration TX block.

Block Component

Description

Bus Interface

This component has one parameter:

Buffer Length: it indicates the size of a RAM, which can store the
coming messages temporarily, when the buffer in the controller
is full.

TX Overhead time (ms): it indicates how long a bus interface takes to

forward a message to the bus controller.

Bus Controller

This component has two parameter:

H/W Buffer Length: it indicates the size of a transmit buffer in the bus
controller for transmitting the messages onto the bus.

TX Time (ms): it indicates how long a bus controller takes to transmit a

single message onto the bus according to the bus loading and bus rate.

Table 10.4: Bus Configuration TX

In the testing, some useful data will be collected after each simulation run. Table 10.5

defines the gateway evaluation case as well as describing the results.
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Component Description
Average Queue Length It indicates the length in the buffer or RAM
Average Message Delay It indicates the average time each message stages in the buffer.

Number of Dropped Messages

It indicates the number of messages dropped during each step

within each simulation run.

Throughput It indicates the number of messages implemented during each
step within each simulation run.

Buffer Utilization It indicates the percentage of buffer used within each
simulation run.

Gateway Performance | It indicates the summary the results by summing the five

Summary results above.

Performance Improvement

It indicates the improvement by comparing current simulation

result with the last simulation result.

Table 10.5: Gateway Model Evaluation Results

Based on the three-step approach and the validation process in Figure 10.5, four

gateway validation steps are defined:

1. Select different Bus Configurations (Bus Loading and Bus Rate).

2. Select same sets of Simulation Parameters.

3. Run simulation for each combination of step 1 and 2.

4. Document and analyse the performance metrics from step 3.
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10.6 OPTIMISATION OF GATEWAY PERFORMANCE

10.6.1

EVALUATION CASES TABLE

As mentioned in the Object of Validation section, five performance metrics need to

be evaluated:

1. Number of dropped messages,
2. Throughput rate,
3. Average message latency for an individual message,
4. Average message length and
5. Buffer Utilization.
10.6.2 EVALUATION CASES

1. Same Bus Loading and Same Bus Rate

This section evaluates the gateway parameters by setting the bus loading and bus rate

as the same value. Table 10.6 shows the initial setup in this case.

Parameter Value | Remark
Bus Loading (%) 80 When the bus loading is 80% and the bus rate is
500Kbits/s, the msg/sec on the bus is 3389.8.
RX Bus - Suppose 20% of this msg/sec going to the
Bus Rate (Kbits/sec) 500 gatI::Iz)vay block is realistic, s% ever)gz 1.58 ms, an
msg is received by the RX bus.
Bus Loading (%) 80 When the bus loading is 80% and the bus rate is
TX Bus 500Kbits/s, the msg/sec on the bus is 3389.8.
Bus Rate (Kbits/sec) 500 Every 0.94 ms, an msg is transmitted by the TX
bus.
Bus Buffer Length | 150 Set the RAM size is 1.2MB, each message has 8
RX Controller | (Msgs) Bytes. (Fixed)
Bus RX Overhead | 2 (Fixed)
Interface | Time(ms)
Router Cycle Time (ms) 2 The Router Cycle time could be 2 ms
PDU Table Size 25
Router | Transmit | Buffer Length | 170 Set the RAM size is 1.4MB, each message has 8
(Msgs) Bytes.
Buffer Type FIFO The initial buffer type is set up as FIFO
Signal Gateway Rate Conversion
TX Bus Buffer Length | 150 Set the RAM size is 1.2MB, each message has 8
Interface | (Msgs) Bytes. (Fixed)
X Overhead | 5 The Overhead time could be 2~4 ms (Fixed)
time(ms)
Bus H/W Buffer | 10 (Fixed)
Controller | Length (Msgs)
TX Time (ms) 0.94 (Fixed)

Table 10.6: Initial Case Setup 1
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Case 1:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilization
Leng. (ms) Msgs. (Msg/sec) (%)
RX Bus H/W  Buffer | 150 86.3 28.56 40 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 2 111.6 249 80 249 65.6
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 170
Buffer Type FIFO
Signal Gateway Rate Conver. 0
TX Bus Buffer Length | 150 24.8 15.65 0 200 104
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 199 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 302.36 120 1148
Performance Improvement (%) 0 0 0 0

In the first Case of this set, the Buffer Type in PDU Router is set up as the FIFO,

which makes the gateway work very inefficiently, especially for the Average Message

Delay.
Case 2:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilization
Leng. | (ms) Msgs. (Msg/sec) | (%)
RX Bus H/W  Buffer | 150 86.3 28.56 40 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 2 111.6 | 72.18 80 249 65.6
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 170
Buffer Type P
Signal Gateway Rate Conver. 0
TX Bus Buffer Length | 150 53.74 | 2438 0 200 358
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 199 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 125.54 120 1148
Performance Improvement (%) 58.5 0 0
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When changing the Buffer Type as the Priority, the Average Message Delay is

improved by 58.5 percent in Case 2, which means that each message is processed

much quicker by using the Priority buffer. But there are no big differences for the

other four results: Average Queue Length, No. of Dropped Messages, Throughput and

Bus Utilization. In Case 2, however, the Average Message Delay in TX’s Bus

Interface is a little bit longer than in Case 1, this shows that, the TX Bus is subject to

more pressure, if the gateway works too quickly.

Case 3:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilization
Leng. (ms) Msgs. (Msg/sec) | (%)
RX Bus H/W  Buffer | 150 86.3 16.15 40 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 1.5 83.91 26.53 0 332 494
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 170
Buffer Type P
Signal Gateway Rate Conver. 0
TX Bus Buffer Length | 150 61.58 36.19 33 199 41.1
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 198 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 78.87 73 1229
Performance Improvement (%) 37.2 39.2 7

In Case 3, the Cycle Time is shortened, which makes the Average Message Delay

shorter compared to Case 2; the results are improved by 37.2 percent. The No. of

Dropped Messages and Throughput are also improved by 39.2 and 7 percent. But, the

No. of Dropped Messages in TX’s Bus Interface is higher than in Case 1 and 2.

Consequently, the TX Bus is under more pressure, if the gateway works too quickly.
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Case 4:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilizatio
Leng. (ms) Msgs. (Msg/sec) | n
(%)
RX Bus H/W  Buffer | 150 86.3 28.56 40 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 2 122.5 31.64 30 249 72.1
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 220
Buffer Type P
| Signal Gateway Rate Conver. 0
TX Bus Buffer Length | 150 24.8 29.02 0 200 16.5
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 199 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 89.22 70 1148
Performance Improvement (%) -13.1 4.1 -6.6 0

In Case 4, the Buffer Length in Gateway is increased. In this case, only No. of

Dropped Messages is improved by 4.1 percent. The Average Message Delay and

Throughput are dropped by 13.1 and 6.6 percent respectively. But the Buffer

Utilization in the PDU Router when compared to all the evaluation cases is the

highest.
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2. Different Bus Loading and Same Bus Rate

This section evaluates the gateway parameters by setting the bus loading with a high

loading and a low loading, and the bus rate with the same value.

Parameter Value | Remark
Bus Loading (%) 80 When the bus loading is 80% and the bus rate is
500Kbits/s, the msg/sec on the bus is 3389.8.
RX Bus - Suppose 20% of these msg/sec is going to the
Bus Rate (Kbits/sec) 00 gatre):lz)vay block is realistic,gso each g1.48g ms, an
msg is received by the RX bus.
Bus Loading (%) 30 When the bus loading is 30% and the bus rate is
TX Bus 500Kbits/s, the msg/sec on the bus is 1271.2.
Bus Rate (Kbits/sec) 500 Each 0.687 ms, an msg is transmitted by the TX
bus.
Bus Buffer Length | 150 Set the RAM size is 1.2MB, each message has 8
RX Controller | (Msgs) Bytes. (Fixed)
Bus RX Overhead | 2 (Fixed)
Interface | Time(ms)
Router Cycle Time (ms) 2 The Router Cycle time could be 2 ms
PDU Table Size 25
Router | Transmit | Buffer Length | 170 Set the RAM size is 1.4MB, each message has 8
(Msgs) Bytes.
Buffer Type FIFO The initial buffer type is set up as FIFQO
| Signal Gateway Rate Conversion
TX Bus Buffer Length | 150 Set the RAM size is 1.2MB, each message has 8§
Interface | (Msgs) Bytes. (Fixed)
TX Overhead | 5 The Overhead time could be 2~4 ms (Fixed)
time(ms)
Bus H/W Buffer | 10 (Fixed)
Controller | Length (Msgs)
TX Time (ms) 0.687 (Fixed)

Table 10.7: Initial Case Setup 2
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Case 1:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilization
Leng. (ms) Msgs. (Msg/sec) (%)
RX Bus H/W  Buffer | 150 86.3 26.43 40 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 2 111.6 249 80 249 65.6
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 170
Buffer Type F
Signal Gateway Rate Conver. 0
TX Bus Buffer Length | 150 24.8 18.09 0 200 16.5
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 199 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 293.52 120 1148
Performance Improvement (%) 0 0 0 0
Case 2:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilization
Leng. (ms) Msgs. (Msg/sec) | (%)
RX Bus H/W  Buffer | 150 86.3 26.43 40 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 2 111.6 75.76 80 249 65.6
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 170
Buffer Type P
Signal Gateway Rate Conver. 0
TX Bus Buffer Length | 150 24.8 55.58 0 200 16.5
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 199 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 157.77 120 1148
Performance Improvement (%) 46.2 0 0 0

In this case, the Average Message Delay is improved by 46.2 percent, compared to

Case 1, but its improvement is not as good as the Case 2 in the first set. This is

because of the heavy load in the RX Configuration Bus the lower priority messages

have to wait a relatively long time before being transmitted.
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Case 3:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilization
Leng. (ms) Msgs. (Msg/sec) (%)
RX Bus H/W  Buffer | 150 86.3 15.26 40 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 1.5 83.91 27.18 0 332 65.6
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 170
Buffer Type P
Signal Gateway Rate Conver. 0
TX Bus Buffer Length | 150 61.85 38.99 33 199 41.2
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 198 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 81.43 73 1229
Performance Improvement (%) 48.4 39.2 14.2 0

In the above Case, the results of Average Message Delay, No. of Dropped Messages

and Throughput are improved by 48.4, 39.2 and 14.2 percent respectively. It seems

that a small change in the load will cause a big change in the delay and dropped

messages.
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Case 4:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilization
Leng. (ms) Msgs. (Msg/sec) (%)
RX Bus H/W  Buffer | 150 86.3 26.43 40 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 2 122.5 29.95 30 249 65.6
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 220
Buffer Type P
Signal Gateway Rate Conver. 0
TX Bus Buffer Length | 150 24.8 27.68 0 200 16.5
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 199 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 84.06 73 1148
Performance Improvement (%) -0.03 0 -14.2 0

In Case 4, the Average Message Delay is only slightly dropped by 0.03 percent. No

significance difference results when changing the Buffer Length and Cycle Time. The

Throughput of this case, however, is dropped by 14.2 percent. This is because the

Buffer Length is bigger, as some messages are stored in the Buffer.
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3. Same Bus Loading and Different Bus Rate

This section evaluates the gateway parameters by setting the bus loading with the

same value, and the bus with two different rates.

Parameter Value | Remark
Bus Loading (%) 80 When the bus loading is 80% and the bus rate is
500Kbits/s, the msg/sec on the bus is 3389.8.
RX Bus - Suppose 20% of these msg/sec is going to the
Bus Rate (Kbits/sec) 00 gatre):lz)vay block is realistic,gso each g1.48g ms, an
msg is received by the RX bus.
Bus Loading (%) 80 When the bus loading is 80% and the bus rate is
TX Bus 250Kbits/s, the msg/sec on the bus is 1694.9.
Bus Rate (Kbits/sec) 250 Each 1.899 ms, an msg is transmitted by the TX
bus.
Bus Buffer Length | 150 Set the RAM size is 1.2MB, each message has 8
RX Controller | (Msgs) Bytes. (Fixed)
Bus RX Overhead | 2 (Fixed)
Interface | Time(ms)
Router Cycle Time (ms) 2 The Router Cycle time could be 2 ms
PDU Table Size 25
Router | Transmit | Buffer Length | 170 Set the RAM size is 1.4MB, each message has 8
(Msgs) Bytes.
Buffer Type FIFO The initial buffer type is set up as FIFQO
| Signal Gateway Rate Conversion 0.68
TX Bus Buffer Length | 150 Set the RAM size is 1.2MB, each message has 8§
Interface | (Msgs) Bytes. (Fixed)
TX Overhead | 5 The Overhead time could be 2~4 ms (Fixed)
time(ms)
Bus H/W Buffer | 10 (Fixed)
Controller | Length (Msgs)
TX Time (ms) 1.899 (Fixed)

Table 10.8: Initial Case Setup 3
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Case 1:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilization
Leng. (ms) Msgs. (Msg/sec) | (%)
RX Bus H/W  Buffer | 150 86.3 23.47 40 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 2 112.1 2513 80 248 65.9
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 170
Buffer Type F
Signal Gateway Rate Conver. 0.68
TX Bus Buffer Length | 150 24.8 299 0 199 16.5
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 198 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 305.36 120 1145
Performance Improvement (%) 0 0 0 0
Case 2:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilization
Leng. (ms) Msgs. (Msg/sec) | (%)
RX Bus H/W  Buffer | 150 86.3 23.47 40 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 2 112.1 80.32 80 248 65.9
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 170
Buffer Type P
Signal Gateway Rate Conver. 0.68
TX Bus Buffer Length | 150 24.8 64.36 0 199 16.5
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 198 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 168.83 120 1145
Performance Improvement (%) 44.7 0 0 0

In this Case, although it is improved by 44.7 percent, the Average Message Delay is

still a little bit longer, as message transmission is between different transport

protocols with different Bus Rates, where there are time costs associated with the rate

conversion.
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Case 3:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilization
Leng. (ms) Msgs. (Msg/sec) (%)
RX Bus H/W  Buffer | 150 86.3 25.31 40 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 1.5 83.63 23.42 0 332 49.2
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 170
Buffer Type P
Signal Gateway Rate Conver. 0.68
TX Bus Buffer Length | 150 61.85 484 33 199 41.2
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 198 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 97.81 73 1229
Performance Improvement (%) 42.1 39.2 7 0

In Case 3, the gateway performance is influenced by the different Bus Rates on both

sides of the Gateway ECU model. The results of Average Message Delay, No. of

Dropped Messages and Throughput are improved by 42.1, 39.2 and 7 percent

respectively.
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Case 4:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilization
Leng. (ms) Msgs. (Msg/sec) | (%)
RX Bus H/W  Buffer | 150 86.3 18.32 40 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 2 123 34.01 30 248 65.6
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 220
Buffer Type P
Signal Gateway Rate Conver. 0.68
TX Bus Buffer Length | 150 24.8 28.47 0 199 16.5
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 198 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 81.51 73 1145
Performance Improvement (%) 16.7 0 -7 0

In the above case, the Average Message Delay is improved by 16.7 percent. It is

different the Case 4 in both Set 1 and Set 2. This difference is due to the message rate

conversion operation in the Signal Gateway, which seems to release some of the

burden for the TX Configuration Bus, so that it has enough time to forward messages

onto the bus with less delay.
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4. Minimize the dropped messages

From the above three test cases, there always seems to be dropped messages, which is

a problem for a gateway. In this section, another test is run by changing the

parameters in Bus Configuration RX and TX models. In this set of cases, the initial

setup is described in Table 10.9.

Parameter Value | Remark
Bus Loading (%) 80 When the bus loading is 80% and the bus rate is
500Kbits/s, the msg/sec on the bus is 3389.8.
RX Bus - Suppose 20% of this msg/sec going to the
Bus Rate (Kbits/sec) 500 gatre):lz)vay block is realistic, si ever)% 1.4g8 ms, an
msg is received by the RX bus.
Bus Loading (%) 80 When the bus loading is 80% and the bus rate is
TX Bus 500Kbits/s, the msg/sec on the bus is 3389.8.
Bus Rate (Kbits/sec) 500 Every 0.94 ms, an msg is transmitted by the TX
bus.
Bus Buffer Length | 150 Set the RAM size is 1.2MB, each message has 8
RX Controller | (Msgs) Bytes. (Fixed)
Bus RX Overhead | 2 (Fixed)
Interface | Time(ms)
Router Cycle Time (ms) 1.5 The Router Cycle time could be 2 ms
PDU Table Size 25
Router | Transmit | Buffer Length | 220 Set the RAM size is 1.4MB, each message has 8§
(Msgs) Bytes.
Buffer Type Priority | The initial buffer type is set up as FIFO
Signal Gateway Rate Conversion
TX Bus Buffer Length | 150 Set the RAM size is 1.2MB, each message has 8
Interface | (Msgs) Bytes. (Fixed)
TX Overhead | 5 The Overhead time could be 2~4 ms (Fixed)
time(ms)
Bus H/W Buffer | 10 (Fixed)
Controller | Length (Msgs)
TX Time (ms) 0.94 (Fixed)

Table 10.9: Initial Case Setup 4
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Case 1:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilizatio
Leng. (ms) Msgs. (Msg/sec) | n
(%)
RX Bus H/W  Buffer | 150 86.3 26.32 40 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 1.5 83.63 29.93 0 332 72.1
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 220
Buffer Type P
| Signal Gateway Rate Conver. 0
TX Bus Buffer Length | 150 61.85 43.78 33 199 16.5
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 198 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 100.03 73 1229
Performance Improvement (%) 0 0 0 0

In Case 1, inside the gateway appears to work efficiently.

dropped messages in both the RX Bus and TX Bus.

There are however, still has

Case 2:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilizatio
Leng. (ms) Msgs. (Msg/sec) | n
(%)
RX Bus H/W  Buffer | 150 45.55 11.85 0 588 57.5
Controller | Length
Bus RX Overhead | 1.5
Interface | Time(ms)
Router Cycle Time | 1.5 124.8 29.82 34 332 72.1
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 220
Buffer Type P
| Signal Gateway Rate Conver. 0
TX Bus Buffer Length | 150 61.85 55.03 33 199 16.5
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 198 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 96.7 67 1317
Performance Improvement (%) 4.5 8.2 7.2 0
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In Case 2, the RX Overhead Time is shortened. By making this change, the Average

Message Delay, No. of Dropped Messages and Throughput are improved by 4.5, 8.2

and 7.2 percent. Problems are solved; the No. of Dropped Messages in RX is

minimized to 0, but in the PDU Router, this result is increased. Thus, this shows that

changing the RX Overhead Time is not a way to minimize the No. of Dropped

Messages in the RX Configuration Bus.

Case 3:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilizatio
Leng. (ms) Msgs. (Msg/sec) | n
(%)
RX Bus H/W  Buffer | 200 89.27 15.71 0 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 1.5 83.63 23.87 0 332 72.1
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 220
Buffer Type P
Signal Gateway Rate Conver. 0
TX Bus Buffer Length | 150 61.85 32.87 33 199 16.5
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 198 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 7245 33 1229
Performance Improvement (%) 33.5 103 -7.2 0

In Case 3, the H/W Buffer Length is increased. By carrying out this change, the

Average Message Delay and No. of Dropped Messages are improved by 33.5 and 103

percent. The Throughput however, is decreased by 7.2 percent. In this case, the No. of

Dropped Messages in RX is minimized to 0. From the overall Gateway Performance,

it is more efficient to change the RX Overhead Time than it is to change the H/W

Buffer Length.
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Case 4:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilizatio
Leng. (ms) Msgs. (Msg/sec) | n
(%)
RX Bus H/W  Buffer | 200 89.27 15.71 0 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 1.5 83.63 23.87 0 332 72.1
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 220
Buffer Type P
| Signal Gateway Rate Conver. 0
TX Bus Buffer Length | 200 65.95 21.84 0 199 16.5
Interface | TX Overhead | 5
time(ms)
Bus H/W  Buffer | 10 0 0 0 198 0
Controller | Length
TX Time (ms)  0.942
Gateway Performance Summary 61.42 0 1229
Performance Improvement (%) 15.2 100 0 0

Once the No. of Dropped Messages in RX is minimized, the next step is to minimize

them in TX. In Case 4, the Buffer Length in TX is changed to 200, the Average

Message Delay and No. of Message Dropped are improved by 15.2 and 100 percent.

There are no dropped messages in this whole model.

179




TESTING

Case 5:
Block Parameter Value | Avg. Avg. Msg | No. of | Through- | Buffer
Queue | Delay Dropped | put Utilizatio
Leng. (ms) Msgs. (Msg/sec) | n
(%)
RX Bus H/W  Buffer | 200 89.27 15.59 0 500 57.5
Controller | Length
Bus RX Overhead | 2
Interface | Time(ms)
Router Cycle Time | 1.5 83.63 133 0 332 72.1
PDU_ (ms)
R Table Size 25
Transmit | Buffer Length | 220
Buffer Type P
| Signal Gateway Rate Conver. 0
TX Bus Buffer Length | 100 41.33 15.69 0 249 16.5
Interface | TX Overhead | 3
time(ms)
Bus H/W  Buffer | 10 0 0 0 248 0
Controller | Length
TX Time (ms) @ 0.94
Gateway Performance Summary 44.58 0 1329
Performance Improvement (%) 274 0 8.1 0

In Case 5, the TX Overhead Time improves, while the Average Message Delay and

Throughput are improved by 27.4 and 8.1 percent respectively.

180




TESTING

10.7 CONCLUSION

Testing the current simulation model allows the design to be verified and validated
against the AUTOSAR defined in-vehicle network gateway specification, which

includes interfaces, communication bus and gateway ECU.

The verification testing has shown that all forms of message transmission and

reception within vehicle networks are correctly simulated without errors.

The validation testing has shown that the whole in-vehicle network model is correctly
simulated according to the AUTOSAR specification. Validation testing, also clearly
shows that the buffer mechanism plays a very important role when designing a
vehicle network gateway. This testing proves conclusively that when designing an in-
vehicle network gateway, the critical factor for consideration is the unpredictable
message delays, which depend on the bus loading and buffer mechanism within the

gateway.
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CHAPTER

CONCLUSIONS

11.1 RESEARCH SUMMARY

The current research investigated the AUTOSAR defined gateway specification by
using Matlab & Simulink (SimEvents) to build a gateway ECU simulator with all

essential in-vehicle network components attached.

This research began with a very broad investigation on in-vehicle networks, which
included vehicle network protocols, network design, management and network
gateway design. This was followed by the exploration of different methodologies,
currently used in software development and especially in the automotive industry.
Other areas that were investigated in depth include simulation technologies, such as

Queuing Theory and the MATLAB/Simulink and SimEvents environment.

This research then examined a very specific objective, which was to investigate the
AUTOSAR defined gateway specification. Meanwhile, different in-vehicle network
components, such as ECUs and Communication Buses, as well as concepts, such as

Event-triggered and Time-triggered were also considered.

The main task of this research was to simulate an in-vehicle network gateway ECU
with all necessary network components. This gateway ECU simulation executes the
messages dynamically generated from the application ECUs across the
communication bus. For the communication bus, each single message transmit time
was collected from a hardware board under different bus loadings generated by a
software package. Using the gateway ECU simulation, different parameters were

changed and the results evaluated to optimize the gateway performance.

183



CONCLUSION

The methodology used in developing this gateway ECU for this research was a
model-based design applied in a V-process model via a series of rapid prototyping

ideas.
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11.2 RESEARCH CONCLUSION

This research aimed to answer key questions identified at the beginning of the
research process. These questions have been fully researched and investigated during

this 2 year process.

Research Question: Which aspects of an AUTOSAR gateway configuration have a

significant impact on gateway performance?

At the beginning of this research, an in-vehicle network was considered a small local
area network which is suitable especially for use in real-time distributed control
systems. Data transmission in a distributed control system is influenced significantly
by the intensity and distribution of message traffic in the network. Data transmission
is subject to time-varying delays due to the latency of messages. In addition, messages
may be lost due to buffer saturation in the receiving stations and, therefore, have to be
retransmitted. In order to solve these problems, Queuing Theory was applied to the

in-vehicle network gateway.

It was found that by analysing the Queuing Theory, some idea about the relationship
among message delays, priorities, status (bus loading) of the system are invaluable

when choosing optimum gateway design parameters.

The optimal gateway configuration was achieved by creating different evaluation
cases. This in turn was achieved by changing different critical parameters set up
inside the gateway simulation model and comparing the results displayed from each
simulation run. These results clearly show that Buffer Mechanism plays a very
important role when designing an in-vehicle network gateway. Shorter buffer lengths
are preferable for short message delays, but the buffer must be large enough so as not
to cause dropped messages. The Priority queue also gave better performance

compared to the FIFO queue in the Gateway Model.
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Research Question: Is the Matlab/Simulink and SimEvents a feasible environment to

model and simulate the AUTOSAR defined in-vehicle network gateway system?

The Matlab/Simulink and SimEvents environment proved very applicable for

developing and testing the AUTOSAR defined in-vehicle network gateway system.

It was determined that, the SimEvents package of Simulink combined with the

Queuing Theory and the AUTOSAR defined gateway feature perfectly.

Research Question: Can a gateway simulation model be used effectively to optimise

gateway performance?

From the results of this research and from discussions with experts in the in-vehicle
network research domain, and experts from AUTOSAR, a comprehensive gateway

simulation model is a valuable tool for optimising a gateway's performance.

This simulated gateway model could be incorporated into hardware in the loop
automotive design systems which utilises — D Space hardware which is very good at
simulating real time events of hardware components on the engine thereby giving a
even more realistic data output which would be most desirable to designers in the

automotive field today.

186



CONCLUSION

11.3 AREAS FOR FURTHER RESEARCH

In the Optimisation of Gateway Performance section of the Testing chapter, the
evaluation cases are more concentrated on general gateway parameters. However, the
design of the gateway has to follow the technology development in automotive
industry. Therefore there are some very worthwhile avenues for further research.

These include:

® In vehicle network gateways, there are lots of different parameters that
can be evaluated. In the current research, only some critical ones are used
as an example to demonstrate the simulation model. Suggestion by some
members of the SAE (Society of Automotive Engineers) include
researching different protocol conversions in signal gateway, DMA

approach and arbitration mechanisms.

® There is more and more functionality embedded into the in-vehicle
network gateways, such as the information for vehicle manufacturers,
vehicle owners and vehicle drivers, which needs to be protected by
gateways. The configuration of gateways must become more intelligent to
manage such data. Further research could examine the impact of this extra

data management on gateway performance.
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ABSTRACT

The network is becoming the development focus for the
in-vehicle electronic system. Network buses are used to
improve communication between ECUs and to reduce
the wiring costs. In-vehicle network buses, such as CAN,
LIN, FlexRay, have become the central technique for
sharing sensor data among vehicle ECUs.

Gateways are a critical factor in vehicle network design
with applications requiring the use of several networking
standards. There are lots of networking protocols to

choose from — each with advantages and disadvantages.

No one protocol satisfies the requirements of all
automotive applications. There is a need to consolidate
data from these networks using de-centralized
processing. As such, a gateway is used as a central hub
to interconnect and process data from a vehicle’s
embedded networks. A gateway is composed of several
automotive networking interfaces such as CAN, LIN and
FlexRay in addition to embedded micro-controllers and
peripheral functions.

Meanwhile, simulation has becoming an efficient
development tool used in the modern automotive
industry. This paper will suggest a simulation solution for
designing in-vehicle network gateways.

INTRODUCTION

The In-vehicle network today has become very complex.
Generally it is classified to three types [1]:

Class A Multiplexing: is used for convenience features
(entertainment, audio, trip computer, etc.); does not
require high bandwidth;

Class B Multiplexing: is used for general information
transfer (instrument cluster, vehicle speed, legislated
emissions data, etc.), requires medium speed;

Weida Zhu
Waterford Institute of Technology, Ireland

Brendan Jackman
Waterford Institute of Technology, Ireland

Class C Multiplexing: requires high bandwidth, reliability,
and high data integrity.

Gateways are required to exchange data between these
different vehicle networks. Gateways typically exchange
messages between connected networks based solely on
the destination and priority of the messages. Such
gateways can result in unpredictable message delays
depending on the network loading and vehicle operating
conditions.

Simulink is a design environment based on Matlab [2]
for modeling, simulating, and analyzing dynamic
systems. It has a comprehensive ability to model any
system represented by math, including linear and
nonlinear systems, time-driven and event-driven
systems. Simulink provides plenty of functional models
for different domains to build a whole dynamic system
without writing any code.

In the latest Matlab version, Simulink provides an
extensive tool called SimEvents for modeling and
simulating discrete-event systems using queues and
servers. SimEvents allows users to build a discrete-
event simulation model in Simulink to simulate the
passing of entities through a network of queues, servers,
gates, and switches based on events. SimEvents and
Simulink provide an integrated environment for modeling
hybrid dynamic systems containing continuous-time,
discrete-time, and discrete-event components.

VEHICLE NETWORK TOPOLOGY

A network topology is a physical layout, which connects
different nodes of a communication network. For an in-
vehicle network, there are various methods for
connection between different protocol nodes, but only a
few methods can work properly in vehicle networks. To
decide on a network topology, the chosen protocol
standard and the physical interfaces have to be
considered.
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Figure 1 illustrates a typical vehicle network topology,
showing the use of a gateway to connect different

network types.
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Figure 1: Networking of modern vehicles with
gateway

VEHICLE GATEWAY STRUCTURE

AUTOSAR has recently released a detailed document
on in-vehicle network gateway. Figure 2 shows the basic
gateway structure defined by AUTOSAR [3].

Upper La

Signal Signal /
Gateway | Signal group

—

COM

‘ PDU Router ‘
4 Y 'y

‘FlexR'ay TP| [ CANTP |

R

‘FlexRay Interface‘ ‘ CAN Interface ‘ ‘ LIN Interface ‘

Lower Layer

‘ FlexRay Driver H FlexRay Driver H FlexRay Driver ‘

Figure 2: AUTOSAR gateway structure

COM defined by OSEK/VDX [4] is a method of
exchanging data between different tasks on a single
ECU and between multiple ECUs over a network. COM
is an asynchronous communication model, where the
application is not required to wait for a message transfer
before it resumes processing and it is not blocked if a
message is not available when it is requested. COM
defines a number of notification mechanisms that assist
the application in understanding when a message has
been sent or received.

Each message defined for an application can have only
one sender within the system, but one or many receivers

can receive it. These receivers can be tasks that reside
on the same or a different ECU.

Signal-based Gateway is inside of the COM. Signals
and signal groups are stamped with unique static names
by signal router. A routing table mechanism is used to
store all the signals or signal groups’ information
including their names, destination, etc. lts main tasks are:

e Packing signals or signal groups (Complex Data
Types) from applications into message units
(PDU).

e Unpacking signals or signal groups from
message units (PDU) to applications.

PDU Router is located between Upper Layer COM and
Lower Layer. Its main tasks are:

e Providing a transport platform for messages with
different protocol formats on the Lower Layer

e Providing a transport platform for different
functional networks on the Lower Layer

e Providing a transport platform for
packing/unpacking messages into Upper Layer.

Lower Layer includes Transport Protocols, Protocol
Interface, and Protocol Drivers, which are close to the
physical layer.

SIMULATION OBJECTIVE

Today, functions in a vehicle ECU are increasing, which
is causing the number of ECUs in a vehicle to increase
also. The more ECUs that are connected onto the
networks, the more burdens a gateway will have. Many
OEMSs have to consider lots of variations when designing
vehicle gateways. In order to design a reliable gateway,
those variations must be accounted for during testing.
Using the prototyping approach, it is quite hard to build
enough physical prototypes to perform adequate testing,
even with the most critical variations. Simulating a virtual
prototype of a gateway is a more effective solution for
verifying its performance.

SIMULATION MODEL

The key elements for simulating an in-vehicle gateway
are Upper Layer (COM with signal-based gateway
included), PDU Router and Lower Layer components
(protocol interfaces, protocol drivers, etc). In a simple but
typical gateway model, shown in figure 3, messages
arrive from time to time and join a queue, or waiting line,
and are eventually served, and finally sent onto the bus.
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Figure 3: Typical gateway model

According to the specification defined by AUTOSAR, in-
vehicle gateways can be simulated separately by
Reception and Transmission operations.

RECEPTION SEQUENCE DIAGRAM

There are two types of reception models, non-
TP_PDU_RX and TP_PDU_RX.

During reception, the PDU Router works as a server,
which is triggered by a RX indication is received from a
Lower Layer module. If a RX indication is from the
transport protocol module and the first frame of the
whole message is received, then the PDU router will ask
the Upper Layer to provide a receive buffer. Once the
last frame of the whole message is received, the PDU
router will send an indication to the Upper Layer
informing it of the end of the RX process.

Figure 4 shows the TP_PDU_RX sequence. During the
transport protocol RX, multiple PDUs may need to be
received, so it is necessary to execute this sequence
into a loop for each received PDU. The end of RX will be
indicated only after all the PDUs are received.

Upper Lower
Layer Layer

‘/m RX Indication From

Upper Layer (RX )
Buffer Qequest) Lower Layer

RX Confirmation to RX Confirmation to

Loop Operation
RX Buffer

RX Indication to RX Indication From

Upper Layer Lower Layer

RX Confirmation to RX Confirmation to

Requested
Buffer is Not Enough

Figure 4: TP_PDU_RX

Figure 5 shows the non-TP_PDU_RX sequence.

Requested
Buffer is Enough
CRX
Buffer Loop Operation

Receive Data to

Upper Lower
Layer Layer

RX Indication From

Lower Layer

RX Indication to
Upper Layer

Receive Data to
RX Buffer
RX Confirmation to RX Confirmation to
Lower Layer _ -

~
~—_ ~~_ ——

—

Figure 5: Non-TP_PDU_RX
TRANSMISSION SEQUENCE DIAGRAM

There are two transmission models: non-TP_PDU_TX
and TP_PDU_TX.

In the transmission process, the PDU router works as a
server forwarding PDUs from Upper Layer to Lower
Layer according to the PDU identifiers predefined by the
users. The non-TP_PDU TX is used here as an
example.

In the non-TP_PDU_TX, PDUs transmission can be
divided into triggered or non-triggered.

The triggered transmission procedure, shown in figure 6,
is:

PDU router gets a transmit request from the
Upper Layer,

e PDU router sends the request to the Lower
Layer, but does not forward the PDU until it is
triggered by the Lower Layer,

e Once it gets the trigger, the PDU router will ask
the Upper Layer to provide a transmit buffer,
then send the PDU,

e Once the transmission has ended, the Lower
Layer will inform a transmit confirmation to the
Upper Layer.
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Figure 6: Non-TP_PDU_TX with trigger

The non-triggered transmission procedure, shown in
figure 7, is:

e PDU router gets a transmit request from the
Upper Layer,

PDU router sends the request to the Lower
Layer, and forwards the PDU with the request,

During this procedure, the Lower Layer provides
the TX bulffer,

Once the transmission has ended, the Lower
Layer will inform a transmit confirmation to the
Upper Layer.

Low

TX Request from TX Request to

Up Layer Low Layer
TX
Buffer
TX Confirmation to TX Confirmation from

Figure 7: Non-TP_PDU_TX without trigger
SIMULATION MODEL CONFIGURATION

As described previously, SimEvents allows users to build
a discrete-event simulation model in Simulink, to
simulate the passing of entities through a network of
queues, servers, gates, and switches based on events.
As such SimEvents can be used to model in-vehicle
gateway features.

Here using two transmission examples, Non
TP_PDU_TX without Triggered Transmission and Non
TP_PDU_TX with Triggered Transmission, it is
explained how Upper Layer, PDU router, and Lower
Layer are configured inside a gateway using SimEvents.

Figure 8 is the Upper Layer of the Multicast Non TP-
PDU-TX module. In this figure, above the line is the TX
transmission part, including triggered and Non-triggered.
The Set Msg Attributes block assigns an identifier for
each message generated by the Msg Generator block.
The Msg Replicate for Triggered and Non Triggered
block outputs the coming message, one is for Non-
triggered, and one is for Triggered. As described in the
AUTOSAR specification, the Upper Layer provides the
FIFO buffers for Triggered TX. To make Triggered TX
work, an Enable Gate block is used to work with the
Lower Layer. Below the line is the TX confirmation part
in the Upper Layer, a FIFO buffer is used for receiving
coming TX confirmations.
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Figure 8: Upper Layer of the Multicast Non TP-PDU-
TX module

Figure 9 is the PDU Router of the Multicast Non TP-
PDU-TX module. In this figure, above the line, blocks are
used for transferring messages from the Upper Layer to
the Lower Layer. Below the red line, blocks are used for
transferring the TX request from the Upper Layer to the
Lower Layer.
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Figure 9: PDU Router of the Multicast Non TP-PDU-
TX module

Figure 10 is the Lower Layer of the Multicast Non TP-
PDU-TX module. In this figure, triggered transmission
above the first line can get the messages from the Upper
Layer. Blocks between the first and second lines are
used to get messages without triggers.
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Figure 10: Lower Layer of the Multicast Non TP-PDU-
TX module

PDU_Router has to be triggered to forward message
data from the Upper Layer to Lower Layer.

EVALUATION OF SIMULATION

As previously mentioned, a gateway has to deal with
large numbers of messages between the Upper Layer
and Lower Layer, and between different transport
protocols. Parameters such as buffer sizes, buffer types
and busload can be changed to observe the average
message transmission delay time within the gateway
simulation model.

SimEvents provides timer blocks for the user to observe
how long each entity takes to advance from one block to

another. The timer can be used in the gateway
simulation model to get the message processing time
within a gateway. In the Non TP_PDU_TX simulation
model, two Timer blocks are used, Start Timer block and
Read Timer. Once a message is generated, the Start
Timer block will start timing. The transmission time can
be read after the message passes though the Read
Timer block.

EVALUATION OF ALTERNATIVE BUFFER SIZES

1. Setup a single FIFO buffer
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Figure 11: Single FIFO No. Served and Average Delay

2. Setup three FIFO buffers
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Figure 12: multiple FIFOs No. Served and Average Delay
Figures 11 and 12 show that if using a FIFO buffer
mechanism (within the same simulation time), the
smaller the buffer size, the smaller the average delay
time, and the more messages it can serve.

EVALUATION OF ALTERNATIVE BUFFER
MECHANISMS
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1. Setup FIFO buffer mechanism
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Figure 14: FIFO Average Delay

2. Setup Priority buffer mechanism
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Figure 16: Priority Average Delay

Figures 14 and 16 show that if using a priority buffer
mechanism (within the same simulation time), the
average delay time will be shorter than if using a FIFO
buffer mechanism.

EVALUATION OF BUS LOADING

Figure 17 shows a Bus Loading (250Kbit/Sec) simulation
model, Bus lLoad for 250Kbit/Sec block generates
different busloads into SimTime for 250Kbit/Sec S-
function block, then Sim Time block outputs the time,
which are obtained from the Infineon C167CS [5]. The
Single Server block uses the Sim Time as its service
time to process each message.
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Qut BuslLoad MsgSimTime_Generator250  Simtime
Sim Time
Bus Load p— -
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Figure 17: Generate Simulation Time
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Figure 18: Low Bus Load Average Wait Time

2. Bus Load is 40.8%
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Figure 19: High Bus Load Average Wait Time

Figures 18 and 19 show that the higher the busloads,
the more average wait time each message has.

CONCLUSION

From the given model, it shows clearly that buffer
mechanism plays a very important role when designing a
vehicle network gateway. As mentioned previously,
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when designing an in-vehicle network gateway, the
critical factor to be considered is the unpredictable
message delays, which depends on the bus loading and
buffer mechanisms within the gateway. If engineers use
the simulation approach, the design life cycle will be
obviously decreased for verifying different situations

such as bus speed, electronic components, and gateway.

By using the virtual approach, simulation can give more
general results, and easy configuration.
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DEFINITIONS, ACRONYMS, ABBREVIATIONS
COM: Communication
ECU: Electronic Control Unit

Non-TP_PDU_RX: Non-Transport Protocol PDU
Reception

Non-TP_PDU_TX: Non-Transport Protocol PDU
Transmission

OEM: Original Equipment Manufacture

PDU: Protocol Data Unit

RX: Receive

TP: Transport Protocol

TP_PDU_RX: Transport Protocol PDU Reception
TP_PDU_TX: Transport Protocol PDU Transmission

TX: Transmit

199



SAE (SocCIETY OF AUTOMOTIVE ENGINEERS) PAPER

200



